

mehedi hasan
mehedi@joinme.com

1

 [HYPERLINKS HAD BEEN LOST]

mehedi hasan
mehedi@joinme.com

2

 Hard Disk Drives

The hard disk drive in your system is the "data center" of the PC. It is here
that all of your programs and data are stored between the occasions that you
use the computer. Your hard disk (or disks) are the most important of the
various types of permanent storage used in PCs (the others being floppy disks
and other storage media such as CD-ROMs, tapes, removable drives, etc.)
The hard disk differs from the others primarily in three ways: size (usually
larger), speed (usually faster) and permanence (usually fixed in the PC and
not removable).

Hard disk drives are almost as amazing as microprocessors in terms of the
technology they use and how much progress they have made in terms of
capacity, speed, and price in the last 20 years. The first PC hard disks had a
capacity of 10 megabytes and a cost of over $100 per MB. Modern hard disks
have capacities approaching 100 gigabytes and a cost of less than 1 cent per
MB! This represents an improvement of 1,000,000% in just under 20 years,
or around 67% cumulative improvement per year. At the same time, the
speed of the hard disk and its interfaces have increased dramatically as well.

Top view of a 36 GB, 10,000 RPM, IBM SCSI
server hard disk, with its top cover removed.
Note the height of the drive and the 10 stacked platters.
(The IBM Ultrastar 36ZX.)

mehedi hasan
mehedi@joinme.com

3

Original image © IBM Corporation
Image used with permission.

Your hard disk plays a significant role in the following important aspects of
your computer system:

• Performance: The hard disk plays a very important role in overall
system performance, probably more than most people recognize
(though that is changing now as hard drives get more of the attention
they deserve). The speed at which the PC boots up and programs load
is directly related to hard disk speed. The hard disk's performance is
also critical when multitasking is being used or when processing large
amounts of data such as graphics work, editing sound and video, or
working with databases.

• Storage Capacity: This is kind of obvious, but a bigger hard disk lets
you store more programs and data.

• Software Support: Newer software needs more space and faster
hard disks to load it efficiently. It's easy to remember when 1 GB was
a lot of disk space; heck, it's even easy to remember when 100 MB
was a lot of disk space! Now a PC with even 1 GB is considered by
many to be "crippled", since it can barely hold modern (inflated)
operating system files and a complement of standard business
software.

• Reliability: One way to assess the importance of an item of hardware
is to consider how much grief is caused if it fails. By this standard, the
hard disk is the most important component by a long shot. As I often
say, hardware can be replaced, but data cannot. A good quality hard
disk, combined with smart maintenance and backup habits, can help
ensure that the nightmare of data loss doesn't become part of your
life.

This chapter takes a very detailed look at hard disks and how they work. This
includes a full dissection of the internal components in the drive, a look at
how data is formatted and stored, a discussion of performance issues, and a
full analysis of the two main interfaces used to connect hard disks to the rest
of the PC. A discussion is also included about the many confusing issues
regarding hard disks and BIOS versions, and support for the newer and larger
hard disks currently on the market. Finally, a full description is given of logical
hard disk structures and the functioning of the FAT and NTFS file systems, by
far the most popular currently used by PCs.

Next: A Brief History of the Hard Disk Drive

mehedi hasan
mehedi@joinme.com

4

A Brief History of the Hard Disk Drive

Hard disks are one of the most important and also one of the most interesting
components within the PC. They have a long and interesting history dating
back to the early 1950s. Perhaps one reason that I find them so fascinating is
how well engineers over the last few decades have done at improving them in
every respect: reliability, capacity, speed, power usage, and more.

This excellent chart shows the evolution of IBM hard disks over the past 15
years. Several different form factors are illustrated, showing the progress that
they have made over the years in terms of capacity, along with projections
for the future. 50GB hard disks in laptops in five years? Based on past
history, there's a good chance that it will in fact happen! Note that the scale
on the left is logarithmic, not linear, and PC hard disks have one actuator.

Image © IBM Corporation
Image used with permission.

This section takes you on a brief "guided tour" of the history of hard disk
drives, to help you understand more about how they were developed and
what the key technological improvements were that enabled the modern disk
drive that we all rely on today.

Next: Life Without Hard Disk Drives

mehedi hasan
mehedi@joinme.com

5

Life Without Hard Disk Drives

It's very hard for modern computer users to even consider what "computer
life" would be like with hard disk drives. After all, most of us now have billions
and billions of bytes of information ready at our fingertips (apologies to Carl
Sagan... ;^)). What was using a computer like before we had hard disk
drives? In a word... inconvenient.

Some of the very earliest computers had no storage at all. Each time you
wanted to run a program you would have to enter the program manually.
Needless to say, this was a major pain in the butt. Even more than that, it
made most of what we consider today to be computing impossible, since
there was no easy to way to have a computer work with the same data over
and over again. It was quickly realized that some sort of permanent storage
was necessary if computers were to become truly useful tools.

The first storage medium used on computers was actually paper. Programs
and data were recorded using holes punched into paper tape or punch cards.
A special reader used a beam of light to scan the cards or tape; where a hole
was found it read a "1", and where the paper blocked the sensor, a "0" (or
vice-versa). This was a pretty simple arrangement. I remember using a punch
station, which was like a workstation where you typed characters and the
machine punched the holes into the cards. While a great improvement over
nothing, these cards were still very inconvenient to use. You basically had to
write the entire program from scratch on paper, and get it working in your
mind before you started trying to put it onto cards, because if you made a
mistake you had to re-punch many of the cards. It was very hard to visualize
what you were working with. The card readers had a tendency to jam (the old
one at my high school was nicknamed the "IBM 1443 card chewer".) And
heaven help you if you dropped a stack of cards on the floor... :^) Still
however, paper was used as the primary storage medium for many years.

The next big advance over paper was the creation of magnetic tape. Almost
everyone has at least seen pictures of the large reels of tape used in older
computers. Recording information in a way similar to how audio is recorded
on a tape, these magnetic tapes were much more flexible, durable and faster
than paper tape or punch cards. Of course, tape is still used today on modern
computers, but as a form of offline or secondary storage. Before hard disks,
they were the primary storage for some computers. Their primary
disadvantage is that they must be read linearly; it can take minutes to move
from one end of the tape to the other, making random access impractical.

Warning: Nostalgia mode activated. Be very afraid. :^)

Personal computers developed much later than the early, large mainframes,
and were therefore the beneficiaries of advancements in storage technologies
fairly early on in their existence. My first computer was purchased for me by
my parents in 1980: an Apple][. A great little machine for learning on, using
it gave me a profound appreciation for the importance of storage: because it
had none! No hard disk drive, not even a floppy disk drive. My choices were
to type in programs by hand (which I did sometimes) or try to load them from

mehedi hasan
mehedi@joinme.com

6

a cassette tape. Yes, an audio cassette tape. If you thought modern computer
tape drives were unreliable, you should have tried getting that to work! :^)
(Oh, and I also had to walk barefoot through three feet of snow to get to
school... uphill both ways!)

I later purchased a low-density, single-sided floppy disk drive for my Apple.
Boy, what a feeling of freedom that was! I could load and save programs and
data easily, something I could never do before. That disk drive cost C$700
(back when the Canadian dollar was worth not much less than the U.S.
dollar.) The biggest advantages of floppy disks over tapes are the ability to
randomly access the data, and much better portability. They don't have
nearly as much capacity however.

The first IBM PCs also had no hard disk drive, but rather employed one or two
floppy disk drives. While of course far better than nothing, floppy disk drives
were slow, small in capacity and relatively unreliable compared to even the
earliest hard disks.

Next: Early Disk Drives

mehedi hasan
mehedi@joinme.com

7

Early Disk Drives

The very first disk drives were of course experiments. Researchers,
particularly those at IBM, were working with a number of different
technologies and concepts to try to develop a disk drive that would be
feasible for commercial development. In fact, the very first drives were not
"disk drives" at all--they used rotating cylindrical drums, upon which the
magnetic patterns of data were stored. The drums were large and hard to
work with.

The earliest "true" hard disks had the heads of the hard disk in contact with
the surface of the disk. This was done to allow the low-sensitivity electronics
of the day to be able to better read the magnetic fields on the surface of the
disk. Unfortunately, manufacturing techniques were not nearly as
sophisticated as they are now, and it was not possible to get the disk's
surface as smooth as would be necessary to allow the head to slide smoothly
over the surface of the disk at high speed while in contact with it. Over time
the heads would wear out, or wear out the magnetic coating on the surface of
the disk.

The key technological breakthrough that enabled the creation of the modern
hard disk came in the 1950s. IBM engineers realized that with the proper
design the heads could be suspended above the surface of the disk and read
the bits as they passed underneath. With this critical discovery that contact
with the surface of the disk was not necessary, the basis for the modern hard
disk was born.

The very first production hard disk was the IBM 305 RAMAC (Random Access
Method of Accounting and Control), introduced on September 13, 1956. This
beastie stored 5 million characters (approximately five megabytes, but a
"character" in those days was only seven bits, not eight) on a whopping 50
disks, each 24 inches in diameter! Its areal density was about 2,000 bits per
square inch; in comparison, today's drives have areal densities measured in
billions of bits per square inch. The data transfer rate of this first drive was an
impressive 8,800 bytes per second. :^)

Over the succeeding years, the technology improved incrementally; areal
density, capacity and performance all increased. In 1962, IBM introduced the
model 1301 Advanced Disk File. The key advance of this disk drive was the
creation of heads that floated, or flew, above the surface of the disk on an
"air bearing", reducing the distance from the heads to the surface of the disks
from 800 to 250 microinches.

In 1973, IBM introduced the model 3340 disk drive, which is commonly
considered to be the father of the modern hard disk. This unit had two
separate spindles, one permanent and the other removable, each with a
capacity of 30 MB. For this reason the disk was sometimes referred to as the
"30-30". This name led to its being nicknamed the "Winchester" disk drive,
after the famous "30-30" Winchester rifle. Using the first sealed internal
environment and vastly improved "air bearing" technology, the Winchester
disk drive greatly reduced the flying height of the disk: to only 17 microinches
above the surface of the disk. Modern hard disks today still use many

mehedi hasan
mehedi@joinme.com

8

concepts first introduced in this early drive, and for this reason are sometimes
still called "Winchester" drives.

The first hard disk drive designed in the 5.25" form factor used in the first PCs
was the Seagate ST-506. It featured four heads and a 5 MB capacity. IBM
bypassed the ST-506 and chose the ST-412--a 10 MB disk in the same form
factor--for the IBM PC/XT, making it the first hard disk drive widely used in
the PC and PC-compatible world.

Next: Key Technological Firsts

mehedi hasan
mehedi@joinme.com

9

Key Technological Firsts

There have been a number of important "firsts" in the world of hard disks
over their first 40 or so years. The following is a list, in chronological order, of
some of the products developed during the past half-century that introduced
key or important technologies in the PC world. Note the dominance of IBM in
the list; in this author's opinion Big Blue does not get nearly as much credit
as it deserves for being the main innovator in the storage world. Note also
how many years it took for many of these technologies to make it to the PC
world (sometimes as much as a decade, due to the initial high cost of most
new technologies). I

• First Hard Disk (1956): IBM's RAMAC is introduced. It has a capacity
of about 5 MB, stored on 50 24" disks. Its areal density is a mere
2,000 bits per square inch and its data throughput 8,800 bits/s.

• First Air Bearing Heads (1962): IBM's model 1301 lowers the flying
height of the heads to 250 microinches. It has a 28 MB capacity on
half as many heads as the original RAMAC, and increases both areal
density and throughput by about 1000%.

• First Removable Disk Drive (1965): IBM's model 2310 is the first
disk drive with a removable disk pack. While many PC users think of
removable hard disks as being a modern invention, in fact they were
very popular in the 1960s and 1970s.

• First Ferrite Heads (1966): IBM's model 2314 is the first hard disk
to use ferrite core heads, the first type later used on PC hard disks.

• First Modern Hard Disk Design (1973): IBM's model 3340,
nicknamed the "Winchester", is introduced. With a capacity of 60 MB it
introduces several key technologies that lead to it being considered by
many the ancestor of the modern disk drive.

• First Thin Film Heads (1979): IBM's model 3370 is the first with
thin film heads, which would for many years be the standard in the PC
industry.

• First Eight-Inch Form Factor Disk (1979): IBM's model 3310 is the
first disk drive with 8" platters, greatly reduced in size from the 14"
that had been the standard for over a decade.

• First 5.25" Form Factor Disk (1980): Seagate's ST-506 is the first
drive in the 5.25" form factor, used in the earliest PCs.

• First 3.5" Form Factor Disk Drive (1983): Rodime introduces the
RO352, the first disk drive to use the 3.5" form factor, which became
one of the most important industry standards.

• First Expansion Card Disk Drive (1985): Quantum introduces the
Hardcard, a 10.5 MB hard disk mounted on an ISA expansion card for
PCs that were originally built without a hard disk. This product put
Quantum "on the map" so to speak.

• First Voice Coil Actuator 3.5" Drive (1986): Conner Peripherals
introduces the CP340, the first disk drive to use a voice coil actuator.

• First "Low-Profile" 3.5" Disk Drive (1988): Conner Peripherals
introduces the CP3022, which was the first 3.5" drive to use the

mehedi hasan
mehedi@joinme.com

10

reduced 1" height now called "low profile" and the standard for modern
3.5" drives.

• First 2.5" Form Factor Disk Drive (1988): PrairieTek introduces a
drive using 2.5" platters. This size would later become a standard for
portable computing.

• First Drive to use Magnetoresistive Heads and PRML Data
Decoding (1990): IBM's model 681 (Redwing), an 857 MB drive, is
the first to use MR heads and PRML.

• First Thin Film Disks (1991): IBM's "Pacifica" mainframe drive is the
first to replace oxide media with thin film media on the platter surface.

• First 1.8" Form Factor Disk Drive (1991): Integral Peripherals'
1820 is the first hard disk with 1.8" platters, later used for PC-Card
disk drives.

• First 1.3" Form Factor Disk Drive (1992): Hewlett Packard's
C3013A is the first 1.3" drive.

The source for much of this information is DISK/TREND Inc. In the 1990s,
technological advances in every aspect of hard disks began coming at a fast
and furious pace; it would take too long to research and list them all, so I am
stopping at 1992. :^)

Next: Hard Disk Trends

mehedi hasan
mehedi@joinme.com

11

Hard Disk Trends

The most amazing thing about hard disks is that they both change and don't
change more than most other components. In terms of their basic design,
today's hard disks aren't a lot different than the 10 MB clunkers installed in
the first IBM PC/XTs in the early 1980s. However, in terms of their capacity,
storage, reliability and other characteristics, hard drives have probably
improved more than any other PC component. Let's take a look at some of
the trends in various important hard disk characteristics:

• Areal Density: The areal density of hard disk platters continues to
increase at an amazing rate even exceeding some of the optimistic
predictions of a few years ago. Densities in the lab are now exceeding
35 Gbits/in2, and modern disks are now packing as much as 20 GB of
data onto a single 3.5" platter!

This chart shows the progress of areal density over the last 43 years. The
red line is drawn
as a best-fit through the blue diamonds which are actual products. Key hard
disk head
technology developments are indicated. Note that the scale on left is
logarithmic, not linear.

Image © IBM Corporation
Image used with permission.

mehedi hasan
mehedi@joinme.com

12

• Capacity: Hard disk capacity continues to not only increase, but
increase at an accelerating rate. From 10 MB in 1981, we are now well
over 10 GB in 2000 and will probably hit 100 GB within a year for
consumer drives.

• Spindle Speed: The move to faster and faster spindle speeds
continues. Since increasing the spindle speed improves both random-
access and sequential performance, this is likely to continue. Once the
domain of high-end SCSI drives, 7200 RPM spindles are now standard
on mainstream IDE/ATA drives. A 15,000 RPM SCSI drive was
announced by Seagate in early 2000.

• Form Factor: The trend in form factors is downward: to smaller and
smaller drives. 5.25" drives have now all but disappeared from the
mainstream PC market, with 3.5" drives dominating the desktop and
server segment. In the mobile world, 2.5" drives are the standard with
smaller sizes becoming more prevalent; IBM in 1999 announced its
Microdrive which is a tiny 170 MB or 340 MB device only an inch in
diameter and less than 0.25" thick! Over the next few years, desktop
and server drives are likely to transition to the 2.5" form factor as
well. The primary reasons for this "shrinking trend" include the
enhanced rigidity of smaller platters, reduction of mass to enable
faster spin speeds, and improved reliability due to enhanced ease of
manufacturing.

• Performance: Both positioning and transfer performance factors are
improving. The speed with which data can be pulled from the disk is
increasing more rapidly than positioning performance is improving,
suggesting that over the next few years addressing seek time and
latency will be the areas of greatest value to hard disk engineers.

• Reliability: The reliability of hard disks is improving slowly as
manufacturers refine their processes and add new reliability-enhancing
features, but this characteristic is not changing nearly as rapidly as the
others above. One reason is that the technology is constantly
changing, and the performance envelope constantly being pushed; it's
much harder to improve the reliability of a product when it is changing
rapidly.

• RAID: Once the province of only high-end servers, the use of multiple
disk arrays to improve performance and reliability is becoming
increasingly common, and is now even seen in consumer desktop
machines. Over the next few years I predict that RAID will become the
"next big thing" as the thirst for performance increases, and in five
years we may see new PCs commonly shipping with multiple hard
disks configured as an array.

• Interfaces: Despite the introduction to the PC world of new interfaces
such as IEEE-1394 and USB (universal serial bus) the mainstream
interfaces in the PC world are the same as they were through the
1990s: IDE/ATA and SCSI. The interfaces themselves continue to
create new and improved standards with higher maximum transfer
rates, to match the increase in performance of the hard disks
themselves.

mehedi hasan
mehedi@joinme.com

13

Next: Construction and Operation of the Hard Disk Drive

mehedi hasan
mehedi@joinme.com

14

Construction and Operation of the Hard Disk

To many people, a hard disk is a "black box" of sorts--it is thought of as just
a small device that "somehow" stores data. There is nothing wrong with this
approach of course, as long as all you care about is that it stores data. If you
use your hard disk as more than just a place to "keep stuff", then you want to
know more about your hard disk. It is hard to really understand the factors
that affect performance, reliability and interfacing without knowing how the
drive works internally. Fortunately, most hard disks are basically the same on
the inside. While the technology evolves, many of the basics are unchanged
from the first PC hard disks in the early 1980s.

Photograph of a modern SCSI hard disk, with major components annotated.
The logic board is underneath the unit and not visible from this angle.

Original image © Western Digital Corporation
Image used with permission.

In this section we dive into the guts of the hard disk and discover what makes
it tick. We look at the various key components, discuss how the hard disk is
put together, and explore the various important technologies and how they
work together to let you read and write data to the hard disk. My goal is to go
beyond the basics, and help you really understand the design decisions and

mehedi hasan
mehedi@joinme.com

15

tradeoffs made by hard disk engineers, and the ways that new technologies
are being employed to increase capacity and improve performance.

Next: Hard Disk Operational Overview

mehedi hasan
mehedi@joinme.com

16

Hard Disk Operational Overview

As an illustration, I'll describe here in words how the various components in the
disk interoperate when they receive a request for data. Hopefully this will provide
some context for the descriptions of the components that follow in later sections.

A hard disk uses round, flat disks called platters, coated on both sides with a
special media material designed to store information in the form of magnetic
patterns. The platters are mounted by cutting a hole in the center and stacking
them onto a spindle. The platters rotate at high speed, driven by a special spindle
motor connected to the spindle. Special electromagnetic read/write devices called
heads are mounted onto sliders and used to either record information onto the
disk or read information from it. The sliders are mounted onto arms, all of which
are mechanically connected into a single assembly and positioned over the
surface of the disk by a device called an actuator. A logic board controls the
activity of the other components and communicates with the rest of the PC.

Each surface of each platter on the disk can hold tens of billions of individual bits
of data. These are organized into larger "chunks" for convenience, and to allow
for easier and faster access to information. Each platter has two heads, one on
the top of the platter and one on the bottom, so a hard disk with three platters
(normally) has six surfaces and six total heads. Each platter has its information
recorded in concentric circles called tracks. Each track is further broken down into
smaller pieces called sectors, each of which holds 512 bytes of information.

The entire hard disk must be manufactured to a high degree of precision due to
the extreme miniaturization of the components, and the importance of the hard
disk's role in the PC. The main part of the disk is isolated from outside air to
ensure that no contaminants get onto the platters, which could cause damage to
the read/write heads.

mehedi hasan
mehedi@joinme.com

17

Exploded line drawing of a modern hard disk, showing the major components.
Though the specifics vary greatly between different designs, the basic
components you see above are typical of almost all PC hard disks.

Original image © Seagate Technology
Image used with permission.

Here's an example case showing in brief what happens in the disk each time a
piece of information needs to be read from it. This is a highly simplified example
because it ignores factors such as disk caching, error correction, and many of the
other special techniques that systems use today to increase performance and
reliability. For example, sectors are not read individually on most PCs; they are
grouped together into continuous chunks called clusters. A typical job, such as
loading a file into a spreadsheet program, can involve thousands or even millions
of individual disk accesses, and loading a 20 MB file 512 bytes at a time would be
rather inefficient:

1. The first step in accessing the disk is to figure out where on the disk to
look for the needed information. Between them, the application, operating
system, system BIOS and possibly any special driver software for the disk,
do the job of determining what part of the disk to read.

2. The location on the disk undergoes one or more translation steps until a
final request can be made to the drive with an address expressed in terms
of its geometry. The geometry of the drive is normally expressed in terms

mehedi hasan
mehedi@joinme.com

18

of the cylinder, head and sector that the system wants the drive to read.
(A cylinder is equivalent to a track for addressing purposes). A request is
sent to the drive over the disk drive interface giving it this address and
asking for the sector to be read.

3. The hard disk's control program first checks to see if the information
requested is already in the hard disk's own internal buffer (or cache). It if
is then the controller supplies the information immediately, without
needing to look on the surface of the disk itself.

4. In most cases the disk drive is already spinning. If it isn't (because power
management has instructed the disk to "spin down" to save energy) then
the drive's controller board will activate the spindle motor to "spin up" the
drive to operating speed.

5. The controller board interprets the address it received for the read, and
performs any necessary additional translation steps that take into account
the particular characteristics of the drive. The hard disk's logic program
then looks at the final number of the cylinder requested. The cylinder
number tells the disk which track to look at on the surface of the disk. The
board instructs the actuator to move the read/write heads to the
appropriate track.

6. When the heads are in the correct position, the controller activates the
head specified in the correct read location. The head begins reading the
track looking for the sector that was asked for. It waits for the disk to
rotate the correct sector number under itself, and then reads the contents
of the sector.

7. The controller board coordinates the flow of information from the hard disk
into a temporary storage area (buffer). It then sends the information over
the hard disk interface, usually to the system memory, satisfying the
system's request for data.

Next: Hard Disk Platters and Media

mehedi hasan
mehedi@joinme.com

19

Hard Disk Platters and Media

Every hard disk contains one or more flat disks that are used to actually hold
the data in the drive. These disks are called platters (sometimes also "disks"
or "discs"). They are composed of two main substances: a substrate material
that forms the bulk of the platter and gives it structure and rigidity, and a
magnetic media coating which actually holds the magnetic impulses that
represent the data. Hard disks get their name from the rigidity of the platters
used, as compared to floppy disks and other media which use flexible
"platters" (actually, they aren't usually even called platters when the material
is flexible.)

The platters are "where the action is"--this is where the data itself is
recorded. For this reason the quality of the platters and particularly, their
media coating, is critical. The surfaces of each platter are precision machined
and treated to remove any imperfections, and the hard disk itself is
assembled in a clean room to reduce the chances of any dirt or contamination
getting onto the platters.

Next: Platter Size

mehedi hasan
mehedi@joinme.com

20

Platter Size

The size of the platters in the hard disk is the primary determinant of its
overall physical dimensions, also generally called the drive's form factor; most
drives are produced in one of the various standard hard disk form factors.
Disks are sometimes referred to by a size specification; for example, someone
will talk about having a "3.5-inch hard disk". When this terminology is used it
usually refers to the disk's form factor, and normally, the form factor is
named based on the platter size. The platter size of the disk is usually the
same for all drives of a given form factor, though not always, especially with
the newest drives, as we will see below. Every platter in any specific hard disk
has the same diameter.

The first PCs used hard disks that had a nominal size of 5.25". Today, by far
the most common hard disk platter size in the PC world is 3.5". Actually, the
platters of a 5.25" drive are 5.12" in diameter, and those of a 3.5" drive are
3.74"; but habits are habits and the "approximate" names are what are
commonly used. You will also notice that these numbers correspond to the
common sizes for floppy disks because they were designed to be mounted
into the same drive bays in the case. Laptop drives are usually smaller, due to
laptop manufacturers' never-ending quest for "lighter and smaller". The
platters on these drives are usually 2.5" in diameter or less; 2.5" is the
standard form factor, but drives with 1.8" and even 1.0" platters are
becoming more common in mobile equipment.

A platter from a 5.25" hard disk, with a platter
from a 3.5" hard disk placed on top of it for
comparison. The quarter is included for scale (and
strangely, fits right in the spindle hole for both
platters... isn't that a strange coincidence?

mehedi hasan
mehedi@joinme.com

21

Traditionally, drives extend the platters to as much of the width of the
physical drive package as possible, to maximize the amount of storage they
can pack into the drive. However, as discussed in the section on hard disk
historical trends, the trend overall is towards smaller platters. This might
seem counter-intuitive; after all, larger platters mean there is more room to
store data, so shouldn't it be more cost-effective for manufacturers to make
platters as big as possible? There are several reasons why platters are
shrinking, and they are primarily related to performance. The areal density of
disks is increasing so quickly that the loss of capacity by going to smaller
platters is viewed as not much of an issue--few people care when drives are
doubling in size every year anyway!--while performance improvements
continue to be at the top of nearly everyone's wish list. In fact, several hard
disk manufacturers who were continuing to produce 5.25" drives for the
"value segment" of the market as recently as 1999 have now discontinued
them. (The very first hard disks were 24" in diameter, so you can see how far
we have come in 40 or so years.)

Here are the main reasons why companies are going to smaller platters even
for desktop units:

• Enhanced Rigidity: The rigidity of a platter refers to how stiff it is.
Stiff platters are more resistant to shock and vibration, and are better-
suited for being mated with higher-speed spindles and other high-
performance hardware. Reducing the hard disk platter's diameter by a
factor of two approximately quadruples its rigidity.

• Manufacturing Ease: The flatness and uniformity of a platter is
critical to its quality; an ideal platter is perfectly flat and consistent.
Imperfect platters lead to low manufacturing yield and the potential for
data loss due to the heads contacting uneven spots on the surface of a
platter. Smaller platters are easier to make than larger ones.

• Mass Reduction: For performance reasons, hard disk spindles are
increasing in speed. Smaller platters are easier to spin and require
less-powerful motors. They are also faster to spin up to speed from a
stopped position.

• Power Conservation: The amount of power used by PCs is becoming
more and more of a concern, especially for portable computing but
even on the desktop. Smaller drives generally use less power than
larger ones.

• Noise and Heat Reduction: These benefits follow directly from the
improvements enumerated above.

• Improved Seek Performance: Reducing the size of the platters
reduces the distance that the head actuator must move the heads
side-to-side to perform random seeks; this improves seek time and
makes random reads and writes faster. Of course, this is done at the
cost of capacity; you could theoretically achieve the same performance
improvement on a larger disk by only filling the inner cylinders of each
platter. In fact, some demanding customers used to partition hard
disks and use only a small portion of the disk, for exactly this reason:
so that seeks would be faster. Using a smaller platter size is more
efficient, simpler and less wasteful than this sort of "hack".

mehedi hasan
mehedi@joinme.com

22

The trend towards smaller platter sizes in modern desktop and server drives
began in earnest when some manufacturers "trimmed" the platters in their
10,000 RPM hard disk drives from 3.74" to 3" (while keeping them as
standard 3.5" form factor drives on the outside for compatibility.) Seagate's
Cheetah X15 15,000 RPM drive goes even further, dropping the platter size
down to 2.5", again trading performance for capacity (it is "only" 18 GB, less
than half the size of modern 3.5" platter-size drives.) This drive, despite
having 2.5" platters, still uses the common 3.5" form factor for external
mounting (to maintain compatibility with standard cases), muddying the
"size" waters to some extent (it's a "3.5-inch drive" but it doesn't have 3.5"
platters.)

The smallest hard disk platter size available on the market today is a
miniscule 1" in diameter! IBM's amazing Microdrive has a single platter and is
designed to fit into digital cameras, personal organizers, and other small
equipment. The tiny size of the platters enables the Microdrive to run off
battery power, spin down and back up again in less than a second, and
withstand shock that would destroy a normal hard disk. The downside? It's
"only" 340 MB. :^)

Internal view and dimensions of
the amazing IBM Microdrive.

Image © IBM Corporation
Image used with permission.

Here's a summary table showing the most common platter sizes used in PCs,
in order of decreasing size (which in most cases is also chronological order
from their data of introduction, but not always) and also showing the most
common form factors used by each technology:

Platter
Diameter

Typical Form
Factor

Application

5.12 5.25" Oldest PCs, used in servers through the

mehedi hasan
mehedi@joinme.com

23

mid-1990s and some retail drives in the
mid-to-late 1990s; now obsolete

3.74 3.5"
Standard platter size for the most
common hard disk drives used in PCs

3.0 3.5" High-end 10,000 RPM drives

2.5 2.5", 3.5"
Laptop drives (2.5" form factor); 15,000
RPM drives (3.5" form factor)

1.8 PC Card (PCMCIA) PC Card (PCMCIA) drives for laptops

1.3 PC Card (PCMCIA)
Originally used on hand-held PCs (no
longer made)

1.0 CompactFlash
Digital cameras, hand-held PCs and other
consumer electronic devices

Next: Number of Platters

mehedi hasan
mehedi@joinme.com

24

Number of Platters

Hard disks can have one platter, or more, depending on the design. Standard
consumer hard disks, the type probably in your PC right now, usually have
between one and five platters in them. Some high-end drives--usually used in
servers--have as many as a dozen platters. Some very old drives had even
more. In every drive, all the platters are physically connected together on a
common central spindle, to form a single assembly that spins as one unit,
driven by the spindle motor. The platters are kept apart using spacer rings
that fit over the spindle. The entire assembly is secured from the top using a
cap or cover and several screws. (See the spindle motor page for an
illustration of these components.)

Each platter has two surfaces that are capable of holding data; each surface
has a read/write head. Normally both surfaces of each platter are used, but
that is not always the case. Some older drives that use dedicated servo
positioning reserve one surface for holding servo information. Newer drives
don't need to spend a surface on servo information, but sometimes leave a
surface unused for marketing reasons--to create a drive of a particular
capacity in a family of drives. With modern drives packing huge amounts of
data on a single platter, using only one surface of a platter allows for
increased "granularity". For example, IBM's Deskstar 40GV family sports an
impressive 20 GB per platter data capacity. Since IBM wanted to make a 30
version of this drive, they used three surfaces (on two platters) for that drive.
Here's a good illustration of how Western Digital created five different
capacities using three platters in their Caviar line of hard disk drives:

Model
Number

Nominal
Size (GB)

Data
Sectors Per
Drive

Platters Surfaces

WD64AA 6.4 12,594,960 1 2

WD102AA 10.2 20,044,080 2 3

WD136AA 13.6 26,564,832 2 4

WD172AA 17.2 33,687,360 3 5

WD205AA 20.5 40,079,088 3 6

Note: In theory, using only one surface means manufacturing costs can be
saved by making use of platters that have unacceptable defects on one
surface, but I don't know if this optimizing is done in practice...

From an engineering standpoint there are several factors that are related to
the number of platters used in the disk. Drives with many platters are more
difficult to engineer due to the increased mass of the spindle unit, the need to
perfectly align all the drives, and the greater difficulty in keeping noise and

mehedi hasan
mehedi@joinme.com

25

vibration under control. More platters also means more mass, and therefore
slower response to commands to start or stop the drive; this can be
compensated for with a stronger spindle motor, but that leads to other
tradeoffs. In fact, the trend recently has been towards drives with fewer head
arms and platters, not more. Areal density continues to increase, allowing the
creation of large drives without using a lot of platters. This enables
manufacturers to reduce platter count to improve seek time without creating
drives too small for the marketplace. See here for more on this trend.

This Barracuda hard disk has 10 platters.
(I find the choice of fish hooks as a
background for this shot highly amusing. :^))

Original image © Seagate Technology
Image used with permission.

The form factor of the hard disk also has a great influence on the number of
platters in a drive. Even if hard disk engineers wanted to put lots of platters in
a particular model, the standard PC "slimline" hard disk form factor is limited
to 1 inch in height, which limits the number of platters that can be put in a
single unit. Larger 1.6-inch "half height" drives are often found in servers and
usually have many more platters than desktop PC drives. Of course,
engineers are constantly working to reduce the amount of clearance required
between platters, so they can increase the number of platters in drives of a
given height.

Next: Platter Substrate Materials

mehedi hasan
mehedi@joinme.com

26

Platter Substrate Materials

The magnetic patterns that comprise your data are recorded in a very thin
media layer on the surfaces of the hard disk's platters; the bulk of the
material of the platter is called the substrate and does nothing but support
the media layer. To be suitable, a substrate material must be rigid, easy to
work with, lightweight, stable, magnetically inert, inexpensive and readily
available. The most commonly used material for making platters has
traditionally been an aluminum alloy, which meets all of these criteria.

Due to the way the platters spin with the read/write heads floating just above
them, the platters must be extremely smooth and flat. With older, slower
spindle drives and relatively high fly heights, the uniformity of the platter
surface was less of an issue. Now, as technology advances, the gap between
the heads and the platter is decreasing, and the speed that the platters spin
at is increasing, creating more demands on the platter material itself. Uneven
platter surfaces on hard disks running at faster speeds with heads closer to
the surface are more apt to lead to head crashes. For this reason many drive
makers began several years ago to look at alternatives to aluminum, such as
glass, glass composites, and magnesium alloys.

Hard disk platters are very smooth, right? Well, not to a scanning electron
microscope! The image on the left is of the surface of an aluminum alloy
platter; the one on the right is a glass platter. The images speak for
themselves. The scale is in microns.

Composed from two original images © IBM Corporation
Images used with permission.

It now is looking increasingly likely that glass and composites made with glass
will be the next standard for the platter substrate. IBM has been shipping
drives with glass platters for several years and in 2000 is introducing them
into the IDE/ATA consumer drive market. Compared to aluminum platters,
glass platters have several advantages:

mehedi hasan
mehedi@joinme.com

27

• Better Quality: The first and most important reason for going to glass
is probably that glass platters can be made much smoother and flatter
than aluminum, improving the reliability of the hard disk and making
low flying heights and faster spindle speeds more feasible.

• Improved Rigidity: Another important consideration is that glass is
more rigid than aluminum for the same weight of material. Improved
rigidity, one of the reasons why platter sizes are also shrinking in size,
is important for reducing noise and vibration with drives that spin at
high speed.

• Thinner Platters: The enhanced rigidity of glass also allows platters
to be made thinner than with aluminum, allowing more platters to be
packed into the same drive dimensions. Thinner platters also weigh
less, reducing spindle motor requirements and reducing start time
when the drive is at rest.

• Thermal Stability: When heated, glass expands much less than does
aluminum. With some hard disk platters now containing 35,000 tracks
per inch or more, even a small amount of expansion can causes these
tracks to "move around". The drive's servo mechanism compensates
for expansion and contraction, but it is still preferable to use materials
that move as little as possible because this reduces the amount of
adjusting the hard drive has to do, improving performance.

One obvious disadvantage of glass compared to aluminum is fragility,
particularly when made very thin. For this reason some companies are
experimenting with glass/ceramic composites. One of these is a Dow Corning
product called MemCor, which is a glass made with ceramic inserts to reduce
the likelihood of cracking. Sometimes these composites are just called
"glass", much the way aluminum alloy platters, which usually contain other
metals, are just called "aluminum".

Next: Magnetic Media

mehedi hasan
mehedi@joinme.com

28

Magnetic Media

The substrate material of which the platters are made forms the base upon
which the actual recording media is deposited. The media layer is a very thin
coating of magnetic material which is where the actual data is stored; it is
typically only a few millionths of an inch in thickness.

Older hard disks used oxide media. "Oxide" really means iron oxide--rust. Of
course no high-tech company wants to say they use rust in their products, so
they instead say something like "high-performance oxide media layer". :^)
But in fact that's basically what oxide media is, particles of rust attached to
the surface of the platter substrate using a binding agent. You can actually
see this if you look at the surface of an older hard disk platter: it has the
characteristic light brown color. This type of media is similar to what is used
in audio cassette tape (which has a similar color.)

Oxide media is inexpensive to use, but also has several important
shortcomings. The first is that it is a soft material, and easily damaged from
contact by a read/write head. The second is that it is only useful for relatively
low-density storage. It worked fine for older hard disks with relatively low
data density, but as manufacturers sought to pack more and more data into
the same space, oxide was not up to the task: the oxide particles became too
large for the small magnetic fields of newer designs.

Today's hard disks use thin film media. As the name suggests, thin film media
consists of a very thin layer of magnetic material applied to the surface of the
platters. (While oxide media certainly isn't thick by any reasonable use of the
word, it was much thicker than this new media material; hence the name
"thin film".) Special manufacturing techniques are employed to deposit the
media material on the platters. One method is electroplating, which deposits
the material on the platters using a process similar to that used in
electroplating jewelry. Another is sputtering, which uses a vapor-deposition
process borrowed from the manufacture of semiconductors to deposit an
extremely thin layer of magnetic material on the surface. Sputtered platters
have the advantage of a more uniform and flat surface than plating. Due to
the increased need for high quality on newer drives, sputtering is the primary
method used on new disk drives, despite its higher cost.

Compared to oxide media, thin film media is much more uniform and smooth.
It also has greatly superior magnetic properties, allowing it to hold much
more data in the same amount of space. Finally, it's a much harder and more
durable material than oxide, and therefore much less susceptible to damage.

mehedi hasan
mehedi@joinme.com

29

A thin film 5.25" platter (above) next to an oxide 5.25" platter (below).
Thin film platters are actually reflective; taking photographs of them
is like trying to take a picture of a mirror! This is one reason why
companies always display internal hard disk pictures at an angle.

After applying the magnetic media, the surface of each platter is usually
covered with a thin, protective, layer made of carbon. On top of this is added
a super-thin lubricating layer. These material are used to protect the disk
from damage caused by accidental contact from the heads or other foreign
matter that might get into the drive.

IBM's researchers are now working on a fascinating, experimental new
substance that may replace thin film media in the years ahead. Rather than
sputtering a metallic film onto the surface, a chemical solution containing
organic molecules and particles of iron and platinum is applied to the platters.
The solution is spread out and heated. When this is done, the iron and
platinum particles arrange themselves naturally into a grid of crystals, with
each crystal able to hold a magnetic charge. IBM is calling this structure a
"nanocrystal superlattice". This technology has the potential to increase the
areal density capability of the recording media of hard disks by as much as 10
or even 100 times! Of course it is years away, and will need to be matched by
advances in other areas of the hard disk (particularly read/write head
capabilities) but it is still pretty amazing and shows that magnetic storage still
has a long way to go before it runs out of room for improvement.

Next: Tracks and Sectors

mehedi hasan
mehedi@joinme.com

30

Tracks and Sectors

Platters are organized into specific structures to enable the organized storage
and retrieval of data. Each platter is broken into tracks--tens of thousands of
them--which are tightly-packed concentric circles. These are similar in
structure to the annual rings of a tree (but not similar to the grooves in a
vinyl record album, which form a connected spiral and not concentric rings).

A track holds too much information to be suitable as the smallest unit of
storage on a disk, so each one is further broken down into sectors. A sector is
normally the smallest individually-addressable unit of information stored on a
hard disk, and normally holds 512 bytes of information. The first PC hard
disks typically held 17 sectors per track. Today's hard disks can have
thousands of sectors in a single track, and make use of zoned recording to
allow more sectors on the larger outer tracks of the disk.

A platter from a 5.25" hard disk, with 20 concentric tracks drawn
over the surface. This is far lower than the density of even the oldest
hard disks; even if visible, the tracks on a modern hard disk would
require high magnification to resolve. Each track is divided into
16 imaginary sectors. Older hard disks had the same number of
sectors per track, but new ones use zoned recording with a different
number of sectors per track in different zones of tracks.

mehedi hasan
mehedi@joinme.com

31

A detailed examination of tracks and sectors leads into a larger discussion of
disk geometry, encoding methods, formatting and other topics. Full coverage
of hard disk tracks and sectors can be found here, with detail on sectors
specifically here.

Next: Areal Density

mehedi hasan
mehedi@joinme.com

32

Areal Density

Areal density, also sometimes called bit density, refers to the amount of data
that can be stored in a given amount of hard disk platter "real estate". Since
disk platters surfaces are of course two-dimensional, areal density is a
measure of the number of bits that can be stored in a unit of area. It is
usually expressed in bits per square inch (BPSI).

Being a two-dimensional measure, areal density is computed as the product
of two other one-dimensional density measures:

• Track Density: This is a measure of how tightly the concentric tracks
on the disk are packed: how many tracks can be placed down in inch
of radius on the platters. For example, if we have a platter that is
3.74" in diameter, that's about 1.87 inches. Of course the inner
portion of the platter is where the spindle is, and the very outside of
the platter can't be used either. Let's say about 1.2 inches of length
along the radius is usable for storage. If in that amount of space the
hard disk has 22,000 tracks, the track density of the drive would be
approximately 18,333 tracks per inch (TPI).

• Linear or Recording Density: This is a measure of how tightly the
bits are packed within a length of track. If in a given inch of a track we
can record 200,000 bits of information, then the linear density for that
track is 200,000 bits per inch per track (BPI). Every track on the
surface of a platter is a different length (because they are concentric
circles), and not every track is written with the same density.
Manufacturers usually quote the maximum linear density used on each
drive.

Taking the product of these two values yields the drive's areal density,
measured in bits per square inch. If the maximum linear density of the drive
above is 300,000 bits per inch of track, its maximum areal density would be
5,500,000,000 bits per square inch, or in more convenient notation, 5.5
Gbits/in2. The newest drives have areal densities exceeding 10 Gbits/in2, and
in the lab IBM in 1999 reached 35.3 Gbits/in2--524,000 BPI linear density,
and 67,300 TPI track density! In contrast, the first PC hard disk had an areal
density of about 0.004 Gbits/in2!

Note: Sometimes you will see areal density expressed in a different way:
gigabytes per platter (GB/platter). This unit is often used when comparing
drives, and is really a different way of saying the same thing--as long as you
are always clear about what the platter size is. It's easier conceptually for
many people to contrast two units by saying, for example: "Drive A has 10
GB/platter and drive B has 6 GB/platter, so A has higher density". Also, it's
generally easier to compute when the true areal density numbers are not
easy to find. As long as they both have the same platter size, the comparison
is valid. Otherwise you are comparing apples and oranges.

The linear density of a disk is not constant over its entire surface--bear this in
mind when reading density specifications, which usually list only the
maximum density of the disk. The reason that density varies is because the

mehedi hasan
mehedi@joinme.com

33

lengths of the tracks increase as you move from the inside tracks to the
outside tracks, so outer tracks can hold more data than inner ones. This
would mean that if you stored the same amount of data on the outer tracks
as the inner ones, the linear density of the outer tracks would be much lower
than the linear density of the inner tracks. This is in fact how drives used to
be, until the creation of zoned bit recording, which packs more data onto the
outer tracks to exploit their length. However, the inner tracks still generally
have higher density than the outer ones, with density gradually decreasing
from the inner tracks to the outer ones.

Tip: Here's how you can figure this out yourself. A typical 3.5" hard disk drive
has an innermost track circumference of about 4.75" and an outermost track
circumference of about 11". The ratio of these two numbers is about 2.32.
What this means is that there is 2.32 times as much "room" on the outer
tracks. If you look at the number of sectors per track on the outside zone of
the disk, and it is less than 2.32 times the number of sectors per track of the
inside zone, then you know the outer tracks have lower density than the inner
ones. Consider the IBM 40GV drive, whose zones are shown in a table on this
page on zoned bit recording. Its outermost tracks have 792 sectors; its
innermost tracks 370. This is a ratio of 2.14, so assuming this drive uses
tracks with the lengths I mentioned, it has its highest density on the
innermost tracks.

There are two ways to increase areal density: increase the linear density by
packing the bits on each track closer together so that each track holds more
data; or increase the track density so that each platter holds more tracks.
Typically new generation drives improve both measures. It's important to
realize that increasing areal density leads to drives that are not just bigger,
but also faster, all else being equal. The reason is that the areal density of the
disk impacts both of the key hard disk performance factors: both positioning
speed and data transfer rate. See this section for a full discussion of the
impact of areal density on hard disk performance.

mehedi hasan
mehedi@joinme.com

34

This illustration shows how areal density works. First, divide the
circle in your mind into a left and right half, and then a top and bottom half.
The left half shows low track density and the right half high track density.
The upper half shows low linear density, and the bottom half high linear
density.
Combining them, the upper left quadrant has the lowest areal density; the
upper right and lower left have greater density, and the bottom right
quadrant of course has the highest density.
(I hope you like this illustration, because you don't want to know
what I went through trying to make it... :^))

Increasing the areal density of disks is a difficult task that requires many
technological advances and changes to various components of the hard disk.
As the data is packed closer and closer together, problems result with
interference between bits. This is often dealt with by reducing the strength of
the magnetic signals stored on the disk, but then this creates other problems
such as ensuring that the signals are stable on the disk and that the
read/write heads are sensitive and close enough to the surface to pick them
up. In some cases the heads must be made to fly closer to the disk, which
causes other engineering challenges, such as ensuring that the disks are flat
enough to reduce the chance of a head crash. Changes to the media layer on
the platters, actuators, control electronics and other components are made to
continually improve areal density. This is especially true of the read/write
heads. Every few years a read/write head technology breakthrough enables a
significant jump in density, which is why hard disks have been doubling in

mehedi hasan
mehedi@joinme.com

35

size so frequently--in some cases it takes less than a year for the leading
drives on the market to double in size.

Next: Hard Disk Read/Write Heads

mehedi hasan
mehedi@joinme.com

36

Hard Disk Read/Write Heads

The read/write heads of the hard disk are the interface between the magnetic
physical media on which the data is stored and the electronic components
that make up the rest of the hard disk (and the PC). The heads do the work of
converting bits to magnetic pulses and storing them on the platters, and then
reversing the process when the data needs to be read back.

Read/write heads are an extremely critical component in determining the
overall performance of the hard disk, since they play such an important role
in the storage and retrieval of data. They are usually one of the more
expensive parts of the hard disk, and to enable areal densities and disk spin
speeds to increase, they have had to evolve from rather humble, clumsy
beginnings to being extremely advanced and complicated technology. New
head technologies are often the triggering point to increasing the speed and
size of modern hard disks.

Next: Read/Write Head Operation

Hard Disk Read/Write Head Operation

In many ways, the read/write heads are the most sophisticated part of the
hard disk, which is itself a technological marvel. They don't get very much
attention, perhaps in part because most people never see them. This section
takes a look at how the heads work and discusses some of their key operating
features and issues.

Next: Function of the Read/Write Heads

mehedi hasan
mehedi@joinme.com

37

Function of the Read/Write Heads

In concept, hard disk heads are relatively simple. They are energy
converters: they transform electrical signals to magnetic signals, and
magnetic signals back to electrical ones again. The heads on your VCR or
home stereo tape deck perform a similar function, although using very
different technology. The read/write heads are in essence tiny electromagnets
that perform this conversion from electrical information to magnetic and back
again. Each bit of data to be stored is recorded onto the hard disk using a
special encoding method that translates zeros and ones into patterns of
magnetic flux reversals.

Older, conventional (ferrite, metal-in-gap and thin film) hard disk heads work
by making use of the two main principles of electromagnetic force. The first is
that applying an electrical current through a coil produces a magnetic field;
this is used when writing to the disk. The direction of the magnetic field
produced depends on the direction that the current is flowing through the coil.
The second is the opposite, that applying a magnetic field to a coil will cause
an electrical current to flow; this is used when reading back the previously
written information. (You can see a photograph showing this design on the
page on ferrite heads.) Again here, the direction that the current flows
depends on the direction of the magnetic field applied to the coil. Newer (MR
and GMR) heads don't use the induced current in the coil to read back the
information; they function instead by using the principle of
magnetoresistance, where certain materials change their resistance when
subjected to different magnetic fields.

The heads are usually called "read/write heads", and older ones did both
writing and reading using the same element. Newer MR and GMR heads
however, are in fact composites that include a different element for writing
and reading. This design is more complicated to manufacture, but is required
because the magnetoresistance effect used in these heads only functions in
the read mode. Having separate units for writing and reading also allows each
to be tuned to the particular function it does, while a single head must be
designed as a compromise between fine-tuning for the write function or the
read function. See the discussion of MR read heads for more on this. These
dual heads are sometimes called "merged heads".

mehedi hasan
mehedi@joinme.com

38

This graph shows how the bit size of hard disks is shrinking over time:
dramatically. The width and length of each bit are shown for hard disks using
varies areal densities. Current high-end hard disks have exceeded 10 Gbit/in2
in areal density, but it has been only a few years since 1 Gbit/in2 was state of
the art. As the bit size drops and the bits are packed closer together,
magnetic fields become weaker and more sensitive
head electronics are required to properly detect and interpret the data
signals.

Original image © IBM Corporation
Image used with permission.

Because of the tight packing of data bits on the hard disk, it is important to
make sure that the magnetic fields don't interfere with one another. To
ensure that this does not happen, the stored fields are very small, and very
weak. Increasing the density of the disk means that the fields must be made
still weaker, which means the read/write heads must be faster and more
sensitive so they can read the weaker fields and accurately figure out which
bits are ones and which bits are zeroes. This is the reason why MR and GMR
heads have taken over the market: they are more sensitive and can be made
very small so as not read adjacent tracks on the disk. Special amplification
circuits are used to convert the weak electrical pulses from the head into
proper digital signals that represent the real data read from the hard disk.
Error detection and correction circuitry must also be used to compensate for
the increased likelihood of errors as the signals get weaker and weaker on the
hard disk. In addition, some newer heads employ magnetic "shields" on either
side of the read head to ensure that the head is not affected by any stray
magnetic energy.

mehedi hasan
mehedi@joinme.com

39

Next: Number of Read/Write Heads

Number of Read/Write Heads

Each hard disk platter has two surfaces, one on each side of the platter. More
often than not, both surfaces of the platter are used for data on modern
drives, but as described in the section discussing the number of platters in a
drive, this is not always the case. There is normally one head for each surface
used on the drive. In the case of a drive using dedicated servo, there will be
one more head than there are data surfaces. Since most hard disks have one
to four platters, most hard disks have between two and eight heads. Some
larger drives can have 20 heads or more.

Only one head can read from or write to the hard disk at a given time. Special
circuitry is used to control which head is active at any given time.

Warning: Most IDE/ATA hard disks come with "setup parameters" intended
for use when configuring the disk in the BIOS setup program. Don't be fooled
by these numbers, which sometimes bear confusing names like "physical
geometry" even though they are not actually the physical geometry at all. For
today's drives these numbers have nothing to do with what is inside the hard
disk itself. Most new IDE/ATA disks these days are set up as having 16 heads,
even though all have far fewer, and new drives over 8.4 GB are always
specified as having 16 heads per the ATA-4 specification. BIOS translation
issues can make this even more confusing. See here for more details.

Next: Floating Height / Flying Height / Head Gap

mehedi hasan
mehedi@joinme.com

40

Floating Height / Flying Height / Head Gap

One distinguishing characteristic of hard disk technology that makes it
different from how floppy disks, VCRs and tape decks work, is that the
read/write heads do not make contact with the media. The reason for this is
that due to the high speed that the hard disk spins, and the need for the
heads to frequently scan from side to side to different tracks, allowing the
heads to contact the disk would result in unacceptable wear to both the
delicate heads and the media. In fact the earliest hard disks did have their
heads in contact with the media, and this design was changed due to the
wear that contact caused.

Modern drive heads float over the surface of the disk and do all of their work
without ever physically touching the platters they are magnetizing. The
amount of space between the heads and the platters is called the floating
height or flying height. It is also sometimes called the head gap, and some
hard disk manufacturers refer to the heads as riding on an "air bearing". The
read/write head assemblies are spring-loaded--using the spring steel of the
head arms--which causes the sliders to press against the platters when the
disk is stationary. (This is done to ensure that the heads don't drift away from
the platters; maintaining an exact floating height is essential for correct
operation.) When the disk spins up to operating speed, the high speed causes
air to flow under the sliders and lift them off the surface of the disk--the same
principle of lift that operates on aircraft wings and enables them to fly.

A pair of mated head sliders with their platter removed.
You can see that the tension of the head arms has caused
them to press against each other.

Due to the very small distance from the heads to the platters--normally
measured in millionths of an inch--the hard disk is assembled in a clean room
containing air specially filtered to remove all but the tiniest particles. Air
however is required for the heads to function. Whenever someone suggests
that the inside of a hard disk is maintained under a vacuum--and it always
happens--just ask them how exactly the heads can float on the surface of the
disk if there is no air. :^) You will also hear people say that the drive's
interior is "sealed" (including, I must admit, myself at one point). This is also
generally untrue: while the disk's internal environment is separate from the
outside air to keep it clean, air exchange is permitted between the outside
and inside of the drive to allow the drive to adjust to changes in air pressure.

mehedi hasan
mehedi@joinme.com

41

A special "breather" filter is installed to prevent foreign matter from
contaminating the drive; see here for more details.

Note: If a drive is used at too high an altitude, the air will become too thin to
support the heads at their proper operating height and failure will result;
special industrial drives that truly are sealed from the outside are made for
these special applications.

The distance from the platters to the heads is a specific design parameter that
is tightly controlled by the engineers that create the drive. By adjusting the
strength of the springs to match the other drive parameters (such as the
speed the disks are spinning and the size and shape of the heads) the float
height can be precisely maintained. If the height is too great, the heads can't
properly read and write the platter. If it is too small, there is increased chance
of a head crash (ouch.) As mentioned in the section on operation, increasing
areal density means that weaker magnetic fields must be used in storing data
on the disks. When this is done the heads must be allowed to ride closer and
closer to the platter surface to pick up the weaker signals, which requires
other quality improvements to the drive to make sure that there is no chance
of a head crash (ouch. :^))

Tip: Some modern drives include sensors that monitor the flying height of
the heads and signal a warning if the parameter falls out of the acceptable
range.

It's actually quite amazing how close to the surface of the disks the heads fly
without touching. To put it into perspective, a modern hard disk has a floating
height of an amazing 0.5 microinches. A human hair has a thickness of over
2,000 microinches! You can see why keeping dirt out of the hard disk is so
important! In fact, the floating height of a hard disk is smaller than the circuit
size of a microprocessor. What's even more amazing is how much abuse
these hard disks can take when they are placed in laptop PCs, for example,
given these facts, and how many people take this technology for granted
every day...

This illustration gives you some idea of just how small the flying
height of a modern hard disk is (and today's hard disks have
flying heights significantly lower than 3-7 millionths of an inch!

Image © Quantum Corporation

mehedi hasan
mehedi@joinme.com

42

Image used with permission.

When the areal density of a drive is increased to improve capacity and
performance, the magnetic fields are made smaller and weaker. To
compensate, either the heads must be made more sensitive, or the floating
height must be decreased. Each time the floating height is decreased, the
mechanical aspects of the disk must be adjusted to make sure that the
platters are flatter, the alignment of the platter assembly and the read/write
heads is perfect, and there is no dust or dirt on the surface of the platters.
Vibration and shock also become more of a concern, and must be
compensated for. This is one reason why manufacturers are turning to
smaller platters, as well as the use of glass platter substrates. Newer heads
such as GMR are preferred because they allow a higher flying height than
older, less sensitive heads, all else being equal.

As the flying height of drives continues to decrease, hard disk engineers are
recognizing that we may soon reach the point where it cannot be made any
smaller without touching the surfaces of the platters. There is actually talk
about the possibility of going back to the concept of contact disks, where the
head gap is intentionally made zero. This would allow even smaller magnetic
fields than is possible in today's drives. Of course, this brings us full circle to
the first hard disk experiments in the 1950s! The difference of course is
almost 50 years of advances in technology. For example, thin film media is
much tougher than the oxide media used on contact disks half a century ago,
and lubricating agents are much more advanced as well. Even so, it will
probably be several years before we know if this technology will be feasible
from both an engineering and manufacturing standpoint.

Next: Head Crashes

mehedi hasan
mehedi@joinme.com

43

Head Crashes

Since the read/write heads of a hard disk are floating on a microscopic layer
of air above the disk platters themselves, it is possible that the heads can
make contact with the media on the hard disk under certain circumstances.
Normally, the heads only contact the surface when the drive is either starting
up or stopping. Considering that a modern hard disk is turning over 100 times
a second, this is not a good thing. :^)

If the heads contact the surface of the disk while it is at operational speed,
the result can be loss of data, damage to the heads, damage to the surface of
the disk, or all three. This is usually called a head crash, two of the most
frightening words to any computer user. :^) The most common causes of
head crashes are contamination getting stuck in the thin gap between the
head and the disk, and shock applied to the hard disk while it is in operation.

Despite the lower floating height of modern hard disks, they are in many
ways less susceptible to head crashes than older devices. The reason is the
superior design of hard disk enclosures to eliminate contamination, more rigid
internal structures and special mounting techniques designed to eliminate
vibration and shock. The platters themselves usually have a protective layer
on their surface that can tolerate a certain amount of abuse before it becomes
a problem. Taking precautions to avoid head crashes, especially not abusing
the drive physically, is obviously still common sense. Be especially careful
with portable computers; I try to never move the unit while the hard disk is
active.

Next: Read/Write Head Technologies

mehedi hasan
mehedi@joinme.com

44

Hard Disk Read/Write Head Technologies

There are several different technology families that have been employed to
make hard disk read/write heads. Usually, to enable hard disk speed and
capacity to progress to higher levels, adjustments must be made to the way
the critical read/write head operation works. In some cases this amounts to
minor tweaking of existing technologies, but major leaps forward usually
require a breakthrough of some sort, once the existing technologies have
been pushed to their limits.

Summary chart showing the basic design characteristics of most
of the read/write head designs used in PC hard disks.

Original image © IBM Corporation
Image used with permission.

Next: Ferrite Heads

mehedi hasan
mehedi@joinme.com

45

Ferrite Heads

The oldest head design is also the simplest conceptually. A ferrite head is a U-
shaped iron core wrapped with electrical windings to create the read/write
head--almost a classical electromagnet, but very small. (The name "ferrite"
comes from the iron of the core.) The result of this design is much like a
child's U-shaped magnet, with each end representing one of the poles, north
and south. When writing, the current in the coil creates a polarized magnetic
field in the gap between the poles of the core, which magnetizes the surface
of the platter where the head is located. When the direction of the current is
reversed, the opposite polarity magnetic field is created. For reading, the
process is reversed: the head is passed over the magnetic fields and a current
of one direction or another is induced in the windings, depending on the
polarity of the magnetic field. See here for more general details on how the
read/write heads work.

Extreme closeup view of a ferrite read/write head from a mid-1980s
Seagate ST-251, one of the most popular drives of its era. The big black
object is not actually the head, but the slider. The head is at the end of the
slider, wrapped with the coil that magnetizes it for writing, or is magnetized
during a read. If you look closely you can actually see the gap in the core,
though it is very small. The blue feed wire runs back to the circuits that
control the head.

Ferrite heads suffer from being large and cumbersome, which means they
must ride at a relatively great distance from the platter and must have
reasonably large and strong magnetic fields. Their design prevents their use
with modern, very-high-density hard disk media, and they are now obsolete
and no longer used. They are typically encountered in PC hard disks under 50

mehedi hasan
mehedi@joinme.com

46

MB in size.

Next: Metal-In-Gap (MIG) Heads

Metal-In-Gap (MIG) Heads

An evolutionary improvement to the standard ferrite head design was the
invention of Metal-In-Gap heads. These heads are essentially of the same
design as ferrite core heads, but add a special metallic alloy in the head. This
change greatly increases its magnetization capabilities, allowing MIG heads to
be used with higher density media, increasing capacity. While an
improvement over ferrite designs, MIG heads themselves have been
supplanted by thin film heads and magnetoresistive technologies. They are
usually found in PC hard disks of about 50 MB to 100 MB.

Note: The word "gap" in the name of this technology refers to the gap
between the poles of the magnet used in the core of the read/write head, not
the gap between the head and the platter.

Next: Thin Film (TF) Heads

mehedi hasan
mehedi@joinme.com

47

Thin Film (TF) Heads

Thin Film (TF) heads--also called thin film inductive (TFI)--are a totally
different design from ferrite or MIG heads. They are so named because of
how they are manufactured. TF heads are made using a photolithographic
process similar to how processors are made. This is the same technique used
to make modern thin film platter media, which bears the same name; see
here for more details on this technology.

In this design, developed during the 1960s but not deployed until 1979, the
iron core of earlier heads, large, bulky and imprecise, is done away entirely. A
substrate wafer is coated with a very thin layer of alloy material in specific
patterns. This produces a very small, precise head whose characteristics can
be carefully controlled, and allows the bulky ferrite head design to be
completely eliminated. Thin film heads are capable of being used on much
higher-density drives and with much smaller floating heights than the older
technologies. They were used in many PC hard disk drives in the late 1980s
to mid 1990s, usually in the 100 to 1000 MB capacity range.

A pair of mated thin film head assemblies, greatly magnified. The heads are
gray slivers with coils wrapped around them, embedded at the end of each
slider (large beige objects). One feed line (with green insulation) is visible.

As hard disk areal densities increased, however, thin film heads soon reached
their design limits. They were eventually replaced by magnetoresistive (MR)

heads. Next: (Anisotropic) Magnetoresistive (MR/AMR) Heads

mehedi hasan
mehedi@joinme.com

48

(Anisotropic) Magnetoresistive (MR/AMR) Heads

The newest type of technology commonly used in read/write heads is much
more of a radical change to the way the read/write head works internally than
the earlier advances, which were much more evolutionary and more related
to how the head was made than how it worked. While conventional ferrite or
thin film heads work on the basis of inducing a current in the wire of the read
head in the presence of a magnetic field, magnetoresistive (MR) heads use a
different principle entirely to read the disk.

Note: The correct technical name for first-generation MR heads is anisotropic
magnetoresistive (AMR), but traditionally they have just been called
"magnetoresistive" (MR). With GMR heads now on the market, there is the
potential for confusion between the terms "magnetoresistive" and "giant
magnetoresistive". Therefore, some companies have now gone back to calling
the older MR heads "AMR" heads to distinguish them from GMR ones.
Normally though, if you are told a drive has "MR heads", this means the older
technology described here.

An MR head employs a special conductive material that changes its resistance
in the presence of a magnetic field. As the head passes over the surface of
the disk, this material changes resistance as the magnetic fields change
corresponding to the stored patterns on the disk. A sensor is used to detect
these changes in resistance, which allows the bits on the platter to be read.

The use of MR heads allows much higher areal densities to be used on the
platters than is possible with older designs, greatly increasing the storage
capacity and (to a lesser extent) the speed of the drive. Because the MR head
is not generating a current directly the way standard heads do, it is several
times more sensitive to magnetic flux changes in the media. This allows the
use of weaker written signals, which lets the bits be spaced closer together
without interfering with each other, improving capacity by a large amount.

MR technology is used for reading the disk only. For writing, a separate
standard thin-film head is used. This splitting of chores into one head for
reading and another for writing has additional advantages. Traditional heads
that do both reading and writing are an exercise in tradeoffs, because many
of the improvements that would make the head read more efficiently would
make it write less efficiently, and vice-versa. For example, if you increase the
number of windings of wire around the core of a standard read/write head,
you increase the sensitivity of the head when reading, but you make it much
more difficult to write at high speed. Also, for best results we want to write a
wider data track (to ensure the media is properly magnetized) but read a
narrower one (to make sure we don't accidentally pick up signals from
adjacent bits). In an MR design the MR head does the reading, so the thin film
write head can be optimized solely for writing without worrying about these
sorts of compromises.

mehedi hasan
mehedi@joinme.com

49

Closeup view of an MR head assembly. Note that the separate
copper lead wire of older head designs is gone, replaced by thin
circuit-board-like traces. The slider is smaller and has a distinctive shape.
The actual head is too small to be seen without a microscope.
If you look at the page discussing GMR heads you will see a diagram
showing in detail where on the assembly the head is found.

First introduced in 1991 by IBM--who else--but not used widely until several
years later, MR heads were one of the key inventions that led to the creation
of hard disks over 1 GB in size, and the subsequent explosive growth in size
since then. Despite the increased cost of MR heads, they have now totally
replaced thin film heads, which just are not up to the challenge of hard disks
in the tens of gigabytes. MR heads are commonly found in hard disks from
about 1 GB to about 30 GB in size.

Even MR heads however have a limit in terms of how much areal density they
can handle. Successive generations of MR heads were reduced in size to allow
still greater areal density. Sometimes these more advanced designs were
dubbed MRX for Extended Magnetoresistive heads. The successor to MR now
appears to be GMR heads, named for the giant magnetoresistive effect. They
are similar in basic concept to MR heads but are more advanced; GMR heads
are discussed here.

Next: Giant Magnetoresistive (GMR) Heads

mehedi hasan
mehedi@joinme.com

50

Giant Magnetoresistive (GMR) Heads

From the beginning in the 1950s and its first hard disk drive, IBM has been at
the forefront of hard disk technological advances. IBM's groundbreaking
research and development efforts continue, nearly 50 years later, with the
introduction of giant magnetoresistive (GMR) hard disk read heads. These
heads work on the same general principles as the original (anisotropic)
magnetoresistive heads, but use a somewhat different design that makes
them superior in several ways.

GMR heads are not named "giant" because of their size; they are actually
smaller than the regular (A)MR heads developed by IBM many years earlier.
Rather, they are named after the giant magnetoresistive effect, first
discovered in the late 1980s by two European researchers, Peter Gruenberg
and Albert Fert, who were working independently. Working with large
magnetic fields and thin layers of various magnetic materials, they noticed
very large resistance changes when these materials were subjected to
magnetic fields. These early experiments used techniques and materials that
were not suitable to manufacturing, but they formed the basis for the
technology.

From there, engineers and scientists at IBM's Almaden Research Center took
over. IBM developed GMR into a commercial product by experimenting with
thousands of different materials and methods. A key advance was the
discovery that the GMR effect would work on multilayers of materials
deposited by sputtering, the same technique used to make thin film media
and thin film read/write heads. By December 1997, IBM had introduced its
first hard disk product using GMR heads, and areal density records have been
looking over their shoulders nervously ever since.

mehedi hasan
mehedi@joinme.com

51

Detailed structure diagram of a GMR head assembly. Notice how small these
devices are: the scale is magnified twice to get to the detail level of the GMR
sensor itself, and the arm/slider/head structure at top is itself only about a
quarter of an inch long (see the illustration on the page covering MR heads to
see what one of those assemblies looks like in real life.)

Original image © IBM Corporation
Image used with permission.

GMR heads are comprised of four layers of thin material sandwiched together
into a single structure:

1. Free Layer: This is the sensing layer, made of a nickel-iron alloy, and
is passed over the surface of the data bits to be read. As its name
implies, it is free to rotate in response to the magnetic patterns on the
disk.

2. Spacer: This layer is nonmagnetic, typically made from copper, and is
placed between the free and pinned layers to separate them
magnetically.

3. Pinned Layer: This layer of cobalt material is held in a fixed magnetic
orientation by virtue of its adjacency to the exchange layer.

4. Exchange Layer: This layer is made of an "antiferromagnetic"
material, typically constructed from iron and manganese, and fixes the
pinned layer's magnetic orientation.

Here's how the GMR head works in a nutshell (without getting into quantum
physics that would make your brain melt--and mine. :^)) When the head
passes over a magnetic field of one polarity (say, a "0" on the disk), the free

mehedi hasan
mehedi@joinme.com

52

layer has its electrons turn to be aligned with those of the pinned layer; this
creates a lower resistance in the entire head structure. When the head passes
over a magnetic field of the opposite polarity ("1"), the electrons in the free
layer rotate so that they are not aligned with those of the pinned layer. This
causes an increase in the resistance of the overall structure. The resistance
changes are caused by changes to the spin characteristics of electrons in the
free layer, and for this reason, IBM has named these structures spin valves. If
you imagine a plumbing pipe with a rotatable shut-off valve, that's the
general concept behind the name.

Conceptual operation of a GMR head, showing the four layers. As the head
moves across a bit, electrons in the free layer rotate, increasing the
resistance of the overall structure. See the end of the page for a URL where
you can view this illustration animated.

Original image © IBM Corporation
Image used with permission.

GMR heads are superior to conventional MR heads because they are more
sensitive. While older MR heads typically exhibit a resistance change when
passing from one magnetic polarity to another of about 2%, for GMR heads
this is anywhere from 5% to 8%. This means GMR heads can detect much
weaker and smaller signals, which is the key to increasing areal density, and
thus capacity and performance. They are also much less subject to noise and
interference because of their increased sensitivity, and they can be made
smaller and lighter than MR heads. GMR heads are also typically fitted with
"shields" that prevent them from being affected by stray magnetic fields, i.e.,
anything but the bit directly below the head.

GMR heads are used in the latest technology drives, which currently have
capacities of up to 75 GB and areal densities of approximately 10 to 15
Gbits/in2. As of early 2000, IBM has already produced GMR heads in the lab
capable of 35 Gbits/in2, suggesting that standard form factor hard disks of
200 GB and up are just around the corner.

Tip: 99% of the Java and Shockwave stuff on the Web is fluffy, superfluous
nonsense, but this page of IBM Research GMR head animated demos proves

mehedi hasan
mehedi@joinme.com

53

that animation on the WWW can be educational, and not just annoying.

Next: Colossal Magnetoresistive (CMR) Heads

Colossal Magnetoresistive (CMR) Heads

Now that new giant magnetoresistive (GMR) heads are taking over the
market, engineers have turned their attentions to the next breakthrough that
will take hard disk read heads to the next level of performance. One of the
designs being researched is an evolutionary advance based on GMR that has
been dubbed by some as colossal magnetoresistive or CMR. At this stage this
technology is in the early stages of investigation, and I have not been able to
find much information on it. It would be logical to assume that it involves
using slightly different materials than GMR in an effort to further increase
sensitivity. When I find more information on CMR I'll add it here.

Next: Hard Disk Head Sliders, Arms and Actuator

mehedi hasan
mehedi@joinme.com

54

Hard Disk Head Sliders, Arms and Actuator

The hard disk platters are accessed for read and write operations using the
read/write heads mounted on the top and bottom surfaces of each platter.
Obviously, the read/write heads don't just float in space; they must be held in
an exact position relative to the surfaces they are reading, and furthermore,
they must be moved from track to track to allow access to the entire surface
of the disk. The heads are mounted onto a structure that facilitates this
process. Often called the head assembly or actuator assembly (or even the
head-actuator assembly), it is comprised of several different parts.

The heads themselves are mounted on head sliders. The sliders are
suspended over the surface of the disk at the ends of the head arms. The
head arms are all mechanically fused into a single structure that is moved
around the surface of the disk by the actuator. (Sort of like "the leg bone's
connected to the knee bone", isn't it? :^)) It would be an understatement to
say that these components are neglected; heck, most people don't even know
they exist! Yet they play an important role in the function and performance of
the drive. In particular, advances in slider, arm and actuator design are
critical to improving the seek time of a hard disk; the impact that the actuator
has on performance is discussed in this section.

Annotated illustration of a typical PC actuator assembly, showing the major
components. The platters have been removed from the drive to provide a
better
view of the actuator arms and heads. There are four sliders but only
one of each pair is visible. The spindle motor is visible at the top right.

This section discusses the sliders, arms and actuator of the modern disk
drive, as well as explaining the operation of disk drive servo mechanisms and
related technologies.

mehedi hasan
mehedi@joinme.com

55

Next: Head Sliders

mehedi hasan
mehedi@joinme.com

56

Head Sliders

Hard disk read/write heads are too small to be used without attaching them
to a larger unit. This is especially true of modern hard disk heads. Each hard
disk head is therefore mounted to a special device called a head slider or just
slider for short. The function of the slider is to physically support the head
and hold it in the correct position relative to the platter as the head floats
over its surface.

Sliders are given a special shape to allow them to ride precisely over the
platter. Usually they are shaped somewhat like a sled; there are two rails or
runners on the outside that support the slider at the correct flying height over
the surface of the disk, and in the middle the read/write head itself is
mounted, possibly on another rail.

As hard disk read/write heads have been shrinking in size, so have the sliders
that carry them. The main advantage of using small sliders is that it reduces
the weight that must be yanked around the surface of the platters, improving
both positioning speed and accuracy. Smaller sliders also have less surface
area to potentially contact the surface of the disk.

A graphic illustration of what approximately 15 years' worth of
technological evolution has done to hard disk head sliders.
At left, a slider from a 40 MB 5.25" ferrite-head drive;
at right, the slider from a 3.2 GB, 3.5" MR-head drive.

The hard disk industry has given names to various generations of slider
technology. When the design was first reduced to 50% of the size of the first
hard disk sliders, someone decided to call it the nano-slider, where "nano" is
the prefix denoting "one billionth". Of course the name is silly, since the
sliders have not shrunk by even a factor of 10. The newest sliders have been
shrunk from the "nano" size by about another 50% and are being called pico-
sliders, which in this author's opinion is an equally silly name, and for the
same reason. :^)

mehedi hasan
mehedi@joinme.com

57

Each slider is mounted onto a head arm to allow it to be moved over the
surface of the platter to which it is mated.

Next: Head Arms

mehedi hasan
mehedi@joinme.com

58

Head Arms

The head arms are thin pieces of metal, usually triangular in shape onto
which the head sliders (carrying the read/write heads) are mounted. In a
way, the idea here is similar to how the arm of a phonograph is used to move
the stylus from the outside of a record to the inside (although of course the
similarity ends there). There is one arm per read/write head, and all of them
are lined up and mounted to the head actuator to form a single unit. This
means that when the actuator moves, all of the heads move together in a
synchronized fashion. Heads cannot be individually sent to different track
numbers.

The top head arm of a typical recent-design hard disk drive. Note
that the arm is not solid, but rather has a structural triangular shape.
This is done to reduce weight while maintaining rigidity.

The arms themselves are made of a lightweight, thin material, to allow them
to be moved rapidly from the inner to outer parts of the drive. Newer designs
have replaced solid arms with structural shapes in order to reduce weight and
improve performance. This is the same technique used to reduce weight in
the construction of airplane wings, for example. Newer drives achieve faster
seek times in part by using faster and smarter actuators and lighter, more
rigid head arms, allowing the time to switch between tracks to be reduced.

A recent trend in the hard disk industry has been the reduction in the number
of platters in various drive families. Even some "flagship" drives in various
families now only have three or even two platters, where four or five was
commonplace a year or so ago. One reason for this trend is that having a
large number of head arms makes it difficult to make the drive with high
enough precision to permit very fast positioning (on random seeks). This is
due to increased weight in the actuator assembly from the extra arms, and
also problems aligning all the heads. So in essence, this is a tradeoff that
some drive manufacturers are making to improve performance at the expense
of capacity. With drive densities now at 20 GB per platter and bound to
increase, this is an acceptable design decision for most buyers.

Next: Head Actuator

mehedi hasan
mehedi@joinme.com

59

Head Actuator

The actuator is the device used to position the head arms to different tracks
on the surface of the platter (actually, to different cylinders, since all head
arms are moved as a synchronous unit, so each arm moves to the same track
number of its respective surface). The actuator is a very important part of the
hard disk, because changing from track to track is the only operation on the
hard disk that requires active movement: changing heads is an electronic
function, and changing sectors involves waiting for the right sector number to
spin around and come under the head (passive movement). Changing tracks
means the heads must be shifted, and so making sure this movement can be
done quickly and accurately is of paramount importance. This is especially so
because physical motion is so slow compared to anything electronic--typically
a factor of 1,000 times slower or more.

Head actuators come in two general varieties:

• Stepper Motors: Originally, hard disk drives used a stepper motor to
control the movement of the heads over the surface of the platters. A
regular motor turns in a rotary fashion continuously; it can stop at any
point in its rotation as it spins around, kind of like the second hand on
a wind-up wristwatch. A stepper motor can only stop at predefined
"steps" as it turns around, much the way the second hand turns on an
electronic, quartz wristwatch. A hard drive using a stepper motor for
an actuator attaches the arms to the motor, and each time the motor
steps one position clockwise or counterclockwise, the arms move in or
out one position. Each position defines a track on the surface of the
disk. Stepper motors are also commonly used for both turning the
spindle and positioning the head on floppy disk drives. If you have a
floppy drive, find one of its motors and turn it slowly with your hand;
you will feel the discrete step-wise nature of its motion.

mehedi hasan
mehedi@joinme.com

60

A stepper motor actuator. The motor moves in steps, which you can feel if
you move the motor shaft by hand. The shaft has two thin strips of metal
wrapped around it, which are connected to a pivot that is rigidly attached
to the actuator arms. As the motor shaft turns, one half of this "split band"
coils onto the shaft and the other half uncoils. When the motor turns in the
opposite direction the process reverses. As this occurs the pivot moves
and in doing so, moves the actuator arms and the hard disk heads.

• Voice Coils: The actuator in a modern hard disk uses a device called a
voice coil to move the head arms in and out over the surface of the
platters, and a closed-loop feedback system called a servo system to
dynamically position the heads directly over the data tracks. The voice
coil works using electromagnetic attraction and repulsion. A coil is
wrapped around a metal protrusion on the end of the set of head
arms. This is mounted within an assembly containing a strong
permanent magnet. When current is fed to the coil, an electromagnetic
field is generated that causes the heads to move in one direction or
the other based on attraction or repulsion relative to the permanent
magnet. By controlling the current, the heads can be told to move in
or out much more precisely than using a stepper motor. The name
"voice coil" comes from the resemblance of this technology to that
used to drive audio speakers, which are also basically electromagnets.
All PC hard disk voice coil actuators are rotary, meaning that the
actuator changes position by rotating on an axis.

A partially-disassembled voice coil actuator. The magnet assembly has

mehedi hasan
mehedi@joinme.com

61

been unscrewed from its mounting and pulled to the left to expose the
coil. The magnet assembly consists of two metal plates (top one easily
visible above, and part of the bottom one visible.) The magnet itself is
mounted on the underside of the top plate, and spacers used between
the plates to create the gap for the coil assembly. Being non-ferrous the
coil moves freely between the plates, rotating the actuator on its axis
as its magnetic polarity is changed. (Incidentally, the magnet is strong
enough that after removing the spacers between the plates, the bottom plate
got "stuck" on the magnet and required considerable effort to remove!)

The primary distinction between the two designs is that the stepper motor is
an absolute positioning system, while the voice coil is a relative positioning
system. Commands given to a stepper motor actuator are generally of the
form "Go in this direction to position A, where you'll find item B". Commands
to a voice coil actuator are of the form "Go in this direction until you find item
B". Consider this analogy. In your backyard you have buried a "secret
treasure" and want to tell a friend where to find it. When you buried it, you
walked down a path 139 paces to the fourth oak tree, and buried it at the
edge of the path. The stepper motor analog would be to tell your friend to
walk 139 paces down the path, and start digging. The voice coil analog would
be to tell him to look for the fourth oak tree and dig there. Obviously, using
the "139 paces" method, your friend has a problem: his paces aren't likely to
be the same length as yours. In fact, even if you yourself walked out 139
paces twice, you'd probably end up in very different spots, since a "pace" isn't
an accurate or repeatable measure. On the other hand, the fourth oak tree
will always be the fourth oak tree (barring disastrous chain-saw activity :^)).

Now hard disks of course don't have to use inaccurate measures like "paces",
and it's always the same stepper motor accessing the disk, not a "friend", so
why is saying "track #139" a big problem? For starters, motors change their
characteristics over time, and after a year or two position #139 might not be
where it was when the drive was first formatted. However, they have an even
more serious problem: disk components (the platters and the head arms
themselves especially) expand and contract with heat. Even if a stepper
motor was perfect, it could not properly account for the fact that the disks are
changing in size, and therefore, the tracks are literally moving around. If you
consider our backyard analogy and think about what it would be like if the
oak tree moved a few feet closer to or further from the house based on the
day's temperature, you start to realize how inadequate absolute positioning of
this form can be.

A stepper motor has no way to compensate for expansion or contraction of
the disk: all it can do is go to where "track #139" is supposed to be, and hope
it finds it there! If it doesn't find it because the motor and the disk have
become out of sync, errors and data loss result. This is why older disks were
so sensitive to temperature, and normally had to be low-level formatted
periodically to make sure the tracks lined up with the heads properly. This is
also why many drives would fail when first powered up after a weekend, but
would work properly after the drive had been allowed to warm up.

The shortcomings of stepper motors were unfortunate but acceptable with old
hard disks, because of their relatively low track density. To compensate,

mehedi hasan
mehedi@joinme.com

62

tracks could be written fairly wide so that the head would find them even if it
was a bit misaligned. The first PC hard disks in 1982 had a track density of
only two or three hundred tracks per inch (TPI). Even In 1986, the year
Conner Peripherals introduced the first voice coil PC hard disk, density had
increased to only about 1,000 TPI. Stepper motors are still used to drive
floppy disks, for example, because the accuracy demands for floppies are
much lower: a 1.44 MB floppy disk has a track density of 135 tracks per inch.
In contrast, today's hard disks have densities as high as 30,000 tracks per
inch. With data packed this densely, tracks are extremely thin, and a stepper
motor lacks the accuracy and stability necessary for proper operation.

All modern hard disks use voice coil actuators. The voice coil actuator is not
only far more adaptable and insensitive to thermal issues, it is much faster
and more reliable than a stepper motor. The actuator's positioning is dynamic
and is based on feedback from examining the actual position of the tracks.
This closed-loop feedback system is also sometimes called a servo motor or
servo positioning system and is commonly used in thousands of different
applications where precise positioning is important. There are several
different ways that the servo positioning system is implemented in PCs; the
servo's operation is discussed in its own section.

Next: Servo Techniques and Operation

mehedi hasan
mehedi@joinme.com

63

Servo Techniques and Operation

Modern hard disks use voice coil actuators to position the heads on the
surface of the hard disk's platters. This actuator is one instance of what is
commonly called a servo system, which is a type of closed-loop feedback
system. In this sort of positioning system, a device is controlled by doing
something, measuring the result, seeing how far off the device is from its
target, making an adjustment, and repeating. This enables the device to
reach its target intelligently instead of just taking a guess and hoping it is
correct.

One example of a closed-loop feedback system is a modern heating system
that uses a thermostat: when the temperature gets too low relative to the
"target", the heat turns on and stays on until the target temperature is
reached. Another example is a driver steering through a curve in the road:
when the car starts to veer off course, the driver turns the wheel and looks to
see if the turn was enough to keep the card on the road. If not, he or she
turns the wheel more. When the curve straightens out, the steering wheel is
returned to the normal position. The feedback is what makes the control
system "closed-loop". In contrast a "send it and hope it finds what is
supposed to be there" system such as a stepper motor actuator is called an
open-loop system.

A key element of any closed-loop feedback system is a measuring device, to
provide the feedback. In the case of the thermostat it is a thermometer, and
for the driver, it is his or her eyes viewing the road. For the hard disk, the
feedback device is the read/write head itself, and special codes written on the
disk that let the hard disk know where the heads are when the actuator
moves. These codes are, unsurprisingly, typically called servo codes. They are
read by the heads and fed back to the actuator control logic (at very high
speed of course) to guide the actuator to the correct track. By putting
different codes on each track of the disk, the actuator can always figure out
which track it is looking at.

There are three different ways that the hard disk servo mechanism has been
implemented. Each uses a different way of recording and reading the servo
information from the disk:

• Wedge Servo: In this implementation used in older drives, the servo
information is recorded in a "wedge" of each platter; sort of like a
"slice" out of a pie. The remainder of the "pie" contains data. This
design has an important flaw: the servo information is only in one
location on the hard disk, which means that to position the heads a lot
of waiting must be done for the servo wedge to rotate around to where
the heads are. All this waiting makes the positioning performance of
drives that use this method painfully slow. Obsolete, this technique is
no longer used.

• Dedicated Servo: In this technique, an entire surface of one disk
platter is "dedicated" just for servo information, and no servo
information is recorded on the other surfaces. One head is constantly
reading servo information, allowing very fast servo feedback, and
eliminating the delays associated with wedge servo designs.

mehedi hasan
mehedi@joinme.com

64

Unfortunately, an entire surface of the disk is "wasted" because it can
contain no data. Also, there is another problem: the heads where data
is recorded may not always line up exactly with the head that is
reading the servo information, so adjustments must be made to
compensate, and since the servo platter may be warmer or cooler than
the data platters, these drives are notorious for needing frequent
thermal recalibration. Because one platter surface is used for servo
information and not data, dedicated servo drives usually have an odd
number of heads (though there are also marketing reasons why this
can happen.) They were found in many drives through the mid-1990s.

• Embedded Servo: The newest servo technique intersperses servo
information with data across the entire surface of all of the hard disk
platter surfaces. The servo information and data are read by the same
heads, and the heads never have to wait for the disk to rotate the
servo information into place as with wedge servo. This method doesn't
provide the constant access to positioning information that is available
with dedicated servo, but it also doesn't require an entire surface to be
expended on overhead. Also, the need for constant thermal
recalibration is greatly reduced since the the servo information and
data are the same distance from the center of the disk and will expand
or contract together. All modern hard disks use embedded servo.

A simple illustration of the difference between dedicated servo and
embedded servo. On the left, dedicated servo: one platter surface
contains nothing but servo information, and the others nothing but data.
On the right, embedded servo, with data and servo information together.
(Note that for clarity only one track on each platter (one cylinder) is shown
in this illustration; in fact every track of the servo surface has servo
information in the dedicated servo design, and every track of every
surface has interspersed servo information in the embedded design.

Image © Quantum Corporation
Image used with permission.

The servo codes are written to the disk surfaces at the time the hard disk is
manufactured. Special, complex and expensive equipment is employed to
record this information, which as you can imagine must be placed very
precisely on each surface. The machines that do this are called ... wait for it...
servowriters. :^) The servo codes are put in place for the life of the drive and
cannot be rewritten without returning the drive to the factory (which never
happens because it would be way too expensive). The hard disk heads

mehedi hasan
mehedi@joinme.com

65

themselves are locked out at the hardware level by the drive's controller from
writing to the areas where servo information is written. The creation of this
precise pre-written information is part of the low-level formatting of a modern
drive, and the need for the fancy machine is one reason why modern disks
cannot be low-level-formatted outside the factory. There is nothing a user can
do with a drive to touch the servo information (well, short of using a
screwdriver, which is not recommended... :^))

Next: Thermal Recalibration

mehedi hasan
mehedi@joinme.com

66

Thermal Recalibration

All modern drives use voice coil actuators instead of the older stepper motors,
which makes them far less sensitive to thermal effects than older hard disks
were. The built in servo mechanism automatically adjusts for shifts in the
position of the media due to temperature variations. However, even the
newest drives have issues related to thermal stability. Since engineers
continue to decrease the width of each track of data, and increase the
number of tracks per inch on the surface of the disk, even the highest-quality
electronic servo motors can have, well, "issues" when the various pieces of
metal in the hard disk start expanding and contracting at different rates. This
is especially the case with drives using dedicated servo, because the servo
information and data are on different physical surfaces. Since the surfaces
can easily be at different temperatures and can therefore expand or contract
at different rates, there is the potential that the servo data and user data
might become misaligned.

To combat this problem, most drives manufactured in the mid-1990s include
a feature called thermal recalibration. Every few minutes, the heads are
moved and the distance between tracks measured. This information is
recorded in the drive's memory and used to aid in positioning the heads when
reading or writing needs to be done. When the recalibration occurs you can
hear the disk operate as if you were reading or writing to it, even if you are
not.

Thermal recalibration produces one unfortunate side-effect: if you attempt to
access the disk while a recalibration cycle is taking effect, there is a slight
pause until it completes. This does not cause any read or write requests to be
lost, but it can cause a problem if you are performing a read or write task that
is operating in "real time" and might be sensitive to the delay. Common
examples include real-time video playback, audio file editing, or burning a
recordable CD-ROM disk. For users working with these applications, thermal
recalibration represents an unacceptable problem, so the hard disk
manufacturers created special drives that work around the recalibration
"feature". Typically by using special buffering techniques or by intelligently
"scheduling" recalibration activity to avoid platters being accessed by the
user, these drives essentially "hide" recalibration from the PC operator. They
were frequently marketed as being "audio/visual" or "A/V" drives during the
1990s.

Today, recalibration has become largely a moot point. The need for constant
recalibration was greatly diminished with the creation of embedded servo
technology, which is now the standard for hard disk drives. Recalibration had
become a real "black eye" of sorts to hard drive manufacturers over the
years, so they were happy to announce to the world that they had
"eliminated" thermal recalibration in their newest units. This is sort of true
and not true; it would be more accurate to say that it has been greatly
reduced. Some degree of recalibration is still required even with the newest
drives, but it does not cause the potential impact on performance that users
of the old style drives had to deal with.

mehedi hasan
mehedi@joinme.com

67

Tip: You may still find companies trying to sell "special A/V drives" at higher
prices than regular drives. These days, this is more likely to be an attempt to
get you to part with a greater percentage of your wallet than anything else.
It's not necessary to look for such designations on modern drives.

Next: Head Parking and the Landing Zone

mehedi hasan
mehedi@joinme.com

68

Head Parking and the Landing Zone

When the platters are not spinning, the heads rest on the surface of the disk.
When the platters spin up, the heads rub along the surface of the platters
until sufficient speed is gained for them to "lift off" and float on their cushion
of air. When the drive is spun down, the process is repeated in reverse. In
each case, for a period of time the heads make contact with the surface of the
disk--while in motion, in fact.

While the platters and heads are designed with the knowledge in mind that
this contact will occur, it still makes sense to avoid having this happen over
an area of disk where there is data! For this reason, most disks set aside a
special track that is designated to be where the heads will be placed for
takeoffs and landings. Appropriately, this area is called the landing zone, and
no data is placed there. The process of moving the heads to this designated
area is called head parking.

Most early hard drives that used stepper motors did not automatically park
the heads of the drive. As a safety precaution, small utilities were written that
the user would run before shutting down the PC. The utility would instruct the
disk to move the heads to the landing zone, and then the PC could be shut off
safely. A parameter in the BIOS setup for the hard disk told the system which
track was the landing zone for the particular model of hard disk. Usually, it
was the next consecutive-numbered track above the largest-numbered one
actually used for data.

Modern voice-coil actuated hard disk drives are all auto-parking. On some
disks, a weak spring is attached to the head assembly that tries to pull the
heads to the landing zone. When power is applied the actuator is able to
overpower the spring and position the heads normally. When the power is
shut off, the electromagnetic force from the voice coil abates, and the spring
yanks the heads to the landing zone before the platters can spin down; this
can sometimes be heard on older drives as an audible clunk when you turn
the power off. Other disks use a different mechanical or electronic scheme to
achieve the same goal. Some even make use of the rotational energy
remaining in the spindle motor to move the heads off the data surface when
the power is cut off! This means that modern hard disks will automatically
park their heads--even in the event of a power failure--and no utilities are
required. The BIOS landing zone parameter for modern drives is ignored.

Some people still think that it is necessary to manually park the heads of
modern hard disks, but this is not true. I sometimes think of head parking
utilities as the disk drive's equivalent of a screen saver. In both cases, the
software was invented as a preventative measure, and one that made sense
for use with the technology that prevailed at the time it was thought up. And
in both cases, the technology has evolved to the point where utility is no
longer necessary, yet many people still think it is. :^)

IBM has developed an alternative to conventional head parking that I think is
really a great idea. Instead of letting the heads fall down to the surface of the
disk when the disk's motor is stopped, the heads are lifted completely off the
surface of the disk while the drive is still spinning, using a special ramp. Only

mehedi hasan
mehedi@joinme.com

69

then are the disks allowed to spin down. When the power is reapplied to the
spindle motor, the process is reversed: the disks spin up, and once they are
going fast enough to let the heads fly without contacting the disk surface, the
heads are moved off the "ramp" and back onto the surface of the platters.
IBM calls this load/unload technology. In theory it should improve the
reliability of the hard disk as a whole, by eliminating most contact between
the heads and platters entirely. I am unaware of any other drive
manufacturers using it at this time. You can read more about it here.

Another feature related to reducing damage to the hard disks caused by wear
from the heads is wear leveling, which moves the heads over the surface of
the drive to avoid "wearing out" one section of the drive. It is discussed in
this quality and reliability section.

Next: Single vs. Multiple Actuators

mehedi hasan
mehedi@joinme.com

70

Single vs. Multiple Actuators

One common question that folks studying hard drives often have is something
like the following: "If the mechanical motion of the heads across the surface
of the hard disk platters is so slow--relative to other components in the hard
drive and the rest of the computer--why don't the hard disk manufacturers
just make hard disks with more than one actuator?" It's a very good question.
Putting a second set of heads in the drive would allow two areas of the disk to
be accessed simultaneously, greatly improving performance, particularly on
random seeks. Sounds great... in fact, why not put four actuators and sets of
heads on the drive, while we're at it? :^)

In fact, such hard disks have been built. Conner Peripherals, which was an
innovator in the hard disk field in the late 1980s and early 1990s (they later
went bankrupt and their product line and technology were purchased by
Seagate) had a drive model called the Chinook that had two complete head-
actuator assemblies: two sets of heads, sliders and arms and two actuators.
They also duplicated the control circuitry to allow them to run independently.
For its time, this drive was a great performer. But the drive never gained wide
acceptance, and the design was dropped. Nobody to my knowledge has tried
to repeat the experiment in the last several years.

There are several reasons why it is not practical to make a drive with more
than one actuator. Some are technical; for starters, it is very difficult to
engineer. Having multiple arms moving around on a platter makes the design
complex, especially in small form factors. There are more issues related to
thermal expansion and contraction. The heat generated inside the hard drive
is increased. The logic required to coordinate and optimize the seeks going on
with the two sets of heads requires a great deal of work. And with hard disk
designs and materials changing so quickly, this work would have to be re-
done fairly often.

However, the biggest reasons why multiple actuators designs aren't practical
are related to marketing. The added expense in writing specialty electronics
and duplicating most of the internal control components in the drive would
make it very expensive, and most people just don't care enough about
performance to pay the difference. Hard disks are complex technology that
can only be manufactured economically if they are mass-produced, and the
market for those who would appreciate the extra actuators isn't large enough
to amortize the development costs inherent in these fancy designs. It makes
more sense instead to standardize on mass-produced drives with a single
actuator stack, and build RAID arrays from these for those who need the
added performance. Compare a single 36 GB drive to an array of four 9 GB
drives: in effect, the array is a 36 GB drive with four sets of everything. It
would in most cases yield performance and reliability superior to a single 36
GB drive with four actuators, and can be made from standard components

without special engineering. Next: Hard Disk Spindle Motor

mehedi hasan
mehedi@joinme.com

71

Hard Disk Spindle Motor

The spindle motor, also sometimes called the spindle shaft, is responsible for
turning the hard disk platters, allowing the hard drive to operate. The spindle
motor is sort of a "work horse" of the hard disk. It's not flashy, but it must
provide stable, reliable and consistent turning power for thousands of hours of
often continuous use, to allow the hard disk to function properly. In fact,
many drive failures are actually failures with the spindle motor, not the data
storage systems.

A hard disk spindle motor, stripped of its platters and other components, and
detached from the drive's base casting. You can see that it attaches with
three screws around its perimeter. The shiny metal is the shaft, which
rotates; the dull metal is the base of the motor. The six small screw holes on
the top of the shaft are for securing the platters. You can also see a large
screw hole in the center top of the shaft, which is used to attach the top cover
to the spindle shaft for added stability. the four wire connector attaches to the
hard disk logic board.

For many years hard disks all spun at the same speed. In the interests of
performance, manufacturers have been steadily ratcheting up their products'
spin speeds over the last few years. These higher-speed spindles often have
issues related to the amount of heat and vibration they generate. The
increased performance and also the new potential issues related to the
spindle motor have given it renewed attention in the last few years.

Next: Spindle Motor Operation

mehedi hasan
mehedi@joinme.com

72

Spindle Motor Operation

It will not surprise you, given the precision involved in every facet of the
construction of the hard disk drive, that the spindle motor has several
important demands placed upon it. First, the motor must be of high quality,
so it can run for thousands of hours, and tolerate thousands of start and stop
cycles, without failing. Second, it must be run smoothly and with a minimum
of vibration, due to the tight tolerances of the platters and heads inside the
drive. Third, it must not generate excessive amounts of heat or noise. Fourth,
it should not draw too much power. And finally, it must have its speed
managed so that it turns at the proper speed.

To meet these demands, all PC hard disks use servo-controlled DC spindle
motors. A servo system is a closed-loop feedback system; this is the exact
same technology as is used in modern voice coil actuators, and I discuss how
servo systems work in detail in that section. In the case of the spindle motor,
the feedback for the closed-loop system comes in the form of a speed sensor.
This provides the feedback information to the motor that allows it to spin at
exactly the right speed.

All hard disk spindle motors are configured for direct connection; there are no
belts or gears that are used to connect them to the hard disk platter spindle.
The spindle onto which the platters are mounted is attached directly to the
shaft of the motor. The platters are machined with a hole the exact size of the
spindle, and are placed onto the spindle with separator rings (spacers)
between them to maintain the correct distance and provide room for the head
arms. The entire assembly is secured with a head cap and usually, lots of
small Torx screws.

mehedi hasan
mehedi@joinme.com

73

Components of the spindle motor assembly. Platters and spacer rings have
the
same inside diameter and alternated over the spindle motor axis to build the
platter stack. The top cap goes, well, on top, and is secured using those
annoying
teeny weeny Torx screws. :^) Note that this particular drive does not have a
screw hole in the center of the spindle motor shaft to secure it to the drive
cover.

The amount of work that the spindle motor has to do is dependent on a
number of factors. The first is the size and number of platters that it must
turn. Larger platters and more platters in a drive mean more mass for the
motor to turn, so more powerful motors are required. The same is true of
higher-speed drives. Finally, with power management becoming more of a
concern today, users increasingly want hard disks that will spin up from a
stopped position to operating speed quickly, which also requires faster or
more powerful motors.

One important quality issue that has become a focus of attention with newer
hard disks is the amount of noise, heat and vibration they generate. The
reason for this becoming more of an issue is the increase in spindle speed in
most drives. On older hard disks that typically spun at 3600 RPM, this was
much less of a problem. Some newer drives, especially 7200 and 10,000 RPM
models, can make a lot of noise when they are running. If possible, it's a
good idea to check out a hard disk in operation before you buy it, to assess
its noise level and see if it bothers you; this varies greatly from individual to
individual. The noise produced also varies to some extent depending on the

mehedi hasan
mehedi@joinme.com

74

individual drive even in the same family. Heat created by the spindle motor
can eventually cause damage to the hard disk, which is why newer drives
need more attention paid to their cooling.

Tip: Newer high-speed drives almost always run cooler and quieter than the
first generation of drives at any new spindle speed. It can be painful to be a
pioneer. :^)

A critical component of the hard disk's spindle motor that has received much
attention recently due to concerns over noise, vibration and reliability is the
set of spindle motor bearings. Bearing are precision components that are
placed around the shaft of the motor to support them and ensure that the
spindle turns smoothly with no wobbling or vibration. As hard disk speeds
increase, the demands placed on the bearings increase dramatically. Many of
the noise and heat issues created by fast motors are related to the bearings,
so engineers are constantly trying to improve them.

Most hard disk motors use ball bearings. These are small metal balls that are
placed in a ring around the spindle motor shaft; you have no doubt seen them
used in many different applications outside the PC. They are also used
elsewhere inside the PC, such as higher-quality power supply fans. Some hard
disks use special fluid-dynamic bearings instead of ball bearings. Here, the
metal balls are replaced with a thick oil, which reduces noise significantly
because the metal-to-metal of ball bearings is removed. It also theoretically
greatly increases bearing life, though ball bearings should have a life
exceeding the hard disk's normal service life anyway.

Next: Spindle Speed

mehedi hasan
mehedi@joinme.com

75

Spindle Speed

As hard disks become more advanced, virtually every component in them is
required to do more and work harder, and the spindle motor is no exception.
As discussed in detail here, increasing the speed at which the platters spin
improves both positioning and transfer performance: the data can be read off
the disk faster during sequential operations, and rotational latency--the time
that the heads must wait for the correct sector number to come under the
head--is also reduced, improving random operations. For this reason, there
has been a push to increase the speed of the spindle motor, and more than at
any other time in the past, hard disk spin speeds are changing rapidly.

At one time all PC hard disks spun at 3,600 RPM; in fact, for the first 10 years
of the PC's existence, that was all there was. One reason for this is that their
designs were based on the old designs of large, pre-PC hard disks that used
AC motors, and standard North American AC power is 60 Hz per second:
3,600 RPM. In the early 1990s manufacturers began to realize how much
performance could be improved by increasing spindle speeds. The next step
up from 3,600 RPM was 4,500 RPM; 5,400 RPM soon followed and became a
standard for many years. From there speeds have steadily marched upwards.
Usually, faster PC hard disk speeds "debut" on SCSI drives that are used in
higher-performance applications, and then filter down to IDE/ATA a few years
later. At one time 7,200 RPM spindles were only found on top-of-the-line SCSI
drives; they are now being used in consumer IDE/ATA disks sold at retail
while SCSI has moved on to loftier heights. This table shows the most
common PC spindle speeds, their associated average rotational latency, and
their typical applications as of early 2000:

Spindle
Speed (RPM)

Average
Latency (Half
Rotation) (ms)

Typical Current Applications

3,600 8.3 Former standard, now obsolete

4,200 7.1 Laptops

4,500 6.7 IBM Microdrive, laptops

4,900 6.1 Laptops

5,200 5.8 Obsolete

5,400 5.6 Low-end IDE/ATA, laptops

7,200 4.2 High-end IDE/ATA, Low-end SCSI

10,000 3.0 High-end SCSI

12,000 2.5 High-end SCSI

15,000 2.0 Top-of-the-line SCSI

Note: Hard disks for laptops and specialty applications come in a wide variety
of spindle speeds, even beyond the several speeds listed above. I have not

mehedi hasan
mehedi@joinme.com

76

exhaustively researched and listed these here.

Increasing spindle motor speed creates many design challenges, particularly
aimed at keeping vibration and heat under control. As discussed here, when
the motor spins faster these become more of an issue; some high-end drives
have very serious heat, vibration and noise problems that require special
mounting and cooling work to allow them to run without problems. To some
extent, there is a tradeoff between spindle speed, and the heat and noise
issue. Engineers generally focus on keeping these matters under control, and
usually improve them significantly after the first generation of drives at any
given spindle speed. However, in some applications, using a slower and
quieter drive can make sense.

Next: Continuous Power vs. Peak Power at Spin-Up

mehedi hasan
mehedi@joinme.com

77

Continuous Power vs. Peak Power at Spin-Up

Most of the power used by a modern hard disk drive is taken up by the
spindle motor. Due to their smaller, more efficient designs, newer drives
require relatively little power to keep their platters spinning continuously.
Even drives with faster spindle speeds take less power than the large,
inefficient motors of the drives of a decade ago. However, when the hard disk
is first started up, the motor can draw a peak level of power that is more than
two times what it takes to keep the disks spinning. (Most things require more
energy to start them in motion than to keep them in motion, but in the case
of hard disk motors this is especially so because of their electrical
characteristics.) While in most cases even the peak start-up power usage isn't
all that much, there can be an issue when you are using multiple hard disks
that all try to spin up at once when you turn on the machine. The ratings of
your power supply, particularly for the +12 V level, must be sufficient to take
this initial demand into account; these matters are discussed in this section of
the power supply reference.

12V power profile (current vs. time) of an IDE/ATA hard disk
at startup. You can see that the peak power draw is over quadruple
the steady-state operating requirement. The graph appears "noisy"
due to frequent oscillations in current requirements

Original image © Seagate Technology
Image used with permission.

Hard drive manufacturers generally program their drives so that when two
are used on the same IDE channel as master and slave, the slave drive delays
its spin up by several seconds to offset its start from that of the master drive,
and reduce the peak demand on the power supply. Similarly, many SCSI
drives can be programmed to delay their startups, using the "Remote Start"

mehedi hasan
mehedi@joinme.com

78

command or a special jumper. These features offset the time that the drives
spin up to reduce the peak demand on the power supply.

Another issue with spin-up relates to boot speed. In order for the system to
boot up properly when it is turned on, the platters must be brought from a
standstill to operating speed in a relatively short period of time. Modern PCs
often have "expedited" BIOSes that go from power on to attempting to boot
the hard disk in only a few seconds. If the disk isn't ready, often the system
will hang, even though it will boot if you press the reset button and start the
boot process over again. Some system BIOSes include a delay feature that
can be used to slow down the boot process to avoid this problem. Otherwise,
slowing down the boot process by turning on the memory test feature, for
example, can sometimes cure this problem.

Next: Power Management

mehedi hasan
mehedi@joinme.com

79

Power Management

Power management is a set of protocols used to allow PCs to reduce the
amount of power that they consume, especially when they lie idle. Hard disk
drives are always spinning during operation, and the spindle motor is what is
using the bulk of the power consumed by the drive as a whole. Therefore,
many power management schemes include a mechanism by which the hard
disk's spindle motor can be "spun down" after a certain amount of inactivity,
and then can be "spun up" (reactivated) when the system needs them again.

There is some controversy surrounding this feature. First, there is some
debate as to whether or not dramatically increasing the number of times the
drive spins up and down (which power management does) is detrimental to
the drive or could cause it to fail prematurely. Second, there is some
skepticism about how much energy is really saved, given that the hard disk
doesn't use that much power under normal operation to begin with. See here
for a discussion of pros and cons of power management. Certainly for laptop
users power management is an important feature; all laptop hard disks
support power management via BIOS settings and/or operating system
controls.

Next: Hard Disk Connectors and Jumpers

mehedi hasan
mehedi@joinme.com

80

Hard Disk Connectors and Jumpers

Several different connectors and jumpers are used to configure the hard disk
and connect it to the rest of the system. The number and types of connectors
on the hard disk depend on the data interface it uses to connect to the
system, the manufacturer of the drive, and any special features that the drive
may possess. Instructions for setting common jumpers are usually printed
right on the drive; full instructions for all jumpers will be in the product's
manual, or on the manufacturer's web site.

Some of the connectors and jumper pins on a
3.5", 36 GB, 10,000 RPM SCSI Cheetah drive.

If you are unfamiliar with the concepts behind jumpers, you can read a
description of them in this PC fundamentals page.

Next: Power Connector

mehedi hasan
mehedi@joinme.com

81

NOTE: Using robot software to mass-download the site degrades the
server and is prohibited. See here for more.
Find The PC Guide helpful? Please consider a donation to The PC Guide Tip
Jar. Visa/MC/Paypal accepted.
Or, get one of my cool screensavers with dozens of great nature photos at
DesktopScenes.com. Now On Sale!

Power Connector

Hard disk drives use a standard, 4-pin male connector plug, that takes one of
the power connectors coming from the power supply. This keyed, 4-wire
plastic connector provides +5 and +12 voltage to the hard disk. See this
discussion of drive power plugs in the power supply reference for more
information.

A standard hard disk power connector. Note the
"4, 3, 2, 1" pin markings on the logic board, and the
square shape of solder pad for pin #1.

Next: Data Interface Connector

mehedi hasan
mehedi@joinme.com

82

Data Interface Connector

Modern hard disk drives use one of two interfaces: IDE (ATA) and its variants,
or SCSI. You can tell immediately by looking at the back of the hard disk
which interface is being used by the drive:

• IDE/ATA: A 40-pin rectangular connector. See here for more
information on IDE/ATA cables and connectors.

• SCSI: A 50-pin, 68-pin, or 80-pin D-shaped connector (the same
shape used for serial and parallel port connectors). A 50-pin connector
means the device is narrow SCSI; 68 pins means wide SCSI; 80 pins
means wide SCSI using single connector attachment (SCA). See here
for more on SCSI cables and connectors.

A standard hard disk IDE/ATA data interface connector.
If you look closely you can see markings for pins #1, #2, #39 and #40.
A 50-pin SCSI interface connector looks identical except that it
has 25 columns of pins instead of 20 (they look so much alike that
getting the two mixed up is common). A 68-pin SCSI interface
connector is pictured on the parent page of this page.

The connectors on hard disk drives are generally in the form of a 2xN
rectangular grid of pins (where N is 20, 25, 34 or 40 depending on the
interface). Older ST-506 (also called MFM, RLL) and ESDI hard disks used two
data connectors, one 34 pins and the other 20 pins. These connectors were
often not in the form of pins but rather card edge connectors, such as those
used by ISA expansion cards. Some SCSI connectors may have different
shapes, especially older ones.

While most current SCSI interface connectors are keyed to prevent incorrect
insertion (because they are D-shaped), this is not always the case for other
interfaces. For this reason, it is important to make sure that the cable is
oriented the correct way before plugging it in. The cable has a red stripe to
indicate wire #1 and the hard disk uses markers of one form or another to
indicate the matching pin #1.

Next: IDE/ATA Configuration Jumpers

mehedi hasan
mehedi@joinme.com

83

IDE/ATA Configuration Jumpers

IDE/ATA hard disks are fairly standard in terms of jumpers. There are usually
only a few and they don't vary greatly from drive to drive. Here are the
jumpers you will normally find:

• Drive Select: Since there can be two drives (master and slave) on the
same IDE channel, a jumpers is normally used to tell each drive if it
should function as a master or slave on the IDE channel. For a single
drive on a channel, most manufacturers instruct that the drive be
jumpered as master, while some manufacturers (notably Western
Digital) have a separate setting for a single drive as opposed to a
master on a channel with a slave. The terms "master" and "slave" are
misleading since the drives really have no operational relationship. See
this section on IDE/ATA jumpering for more.

• Slave Present: Some drives have an additional jumper that is used to
tell a drive configured as master that there is also a slave drive on the
ATA channel. This is only required for some older drives that don't
support standard master/slave IDE channel signaling.

• Cable Select: Some configurations use a special cable to determine
which drive is master and which is slave, and when this system is used
a cable select jumper is normally enabled.

• Size Restriction Jumper: Some larger hard disk drives don't work
properly in older PCs that don't have a BIOS program modern enough
to recognize them. To get around this, some drives have special
jumpers that, when set, will cause them to appear as a smaller size
than they really are to the BIOS, for compatibility. For example, some
2.5 GB hard disks have a jumper that will cause them to appear as a
2.1 GB hard disk to a system that won't support anything over 2.1 GB.
These are also sometimes called capacity limitation jumpers and vary
from manufacturer to manufacturer. See here for more on this.

mehedi hasan
mehedi@joinme.com

84

Jumper block for an IDE hard disk.
The jumpers are labeled "MA" (master),
"SL" (slave) and "CS" (cable select). Other
IDE drives will have slightly different
jumper configuration or placement.

See here for full details on IDE/ATA hard disk setup.

Next: SCSI Configuration Jumpers

mehedi hasan
mehedi@joinme.com

85

SCSI Configuration Jumpers

SCSI hard disks have more sophisticated controllers than their IDE/ATA
cousins, and as a result typically have many more jumpers that can be set to
control their operation. They also tend to vary much more from manufacturer
to manufacturer, and from model to model, in the number and types of
jumpers they have. Typically the following are the most common and
important SCSI drive jumpers:

• SCSI Device ID: Every device on a SCSI bus must be uniquely
identified for addressing purposes. Narrows SCSI drives will have a set
of three jumpers that can be used to assign the disk an ID number
from 0 to 7. Wide SCSI drives will have four jumpers to enable ID
numbers from 0 to 15. Some systems don't use jumpers to configure
SCSI device IDs.

• Termination Activate: The devices on the ends of the SCSI bus must
terminate the bus for it to function properly. If the hard disk is at the
end of the bus, setting this jumper will cause it to terminate the bus
for proper operation. Not all drives support termination.

• Disable Auto Start: When present, this jumper will tell the drive not
to automatically spin up when the power is applied, but instead wait
for a start command over the SCSI bus. This is usually done to prevent
excessive startup load on the power supply. Some manufacturers
invert the sense of this jumper; they disable startup by default and
provide an "Enable Auto Start" jumper.

• Delay Auto Start: This jumper tells the drive to start automatically,
but wait a predefined number of seconds from when power is applied.
It is also used to offset motor startup load on systems with many
drives.

• Stagger Spin: An "enhanced version" of "Delay Auto Start". When a
system with many hard drives has this option set for each unit, the
drives stagger their startup time by multiplying a user-defined
constant times their SCSI device ID. This ensures no two drives on the
same SCSI channel will start up simultaneously.

• Narrow/Wide: Some drives have a jumper to control whether they
will function in narrow or wide mode.

• Force SE: Allows newer Ultra2, Wide Ultra2, Ultra160, Ultra160+ or
other LVD SCSI drives to be forced to use single-ended (SE) operation
instead of low voltage differential (LVD).

• Disable Parity: Turns off parity checking on the SCSI bus, for
compatibility with host adapters that don't support the featurer.

mehedi hasan
mehedi@joinme.com

86

Option header block signals and functions for the Quantum Atlas 10K SCSI
drive.

Original image © Quantum Corporation
Image used with permission.

This is list is not intended to be exhaustive; many SCSI drives have additional
special features that are enabled through more jumpers. Some drives have
replaced some of their jumpers with software commands sent over the SCSI
interface. SCSI jumpers are often clustered together into what is called an
option block. See here for details on SCSI hard disk setup.

Next: LED Connector

mehedi hasan
mehedi@joinme.com

87

LED Connector

Hard disks use a light-emitting diode or LED to indicate drive activity (if you
are unfamiliar with LEDs, see the page on basic electrical components for
some background information). The hard disk activity LED is a very useful
indicator that generally tells the PC user at a glance when the system is
active. The first PC hard disks shipped with a faceplate (or bezel) on the front.
The hard disk was mounted into an external hard drive bay (in place of a
floppy disk drive) and its integral LED was visible from the front of the PC,
because the drive's front was actually protruding from the case, much as
floppy disk drives still do.

It was quickly realized that having the disks mounted internally to the case
made more sense than using external drive bays, but the LED was still
desirable. So a remote LED was mounted to the case and a wire run to a two-
pin connector on the hard disk itself. This system worked fine when there was
just one hard disk, but became a problem in systems that had two or three
hard disks. Eventually, the case LED was made to connect to the hard disk
controller instead, to show activity on any of the hard disks that were
managed by the controller.

Modern PCs have integrated IDE/ATA controllers built into the chipset on the
motherboard, so the LED is usually connected to special pins on the
motherboard itself. For systems that use add-in controllers, the LED is
connected to the controller, as it was in the days before integrated
controllers. Over time, as connecting the LED to the controller has become
the standard, most manufacturers have dropped entirely the LED connector
on the disk itself on IDE/ATA drives.

Since support for SCSI drives is not present in the vast majority of PC
motherboards, they often do still come with an external LED connector.

Next: Hard Disk Logic Board

mehedi hasan
mehedi@joinme.com

88

Hard Disk Logic Board

All modern hard disks are made with an intelligent circuit board integrated
into the hard disk unit. Early hard disks were "dumb", meaning that virtually
all of the control logic for controlling the hard disk itself was placed into the
controller plugged into the PC; there were very little smarts on the drive
itself, which had to be told specifically how to perform every action. This
design meant that it was necessary for controllers to be very generalized;
they could not be customized to the particulars of a given disk drive since
they had to be able to work with any type. Older drives were similar enough,
and sufficiently undemanding in terms of performance that this arrangement
was acceptable. As newer drives were introduced with more features and
faster speed, this approach became quite impractical, and once electronics
miniaturization progressed far enough, it made sense to move most of the
control functions to the drive itself.

The most common interface for PC hard disks is called IDE, which in fact
stands for Integrated Drive Electronics. This name is something of a
misnomer today. When it was introduced, IDE was distinguished from the
other interfaces of the day by having the integrated electronics on the drive,
instead of on the controller card plugged into the system bus like older
interfaces. However, the term really refers to where the control logic is and
not the interface itself, and since all hard disks today use integrated
electronics the name doesn't mean anything any more, despite the fact that
everyone continues to use it. The other popular PC hard disk interface today,
SCSI, also uses drives that have integrated controllers. The more correct
name for the IDE interface is AT Attachment or ATA; see here for more.

The logic board of a Cheetah 10,000 RPM 36 GB hard disk drive.

mehedi hasan
mehedi@joinme.com

89

The main interface and power connectors are on the right-hand side;
auxiliary connectors on the bottom and left side. The bottom of the spindle
motor protrudes through a round hole made for it in the circuit board.

Today's hard disks contain logic boards that are in most ways more
sophisticated than an entire early PC! In fact, most of them contain more
memory and faster internal processors than an entire PC of even the mid-
1980s. The logic board performs several important functions, and as hard
disks become faster and more sophisticated, more functions are added to the
logic board. This means the logic circuits need to be more powerful, to handle
changes like geometry translation, advanced reliability features, more
complicated head technologies, faster interfaces, and higher bandwidth data
streaming from the disk itself.

Next: Control Circuitry

mehedi hasan
mehedi@joinme.com

90

Control Circuitry

The drive's internal logic board contains a microprocessor and internal
memory, and other structures and circuits that control what happens inside
the drive. In many ways, this is like a small embedded PC within the hard
disk itself. The control circuitry of the drive performs the following functions
(among others):

• Controlling the spindle motor, including making sure the spindle runs
at the correct speed.

• Controlling the actuator's movement to various tracks.
• Managing all read/write operations.
• Implementing power management features.
• Handling geometry translation.
• Managing the internal cache and optimization features such as pre-

fetch.
• Coordinating and integrating the other functions mentioned in this

section, such as the flow of information over the hard disk interface,
optimizing multiple requests, converting data to and from the form the
read/write heads require it, etc.

• Implementing all advanced performance and reliability features.

The control circuitry of the drive is underrated and misunderstood, even by
those interested in hard disk performance issues. The reason is that the
quality or optimization level of the control circuitry doesn't manifest itself as a
single, simple specification. You can't easily compare the circuitry of five
different drive families. Most hard disk manufacturers provide very little
information about the "guts" of the logic board, and even if they did, most
people wouldn't know what to do with the information (including myself).

In fact, differences in control circuitry account for part of the differences in
some specifications. This is probably most true of seek performance, as
discussed here. Beyond this, you can't really tell much about what's inside the
circuitry. However, if you use two different drives that have very similar
specifications and run on the same interface on the same PC, but one just
"feels faster" than the other, differences in their internal circuitry may be part
of the answer.

Next: Sense, Amplification and Conversion Circuits

mehedi hasan
mehedi@joinme.com

91

Sense, Amplification and Conversion Circuits

Since the signals read from the hard disk on a modern drive are very weak,
special circuits are required to read the low-voltage signals coming from the
drive heads, amplify them and interpret them, to decide if each signal read is
a one or a zero. As hard disks have their data packed more tightly the signals
get weaker, and this job becomes more complex. The new PRML read
methods used in modern hard disks involve using complicated digital signal
processing techniques to allow the use of even weaker signals, making this
job more complex.

During the write process the opposite conversion is necessary. The logic
board must translate the "1"s and "0"s of the data stream into appropriate
commands and signals for the read/write heads, using the drive's encoding
method.

Next: Interface Hardware

mehedi hasan
mehedi@joinme.com

92

Interface Hardware

While the drive electronics on a modern disk are moved to the disk itself,
there is still a controller card or integrated controller on the motherboard,
that the disk must talk to. The difference between older drives and newer
ones is that older controllers actually ran the internals of the disk itself, while
the newer ones just run the data interface between the disk and the rest of
the system. Every hard disk's logic contains interface hardware to manage
this flow of information between itself and the controller it is talking to.

An integrated IDE/ATA controller chip from a Fujitsu hard
disk logic board. While at one time interface control
functions required many different chips, the advantages
of integration have spurred the development of single-chip
interface solutions, even by third parties (Cirrus Logic
doesn't make hard disks.) In many ways it makes more sense
for Fujitsu to use this chip rather than reinvent the wheel.

The interface hardware itself ranges from relatively simple (slower, older
IDE/ATA interfaces) to relatively complex (newer, faster IDE/ATA and SCSI
interfaces). In particular, SCSI interface hard disks have considerable
"smarts" on them to handle the increased sophistication and the wide variety
of commands available on that interface.

Next: Firmware

mehedi hasan
mehedi@joinme.com

93

Firmware

Since modern hard disks have internal microprocessors, they also have
internal "software" that runs them. (Wouldn't it be neat if they had internal
hard disks? :^)) These routines are what run the control logic and make the
drive work. Of course this isn't really software in the conventional sense,
because these instructions are embedded into read-only memory. This code is
analogous to the system BIOS: low-level, hardware-based control routines,
embedded in ROM. It is usually called firmware, with the word "firm"
intending to connote something in between "hard" and "soft". The functions
that run the logic board's circuitry could be implemented strictly with
hardware devices, as was done with early drives. However, this would be
expensive and inflexible for today's sophisticated controllers, since it would
make it difficult to update or adapt the logic to match changes in hard disks
or the devices they interface with.

Much the way the system BIOS benefits from being in a changeable ROM chip
that can be modified relatively easily, the hard disk's firmware does as well.
In fact, in many drives the firmware can be updated under software control,
very much the same way that a flash BIOS works. Unlike the system BIOS,
this is only very rarely done, when a particular sort of problem exists with the
firmware logic that can be fixed without requiring a physical hardware
change. If you suspect that your drive needs new firmware, check the drive
manufacturer's web site. There you will find the instructions that tell you if
you need an update, and if so, how to accomplish it.

Next: Multiple Command Control and Reordering

mehedi hasan
mehedi@joinme.com

94

Multiple Command Control and Reordering

The IDE/ATA interface used on most PCs is generally limited to a single
transaction outstanding on the interface at any given time. This means the
hard disk can not only do just one thing at a time, it can't even keep track of
what it needs to do next. It must be fed commands one at a time by the
controller. In contrast, newer drives using the SCSI interface generally
include the ability to handle multiple requests, up to a certain number. This
advanced feature, sometimes called command queuing and reordering or
multiple command queuing, is very useful for servers and other systems
being used by multiple people (while its absence is generally not a problem
for most single-user PCs equipped with IDE/ATA hardware.) You can read
more about this feature here.

If the hard drive's logic circuitry receive multiple commands to read or write
from the disk, it must process them and figure out where on the disk the data
is for each request. Some requests may be filled from the internal cache;
these would generally be filled immediately. For the remainder, the controller
must decide in which order to perform them. Since random reads or writes on
even the fastest hard disks take thousands of times longer than computing
operations, this determination is very important to overall performance. There
are probably dozens of different specific algorithms that could be used to
decide which commands get fulfilled first. However, they generally fall into
these three categories:

• First In, First Out: The drive processes the requests in the order that
the requests arrived. This is the "supermarket deli" algorithm: simple
in both concept and implementation; but in the case of hard disks,
poor in performance. In the deli, all the customers are standing in the
same place; on the hard disk, the sectors to be read or written might
be in very different areas, and processing them just based on which
came first will result in no optimization whatsoever. Imagine a 100-
story building with the elevator on the ground floor. A person on floor
#77 presses the "Up" button, followed immediately by someone on
floor #31, then floor #94, and then floor #20. Filling these requests in
the order received would result in a lot of needless waiting around
(especially by the poor guy on floor #20!)

• Seek Time Optimization: The drive analyzes all outstanding
requests, and reorders them based on their cylinder number,
compared to the cylinder where the heads currently are located. This
is seek time optimization, sometimes also called elevator seeking
because it is designed to prevent needless swings of the head actuator
across the surface of the disk, much the way a real elevator would sort
the requests given in the example above to avoid wasteful up-and-
down activity.

• Access Time (Seek and Latency) Optimization: The problem with
seek time optimization is that it doesn't take into account rotational
latency. Two requests might be on cylinders that are very close to
each other, but in very different places within the track; meanwhile,
there might be a third sector that is a few cylinders further away but
much closer overall to where the first request is. The most advanced
logic boards in the newest drives will carefully analyze their requests

mehedi hasan
mehedi@joinme.com

95

and determine which to do first based on both how much time will be
required to seek to the various sectors' cylinders, and how much time
will elapse waiting for the data to rotate under the heads. This is often
called multiple command reordering or multiple command
optimization. Needless to say, this is much more complicated than
regular elevator seeking, because the drive must know many more
details about exactly where each sector is, and must understand its
own performance attributes just as well. If the logic is too "aggressive"
and the head takes longer to seek to a location than anticipated, it
might miss the correct sector as the drive rotates, and have to wait for
nearly a full rotation of the disk until that sector comes around again.

Quantum's version of command optimization is called "ORCA", as you can see
above. The diagram shows graphically what the idea is with this technology.
Note when comparing the two figures above, that on the one at right,
"Seek 3" has been "rotated" counter-clockwise a bit. That's significant: if you
applied "ORCA" to the figure at left, with "Seek 2" and "Seek 3" so close to
each other, it would probably not be possible to do them in the order "2, 3, 1"
because there wouldn't be enough time to change tracks before "Seek 3"
rotated
past the head. If you tried, you'd end up doing worse than if you just did "2,
1, 3".
This is all part of what the algorithm has to figure out as part of its job.

Image © Quantum Corporation
Image used with permission.

You may recall that I mentioned in the section on control circuitry that the
importance of the drive's internal circuitry is typically under-appreciated. I
said that this is generally because it is hard to "boil down" the differences
between drives into a single metric, and because it is nearly impossible to get
detailed information about the circuitry's internal logic. This section on
multiple command handling provides a good illustration of this phenomenon.
Two drives could have nearly-identical seek times, spindle speeds and

mehedi hasan
mehedi@joinme.com

96

transfer rates, but one could handle heavy access by multiple users much
more gracefully if its algorithms were more efficient.

Next: Hard Disk Cache and Cache Circuitry

Hard Disk Cache and Cache Circuitry

All modern hard disks contain an integrated cache, also often called a buffer.
The purpose of this cache is not dissimilar to other caches used in the PC,
even though it is not normally thought of as part of the regular PC cache
hierarchy. The function of cache is to act as a buffer between a relatively fast
device and a relatively slow one. For hard disks, the cache is used to hold the
results of recent reads from the disk, and also to "pre-fetch" information that
is likely to be requested in the near future, for example, the sector or sectors
immediately after the one just requested.

The use of cache improves performance of any hard disk, by reducing the
number of physical accesses to the disk on repeated reads and allowing data
to stream from the disk uninterrupted when the bus is busy. Most modern
hard disks have between 512 KiB and 2 MiB of internal cache memory,
although some high-performance SCSI drives have as much as 16 MiB, more
than many whole PCs have!

Note: When someone speaks generically about a "disk cache", they are
usually not referring to this small memory area inside the hard disk, but
rather to a cache of system memory set aside to buffer accesses to the disk
system.

Next: Cache Circuitry and Operation

mehedi hasan
mehedi@joinme.com

97

Cache Circuitry and Operation

The reason that the hard disk's cache is important is due to the sheer
difference in the speeds of the hard disk and the hard disk interface. Finding a
piece of data on the hard disk involves random positioning, and incurs a
penalty of milliseconds as the hard disk actuator is moved and the disk
rotates around on the spindle. In today's PCs, a millisecond is an eternity. On
a typical IDE/ATA hard disk, transferring a 4,096-byte block of data from the
disk's internal cache is over 100 times faster than actually finding it and
reading it from the platters. That is why hard disks have internal buffers. :^)
If a seek isn't required (say, for reading a long string of consecutive sectors
from the disk) the difference in speed isn't nearly as great, but the buffer is
still much faster.

Tip: While different in operation and technology from the system cache, the
hard disk buffer is similar in concept and role. You may find the section
discussing the system cache helpful if you want to understand more about
caching in general.

Note: This section discusses caching in general, and especially as it applies to
data reads from the hard disk. Writes to the disk have more issues involved
with caching; most of what is in this section applies to writes but in addition
there are other issues regarding caching writes.

General concepts behind the operation of an internal hard disk cache.

Image © Quantum Corporation
Image used with permission.

The basic principle behind the operation of a simple cache is straightforward.
Reading data from the hard disk is generally done in blocks of various sizes,
not just one 512-byte sector at a time. The cache is broken into "segments",
or pieces, each of which can contain one block of data. When a request is
made for data from the hard disk, the cache circuitry is first queried to see if
the data is present in any of the segments of the cache. If it is present, it is
supplied to the logic board without access to the hard disk's platters being
necessary. If the data is not in the cache, it is read from the hard disk,
supplied to the controller, and then placed into the cache in the event that it

mehedi hasan
mehedi@joinme.com

98

gets asked for again. Since the cache is limited in size, there are only so
many pieces of data that can be held before the segments must be recycled.
Typically the oldest piece of data is replaced with the newest one. This is
called circular, first-in, first-out (FIFO) or wrap-around caching.

In an effort to improve performance, most hard disk manufacturers today
have implemented enhancements to their cache management circuitry,
particularly on high-end SCSI drives:

• Adaptive Segmentation: Conventional caches are chopped into a
number of equal-sized segments. Since requests can be made for data
blocks of different sizes, this can lead to some of the cache's storage in
some segments being "left over" and hence wasted (in exactly the
same way that slack results in waste in the FAT file system). Many
newer drives dynamically resize the segments based on how much
space is required for each access, to ensure greater utilization. It can
also change the number of segments. This is more complex to handle
than fixed-size segments, and it can result in waste itself if the space
isn't managed properly.

• Pre-Fetch: The drive's cache logic, based on analyzing access and
usage patterns of the drive, attempts to load into part of the cache
data that has not been requested yet but that it anticipates will be
requested soon. Usually, this means loading additional data beyond
that which was just read from the disk, since it is statistically more
likely to be requested next. When done correctly, this will improve
performance to some degree.

• User Control: High-end drives have implemented a set of commands
that allows the user detailed control of the drive cache's operation.
This includes letting the user enable or disable caching, set the size of
segments, turn on or off adaptive segmentation and pre-fetch, and so
on.

While obviously improving performance, the limitations of the internal buffer
should be fairly obvious. For starters, it helps very little if you are doing a lot
of random accesses to data in different parts of the disk, because if the disk
has not loaded a piece of data recently in the past, it won't be in the cache.
The buffer is also of little help if you are reading a large amount of data from
the disk, because normally it is pretty small: if copying a 10 MiB file for
example, on a typical disk with a 512 kiB buffer, at most 5% of the file could
be in the buffer: the rest must be read from the disk itself.

Due to these limitations, the cache doesn't have as much of an impact on
overall system performance as you might think. How much it helps depends
on its size to some extent, but at least as much on the intelligence of its
circuitry; just like the hard disk's logic overall. And just like the logic overall,
it's hard to determine in many cases exactly what the cache logic on a given
drive is like.

Next: Cache Size

mehedi hasan
mehedi@joinme.com

99

Cache Size

In the last couple of years, hard disk manufacturers have dramatically
increased the size of the hard disk buffers in their products. Even as recently
as the late 1990s, 256 to 512 kiB was common on consumer drives, and it
was not unusual to find only 512 kiB buffers on even some SCSI units
(though many had from 1 MiB to 4 MiB). Today, 2 MiB buffers are common on
retail IDE/ATA drives, and some SCSI drives are now available with a
whopping 16 MiB!

I believe there are two main reasons for this dramatic increase in buffer sizes.
The first is that memory prices have dropped precipitously over the last few
years. With the cost of memory only about $1 per MiB today, it doesn't cost
much to increase the amount the manufacturers put into their drives. The
second is related to marketing: hard disk purchasers have a perception that
doubling or quadrupling the size of the buffer will have a great impact on the
performance of the hardware.

The cache chip from a Seagate Barracuda hard disk
logic board. This chip is the entire cache: it's a 4 Mib chip,
which is 512 kiB, the size of the cache on this drive. Some
caches use more than one chip, especially the larger ones.

The size of the disk's cache is important to its overall impact in improving the
performance of the system, for the same reason that adding system memory
will improve system performance, and why increasing the system cache will
improve performance as well. However, the attention that the size of the hard
disk buffer is getting today is largely unwarranted. It has become yet another
"magic number" of the hardware world that is tossed around too loosely and
overemphasized by salespeople. In fact, a benchmarking comparison done by
StorageReview.com showed very little performance difference between 512
kiB and 1 MiB buffer versions of the same Maxtor hard drive. See this section
for more on this performance metric.

mehedi hasan
mehedi@joinme.com

100

So, where does this leave us? Basically, with the realization that the size of
the buffer is important only to an extent, and that only large differences (4
MiB vs. 512 kiB) are likely to have a significant impact on performance. Also
remember that the size of the drive's internal buffer will be small on most
systems compared to the amount of system memory set aside by the
operating system for its disk cache. These two caches, the one inside the
drive and the one the operating system uses to avoid having to deal with the
drive at all, perform a similar function, and really work together to improve
performance.

Next: Write Caching

Write Caching

Caching reads from the hard disk and caching writes to the hard disk are
similar in some ways, but very different in others. They are the same in their
overall objective: to decouple the fast PC from the slow mechanics of the hard
disk. The key difference is that a write involves a change to the hard disk,
while a read does not.

With no write caching, every write to the hard disk involves a performance hit
while the system waits for the hard disk to access the correct location on the
hard disk and write the data. As mentioned in the general discussion of the
cache circuitry and operation, this takes at least 10 milliseconds on most
drives, which is a long time in the computer world and really slows down
performance as the system waits for the hard disk. This mode of operation is
called write-through caching. (The contents of the area written actually are
put into the cache in case it needs to be read again later, but the write to the
disk always occurs at the same time.)

When write caching is enabled, when the system sends a write to the hard
disk, the logic circuit records the write in its much faster cache, and then
immediately sends back an acknowledgement to the operating system saying,
in essence, "all done!" The rest of the system can then proceed on its merry
way without having to sit around waiting for the actuator to position and the
disk to spin, and so on. This is called write-back caching, because the data is
stored in the cache and only "written back" to the platters later on.

Write-back functionality of course improves performance. There's a catch
however. The drive sends back saying "all done" when it really isn't done--the
data isn't on the disk at all, it's only in the cache. The hard disk's logic circuits
begin to write the data to the disk, but of course this takes some time. The
hard disk is using a variant of that old "the check is in the mail" trick you
might hear when you call someone to remind them of that loan they were
supposed to pay back three weeks ago. :^)

Now, this isn't really a problem most of the time, as long as the power stays
on. Since cache memory is volatile, if the power goes out, its contents are
lost. If there were any pending writes in the cache that were not written to
the disk yet, they are gone forever. Worse, the rest of the system has no way
to know this, because when it is told by the hard disk "all done", it can't really

mehedi hasan
mehedi@joinme.com

101

know what that means. So not only is some data lost, the system doesn't
even know which data, or even that it happened. The end result can be file
consistency problems, operating system corruption, and so on. (Of course,
this problem doesn't affect cached reads at all. They can be discarded at any
time.)

Due to this risk, in some situations write caching is not used at all. This is
especially true for applications where high data integrity is critical. Due to the
improvement in performance that write caching offers, however, it is
increasingly being used despite the risk, and the risk is being mitigated
through the use of additional technology. The most common technique is
simply ensuring that the power does not go off! In high-end server
environments, with their uninterruptible power supplies and even redundant
power supplies, having unfilled cached writes is much less of a concern. For
added peace of mind, better drives that employ write caching have a "write
flush" feature that tells the drive to immediately write to disk any pending
writes in its cache. This is a command that would commonly be sent before
the UPS batteries ran out if a power interruption was detected by the system,
or just before the system was to be shut down for any other reason.

Next: Hard Disk Form Factors

mehedi hasan
mehedi@joinme.com

102

Hard Disk Form Factors

Most hard disks are designed to be installed on the inside of the PC, and are
produced in one of a dozen or so standard sizes and shapes. These standards
are called hard disk form factors and refer primarily to its external
dimensions. The reason for standardizing on form factors is compatibility.
Without these standards, hard disks would have to be custom-made to fit
different PCs. By agreeing on standards shapes and sizes for hard disks--as
well as standard interfaces of course--it is possible for any of the thousands of
PC makers to purchase units from any hard disk manufacturer and know that
there won't be problems with fit or form during installation.

Over the life of the PC there have only been a few different hard disk form
factors. Since changing a form factor standard requires coordination from the
makers of other components (such as the makers of system cases) there is
resistance in the industry to change the standard sizes unless there is a
compelling reason to do so. (For example, when laptop PCs became popular
new, smaller drives were created to save space and power, important goals in
the world of mobile computing.)

Form factors are generally described by a single metric. For example, the
most common form factors today are "3.5-inch" and "2.5-inch". These
numbers generally refer to the width of the drive, but they can be both vague
and misleading (nice, huh? :^)) They usually were chosen for historical
reasons and in typically were based on either the platter size of drives that
use the form factor, or the width of drives using that form factor. Obviously a
single number cannot represent both, and in some cases, it represents
neither! For example, 3.5" hard disks are generally 4" wide and use 3.74"
platters. :^) (The name in this case comes from the fact that the drives fit in
the same space as a 3.5" floppy disk drive!) Much more about the relationship
between form factors and platters can be found in the discussion of platter
size in the media section. You will also find there a detailed description of the
trend towards smaller platters in modern hard disks.

mehedi hasan
mehedi@joinme.com

103

The five most popular internal form factors for PC hard disks.
Clockwise from the left: 5.25", 3.5", 2.5", PC Card and CompactFlash.

In this section I examine the major form factors that have been used for
internal hard drives in PCs. This includes details on the dimensions of the
form factor, especially the different heights associated with each. (Most form
factors are actually a family of form factors, with different drives varying in
the height dimension). In addition to the standard internal drive form factors,
I briefly discuss external drives and also removable drive trays, which are sort
of a "hybrid" of internal and external designs.

Note: There may be drives available in form factors other than those listed
here; I believe I have them all but as always, could be wrong. :^)

Next: 5.25" Form Factor

mehedi hasan
mehedi@joinme.com

104

5.25" Form Factor

The 5.25" form factor is the oldest in the PC world. Used for the first hard
disks on the original IBM PC/XT back in the early 1980s, this form factor has
been used for most of the PC's life span, but is now obsolete. The basis of the
form factor is the 5.25" drive bay used in the first PCs for 5.25" floppy disk
drives (themselves obsolete today). These bays still exist today in modern
PCs, but are now used primarily for CD-ROM/DVD drives and similar devices,
not hard disks. The 5.25" form factor was replaced by the 3.5" form factor for
two main reason: first, 5.25" drives are big and take up a lot of space;
second, 3.5" drives offer better performance; see the discussion in the section
on platter sizes for an explanation. The use of 5.25" drives continued as late
as the mid-1990s for high-end drives used in servers and other applications
where the large size of the platters in these drive was needed to allow drives
with high capacities to be created. They mostly disappeared from consumer
PC many years prior to that.

A 3.5" form factor hard disk piggybacked on a 5.25" form factor
hard disk to contrast their dimensions. The 5.25" drive here is a Quantum
Bigfoot and is the same height as a regular 3.5" low profile drive.

5.25" drives generally use 5.12" platters and have a width of 5.75" and depth
of 8.0". For many years they were found in only two different height profiles:
full-height, meaning the same height as the floppy drive on the original PC
and the bay it used (3.25"); and half-height, which is of course half that
number. In the 1990s, Quantum launched a new line of 5.25" drives named
the Bigfoot family, which reintroduced 5.25" drives to the consumer
marketplace. These were sold as "economy" drives and due to the larger
platter size, offered a lot of capacity--but due to slower spindle speeds and a
"value line" design, not much performance. They were popular with many PC
manufacturers but eventually were phased out. These drives used what had

mehedi hasan
mehedi@joinme.com

105

up to that point been non-standard heights for 5.25" drives, typically 1" high
or less. Quantum calls these drives low-profile or ultra-low-profile. Here are
the statistics and applications of the different profiles used in the 5.25" form
factor:

Form
Factor

Width
(in)

Depth
(in)

Height
(in)

Application

5.25" Full-
Height

5.75 8.0 3.25
All drives in early 1980s; Large
capacity drives with many platters
as late as the mid-1990s

5.25" Half-
Height

5.75 8.0 1.63 Early 1980s through early 1990s

5.25" Low-
Profile

5.75 8.0 1.0 Quantum Bigfoot, mid-to-late 1990s

5.25"
Ultra-Low-
Profile

5.75 8.0
0.75 -
0.80

Quantum Bigfoot, mid-to-late 1990s

Interestingly, despite the general trend to smaller drives, the drives that
continued to use the 5.25" form factor through the late 1980s and early
1990s were more often found as full-height devices than half-height ones.
This may be due to the fact that their niche became applications where a lot
of storage was needed, so the ability to fit many more platters in that nice,
roomy 3.25" high package was attractive.

Next: 3.5" Form Factor

mehedi hasan
mehedi@joinme.com

106

3.5" Form Factor

The 3.5" form factor is the standard in the PC world today, and has been for
about the last decade. Drives of this size are found almost exclusively now in
modern desktop PCs, and even in servers and larger machines. The only
major market where other form factors hold sway over 3.5" is that for laptops
and other portable devices, where the reduced size of 2.5" and smaller form
factors is important.

Like the 5.25" form factor before it, the 3.5" form factor is named not for any
dimension of the drives themselves, but rather for the fact that they were
designed to fit into the same drive bay as 3.5" floppy disk drives. 3.5" form
factor drives traditionally have used 3.74" platters with an overall drive width
of 4.0" and depth of about 5.75". In recent years, 3.5" form factor drives with
platters smaller than 3.74"--in some cases much smaller--have appeared on
the market. Most 10,000 RPM spindle speed drives reduce the size of the
platters to 3", and the new 15,000 RPM Seagate drive has platters just 2.5" in
diameter. The shrinking media size is done for performance reasons, but the
3.5" form factor is maintained for compatibility (these high-end drives are
designed to go into expensive servers, not laptops!) For this reason, it is no
longer the case that you can tell the size of a drive's platters by its form
factor. See the discussion of platter size for more details.

3.5" form factor drives come in two general profiles: the larger is the so-
called half-height drive, which is 1.63" in height. This name is kind of funny,
since it is "half" of a height that never existed for 3.5" form factor drives. The
name was derived from the fact that these drives are the same height as half-
height 5.25" form factor drives, which are half the height of full-height 3.25"
high drives in that form factor. Half-height 3.5" form factor drives are still
used today, but only in servers and other high-end platforms. The standard
for 3.5" is 1" height, which is commonly called slimline or low-profile, but just
as commonly given no name at all and assumed as the default. The reason
for the smaller size being the standard is that 1" is the height of a standard
3.5" floppy disk drive and 3.5" drive bay. In addition, there are some drives
that are reduced in size from the 1" standard, using for example 0.75" height.
Here are the standard profiles for 3.5" form factor drives:

Form
Factor

Width
(in)

Depth
(in)

Height
(in)

Application

3.5" Half-
Height

4.0 5.75 1.63 High-end, high-capacity drives

3.5" Low-
Profile

4.0 5.75 1.0
Industry standard, most common
form factor for PC hard disks

It is likely that the 3.5" form factor will continue to be the industry standard
in PCs for years to come, due to the enormous installed base of systems that
use this size, and no real compelling reason to change the form factor for the
typical desktop machine.

mehedi hasan
mehedi@joinme.com

107

Next: 2.5" Form Factor

mehedi hasan
mehedi@joinme.com

108

2.5" Form Factor

2.5" form factor drives are the standard today for notebook computers
(although not all notebooks use them, most do). Since the notebook market
continues to grow by leaps and bounds, sales of 2.5" form factor drives have
been increasing, on a percentage basis, faster than probably any other
segment of the hard disk market overall. While older laptops originally used
3.5" drives, the move to 2.5" was done for several reasons that are very
important to mobile PC users (you can also find related information on the
reduction of platter sizes here):

• Size Reduction: Smaller drives take up less space and allow for
laptops to be reduced in size. This trend began with the first 2.5"
drives and continues with the continuous reduction in the heights of
2.5" drives (see below) and also the creation of still-smaller form
factors.

• Power Reduction: Smaller drives use less power, important for PCs
that run on batteries.

• Enhanced Rigidity: Smaller drives use smaller platters, which are
less susceptible to damage as a result of shock, always a concern for a
drive that will be moved around (often while operating!)

An 8.4 GB, 2.5" form factor IBM hard disk from my
notebook. Note the single connector in the front, which is
mated to a matching connector in the laptop's hard disk bay.
This allows the drive to be easily replaced at a later time.
The connector on the hard disk itself just uses straight pins
like a 3.5" hard disk form factor drive; the drive is
mounted into a carrier here, and the thin circuit board
you can see in the front "adapts" the regular pin connector
into the single Centronics-style connector my notebook uses.

mehedi hasan
mehedi@joinme.com

109

Note: For more information on notebook hard disks, and a picture of a
notebook drive's regular connector, see this page.

Unlike its larger, older siblings, the 2.5" form factor actually is named for the
platter size of drives that use it (finally! :^)) The width of a 2.5" drive is
2.75", and depth is 3.94". These drives originally came in just one height
(0.75" or 19 mm). Since for any storage technology level there is a tradeoff
between size and capacity, over time several different heights were created in
this form factor as standards for mobile PC users with different requirements.
They are usually specified in metric (mm) and to my knowledge have no
fancy names:

Form Factor
Width
(in)

Depth
(in)

Height
(in)

Application

2.5" 19 mm
Height

2.75 3.94 0.75
Highest-capacity 2.5" drives, used
in full-featured laptop systems

2.5" 17 mm
Height

2.75 3.94 0.67
Mid-range capacity drives used in
some laptop systems

2.5" 12.5
mm Height

2.75 3.94 0.49
Low-capacity drives used in small
laptops (subnotebooks)

2.5" 9.5 mm
Height

2.75 3.94 0.37
Lowest-capacity drives used in
very small laptops (mini-
subnotebooks)

2.5" drives are pretty much entrenched as the standard for laptop machines.
They are also used occasionally in industrial applications, where the smaller
size and increased ruggedness of portable drives is important.

Next: PC Card (PCMCIA) Form Factor

mehedi hasan
mehedi@joinme.com

110

PC Card (PCMCIA) Form Factor

One of the most popular interfaces used in the notebook PC world is the PC
Card interface, also sometimes called PCMCIA after the group that created it
in the late 1980s. This interface standard was created to allow for easier
expansion of notebook systems, which at that time had very few options for
adding hardware at all. For information on the PC Card interface as it relates
to hard disks, see this page.

Despite the relatively small size of cards that adhere to the PC Card standard,
hard disk engineers have managed to create hard disks to fit. There are
actually three PC Card form factor sizes, defined by the PCMCIA in 1995. The
width and depth of these devices is exactly the same as that of a credit card,
which I am sure is not a coincidence! They are all 2.13" wide and 3.37" deep.
The three sizes differ only in their height. Type I devices are 3.3 mm thick;
Type II devices are 5.0 mm thick, and Type III devices are 10.5 mm thick.
Originally, the intention was for solid state devices like memory, modems and
the like to use the Type I and Type II devices, while the Type III devices were
for hard disks. Due to the extreme height limits of PC Cards, it is difficult to
make hard disks that will fit into the allowed space, and most PC Card hard
disks are Type III. However, advances in miniaturization have allowed some
companies to now make hard disks that actually fit into the Type II PC Card
form factor as well. Since most laptops can only accept either two Type I/II
cards or a single Type III, this is a significant advantage. Here's a summary
table of the different sizes:

Form Factor
Width
(in)

Depth
(in)

Height
(in/mm)

Application

PC Card Type
I

2.13 3.37
0.13 /
3.3

Not used for hard disks (yet?)

PC Card Type
II

2.13 3.37
0.20 /
5.0

Smaller-capacity expansion hard
disks for laptops and consumer
electronics

PC Card Type
III

2.13 3.37
0.41 /
10.5

Higher-capacity expansion hard
disks for laptops

The 2.13" width of this form factor puts a hard limit on the platter size of
these drives--even 2.5" platters are too large. Most PC Card drives today use
1.8" platters. Interestingly, the first hard drive to use the PC Card form factor
was probably the Hewlett Packard Kittyhawk drive, with much smaller 1.3"
platters. This drive is a good example of a technology being "ahead of its
time". It was actually introduced way back in 1992, very early on for such
miniaturized technology. Unfortunately, at the time the market may not have
been big enough to provide HP with sufficient revenues to keep making it.
The Kittyhawk was used in early hand-helds and other small consumer
electronic devices (even printers!) for a while, but was eventually
discontinued, and HP is no longer making hard disk drives of any sort. If this
technology had been introduced five years later, it may have been a runaway

mehedi hasan
mehedi@joinme.com

111

success; certainly IBM is having great success with its slightly-smaller Micro
drive.

A CompactFlash card (left) and a PC Card (right).
The quarter is included for size context. Neither of
these is a hard disk (though the SanDisk is a solid-
state flash card "hard disk") but are the same size and
shape as hard drives of their respective form factor.

Note: Many companies also make "solid state drives" using the PC Card form
factor. These perform the same function as hard disk drives, but are not hard
disks at all: they are actually flash memory, a type of ROM. I discuss this in
more detail in the section on the CompactFlash form factor.

Interestingly, with a couple of exceptions, most of the smaller PC Card hard
disks are not made by the bigger, well-known hard disk companies, but rather
smaller niche companies. I am not sure what the reason is for this. I suspect
that there just may not be enough profit potential there for the big names to
bother with this market, which is small compared to the market for
mainstream PC drives.

Next: CompactFlash Form Factor

mehedi hasan
mehedi@joinme.com

112

CompactFlash Form Factor

In much the same way that the need for expansion capabilities in laptops led
to the creation of the PCMCIA and PC Card devices, a consortium of
electronics and computer industry companies in 1995 formed the
CompactFlash Association to promote a new form factor called, of course,
CompactFlash (abbreviated CF or CF+). This form factor is similar to the PC
Card form factor, but amazingly enough, even smaller. CF cards are intended
to be used not in laptop PCs but smaller electronic devices such as hand-held
computers, digital cameras and communications devices (including cellular
phones).

Unlike the PC Card standard, which is used for a wide variety of devices,
CompactFlash is primarily designed around permanent storage. The "flash" in
"CompactFlash" is from the primary technology used in these cards: flash
memory. Flash memory is really electrically-erasable read-only memory,
typically used in regular PCs only for holding the motherboard's BIOS code.
The word "flash" refers to the ability to write and erase these ROMs
electrically. Much the way you can "flash" your motherboard BIOS to update
it, these flash memory storage cards have controllers in them that do this as
part of their normal operation. Unlike regular memory, flash memory is of
course non-volatile and retained when the power is removed.

The intention of the CompactFlash form factor was to allow consumer
electronic devices to use these CompactFlash cards for their equivalent of a
hard disk. Since the flash memory is not volatile, it does perform the same
general function as a hard disk. Like PCMCIA devices, variants of the form
factor were developed, differing only in thickness; the thicker cards provide
more space to pack in additional flash memory chips for greater capacity.
Here are the dimensions of the two types of CompactFlash cards:

Form Factor
Width
(in)

Depth
(in)

Height
(in/mm)

Application

CF+ Type I 1.69 1.42
0.13 /
3.3

Smaller-capacity flash cards for
digital cameras, hand-held
computers and consumer
electronics; not used for hard
disks (yet)

CF+ Type II 1.69 1.42
0.20 /
5.0

Larger-capacity flash cards and
hard disks for digital cameras,
hand-held computers and
consumer electronics

As you can see, the CF form factors are very small: so small that they were
probably never designed with the thought that anyone would make a true
hard disk using them. The engineers at IBM however had a different idea! In
1999, while the makers of regular flash memory cards were struggling to
reach 64 MB capacity, IBM introduced the Microdrive, a true hard disk that fits
into the small confines of the CF form factor. The original Microdrive was
available in either 170 MB or 340 MB capacities, which is pretty impressive

mehedi hasan
mehedi@joinme.com

113

considering that the drive uses a single 1" platter... even more impressive is
the new Microdrive released in 2000 with a whopping 1 GB capacity! The
Microdrive uses the CF Type II format, which is 5.0 mm thick. No current hard
disks are made for the even smaller Type I size (only 3.3 mm thick) but I
have heard rumors that at least one company is working on it, and I'd be
surprised if IBM themselves didn't have something brewing in this regard
also. Pretty cool.

IBM's amazing Microdrive.

Image © IBM Corporation
Image used with permission.

Smaller drives generally have less performance than full-sized ones and the
Microdrive is no exception; it certainly doesn't compete with the newest 2.5"
or 3.5" form factor drives for performance (though in many ways it is superior
to flash memory chips). For its size it is certainly no slouch, though: it has a
3,600 RPM spindle speed, and very decent maximum areal density of as much
as 15.2 Gbits/in2. (The original generation actually used a faster 4,500 RPM
spindle; this was probably lowered to reduce power consumption and heat,
both very serious issues for this form factor... however, the first Microdrives
also had only one-third the areal density of the 1 GB model.) The extremely
small size of the drive allows it to spin up to full speed in only half a second, a
fraction of the time required by most large drives. This lets the Microdrive
power down often when idle to save power, an essential feature for devices
that use small batteries.

Tip: If you want to use the Microdrive in a laptop, an inexpensive adapter is
available to convert it to the PC Card type II form factor.

As areal density continues to increase these drives will only continue to
increase in capacity. Over the next few years they will battle for sales with
flash memory cards; this market is likely to grow as the number of hand-held
PCs, digital cameras and other electronic gizmos needing lots of storage

continues to increase dramatically. Next: Form Factor Comparison

mehedi hasan
mehedi@joinme.com

114

Form Factor Comparison

For ease of comparison, the summary table below lists all of the standard
internal hard disk form factors with their dimensions, typical platter sizes
found in hard disks that use the form factor, and common applications:

Form
Factor

Profile
Platter
Size
(in)

Width
(in)

Depth
(in)

Height
(in)

Application

Full-
Height

5.12 5.75 8.0 3.25

All drives in early
1980s; Large
capacity drives
with many platters
as late as the mid-
1990s

Half-
Height

5.12 5.75 8.0 1.63
Early 1980s
through early
1990s

Low-
Profile

5.12 5.75 8.0 1.0
Quantum Bigfoot,
mid-to-late 1990s

5.25"

Ultra-
Low-
Profile

5.12 5.75 8.0
0.75 -
0.80

Quantum Bigfoot,
mid-to-late 1990s

Half-
Height

2.5,
3.0,
3.74

4.0 5.75 1.63
High-end, high-
capacity drives

3.5"

Low-
Profile

2.5,
3.0,
3.74

4.0 5.75 1.0

Industry standard,
most common
form factor for PC
hard disks

19 mm
Height

2.5 2.75 3.94 0.75

Highest-capacity
2.5" drives, used
in full-featured
laptop systems

17 mm
Height

2.5 2.75 3.94 0.67

Mid-range capacity
drives used in
some laptop
systems

12.5
mm
Height

2.5 2.75 3.94 0.49

Low-capacity
drives used in
small laptops
(subnotebooks)

2.5"

9.5 mm
Height

2.5 2.75 3.94 0.37
Lowest-capacity
drives used in very

mehedi hasan
mehedi@joinme.com

115

small laptops
(mini-
subnotebooks)

Type I 1.8 2.13 3.37 0.13
Not used for hard
disks (yet?)

Type II 1.8 2.13 3.37 0.20

Smaller-capacity
expansion hard
disks for laptops
and consumer
electronics

PC Card

Type
III

1.8 2.13 3.37 0.41
Higher-capacity
expansion hard
disks for laptops

Type I 1.0 1.69 1.42 0.13

Smaller-capacity
flash cards for
digital cameras,
hand-held
computers and
consumer
electronics; not
used for hard
disks (yet) Compact

Flash

Type II 1.0 1.69 1.42 0.20

Larger-capacity
flash cards and
hard disks for
digital cameras,
hand-held
computers and
consumer
electronics

Next: External Hard Disks

mehedi hasan
mehedi@joinme.com

116

External Hard Disks

The vast majority of hard disks are internal, which means they are designed
to be mounted inside a PC, and hidden from the user. This is why they have a
rather "rough" outside appearance, with the logic board exposed, etc. (For
some reason I always liked the way internal drives looked... maybe just
because I'm such a storage freak. :^)) The fact that they are intended to be
installed internally is also the reason why they come in standardized form
factors--so they will fit inside the PC case in predictable ways. :^)

Some hard disks are available as external drives, especially ones using the
SCSI interface. These really don't differ much from internal drives, except
that they include an additional outer plastic shell, a power supply to run the
disk, and of course, a larger price tag. :^) They do offer some advantages
over internal drives: more expandability, easier installation, usually better
cooling, and also interoperability with other systems that use SCSI. Since
they are external, they don't have to be made in standardized form factors.
At one time, these SCSI external drives were more popular than they are
today. The higher cost of these drives due to the duplication of support
hardware, and the extra space required to put them "somewhere" are
probably the main reasons why they are less common today than they once
were.

The IBM Travelstar E, an external hard
disk using a PC Card interface card.

Image © IBM Corporation
Image used with permission.

External drives have found a new market role of sorts as expansion and
backup devices for portable computers. Many varieties are now available
using either the parallel port or the PC card interface. In the latter design, the
hard disk is in an external enclosure, with an interface cable that runs to a PC
card. The card connects to the laptop through a PC card slot. The fact that the
hard disk is not constrained by the physical limits of the small PC card slot
means it can be made much larger than the small drives available in the PC
card form factor, while retaining the portability advantages of the PC card
interface. Some companies also make just the enclosure itself, with the PC
card interface; you supply your own standard internal hard disk. This can
save money by letting you "recycle" an older internal drive, and gives you the
flexibility of swapping in new drives as better technology becomes available.

Next: Removable Hard Disk Trays

mehedi hasan
mehedi@joinme.com

117

Removable Hard Disk Trays

An interesting compromise between internal and external hard disks is the
removable hard disk drive tray. A tray is installed into a standard PC case
drive bay that allows regular internal hard disks to be placed into it. You then
can swap the internal hard disk with another one without opening up the
case, allowing you to use hard disks as a removable storage medium. In a
way, the concept is similar to the way a removable car stereo is designed.
These trays are also commonly called mobile racks, drive caddies and several
other names.

Shown above is the Kingwin KF-21-IPF mobile rack system that I use on my
work desktop PC for backups and file archiving. The drive fits into the
removable tray (bottom) which fits into the stationary docking station (top).
The
stationary portion is installed into a standard 5.25" drive bay and connected
to
a regular IDE/ATA cable. On the right-hand side you can see the lock that
secures the tray in place, as well as indicator lights for power and drive
activity.

For certain applications, this are the ideal removable storage device: it uses
regular hard disks, which are very fast, highly reliable, very high capacity and

mehedi hasan
mehedi@joinme.com

118

very inexpensive in terms of dollars per byte of storage. They can be used for
backup purposes (secondary to a regularly-installed standard internal hard
disk)--see here for more information on this idea. Removable trays can also
be used to allow the use of different operating systems on the same PC
(though there are simpler ways to do this) and to allow different people to
use the same PC while keeping their data and programs totally separate.

If you decide to use a mobile rack system, be sure to check out the
specifications of the unit you are considering carefully. Different models come
with support for different speed drives, some are made primarily of metal and
others of plastic, and so on. Metal units will provide better cooling than plastic
ones. Some also come with an integrated cooling fan, which is a good idea
especially for higher-RPM drives.

Warning: If you decide to set up this sort of arrangement with your PC,
remember that regular internal hard drives are designed under the
assumption that they will be installed inside the PC and left there. Be sure to
handle them properly, and especially, to observe ESD precautions.

Next: Hard Disk Packaging and Mounting

Hard Disk Packaging and Mounting

This section discusses issues related to how the drive is packaged and
mounted into the system. Packaging and mounting considerations are vital to
any consideration of the reliability of a drive, due to its very sensitive
components. This includes a look at the exterior of the hard disk, a discussion
of how the drive is sealed against contamination from the outside air, and
how drives should be oriented for maximum reliability.

I also discuss here some issues related to drive handling, and also matters of
cooling that are relevant to newer, faster drives. Finally, a discussion is
provided on the differences between OEM and retail hard disks, a confusing
matter that leads to many questions by hard disk buyers.

Next: Base Casting and Top Cover

mehedi hasan
mehedi@joinme.com

119

Base Casting and Top Cover

The entire hard disk is mounted into a physical enclosure designed to protect
it and also keep its internal environment separated from the outside air. This
is necessary because of the requirement of keeping the internal environment
free of dust and other contamination that could get between the read/write
heads and the platters over which they float, and possibly lead to head
crashes.

The bottom of the disk is often called the base casting, the name coming from
the manufacturing process used to create the single piece of aluminum from
which it is normally made. The drive mechanics are placed into the base
casting, and another piece of usually aluminum is placed on top to enclose
the heads and platters. A rubber gasket is placed between the base and cover
to ensure a tight seal. On some drives, a metallic tape seal is applied around
the perimeter of the drive to fully enclose the drive. The exact shape of the
base and cover can vary significantly from drive to drive. Some models have
the base flat and the cover like a bowl that goes over the contents; some are
the opposite way.

Cover (left) and base casting (right) of a consumer-
grade IDE/ATA hard disk drive. All the components
have been removed to show the detail (except the
recirculating filter is still in place on the cover... Oops!
You can see a proper picture of that filter here.)

The base and cover are attached using a number of small screws, usually
around the perimeter of the cover. Additional screws are also used in the
middle of the cover; one to stabilize the spindle motor shaft, and one to
secure the axis of the actuator assembly. Normally all of these are Torx
screws (star-shaped). The reason these screws are usually found on hard
disks is that screwdrivers for them are usually not found at your local
hardware store--they have to be special-ordered (as I discovered when
illustrating this material. :^)) The idea of course is to discourage tampering
with the hard disk.

mehedi hasan
mehedi@joinme.com

120

The entire contents of the base and cover chamber (including the platters,
heads and actuator components) are collectively called the head-disk
assembly. You should never open the assembly. If you do, you will quickly
contaminate the heads and platters, and eventually ruin the drive. (Some
folks get a bit melodramatic about this, claiming the drive will instantly die as
soon as you try to run it with the cover off. That's not true, but if you do open
the drive's case it's just a matter of time.) You will also void the warranty of
the drive if you try to open it up, as the warning labels on the drive itself will
attest. In fact, it is common for the hard disk manufacturers to hide one or
more of the screws under a label saying "Warranty void if removed".

The logic board is normally mounted on the bottom of the base casting,
exposed to the outside. It is separated from the base casting using foam or
other cushioning material. Of course, the read/write heads must be linked
somehow to the logic board. This is accomplished either with a flexible ribbon
cable that runs from the logic board through a gasket and into the hard disk
chamber, or a set of pins that goes through a hole in the base casting, mating
to a special connector inside the head-disk assembly that connects to the
heads.

Some manufacturers apply a coating to the inside of the base casting before
assembling the drive. The purpose of this coating is to seal in, against the
walls of the casting, any minute particles of dirt or metal that might be hiding
in the casting and might later dislodge and end up damaging the disk.

Next: Air Circulation and Air Filtration

mehedi hasan
mehedi@joinme.com

121

Air Circulation and Air Filtration

As discussed in the section describing hard disk head flying height, the old
myth about hard disk heads and platters being "in a sealed vacuum" or
whatnot, is wrong in two ways: there's no vacuum in there, and the drive
itself isn't sealed, at least not in the way most people believe. In fact, air is an
essential component for proper drive operation. Regular hard disks aren't
totally sealed from the outside air, but they definitely are separated from it, in
order to ensure that the dirt and dust of the outside air is kept away from the
delicate platters and heads of the drive. If foreign matter were to get onto the
platters--even something as small as smoke particles--a head crash or other
problems could easily result.

Hard disks aren't sealed, because they have to be able to pass air between
the inside of the drive and the outside, in order to equalize any air pressure
differential that may exist between the two environments. This allows the disk
to maintain proper equilibrium when the weather changes, or the drive is
moved to a different altitude; if pressure is not balanced the drive might not
perform properly and damage could even result. You can actually see the
small breather holes in the cases of many drives, placed there for this
purpose. Of course just putting a hole in the case would cause contamination
of the drive, so the holes are covered with a breather filter which lets air pass
through slowly but not dirt or dust. These filters are placed permanently and
do not need to be serviced or replaced.

Closeup shot of the breather holes in the top
of a hard disk case. Part of the breather
filter can be seen just under the holes.

Hard disks also have an internal air flow within their sealed chambers (caused
by the rotation of the platters--there is no fan inside a hard disk). This air
flow is used to continuously filter the air within the disk assembly. Despite
building the hard disks in ultra-clean facilities and taking other precautions
during manufacturing, a small recirculating filter is built into the drive itself as
an added security measure. This filter is designed to work on the air that
flows within the hard disk assembly, catching any minute bits of debris that
might somehow make it inside. This reduces the chances that such dirt will

mehedi hasan
mehedi@joinme.com

122

end up on the disk platters. Like the breather filter, the recirculating filter is
not changeable, nor does it need to be.

A recirculating filter in the top cover of a
consumer-grade hard disk.

Next: Orientation and Mounting

mehedi hasan
mehedi@joinme.com

123

Orientation and Mounting

Orientation refers to how the hard disk drive is physically installed into the
PC. In the majority of cases the drive is installed in the "default" way: flat,
with the drive parallel to the ground, the logic board facing down and the
drive label facing the sky. Some PC cases, however, especially the smaller
desktop boxes, have side-mounted hard disk bays. Either of these
orientations is common and should present no problems. In fact, most
manufacturers say that you can mount their drives any way you wish, even
upside-down if it is necessary. That said, my personal opinion--one shared by
at least one manufacturer--is that you should avoid strange mounting
positions if it all possible. The reason is simple: most testing of drives is done
with them in either of the standard orientations. Hard drive manufacturers
don't do nearly as much testing of drives mounted upside-down as they do of
drives right-side up. For the sake of reliability, it's best to keep things simple
if at all possible, and well, go with the flow.

Older hard disks that used stepper motor actuators were much more sensitive
to orientation. It was in fact often recommended that the low-level formatting
of the disk always be done after the disk was installed in its operating
position, to avoid any shifting of the location of the tracks that might be
caused by changing the orientation. Since hard disks today are much more
solidly built, and they use voice coil actuators for dynamic head positioning,
this really is not an issue. A modern hard disk can be side-mounted in the
case without any problems, and can also have its orientation changed after it
has been in use for some time.

Mounting holes on a SCSI hard disk, viewed from the bottom of the
drive. The one at left is part of the set of holes used if putting the mounting
screws into the bottom of the drive; the one at right is for side mounting.

mehedi hasan
mehedi@joinme.com

124

Most hard disks have screw holes built right into the aluminum base of the
disk itself. They can usually be mounted by screwing into the bottom of the
base, or the side. There are some caveats here. First, make sure you use
small screws, preferably the ones that came with the hard disk--using ones
that are too long can in theory damage the drive. Second, since the circuit
board is exposed, it must be carefully watched to ensure that there is no
chance that it will be contacting anything when the drive is installed, or the
logic board could be shorted out.

Next: Drive Rails and Mounting Kits

mehedi hasan
mehedi@joinme.com

125

Drive Rails and Mounting Kits

The simplest way to mount hard disks into the system case is the direct
mounting method, where the disk is screwed directly into a drive bay. This
has largely replaced the use of drive rails, which were common in older PCs.
Drive rails are small metal strips which are screwed onto the drive and then
used to slide the drive into the case. Some people like these, others hate
them; they are in fact still used by some case manufacturers. Some cases
also have drive cages, which are removable brackets into which the drive can
be mounted. These different mounting techniques are described in detail on
this page in the system case section.

Most hard disks used in PCs today are 3.5" form factor drives, designed of
course to go into 3.5" drive bays. Pretty much all newer cases include these
bays. However, there are some older cases that do not have 3.5" drive bays
at all. To allow 3.5" drives to be used in the larger 5.25" drive bays, mounting
kits are available. These are mechanical adapters that screw into the side of
the drive to "widen" it to the size that a 5.25" drive would be, so it can fit into
a 5.25" drive bay. You can find more information on these adapters (including
a picture) on this page.

At one point these mounting kits were often included in retail-boxed hard
disks. Today they are much less common, simply because it's rare to find a
PC still in use today that doesn't have a 3.5" drive bay. They should still be
available for purchase separately for a few dollars from stores that sell PC
accessories.

Next: Temperature Limits and Drive Cooling

mehedi hasan
mehedi@joinme.com

126

Temperature Limits and Drive Cooling

Hard disks can only be counted upon to perform reliably if they are kept
within their specified temperature ranges. Cooling has become one of the
most important considerations for reliability, particularly for newer drives
running at high spindle speeds. See this discussion of cooling in the section
on hard disk quality for more.

For the first 15 years of the PC's existence, hard drives were always passively
cooled: the metal case of the drive itself was used to sink most of the heat
generated inside it. Some of the heat was conducted to the metal insides of
the system case, and the air flow within the case took care of the rest.
Overheating problems were rare. Cases were generally large and better-
ventilated than the average PC is today, and in fact before the mid-to-late
1990s, few people other than those designing large servers gave much
thought at all to cooling disk drives. You put it in the case, made sure the
power supply fan was working properly, and that was pretty much all there
was to it.

This situation changed with the introduction of the first 7,200 RPM drives.
These drives, with their faster more powerful spindle motors, generated more
heat than had been seen before in hard disks. In fact, heat issues are
common with each first-generation drive family using a newer, faster spindle
speed (hard drive engineers generally do a good job of working on the heat
issues with subsequent revisions of each design). The end result is that for
some 7,200 RPM and 10,000 RPM drives, just sticking the drive in the case
and hoping for the best is not sufficient.

When trying to keep a hot drive within operating parameters, the most
important first step is to address the cooling of the case overall. It's essential
that the fan(s) are functioning properly and have sufficient capacity for the
case. The PC must not be operated in a very hot room or placed where it will
be excessively heated (for example, in direct sunlight or right next to a
heater). The case should not be too small for the number of devices it
contains. Hard drives should also be spaced to allow proper air flow over
them--putting two drives very close together is not a good idea. See this
discussion of system cooling for more on this subject.

If the system's cooling isn't sufficient for a hot-running hard disk, you have
some options. Various manufacturers make devices specifically for cooling
hard disks. They usually come in two basic forms:

• Drive Coolers: These are essentially fan and heat sink combos,
similar to those used for CPUs, but designed specially to be used with
hard disks. They are attached to the drive using thermal conductive
tape, and blow air directly onto the drive case to cool it.

mehedi hasan
mehedi@joinme.com

127

A drive cooler mounted on top of a standard 3.5"
form factor hard disk. The power plug is visible at right.

Original image © PC Power & Cooling, Inc.
Image used with permission.

• Bay Coolers: These devices are similar in design to the drive bay
adapters available for mounting a 3.5" form factor drive into a 5.25"
drive bay, except that they add cooling for the drive. The disk is
mounted into the cooler, which contains one or more integrated fans.
The cooler then is mounted into one of the larger 5.25" drive bays
found in most PCs.

A 5.25" bay cooler with a 3.5" form factor hard disk installed in it.
This view is from the inside of the case; the external faceplate is at rear.

Original image © PC Power & Cooling, Inc.
Image used with permission.

In both designs power is provided for the fan(s) through the use of a standard
drive connector.

mehedi hasan
mehedi@joinme.com

128

Tip: Simply mounting a 3.5" form factor hard disk into a 5.25" drive bay with
a metal adapter kit will help to cool the drive in some cases by providing two
additional metal pieces adjacent to the drive to act as small heat sinks.

Do you need active cooling for your hard disk? There's no easy answer to that
question: it depends on a number of different factors. Most PC users do not
need to add special coolers for their hard disks. This is especially true of
consumer IDE/ATA drives--since manufacturers know most people pay little
attention to cooling, they must assume no special cooling when selling these
drives through retail channels, or they'd end up having to deal with a flood of
warranty replacements. For higher-speed SCSI drives, additional cooling may
be required. You will have to determine the need by assessing the cooling
level of your system, the temperature requirements and heat generation level
of the particular drive, how many drives are going to be put into the system,
and similar factors. If you are buying a pre-made system, the system
manufacturer should be dealing with these design issues for you.

Next: Retail and OEM Packaging

mehedi hasan
mehedi@joinme.com

129

Retail and OEM Packaging

Most hard disk drive models are sold as two different packages: OEM drives
and retail drives (sometimes called retail kits). Retail drives are of course
drives that are distributed to retail stores and online dealers for sale to the
general public. OEM drives are those sold to system manufacturers in large
quantity, for inclusion in PCs built for resale: "OEM" stands for "original
equipment manufacturer" and refers to a company that makes PCs (or other
equipment). See this general discussion of OEM and retail parts in The PC
Buyer's Guide for more.

Retail packaged hard disk drives normally include the following (though this
varies from manufacturer to manufacturer and model to model):

• Hard Disk Drive: The hard disk drive itself, in an anti-static bag or
similar package.

• Installation Instructions: Instructions on how to configure and
install the hard disk.

• Drivers and/or Overlay Software: A floppy disk or CD-ROM
containing any necessary drivers or utilities, and usually, a copy of
that manufacturer's version of drive overlay software for working
around BIOS capacity problems in older systems.

• Mounting Hardware: A set of appropriately-sized screws for
mounting the drive into the system case.

• Interface Cable: A cable of the correct type for the drive's interface.
• Warranty Card: A card describing the warranty provided on the drive,

usually three or five years in length.
• Pretty Box: A very colorful box that looks nifty and holds all of the

above. :^)

In contrast, OEM drives typically contain the following:

• Hard Disk Drive: The hard disk drive itself, in an anti-static bag or
similar package.

• Jumpers: One ore more jumpers needed for configuring the drive.

And that's it (heck, even the jumpers aren't a sure thing. :^)) The reason
that OEM packaging is so "plain" is that most OEMs do not need the additional
support materials and packaging required for a proper retail package--they
are just going to put the drives into PCs, not resell them to end users. If you
are SuperPeeceez Inc. and make 10,000 systems a month, you just want
10,000 drives--not 10,000 fancy boxes, 10,000 warranty cards, 10,000 driver
disks, and so on. So the drive manufacturers just ship OEMs lots of bare
drives, with the minimum required to protect them, and that's all. By skipping
all the extras, the OEM is able to buy the drives at a lower price from the
manufacturer (and the fact that they are buying them by the thousand
certainly helps with price as well!)

mehedi hasan
mehedi@joinme.com

130

Contents of a Western Digital hard disk retail box kit.

Original image © Western Digital Corporation
Image used with permission.

Originally, OEM drives were available only to, well, OEMs. If you needed a
hard disk for your PC you bought it in a retail box and that was that. A few
years ago however, OEM drives began to appear for sale to individuals and
end-users. They usually enter the market either by an OEM selling off extra
drives to another company that then offers them to the public, or increasingly
these days, by companies that buy them in bulk specifically for resale. Like
the OEMs, many experienced PC home-builders and upgraders realized they
don't need most or even all of the goodies in a retail package, and preferred
the lower price of the OEM drives. Many companies quickly added OEM drives
to their product lines to fill this demand.

Warning: In most cases, the retail and OEM versions of a given drive are
identical, however this is not always the case. Sometimes a manufacturer will
make slightly different versions of the same drive for the OEM and retail
channels. A common difference is having a larger cache on the retail drive
than on the OEM drive.

There's nothing wrong with buying OEM drives if you can get a significantly
better price and don't need the items included in the retail package. However,
you must be sure of what you are buying. In some ways the most important
thing in that retail box is the warranty card, because there can be serious
warranty consequences when purchasing OEM hard disks made by certain
manufacturers. See this discussion of warranty coverage on OEM and retail
drives for details. Ironically, in many cases OEM drives are no cheaper than
the equivalent retail versions with full warranty, and in some cases, I have
seem retail boxes go for less than plain-wrapped OEM drives!

Warning: When buying a hard disk mail order, be 100% certain of what you
are purchasing. As always, most online retailers are honest but there are
always a couple of bad apples who will send you an OEM drive after you

mehedi hasan
mehedi@joinme.com

131

ordered a retail one. Sometimes the salespeople at these companies don't
really understand the difference between OEM and retail and may not really
understand the warranty issues involved. Shop with care, and send back for
exchange anything you are sent that isn't what you ordered.

Next: Hard Disk Handling

mehedi hasan
mehedi@joinme.com

132

Hard Disk Handling

Hard disks are very delicate and sensitive instruments. While certainly it is
true that newer (and especially smaller) drives are less fragile than their older
counterparts, it is also true that all hard disk drives have to be properly
handled to avoid damage. In most cases, handling of drives is something that
happens very little anyway: you get the drive, you install it and you leave it
there. So for most people handling isn't too much of an issue. For those that
handle drives a great deal however, proper handling technique is essential.

The first thing you will notice when you deal with hard disks (and most other
computer components) is that they are always transported in an anti-static
bag. This is of course to prevent the damage that can occur to the hard disk's
circuits as a result of electrostatic discharge or ESD. This is such a common
problem when dealing with components that I put a general warning about it
right in the Site Guide.

A "new" (well, actually a few years old, but
unused) hard disk in its original anti-static bag.

Seagate has actually come up with a neat improvement on the standard anti-
static bag (which has been around for years and years). They call it the
SeaShell (ha ha, good one guys) and instead of being a thin plastic bag, it's a
solid plastic clam-shell case that not only provides ESD protection for the
drive, but physically protects it against shock as well. Instead of being a
smoky gray, the SeaShell is clear plastic, so you can examine the drive
without having to open up the package. And these little cases are also both
recyclable and easily reusable. I hope other hard drive makers start using
similar devices.

mehedi hasan
mehedi@joinme.com

133

A Seagate "SeaShell", containing
a Cheetah SCSI drive.

Original image © Seagate Technology
Image used with permission.

Be sure to ground yourself to a metal object before removing a hard disk
from its ESD protection. Handle the drive as little as possible, and avoid
bumping or jarring it if at all possible. The safest thing to do is to simply get it
installed as quickly as possible. Since the logic board on internal drives is
exposed, make sure none of its components contact anything metallic that
could cause a short or a static discharge.

When shipping a hard disk drive, it is essential that you properly package it.
Slapping the unit in a box with loose foam "peanuts" will not cut it for a hard
disk drive. The drive should be properly supported on all sides with solid foam
or other similar padding, and fitted properly in a box of the correct
dimensions. Hard drive makers use boxes with special inserts specifically
designed for shipping drives; if possible, it is best to use these boxes and
inserts. When performing warranty exchanges, hard drive manufacturers will
commonly send the replacement drive in one of these packages, and ask you
to return the defective drive to them in the same box. This is the best way to
ship a drive back to a manufacturer for exchange or repair.

Warning: Some companies may dispute your warranty claim for service or
replacement if you ship them a drive that has been grossly under-packaged.

Next: Hard Disk Geometry and Low-Level Data Structures

mehedi hasan
mehedi@joinme.com

134

Hard Disk Geometry and Low-Level Data Structures

mehedi hasan
mehedi@joinme.com

135

Hard Disk Geometry and Low-Level Data Structures

When I first wrote The PC Guide in 1997, this page mentioned how each
platter of a hard disk was "capable of storing in excess of one billion bytes of
information". As I revise this section in 2000, leading-edge hard disks now
pack a whopping 20 GB of storage per platter in the same amount of space.
Pretty amazing.

Of course, this trend is only going to continue, with new drives having more
and more data in the same space. In order to use all this real estate to best
advantage, special methods have evolved for dividing the disk up into usable
pieces. The goals, as usual, are two-fold: increasing capacity and increasing
performance. This section takes a detailed look at how information is
encoded, stored, retrieved and managed on a modern hard disk. Many of the
descriptions in this section in fact form the basis for how data is stored on
other media as well.

Next: Data Encoding and Decoding

Hard Disk Data Encoding and Decoding

Digital information is a stream of ones and zeros. Hard disks store information
in the form of magnetic pulses. In order for the PC's data to be stored on the
hard disk, therefore, it must be converted to magnetic information. When it is
read from the disk, it must be converted back to digital information. This work
is done by the integrated controller built into the hard drive, in combination
with sense and amplification circuits that are used to interpret the weak
signals read from the platters themselves.

Magnetic information on the disk consists of a stream of (very, very small)
magnetic fields. As you know, a magnet has two poles, north and south, and
magnetic energy (called flux) flows from the north pole to the south pole.
Information is stored on the hard disk by encoding information into a series of
magnetic fields. This is done by placing the magnetic fields in one of two
polarities: either so the north pole arrives before the south pole as the disk
spins (N-S), or so the south pole arrives before the north (S-N). This is
discussed in detail where the read/write heads are described.

Although it is conceptually simple to match "0 and 1" digital information to
"N-S and S-N" magnetic fields, the reality is much more complex: a 1-to-1
correspondence is not possible, and special techniques must be employed to
ensure that the data is written and read correctly. This section discusses the
technical issues involved in encoding and decoding hard disk data.

Next: Technical Requirements for Encoding and Decoding

mehedi hasan
mehedi@joinme.com

136

Technical Requirements for Encoding and Decoding

You might think that since there are two magnetic polarities, N-S and S-N,
they could be used nicely to represent a "one" and a "zero" respectively, to
allow easy encoding of digital information. Simple! Well, that would be nice,
but as with most things in real life, it usually doesn't work that way. :^)
There are three key reasons why it is not possible to do this simple 1-to-1
encoding:

• Fields vs. Reversals: Read/write heads are designed not to measure
the actual polarity of the magnetic fields, but rather flux reversals,
which occur when the head moves from an area that has north-south
polarity to one that has south-north polarity, or vice-versa. The reason
the heads are designed based on flux reversals instead of absolute
magnetic field, is that reversals are easier to measure. When the hard
disk head passes from over a reversal a small voltage spike is
produced that can be picked up by the detection circuitry. As disk
density increases, the strength of each individual magnetic field
continues to decrease, which makes detection sensitivity critical. What
this all means is that the encoding of data must be done based on flux
reversals, and not the contents of the individual fields.

• Synchronization: Another consideration in the encoding of data is the
necessity of using some sort of method of indicating where one bit
ends and another begins. Even if we could use one polarity to
represent a "one" and another to represent a "zero", what would
happen if we needed to encode on the disk a stream of 1,000
consecutive zeros? It would be very difficult to tell where, say, bit 787
ended and bit 788 began. Imagine driving down a highway with no
odometer or highway markings and being asked to stop exactly at mile
#787 on the highway. It would be pretty hard to do, even if you knew
where you started from and your exact speed.

• Field Separation: Although we can conceptually think of putting 1000
tiny N-S pole magnets in a row one after the other, in reality magnetic
fields don't work this way. They are additive. Aligning 1000 small
magnetic fields near each other would create one large magnetic field,
1000 times the size and strength of the individual components.
Without getting too far into the details, let's just say that this would, in
layman's terms, create a mess. :^)

Therefore, in order to encode data on the hard disk so that we'll be able to
read it back reliably, we need to take the issues above into account. We must
encode using flux reversals, not absolute fields. We must keep the number of
consecutive fields of same polarity to a minimum. And to keep track of which
bit is where, some sort of clock synchronization must be added to the
encoding sequence. Considering the highway example above, this is
somewhat analogous to adding markers or milestones along the road.

mehedi hasan
mehedi@joinme.com

137

Idealized depiction of the way hard disk data is written and then read.
The top waveform shows how patterns are written to the disk. In the
middle, a representation is shown of the way the media on the disk is
magnetized into domains of opposite direction based on the polarity of
the write current. The waveform on the bottom shows how the flux
transitions on the disk translate into positive and negative voltage
pulses when the disk is read. Note that the pattern above is made up
and doesn't follow any particular pattern or encoding method.

In addition to the requirements we just examined, there's another design
limit that must be taken into account: the magnetization limits of the media
itself. Each linear inch of space on a track can only store so many flux
reversals. This is one of the limitations in recording density, the number of
bits that can be stored on the platter surface. Since we need to use some flux
reversals to provide clock synchronization, these are not available for data. A
prime goal of data encoding methods is therefore to decrease the number of
flux reversals used for clocking relative to the number used for real data.

The earliest encoding methods were relatively primitive and wasted a lot of
flux reversals on clock information. Over time, storage engineers discovered
progressively better methods that used fewer flux reversals to encode the
same amount of information. This allowed the data to effectively be packed
tighter into the same amount of space. It's important to understand the
distinction of what density means in this context. Hardware technology strives
to allow more bits to be stored in the same area by allowing more flux
reversals per linear inch of track. Encoding methods strive to allow more bits
to be stored by allowing more bits to be encoded (on average) per flux
reversal.

Note: There are in fact many data encoding and decoding methods. I only
examine here the most common ones used for PC-related technologies.

Next: Frequency Modulation (FM)

mehedi hasan
mehedi@joinme.com

138

Frequency Modulation (FM)

The first common encoding system for recording digital data on magnetic
media was frequency modulation, of course abbreviated FM. This is a simple
scheme, where a one is recorded as two consecutive flux reversals, and a
zero is recorded as a flux reversal followed by no flux reversal. This can also
be thought of as follows: a flux reversal is made at the start of each bit to
represent the clock, and then an additional reversal is added in the middle of
each bit for a one, while the additional reversal is omitted for a zero.

This table shows the encoding pattern for FM (where I have designated "R" to
represent a flux reversal and "N" to represent no flux reversal). The average
number of flux reversals per bit on a random bit stream pattern is 1.5. The
best case (all zeroes) would be 1, the worst case (all ones) would be 2:

Bit Pattern
Encoding
Pattern

Flux Reversals
Per Bit

Bit Pattern
Commonality In
Random Bit Stream

0 RN 1 50%

1 RR 2 50%

Weighted Average 1.5 100%

The name "frequency modulation" comes from the fact that the number of
reversals is doubled for ones compared to that for zeros. This can be seen in
the patterns that are created if you look at the encoding pattern of a stream
of ones or zeros. A byte of zeroes would be encoded as
"RNRNRNRNRNRNRNRN", while a byte of all ones would be
"RRRRRRRRRRRRRRRR". As you can see, the ones have double the frequency
of reversals compared to the zeros; hence frequency modulation (meaning,
changing frequency based on data value).

FM encoding write waveform for the byte "10001111".
Each bit cell is depicted as a blue rectangle with a pink line representing
the position where a reversal is placed, if necessary, in the middle of the cell.

The problem with FM is that it is very wasteful: each bit requires two flux
reversal positions, with a flux reversal being added for clocking every bit.
Compared to more advanced encoding methods that try to reduce the number
of clocking reversals, FM requires double (or more) the number of reversals
for the same amount of data. This method was used on the earliest floppy
disk drives, the immediate ancestors of those used in PCs. If you remember
using "single density" floppy disks in the late 1970s or early 1980s, that

mehedi hasan
mehedi@joinme.com

139

designation commonly refers to magnetic storage using FM encoding. FM was
actually made obsolete by MFM before the IBM PC was introduced, but it
provides the basis for understanding MFM.

Note: This has nothing whatever to do with FM radio, of course, except for a
similarity in the concept of how the data is encoded.

Next: Modified Frequency Modulation (MFM)

mehedi hasan
mehedi@joinme.com

140

Modified Frequency Modulation (MFM)

A refinement of the FM encoding method is modified frequency modulation, or
MFM. MFM improves on FM by reducing the number of flux reversals inserted
just for the clock. Instead of inserting a clock reversal at the start of every
bit, one is inserted only between consecutive zeros. When a 1 is involved
there is already a reversal (in the middle of the bit) so additional clocking
reversals are not needed. When a zero is preceded by a 1, we similarly know
there was recently a reversal and another is not needed. Only long strings of
zeros have to be "broken up" by adding clocking reversals.

This table shows the encoding pattern for MFM (where I have designated "R"
to represent a flux reversal and "N" to represent no flux reversal). The
average number of flux reversals per bit on a random bit stream pattern is
0.75. The best case (a repeating pattern of ones and zeros, "101010...")
would be 0.25, the worst case (all ones or all zeros) would be 1:

Bit Pattern
Encoding
Pattern

Flux
Reversals Per
Bit

Bit Pattern
Commonality In
Random Bit
Stream

0 (preceded
by 0)

RN 1 25%

0 (preceded
by 1)

NN 0 25%

1 NR 1 50%

Weighted Average 0.75 100%

Since the average number of reversals per bit is half that of FM, the clock
frequency of the encoding pattern can be doubled, allowing for approximately
double the storage capacity of FM for the same areal density. The only cost is
somewhat increased complexity in the encoding and decoding circuits, since
the algorithm is a bit more complicated. However, this isn't a big deal for
controller designers, and is a small price to pay for doubling capacity.

FM and MFM encoding write waveform for the byte "10001111".
As you can see, MFM encodes the same data in half as much

mehedi hasan
mehedi@joinme.com

141

space, by using half as many flux reversals per bit of data.

MFM encoding was used on the earliest hard disks, and also on floppy disks.
Since the MFM method about doubles the capacity of floppy disks compared
to earlier FM ones, these disks were called "double density". In fact, MFM is
still the standard that is used for floppy disks today. For hard disks it was
replaced by the more efficient RLL methods. This did not happen for floppy
disks, presumably because the need for more efficiency was not nearly so
great, compared to the need for backward compatibility with existing media.

Next: Run Length Limited (RLL)

mehedi hasan
mehedi@joinme.com

142

Run Length Limited (RLL)

An improvement on the MFM encoding technique used in earlier hard disks
and used on all floppies is run length limited or RLL. This is a more
sophisticated coding technique, or more correctly stated, "family" of
techniques. I say that RLL is a family of techniques because there are two
primary parameters that define how RLL works, and therefore, there are
several different variations. (Of course, you don't really need to know which
one your disk is using, since this is all internal to the drive anyway).

FM encoding has a simple one-to-one correspondence between the bit to be
encoded and the flux reversal pattern. You only need to know the value of the
current bit. MFM improves encoding efficiency over FM by more intelligently
controlling where clock transitions are added into the data stream; this is
enabled by considering not just the current bit but also the one before it.
That's why there are is a different flux reversal pattern for a 0 preceded by
another 0, and for a 0 preceded by a 1. This "looking backwards" allows
improved efficiency by letting the controller consider more data in deciding
when to add clock reversals.

RLL takes this technique one step further. It considers groups of several bits
instead of encoding one bit at a time. The idea is to mix clock and data flux
reversals to allow for even denser packing of encoded data, to improve
efficiency. The two parameters that define RLL are the run length and the run
limit (and hence the name). The word "run" here refers to a sequence of
spaces in the output data stream without flux reversals. The run length is the
minimum spacing between flux reversals, and the run limit is the maximum
spacing between them. As mentioned before, the amount of time between
reversals cannot be too large or the read head can get out of sync and lose
track of which bit is where.

The particular variety of RLL used on a drive is expressed as "RLL (X,Y)" or
"X,Y RLL" where X is the run length and Y is the run limit. The most
commonly used types of RLL in hard drives are "RLL (1,7)", also seen as "1,7
RLL"; and "RLL (2,7)" ("2,7 RLL"). Alright, now consider the spacing of
potential flux reversals in the encoded magnetic stream. In the case of "2,7",
this means that the the smallest number of "spaces" between flux reversals is
2, and the largest number is 7. To create this encoding, a set of patterns is
used to represent various bit sequences, as shown in the table below ("R" is a
reversal, "N" no reversal, just as with the other data encoding examples):

Bit Pattern
Encoding
Pattern

Flux Reversals
Per Bit

Bit Pattern
Commonality In
Random Bit Stream

11 RNNN 1/2 25%

10 NRNN 1/2 25%

011 NNRNNN 1/3 12.5%

010 RNNRNN 2/3 12.5%

mehedi hasan
mehedi@joinme.com

143

000 NNNRNN 1/3 12.5%

0010 NNRNNRNN 2/4 6.25%

0011 NNNNRNNN 1/4 6.25%

Weighted Average 0.4635 100%

The controller these patterns by parsing the bit stream to be encoded, and
matching the stream based on the bit patterns it encounters. If we were
writing the byte "10001111" (8Fh), this would be matched as "10-0011-11"
and encoded as "NRNN-NNNNRNNN-RNNN". Note that the since every pattern
above ends in "NN", the minimum distance between reversals is indeed two.
The maximum distance would be achieved with consecutive "0011" patterns,
resulting in "NNNNRNNN-NNNNRNNN" or seven non-reversals between
reversals. Thus, RLL (2,7).

Comparing the table above to the ones for FM and MFM, a few things become
apparent. The most obvious is the increased complexity: seven different
patterns are used, and up to four bits are considered a time for encoding. The
average number of flux reversals per bit on a random bit stream pattern is
0.4635, or about 0.50. This is about a third of the requirement for FM (and
about two thirds that of MFM). So relative to FM, data can be packed into one
third the space. (For the example byte "10001111" we have been using, RLL
requires 3 "R"s; MFM would require 7, and FM would need 13.)

2,7 RLL, FM and MFM encoding write waveform for the byte "10001111".
RLL improves further on MFM by reducing the amount of space required
for the same data bits to one third that required for regular FM encoding.

Due to its greater efficiency, RLL encoding has replaced MFM everywhere but
on floppy disks, where MFM continues to be used for historical compatibility
reasons.

Next: Partial Response, Maximum Likelihood (PRML)

mehedi hasan
mehedi@joinme.com

144

Partial Response, Maximum Likelihood (PRML)

Standard read circuits work by detecting flux reversals and interpreting them
based on the encoding method that the controller knows has been used on
the platters to record bits. The data signal is read from the disk using the
head, amplified, and delivered to the controller. The controller converts the
signal to digital information by analyzing it continuously, synchronized to its
internal clock, and looking for small voltage spikes in the signal that represent
flux reversals. This traditional method of reading and interpreting hard disk
data is called peak detection.

Conceptual drawing demonstrating the principles behind analog peak
detection.
The circuitry scans the data read from the disk looking for positive or negative
"spikes" that represent flux reversals on the surface of the hard disk platters.

Image © Quantum Corporation
Image used with permission.

This method works fine as long as the peaks are large enough to be picked
out from the background noise of the signal. As data density increases, the
flux reversals are packed more tightly and the signal becomes much more
difficult to analyze, because the peaks get very close together and start to
interfere with each other. This can potentially cause bits to be misread from
the disk. Since this is something that must be avoided, in practical terms
what happens instead is that the maximum areal density on the disk is limited
to ensure that interference does not occur. To take the next step up in
density, the magnetic fields must be made weaker. This reduces interference,
but causes peak detection to be much more difficult. At some point it
becomes very hard for the circuitry to actually tell where the flux reversals
are.

To combat this problem a new method was developed that takes a different
approach to solving the data interpretation problem. This technology, called

mehedi hasan
mehedi@joinme.com

145

partial response, maximum likelihood or PRML, changes entirely the way that
the signal is read and decoded from the surface of the disk. Instead of trying
to distinguish individual peaks to find flux reversals, a controller using PRML
employs sophisticated digital signal sampling, processing and detection
algorithms to manipulate the analog data stream coming from the disk (the
"partial response" component) and then determine the most likely sequence
of bits this represents ("maximum likelihood").

Conceptual drawing demonstrating the principles behind PRML. The data
stream is sampled and analyzed using digital signal processing techniques.

Image © Quantum Corporation
Image used with permission.

While this may seem like an odd (and unreliable) way to read data from a
hard disk, it is in fact reliable enough that PRML, and its successor, EPRML,
have become the standard for data decoding on modern hard disks. PRML
allows areal densities to be increased by a full 30-40% compared to standard
peak detection, resulting in much greater capacities in the same number of
platters.

Next: Extended PRML (EPRML)

mehedi hasan
mehedi@joinme.com

146

Extended PRML (EPRML)

An evolutionary improvement on the PRML design has been developed over
the last few years. Called extended partial response, maximum likelihood,
extended PRML or just EPRML, this advance was the result of engineers
tweaking the basic PRML design to improve its performance. EPRML devices
work in a similar way to PRML ones: they are still based on analyzing the
analog data stream coming form the read/write head to determine the correct
data sequence. They just use better algorithms and signal-processing circuits
to enable them to more effectively and accurately interpret the information
coming from the disk.

The chief benefit of using EPRML is that due to its higher performance, areal
density (or more correctly, the linear component of areal density) can be
increased without increasing the error rate. Claims regarding this increase
range from around 20% to as much as 70%, compared to "regular" PRML.
Those numbers represent a fairly significant improvement.

EPRML has now been widely adopted in the hard disk industry and is replacing
PRML on new drives.

Next: Tracks, Cylinders and Sectors

mehedi hasan
mehedi@joinme.com

147

Hard Disk Tracks, Cylinders and Sectors

All information stored on a hard disk is recorded in tracks, which are
concentric circles placed on the surface of each platter, much like the annual
rings of a tree. The tracks are numbered, starting from zero, starting at the
outside of the platter and increasing as you go in. A modern hard disk has
tens of thousands of tracks on each platter.

A platter from a 5.25" hard disk, with 20 concentric tracks drawn
over the surface. Each track is divided into 16 imaginary sectors.

Data is accessed by moving the heads from the inner to the outer part of the
disk, driven by the head actuator. This organization of data allows for easy
access to any part of the disk, which is why disks are called random access
storage devices. Each track can hold many thousands of bytes of data. It
would be wasteful to make a track the smallest unit of storage on the disk,
since this would mean small files wasted a large amount of space. Therefore,
each track is broken into smaller units called sectors. Each sector holds 512
bytes of user data, plus as many as a few dozen additional bytes used for

internal drive control and for error detection and correction. Next: The
Difference Between Tracks and Cylinders

mehedi hasan
mehedi@joinme.com

148

The Difference Between Tracks and Cylinders

A hard disk is usually made up of multiple platters, each of which use two
heads to record and read data, one for the top of the platter and one for the
bottom (this isn't always the case, but usually is; see here for more details).
The heads that access the platters are locked together on an assembly of
head arms. This means that all the heads move in and out together, so each
head is always physically located at the same track number. It is not possible
to have one head at track 0 and another at track 1,000.

Because of this arrangement, often the track location of the heads is not
referred to as a track number but rather as a cylinder number. A cylinder is
basically the set of all tracks that all the heads are currently located at. So if a
disk had four platters, it would (normally) have eight heads, and cylinder
number 720 (for example) would be made up of the set of eight tracks, one
per platter surface, at track number 720. The name comes from the fact that
if you mentally visualize these tracks, they form a skeletal cylinder because
they are equal-sized circles stacked one on top of the other in space.

This diagram illustrates what "cylinder" means on on a hard disk. This
conceptual hard disk spindle has four platters, and each platter has three
tracks shown on it. The cylinder indicated would be made up of the
8 tracks (2 per surface) intersected by the dotted vertical line shown.

Image © Quantum Corporation
Image used with permission.

For most practical purposes, there really isn't much difference between tracks
and cylinders--its basically a different way of thinking about the same thing.
The addressing of individual sectors of the disk is traditionally done by
referring to cylinders, heads and sectors (CHS). Since a cylinder is the
collection of track numbers located at all of the heads of the disk, the

mehedi hasan
mehedi@joinme.com

149

specification "track number plus head number" is equal to "(cylinder number
plus head number) plus head number", which is thus the same as "track
number plus head number".

Next: Track Density and Areal Density

Track Density and Areal Density

The track density of a hard disk refers, unsurprisingly, to how tightly packed
the tracks are on the surface of each platter. Every platter has the same track
density. The greater the track density of a disk, the more information that can
be placed on the hard disk. Track density is one component of areal density,
which refers to the number of bits that can be packed into each unit of area
on the surface of the disk. More is better--both in terms of capacity and
performance. See this page for a full discussion of density issues.

The earliest PC hard disks had only a few hundred tracks on them, and used
larger 5.25" form factor platters, resulting in a track density of only a few
hundred tracks per inch. Modern hard disks have tens of thousands of tracks
and can have a density of 30,000 tracks per inch or more.

The chief obstacle to increasing track density is making sure that the tracks
don't get close enough together that reading one track causes the heads to
pick up data from adjacent tracks. To avoid this problem, magnetic fields are
made weaker to prevent interference, which leads to other design impacts,
such as the requirement for better read/write head technologies and/or the
use of PRML methods to improve signal detection and processing.

Next: Zoned Bit Recording

mehedi hasan
mehedi@joinme.com

150

Zoned Bit Recording

One way that capacity and speed have been improved on hard disks over
time is by improving the utilization of the larger, outer tracks of the disk. The
first hard disks were rather primitive affairs and their controllers couldn't
handle complicated arrangements that changed between tracks. As a result,
every track had the same number of sectors. The standard for the first hard
disks was 17 sectors per track.

Of course, the tracks are concentric circles, and the ones on the outside of the
platter are much larger than the ones on the inside--typically double the
circumference or more. Since there is a constraint on how tight the inner
circles can be packed with bits, they were packed as tight as was practically
possible given the state of technology, and then the outer circles were set to
use the same number of sectors by reducing their bit density. This means
that the outer tracks were greatly underutilized, because in theory they could
hold many more sectors given the same linear bit density limitations.

To eliminate this wasted space, modern hard disks employ a technique called
zoned bit recording (ZBR), also sometimes called multiple zone recording or
even just zone recording. With this technique, tracks are grouped into zones
based on their distance from the center of the disk, and each zone is assigned
a number of sectors per track. As you move from the innermost part of the
disk to the outer edge, you move through different zones, each containing
more sectors per track than the one before. This allows for more efficient use
of the larger tracks on the outside of the disk.

mehedi hasan
mehedi@joinme.com

151

A graphical illustration of zoned bit recording. This model hard disk
has 20 tracks. They have been divided into five zones, each of which
is shown as a different color. The blue zone has 5 tracks, each with 16
sectors; the cyan zone 5 tracks of 14 sectors each; the green zone 4
tracks of 12 sectors; the yellow 3 tracks of 11 sectors, and the red
3 tracks of 9 sectors. You can see that the size (length) of a sector
remains fairly constant over the entire surface of the disk (contrast to
the non-ZBR diagram on this page.) If not for ZBR, if the inner-most
zone had its data packed as densely as possible, every track on this
hard disk would be limited to only 9 sectors, greatly reducing capacity.

One interesting side effect of this design is that the raw data transfer rate
(sometimes called the media transfer rate) of the disk when reading the
outside cylinders is much higher than when reading the inside ones. This is
because the outer cylinders contain more data, but the angular velocity of the
platters is constant regardless of which track is being read (note that this
constant angular velocity is not the case for some technologies, like older CD-
ROM drives!) Since hard disks are filled from the outside in, the fastest data
transfer occurs when the drive is first used. Sometimes, people benchmark
their disks when new, and then many months later, and are surprised to find
that the disk is getting slower! In fact, the disk most likely has not changed at
all, but the second benchmark may have been run on tracks closer to the
middle of the disk. (Fragmentation of the file system can have an impact as
well in some cases.)

mehedi hasan
mehedi@joinme.com

152

As an example, the table below shows the zones used by a 3.8 GB Quantum
Fireball TM hard disk, which has a total of 6,810 user data tracks on each
platter surface. Also included is the raw data transfer rate for each zone;
notice how it decreases as you move from the outer edge of the disk (zone 0)
to the hub of the disk (zone 14)--the data transfer rate at the edge is almost
double what it is in the middle:

Zone
Tracks in
Zone

Sectors
Per Track

Data Transfer
Rate (Mbits/s)

0 454 232 92.9

1 454 229 91.7

2 454 225 90.4

3 454 225 89.2

4 454 214 85.8

5 454 205 82.1

6 454 195 77.9

7 454 185 74.4

8 454 180 71.4

9 454 170 68.2

10 454 162 65.2

11 454 153 61.7

12 454 142 57.4

13 454 135 53.7

14 454 122 49.5

(From Quantum Fireball TM Product Manual, © 1996 Quantum Corporation.)

A couple of additional thoughts on this data. First, having the same number of
tracks per zone is not a requirement; that is just how Quantum set up this
disk family. (Compare to the newer IBM drive below.) Second, notice how
much larger the sector per track numbers are, compared to the 17 of the
earliest disks! Modern drives can pack a lot of storage into a track. Also, this
is a 1996-era drive; modern units have even higher numbers of sectors per
track in all zones, and much higher data transfer rates. Here's the same chart
for the 20 GB/platter, 5400 RPM IBM 40GV drive:

Zone
Tracks in
Zone

Sectors
Per Track

Data Transfer
Rate (Mbits/s)

mehedi hasan
mehedi@joinme.com

153

0 624 792 372.0

1 1,424 780 366.4

2 1,680 760 357.0

3 1,616 740 347.6

4 2,752 720 338.2

5 2,880 680 319.4

6 1,904 660 310.0

7 2,384 630 295.9

8 3,328 600 281.8

9 4,432 540 253.6

10 4,528 480 225.5

11 2,192 440 206.7

12 1,600 420 197.3

13 1,168 400 187.9

14 18,15 370 173.8

(From Deskstar 40GV and 75GXP Product Manual, © 2000 International
Business Machines Corporation.)

As you can see, the number of tracks per zone, sectors per track and data
transfer rates are all several times higher than the numbers for the older
drive, showing how dramatically capacity and performance have increased in
four years. The number of tracks per zone is different for each zone here,
unlike the Quantum drive. However, you will notice that the number of zones
is the same. The fact that both drives have exactly 15 zones is a coincidence-
-some drives have a few more, and some a few less--but new drives do tend
to have roughly the same number of zones as older ones. Increasing the
number of zones makes the controller more complicated, and there usually
isn't any great benefit to doing this. (Ideally you would maximize the storage
potential if every track had its own "zone" with just the right number of
sectors, but the added storage would be relatively small compared to just
using larger zones as above, and the engineering cost very high.)

The standard BIOS settings for IDE/ATA hard disks only allow the
specification of a single number for "sectors per track". Since all modern hard
disks use ZBR and don't have a single number of sectors per track across the
disk, they use logical geometry for the BIOS setup. IDE hard disks up to 8.4
GB usually tell the BIOS 63 sectors per track and then translate to the real
geometry internally; no modern drive uses 63 sectors on any track, much less
all of them. Hard drives over 8.4 GB can't have their parameters expressed
using the IDE BIOS geometry parameters anyway (because the regular BIOS

mehedi hasan
mehedi@joinme.com

154

limit is 8.4 GB) so these drives always have 63 sectors per track as "dummy"
geometry parameters, and are accessed using logical block addressing. (See
here for further discussion.)

All of the above is one reason why modern drives are low-level formatted at
the factory. The hard disk controller has to know the intricate details of the
various recording zones, how many sectors are in each track for each zone,
and how everything is organized.

Next: Write Precompensation

Write Precompensation

As discussed in the section on zoned bit recording, older hard disks used the
same number of sectors per track. This meant that older disks had a varying
bit density as you moved from the outside edge to the inner part of the
platter. Many of these older disks required that an adjustment be made when
writing the inside tracks, and a setting was placed in the BIOS to allow the
user to specify at what track number this compensation was to begin.

This entire matter is no longer relevant to modern hard disks, but the BIOS
setting remains for compatibility reasons. Write precompensation is not done
with today's drives; even if it were, the function would be implemented within
the integrated controller and would be transparent to the user.

Next: Interleaving

mehedi hasan
mehedi@joinme.com

155

Interleaving

A common operation when working with a hard disk is reading or writing a
number of sectors of information in sequence. After all, a sector only contains
512 bytes of user data, and most files are much larger than that. Let's
assume that the sectors on each track are numbered consecutively, and say
that we want to read the first 10 sectors of a given track on the hard disk.
Under ideal conditions, the controller would read the first sector, then
immediately read the second, and so on, until all 10 sectors had been read.
Just like reading 10 words in a row in this sentence.

However, the physical sectors on a track are adjacent to each other and not
separated by very much space. Reading sectors consecutively requires a
certain amount of speed from the hard disk controller. The platters never stop
spinning, and as soon as the controller is done reading all of sector #1, it has
little time before the start of sector #2 is under the head. Many older
controllers used with early hard disks did not have sufficient processing
capacity to be able to do this. They would not be ready to read the second
sector of the track until after the start of the second physical sector had
already spun past the head, at which point it would be too late.

If the controller is slow in this manner, and no compensation is made in the
controller, the controller must wait for almost an entire revolution of the
platters before the start of sector #2 comes around and it can read it. Then,
of course, when it tried to read sector #3, the same thing would happen, and
another complete rotation would be required. All this waiting around would kill
performance: if a disk had 17 sectors per track, it would take 17 times as
long to read those 10 sectors as it should have in the ideal case!

To address this problem, older controllers employed a function called
interleaving, allowing the setting of a disk parameter called the interleave
factor. When interleaving is used, the sectors on a track are logically re-
numbered so that they do not correspond to the physical sequence on the
disk. The goal of this technique is to arrange the sectors so that their position
on the track matches the speed of the controller, to avoid the need for extra
"rotations". Interleave is expressed as a ratio, "N:1", where "N" represents
how far away the second logical sector is from the first, how far the third is
from the second, and so on.

An example is the easiest way to demonstrate this method. The standard for
older hard disks was 17 sectors per track. Using an interleave factor of 1:1,
the sectors would be numbered 1, 2, 3, .. , 17, and the problem described
above with the controller not being ready in time to read sector #2 would
often occur for sequential reads. Instead, an interleave factor of 2:1 could be
used. With this arrangement, the sectors on a 17-sector track would be
numbered as follows: 1, 10, 2, 11, 3, 12, 4, 13, 5, 14, 6, 15, 7, 16, 8, 17, 9.
Using this interleave factor means that while sector 1 is being processed,
sector 10 is passing under the read head, and so when the controller is ready,
sector 2 is just arriving at the head. To read the entire track, two revolutions
of the platters are required. This is twice as long as the ideal case (1:1
interleaving with a controller fast enough to handle it) but it is almost 90%

mehedi hasan
mehedi@joinme.com

156

better than what would result from using 1:1 interleaving with a controller
that is too slow (which would mean 17 rotations were required).

What if the controller was too slow for a 2:1 interleave? It might only be fast
enough to read every third physical sector in sequence. If so, an interleave of
3:1 could be used, with the sectors numbered as follows: 1, 7, 13, 2, 8, 14,
3, 9, 15, 4, 10, 16, 5, 11, 17, 6, 12. Again here, this would reduce
performance compared to 2:1, if the controller was fast enough for 2:1, but it
would greatly improve performance if the controller couldn't handle 2:1.

So this begs the question then: how do you know what interleave factor to
use? Well, on older hard disks, the interleave factor was one parameter that
had to be tinkered with to maximize performance. Setting it too
conservatively caused the drive to not live up to its maximum potential, but
setting it too aggressively could result in severe performance hits due to extra
revolutions being needed. The perfect interleave setting depended on the
speeds of the hard disk, the controller, and the system. Special utilities were
written to allow the analysis of the hard disk and controller, and would help
determine the optimal interleave setting. The interleave setting would be used
when the drive was low-level formatted, to set up the sector locations for
each track.

On modern disk drives, the interleave setting is always 1:1. Controller too
slow? Ha! Today's controllers are so fast, much of the time they sit around
waiting for the platters, tapping their virtual fingers. How did this situation
come to change so drastically in 15 years? Well, it's pretty simple. The spindle
speed of a hard disk has increased from 3,600 RPM on the first hard disks, to
today's standards of 5,400 to 10,000 RPM. An increase in speed of 50% to
177%. The faster spindle speed means that much less time for the controller
to be ready before the next physical sector comes under the head. However,
look at what processing power has done in the same time frame: CPUs have
gone from 4.77 MHz speeds to the environs of 1 GHz; an increase of over
20,000%! The speed of other chips in the PC and its peripherals have
similarly gotten faster by many multiples.

As a result of this increase in speed in modern circuits, controller speed is no
longer an issue for current drives. There is in fact no way to set the interleave
for a modern drive; it is fixed at 1:1 and no other setting would be necessary.
Understanding interleaving is still important because the concept forms the
basis for more advanced techniques such as head and cylinder skew, which
are used on modern drives. And, well, you never know when you might have
to deal with some old 20 MB clunker. ;^)

Warning: Some older systems still have BIOS functions for doing "media
analysis" or setting interleave factors for hard disks. These are the interleave
analysis utilities I mentioned above. They are intended for older style drives
that do not have an integrated controller. They should not be used with
modern IDE or SCSI disks.

mehedi hasan
mehedi@joinme.com

157

Note: The hard disk interleave setting described here is a totally different
concept than memory interleaving.

Next: Cylinder and Head Skew

Cylinder and Head Skew

Sector interleaving was once used on older hard disks to ensure that the
sectors were efficiently spaced on the track. This was needed to ensure that
sector #2 didn't rotate past the head while sector #1 was being processed.
The high-speed disk controllers on modern drives are now fast enough that
they no longer are a performance-limiting factor in how the sectors on the
disk are arranged. However, there are other delay issues within the drive that
require spacing to be optimized in even the fastest drives, to maximize
performance. And unlike the interleaving situation, these delays are caused
by electromechanical concerns and are therefore likely to be with us for as
long as hard drives use their current general design.

The first issue is the delay in time incurred when switching between cylinders
on the hard disk, called appropriately enough, cylinder switch time. Let's
imagine that we "lined up" all of the tracks on a platter so that the first sector
on each track started at the same position on the disk. Now let's say that we
want to read the entire contents of two consecutive tracks, a fairly common
thing to need to do. We read all the sectors of track #1 (in sequence, since
we can use a 1:1 interleave) and then switch to track #2 to start reading it at
its first sector.

The problem here is that it takes time to physically move the heads (or more
actually, the actuator assembly) to track #2. In fact, it often takes a
millisecond or more. Let's consider a modern 10,000 RPM drive. The IBM
Ultrastar 72ZX has a specification of only 0.6 milliseconds for seeking from
one track to an adjacent one. That's actually quite fast by today's standards.
But consider that in that amount of time, a 10,000 RPM drive will perform
approximately 10% of a complete revolution of the platters! If sector #1 on
track #2 is lined up with sector #1 on track #1, it will be long gone by the
time we switch from track #1 to track #2. We'd have to wait for the
remaining 90% of a revolution of the platters to do the next read, a big
performance penalty. This problem isn't as bad as the interleave one was,
because it occurs only when changing tracks, and not every sector. But it's
still bad, and it's avoidable.

The issue is avoided by offsetting the start sector of adjacent tracks to
minimize the likely wait time (rotational latency) when switching tracks. This
is called cylinder skew. Let's say that in the particular zone where tracks #1
and #2 are, there are 450 sectors per track. If 10% of the disk spins by on a
track-to-track seek, 45 sectors go past. Allowing some room for error and
controller overhead, perhaps the design engineers would shift each track so
that sector #1 of track #2 was adjacent to sector #51 of track #1. Similarly,
sector #1 of track #3 would be adjacent to sector #51 of track #2 (and
hence, adjacent to sector #101 of track #1). And so on. By doing this, we can

mehedi hasan
mehedi@joinme.com

158

read multiple adjacent tracks virtually seamlessly, and with no performance
hit due to unnecessary platter rotations.

The same problem, only to a lesser degree, occurs when we change heads
within a cylinder. Here there is no physical movement, but it still takes time
for the switch to be made from reading one head to reading another, so it
makes sense to offset the start sector of tracks within the same cylinder so
that after reading from the first head/track in the cylinder, we can switch to
the next one without losing our "pace". This is called head skew. Since
switching heads takes much less time than switching cylinders, head skew
usually means a smaller number of sectors being offset than cylinder skew
does.

These two diagrams illustrate the concept of cylinder and head skew. Assume
that these platters spin counter-clockwise (as seen from your vantage point)
and that they are adjacent to each other (they might be the two surfaces of the
same platter.) They each have a cylinder skew of three, meaning that adjacent
tracks are offset by three sectors. In addition, the platter on the right has a
head skew of one relative to the one on the left. (Of course, real drives have
thousands of tracks with hundreds of sectors each.)

Both cylinder and head skew must be simultaneously "overlaid" onto all the
tracks of the hard disk, resulting in a "two-dimensional pattern" of sorts, with
different offsets being applied depending on the specific timing characteristics
of the disk. The layout of the tracks is adjusted to account for cylinder skew
and head skew, based on the way the designers intend the hard disk to store
sequential data. All of the details are taken care of by the controller. This is
one reason why having integrated, dedicated drive electronics on the disk
itself, is such a good idea. No universal, external controller could possibly
know how to take all these hard disk characteristics and performance
requirements into account.

Next: Sector Format and Structure

mehedi hasan
mehedi@joinme.com

159

Sector Format and Structure

The basic unit of data storage on a hard disk is the sector. The name "sector"
comes from the mathematical term, which refers to a "pie-shaped" angular
section of a circle, bounded on two sides by radii and the third by the
perimeter of the circle. On a hard disk containing concentric circular tracks,
that shape would define a sector of each track of the platter surface that it
intercepted. This is what is called a sector in the hard disk world: a small
segment along the length of a track. At one time, all hard disks had the same
number of sectors per track, and in fact, the number of sectors in each track
was fairly standard between models. Today's advances have allowed the
number of sectors per track ("SPT") to vary significantly, as discussed here.

In the PC world, each sector of a hard disk can store 512 bytes of user data.
(There are some disks where this number can be modified, but 512 is the
standard, and found on virtually all hard drives by default.) Each sector,
however, actually holds much more than 512 bytes of information. Additional
bytes are needed for control structures and other information necessary to
manage the drive, locate data and perform other "support functions". The
exact details of how a sector is structured depends on the drive model and
manufacturer. However, the contents of a sector usually include the following
general elements:

• ID Information: Conventionally, space is left in each sector to
identify the sector's number and location. This is used for locating the
sector on the disk. Also included in this area is status information
about the sector. For example, a bit is commonly used to indicate if
the sector has been marked defective and remapped.

• Synchronization Fields: These are used internally by the drive
controller to guide the read process.

• Data: The actual data in the sector.
• ECC: Error correcting code used to ensure data integrity.
• Gaps: One or more "spacers" added as necessary to separate other

areas of the sector, or provide time for the controller to process what
it has read before reading more bits.

Note: In addition to the sectors, each containing the items above, space on
each track is also used for servo information (on embedded servo drives,
which is the design used by all modern units).

The amount of space taken up by each sector for overhead items is
important, because the more bits used for "management", the fewer overall
that can be used for data. Therefore, hard disk manufacturers strive to reduce
the amount of non-user-data information that must be stored on the disk. The
term format efficiency refers to the percentage of bits on each disk that are
used for data, as opposed to "other things". The higher the format efficiency
of a drive, the better (but don't expect to find statistics on this for your
favorite drive easy to find!)

One of the most important improvements in sector format was IBM's creation
of the No-ID Format in the mid-1990s. The idea behind this innovation is

mehedi hasan
mehedi@joinme.com

160

betrayed by the name: the ID fields are removed from the sector format.
Instead of labeling each sector within the sector header itself, a format map is
stored in memory and referenced when a sector must be located. This map
also contains information about what sectors have been marked bad and
relocated, where the sectors are relative to the location of servo information,
and so on. Not only does this improve format efficiency, allowing up to 10%
more data to be stored on the surface of each platter, it also improves
performance. Since this critical positioning information is present in high-
speed memory, it can be accessed much more quickly. "Detours" in chasing
down remapped sectors are also eliminated.

Next: Formatting and Capacity

Hard Disk Formatting and Capacity

Most PC users are familiar with the concept that a hard disk--in fact, all
storage media--must be formatted before it can be used. There is usually
some confusion, however, regarding exactly what formatting means and what
it does. This is exacerbated by the fact that modern hard disks are not
formatted in the same way that older ones were, and also the fact that the
utilities used for formatting behave differently when acting on hard disks than
when used for floppy disks.

This section takes a look at issues surrounding disk formatting and capacity,
discusses unformatted and formatted hard disk capacity, and looks briefly at
formatting utilities.

Next: Two Formatting Steps

mehedi hasan
mehedi@joinme.com

161

Two Formatting Steps

Many PC users don't realize that formatting a hard disk isn't done in a single
step. In fact, three steps are involved:

1. Low-Level Formatting: This is the "true" formatting process for the
disk. It creates the physical structures (tracks, sectors, control
information) on the hard disk. Normally, this step begins with the hard
disk platters "clean", containing no information. It is discussed in more
detail here.

2. Partitioning: This process divides the disk into logical "pieces" that
become different hard disk volumes (drive letters). This is an
operating system function and is discussed in detail in its own section.

3. High-Level Formatting: This final step is also an operating-system-
level command. It defines the logical structures on the partition and
places at the start of the disk any necessary operating system files.
Read more about it here.

As you can see, two of the three steps are "formatting", and this dual use of
the word is a big part of what leads to a lot of confusion when the term
"formatting" is used. Another strange artifact of history is that the DOS
"FORMAT" command behaves differently when it is used on a hard disk than
when it is used on a floppy disk. Floppy disks have simple, standard geometry
and cannot be partitioned, so the FORMAT command is programmed to
automatically both low-level and high-level format a floppy disk, if necessary.
For hard disks, however, FORMAT will only do a high-level format. Low-level
formatting is performed by the controller for older drives, and at the factory
for newer drives.

Next: Low-Level Formatting

mehedi hasan
mehedi@joinme.com

162

Low-Level Formatting

Low-level formatting is the process of outlining the positions of the tracks and
sectors on the hard disk, and writing the control structures that define where
the tracks and sectors are. This is often called a "true" formatting operation,
because it really creates the physical format that defines where the data is
stored on the disk. The first time that a low-level format ("LLF") is performed
on a hard disk, the disk's platters start out empty. That's the last time the
platters will be empty for the life of the drive. If an LLF is done on a disk with
data on it already, the data is permanently erased (save heroic data recovery
measures which are sometimes possible).

If you've explored other areas of this material describing hard disks, you have
learned that modern hard disks are much more precisely designed and built,
and much more complicated than older disks. Older disks had the same
number of sectors per track, and did not use dedicated controllers. It was
necessary for the external controller to do the low-level format, and quite
easy to describe the geometry of the drive to the controller so it could do the
LLF. Newer disks use many complex internal structures, including zoned bit
recording to put more sectors on the outer tracks than the inner ones, and
embedded servo data to control the head actuator. They also transparently
map out bad sectors. Due to this complexity, all modern hard disks are low-
level formatted at the factory for the life of the drive. There's no way for the
PC to do an LLF on a modern IDE/ATA or SCSI hard disk, and there's no
reason to try to do so.

Older drives needed to be re-low-level-formatted occasionally because of the
thermal expansion problems associated with using stepper motor actuators.
Over time, the tracks on the platters would move relative to where the heads
expected them to be, and errors would result. These could be corrected by
doing a low-level format, rewriting the tracks in the new positions that the
stepper motor moved the heads to. This is totally unnecessary with modern
voice-coil-actuated hard disks.

Warning: You should never attempt to do a low-level format on an IDE/ATA
or SCSI hard disk. Do not try to use BIOS-based low-level formatting tools on
these newer drives. It's unlikely that you will damage anything if you try to do
this (since the drive controller is programmed to ignore any such LLF
attempts), but at best you will be wasting your time. A modern disk can
usually be restored to "like-new" condition by using a zero-fill utility.

Next: High-Level Formatting

mehedi hasan
mehedi@joinme.com

163

High-Level Formatting

After low-level formatting is complete, we have a disk with tracks and
sectors--but nothing written on them. High-level formatting is the process of
writing the file system structures on the disk that let the disk be used for
storing programs and data. If you are using DOS, for example, the DOS
FORMAT command performs this work, writing such structures as the master
boot record and file allocation tables to the disk. High-level formatting is done
after the hard disk has been partitioned, even if only one partition is to be
used. See here for a full description of DOS structures, also used for Windows
3.x and Windows 9x systems.

The distinction between high-level formatting and low-level formatting is
important. It is not necessary to low-level format a disk to erase it: a high-
level format will suffice for most purposes; by wiping out the control
structures and writing new ones, the old information is lost and the disk
appears as new. (Much of the old data is still on the disk, but the access
paths to it have been wiped out.) Under some circumstances a high-level
format won't fix problems with the hard disk and a zero-fill utility may be
necessary.

Different operating systems use different high-level format programs,
because they use different file systems. However, the low-level format, which
is the real place where tracks and sectors are recorded, is the same.

Next: Defect Mapping and Spare Sectoring

mehedi hasan
mehedi@joinme.com

164

Defect Mapping and Spare Sectoring

Despite the precision manufacturing processes used to create hard disks, it is
virtually impossible to create a disk with tens of millions of sectors and not
have some errors show up. Imperfections in the media coating on the platter
or other problems can make a sector inoperable. A problem with a sector, if
uncorrected, would normally manifest as an error when attempting to read or
write the sector, but can appear in other ways as well. Most of us have
experienced these errors on occasion when using floppy disk drives.

Modern disks use ECC to help identify when errors occur and in some cases
correct them, however, there will still be physical flaws that ECC cannot
overcome, and that therefore prevent parts of a disk from being used. Usually
these are individual sectors that don't work, and they are appropriately
enough called bad sectors. Tracks where there are bad sectors are sometimes
called bad tracks.

If you've ever used a disk information utility on a floppy disk (or on a very old
hard disk), you've likely at some point seen a report showing a few kilobytes
worth of bad sectors. However, if you run such a utility on a modern hard
disk, you will normally never see any reports of bad sectors on the disk. Why
is this?

Sectors that are bad cannot be used to store data, for obvious reasons: they
are bad because they cannot be trusted to reliably write and/or reproduce the
data at a later time. It is therefore necessary for some part of the system to
keep track of where they are, and not use them. The best way for this to be
done is for the drive to detect and avoid them. If the drive does not do this,
the operating system must do it. If any bad sectors are not detected until
after they have been used, data loss will probably result.

To allow for maximum reliability then, each disk drive is thoroughly tested for
any areas that might have errors at the time it is manufactured. All the
sectors that have problems or are thought to be unreliable, are recorded in a
special table. This is called defect mapping. Some drives go even further than
this, mapping out not only the sectors that are questionable, but the ones
surrounding them as well. Some drives will map out entire tracks as a safety
precaution.

On older hard disks, these problem areas were actually recorded right on the
top cover of the disk, usually in hand-writing by the technician testing the
drive! This process was necessary because low-level formatting was done by
the company assembling the PC--or even the end-user--and this information
was used to tell the controller which areas of the disk to avoid when
formatting the disk. Part of the low-level format process was to have the
person doing the LLF tell the controller which sectors were bad, so it would
avoid them, and also tell any high-level format program not to try to use that
part of the disk. These markings are what cause "bad sectors" reports to
show up when examining older hard disks: these are the areas the disk has
been told not to use. Since floppy disks are low-level formatted and high-level
formatted at the same time, the same situation applies, even today. If any

mehedi hasan
mehedi@joinme.com

165

sectors cannot be reliably formatted, they are marked as "bad" and the
operating system will stay away from them.

While early PC users accepted that a few bad sectors on a drive was normal,
there was something distasteful about plopping down $1,000 for a new hard
disk and having it report "bad sectors" as soon as you turned it on. There is
no way to produce 100% perfect hard disks without them costing a small
fortune, so hard disk manufacturers devised an interesting compromise.

On modern hard disks, a small number of sectors are reserved as substitutes
for any bad sectors discovered in the main data storage area. During testing,
any bad sectors that are found on the disk are programmed into the
controller. When the controller receives a read or write for one of these
sectors, it uses its designated substitute instead, taken from the pool of extra
reserves. This is called spare sectoring. In fact, some drives have entire spare
tracks available, if they are needed. This is all done completely transparently
to the user, and the net effect is that all of the drives of a given model have
the exact same capacity and there are no visible errors. This means that the
operating system never sees the bad areas, and therefore never reports "bad
sectors". They are still there though, just cleverly hidden.

Really, when you think about it, the hard disk companies are sacrificing a
small amount of storage for "good looks". It would be more efficient to use all
of the sectors on the disk and just map out the few bad ones. However,
sometimes marketing wins out over engineering, and it seems that more
people want the warm feeling of thinking they have a perfect drive, even if it
costs them theoretical storage in the process. Today's drives are so enormous
that few people would even care much anyway about a few extra megabytes,
but that wasn't always the case!

Due to spare sectoring, a brand new disk should not have any bad sectors. It
is possible, however, for a modern IDE/ATA or SCSI hard disk to develop new
bad sectors over time. These will normally be detected either during a routine
scan of the hard disk for errors (the easy way) or when a read error is
encountered trying access a program or data file (the hard way). When this
happens, it is possible to tell the system to avoid using that bad area of the
disk. Again, this can be done two ways. At the high level, the operating
system can be told to mark the area as bad and avoid it (creating "bad
sector" reports at the operating system level.). Alternately, the disk itself can
be told at a low level to remap the bad area and use one of its spares instead.
This is normally done by using a zero-fill or diagnostic utility, which will scan
the entire disk surface for errors and tell the controller to map out any
problem areas.

Warning: Bad sectors on a modern hard disk are almost always an indication
of a greater problem with the disk. A new hard disk should never have bad
sectors on it; if you buy one that does have bad sectors, immediately return it
to the vendor for exchange (and don't let them tell you "it's normal", because
it isn't.) For existing hard disks, the vast majority of time, a single bad sector
that appears will soon be accompanied by friends. While you can map out and
ignore bad sectors, you should make sure to contact the vendor if you see
bad sectors appearing during scans, and make sure the data is backed up as

mehedi hasan
mehedi@joinme.com

166

well. Personally, I will not use any hard disk that is developing bad sectors.
The risk of data loss is too high, and hard drives today are inexpensive
compared to the cost of even an hour or two of recovering lost data (which
takes a lot more than an hour or two!) See here for more on troubleshooting
hard disk errors.

On some disks, remapped sectors cause a performance penalty. The drive
first seeks and reads the sector header of the data, thinking it will be there;
then, it sees that the sector has been remapped, and has to do another seek
for the new sector. Newer drives using the No-ID sector format eliminate this
problem by storing a format map, including sector remaps, in the memory of
the drive's controller. See the discussion of sector format for more.

Next: Low-Level Format, Zero-Fill and Diagnostic Utilities

Low-Level Format, Zero-Fill and Diagnostic Utilities

Older hard disks required periodic low-level formatting by the system
configurator or end-user. To facilitate this, low-level format utilities were
created. These are small programs written to control the low-level formatting
process for the hard disk. The hard disk controller would normally include one
of these programs in a ROM chip in hardware, enabling access to the software
without requiring any drives to be running in the system, and thus avoiding a
possible "chicken and egg" quandary. In addition, more sophisticated, third-
party utilities were available that would perform an LLF and also do other
related features such as scanning for bad sectors or analyzing the drive to
determine an optimal interleave setting. These would typically be loaded from
a floppy disk.

Low-level formatting an older hard disk could be a rather complicated
procedure, particularly for one who was not very familiar with PCs and hard
disks. Various factors needed to be taken into account, such as defect
mapping and setting the interleave factor. The particular conditions of the
drive when formatting were also important: due to the vagaries of stepper-
motor actuators, doing an LLF when the drive was very cold or very hot could
lead to errors when the drive returned to a more normal temperature. Even
the orientation of the drive when it was formatted was an issue.

As I have said (probably too often, sorry) modern drives do not need to be
low-level formatted by the end user, and in fact cannot be LLFed outside the
factory due to their precision and complexity. However, it seems that the
need to LLF hard disks on the part of users has never gone away. Like some
primordial instinct, many PC users seem to have a fundamental desire to LLF
their modern disks. Maybe it is built into the genetic code in some way yet
undiscovered. ;^) In fact, even if it were possible, the vast majority of the
time that someone "needs" to LLF a hard disk today, it is not really necessary.
Many users jump quickly to wanting to try an "LLF" whenever they have a
problem with their hard disk, much the way many jump to re-installing their
operating system whenever it gives them trouble.

mehedi hasan
mehedi@joinme.com

167

Hard drive manufacturers have created for modern drives replacements for
the old LLF utilities. They cause some confusion, because they are often still
called "low-level format" utilities. The name is incorrect because, again, no
utility that a user can run on a PC can LLF a modern drive. A more proper
name for this sort of program is a zero-fill and diagnostic utility. This software
does work on the drive at a low level, usually including the following functions
(and perhaps others):

• Drive Recognition Test: Lets you test to see if the software can
"see" the drive. This is the first step in ensuring that the drive is
properly installed and connected.

• Display Drive Details: Tells you detailed information about the drive,
such as its exact model number, firmware revision level, date of
manufacture, etc.

• Test For Errors: Analyzes the entire surface of the hard disk, looking
for problem areas (bad sectors) and instructing the integrated drive
controller to remap them.

• Zero-Fill: Wipes off all data on the drive by filling every sector with
zeroes. Normally a test for errors (as above) is done at the same time.

When most users today talk about "low-level formatting" a drive, what they
are really talking about is doing a zero-fill. That procedure will restore a
functional drive (that is, one that does not have mechanical problems) to the
condition it was in when received from the factory. There are occasions when
a modern hard disk can become so badly corrupted that the operating system
cannot recover it, and a zero-fill can help in this situation. Stubborn boot
sector viruses for example can be hard to eradicate without resorting to low-
level intervention. Since the zero-fill cleans all programs and data off the
drive it will get rid of almost any data-related problem on the drive, such as
viruses, corrupted partitions and the like. Just remember that it's a bit like
burning down your house to get rid of termites: you lose everything on the
drive.

This type of utility can also be used to "hide" bad sectors by telling the drive
to remap them to its collection of spares. Just remember that a drive that
continues to "grow" bad sectors over time is one whose reliability is highly
suspect. I discuss this matter in more detail here.

Warning: Only use a low-level zero-fill or diagnostic utility designed for your
particular hard disk. You can download one for free from your drive
manufacturer's web site. Even though damage probably won't result from
using the wrong program, you may lose data and you may also complicate
any warranty service you try to have performed on the drive. (Technical
support people at "Company X" generally don't like to hear that you used a
utility on their drive written by "Company Y".)

Warning: Always back up your data before you use a low-level utility, and
make sure that you carefully follow all of the instructions provided.

mehedi hasan
mehedi@joinme.com

168

Warning: Never run a low-level disk utility from within a multi-tasking
operating system such as Windows 9x. Other programs running in the
background could interfere with the utility. Restart the computer in MS-DOS
mode first, or reboot the computer from a floppy.

Next: Unformatted and Formatted Capacity

Unformatted and Formatted Capacity

Some portion of the space on a hard disk is taken up by the formatting
information that marks the start and end of sectors, ECC, and other
"overhead". For this reason, a hard disk's storage total depends on if you are
looking at the formatted or unformatted capacity. The difference can be quite
significant: 20% or even more.

Older drives that were typically low-level formatted by the user, often had
their size listed in terms of unformatted capacity. For example, take the
Seagate ST-412, the first drive used on the original IBM PC/XT in the early
1980s. The "12" in this model number refers to the drive's unformatted
capacity of 12.76 MB. Formatted, it is actually a 10.65 MB drive.

Now, let's be honest: stating the capacity of the hard disk in unformatted
terms is lame. Since nobody can use a drive that is unformatted, the only
thing that matters is the formatted capacity. Stating the drive in terms of
unformatted capacity is not quite as bad as how tape drive manufacturers
always report the size of their drives assuming 2:1 compression, of course.
But it's still lame. :^)

Fortunately, this is no longer an issue today. Since modern drives are always
low-level formatted at the factory, it would be extremely weird to state their
sizes in terms of unformatted capacity, and manufacturers have stopped
doing this. In fact, there usually isn't any easy way to find out the
unformatted capacity of new drives! So to take another example from our
friends at Seagate, the ST-315330A, the "15330" refers to the drive's
approximate formatted capacity, 15,364 MB (15.4 GB).

Next: Binary vs. Decimal Capacity Measurements

Binary vs. Decimal Capacity Measurements

Computer measurements are expressed in both binary and decimal terms,
often using the same notation. Due to a mathematical coincidence, the fact
that 2^10 (1024) is almost the same number as 10^3 (1000), there are two
similar but different ways to express a megabyte or a gigabyte. This
phenomenon, and the general problems it causes, are discussed in detail in
this fundamentals section. I also discuss there how and why I have begun
using alternative measurement notations for binary numbers.

mehedi hasan
mehedi@joinme.com

169

The problems with binary and decimal are probably more noticed in the area
of hard disk capacity than anywhere else. Hard disk manufacturers always
use decimal figures for their products' capacity: a 72 GB hard disk has about
72,000,000,000 bytes of storage. However, hard disk makers also use binary
numbers where they are normally used--for example, buffer capacities are
expressed in binary kilobytes or megabytes--but the same notation ("kB" or
"MB") is used as for decimal figures. Hard disks are large, and larger numbers
cause the discrepancy between decimal and binary terms to be exaggerated.
For example, a 72 GB hard disk, expressed in binary terms, is "only" 67 GB.
Since most software uses binary terms, this difference in numbers is the
source of frequent confusion regarding "where the rest of the gigabytes
went". In fact, they didn't go anywhere. It's just a different way of expressing
the same thing.

This is also the source of much confusion surrounding 2.1 GB hard disks (or
2.1 GB hard disk volumes) and the 2 GB DOS limit on partition size. Since
DOS uses binary gigabytes, and 2.1 GB hard disks are expressed in decimal
terms, a 2.1 GB hard disk can in fact be entirely placed within a single DOS
partition. 2.1 decimal gigabytes is actually 1.96 binary gigabytes. Another
example is the BIOS limit on regular IDE/ATA hard disks, which is either 504
MB or 528 MB, depending on which "MB" you are talking about.

Next: Geometry Specifications and Translation

mehedi hasan
mehedi@joinme.com

170

Hard Disk Geometry Specifications and Translation

The generic term used to refer to the way the disk structures its data into
platters, tracks and sectors, is its geometry. In the early days this was a
relatively simple concept: the disk had a certain number of heads, tracks per
surface, and sectors per track. These were entered into the BIOS set up so
the PC knew how to access the drive, and that was basically that.

With newer drives the situation is more complicated. The simplistic limits
placed in the older BIOSes have persisted to this day, but the disks
themselves have moved on to more complicated ways of storing data, and
much larger capacities. The result is that tricks must be employed to ensure
compatibility between old BIOS standards and newer hard disks.

Note: These issues relate to IDE/ATA hard disks, not SCSI drives, which use
a different addressing methodology.

Next: Physical Geometry

mehedi hasan
mehedi@joinme.com

171

Physical Geometry

mehedi hasan
mehedi@joinme.com

172

Physical Geometry

The physical geometry of a hard disk is the actual physical number of heads,
cylinders and sectors used by the disk. On older disks this is the only type of
geometry that is ever used--the physical geometry and the geometry used by
the PC are one and the same. The original setup parameters in the system
BIOS are designed to support the geometries of these older drives.
Classically, there are three figures that describe the geometry of a drive: the
number of cylinders on the drive ("C"), the number of heads on the drive
("H") and the number of sectors per track ("S"). Together they comprise the
"CHS" method of addressing the hard disk. This method of description is
described in more detail in this description of CHS mode addressing.

At the time the PC BIOS interfaces to the hard disk were designed, hard disks
were simple. They had only a few hundred cylinders, a few heads and all had
the same number of sectors in each track. Today's drives do not have simple
geometries; they use zoned bit recording and therefore do not have the same
number of sectors for each track, and they use defect mapping to remove bad
sectors from use. As a result, their geometry can no longer be described
using simple "CHS" terms. These drives must be accessed using logical
geometry figures, with the physical geometry hidden behind routines inside
the drive controller. For a comparison of physical and logical geometry, see
this page on logical geometry.

Often, you have to request detailed specifications for a modern drive to find
out the true physical geometry. Even then you might have problems--I called
one major drive manufacturer when first writing the site, and the technician
had no idea what I was talking about. He kept giving me the logical
parameters and insisting they were the physical ones. Finally, I asked him
how his drive could have 16 heads when it had only 3 platters, and he got
very confused. :^)

Tip: It's easy to tell if you are looking at physical or logical hard disk
geometry numbers. Since no current hard drive has the same number of
sectors on each track, if you are given a single number for "sectors per
track", that must be a logical parameter. Also, I am aware of no current hard
disk product that uses 8 platters and either 15 or 16 heads. However, all
modern, larger IDE/ATA hard disks have a nominal logical geometry
specification of 15 or 16 heads, so either of those numbers is a dead
giveaway.

Next: Logical Geometry

mehedi hasan
mehedi@joinme.com

173

Logical Geometry

When you perform a drive parameter autodetection in your system BIOS
setup or look in your new IDE/ATA hard disk's setup manual to see what the
drive parameters are, you are seeing the logical geometry values that the
hard disk manufacturer has specified for the drive. Since newer drives use
zoned bit recording and hence have ten or more values for sectors per track
depending on which region of the disk is being examined, it is not possible to
set up the disk in the BIOS using the physical geometry. Also, the BIOS has a
limit of 63 sectors per track, and all newer hard disks average more than 100
sectors per track, so even without zoned bit recording, there would be a
problem.

Older hard disks that had simple structures and low capacity did not need
special logical geometry. Their physical and logical geometry was the same.
Take for example the Seagate ST-251, a 42.8 MB drive that was one of the
most popular drives of its day. This drive's "CHS" physical geometry numbers
are 820 cylinders, 6 heads, and 17 sectors, and those numbers are what is
used by a system that has this drive.

Newer drives cannot have their true geometries expressed using three simple
numbers. To get around this issue, for disks 8.4 GB or smaller, the BIOS is
given bogus parameters that give the approximate capacity of the disk, and
the hard disk controller is given intelligence so that it can do automatic
translation between the logical and physical geometry. The actual physical
geometry is totally different, but the BIOS (and your system) need know
nothing about this. Here's an example showing the difference between the
physical and logical geometry for a sample drive, a 3.8 GB Quantum Fireball
TM:

Specification Physical Geometry Logical Geometry

Read/Write Heads 6 16

Cylinders (Tracks
per Surface)

6,810 7,480

Sectors Per Track 122 to 232 63

Total Sectors 7,539,840 7,539,840

If you install this drive, as far as the system is concerned, the disk has 16
heads and 63 sectors on every track, and the hard disk itself takes care of all
the "dirty work" of translating requests to their real internal locations. The
physical geometry is totally hidden from view. The fact that both geometries
equate to the same number of total sectors is not a coincidence. The purpose
of the logical geometry is to enable access to the entire disk using terms that
the BIOS can handle. The logical geometry could theoretically end up with a
smaller number of sectors than the physical, but this would mean wasted
space on the disk. It can never specify more sectors than physically exist, of
course.

mehedi hasan
mehedi@joinme.com

174

Another way to get around the problem of complex internal geometry is to
change the way the drive is addressed completely. Instead of using the logical
geometry numbers directly, most modern drives can be accessed using logical
block addressing (LBA). With this method a totally different form of logical
"geometry" is used: the sectors are just given a numerical sequence starting
with 0. Again, the drive just internally translates these sequential numbers
into physical sector locations. So the drive above would have sectors
numbered from 0 to 7,539,839. This is just yet another way of providing
access to the same sectors. You can read more about LBA here.

Today's drives are over 8.4 GB in size and have therefore run into an
important hard disk capacity barrier: the 8.4 GB (7.8 GiB) capacity barrier.
The largest logical parameters that can be used for accessing a standard
IDE/ATA drive using normal Int 13h BIOS routines are 1,024 cylinders, 256
heads, and 63 sectors. Since the ATA standard only allows a maximum of 16
for the number of heads, BIOS translation is used to reduce the number of
heads and increase the number of cylinders in the specification (see here for
details on this). The practical result of all of this, is that the largest logical
geometry numbers for IDE/ATA drives are 16,383 cylinders, 16 heads and 63
sectors. This yields a maximum capacity of 8.4 GB.

Drives larger than 8.4 GB can no longer be accessed using regular BIOS
routines, and require extended Int 13h capabilities. There is no way to even
represent their full capacity using regular IDE/ATA geometry numbers.
Therefore, these drives just specify 16,383 cylinders, 16 heads and 63 sectors
to the BIOS for compatibility. Then, access to the drive is performed directly
by the Int 13h extension routines, and the logical parameters are completely
ignored. Here's how a modern drive, the 34.2 GB IBM Deskstar 34GXP (model
DPTA-373420), looks:

Specification Physical Geometry Logical Geometry

Read/Write Heads 10 16

Cylinders (Tracks
per Surface)

17,494 16,383

Sectors Per Track 272 to 452 63

Total Sectors 66,835,440 16,514,064

As you can see, the logical and physical geometries clearly have nothing to do
with each other on drives this large, and even the total number of sectors is
wrong in the logical geometry. The drive must be accessed directly by an
operating system supporting Int 13h BIOS extensions to see the whole drive,
or drive overlay software used. If the drive is addressed using conventional
geometry parameters, it will be limited in capacity to only 8.4 GB, which in
the case of this drive would mean wasting over 75% of its capacity. Since
they cannot have their true capacity expressed in terms of even logical
geometry, all large modern drives are accessed using logical block
addressing.

mehedi hasan
mehedi@joinme.com

175

The translation between logical and physical geometry is the lowest level of
translation that occurs when using a modern hard disk. It is different from
BIOS translation, which occurs at a higher level and is described in the next
section.

Next: BIOS Geometry Translation

BIOS Geometry Translation

The use of logical hard disk geometry gets around the problem that physical
hard disk geometries cannot be properly expressed using simple BIOS
settings. Logical geometries don't go far enough, however. In most cases,
higher levels of translation are needed as well, because other problems
relating to old design decisions make it impossible for even the logical
geometry to be used with modern large hard disks. These are the infamous
BIOS capacity barriers such as the 504 MB limit on standard IDE/ATA hard
disks, the 8.4 GB limit for standard Int 13h BIOS addressing, and other
similar issues.

In order to get around these barriers, another layer of translation is often
applied on top of the geometry translation that occurs inside the hard disk.
This translation is performed by the BIOS (or sometimes, third-party overlay
software.) There are many issues involved in BIOS-level translation; the
matter is discussed in detail here.

Next: Error Management and Recovery

mehedi hasan
mehedi@joinme.com

176

Hard Disk Error Management and Recovery

Many people don't realize that it is normal for a hard disk to encounter errors
during reading, as part of its regular operation. As hard disks are pushed to
the limits of technology, with tracks and sectors spaced closer together,
weaker signals used to prevent interference, and faster spin rates produced
by the spindle motor, the chances of an error occurring while reading the disk
go up dramatically. In fact, the state of technology has advanced to the point
where it is not practical to even try to avoid them.

Of course having actual errors appear to you while using the hard disk is
unacceptable, since you count on your disk reproducing the data you store on
it reliably, for a period of years. Hard disk manufacturers know how important
this is, and so incorporate special techniques that allow them to detect and
correct hard disk errors. This allows them to make faster, higher-capacity
drives that appear to the user to be error-free. The more the technology for
storing data is pushed, the more sophisticated the error correction protocols
must be to maintain the same level of reliability.

Making a drive that actually produced read errors infrequently enough that
error detection and correction wasn't necessary, would mean greatly reducing
performance and capacity. This is sort of like touch-typing: there's a school of
thought that says "if you aren't making any mistakes at all, you're going too
slow". If correcting mistakes is easy, as it is with a word-processor, it's better
to type 100 words per minute and correct an error or two, than to type 75
words per minute error-free. As long as the errors are detectable and
correctable, and they don't occur too often, it's better to plan for them, and
then tolerate and deal with them, than to be too conservative in order to
eliminate them.

Note: The errors we are talking about here are those related to reading
correct information off the disk, not issues like head crashes or motor burn-
outs or other hardware problems. Similarly, I don't get into the discussion of
general reliability and failure issues here, nor related technologies such as
SMART. See the section on hard disk quality for more on these related issues.

Next: Error Correcting Code (ECC)

mehedi hasan
mehedi@joinme.com

177

Error Correcting Code (ECC)

The basis of all error detection and correction in hard disks is the inclusion of
redundant information and special hardware or software to use it. Each sector
of data on the hard disk contains 512 bytes, or 4,096 bits, of user data. In
addition to these bits, an additional number of bits are added to each sector
for the implementation of error correcting code or ECC (sometimes also called
error correction code or error correcting circuits). These bits do not contain
data; rather, they contain information about the data that can be used to
correct any problems encountered trying to access the real data bits.

There are several different types of error correcting codes that have been
invented over the years, but the type commonly used on PCs is the Reed-
Solomon algorithm, named for researchers Irving Reed and Gustave Solomon,
who first discovered the general technique that the algorithm employs. Reed-
Solomon codes are widely used for error detection and correction in various
computing and communications media, including magnetic storage, optical
storage, high-speed modems, and data transmission channels. They have
been chosen because they are easier to decode than most other similar
codes, can detect (and correct) large numbers of missing bits of data, and
require the least number of extra ECC bits for a given number of data bits.
Look in the memory section for much more general information on error
detection and correction.

When a sector is written to the hard disk, the appropriate ECC codes are
generated and stored in the bits reserved for them. When the sector is read
back, the user data read, combined with the ECC bits, can tell the controller if
any errors occurred during the read. Errors that can be corrected using the
redundant information are corrected before passing the data to the rest of the
system. The system can also tell when there is too much damage to the data
to correct, and will issue an error notification in that event. The sophisticated
firmware present in all modern drives uses ECC as part of its overall error
management protocols. This is all done "on the fly" with no intervention from
the user required, and no slowdown in performance even when errors are
encountered and must be corrected.

The capability of a Reed Solomon ECC implementation is based on the
number of additional ECC bits it includes. The more bits that are included for
a given amount of data, the more errors that can be tolerated. There are
multiple tradeoffs involved in deciding how many bits of ECC information to
use. Including more bits per sector of data allows for more robust error
detection and correction, but means fewer sectors can be put on each track,
since more of the linear distance of the track is used up with non-data bits.
On the other hand, if you make the system more capable of detecting and
correcting errors, you make it possible to increase areal density or make
other performance improvements, which could pay back the "investment" of
extra ECC bits, and then some. Another complicating factor is that the more
ECC bits included, the more processing power the controller must possess to
process the Reed Solomon algorithm. The engineers who design hard disks
take these various factors into account in deciding how many ECC bits to
include for each sector.

mehedi hasan
mehedi@joinme.com

178

If you are interested, take this link to read more about the theory underlying
ECC. Note that some of this information is complicated to read.

Next: Read Error Severities and Error Management Logic

Read Error Severities and Error Management Logic

The hard disk's controller employs a sequence of sophisticated techniques to
manage errors that occur when reading data from the disk. In a way, the
system is kind of like a troubleshooting flowchart. When a problem occurs,
the simplest techniques are tried first, and if they don't work, the problem is
escalated to a higher level. Every manufacturer uses different techniques, so
this is just a rough example guideline of how a hard disk will approach error
management:

1. ECC Error Detection: The sector is read, and error detection is
applied to check for any read errors. If there are no errors, the sector
is passed on to the interface and the read is concluded successfully.

2. ECC Error Correction: The controller will attempt to correct the error
using the ECC codes read for the sector. The data can be corrected
very quickly using these codes, normally "on the fly" with no delay. If
this is the case, the data is fixed and the read considered successful.
Most drive manufacturers consider this occurrence common enough
that it is not even considered a "real" read error. An error corrected at
this level can be considered "automatically corrected".

3. Automatic Retry: The next step is usually to wait for the disk to spin
around again, and retry the read. Sometimes the first error can be
caused by a stray magnetic field, physical shock or other non-
repeating problem, and the retry will work. If it doesn't, more retries
may be done. Most controllers are programmed to retry the sector a
certain number of times before giving up. An error corrected after a
straight retry is often considered "recovered" or "corrected after retry".

4. Advanced Error Correction: Many drives will, on subsequent retries
after the first, invoke more advanced error correction algorithms that
are slower and more complex than the regular correction protocols,
but have an increased chance of success. These errors are "recovered
after multiple reads" or "recovered after advanced correction".

5. Failure: If the sector still cannot be read, the drive will signal a read
error to the system. These are "real", unrecoverable read errors, the
kind that result in a dreaded error message on the screen.

Any problems occurred during a read, even if recovery is successful, are
potentially cause for concern, and error notification or logging may be
performed.

Even before the matter of actually reading the data comes up, drives can
have problems with locating the track where the data is. Such a problem is
called a seek error. In the event of a seek error, a similar management
program is instituted as that used for read errors. Normally a series of retries
is performed, and if the seek still cannot be performed, an unrecoverable

mehedi hasan
mehedi@joinme.com

179

seek error is generated. This is considered a drive failure, since the data may
still be present, but it is inaccessible.

Every hard disk model has analysis done on it to determine the likelihood of
these various errors. This is based on actual tests on the drive, on statistical
analysis, and on the error history of prior models. Each drive is given a rating
in terms of how often each error is likely to occur. Looking again at the
Quantum Fireball TM, we see the following error rate specifications:

Error Severity

Worst-Case Frequency of
Error (Number of Bits
Read Between
Occurrences)

Automatically Corrected Not Specified

Recovered Read Errors 1 billion (1 Gb)

Recovered After Multiple
Reads (Full Error Correction)

1 trillion (1,000 Gb)

Unrecoverable Read Errors 100 trillion (100,000 Gb)

Drives also typically specify the rate of data miscorrection. This situation
arises if the ECC algorithm detects and corrects an error but itself makes a
mistake! Clearly this is a very bad situation, since an error would be returned
to the system and the fact that an error occurred would not even be known.
Fortunately, it is very, very rare. A typical value for this occurrence is less
than 1 bit in 1021. That means a miscorrection occurs every trillion gigabits
read from the disk--on average you could read the entire contents of a 40 GB
drive over a million times before it happened!

I find the numbers above--even the "smaller" ones--pretty impressive. While
your hard disk does a lot of reads and writes, 100,000 gigabits is a pretty
enormous number! This is why the reliability of modern hard disks is so high.
Interestingly, the error rates on drives haven't changed all that much in the
last few years. Presumably, any improvements in error rates are "used up" by
pushing the performance envelope. Meanwhile, the reliability concerns
associated with individual drives are typically addressed through the use of
multiple drive arrays.

Next: Error Notification and Defect Mapping

mehedi hasan
mehedi@joinme.com

180

Error Notification and Defect Mapping

Many drives are smart enough to realize that if a sector can only be read after
retries, the chances are good that something bad may be happening to that
sector, and the next time it is read it might not be recoverable. For this
reason, the drive will usually do something when it has to use retries to read
a sector (but usually not when ECC will correct the problem on the fly). What
the drive does depends on how it is designed.

Modern drives support SMART, a reliability feature that tries to predict drive
failure based on technological "leading indicators". Read errors, excessive
numbers of retries, or problems seeking are very commonly included in the
set of parameters used to signal impending hard drive doom. Activity of this
sort that exceeds a safety threshold determined by the drive's designers may
trigger a SMART warning, telling the user that the drive may be failing.

Today's hard disks will also often take corrective action on their own if they
detect that errors are occurring. The occasional difficulty reading a sector
would typically be ignored as a random occurrence, but if multiple retries or
other advanced error correction procedures were needed to read a sector,
many drives would automatically mark the sector bad and relocate its
contents to one of the drive's spare sectors. In doing so, the drive would
avoid the possibility of whatever problem caused the trouble worsening, and
thereby not allow the data to be read at all on the next attempt.

Next: Hard Disk Performance, Quality and Reliability

Hard Disk Performance, Quality and Reliability

When considering the actual "real world" daily use of hard disks, and
contemplating a hard disk purchase, PC users often ask three key questions:

• Is this hard disk fast?
• Is this hard disk well manufactured?
• Is this hard disk going to last?

These questions are answered by considering carefully the three words that
appear in the title of this page. Hard disk performance is important because
hard disks are one of the slowest internal PC components, and therefore often
limit the performance of the system as a whole. Quality and reliability are
critical with hard disks, because they are where your data resides! No other
PC component can lead so readily to disaster if it fails.

This section is quite large, and it has to be. Why? Because these matters are
so crucial, and unfortunately, few of the "big players" in the industry do a
good enough job of educating hard disk users about their products. Here I am
talking especially about those who make hard disks, whole PCs and operating
systems. Hard disks continue to be sold by flashing appetizing numbers on
boxes, placed there to entice consumers who can't easily understand where
they fit into the big picture of overall performance. Benchmarks are tossed
around the Internet with little knowledge and even less scientific control. And

mehedi hasan
mehedi@joinme.com

181

hard disk quality and reliability remain mysteries to many users, who buy
whatever seems fast and cheap, and simply hope for the best.

It's my hope that after reading this section you will be in a much better
position to evaluate the numbers and claims made by hard disk
manufacturers and others. There are three major subsections contained here.
The first takes a very detailed look at hard disk performance, discussing
different ways that performance can be assessed, common performance
specifications, ways of measuring performance, and also describing the
various factors inside and outside the hard disk that affect its speed. The
second looks at hard disk quality and reliability issues in detail, including a
look at warranty issues and features being put into hard disks to improve
their reliability. The third major subsection is devoted to the discussion of
Redundant Arrays of Inexpensive Disks, or RAID. The use of disk arrays is
increasing dramatically as the PC world seeks to improve performance,
expand storage capacity, and improve the reliability of the storage
subsystem.

Next: Hard Disk Performance

mehedi hasan
mehedi@joinme.com

182

Hard Disk Performance

There was a time when the performance of hard disks was one of the most
underrated aspects of overall system performance. Hard disks were
considered only "a place to keep stuff" and little heed given to how they
affected the operation of the PC as a whole. Over the last few years this has
changed dramatically, and hard disk performance issues are now getting the
attention they deserve. The problem with hard disk performance however is
that it is not easy to understand. There are many different issues in how
performance is assessed and measured. There are interactions between
components with which anyone seeking to really grasp hard disk performance
must contend. And the technology changes so rapidly that what is the
"fastest" today will probably be "second best" within a few months--or even
weeks in many cases!

The purpose of this section is to take a detailed look at all the facets of hard
disk performance. I start by discussing various issues in how performance is
evaluated and measured. Then, I cover in full detail the common hard disk
performance specifications and also the internal and external factors that
affect performance.

In order to avoid some confusion, let me try to explain the difference between
"performance specifications" and "performance factors", at least as I see
them. A performance specification is a figure provided by a manufacturer that
attempts to express an element of the drive's performance relative to other
drives on the market. A performance factor is something about the drive
(internal factor) or its environment (external factor) that affects the
performance of the drive. Clearly, these are interrelated; factors affect
specifications, and specifications indicate the impact of various factors. I
considered putting them all together, but this would be confusing, since some
specifications sort of "stand alone" while others are derived from one or
several performance factors. Also, some specifications are a result of various
factors. To be honest, this was one of the most difficult areas of the site to
organize.

Before even delving into this section, it's important to remember that
performance always comes at a price. As with most things, there are tradeoffs
involved. If performance is your chief goal in a storage system you can have
it, but you will either pay for it, or give up something else in exchange
(capacity, flexibility, simplicity, etc.) There are no free lunches, although the
general increase in performance of all hard disks means that even
inexpensive drives today perform very well compared to their predecessors.

Next: Hard Disk General Performance Issues

Hard Disk General Performance Issues

Alright, so you want to know about hard disk performance. But what exactly
does "performance" mean? I'm not trying to get mystical on you. :^) It's just
that performance means different things to different people, and in fact there
are many different kinds of "performance". How important a particular aspect

mehedi hasan
mehedi@joinme.com

183

of performance is, depends to a great extent on how you are using your
system, and what your needs are.

This introductory section looks at some of the basic issues involved in
understanding hard disk performance. This includes a discussion of the
importance of hard disk performance, a look at various ways performance can
be considered, and a discussion of the relative importance of various
performance specifications and factors.

Next: The Importance of Hard Disk Performance

mehedi hasan
mehedi@joinme.com

184

The Importance of Hard Disk Performance

I keep insisting that the performance of the hard disk is important. But why?
Surely the hard disk's performance level can't be as important as that of the
CPU, or memory, or other core system components. Or can it?

It is true that for many aspects of computing, the hard disk's performance
level is not much of an issue. If you are recalculating a massive spreadsheet,
or doing complex rendering of 3D objects, the amount of sheer processing
power in the system is of paramount concern; the hard disk will only come
into play periodically. However, these sorts of specialty operations are not
indicative of how most of us use our PCs. Typical PC use involves loading
programs, and loading and saving data frequently. All of these operations
require access to the hard disk. And therefore, hard disk performance
becomes an issue constantly as we use our machines.

The importance of hard disk performance even goes beyond this however.
After all, we also use all the other main components of our system constantly,
so aren't they equally important to the performance equation? Well, yes and
no. The importance of the CPU, motherboard and other core components is
very important. But much as the strength of a chain is equal only to that of its
weakest link, in many ways the performance of a system is only equal to that
of its poorest-performing component. Compared to the solid state
components in a PC, hard disks have by far the worst performance. And even
as hard disks improve in speed, CPUs, video cards and motherboards improve
in speed even faster, widening the gap. Thus, hard disks continue to constrain
the overall performance of many systems.

In the amount of time it takes to perform one random hard disk access, one
of today's CPUs can execute over a million instructions! Making the CPU fast
enough to process two million instructions while it waits doesn't really gain
you much unless it has something to do with that time. Only improving the
hard disk's speed to reduce the wait time will get you where you want to go.
Any time you see your hard disk's activity light flashing, the odds are that the
rest of the system is twiddling its thumbs waiting for those slow mechanical
components to "do their thing".

The applications where hard disk performance issues are most important are
obviously those that do a lot of reading and writing to the hard disk, instead
of doing a lot of processing. Such tasks are said to be "I/O bound", where
"I/O" stands for "input/output". These tasks are contrasted to those described
earlier which use the CPU a great deal and are called (unsurprisingly) "CPU
bound". Multimedia editing applications, especially those dealing with large
audio and video files, are probably the ones most affected by the speed of the
storage subsystem. Also up there are applications that process files, including
compilers and many disk utilities. Initially starting your PC is also a very I/O-
intensive application, as the operating system loads literally hundreds of files.
Improving hard disk performance can shave time off the boot process in a
very palpable way.

The need for improved performance is a major driving factor behind the rise
in popularity of RAID.

mehedi hasan
mehedi@joinme.com

185

Next: Internal vs. External Performance

Internal vs. External Performance

The hard disk's job is to store data from the system, or get data to the
system, as fast as possible. When considering performance, it is this ability to
move data into or out of the hard disk that we are looking to measure. There
are two separate parts of this data movement job. For a write, the data must
be fetched from the system, and then written to the correct sector(s) on the
disk. For a read, the process is reversed; data must be read from the disk,
and then transmitted over the hard disk interface to the system.

Clearly, the hard disk itself is only responsible for some portion of the overall
performance we attribute to the hard disk subsystem. Some of the factors
that affect performance are related to characteristics of the PC that are not
specific to the particular hard drive being used. Performance characteristics
that are largely a matter of how the hard disk itself is designed and
implemented I call internal performance factors; those that are mostly
affected by the rest of the system, or how the hard disk is used (and hence
are largely independent of the particular hard disk model) are external
performance factors.

The distinction between internal and external is a very important one! In any
system, the bottleneck to high performance can reside either within the disk,
or within the rest of the system (the interface, the system bus, CPU, drivers,
file system, and so on.) It's usually not in both at the same time. If the main
limiting factor in a particular system is, say, the system bus being used for
the hard disk interface, putting a faster hard disk into that system will have
very little impact on performance. Similarly, if the hard disk itself is slow,
putting it on a faster interface will yield little improvement.

In some cases, performance bottlenecks can change from being primarily
affected by internal factors, to being more influenced by external factors,
depending on what type of work is being done on the PC. In addition, making
a change to a system can cause the bottleneck to "shift". Let's say you have a
high-speed hard disk that is on a slow interface. The interface may be the
bottleneck to high performance; if you move the disk onto a faster interface,
the disk itself may become the bottleneck. In many PCs, external
performance can be enhanced simply by making no-cost performance
enhancements to the system.

In this discussion of hard disk performance, the important distinction between
internal and external factors is the reason why they are in separate sections;
internal performance factors are discussed here; and external performance
factors are here.

Next: Positioning vs. Transfer Performance

Positioning vs. Transfer Performance

mehedi hasan
mehedi@joinme.com

186

As discussed here, the process of reading or writing to the hard disk really
comprises two large parts: the work done by the drive itself (measured by
internal performance factors) and the rest of the system (external factors).
The internal work of the drive can itself be thought of as two functions:
finding the correct location on the drive, and then reading or writing the data.
These are very different jobs, and two drives can be very similar in one
regard but very different in another. They also depend on different design
characteristics. I call these two different tasks positioning and transfer, and
their performance positioning performance and transfer performance.

Both of these are important to overall performance, although if you read the
literature and the numbers that people talk about, positioning metrics are
probably more commonly discussed than transfer measurements. You might
be fooled by this into thinking they are more important, but often they are
not--they are just simpler to explain in many cases, or people are used to
using them to compare drives.

Which influences on performance are most important also depends on how
you are using the device. If you are running a file server, the hard disk will be
doing a lot of random accesses to files all over the disk, and positioning
performance will be extremely important. If you are a single user doing
multimedia editing where you need to read multi-gigabyte consecutive files as
fast as possible, data transfer is far more important than positioning speed.

Most of the performance specifications that hard disk manufacturers provide
to describe their products can be broken down into categories by which
aspect of performance they measure. I have designed the section on
performance specifications with this in mind: there are sections discussing
positioning performance specifications and transfer performance
specifications. In addition, there are two key specifications that reflect aspects
of both positioning and transfer. There are also some specifications that don't
really fit into these categories.

Next: Read vs. Write Performance

mehedi hasan
mehedi@joinme.com

187

Read vs. Write Performance

Hard disks can of course both read and write data (which isn't true of all
storage devices.) The performance of a hard disk isn't exactly the same when
it is doing a read as when it is doing a write, however. For some performance
measurements there is no difference in how the system performs when doing
a read or a write; for example, the platters are always spinning at the same
speed, and so the latency of the drive doesn't change depending on what the
heads are doing. Other measurements though, such as seek time, are
different for reads as opposed to writes.

Almost all performance specifications given for hard disks are based upon how
the hard disk performs while reading, not while writing. This is probably
because hard disks spend more time reading than writing, and also because
hard disks are generally faster when reading than when writing, so the
numbers look better.

Some companies provide explicit write specifications in addition to their read
specifications, while others do not. The most important specification that
differs between reads and writes is seek time--a good rule of thumb is that
the average seek time for writes on a hard disk is about 1 millisecond higher
(slower) than the specification for reads. If a particular hard disk model
doesn't mention the numbers you are interested in for writes, and if write
performance is particularly important for your application, contact the
manufacturer's technical support department. Someone there will know the
answer, if you can get a hold of the right person. :^) It may be easier to try
downloading the product manual for your model from the manufacturer's web
site.

Next: Component vs. System Performance

mehedi hasan
mehedi@joinme.com

188

Component vs. System Performance

As with every component of the PC, the hard disk is but one part of an
integrated whole. It is not possible to measure the performance of the hard
disk in isolation, since running any benchmark program involves using the
processor, memory and other parts of the PC. The only way to isolate the
hard disk would be if you were to use specialized test hardware, connected
directly to the hard disk itself, and then you'd have a hard time being sure
that the results really related to "real world" PC performance at all.

Many benchmarks are designed to try to isolate the hard disk from the rest of
the system to test "only" the hard disk. Some are more successful than
others in doing this. Unfortunately, many of them don't take all the factors
into account and end up (for example) testing the system's hard disk cache
instead of the hard disk itself. They are getting smarter over time, however,
but still, virtually every hard disk benchmark I have ever seen has allowed
the rest of the system to impact the number. You take the hard disk out of a
Pentium II 300 PC and put it into a Pentium III 600 system, run the
benchmark again, and the score goes up.

As with other components, the best way to compare two hard disks is still a
comparative benchmark. Set up the system they are intended to be used in,
test one with a benchmark that represents the intended use, and then replace
it with the second drive, retest and compare. This eliminates much of the
"background noise" that is associated with absolute benchmark numbers.
Most better review sites do exactly this, maintaining constant "test benches"
with hardware that does not change between tests of various drives.

Another thing that the matter of "component vs. system" means is that there
is no way to (legitimately) compare directly two drives that run under
different interfaces or in different systems entirely. In particular, you can't
directly compare the speed of an IDE/ATA drive to that of a SCSI drive and be
sure that you are measuring only the drive. Some would rightly point out that
the distinction isn't really that important however, since the "end result" of
system performance is really most important.

As discussed here, hard disks have a very substantial impact on the
performance of the system as a whole.

Next: Ranking Performance Specifications and Factors

mehedi hasan
mehedi@joinme.com

189

Ranking Performance Specifications and Factors

Amongst those who are concerned with hard disk performance, there has
been considerable attention given lately to ranking the various performance
specifications and factors by how important they are for a hard disk. The
reason for this is usually to assist in choosing hardware: if you are comparing
two hard disks that have similar specifications, how do you decide which one
is likely to be better? Of course, reading reviews and benchmarks is one part
of the answer. It's still useful at times to have a way to rank the various
specifications in terms of which is most important to overall performance.

There's just one little problem with this: it's virtually impossible to do. Which
specification is most critical depends entirely on how you use your hard disk
and your PC as a whole. People disagree greatly on the matter of which
specification or performance factor translates most directly into improved
overall performance. There is no one "correct answer".

The biggest argument seems to be over which is more important, positioning
or transfer. The answer is: it depends. If you are doing a lot of work with
large files, for example editing video or audio streams, transfer is typically
more important. Few people fall into this category, however. If you are
running a server or other application where many people are accessing
smallish files on a regular basis, positioning is definitely more important. Even
fewer people fall into this category. :^)

Beyond the special cases, things get much more complex. While transfer
rates have typically been under-emphasized in recent years, lately some tests
have shown that they are now often being over-emphasized. Since most
operating systems now use a large number of different files and drivers, and
since effects such as fragmentation cause parts of files to be spread over the
surface of the disk, many users access their disks less often in a sequential
manner than was previously thought.

In my opinion, it is best to value both and not worry excessively over the
issue. :^) To this end, when selecting a hard disk I believe the most
important things to look at are spindle speed, areal density, and seek time.
The first two are important because they have an influence on both
positioning and transfer performance: other specifications generally do not.
Higher spindle speed in particular is the most obvious indicator of a faster
hard disk; a 7200 RPM hard disk of the same age and interface as a 5400
RPM drive will almost always be faster, not just due to the faster spindle but
also due to other improvements that appear first on faster-spindled drives.
Seek time is important because of the issue of reading large numbers of
scattered small files mentioned above.

Another key point to keep in mind: if two hard disks are very close in
specifications, then most likely the two drives will perform similarly. It's not
worth spending a lot of energy worrying about small discrepancies between
them. See here for more on this subject.

Next: Hard Disk Performance Measurement

mehedi hasan
mehedi@joinme.com

190

Hard Disk Performance Measurement

There are many issues involved in measuring the performance of hard disk
drives. For starters, there are different ways it can be measured, there are
different ways to do it, and important considerations to keep in mind when
making the measurements.

The process of measuring the performance of a system or component is called
benchmarking. Its intention is to express the overall performance of a piece
of hardware in numeric terms. Benchmarking can provide useful data if it is
done properly, and kept in perspective. Unfortunately, benchmarking is a
process that is greatly prone to error and to exaggeration. In order to use
benchmarks wisely, one must have a proper understanding of the factors in
measuring performance. It is also important to keep in mind that
benchmarking is not the only way to look at the matter of performance.

This section discusses some of the issues that are specifically relevant to the
matter of measuring the performance of hard disk drives. You will also find
this more general article on benchmarking informative

Next: Putting Performance Measurement In Perspective

mehedi hasan
mehedi@joinme.com

191

Putting Performance Measurement In Perspective

"There are three types of lies: lies, damned lies, and statistics."
 -- Benjamin Disraeli

I seem to have a habit of taking somewhat controversial stands that fly in the
face of what most other hardware writers say on various subjects. This page
will certainly be no exception. :^) Here it is, blurted out in simple terms: hard
disk performance is important, but hard disk performance measurement is
often overrated and over-emphasized. The Internet is filled with discussions
about various benchmarks; arguments over which benchmarks are better and
worse; people getting upset when their hardware gets benchmarks scores
that are "too low"; review sites recommending one hard disk over another on
the basis of it scoring a few percentage points over another in a synthetic
test; and so on. In my opinion, most of this has little relevance to the way
most people use their PCs, and the people who are so concerned about
"which hard disk to get" when they are looking at comparable models are
worrying too much.

Sure, it's useful to see benchmark scores on hardware before you plan a
purchase. But you should keep them in perspective. An important rule of
thumb in the PC industry is that in real-world computer use, most PC users
don't notice an increase (or decrease) in performance of less than about 10%.
That means that even if you could prove without a shadow of a doubt that
hard disk "A" was 7% faster than hard disk "B", you probably wouldn't really
notice any difference in your system. And in most cases, competitive products
put out at about the same time by high-end manufacturers often don't differ
in performance by more than 10%. The biggest mistake people make is to
over-value the numbers they read about various hardware benchmarks. Use
them as a rough guideline only. A month down the road you probably won't
even remember what "your benchmark scores" were, and they certainly won't
matter much to you. I've been down this road, believe me.

Here's an example of the type of benchmark chart you
will run into all too frequently (and one that would make
Disraeli shake his head). At first glance, drive "B" appears
to blow the doors off of drive "A", right? In reality, the
numbers differ by less than 4%--not even noticeable to most
users. The scale has had its zero point "chopped off" to magnify

mehedi hasan
mehedi@joinme.com

192

the differences between the numbers. Note also the other
marketing tricks: the larger number has its column in bright red
to attract the eye; the smaller number is a plain light blue. The
larger figure is also in bold and a larger font has been used.

Also remember that there are other attributes besides performance that are
important for selecting hardware. Lots of people try to get the very fastest
hard disk but don't consider other equally important issues: quality,
reliability, warranty, and data backup. People agonize over which hard disk is
a teeny bit faster than another--and then never defragment their file system,
or fill the hard disk up with junk so it runs less efficiently. Be sure to keep the
big picture view.

Finally, bear in mind that whatever is on the top of the hill in the hard disk
world doesn't stay there for long. Sure, it's a good feeling to think you are
getting the fastest disk around. But every few months, a new model comes
out that is faster than anything that preceded it. If you really want to always
have the best hard disk, you have to keep buying more hardware, which is an
expensive proposition that few opt for. See here for more on this subject.

Next: Objective Performance Measurement (Benchmarking)

mehedi hasan
mehedi@joinme.com

193

Objective Performance Measurement (Benchmarking)

Benchmarking hardware is a form of objective performance measurement; it
is measurement based on logic and analysis, as opposed to subjective
measurement, which is more of a "feel" method of gauging performance.
Benchmarking is typically done using benchmark programs specifically
developed for the purpose of measuring hard disk performance.

There are many different programs used to ways to benchmark hard drives,
and they generally fall into the following different categories:

• High-Level (Application-Derived) Benchmarks: These are
programs that use code from popular applications software--usually
office applications, web browsers and the like--to simulate the impact
of hard disk performance on the use of those applications in the real
world. The basic idea is to run a suite of tests that are comprised of
typical actions that a user would take while using those applications,
and time how much time elapses with the hardware in question. Then
the hardware is changed and the test run again. This is generally a
good concept for benchmarking, but only has relevance if you are
actually using the types of applications around which the benchmarks
is designed. If you are primarily a gamer for example, what do you
care about the performance of spreadsheet software? Also, since the
benchmark is running at a high level, there is a lot of room for
interference from operating system and file system issues. One of the
most common benchmarks of this type is the ZDNet WinBench series.

• Low-Level (Synthetic) Benchmarks: These programs attempt to
test the hard disk directly, isolating it as much as possible from the
rest of the system. They are often called "synthetic" because they
don't try to reproduce the access patterns of real applications, instead
using artificial patterns created by the programmers specifically for the
benchmark, to test different types of hard disk use. They are often
derided as being unrealistic because of their synthetic nature, and
much of this criticism is in my opinion accurate. At the same time
however, they provide much more control over the test process than
application-derived benchmarks. This control lets you better "focus in"
on one particular aspect of performance and more accurately compare
different hardware units in a number of different areas. Common disk
benchmarks of this variety include Adaptec's Threadmark and Intel's
IOMeter.

• "Real-World" Benchmarks: These are not "formally" benchmarks,
but are commonly used by hardware enthusiasts to compare real-
world performance of hard disks. The idea is simple: take something
that you do often, measure how long it takes with one drive, and then
how long it takes with another. For example, if you have a system with
an old hard disk that is very slow to boot up, measure how long it
takes and then repeat the process with a newer disk to see how much
things improve. In some ways these are the most realistic, and also
the most relevant benchmarks. However, they are entirely system-
dependent and therefore of no use whatsoever in communicating
much in objective terms about the power of the hardware in question:
the improvement you see between hard disk "A" and hard disk "B" on

mehedi hasan
mehedi@joinme.com

194

your system may be very different than the same hardware used on a
friend's PC. Also, these measurements are usually fairly crude and
can't be done on activities that take relatively little time, since the
timing is often done with a regular clock or wristwatch.

As I've said elsewhere, I'm not a big fan of benchmarks, especially when it
comes to hard disks. While they have their uses, it's too easy to succumb to
the temptation to view them as absolute indicators of performance, to
overvalue them and not consider what they really mean, bottom line, for the
typical end user. Small differences in hard disk performance have virtually no
impact on the typical hard disk user. Some people really get carried away,
sweating over every percentage point of their favorite benchmark, as if it
were a competition of some sort (and for some people, I suppose it is--a
competition for bragging rights.) Even leaving the matter of over-emphasizing
benchmarks aside, there are some common "benchmark traps" I see all the
time:

• Poor Control Of Environmental Factors: The only way to properly
compare two pieces of hardware is to test them under identical
conditions. Even seemingly irrelevant issues can influence the
outcome. Most better hardware sites understand this, but many
individual enthusiasts do not. The exact number you get from testing
one drive on your system can be very different from the number
someone else gets with the same drive, without this meaning anything
is "wrong".

• Small Sample Size: All benchmarks have a tendency to produce
different numbers if you run them more than once. To properly use a
benchmark it must be run several times and the results averaged. It's
even better to run at least five times and discard both the highest and
lowest score for each piece of hardware.

• Paying No Attention To Cost: You will frequently see people talk
about the "benchmark X" score of one drive versus another, but
when's the last time you saw anyone take the ratio of two drives'
respective benchmarks to their current market prices? I've seen
people recommend "drive A" over "drive B" due to a difference in
performance of well under 10% despite "drive A" costing 50% more
than "drive B". That's rarely money well-spent.

• Benchmark (In)Validity: It's not uncommon to see a particular
benchmark be used for a long time by many people... and then it is
discovered that due to a flaw in how it is written, or the manner in
which it interacts with the hardware, operating system or drivers, that
its results were inaccurate or misleading. Another reason to use

benchmarks only as guidelines. Next: Subjective Performance
Measurement

mehedi hasan
mehedi@joinme.com

195

Subjective Performance Measurement

The opposite of objective performance measurement is subjective
performance measurement. This technique dispenses with the use of
benchmarks in favor of more intangible issues of assessing performance. In a
nutshell, this method of measurement is based upon the system's usability or
"feel" under different hardware conditions. It's not nearly as commonly
discussed as objective measurement, for a couple of obvious reasons. It's
much harder to quantify, to get a "handle" on than benchmarking. Subjective
measurement also doesn't provide you with neat, easily-compared numbers.
It's not really well-suited for testing hard disks in a general way that will be
applicable to people reading an analysis or review of a piece of hardware.

The guiding principle behind subjective performance measurement is this: "If
you can't tell the difference, what does it matter?" As such, subjective
evaluation is a very personal matter, best suited for an individual to use in
assessing the performance of a particular piece of hardware. The best
benchmark is always using your own system with your own software. If you
change a piece of hardware and it doesn't make a difference big enough to
really impact your use of the system, then the change is probably not
worthwhile.

The main problem with subjective measurement is that you can't always
easily "test drive" hardware. If you have a slow hard disk and a friend is
willing to let you borrow a faster one for a "trial run" then that's great--take
advantage of it. Few of us have such a luxury, but fortunately, it's not strictly
necessary. With subjective measures we are not dealing with specific
numbers but rather "big picture" performance. As such, you can learn
vicariously from others' experiences. Let's suppose a friend has a system that
is similar to yours and has a similar "feel" when you use it. He upgrades to a
new hard disk and suddenly the system feels much faster to you. If this is the
case, the chances are good that you will experience a similar improvement in
the usability of your own PC if you upgrade.

Next: Hard Disk Performance Made Easy

mehedi hasan
mehedi@joinme.com

196

Hard Disk Performance Made Easy

If you don't want to bother to concern yourself over the intricacies of hard
disk performance measurement, reading specifications and performance-
affecting factors, and analyzing tables of benchmarks, there's a crude but
very simple and easy way to ensure your system always has very good hard
disk performance (not the best possible but very good). It's a technique that I
call "hard disk performance in one step". Here's the one step: buy a new hard
disk every 12 to 18 months; not necessarily the best one available at the
time, but one that represents good value for the money based on the market
at the time you make the purchase.

It sounds like I am being tongue-in-cheek, but I'm really not. There are
people who actually take this approach, and it can be very effective, if not
"optimal". The reason that it works is due to the nature of the hard disk
industry. Performance increases so rapidly, and the cost per gigabyte of
storage decrease so rapidly, that the hard disks of a given class and price
range available today are almost always far superior to the ones available a
year or two earlier. If you remember nothing else remember this: the
difference in performance between any new drive of a given type and any 18-
month old drive of the same type, is far greater than the differences between
current offerings of the same type from competing manufacturers. You could
pick a 2000 model hard disk at random and it would be a better performer
than the top drive of its class and price range from 1998.

Is it too expensive to do this? Well, for some people it is; for others it
definitely is not. A good-quality hard disk of a reasonable size costs under
$150 these days. It's largely a matter of figuring out what your time is worth.
If it saves you hours and hours of research, this may be a worthwhile option
for you.

In a similar vein, you should avoid the syndrome that plagues many who
make very occasional hard disk purchases. They spend tons of time
researching hard drives and buy what is at that time the fastest unit around,
often paying far more for it than a drive that is slightly slower. Then they use
this same drive for two or three years. Within six months their drive is no
longer the fastest on the market; within 18 months it is slower than drives
selling for far less than that drive cost when new (and the newer drives have
double or triple the capacity to boot).

Am I trying to convince you to buy a new hard disk every year? No, I'm not. I
have a frugal streak and certainly wouldn't suggest spending money on
hardware without good cause. I'm trying to point out that hard disk
performance improves so quickly and so regularly that trying to pick the
perfect drive at any given time is often not worth the effort. I'm also saying
that if performance is really important to you, you don't want to keep using
the same drive year after year after year.

Next: Hard Disk Performance Specifications

mehedi hasan
mehedi@joinme.com

197

Hard Disk Performance Specifications

Hard disks are often compared by contrasting their specifications. This is a
valid way of attempting to discern whether one hard disk is better than
another, though due to the large number of specifications often provided, this
can also be somewhat difficult to do while being sure to cover all the bases
and perform the analysis in a balanced way. It helps to focus on the more
important specifications, of course. Certainly, understanding hard disk
specifications is essential to understanding hard disk performance.

Structuring a discussion of performance specifications and performance
factors in a way that covers all the issues in a way that's not too confusing
isn't easy. After (excessive) deliberation, I decided to create two separate
sections, one covering specs and the other discussing factors. The difference
between them, as I see it, is that a specification is a number or label that
expresses an element of performance; a factor is something that causes
performance, and hence a specification, to be affected. So specifications are
indirectly derived from, and are a result of, the various design factors used to
create a drive. A single specification can be affected by a number of different
performance factors; and a single performance factor can influence a number
of specifications.

Due to this "many-to-one and one-to-many" relationship between these two
concepts, there is some overlap between the "specifications" and "factors"
sections--there are headings and topics that are the same in both places. In
this section, I am focused primarily on what the specifications are and what
they represent, how to interpret them and what their importance is. I then
relate each of these to the performance factors that influence them, and talk
more about the direct impact on performance in the internal performance
factors and external performance factors sections. I apologize in advance for
any confusion this may cause! :^)

Note: I attempt in this area to be as comprehensive as practical in covering
the most important and common hard disk specifications, but at the same
time not overwhelm you with every single specification that exists on hard
disks. You can find many more specifications in the product manual of a hard
disk family, usually available free on the manufacturer's web site.

Next: General Notes On Performance Specifications

mehedi hasan
mehedi@joinme.com

198

General Notes On Performance Specifications

Before diving into the specifications themselves, I want to discuss a couple of
topics of relevance to hard disk performance specifications in general. Keep
these in mind as you read the various pages describing the specifications
themselves. Most of them are really caveats about the specifications and
some of the little tricks some manufacturers use in providing them:

• Look At All The Specifications: Some manufacturers publish two
"sets" of specifications. For "public consumption" they put out a short
list of specs, often highlighting the areas they feel presents the drive
in the best possible light. There's really nothing wrong with that, but if
you are contemplating a purchase you want the whole story. Check
the manufacturer's web site for a downloadable product manual or
comprehensive data sheet that contains more detail.

• Watch For "Maximum": Some performance characteristics vary
depending on what part of the disk is being used, or in what way the
disk is being exercised. Therefore, it is common for some specifications
to be listed with the word "maximum" next to them. Don't gloss over
this very important word! :^) What it really is telling you is that the
average value of whatever that specification is will be lower. Make sure
that if one manufacturer provides an "average" value for something,
you don't compare it to a "maximum" value provided by another
manufacturer. (Fortunately the specifications are mostly standardized
between hard disk makers.)

• A Matter Of Trust: Bear in mind when you read the specifications for
a device that the manufacturer is providing them. Usually companies
are mostly honest about the numbers, but exaggeration is certainly
not unheard of. Mistakes also occur on occasion; if a number seems
too good to be true, verify it against another source before accepting
it.

• Don't Overvalue A Single Performance Metric: Hard disk
manufacturers often play the "magic number" game where they try to
convince you that one or maybe two specifications show how great
their product is. The culprit for this used to be seek time, which
manufacturers overemphasized to the point of laughability--seek time
is important, but it was still being incredibly "oversold". Today, the
worst specifications in this regard are probably interface speed and
cache (buffer) size. The latter in particular has been shown to have a
rather insignificant impact on overall performance, but some
companies act like a hard disk with a 2 MiB buffer will be twice as fast
as one with a 1 MiB buffer.

• Some Specifications Are Derived: Some of the specifications I
discuss here are actually derived from other ones, so you won't find
them listed on most spec sheets. They sometimes do a better job of
expressing performance than the "official" specs upon which they are
based. I explain these in detail in the appropriate sections.

• Read Vs. Write Performance: Some performance specifications that
manufacturers provide are accurate only when the drive is reading, not
when it is writing; sometimes this is stated explicitly, and sometimes it
is not! See here for more on this.

mehedi hasan
mehedi@joinme.com

199

Next: Positioning Plus Transfer Performance Specifications

Positioning Plus Transfer Performance Specifications

The two specifications discussed in this section are given the "privilege" of
being discussed first--like they care, right? :^)--for an important reason.
They are the only specs that illustrate aspects of the performance of the hard
disk in both fundamental ways: positioning and transfer. As such, they are
very important to look for and understand. They certainly are not the only
important specifications, and there are some knowledgeable people who rank
other metrics higher than these, but few would dispute that they are essential
enough that you should always look for them on any hard disk you evaluate.

Next: Spindle Speed

Spindle Speed

The hard disk spindle is the shaft upon which the platters are mounted; it is
driven by the spindle motor, one of the most important components in the
hard disk. Obviously, the faster the motor turns, the faster the platters spin.
The spindle speed of the hard disk is always given in RPM (revolutions per
minute). Typical speeds of drives today range from 4,200 RPM to 15,000
RPM, with 5,400 to 10,000 RPM being most common on desktop machines.
See this operational discussion of spindle speed for a table of the most
common speeds employed today and in the past, and a list of different
applications that use them.

Spindle speed has gone from being one of the least-discussed to one of the
most-discussed hard disk specifications in only a few short years. The reason
is the creation of increasingly fast spindles. For the first several years that
hard disks were used in PCs, they all had the same spindle speed--3,600
RPM--so there was literally nothing to talk about in this regard! Over time,
faster drives began to appear on the market, but slowly, and starting with
high-end SCSI drives not used in most systems. Once the trend started,
however, and the obvious advantages of higher spin speeds became
apparent, the trend accelerated. Still, it is only since about 1998 that
mainstream IDE/ATA drives have been readily available for the desktop in
spindle speeds higher than 5,400 RPM. The most common speeds today are
5,400 and 7,200 RPM, and 10,000 RPM IDE/ATA drives are likely just around
the corner (since they are now standard on SCSI with the SCSI high-end
moving to 15,000 RPM!)

Today, spindle speed is the first thing you really should look for when
assessing a drive; the speed of the spindle is the primary method by which
drives are categorized into "classes". Almost any 7,200 RPM drive will be
faster, and more expensive, than a 5,400 RPM drive of the same size and
generation. The spindle speed directly correlates to the drive's rotational
latency, affecting positioning performance, and also influences the drive's
internal transfer rate. However, there is more to this: the difference in speed
between different classes of drives is due not only to the speed of the spindle,
but the fact that manufacturers tend to design these drives to be faster in

mehedi hasan
mehedi@joinme.com

200

other ways as well, knowing they are targeting a market more concerned with
all facets of performance.

The spindle speed is of course influenced primarily by the spindle motor's
speed and power. However, there are other issues involved in designing
higher-RPM drives: you can't just slap a faster motor into an existing model!
The size and number of platters is also an important design consideration,
and the areal density of the drive also has an impact--faster drives sometimes
require reductions in density compared to slower drives.

In fact, the overall quality of the entire hard disk becomes much more critical
the faster you spin the platters. Issues with higher-speed drives include
increased noise and vibration, and cooling concerns, though these have
improved greatly with second, third and subsequent generation high-speed
drives.

Next: Areal Density

Areal Density

Areal density, sometimes also (imprecisely) called bit density or even just
density, refers to the amount of data that can be stored in a given amount of
hard disk platter space. It is one of the most important indicators of overall
hard disk performance, though one that outside the PC enthusiast community
is sadly under-discussed. If you do not understand what areal density is
about, I would advise that you read this operation page discussing it in detail
before continuing with this page.

Areal density is a two-dimensional measure calculated by multiplying two
linear measures: recording density (bit density) and track density. The result
is measured in bits per square inch (BPSI). Since densities today are in the
billions of bits per square inch, the most commonly seen unit is "Gbits/in2".
Sometimes the two measures that comprise areal density, are specified
separately; other data sheets don't show these components individually. It's
much better to be able to evaluate the numbers separately, since they are
very different in terms of how they reflect aspects of performance.

Areal density is strongly correlated to the transfer rate specifications of a
drive. The higher the drive's areal density, in general, the higher its transfer
rates will be, however, most of the improvement in transfer rate is due to
increases in bit density, not track density. (When more bits are in a given
length of track, the heads will read more data in a unit of time, assuming the
spindle speed is constant.) If drive "A" has an areal density 5% lower than
that of drive "B", but its bit density is 10% higher, it will have a higher
transfer rate than drive "B".

Both bit density and track density have an impact on positioning performance.
Increases in either one allow the data on the hard disk to be stored physically
closer together on the disk. This reduces the distance that the read/write
heads must seek to find different files on the disk, slightly improving seek
time. Do keep in mind though that the improvements here are relatively small

mehedi hasan
mehedi@joinme.com

201

compared to the impact areal density has on transfer rates. Also,
improvements only in track density don't do a lot to improve performance.

Areal density specifications are usually maximum specifications; look for the
magic "M word" near the spec. The areal density will only be this high in
certain regions of the disk. Modern drives use zoned bit recording to allow the
areal density not to vary too greatly over the surface of the platter, but
density will still be higher or lower in different parts of the disk. See the full
discussion of areal density for more on this.

There's also a "rough cut" areal density measure commonly used when
talking about hard drives or comparing one generation of drives to another.
Often, the total formatted capacity of the disk will be divided by the number
of platters, and the density of the drive discussed in terms of "GB per platter".
For example, the 30 GB Maxtor DiamondMax Plus 40 is a three-platter drive;
it's rough density then is 10 GB/platter, and that applies to all the members
of that family. The IBM GXP75 family is 15 GB/platter, and so on.

This is a convenient short-hand and is useful when discussing drives, just
keep in mind its limitations. For starters, it's rather crude, so it's only good for
contrasting different generations of drives with big differences in density.
Second, implied in the "GB/platter" measure is the size of each platter. A 10
GB/platter drive with 2.5" platters has much higher density than a 10
GB/platter drive using 3.5" platters. Also, some drives use only one side of
one of their platters; the 15 GB DiamondMax Plus 40 for example uses two
platters but only three of the four surfaces, so it is still a 10 GB/platter drive,
not 7.5 GB/platter. (A better measure would be "GB per surface, but nobody
seems to use that since most drives use both sides of each platter.)

The primary factors that influence areal density specifications are those that
relate to data and recording: this means that all the factors discussed in this
section are relevant. It is also influenced by the design and speed of the
spindle motor; faster motors may require density to be reduced for reliability
reasons.

Next: Positioning Performance Specifications

mehedi hasan
mehedi@joinme.com

202

Positioning Performance Specifications

In this section I take a look at some of the more important hard disk
specifications relevant to positioning performance. These include several very
well-known and widely quoted specs, along with some specifications that are
a bit more obscure but often just as important.

Note that these specifications are not listed in any particular order. (OK, I did
put seek time first since it is so important and interesting to talk about. :^))

Next: Seek Time

Seek Time

The seek time of a hard disk measures the amount of time required for the
read/write heads to move between tracks over the surfaces of the platters.
Seek time is one of the most commonly discussed metrics for hard disks, and
it is one of the most important positioning performance specifications.
However, using this number to compare drives can be somewhat fraught with
danger. Alright, that's a bit melodramatic; nobody's going to get hurt or
anything. :^) Still, to use seek time properly, we must figure out exactly
what it means.

Switching between tracks requires the head actuator to move the head arms
physically, which being a mechanical process, takes a specific amount of time.
The amount of time required to switch between two tracks depends on the
distance between the tracks. However, there is a certain amount of
"overhead" involved in track switching, so the relationship is not linear. It
does not take double the time to switch from track 1 to track 3 that it does to
switch from track 1 to track 2, much as a trip to the drug store 2 miles away
does not take double the time of a trip to the grocery store 1 mile away,
when you include the overhead of getting into the car, starting it, etc.

Seek time is normally expressed in milliseconds (commonly abbreviated
"msec" or "ms"), with average seek times for most modern drives today in a
rather tight range of 8 to 10 ms. Of course, in the modern PC, a millisecond is
an enormous amount of time: your system memory has speed measured in
nanoseconds, for example (one million times smaller). A 1 GHz processor can
(theoretically) execute over one million instructions in a millisecond!
Obviously, even small reductions in seek times can result in improvements in
overall system performance, because the rest of the system is often sitting
and waiting for the hard disk during this time. It is for this reason that seek
time is usually considered one of the most important hard disk performance
specifications. Some consider it the most important.

At one point many years ago seek times were difficult to use because
manufacturers wouldn't agree on a standardized way of reporting them.
Today, this has largely been corrected. While seek time is usually given as a
single number, in fact there are three different seek time specifications you
should examine for a drive, as they represent the drive's performance when
doing different types of seeks:

mehedi hasan
mehedi@joinme.com

203

• Average: As discussed, this is meant to represent an average seek
time from one random track (cylinder) to any other. This is the most
common seek time metric, and is usually 8 to 10 ms, though older
drives had much higher numbers, and top-of-the-line SCSI drives are
now down to as low as 4 ms!

• Track-to-Track: This is the amount of time that is required to seek
between adjacent tracks. This is similar in concept (but not exactly the
same as) the track switch time and is usually around 1 ms.
(Incidentally, getting this figure without at least two significant digits is
pretty meaningless; don't accept "1 ms" for an answer, get the
number after the decimal point! Otherwise every drive will probably
round off to "1 ms".)

• Full Stroke: This number is the amount of time to seek the entire
width of the disk, from the innermost track to the outermost. This is of
course the largest number, typically being in the 15 to 20 ms range. In
some ways, combining this number with the average seek time
represents the way the drive will behave when it is close to being full.

While I believe that seek time is a very important specification, I have
become somewhat cynical in the last few years regarding the amount of
attention paid to it. The reason is that there is so little difference between the
seek time specs of most comparable drives in any given class or category. For
example, almost all IDE/ATA 7200 RPM drives shipping in 2000 have an
average seek time specification of 8.0, 8.5 or 9.0 milliseconds. This doesn't
leave a lot to work with. However, at the same time, we must realize that of
the four components that comprise the drive's access time, if you are
comparing two drives of the same class and spindle speed, only seek time will
differ much between them. So this small differential may be the only thing to
distinguish drives; and small differences are what you are likely to see.
(Larger discrepancies though, directly translate into often very noticeable
differences in performance. A drive with a 5 ms seek time will generally blow
the doors off one with a seek time of 8.0 to 9.0 ms in random positioning
tasks, which is why these fast drives are preferred for servers and other
multi-user environments.)

To really put seek time in proper context, it should be remembered that it is
the largest component of access time, which is the composite metric that best
represents positioning performance. However, it is only one component, and
there is at one that is of at least equal importance (see the discussion of
access time for more on seek time's role in overall positioning performance).
Also, bear in mind that seek times are averages that make certain
assumptions of how the disk will be used. For example, file system factors will
always have an impact on seek performance in the real world.

A couple of additional caveats on seek times. First, unless you see two
numbers, one for read performance and one for write, seek times always
refer to reads; see here for more details. Ask for the write numbers if you are
interested, or you can approximate by adding 1 ms to the average read
numbers. Second, watch out for "less than X ms" specifications. Rather
bogus, and fortunately not seen as often as in the past, I interpret "less than
X ms" as "X ms" and you generally should do so as well--if the true average
were under "X-1", they'd say "less than X-1 ms" instead of "less than X ms".

mehedi hasan
mehedi@joinme.com

204

Seek time is almost entirely a function of the design and characteristics of the
hard disk's actuator assembly. It is affected slightly by the read/write head
design since the size of the heads affects movement speed.

Note: Some manufacturers include settle time as part of their seek time
specification. Since settle time is relatively small this doesn't really change
the seek time numbers much.

Next: Settle Time

Settle Time

The settle time specification (sometimes called settling time) refers to the
amount of time required, after the actuator has moved the head assembly
during a seek, for the heads to stabilize sufficiently for the data to begin to be
read. Since it is a component of access time and therefore part of the time
required to position for reading a random file, I include it here for
completeness. However, since settle time is usually so short (typically less
than 0.1 msec) it is dwarfed in importance by seek time and rotational
latency, and differences between drives in this regard are not really
significant. Some manufacturers do not even bother to specify settle time,
and some just lump it in with seek time.

Settle time, like seek time, is a function of the drive's actuator characteristics.

Next: Command Overhead Time

Command Overhead Time

Command overhead refers to the time that elapses from when a command is
given to the hard disk until something actually starts happening to fulfill the
command. In a way, it's sort of like a "reaction time" for the disk. Consider
when you're driving a car and a streetlight suddenly turns red; your
"command overhead" is the time that elapses from when the light changes,
until your foot starts to move toward the brake pedal. (Or if you live in the
greater Boston area, the accelerator. ;^)

Like settle time, command overhead is a component of access time and thus
part of the overall equation of random positioning performance. Also like
settle time, it is generally very small and not highly variable between drive
designs; it is generally around 0.5 ms for pretty much all modern drives and
therefore not something that requires a lot of attention. Also like settle time,
it is sometimes not even specified separately from seek time but rather
"lumped in" with it. It is dominated by seek time and rotational latency in the
overall positioning performance picture.

Command overhead is influenced primarily by the design of the disk's
integrated controller, and to some extent, the nature of the interface used
(which of course is a major influence on the design of the controller!)

mehedi hasan
mehedi@joinme.com

205

Next: Latency

mehedi hasan
mehedi@joinme.com

206

Latency

The hard disk platters are spinning around at high speed, and the spin speed
is not synchronized to the process that moves the read/write heads to the
correct cylinder on a random access on the hard disk. Therefore, at the time
that the heads arrive at the correct cylinder, the actual sector that is needed
may be anywhere. After the actuator assembly has completed its seek to the
correct track, the drive must wait for the correct sector to come around to
where the read/write heads are located. This time is called latency. Latency is
directly related to the spindle speed of the drive and such is influenced solely
by the drive's spindle characteristics. This operation page discussing spindle
speeds also contains information relevant to latency.

Conceptually, latency is rather simple to understand; it is also easy to
calculate. The faster the disk is spinning, the quicker the correct sector will
rotate under the heads, and the lower latency will be. Sometimes the sector
will be at just the right spot when the seek is completed, and the latency for
that access will be close to zero. Sometimes the needed sector will have just
passed the head and in this "worst case", a full rotation will be needed before
the sector can be read. On average, latency will be half the time it takes for a
full rotation of the disk. This table shows the latency for the most common
hard disk spindle speeds:

Spindle Speed
(RPM)

Worst-Case
Latency (Full
Rotation) (ms)

Average Latency
(Half Rotation) (ms)

3,600 16.7 8.3

4,200 14.2 7.1

4,500 13.3 6.7

4,900 12.2 6.1

5,200 11.5 5.8

5,400 11.1 5.6

7,200 8.3 4.2

10,000 6.0 3.0

12,000 5.0 2.5

15,000 4.0 2.0

The "average" value is almost always the one provided as a specification for
the drive; sometimes the "worst case" number is also mentioned. Sometimes
latency is not even mentioned specifically at all, but it can always be
calculated using this formula:

(1 / (SpindleSpeed / 60)) * 0.5 * 1000

mehedi hasan
mehedi@joinme.com

207

Which factors down to this much simpler formula:

30000 / SpindleSpeed

The result is a value in milliseconds.

In looking at the table above, notice that the first increases in spindle speed
yielded the greatest percentage improvements in performance. As speeds
continue to increase, there are diminishing returns for the extra RPMs. Going
from 5,400 RPM to 7,200 RPM shaved 1.4 milliseconds off the average
latency, but going from 7,200 to 10,000 (which is a bigger jump in both
absolute and percentage terms) only reduces it 1.2 milliseconds. At some
point companies will likely "max out" on spindle speeds because there won't
be any point in increasing further, especially considering the problems that
are created when speeds are increased. The 12,000 speed introduced by the
Hitachi Pegasus, while very fast, never really caught on as an industry
standard. It looks like 15,000 RPM will be the next standard spindle speed for
top-of-the-line SCSI drives. It has yet to be seen what price will be paid for
jumping to such a high spindle speed; the improvement in latency over
standard 10,000 RPM drives is "only" 1.0 milliseconds.As with seek time,
figures in milliseconds are big numbers when dealing with computer system
performance, but to shave another 1.0 ms off latency from 15,000 RPM would
require going to 30,000 RPM, which would be a very significant engineering
challenge probably not justified by shaving 1.0 ms off the total access time
for the drive.

Again, as with seek times, latency is most relevant only to certain types of
accesses. For multiple, frequent reads of random sectors on the disk, it is an
important performance-limiting factor. For reading large continuous blocks of
data, latency is a relatively minor factor because it will only happen while
waiting to read the first sector of a file. The use of cylinder and head skewing
on modern drives is intentionally designed to reduce latency considerations
when switching between consecutive heads or cylinders on long sequential
reads or writes.

Next: Access Time

mehedi hasan
mehedi@joinme.com

208

Access Time

Access time is the metric that represents the composite of all the other
specifications reflecting random performance positioning in the hard disk. As
such, it is the best figure for assessing overall positioning performance, and
you'd expect it to be the specification most used by hard disk manufacturers
and enthusiasts alike. Depending on your level of cynicism then, you will
either be very surprised, or not surprised much at all, to learn that it is rarely
even discussed. :^) Ironically, in the world of CD-ROMs and other optical
storage it is the figure that is universally used for comparing positioning
speed. I am really not sure why this discrepancy exists.

Perhaps the problem is that access time is really a derived figure, comprised
of the other positioning performance specifications. The most common
definition is:

Access Time = Command Overhead Time + Seek Time + Settle Time +
Latency

Unfortunately, this definition is not universal, and is made complicated by the
fact that manufacturers refuse to standardize on even what access time's
subcomponents mean. Some companies incorporate settle time into seek
time, some don't, for example. And to make matters worse, some companies
use the term "access time" to mean "seek time"! They really are not the same
thing at all.

In the end though, when you are looking at the ability of a drive to randomly
position, access time is the number you want to look at. Since command
overhead and settle time are both relatively small and relatively similar
between drives, that leaves the sum of seek time and latency as the defining
characteristic between drives. Seek time and latency are a result of very
different drive performance factors--seek time being primarily a matter of the
actuator and latency the spindle motor--resulting in the possibility of some
drives being better in one area and worse in another. In practice, high-end
drives with faster spindles usually have better seek times as well since these
drives are targeted to a performance-sensitive market that wouldn't buy a
drive with slow seek time.

Let's compare a high-end, mainstream IDE/ATA drive, the Maxtor
DiamondMax Plus 40, to a high-end, mainstream SCSI drive, the IBM
Ultrastar 72ZX. (When I say "high end" I mean that the drives are good
performers, but neither drive is the fastest in its interface class at the time I
write this.) The Maxtor is a 7200 RPM drive with a seek time spec of "< 9.0
ms", which to me means 9 ms. Its sum of its seek time and latency is about
13.2 ms. The IBM is a 10,000 RPM drive with a seek time spec of 5.3 ms. It's
sum of seek time and latency is about 8.3 ms. This difference of 5 ms
represents an enormous performance difference between these two drives,
one that would be readily apparent to any serious user of the two drives.

As you can see, the Cheetah beats the DiamondMax on both scores, seek
time and latency. When comparing drives of a given class, say, IDE/ATA 7200
RPM drives, they will all have the same latency, which means, of course that

mehedi hasan
mehedi@joinme.com

209

the only number to differentiate them is seek time. Comparing the Maxtor
above to say, the Seagate Barracuda ATA II with its 8.2 ms seek time shows
a difference of 0.8 ms, or around 10%. But the proper comparison includes
the other components of access time. So the theoretical access time of the
Maxtor drive is about 13.7 ms (including 0.5 ms for command overhead) and
that of the Seagate Barracuda drive 12.9. The difference now is about 6%. Is
that significant? Only you can judge, but you also have to remember that
even access time is only one portion of the overall performance picture.

Remember that access time is an average figure, comprised of other
averages. In fact, access time on any particular read or write can vary
greatly. For an illustration, let's consider the IBM 34GXP drive, look at its
minimums and maximums, and see how they translate into access time
minimums and maximums:

Attribute
Best-Case Figure
(ms)

Worst-Case Figure
(ms)

Command
Overhead

0.5 0.5

Seek Time 2.2 15.5

Settle Time <0.1 <0.1

Latency 0.0 8.3

Total 2.8 28.4

As you can see, there's quite a range! In the real world these extremes will
rarely occur, and over time will be "averaged out" anyway, which is the
reason that average figures are used. However, it's important to remember
that this wide range can occur on any given access, and random
perturbations can affect benchmarks and other performance tests.

Next: Transfer Performance Specifications

mehedi hasan
mehedi@joinme.com

210

Transfer Performance Specifications

Since the obvious objective in using a hard disk is to transfer data to the hard
drive and onto the disks, or off the disks and out of the drive, the rate of data
transfer is of paramount importance. Traditionally, real transfer rate metrics
have been very underrated and given almost no attention compared to
positioning specifications like seek time. The only transfer specification that is
really commonly mentioned is the speed of the interface, which is actually the
least important indicator of overall disk performance.

Before we look at transfer specifications, we need to have a short word about
terminology. :^) Transfer rates are confusing in part because of the phrase
"transfer rate" can mean so many different things. Data transfer occurs in two
main steps. For a read, data is first read from the disk platters by the heads
and transferred to the drive's internal buffer; then it is moved from the
buffer, over the interface, to the rest of the system. For a write, the process
is reversed. The rate that transfer occurs within the disk is of course the
internal transfer rate; the rate that transfer occurs over the interface is the
external transfer rate. They are usually not the same, and in some cases can
differ by an order of magnitude.

Internal transfer rates are further broken down into the media transfer rate
and the sustained transfer rate, and further complicating things is the fact
that transfer rates are not constant over the surface of the drive. It sounds
impossible to get a handle on, but it's not that bad once you place it all in the
proper context and perspective, and that's exactly what we will do in this
section.

Tip: Whenever you are reading a spec sheet, or discussing transfer rates with
someone, be sure to find out exactly what transfer rate is being discussed. By
itself the term "transfer rate" is meaningless.

Next: Internal Media Transfer Rate

mehedi hasan
mehedi@joinme.com

211

Internal Media Transfer Rate

The internal media transfer rate of a drive (often just called the media
transfer rate or the media rate) refers to the actual speed that the drive can
read bits from the surface of the platter, or write bits to the surface of the
platter. It is normally quoted in units of megabits per second, abbreviated
Mbit/sec or Mb/s. Typical values for today's drives are in the hundreds of
Mb/s, with a maximum media rate of about 500 Mb/s being high-end at the
time of this writing.

Note: Media transfer rates are not normally specified in megabytes per
second, even though sustained transfer rates are; this is not 100%
consistent, however. Watch out for this discrepancy when looking at the
numbers.

Media transfer rate can be confusing to understand even for the serious hard
disk enthusiast; it's equally difficult to describe. :^) For starters, let's explain
what it is not. It is only related to what is going on inside the hard disk, and
therefore has nothing directly to do with the interface transfer rate. It differs
from the sustained transfer rate in that it refers only to the speed of reading
or writing bits to a single track of one surface of the disk. Nothing else is
included--no positioning, no track or head switching. A track holds a relatively
small amount of data--under 0.25 MB with current technology. This means
that almost no real-world reads or writes occur on a single track except for
very short files, and the performance when reading those is primarily limited
by positioning, not transfer. The end result of this is that the media transfer
rate does not have much relevance to real-world use of a drive. It is primarily
a "theoretical" specification that illustrates the state of the drive's technology.
It is used almost exclusively for comparing drives against each other. It is
also the basis for the calculation of the sustained transfer rate specification.

Media transfer rates are not constant across the entire surface of a platter.
Let's recall for a moment the fact that modern disk drives use zoned bit
recording. This is done because the length of the inner tracks on the disk is
much shorter than that of the outer tracks. ZBR allows the outer tracks to
have more sectors per track than the inner tracks. However, since every track
is spinning at the same speed, this means that when reading the outer tracks,
the disk is transferring more data per second when when reading the inner
tracks. For this reason, the media transfer rate decreases as you move from
the outer tracks of the disk to the inner ones.

The explanation above is the reason that there is no single "media transfer
rate" figure for a modern hard disk. They are typically stated as a range,
from minimum to maximum (with the maximum figure given alone, of course,
if only one number is provided). For example, the IBM Deskstar 34GXP
(model DPTA-373420) has a media transfer rate of between approximately
171 Mb/s and 284 Mb/s depending where on the disk you are reading: that
drive has 12 different zones. This drive has 272 sectors in its innermost zone,
and 452 sectors on its outside tracks.

Another important thing to remember about the media transfer rate (and
another reason why it is a theoretical measure only) is that it includes all bits

mehedi hasan
mehedi@joinme.com

212

read or written to the disk, not just user data. As discussed in detail here,
some of the data storage space in a sector is reserved for overhead. This
means that you cannot assume that the media rate represents the rate at
which user data can be read from the disk. Taking the IBM drive above again
as an example, its maximum media transfer rate is 284 Mb/s, but the
maximum rate that the drive can read user data is about 222 Mb/s in the
outside zone.

It's not really feasible to calculate the media transfer rate from other drive
specifications, because manufacturers typically do not publish details of their
sector format and other pertinent overhead characteristics. The best that you
can do is approximate the value by looking at the rate at which user data can
be streamed from a given part of the disk. To so do so, we need to know how
much data is able to pass under the read/write heads in one second. This is
dependent on the density of the data (how tightly packed the data is into
each linear inch of disk track), and also how fast the disk is spinning. The
density of the data can be calculated easily if we know how many sectors are
on the track, since we know how many bytes of user data there are in a
sector (512). The speed of the disk is calculated in RPM, so we divide it by 60
to get revolutions per second. This gives us a calculation of the data transfer
rate in megabits per second as follows (to get the result in megabytes per
second, simply divide by 8):

User Data Transfer Rate = (Spindle Speed / 60 * Sectors Per Track * 512 * 8)
/ 1,000,000

This formula shows the derivation of the 222 Mb/s figure above: use 7200 for
the 34GXP's spindle speed, and 452 sectors on its outside tracks. Note that
you need the true physical geometry here; the logical BIOS setup parameters
will give incorrect results. (If the geometry you are using says the disk has 63
sectors per track and 16 heads, it's almost certain that you are looking at the
logical BIOS geometry!) And again, remember that this is not the same as the
media transfer rate; to get that figure you'd have to replace the "512" above
with the total number of bits, including overhead, contained in each sectors of
the disk.

The media transfer rate of the drive is primarily affected by all of the various
data recording and encoding factors, as well as the size of the platters, and
the drive's spindle speed. In addition, the drive's controller must be fast
enough to be able to handle the fastest rate that the disk can read or write,
but manufacturers ensure that this is never an issue by beefing up their
controllers where necessary.

Next: Head Switch Time

mehedi hasan
mehedi@joinme.com

213

Head Switch Time

Each cylinder contains a number of tracks, each accessible by one of the
heads on the drive (one head per surface). To improve efficiency, the drive
will normally use all of the tracks in a cylinder before going to the next
cylinder when doing a sequential read or write; this saves the time required
to physically move the heads to a new cylinder. Switching between heads is a
purely electronic process instead of a mechanical one. However, switching
between heads within a cylinder still requires a certain amount of time, called
the head switch time. This is usually less than the track switch time, and is
usually on the order of 1 to 2 milliseconds. (Seems kind of slow for an
electronic process, doesn't it? The reason is that this time includes all of the
overhead of the switch as well; it is all of the time that passes between when
the read stops on one head and when it actually starts again on the next
one.)

Head switch time is not commonly discussed, but it is an important
component of sustained transfer rate, since STR measures transfer rate over
larger reads or writes that encompass more than one track. See the
discussion of sustained transfer rate for more details. You may also want to
read about head and cylinder skew here.

Head switch time is primarily influenced by the characteristics of the hard
disk's controller. It does not vary greatly from drive model to model or
between manufacturers.

Tip: Even though it is typically smaller than cylinder switch time, head switch
time is more important to transfer performance because head switches occur
more often than cylinder switches (unless you are using a single-platter disk).
See the discussion of calculating of sustained transfer rate for more on this
subject.

Next: Cylinder Switch Time

mehedi hasan
mehedi@joinme.com

214

Cylinder Switch Time

Similar in concept to head switch time, cylinder switch time is the time that
elapses when the drive finishes reading (or writing) all the data on a given
cylinder and needs to switch to the next one. This normally only occurs during
fairly long reads or writes, since the drive will read all the tracks in a cylinder
before switching cylinders. Cylinder switch time is slower than head switch
time because it involves a mechanical process: moving the actuator
assembly. It is usually somewhere around 2 to 3 milliseconds.

Note: You might think that cylinder switch time would be the same as track-
to-track seek time, after all, it's the same thing, isn't it? They aren't the same
however, because cylinder switch time includes all of the overhead time that
passes from the time the read stops on one track until it starts again on the
next one. This is why cylinder switch times are typically double those of track-
to-track seeks.

Cylinder switch time is another specification that is fairly obscure and not
commonly discussed, but is an important component of sustained transfer
rate, since STR measures transfer rate over larger reads or writes that can
encompass more than one cylinder. See the discussion of sustained transfer
rate for more details. You may also want to read about head and cylinder
skew here.

Cylinder switch time is influenced by the characteristics of the hard disk's
controller as well as its actuator mechanics. It does not vary greatly from
drive model to model or between manufacturers.

Next: Internal Sustained Transfer Rate (STR)

mehedi hasan
mehedi@joinme.com

215

Internal Sustained Transfer Rate (STR)

The media transfer rate is the maximum rate that any particular track of the
hard disk can have bits written to it or read from it. However, most transfers
from the hard disk involve more than a single track (and the performance of
accesses short enough to fit in a single track is typically dominated by
positioning concerns more than transfer issues anyway). For real-world
transfers of average files, what we are concerned with is the rate at which the
drive can transfer data sequentially from multiple tracks and cylinders on the
disk. This specification is the drive's sustained transfer rate (sometimes the
sequential transfer rate), abbreviated STR.

Sustained transfer rates are most relevant for reflecting the drive's
performance when dealing with largish files. It is based upon the drive's
media transfer rate, but includes the overheads required for head switch time
and cylinder switch time. Also, STR is normally measured in bytes, not bits
like the media transfer rate, and includes only data, not the overhead
portions of each sector or track. An example: let's say we want to read a 4
MB file from a hard disk that has 300 sectors per track in the zone where the
file is located; that's about 0.15 MB per track. If the drive has three platters
and six surfaces, this means that if this file is stored sequentially, it will on
average occupy 26 tracks over some portion of 5 cylinders. Reading this file in
its entirety would require (at least) 25 head switches and 4 cylinder switches.

STR can be calculated from various characteristics of a disk, but this isn't
nearly as conceptually simple as calculating a media transfer rate on a single
track. Rather than just provide a lengthy formula, I'll try to explain how the
calculation is done. A transfer rate is of course data transferred per unit of
time. So our equation will be a ratio of data transferred to the time taken to
transfer it. Now, to represent a sustained transfer we need to cover an entire
cylinder, so we include all the head switches while reading the cylinder, and
one cylinder switch time as well (to get us to the next cylinder). The data that
is transferred for an entire cylinder read is as follows:

Data transferred per cylinder = Number of surfaces * Sectors per track * 512
bytes

where "number of surfaces" is identical to the number of tracks per cylinder,
of course. Now, how much time is taken? First, we of course have to wait for
the disk to make one complete revolution for each track read, as the data is
read. Then we need to add a number of head switches equal to the number of
surfaces less one, and finally, one cylinder switch. So the time taken to
transfer an entire cylinder is as follows:

Time per cylinder transfer = Number of surfaces * Platter revolution time +
(Number of surfaces - 1) * Head Switch Time + Cylinder Switch Time

The easiest way to calculate platter revolution is to double the disk's latency
specification. The final equation then looks like this:

mehedi hasan
mehedi@joinme.com

216

STR = (Number of surfaces * Sectors per track * 512) / (2 * Number of
surfaces * Latency + (Number of surfaces - 1) * Head Switch Time + Cylinder
Switch Time)

The result is in bytes per second. Simple, right? ;^) Let's use the same IBM
Deskstar 34GXP model that we discussed in the media transfer rate section.
This drive has 452 sectors in its outermost zone, and a 7200 RPM spin speed
(for latency of 4.17 ms). This family's head switch time is 1.5 ms and cylinder
switch time is 2.0 ms. We'll consider the flagship drive that has five platters
and hence ten surfaces:

STR = (10 * 452 * 512) / (2 * 10 * 0.00417 + (10 - 1) * 0.0015 + 0.002) =
23,399,798 bytes per second

The specification for maximum STR for this drive is in fact 23.4 MB/s. Out of
curiosity, let's do the same calculation for the 13.6 GB version of this drive,
which has only two platters:

STR = (4 * 452 * 512) / (2 * 4 * 0.00417 + (4 - 1) * 0.0015 + 0.002) =
23,223,683 bytes per second

The change is due entirely to the difference between head switch time and
cylinder switch time: if they were identical the STRs would be as well. Since
the drive with more platters performs a higher ratio of (faster) head switches
compared to (slower) cylinder switches, its STR is a bit higher. Still, it's only a
difference of less than 1% between the biggest and smallest members of the
family.

An important question to consider is how meaningful the STR numbers really
are: if you have the drive above, will it really let you read at a rate of about
23 MB/second? I'm sure you won't be shocked if I say "no". There are a
number of issues involved. First, since STR is derived directly from the media
transfer rate, its value also depends on what part of the disk is being read;
larger outer cylinders have the highest STR, smaller inner cylinders have the
lowest. Second, there's the matter of whether the access is really sequential.
There is a big difference between a 10 MB file that is laid out contiguously on
the disk, and one that is fragmented into a dozen pieces. Once you fragment
the file, you aren't doing a consecutive data transfer any more. Each
fragment of the file introduces the need for an additional positioning step to
the location where the next piece starts, which slows the transfer and
introduces other factors into the performance measurement. Finally, real-
world transfers incur all sorts of penalties due to operating system overhead
and other considerations. A good rule of thumb in the computer world is that
you never get the theoretical maximum of anything. :^)

STR has in the last few years started to get more attention than it
traditionally has--some would say too much. :^) It is important to those who
do a lot of work with large files, but not as critical to those who work with a
large number of smaller files, which includes many, if not most, Windows
users. It is probably best to value it roughly equally with key positioning
specifications such as access time.

mehedi hasan
mehedi@joinme.com

217

Sustained transfer rate is affected by just about every internal performance
factor you can name. :^) The number of platters influences it by changing the
mix of head and cylinder switches; actuator design and controller circuitry
affect the switch times; media issues and spindle speed influence the all-
important underlying media transfer rates. There's probably no other
performance specification that is affected by so many different design factors.

A final point about internal sustained transfer rates vs. external (interface)
transfer rates. In order to get the most from the hard disk, the interface must
be fast enough to be able to handle the maximum STR of the drive. This is
usually not a problem because most disk interfaces have sufficient
"headroom" to handle drives that run on them. However, many interfaces are
also backward-compatible; for example, you can put the drive discussed
above on an older IDE/ATA interface running at 16.6 MB/s. It will work, but
clearly you will not get STR of 23 MB/s over that interface. The converse is
that putting a drive on an interface much faster than it won't improve
performance much; but that's a topic for another section.

Next: External (Interface) Transfer Rate

mehedi hasan
mehedi@joinme.com

218

External (Interface) Transfer Rate

The internal transfer rate of the drive represents the speed with which bits
can be moved to (from) the hard disk platters from (to) the hard disk's
integrated controller. The external or interface transfer rate represents the
speed which which those bits are moved between the hard disk and the rest
of the PC. This is usually faster than the internal rate because it is a purely
electronic operation, which is typically much faster than the mechanical
operations involved in accessing the physical disk platters themselves. This is
in fact a major reason why modern disks have an internal buffer.

The external transfer rate is unique among hard disk specifications in that it
has almost nothing to do with the hard disk itself. The integrated controller
must have the right chip to support the interface, but that's about it. The
external transfer rate is dictated primarily by the type of interface used, and
the mode that the interface operates in. Support for a given mode has two
requirements: the drive itself must support it, and the system--usually
meaning the system BIOS and chipset, or add-in controller card--must
support it as well. Only one or the other does absolutely no good. External
transfer rate is affected by a variety of interface issues, discussed in much
more detail in the section on external interface performance factors.

External transfer rate is a perennial candidate for "most overrated hard disk
specification". The reason is that external transfer rate specs are usually very
high and impressive; manufacturers print them in big bold letters on their
retail boxes, and system makers highlight them on their spec sheets.
Unfortunately, they usually have very little to do with real-world performance,
because the drive's internal characteristics limit transfer performance.

As I've mentioned before, transfer consists of two steps, internal and
external. For typical transfers, the net speed of the transfer cannot be any
higher than the slower of these two components. Since the external transfer
rate of a drive is usually much higher than its internal sustained transfer rate,
that means that the STR will be the bottleneck, and thus the factor that limits
performance; the high transfer rate of the interface is mostly wasted. As an
analogy, suppose you have a 1/2" garden hose connected to a 3/4" pipe. The
1/2" segment will be what limits the flow of water; increasing the 3/4" pipe to
1" or even higher won't make a difference in how much water you get at the
end of the pipe.

There is one occasion where the external transfer rate does come into play: if
the data requested by the system is already in the disk's internal cache or
buffer. In that case, the data can be sent from the buffer to the rest of the
system at the full speed of the interface, whatever that happens to be.
Unfortunately, these situations represent such a small percentage of total
requests that the net effect of the higher interface speed on overall
performance is small. Today's IDE/ATA hard disks are designed to operate
with an interface speed of 100 MB/s, but their sustained transfer rates are
barely pushing 40 MB/s. This means the 100 MB/s speed only applies for the
occasional transfer that does not require actual access to the hard disk
platters.

mehedi hasan
mehedi@joinme.com

219

There is one area where the interface speed is very important to pay
attention to: you do not want it to be too low or performance will suffer. If
you take the 3/4" pipe mentioned above and reduce its diameter to 1/4",
suddenly it becomes the bottleneck, not the 1/2" diameter hose. If the
interface does not have enough speed to allow the hard disk to run at its full
STR, then performance can be substantially degraded. Since interfaces are
relatively inexpensive this is a situation you generally want to avoid: instead,
upgrade the interface. This issue occurs only when putting a new, fast drive
into a rather old, slow system.

A graphical representation of why interface transfer rates are over-rated. In
the
diagram above, which is "drawn" to scale, each pixel represent 500,000
bytes.
The blue box is a 45 GB hard disk (the IBM 75GXP.) The green box (see it?)
is the drive's internal 2 MB cache. The red box is the average sustained
transfer
rate from the platters to the cache, and the magenta box is the 100 MB/s
theoretical
interface transfer rate. As you can see, the cache is dwarfed by the disk, and
the
interface transfer rate is limited by the sustained transfer rate. STR is what
matters
when streaming data from the big blue box, instead of just the tiny green
one.

Hard disk manufacturers always provide lots of "head room" by upping the
interface standards in anticipation of advances in sustained transfer rates. In
2000 they moved from Ultra ATA/66, which was already sufficiently fast for
modern drives, to the 100 MB/s Ultra ATA/100 interface. This despite there

mehedi hasan
mehedi@joinme.com

220

being no IDE/ATA drive available that has an STR of even half that figure. It's
good to plan for the future; certainly a motherboard supporting a 100 MB/s
interface will give you more "room for expansion". Just don't think it will be
noticeably faster than one that "only" supports 66 MB/s, with today's drives.
And also don't forget that by the time drives need that throughput, you may
be using a different motherboard or PC altogether.

Note: I want to explicitly qualify my statements on this page by saying that
they apply primarily to the IDE/ATA interface, as well as single-disk
environments on SCSI. If you are running many drives on a SCSI channel--
such as you would with a SCSI RAID array--the speed of the interface does
become important very quickly, since the drives share the bandwidth of the
interface. See this discussion on RAID bus bandwidth for more on this issue.

Next: Other Performance Specifications

Other Performance Specifications

The important matters of positioning and transfer performance are of course
the ones that get most of the attention when considering hard disk
performance specifications--and rightly so. However, they are not the only
specifications that exist for hard disks. There are a few other specs that are
routinely found in hard disk data sheets that are indicative of various
performance characteristics of the drive, even if they aren't strictly related to
the drive's ability to do random accesses or sequential transfers. I take a look
at these in this section.

Next: Internal Cache (Buffer) Size

Internal Cache (Buffer) Size

All modern hard disks have an internal buffer, or cache, that is used as an
intermediate repository for data being transferred between the hard disk and
the PC. It is described in detail in this operation section. The size of this buffer
is usually given as a standard specification on modern drives.

Having some cache in a drive is somewhat important to overall performance;
the drive will use it to buffer recent requests and to "pre-fetch" data likely to
be requested by the system in the future. If this data in the cache is in fact
needed, it will be transferred to the system at the drive's external transfer
rate--much faster than would be possible if there were no cache. However,
the number of requests that fit into this category is relatively small.
Increasing the size of the cache even by a substantial percentage doesn't
change this very much, because no matter how large the cache, it will always
be a very small percentage of the total capacity of the drive. Caches today,
despite significant increases in size, are still far less than 0.1% of the size of
the disk drives they serve.

mehedi hasan
mehedi@joinme.com

221

As memory prices have fallen into the "dirt cheap" range, drive manufacturers
have realized that they can increase the size of their buffers at very little cost.
Certainly nothing is lost in doing this; extra cache won't hurt performance;
but neither does it greatly improve it. As a result, if interface transfer rate is
the "reigning champion" of overrated performance specifications, then cache
size is probably the "prime contender". :^) Some people seem to think a 2
MiB buffer makes a drive four times as fast as one with a 512 kiB buffer! In
fact, you'd be hard pressed to find even a 4% difference between them in
most cases, all else being equal. Not surprisingly, both external transfer rate
and cache size are overrated for the same reason: they apply to only a small
percentage of transfers.

The cache size specification is of course a function of the drive's cache
characteristics. Unfortunately, manufacturers rarely talk about any
characteristics other than the cache's size.

Next: Drive Start-Up Ready Time

Drive Start-Up Ready Time

Hard disks are one of the slowest components in the PC to become ready to
use when the power is applied to them. To put this in context, consider that it
takes less than a second from the time you hit the power switch until the
electronic components are "ready 'n rarin' to go". Hard disks, however,
always have their slow mechanical components to deal with. As a result, they
can take as many as 10 seconds until the platters "spin up" and the drive is
ready. The time from when the power is applied until the drive is ready is
called the drive start-up ready time or start-up time.

The drive start-up time is a parameter that usually is not given too much
attention, and for good reason: it has no impact on the performance of the
drive. The only time it generally comes into play is when the PC boots up so
quickly that it tries to boot the operating system before the drive is ready.
Newer drives start up quickly enough that this is usually not a problem, but
you may want to check this specification if you suspect you may have an
issue. Changing your BIOS settings to slow down the initial boot process may
be of assistance as well.

The drive start-up ready time spec is largely a function of the drive's spindle
motor, and to a lesser extent, its controller. The size and number of platters
also has an impact since more mass will cause the spindle assembly to take

longer to spin up to speed, all else being equal. Next: Spin-Up Time

mehedi hasan
mehedi@joinme.com

222

Spin-Up Time

The amount of time that is required for the disk platters to get up to full
operational speed from a stationary start is called the drive's spin-up time. It
is usually specified in seconds.

The importance of this specification depends entirely on how you use your
hard disk. If you are the type of user that starts up the computer and then
leaves the disks spinning all the time, this figure holds virtually no
significance. On the other hand, if you use power management to spin down
the disk after a couple of minutes of idle time, then whenever you go to use
the disk again after an idle period, you will have to wait for the drive to spin
back up to speed again. This spec is more important for notebook PC users
than those who use desktops, since power management is more important for
notebooks, and is more commonly used. To be honest though, either way, a
drive with slow spin-up time really represents more of an inconvenience than
a major performance issue. After all, once the drive is actually running in
normal use the spin-up time becomes irrelevant.

Spin-up time is of course a component of start-up ready time, since in order
to get ready when the drive starts, the platters must spin up. :^) It is a
function primarily of the drive's spindle characteristics and the number and
size of the platters. Smaller drives tend to have lower spin-up times, in part
due to lower mass and in part because they are used more for mobile
applications.

Next: Power Consumption

mehedi hasan
mehedi@joinme.com

223

Power Consumption

There are several reasons why power consumption is an area of concern for
PC users. The first is that the amount of power needed by the hard disks must
be provided for when specifying the power supply (although modern systems
with one hard disk don't generally need to worry about this). The second is
that the start-up power requirements of hard disks exceed their normal
requirements and must be given special consideration in systems with
multiple storage drives. The third is that more power consumption, all else
being equal, equates to more heat dissipated by the drive. The final one is
environmental: the trend is towards systems that use less power just for the
sake of using less power!

The power consumption specifications provided for a drive vary from
manufacturer to manufacturer. Some provide only a "typical" rating for the
drive during average conditions, a start-up peak value for the +12 V voltage,
and that's it. Others provide a comprehensive look at the drive's use of both
+5 V and +12 V power under various conditions. For example, the table
below contains the power consumption specifications for the IBM Deskstar
75GXP, four-and five platter models. Note that unlike most hard disk
specifications, power consumption normally is higher for drives with more
platters even within the same family--since they have more mass to move,
more power is required to turn the platters. Many manufacturers just quote
an average for the whole family, but IBM generally doesn't:

Operating Condition

+5 V
draw
(Amps,
RMS)

+12 V
draw
(Amps,
RMS)

Power
Consumption
(W)

Start-Up Peak 0.81 1.81 --

Peak 1.02 2.23 -- Random
R/W
Operation Average 0.41 0.78 11.5

Peak 0.47 2.23 --
Seek

Average 0.27 0.84 11.4

Idle Average 0.24 0.57 8.1

Standby Average 0.26 0.015 1.5

Sleep Average 0.17 0.015 1.0

Examining these numbers reveals a number of facts about how the drive uses
power. First, notice that when operating (platters spinning and actuator
moving), the +12 V draw is about 0.8 A; when idle (platters spinning but
actuator stationary), it is about 0.6 A; and when in standby (platters
stationary), +12 V is about zero. This tells you that roughly 3/4 of the +12 V
power is taken by the spindle motor and roughly 1/4 by the actuator
assembly. +5 V is primarily used to drive the controller's components, which

mehedi hasan
mehedi@joinme.com

224

is why even in standby mode a fair percentage of the +5 V power required
during operation.is needed. This is typical of modern drives. "Real-world"
power consumption will generally be close to what the manufacturer specifies,
but bear in mind that actual consumption will depend on a number of factors,
most especially the manner in which the drive is used.

Power consumption is primarily affected by the design of the drive's spindle
motor and the number and size of the spindle platters, and to a lesser extent,
other components such as the actuator and controller board.

Next: Hard Disk Internal Performance Factors

Hard Disk Internal Performance Factors

There are a number of design factors and issues that affect the performance--
and hence the performance specifications--of the hard disk. Of these, I refer
to performance considerations that relate only or primarily to the capabilities
of the hard disk drive itself as internal performance factors. In theory, these
are not directly related to the interface or other parts of the system external
to the hard disk, which means they should be reasonably consistent and even
"portable" from one system to another. These are really the basis of hard disk
performance, since they dictate the theoretical maximums; external factors
can only further constrain the limits imposed by the design of the hard disk
itself.

This section takes a look at the most important internal performance factors
of the modern hard disk. They are divided into three sections, reflecting the
different major areas of concern regarding internal performance
considerations. First, I take a look at three major design factors related to the
mechanics of the drive, which are probably the most important influence on
performance. Then, I'll discuss issues related to how data is recorded on the
platters. Finally, I'll describe some factors that relate to the drive's integrated
controller. For each factor, I will provide a reference to the performance
specifications it most directly impacts.

Note: In order to avoid duplication, I do not get into describing in detail how
the hard disk's various components work here; I instead refer to the
Construction and Operation section where appropriate.

Next: Mechanical Design Factors

mehedi hasan
mehedi@joinme.com

225

Mechanical Design Factors

The defining performance-limiting characteristic of hard disks compared to
the other main "performance" components is the fact that they operate
mechanically. Consider the other components of the PC that have a
fundamental impact on overall system performance: processors,
motherboards, system memory, video cards. They are all solid-state--no
moving parts--and as such much faster than the mechanical parts that make
up hard disks. That's why memory access times are in nanoseconds, for
example, while hard disk access times are in milliseconds--a million times
slower!

Since mechanical parts are largely what limit hard disk performance, that
makes them the most important factors affecting performance. This section
takes a look at three of these key mechanical design factors in more detail.

Next: Size and Number of Platter Surfaces

Size and Number of Platter Surfaces

The data in the hard disk is stored on the platter surfaces. (The operation and
characteristics of the platters and media are described in detail here,
including a lot of performance-relevant detail.) The number of platters and
the size of the platters themselves vary between different hard disk designs,
and have an important impact on performance in several ways.

First, let's look at platter size. As discussed in much detail here, the trend is
towards smaller and smaller platter sizes for a number of reasons; two of
them being particularly important to performance. The first one is that
smaller platters allow the data on the drive to be located physically closer
together, so there is less distance for the hard disk actuator to have to move
when doing random reads or writes on the disk. This directly improves
positioning performance on random accesses. The second is that smaller
platters have lower mass and higher rigidity, which enables them to be spun
at higher speeds for a given power of spindle motor (or conversely, to use a
lower-powered spindle motor for the same spin speed). The main cost of
using smaller platters is reduced capacity, but with areal density constantly
increasing--thus doubling capacity per square inch every year or two anyway-
-this is a trade-off more people than ever are willing to make.

The number of platters has a more subtle influence on performance; this is
why you will sometimes see small differences in the specifications of drives of
different capacity in the same model family. The first impact is a relatively
simple: more platters means more weight and thus more for the spindle
motor to turn. This generally means that the spin-up speed and power
consumption of a drive with four platters will be a little higher than those
figures for the same drive with two platters.

The other impact of the number of platters is a bit more controversial: not
everyone agrees on the extent to which these effects exist. All else being
equal, a drive with more platters will have slightly better positioning

mehedi hasan
mehedi@joinme.com

226

performance and a slightly higher sustained transfer rate than one with fewer
platters. If you double the number of data storage surfaces, you can store the
same amount of data in (roughly) half as many cylinders; this keeps the data
"closer together" physically on the drive, reducing the extent to which the
actuator must move when doing seeks. You also replace many cylinder
switches with head switches when you have more platters; a one-platter drive
will have a 1:1 ratio of head switches to cylinder switches on a sustained
read; a four-platter drive will have a 7:1 ratio. Head switches are faster than
cylinder switches, so this slightly improves STR, though it's certainly not a
large effect. I show the difference between drives of the same family in the
discussion of the sustained transfer rate specification.

The size and number of platter surfaces on the drive have an impact on seek
time (and hence access time), media transfer rate and sustained transfer
rate, spin-up speed, and power consumption. Of course, the basic design of
the drive also matches the platter size and number to the power of the
spindle motor.

Next: Actuator Characteristics

Actuator Characteristics

The hard disk's actuator--or more correctly, its actuator assembly, comprising
the actuator, head arms, head sliders and read/write heads--is one of the
most important performance-limiting components in the hard disk. It's also
one of the least-discussed and least-understood; I discuss it in detail in this
operation section.

The primary impact that the actuator assembly has is on positioning
performance. Since random accesses require the heads to move over the
surface of the disk to the correct location, and the actuator controls this
process, the actuator assembly is the primary influence on the drive's seek
time. Seek time in turn is the largest component of access time. In order to
improve performance, manufacturers are constantly striving to reduce seek
times by improving the speed of the actuator assembly. The first step taken
was to move to voice-coil actuators from stepper-motor designs. Today,
improvement is evolutionary, done by increasing the strength of the actuator
itself, reducing the weight and size of the actuator arms and sliders, and
tweaking other design parameters.

The characteristics of the actuator also have an impact, albeit relatively
minor, on transfer performance. The reason is that the actuator has an
impact on cylinder switch time, which is a component of sustained transfer
rate. Again, the impact is relatively small compared to the impact of the other
factors that influence STR.

Next: Spindle Motor Speed and Power

mehedi hasan
mehedi@joinme.com

227

Spindle Motor Speed and Power

The spindle motor is one of the most important components in the hard disk,
because its quality and power have a direct impact on many key performance
and reliability concerns. It is discussed in detail in this section.

The drive's spindle speed affects both positioning and transfer performance
and is thus one of the most important directly-quoted performance
specifications unto itself; it is described in its own specification section. It
affects positioning performance because it directly correlates to the latency of
the drive (and in fact, is the only factor that affects the latency of regular
hard disk drives). Latency, in turn, is an important component of access time,
the specification that best correlates to overall positioning performance.
Spindle speed affects transfer position because it is related to the drive's
media transfer rate, which is the prime transfer performance specification.

Note: While spindle speed affects the media transfer rate, it is not
proportional to it. The reason is that it is more difficult to read and write at
very high linear densities when running at very high spindle speeds. This
means that in some cases a drive running at 5400 RPM will have a higher
areal density than a similar drive running at 7200 RPM. The transfer rate is
still normally higher for the 7200 RPM drive, because the spindle speed is
33% higher and the linear areal density is usually only smaller by a factor of
10% or less (though this could change at any time; who knows what those
engineers are up to! :^))

The power of the spindle motor has an impact on the drive's spin-up speed,
for obvious reasons. Also, since the spindle motor is the primary consumer of
power in the hard disk, its design has the biggest impact on overall power
consumption. In some ways, slower drives have an advantage here; it takes
longer to spin anything up to 10,000 RPM than to 5400 RPM (unless you use a
correspondingly larger motor in the faster drive.)

Next: Data Recording and Encoding Factors

mehedi hasan
mehedi@joinme.com

228

Data Recording and Encoding Factors

One of the most amazing sets of technologies in the world is the combination
of various construction and geometry characteristics of the hard disk, which
allow data to be stored at such incredible capacities and retrieved with such
speed and precision. The end results of the advances of recent years are
capacities approaching 100 GB and incredible read/write speed, attributes
that seemed unattainable in such a short period of time a decade ago. And
there's nowhere to go but up from here!

This chart shows the progress of areal density over the
last several years, as refleced in IBM's Travelstar series
of 2.5" form factor hard disk drives. Increased areal
density leads directly to larger capacity and better
performance. Note that the density scale is logarithmic!

Original image © IBM Corporation
Image used with permission.

In this section I will discuss some of the key influences on performance that
are related to the way that data is stored on the hard disk. This includes a
look at the way data is written to the disk medium, and also how it is
organized on the disk.

Next: Recording Density

mehedi hasan
mehedi@joinme.com

229

Recording Density

Recording density refers to the number of bits that can be placed along a
given length of track on a hard disk. Measured in bits per inch, and also
sometimes called bit density, linear density or linear areal density--the last
term being an oxymoron of sorts!--it is one of the two components of areal
density. You can read about it in more detail here.

Recording density is an important performance factor because it is related to
both of the "positioning plus transfer" specifications: areal density and spindle
speed. Obviously, since it is a component of areal density, it is directly
proportional to areal density. As such, it directly or indirectly affects both the
access time of the drive and its sustained transfer rate, sometimes in more
than one way. How does it influence spindle speed? Well, as explained here,
increases in recording density can limit the ability of the drive's spindle motor
to be increased--or vice-versa, a faster spindle may requires the recording
density to be reduced on the drive to ensure reliability.Recording density itself
is increased primarily through advances in media materials, improved platter
substrates, and improved read/write head technologies.

Next: Read/Write Head Technology

Read/Write Head Technology

The read/write heads actually write and read the data to and from the hard
disk, so you'd think they'd have at least some impact on the drive's overall
performance! And in fact this is true: they do. Improvements to read/write
head technologies, and related components such as the head sliders, are key
to allowing increases in linear density, which in turn affects areal density and
hence both positioning and transfer performance. They also allow further
miniaturization of the head sliders and related components, which indirectly
allows faster and more accurate positioning performance.

However, you rarely hear read/write heads mentioned in discussions of hard
disk performance. The reason it isn't often discussed is not because it isn't
important, but rather because it doesn't change very frequently. There have
been only five general read/write head technologies used in the last 30 years!
So in some ways, nobody talks about the heads because there isn't a lot to
talk about. :^) Most manufacturers make the change to new head
technologies at roughly the same time. Further, many of the manufacturers
license head technology from each manufacturers. Today virtually every disk
drive sold uses GMR heads; therefore, this is basically assumed and not really
a topic for discussion. This equality in basic design generally leaves only
minor tweaks to differentiate head designs between models.

Next: Encoding Method

mehedi hasan
mehedi@joinme.com

230

Encoding Method

The encoding method of the disk refers primarily to the algorithm(s) used to
change user data into a pattern of bits that can be stored on the platters. This
isn't nearly as simple as it sounds; therefore, several different but related
methods have been developed over time to facilitate this conversion (and of
course, subsequent conversion in the other direction when the data is read
back from the disk.)

Improved encoding methods have one main impact on hard disk
performance: they increase recording density, and thus areal density. This
improves positioning and transfer performance as described in those sections.
Encoding methods are discussed in detail in this section; it contains a relevant
comparison between the different methods used over the years, showing how
data density has been increased as they have been improved.

Like hard disk read/write heads, encoding method is rarely discussed in hard
disk performance circles because it doesn't change very often, and also
because it doesn't vary greatly from one drive to the next. Mostly, its effects
are bound up in the areal density specification, as well as the transfer rate
specifications.

Next: Track and Sector Layout

Track and Sector Layout

There are several effects on performance that come about as a result of how
the data on the surface of the platter is organized. In order to make sense of
a platter surface that can store 10 GB of data or more, there has to be a way
of organizing it into smaller, more manageable pieces. To accomplish this
end, each surface is split into tracks, and then each track is further split into
sectors, each sector holding 512 bytes of user data (normally). The track and
sector layout of the hard disk, and some of the issues in how this organizing
is done, are discussed here.

The most important impact of the track and sector layout is on sustained
transfer rate. The various techniques used in improving the way data is
organized on the hard disk all are primarily oriented around increasing the
amount of data that can be stored in a given amount of space, and this
mainly improves sustained transfer rate. Some advances also improve
positioning speed. Here's a quick list of the performance enhancements that
fall into this general category:

• Optimal Interleaving: All modern drives use optimal (1:1)
interleaving, which cannot be changed. Thus, this factor is not really
relevant for distinguishing modern drives. However, you should
understand that proper interleaving does ensure that the maximum
possible transfer rate is realized on a drive. Older drives that were
sometimes set to the wrong interleave factor would have greatly
reduced transfer rates compared to their potential maximums.

mehedi hasan
mehedi@joinme.com

231

• Zoned Bit Recording: The use of zoned bit recording has allowed the
larger outer tracks of a hard disk to be used to their full potential. It is
also the reason that the media transfer rate of a disk depends on what
part of the disk is being accessed; since outer tracks have more
sectors, they have a higher transfer rate.

• Cylinder and Head Skew: Optimal cylinder and head skew factors
built into the drive controller are necessary for high sustained transfer
rates; they optimize cylinder switch time and head switch time
respectively.

• Sector Format: Improved sector formats and higher sector format
efficiency allow a larger percentage of a track to contain data,
increasing capacity and transfer rates. Also, the "no ID" sector format
improves random positioning by saving time during random seeks, and
avoiding "detours" around remapped sectors.

Next: Controller and Cache Factors

Controller and Cache Factors

There are a few performance factors that are related to the hard disk's
integrated controller, and its internal buffer. Since these parts of the hard
disk aren't typically the most important in terms of their influence on overall
performance, this discussion is relatively brief. However, these components
do have an impact on performance. I also want to point out that some of the
aspects of how the cache functions are more important than just its size,
which it sometimes seems is all that most people focus on today...

Next: Controller Circuitry and Algorithms

mehedi hasan
mehedi@joinme.com

232

Controller Circuitry and Algorithms

All modern drives include an integrated controller, also called its logic board,
that functions as its "nerve center"; it runs the drive, controlling everything
that happens within it. It also interfaces the drive to the rest of the PC
system. The controller is discussed in this operation section.

The controller has an important but basically non-measurable impact on the
overall performance of the hard disk. In some ways, I liken the controller of
the hard disk to the umpires of a baseball game. One way of assessing how
good a job the umpires are doing is as follows: if you don't notice that they
are there, they are doing a good job; if you do notice them then maybe not.
Similarly, the controller's job is to make sure everything happens as it should
without drawing undue attention to itself.

The controller's speed in some ways affects the performance of everything in
the drive simply because it manages everything in the drive. However, since
it is much faster than the drive's mechanical components, its speed is
shadowed by that of the slower components. The controller's design doesn't
usually improve performance much, but if it is not designed to meet the
needs of the other parts of the system, it can in theory harm performance.
For example, when you are doing a sustained read from the drive, the
controller cannot make the platters spin faster or affect the disk's recording
density. It has no way to "speed up" the transfer, but if it is not designed to
have enough capacity to handle the disk's maximum throughput, it can limit
performance. Obviously, hard disk manufacturers make sure this doesn't
happen.

Special algorithms within the controller, such as those used to manage
multiple commands, can have a direct impact on performance under some
types of usage.

Next: Cache Size and Type

mehedi hasan
mehedi@joinme.com

233

Cache Size and Type

All modern hard disks have an internal cache, that is used as a buffer
between the fast PC system and the slow mechanics of the hard disk. It is
discussed in some detail here.

The size of the cache is a commonly-quoted (and often overhyped)
performance specification. It of course has some impact on overall
performance, but the exact size of the cache is not nearly as important as
many people have been led to believe. The impact of the cache is on burst
transfers of data over the external interface.

The type of the cache is rarely mentioned in specification sheets, but its
speed has some small impact on performance as well. Since reads and writes
depending on the cache are themselves small, differences in cache
technologies don't make much real-world performance difference at all. Most
disks use for cache whatever current memory technology is mainstream and
inexpensive; today, that's SDRAM.

Next: Write Caching Policy

Write Caching Policy

There's a complication involved in caching write requests to the disk that
doesn't exist when doing reads: should the write be cached (put into the
disk's buffer) or forced to go through directly to the disk platters? If you don't
cache the write you effectively remove the buffering that is in place to isolate
the system from the slow mechanics of the drive. If you do cache the write
you improve performance, but what happens to the write if the power is cut
off to the disk before it can be put out to the platters? This is not a simple
question, and doesn't have a simple answer; see here for a full discussion on
the subject.

Most people won't worry about the potential risks of write caching, especially
when they find out that it improves performance. :^) That's fine; but you
should try to at least find your drive manufacturer's "write policy policy" when
shopping for a drive; it's a good thing to know. A lot of drives use write
caching without explicitly saying so.

It should be noted that write caching improves performance pretty much only
in a random write environment: writing small blocks to the disk. The cache
size is small relative to the size of the disk, so write caching won't improve
performance much on a long sequential write. (On a long sustained write the
buffer will fill up, and thus force writes to the platters to occur in order to

provide space in the cache for later blocks in the sequence.) Next:
Thermal Recalibration

mehedi hasan
mehedi@joinme.com

234

Thermal Recalibration

Thermal recalibration is a procedure that was at one time commonly
employed to correct for shifts in the positions of tracks on drive surfaces as
they heated up. It is discussed in this section.

On some older drives, thermal recalibration caused performance problems
due to unexpected interruptions for the recalibration to be performed. These
primarily affected transfer performance, particularly for users manipulating
large files. To combat this problem, manufacturers created special
(expensive) drives that did not use thermal recalibration. Fortunately today,
this is no longer an issue, since recalibration is not required with today's
drives the way it once was.

The most important thing to remember about thermal recalibration today in
terms of performance is: don't pay extra for a drive with a big label on it that
says "no thermal recalibration!" :^)

Next: Hard Disk External Performance Factors

Hard Disk External Performance Factors

Performance factors that are solely a function of the capabilities of the hard
disk drive itself are the internal performance factors. However, there are also
external performance factors to be considered, which relate to how the hard
disk relates to other components in the system. Everything from the file
system used on the disk, to the disk's interface speed, to the performance of
the CPU and other key components, can affect disk performance.

This section discusses external factors that affect the performance of a hard
disk in the "real world" of a system. Note that many of these factors are so
external that they don't relate directly to the drive itself, but rather the rest of
your system. As such, they often don't correspond directly to any of the hard
disk performance specifications. Rather, they influence the real performance
you will see when using the drive on a daily basis.

Since external factors can be different for the same drive in two different
systems, this is a good reason to be careful about assuming that a given
performance level on one PC will translate directly to another.

Next: Disk Interface Factors

mehedi hasan
mehedi@joinme.com

235

Disk Interface Factors

While overrated in many ways, the speed of the interface is important in the
grand scheme of hard disk performance. The interface can form a bottleneck
to overall performance if it is too low for the hard disk's maximum sustained
transfer rate, and can also have other effects on real-world performance. The
issues discussed in this section of course primarily affect the disk's interface
speed performance specification.

The two most popular hard disk interfaces used today, by far, are IDE/ATA
and SCSI (and enhancements of each), so those are the ones that I focus on
in this discussion. There is an entire large section devoted discussing interface
issues in general, so I won't delve into too much on that subject here. I will
focus primarily on how the interface affects performance, but you will still find
more information on interface performance effects in the interface section.
Also see the comparison of SCSI and IDE for more issues of relevance to
interface performance.

Next: Interface Type, Mode and Speed

Interface Type, Mode and Speed

The nature of the interface between the hard disk and the rest of the PC
system plays a role in its overall performance. The type of interface is the
sole determinant of the interface transfer performance specification, and the
way the interface is actually implemented has an impact on the real-world
performance of the storage subsystem.

The interface type of almost all drives today is either IDE/ATA or SCSI.
Clearly, the decision of which to use involves a much "bigger picture" analysis
of your needs and overall system design, since you can't interchange the
drives. (I compare the two interfaces here.) However, even within each of the
two types there are various modes that control how fast the interface runs.
Choosing the best mode for your drive helps to ensure optimal performance. I
discuss IDE/ATA modes here, and SCSI modes in this section.

While new hard disks are generally designed to be able to run at the fastest
interface speeds possible for their interface, actually obtaining this interface
speed requires an appropriate controller, hardware and/or drivers on the
system side. Drives will generally "fall back" to slower interface speeds if
required. For example, all new IDE/ATA drives are designed to run in Ultra
DMA mode 5, allowing a theoretical maximum transfer rate of 100 MB/s.
These drives will function on older interfaces at 66 MB/s, 33 MB/s or 16.7
MB/s if required. Performance will be negatively affected, but only
significantly eroded if the speed of the interface falls below the maximum
sustained transfer rate specification of the drive.

High interface speeds also require appropriate support from the system bus
upon which the interface runs.

mehedi hasan
mehedi@joinme.com

236

Next: CPU Utilization

CPU Utilization

Whenever a hard disk is transferring data over the interface to the rest of the
system, it uses some of the system's resources. One of the more critical of
these resources is how much CPU time is required for the transfer. This is
called the CPU utilization of the transfer. CPU utilization is important because
the higher the percentage of the CPU used by the data transfer, the less
power the CPU can devote to other tasks. When multitasking, too high a CPU
utilization can cause slowdowns in other tasks when doing large data
transfers. Of course, if you are only doing a large file copy or similar disk
access, then CPU utilization is less important.

CPU utilization is usually highest when running an IDE/ATA hard disk using a
programmed I/O mode, and lower when using a DMA mode. Most newer
systems use DMA modes for hard disk data transfer, provided that the
appropriate hardware and drivers are installed. SCSI drives use a dedicated
controller (host adapter) and typically also have low CPU utilization.

CPU utilization is one of those performance factors that is both grossly
underrated and overrated at the same time. :^) Most people have never even
heard of it; it often seems though that a big percentage of those who do
understand its role worry about it way too much. :^) Like most performance
issues, sweating small differences in numbers is usually pointless; it doesn't
matter much if your CPU utilization is 5% or 10%; but if it is 80% or 90%
then you are going to see an impact on the usability of the system if you
multitask.

Another key issue is that faster drives transfer more data, and more data--all
else being equal--requires more processing time. It's totally invalid to
compare the CPU utilization of drives of different generations without
correcting for this very important consideration.

One hard disk utility commonly employed for testing CPU utilization is HD
Tach. (Note that this should be considered as information, not an
endorsement!)

Next: Command Overhead and Multiple Device Considerations

Command Overhead and Multiple Device Considerations

As discussed in this section, a certain amount of overhead is required to
process any command to the hard disk. However, that's only one type of
overhead, the kind within the hard disk involved in doing a random access to
the platters. There are other overhead considerations as well that exist within
the system itself. These include the time for the system to process the
command at a high level, operating system overhead, and so on. Every
"piece" of this overhead reduces overall performance by a small amount.

mehedi hasan
mehedi@joinme.com

237

In comparing the SCSI and IDE/ATA interfaces, command overhead is an
important consideration. SCSI is a much more intelligent and capable
interface, but it is also more complex, which means more work must be done
to set up a transfer. This means that SCSI can be slower than IDE/ATA in a
single-user, single-tasking environment, even though it can be much faster
and more capable in a machine that is supporting multiple users or multiple
devices on the same bus. SCSI shines when you need to use multiple devices
on a single bus, where IDE/ATA starts to become cumbersome. See here for
more on the eternal IDE vs. SCSI question.

There is also another consideration: the number of devices that are sharing
the interface. This is particularly a concern with SCSI, which allows for many
devices on a bus (IDE/ATA and enhancements allow just two per channel). If
you are using four hard disks on a SCSI bus in a server that is handling many
simultaneous requests, and each drive has an internal sustained transfer rate
of 18 MB/s, that 80 MB/s for Ultra2 Wide SCSI will probably, at many points
in time, be in full use. On an IDE/ATA machine only one device can use any
given channel at a time, so you only need to compare the speed of the
interface to the speed of each drive that will use it, not the sum of their
transfer rates.

Next: PC System Factors

PC System Factors

As I probably reiterate in too many places on this site, the components in a
PC system are interrelated, and affect each other's performance in many
ways. This makes it difficult to measure the performance of any component in
isolation. Some tests are better able than others to isolate the component
being tested, but it also depends on the component. Hard disks are virtually
impossible to completely isolate from the rest of the system, because every
access of the hard disk involves a transfer through the main processing
subsystems, and thus involves almost all of the main components of the PC.

Various parts of the PC not only affect the way a hard disk benchmarks; they
also affect the real-world usability of the storage subsystem as a whole. In
this section I take a look at some key issues related to the PC system as a
whole and how they influence hard disk performance.

Next: CPU Speed

mehedi hasan
mehedi@joinme.com

238

CPU Speed

Since the system processor (CPU) is involved in everything that happens in
the PC, it of course has an impact on hard disk performance. However, this
impact isn't nearly as great as you might think. The reason is that the CPU is
so much faster than anything related to the hard disk, particularly today, that
it normally spends a great deal of time waiting for the hard disk. There's
virtually no way for the CPU to really affect the performance of the storage
subsystem all that much if the hard disk and system are properly set up. On
older systems though, the performance of the CPU was sometimes a real
factor in hard disk performance. And even today, if an interface mode is used
that results in high CPU utilization by the hard disk interface, overall
performance can become somewhat dependent on the performance level of
the CPU itself.

The real issues with CPUs and hard disks are related to benchmarks. Every
benchmark that you run on your hard disk involves instructions that are
processed on the main system CPU. A faster CPU will run these benchmarks
faster than a slower one, and I have found it to be quite consistent that
testing the same drive on a machine with a much faster CPU, will result in
higher scores. This is accentuated when using one of the transfer modes that
requires intervention from the processor, such as programmed I/O.

Next: Interface Bus Speed

Interface Bus Speed

Every hard disk read or write involves a sequence of data transfers. Looking
at a read: first the data is retrieved from the hard disk platters. It is
transferred to the drive's internal cache by its controller. Then the data is sent
over the interface cable to the interface controller on the PC system. That
controller resides on a system bus, and uses the system bus to communicate
the data to the CPU and the rest of the PC. System buses are discussed in
detail in their own section.

Normally the speed of the bus used for the hard disk interface is not
something that you really need to be concerned with. Virtually all systems
today use the PCI bus for interfacing to their hard disks and other storage
devices, which is fast enough to handle even the high interface transfer rates
of modern drives. (Even if your IDE cables plug into the motherboard directly,
they are still going to an IDE controller chip that logically "resides" on the PCI
bus.) However, as the interface transfer rate of IDE/ATA drives (maximum
100 MB/s) now approaches the limits of the PCI bus (about 127 MB/s), at
some point this will become an issue even on new systems; probably within
two or three years. Hard disks continue to get faster and faster.

On older systems interface bus speed limits can become a real issue. There
are still systems around that use ISA bus hard disk controllers, for example.
Even if you could get one of these older cards to work with a large, modern
drive, the slow speed of the ISA bus would drag it down. ISA is limited to a
maximum bus bandwidth of under 16 MB/s, easily exceeded even for

mehedi hasan
mehedi@joinme.com

239

sustained transfers by most any modern drive, not to mention burst
transfers!

Even on new systems, alternative means of interfacing hard disks can have a
major impact on performance. The widespread adoption of the universal serial
bus (USB) standard has been a boon for portability of devices and easy
interchanging of hardware. Some companies are now even offering USB-
based hard disks. These are convenient, but the slow speed of the USB
interface--which was designed for slow items like scanners and keyboards,
not hard disks--effectively cripples these drives, limiting them to a maximum
transfer rate of about 1 MB/s. That may be OK for moving data between PCs,
archiving seldom-needed data or doing smallish backups, but it's very slow
for just about anything else!

Next: System BIOS Issues

System BIOS Issues

The system BIOS is the set of core routines that provides the primary
interface between the main hardware of the system and the software that
runs upon it. It plays a critical role in the functioning of any PC; see here for a
full section covering it.

The BIOS affects hard disk performance in two distinct ways. The first is that
the BIOS itself was traditionally used for access to hard disks, and thus the
BIOS's routines had an impact on overall performance. Most of today's
operating systems now "bypass" the BIOS to access the hard disks directly,
reducing this influence greatly. See this section for a discussion of how the
BIOS relates to the hard disk in a general way.

The second is related to the way most systems are designed. In a typical
"regular" PC, the motherboard contains an integrated IDE/ATA system
controller. Since it is part of the motherboard, it is configured and controlled
using code in the system BIOS. This means that the BIOS must provide
support for increased capacity when larger drives come out--to avoid BIOS
capacity barrier problems--and also support for performance-enhancing
features like higher-speed transfer modes, block mode, etc. If your system is
a few years old, its BIOS may need to be updated or you could find the
performance of newer hard drives restricted.

Next: Operating System and Controller Disk Caching

Operating System and Controller Disk Caching

The process of caching describes the use of buffers to separate operations
that differ significantly in speed, so the fast one is not held up by the slower
one (or at least, not as much). See here for more general details on caching
and how it works. In a system there are many levels of caching that are used
to allow different-speed components to run unimpeded; in the disk subsystem
there are usually two levels.

mehedi hasan
mehedi@joinme.com

240

The disk drive's logic board contains an integral cache. This cache is used to
separate the internal mechanical read/write operations from transfers over
the bus, and to hold recently accessed data. A larger cache will result in
improved performance by cutting down on the required number of physical
seeks and transfers on the platters themselves. Smarter caching algorithms
can have the same effect.

In addition to this hardware caching, most operating systems use software
disk caching. Since the system memory is many orders of magnitude faster
than the hard disk, a small area of system memory (usually a few
megabytes) is set aside to buffer requests to the hard disk. When the disk is
read, the data are stored in this cache in case they are needed again in the
near future (which they often are). If they are needed again, they can be
supplied from the cache memory instead of requiring another read of the hard
disk.

As with the disk's internal buffer, increasing the size of the cache improves
performance--to a point. If you increase it too much, your operating system
will run out of usable memory for programs and data, and the system will be
forced to rely on much slower virtual memory. In this case your use of
memory as virtual disk is causing the system to also need to use your disk as
virtual memory, defeating your original intent!

In addition to the two typical caches in the hard disk subsystem, some SCSI
host adapters add a third level of cache on the controller itself; these are
sometimes called caching controllers. This cache can be several megabytes in
size and logically sits between any system disk cache and any buffer on the
hard disk. Again, this improves performance by reducing the number of
accesses required to the disk. In this case when the system tries to read data
from the hard disk, the controller will intercept the request and if it is in the
cache, satisfy it from there instead of going to the hard disk. This both
improves system speed greatly and also cuts down on traffic on the SCSI bus.

Next: Redundant Arrays of Inexpensive Disks (RAID)

Redundant Arrays of Inexpensive Disks (RAID)

Many higher-end systems, especially servers, now employ a technology called
redundant arrays of inexpensive disks, or RAID. This concept allows for great
improvements in both reliability and performance. The idea is to store data on
multiple disk drives running in parallel. The primary motivation in many cases
is reliability. From a performance standpoint, most RAID levels improve
performance by allowing multiple accesses to happen simultaneously, and
also by using algorithms that reduce seek time and latency by taking
advantage of having multiple drives at their disposal. The exact performance
impact depends entirely on the level of RAID used; some improve read
performance at the expense of write performance, for example.

I have written an entire section on RAID that covers its issues, levels and
implementation in some detail, including a discussion of its impact on storage
subsystem performance. Once used almost exclusively in a corporate setting

mehedi hasan
mehedi@joinme.com

241

for large, expensive machines, a new crop of inexpensive RAID controllers
and hard disks is bringing RAID into the "mainstream", and small RAID arrays
are now commonly seen in the machines of "power users".

Next: File System Factors

File System Factors

There are several factors related to how the disk is logically structured and
the file system set up and maintained, that can have a tangible effect on
performance. These are basically independent of the hard disk and will have
similar impacts on any hard disk. They serve almost solely to influence the
real-world performance of the hard disk. Better decisions about how you
manage your hard disk's file system can translate directly into better
performance on any PC.

See the section on hard disk file systems for much more information on these
issues.

Next: File System Type

mehedi hasan
mehedi@joinme.com

242

File System Type

The file system refers to the structures that are used to organize data at a
high level on the disk; the file system is used by the operating system to
store files, directories and other relevant information on the disk for later
retrieval. As such, the file system is highly operating-system-dependent. In
most cases you don't generally have a "choice" between different file system
types. However, in some operating systems you do, and there can be a
performance impact from the choice.

Some file systems store files in packages as small as 512 bytes, while others
store files in larger chunks called allocation units or clusters. Some are very
simple file systems with few features and little overhead (such as the FAT file
system used in DOS and Windows 9x), and others have many features but
comparatively higher overhead (NTFS used in NT). Windows NT and 2000
typically give you your choice of file system; Windows 2000 supports FAT16,
FAT32 and NTFS. See here for more on the different file systems used in the
PC.

Which file system you use can have an effect on overall performance, but it is
relatively small: typically a few percentage points. It's also difficult to predict
exactly what the effect will be for a given system when selecting from one file
system to another. Since the file system affects so many other usability
factors of the PC, performance is usually not one of the primary factors for
deciding between them. As an example, consider the "FAT vs. NTFS" decision,
which is probably the most common "file system decision" in the PC world
today. These two file systems are so different in so many ways that most
people choose one or the other for reasons particular to their use, not
performance. If you need the high security and advanced management
features of NTFS, you are probably going to use NTFS even if FAT is a few
percentage points "faster". Similarly, if you need the compatibility and
simplicity of FAT, changing to NTFS for a few ticks on a benchmark is
probably unwise.

One file system choice that is commonly made in part for performance
reasons is "FAT16 vs. FAT32"; this is really a "sub-file-system" choice, since
FAT16 and FAT32 are really two flavors of the same file system. The primary
performance impact of changing between these has nothing to do with
anything inherently different between FAT16 or FAT32, but rather the
difference in cluster size that results from the choice. See here for more
details on this.

Next: Partitioning and Volume Position

mehedi hasan
mehedi@joinme.com

243

Partitioning and Volume Position

Partitioning is the process of dividing the hard disk into subsections, called
volumes. It is an important initial step in preparing a hard disk for use, and is
discussed in detail on this page.

The choice of how the hard disk is partitioned can have a tangible impact on
real-world performance. This is due to several different but related effects
that you should keep in mind when deciding how to partition your drive:

• Cluster Size: The way that the hard disk is partitioned in most cases
determines the cluster size of the partition, which has a performance
impact. See this section for details.

• Zone Effects: Modern hard disks use zoned bit recording to allow
more data to be stored on the outer tracks of the hard disk than the
inner ones. This directly impacts the media transfer rate of the disk
when reading one zone of the disk as opposed to another; see here for
details. Hard disks fill their space starting from the outer tracks and
working inward. This means that if you split a hard disk into three
partitions of equal size, the first partition will have the highest transfer
rate, the second will be lower, and the third lower still. Therefore, you
can put the more important files on the faster partitions if transfer
performance is important to you.

• Seek Confinement: Seek times are roughly proportional to the linear
distance across the face of the platter surfaces that the actuator must
move the read/write heads. Using platters of smaller diameter
improves seek time, all else being equal, and partitioning can have the
same net effect. If you split a drive into multiple partitions, you restrict
the read/write heads to a subsection of the physical disk when
seeking, as long as you stay within the same partition. The tradeoff is
that if you do a lot of moving data between partitions, or accessing
multiple partitions simultaneously, you'll force the heads to "jump"
back and forth between two completely different areas of the disk,
reducing performance. Some who truly desire performance over all
else will buy a hard disk with double the capacity that they need,
partition it in two pieces and use only the first half! Or use the second
half only for archiving infrequently-used data.

• Defragmentation Time: Larger partitions tend to become full of,
well, more data, obviously. :^) A larger partition can take much longer
to defragment than a smaller one. Since fragmentation reduces
performance, some people prefer to partition their drives to reduce
defragmentation time, enabling them to do it more frequently.

There are, of course, non-performance issues in partitioning. See this long
description of partitioning issues in the file system section as well.

Next: Cluster Size

mehedi hasan
mehedi@joinme.com

244

Cluster Size

The FAT file system used by DOS and Windows divides all of the file data on
the hard disk into clusters comprised of multiple sectors. A cluster is normally
between 2 kiB and 32 kiB in size, in powers of two, containing between 4 and
64 sectors of user data. This is done to make managing the location of data
easier. Clusters and related file system structures are discussed here.

The choice of cluster size has an impact on real-world performance, though
for most people it is not all that significant. In a nutshell, larger clusters waste
more space due to slack but generally provide for slightly better performance
because there will be less fragmentation and more of the file will be in
consecutive blocks. This occurs because when clusters are larger, fewer of
them are needed than when they are small. A 10,000 byte file would require
three 4 kiB clusters but only one 16 kiB cluster. This means this file will
always be in a contiguous block if stored in a 16 kiB cluster, but could be
fragmented if stored in a 4 kiB cluster size partition. (The slack tradeoff is a
waste of 4 kiB more storage in the case of the 16 kiB clusters.) Small cluster
sizes also have a negative effect on partition because they require larger file
allocation tables, to manage their much larger numbers of clusters. These
tradeoffs are discussed in detail here.

Traditionally, most people have tried to use cluster sizes as small as possible
in order to reduce slack and make more efficient use of disk space. This is of
course a valid goal, but it has become increasingly irrelevant today as hard
disks approach truly gargantuan sizes and the price per GB of storage drops
to amazingly low levels. Today, the large file allocation tables resulting from
enormous FAT32 partitions means that balancing slack reduction with
performance effects is also important, unless you are on a very tight budget.
I certainly can't recommend forcing Windows to use 4 kiB clusters on a 30 GB
partition "to reduce slack" as some people do, because I personally wouldn't
want to take the performance hit of having 30 MiB file allocation tables--and I
wouldn't want to have to wait for that puppy to defragment either! :^)

Next: Volume Free Space

mehedi hasan
mehedi@joinme.com

245

Volume Free Space

A relevant performance consideration that most people don't pay attention to
is how full their hard disk is. The amount of free space on a hard disk affects
the performance of the drive, for most of the same reasons that partitioning
affects it:

• The more data on the volume, the more the data is spread out over
the disk, reducing positioning performance;

• A disk that is more full forces new files to the inner tracks of the disk
where transfer performance is reduced; and

• Drives that are full both take longer to defragment and tend to be
more fragmented in the first place.

The "Peter Principle" of hard disks is that the amount of junk put on a hard
disk expands to fill the available space, regardless of the size of the hard disk.
Imagine what PC users 10 years ago would have thought about people with 6
GB hard disks needing an upgrade because their "disk is too full!" I had the
personal experience the other day of surprisingly discovering that a 15 GB
hard disk volume I had just installed was down to 2 GB free! Most people
don't clean out their disks until they have to. :^)

The bottom line though is clear: the more "stuff" you put on that humongous
hard disk you just bought, the more you will slow it down. :^) Don't fill your
drive with clutter just because you have the space. Regularly go through your
hard disk to get rid of files you don't need; if you think you will need them "at
some point" then archive them to a tape, CD-R disk or other removable
medium.

Another impact of this is that you cannot reliably compare performance
benchmarks even on the same disk in the same system if you change the
amount of data on the drive between runs. All drives will tend to show a
reduction in performance as you fill them up, so benchmarking should always
be done on empty drives to eliminate this variable.

Next: Fragmentation

mehedi hasan
mehedi@joinme.com

246

Fragmentation

Fragmentation refers to the tendency of files stored in the FAT file system to
become broken into pieces that can end up in very different places within a
hard disk volume. How fragmentation occurs is explained in detail here.

A fragmented file system leads to performance degradation. Instead of a file
being in one continuous "chunk" on the disk, it is split into many pieces,
which can be located anywhere on the disk. Doing this introduces additional
positioning tasks into what should be a sequential read operation, often
greatly reducing speed. For example, consider a 100,000 byte file on a
volume using 8,192 byte clusters; this file would require 13 clusters. If these
clusters are contiguous then to read this file requires one positioning task and
one sequential read of 100,000 bytes. If the 13 clusters are broken into four
fragments, then three additional accesses are required to read the file, which
could easily double the amount of time taken to get to all the data.

Defragmenting a very fragmented hard disk will often result in tangible
improvements in the "feel" of the disk. To avoid excessive fragmentation,
defragment on a regular basis; usually once every week or two is sufficient.
See the system care guide for more.

Next: Disk Compression

Disk Compression

Compression is a technique that is used to reduce the amount of space
required by files on a hard disk volume. Very popular during the late 1980s
and early 1990s, compression is rarely used today on new systems. (I am
speaking of volume compression here, not file-by-file compression such as
ZIP files, which are as popular as ever!) Compression is discussed in detail in
this section.

Most people have been told (repeatedly) to avoid compression because it
greatly reduces performance. This is true to some extent, but the picture isn't
nearly as simple as this blanket statement might suggest. Compression adds
overhead to every disk access but reduces the amount data that needs to be
retrieved from the platters for a given file. With modern high-speed CPUs, the
overhead isn't nearly the issue it once was, while hard disks haven't improved
in performance by nearly the same percentage. Therefore, there is a
performance tradeoff at work here.

The proliferation of huge, cheap hard disks has made volume disk
compression largely irrelevant today. I don't recommend it except for use on
older systems that cannot be upgraded to a larger disk for one reason or
another. The reason for this is not primarily due to performance effects, but
rather because compression complicates disk usage and simply isn't needed
in an era where hard disk space costs half a penny per megabyte.

Next: Hard Disk Quality and Reliability

mehedi hasan
mehedi@joinme.com

247

Hard Disk Quality and Reliability

"Every drive dies; not every drive really lives."
 -- Braveheart meets 21st century technology. :^)

A hard disk's performance is its most important characteristic--right up until
the point where it stops working. Then, suddenly, you don't care how fast it
is--or rather, was. You just want it to start working again. (OK, stop groaning
already about the quote. :^))

Many people take their hard disk drives for granted, and don't think about
their reliability much (other than worrying about their disk crashing some
day). While the technology that hard disks use is very advanced, and
reliability today is much better than it has ever been before, the nature of
hard drives is that every one will, some day, fail. It is important to
understand how drives fail and why, and how to interpret what manufacturers
claims about reliability really mean.

This section takes a comprehensive look at hard disk quality and reliability.
First, I explain in some detail the different hard disk quality specifications that
you are likely to encounter when shopping for a hard disk. Next, I discuss
issues relevant to the matter of quality and reliability. I then discuss some of
the features that hard disk manufacturers are including in their drives to
improve quality and reliability. Finally, I discuss warranty issues, and what to
do should you have a hard drive failure.

Next: Hard Disk Quality and Reliability Specifications

Hard Disk Quality and Reliability Specifications

There are a number of different specifications used by hard disk drive
manufacturers to indicate the quality and reliability of their products. Some of
these, such as MTBF, are frequently discussed (but not always all that well
understood). Others are obscure and typically of interest only to hard drive
aficionados. All are important to those who care about hard disk quality--
which should be anyone who stores data on a hard disk. :^) In this section I
discuss the most important of these specifications, what they mean, and
perhaps most importantly, what they don't mean! You'll also find some
discussion of specifications in the section on quality and reliability issues,
particularly temperature specifications and noise specifications.

Note: In addition to the hard-disk-specific numbers explained in this section,
hard disks usually come with a number of environmental specifications that
dictate how they should and should not be used in order to operate reliably.
These are essentially the same as those provided for power supplies, so
instead of repeating them I will refer you to the power supply section. The
only caveat about applying the power supply environmental specifications
here is that hard drives are more sensitive to altitude than most components
and can fail when operated at altitudes over 10,000 feet; see here for the
reason why.

mehedi hasan
mehedi@joinme.com

248

Next: Mean Time Between Failures (MTBF)

mehedi hasan
mehedi@joinme.com

249

Mean Time Between Failures (MTBF)

The most common specification related to drive reliability is mean time
between failures or MTBF. This value, usually measured in hours, is meant to
represent the average amount of time that will pass between random failures
on a drive of a given type. It is usually in the range of 300,000 to 1,200,000
hours for modern drives today (with the range increasing every few years)
and is specified for almost every drive.

This number is very often misinterpreted and misused. Usually, the "analysis"
goes like this: "Gee, a year contains 8,766 hours. That means my 500,000
MTBF drive should last 57 years." (I have even seen this on the web site of a
major hard disk manufacturer that shall remain nameless to spare them the
embarrassment!) After concluding that the MTBF means the drive will last for
decades, amusingly, one of two opposite things usually happens: either the
person actually thinks the drive will last half a century or longer, or the
opposite: they realize this is crazy and so they write off the entire MTBF figure
as "obvious exaggeration and therefore useless". The real answer of course is
neither. (It is obviously impossible for any individual hard disk to be tested to
anywhere near the amount of time required to provide a MTBF factor near
even 100,000, never mind 500,000.)

To be interpreted properly, the MTBF figure is intended to be used in
conjunction with the useful service life of the drive, the typical amount of time
before the drive enters the period where failures due to component wear-out
increase. MTBF only applies to the aggregate analysis of large numbers of
drives; it says nothing about a particular unit. If the MTBF of a model is
500,000 hours and the service life is five years, this means that a drive of
that type is supposed to last for five years, and that of a large group of drives
operating within this timeframe, on average they will accumulate 500,000 of
total run time (amongst all the drives) before the first failure of any drive. Or,
you can think of it this way: if you used one of these drives and replaced it
every five years with another identical one, in theory it should last 57 years
before failing, on average (though I somehow doubt we'll be using 10 to 100
GB spinning-platter hard disk drives in the year 2057. :^))

There are in fact two different types of MTBF figures. When a manufacturer is
introducing a new drive to the market, it obviously has not been in use in the
real world, so they have no data on how the drive will perform. Still, they
can't just shrug and say "who knows?", because many customers want to
know what the reliability of the drive is likely to be. To this end, the
companies calculate what is called a theoretical MTBF figure. This number is
based primarily upon the analysis of historical data; for example: the
historical failure rate of other drives similar to the one being placed on the
market, and the failure rate of the components used in the new model. It's
important to realize that these MTBF figures are estimates based on a
theoretical model of reality, and thus are limited by the constraints of that
model. There are typically assumptions made for the MTBF figure to be valid:
the drive must be properly installed, it must be operating within allowable
environmental limits, and so on. Theoretical MTBF figures also cannot
typically account for "random" or unusual conditions such as a temporary

mehedi hasan
mehedi@joinme.com

250

quality problem during manufacturing a particular lot of a specific type of
drive.

After a particular model of drive has been in the market for a while, say a
year, the actual failures of the drive can be analyzed and a calculation made
to determine the drive's operational MTBF. This figure is derived by analyzing
field returns for a drive model and comparing them to the installed base for
the model and how long the average drive in the field has been running.
Operational MTBFs are typically lower than theoretical MTBFs because they
include some "human element" and "unforeseeable" problems not accounted
for in theoretical MTBF. Despite being arguably more accurate, operational
MTBF is rarely discussed as a reliability specification because most
manufacturers don't provide it as a specification, and because most people
only look at the MTBFs of new drives--for which operational figures are not
yet available.

The key point to remember when looking at any MTBF figure is that it is
meant to be an average, based on testing done on many hard disks over a
smaller period of time. Despite the theoretical numbers sometimes seeming
artificially high, they do have value when put in proper perspective; a drive
with a much higher MTBF figure is probably going to be more reliable than
one with a much lower figure. As with most specifications, small differences
don't account for much; given that these are theoretical numbers anyway,
350,000 is not much different than 300,000.

Overall, MTBF is what I consider a "reasonably interesting" reliability statistic-
-not something totally useless, but definitely something to be taken with a
grain of salt. I personally view the drive's warranty length and stated service
life to be more indicative of what the manufacturer really thinks of the drive. I
personally would rather buy a hard disk with a stated service life of five years
and a warranty of three years, than one with a service life of three years and
warranty of two years, even if the former has an MTBF of 300,000 hours and
the latter one of 500,000 hours.

In the real world, the actual amount of time between failures will depend on
many factors, including the operating conditions of the drive and how it is
used; this section discusses component life. Ultimately, however, luck is also
a factor, so keep those backups current.

Next: Service Life

mehedi hasan
mehedi@joinme.com

251

Service Life

While every product has a life expectancy, not every industry acknowledges
this up front! Due to the incredibly precise nature of the technology used in
hard disks (we're talking about millionths of an inch in many regards) and the
fact that mechanical components are used, it is impossible to guarantee the
reliability of even the highest-quality disks for more than a few years. Hard
disks follow the so-called bathtub curve model of failures: they have a
relatively high rate of "infant mortality" (or early failure), a period of very low
failures for several years, and then a gradual reduction in reliability as they
reach the end of their useful life. To ensure that those who rely on hard drives
do not continue to use them as they enter the period of increased failure that
results from component wear-out, every hard disk has defined as one of its
specifications the manufacturer's intended service life for the product.

The service life of a modern hard disk is usually about three to five years. In
my opinion, what the manufacturer is telling you with this number is this: "If
your drive gives you good service for this length of time without any trouble,
you've gotten good value from it and you should consider getting a new drive
if reliability is important to you; the drive isn't going to fail the instant it hits
this age, but the chances of it failing will increase significantly the longer you
use it past this point". This number is in many ways more important than the
"impressive" MTBF numbers that are so eagerly thrown around, and is in fact
intended to be used in conjunction with MTBF to present a realistic picture of
drive life and reliability.

Interestingly, the claimed service life is often longer than the warranty period
for the drive. For example, the service life might be five years but the
warranty period only three years. Think about what this means. ;^) Basically,
it says that the manufacturer thinks the drive should last five years, but they
aren't going to bet on it lasting more than three! I personally think the
warranty period is a better indication of a drive's true useful life--to a point--
because the warranty period is where the manufacturer "puts their money
where their mouth is". Sometimes warranty periods are made longer for
marketing reasons, but no manufacturer will warrant a product for three
years if they expect to see significant problems in that time, because they will
lose their shirts.

If reliability is important, you may want to make sure you get a new hard disk
before your warranty period is up, or at the very least, before the drive
reaches the end of its service life. Of course, at the rate technology changes,
in three years you will probably want a new disk for performance reasons as
well. Oh, and it goes without saying that anyone who cares about hard disk
reliability should be performing regular backups.

The real world life of a hard disk is almost always going to be significantly
higher than the stated service life, which tends to be very conservative. One
reasons why is that even if the warranty doesn't cover the entire stated
service life, most companies don't want to see their drives failing within the
period of time that they say they won't--it looks bad. Another reason is
because the service life only represents when the odds of failure increase;
there is still a statistical distribution of actual failures. I have used many hard

mehedi hasan
mehedi@joinme.com

252

disks that have been in operation for 10 or even 12 years, and these are older
technology drives that never had anywhere near the stated reliability levels of
today's disks. So there certainly is no reason to believe that the day after
your drive's third anniversary, you need to yank it and replace it with a new
one. But just remember that the longer you go past the drive's service life,
the more the chances of a failure increase. The environmental conditions, and
how the drive is used, will also have an important impact on its overall life.
See this section for more on component life.

Next: Start/Stop Cycles

Start/Stop Cycles

The read/write heads of the hard disk float on a cushion of air over the
surface of the platters. Each time the power is applied to the drive, the
platters spin up to speed, and the buildup of air under the heads causes them
to lift off the data surfaces. When the power is cut, the platters spin down,
the cushion of air dissipates, and the heads drop back to the surface of the
drive. (Actual contact with the drive normally occurs in a dedicate landing
zone, to ensure the heads don't contact parts of the disk containing user
data.)

Each time the drive starts and stops a small amount of wear occurs to the
heads and also to other components such as the spindle motor. For this
reason, hard drives are given a specification for the minimum number of
start/stop cycles they are designed to handle during their service life. The
value for a desktop drive is typically between 30,000 and 50,000 cycles (and
remember that this is not an average, but a minimum). Notebook drives,
which are more commonly spun up and down a great deal to save battery
power, usually have even higher numbers.

This specification, like MTBF and service life, provides a useful clue about the
quality of the hard disk, but should not be sweated over. In the great-and-
never-ending debate over whether to leave hard disks running or spin them
down when idle, some look at the fact that start/stop cycles are specified as
evidence that stop/start cycles are "bad" and therefore that drives should
always be left running 24/7. As always, maintain perspective: if you start
your hard disk in the morning and stop it at night every day for three years,
that's only about 1,000 cycles. Even if you do it ten times a day, every day,
you're not going to get close to the minimum specification for almost any
quality drive, and for notebooks the problem is less significant because the
drives are generally designed to withstand many more cycles.

IBM drives that use its head load/unload technology are often given a
specification for minimum load/unload cycles instead of start/stop cycles. This
is basically the same concept, except that the numbers are typically much
higher. Some IBM notebook drives are spec'ed for 300,000 load/unload
cycles! Even if you started and stopped the drive 100 times a day it would
take you over eight years to get to that number.

Next: Error Rates

mehedi hasan
mehedi@joinme.com

253

Error Rates

Ack! Hard disk errors! Surely, "this is the stuff that PC nightmares are made
of". :^) Fortunately, true errors are rarely encountered when using hard
disks. To help users understand better the rate at which errors will occur with
a hard disk, manufacturers provide anywhere from one to several error rate
specifications.

The most common error rate spec is the drive's unrecoverable error rate,
which is usually specified as "<1 in 10N bits", where "N" is usually between 12
and 15. "Unrecoverable" means that the drive is unable to use its error-
correcting code, retries or other techniques to recover from the error in
reading the disk and thus properly recreate the data. If "N" is 14, then that
means this will occur every 100 trillion (100,000,000,000,000) bits read from
the disk. Not too shabby. :^)

In fact, drives usually have several different error rate specifications; they are
just usually not put into the short data sheets commonly distributed by hard
disk manufacturers. In fairness, unrecoverable errors are the most important
ones, but there are also specifications for recoverable errors, errors recovered
after multiple reads and so on. To find these, you generally need to download
the product manual for the drive or contact the manufacturer's technical
support department. For a full explanation of these various errors and what
they mean, see this full discussion of errors and error recovery.

Error rate specifications are typically used to compare drives. Within the same
general class of drive there are usually relatively few differences between
manufacturers. The biggest difference in error rate can be seen by comparing
newer drives to older ones--newer drives are usually significantly better
despite pushing the design envelope with higher speed and much greater
capacity.

Next: Warranty Length

Warranty Length

One of the most important quality specifications, the length of the warranty is
one that can only be considered indirectly technical, because it is more of a
manufacturer policy than a technical measurement. It is however a number
that "boils down" in rough terms the quality of the disk drive, for the simple
reason that if a manufacturer warrants a drive for much longer than the drive
actually is expected to last, they lose a lot of money when the warranty
claims come pouring in.

Retail warranties for hard disks are usually either three years or five years in
length. Three-year warranties are typical for consumer-grade (usually
IDE/ATA) drives, and five-year warranties are the norm for "enterprise" class
(usually SCSI) drives. I am not sure if it was by design that these two
standards came to be, but they are fairly universal. It seems likely that the
companies match each others' warranty length to avoid getting into a

mehedi hasan
mehedi@joinme.com

254

competitive battle that would stretch warranty lengths out and cost all of the
manufacturers in the end.

Does the fact that a drive has a five-year warranty mean that it is higher in
quality than one with a three-year warranty? The answer is "yes and no". To
some extent these more expensive drives are manufactured to more exacting
standards because they are sold for much higher prices to clients who plan to
use them in often-critical business applications. However, at least some of the
motivation behind longer warranties is to sell the drives as being high quality
and/or to match the warranty periods of other companies. It's a bit of a
"chicken-and-egg" situation. And since every drive you look at it in a given
class is likely to have the same length of warranty as any other, the length of
the warranty doesn't do much to help you differentiate between drives.
(Although it does establish a standard for a given class of drive and give you
reason to be suspicious of any drive with a warranty that is much below that
standard.)

Here's something else that most people don't really think about--especially
those who recommend high-end drives with five-year warranties over
"cheaper" drives with "only" three-year warranties: are you really still going
to be using that new drive in four years? Considering that most people who
buy high-end drives need high performance, and considering that the
performance of today's drives will be a joke compared to that of drives made
in four years, the answer for many people is "no". The length of the warranty
doesn't matter if the drive is sitting in a box with your leftover stereo cables
and that extra printer cable. However, if you tend to buy a drive and use it for
many year, that extra two years of warranty could be quite valuable.

There's a lot more to a hard disk's warranty than its length; it's quite fair to
say that all warranties are not created equal. For example: what is the
manufacturer's policy for replacing drives that fail during warranty? That's
often at least as important as how long the warranty coverage is. I have
written this separate section to discuss the various issues involved in hard
disk warranties.

Next: Hard Disk Quality and Reliability Issues

mehedi hasan
mehedi@joinme.com

255

Hard Disk Quality and Reliability Issues

Quality and reliability specifications are theoretical numbers that reflect the
drive's quality characteristics under average--or in some cases "ideal"--
conditions. In actual operation, however, the reliability of a hard disk depends
as much on how the storage subsystem is implemented as it does on the
characteristics of the drive itself. No implementation factors can make the
drive more reliable than it is specified to be, but mistakes in the way the drive
is used can sometimes make it less reliable. There are several different issues
that impact upon this "real world" reliability.

In this section I will take a look at topics related to reliability such as cooling,
noise and vibration, and power management. I will also discuss determining
when a drive is failing, and also look at some software causes for reliability
problems (which are often mistakenly blamed on hardware!)

Next: Hard Disk Quality: Luck Of The Draw?

Hard Disk Quality: Luck Of The Draw?

If you read the technical groups on USEnet or spend time on technically-
oriented Web discussion groups for any reasonable length of time, you will
see people post asking "what is a good brand of X?" all the time, where X is
any type of component. When "X" is "hard drive", the results are usually
pretty easy to predict: virtually every major manufacturer will be mentioned
by at least one person as being "great" and by another as being "horrible".
The end result is that you have no idea what to do. Why does this happen?

The simple fact of the matter is that most major hard drive manufacturers
make very high quality products, and most hard disks provide their owners
with years of very reliable service. However, all manufacturers make the
occasional bad drive, and sometimes, manufacturers will have a problem with
a particular product. If you happen to buy one of these, you will experience a
failure, and in all likelihood you will hate that company and avoid their
products from then on, perhaps with good reason. The problem is that many
people will generalize this very small sample size into "Brand X sucks", when
this very well may not be the case. They just may have been unlucky with
what might in actuality be one of the best drives on the market. Meanwhile,
they will post a frustrated-sounding message telling everyone "DON'T BUY X!"
Human nature is such that there could be thousands of people using that
particular model with no problems, but almost none will bother to post saying
"I bought a new PC with an X hard drive in it and every day I use it, it doesn't
fail!" :^)

There are occasions where manufacturers will go into "slumps" and have time
where their products fall in quality compare to those of other companies. And
of course, if there is a known issue with a specific model, you should avoid it.
The key when doing your research is to look for trends. Don't over-value a
single sample regardless of what it says.

mehedi hasan
mehedi@joinme.com

256

There are many ways that a hard disk can fail. The one that usually comes to
mind first, the infamous "head crash" is not the only way or even necessarily
the most common any more. There can also be problems with bad sectors
showing up on the drive, for example. Many people don't think of this, but the
integrated controller can also sometimes be the culprit for a bad drive. See
this discussion of failure modes, and this section in the Troubleshooter for
specifics on drive failures and possible solutions.

Next: System and Drive Cooling

System and Drive Cooling

In order to ensure long life and proper reliable operation, all hard disks are
designed to function only in specific temperature ranges. The user of the hard
disk must keep the drive within the specifications to be sure that the drive will
continue to work well, and to maintain the drive's warranty status. You can
find out the temperature allowances for a particular drive model by consulting
the drive's product manual or data sheet, normally available for free
download at the drive manufacturer's web site.

There are in fact several different temperature limits that are specified for
hard disks:

• Non-Operating Temperature Range: This is the range of acceptable
temperatures for the drive when it is either in storage, or in a PC that
is in transit or otherwise not operating. This range is normally very
wide, much wider than the operating temperature limits, since the unit
is much less sensitive to extremes of temperature when it is not
functioning. A typical range would be -40°C (-40°F) to 70°C (158°F).
Clearly few users will have a problem with these numbers.

Warning: If a drive is allowed to go below freezing, or if it is quickly exposed
to a large temperature change, it must be acclimated before use. See here for
more details.

• Minimum Operating Temperature: The lowest acceptable
temperature for the drive when in operation. A single number is
normally provided for this value, with 5°C (41°F) being typical. Again,
due to the heat generated by the hard disk and the fact that almost all
PCs are used indoors, this is rarely much of a concern.

• Maximum Operating Temperatures: The highest temperature
allowed for the drive when in operation. Since the mechanical and
electrical components within the hard disk--especially the spindle
motor--produce heat, the biggest problem with keeping drives within
operating parameters is not exceeding maximum allowable
temperatures. A number of different temperature values are usually
provided, depending on the drive manufacturer and model:

o Case Temperature: The highest acceptable temperature
allowed, measured at a specific point on the metal of the case.

mehedi hasan
mehedi@joinme.com

257

o Component Temperatures: Some manufacturers provide a
number of different maximum temperature values, measured
on the surface of various components on the drive (especially,
the hard disk's logic board). This method is more precise and
takes into account the fact that some components run hotter
than others. In practice, due to the amount of work involved,
these different temperature measurements are rarely used
except in special applications.

o "Absolute" and "Reliability" Temperatures: Some
companies provide two sets of case and component
temperature limits. The first set is the absolute maximum
temperature(s) allowed for the drive. The second set is the
maximum allowed for the drive in order to meet its reliability
and MTBF specifications. Of course, the reliability temperatures
are lower than the maximum temperature. Since reliability is so
important for hard disks, the "reliability" temperatures are the
ones to aim for.

The temperature at which the drive operates is dependent on the temperature
of the system--you can have a drive run too hot in a system that is otherwise
quite cool, but if the rest of the system case is hot, the drive doesn't have a
chance. See this discussion of system cooling for more on this subject.
Staying within temperature tolerances is usually only a problem with newer,
faster drives with high spindle speeds, and in fact, heat is one of the prices
that those who need the best performance must sometimes pay. In some
cases active drive cooling is required.

See this full discussion of drive cooling options for more on this important
subject.

Next: Noise and Vibration

mehedi hasan
mehedi@joinme.com

258

Noise and Vibration

Due to their mechanical nature, there are several characteristics of hard disks
that aren't relevant to most other PC components. Among these are the noise
and vibration created by the disk drive. (Noise and vibration are of course two
parts of the same phenomenon.) Since most devices inside the PC have no
moving parts, they don't make noise. Hard disks on the other hand have very
high-speed motors and actuators, both of which can make considerable noise
and generate vibrations. Like cooling, noise issues have become exacerbated
in recent years primarily due to the increase in spindle speeds of modern
drives. Faster actuators are also part of the issue.

Hard drive noise specifications are normally provided as two numbers. The
values correspond directly to the two different mechanical devices that make
noise in the drive:

• Idle Noise: This is the noise level the drive makes whenever the drive
is in operation (and not in sleep or standby mode), regardless of what
it is doing; it is caused by the spindle motor and the rotation of the
platters.

• Seek Noise: This is the noise level when the drive is performing
positioning tasks, particularly random seeks. It is caused by the
movement of the actuator assembly (as well as the spindle motor and
platters of course, since they continue to spin during seeks!)

Hard drive noise is specified by the manufacturer in bels (or sometimes
decibels; they are the same unit except that one bel equals ten decibels.) A
"bel" is a logarithm of a ratio between two sound values. It is defined as
follows:

Noise level (bels) = log10 (N1 / N0)

Where "log10" means a base-10 logarithm, "N1" is the noise level of the device
being measured, and "N0" is a reference noise level. (Usually, N0 is taken as
the threshold of human hearing, the quietest sound audible to the average
person. The actual value of N0 is not important as long as all the noise
figures are calculated using the same reference point.) The reason for the
logarithm is notational convenience; the human ear can detect sound
intensities in a tremendous range: up to a factor of 1,000,000,000,000 from
the quietest to the loudest. Logarithmic notation expresses these sounds in a
range of 0 to 12 bels, saving us all those zeroes. :^)

Note: Be sure to remember, when comparing noise specifications, that the
values are base-10 logarithmic. That means a hard disk with a noise
specification of 5.0 bels is not 25% louder than one that reads 4.0 bels; it is
900% louder: 10 times louder.

Companies always provide noise specifications, and some hard disk reviewers
have started measuring noise levels with noise meters. Frankly, I don't put a
lot of stock in these measurements and figures. I would even go so far as to
say that they have almost no bearing on real world noise perception and by

mehedi hasan
mehedi@joinme.com

259

themselves are not useful for deciding if a drive model is going to give you a
noise problem. Here are my reasons:

• Noise is a very subjective and personal matter. It's very possible to
put two people in a room with the same system and have person A be
"driven crazy" by the noise and person B not even realize the PC is
turned on.

• Some types of noise bother certain people more than others, because
humans have different sensitivity to sounds of various frequencies. For
example, some people find certain drives have a high-pitched "whine"
due to their spindle motors that others can't even detect; some find
the spindle noise acceptable but the seek noise irritating, and some
are the opposite.

• Hard disk noise levels depend a great deal on the case in which they
are installed, and the location of the case relative to where the user is
sitting. A small desktop case right in front of the user will make noise
seem much more significant than a large tower case with the hard disk
mounted in the rear, sitting on the floor next to a desk! And if a high-
speed drive is installed in a server in a locked, ventilated, insulated
computer room, does its noise level matter much at all?

• Absolute noise figures don't mean anything unless you take them in
the context of the surroundings. If a drive has a high noise rating then
it might be considered "noisy", but if you are using it in a crowded
office with a lot going on, you're probably not going to hear it.

• Noise levels can sometimes vary between specific units even of the
same model of drive.

• While I trust manufacturers to make accurate sound readings, some of
the individual hardware reviewers using sound meters haven't been
properly trained in their use. Sound measurement is not a simple
thing; you must compensate for the noise of other components and
other effects to ensure the readings are accurate.

So fine, look at the specifications for the drive. Clearly, if there is a big
difference in the noise values, you are more likely to have a noise issue with
the drive that has the higher specification. But in reality, it all depends on
your personality, your surroundings, and your ears. If you aren't the type to
care about the noise level of your PC, just don't worry about the whole issue.
If you are, then you should if at all possible find a PC that has the drive you
are considering installed into it, and listen to it yourself. That's the ideal trial
step, but not always possible. A second choice is to look on the Internet for a
significant number of subjective comments. If dozens of people are
complaining about the noise level of a drive, then there is a good chance the
drive may bother you; look for one that is commonly used and has many
comments saying the drive is quiet.

Another key issue with hard disk noise is that while seek noise specifications
just consist of the actuator noise "added" to the spindle noise, they are very
different kinds of noise! If you are sitting in front of a PC for hours, your brain
will tend to "tune out" the background noise of the spindle. The noise of the
actuator is intermittent however, and much louder. It is this noise that often
causes the most objections, and again, it's a very personal thing.

mehedi hasan
mehedi@joinme.com

260

To some extent, you must realize that noise and vibration are a price you pay
for increased performance. Idle noise is directly correlated to spindle speed,
and seek noise is correlated to faster actuators (and hence reduced seek
times). It is also true however that manufacturers are constantly improving
their products, which means that the generation of a given technology is
important. For example, the first 7200 RPM drives were rather noisy and hot;
now 7200 RPM is a mature technology and the drives of this speed run much
quieter and cooler than their ancestors.

An important final note: to minimize vibration and noise in a PC, ensure that
the drive has been properly mounted. If the drive is loose then its inherent
vibrations can become amplified by the metal that touches it, making the
entire PC seem to resonate in some cases! See here fore more on hard disk
mounting.

Overclocking

A popular activity undertaken by many PC hobbyists is the process of
overclocking. This refers to running hardware above its standard and rated
speed specifications in order to increase performance. I don't think
overclocking makes sense for most people; I provide some background on
overclocking, and my opinions on it, in this section.

Overclocking a PC inherently reduces the reliability of virtually every part of
the system. Since a PC is interconnected, and overclocking usually affects key
components such as the system processor and the motherboard, in some
ways everything in the system is involved. When overclocking involves
running just the CPU at a higher speed, it has little direct reliability effect on
the storage subsystem. However, when overclocking the system bus,
reliability concerns with hard drives often come into play. Overclocking the
PCI bus upon which the IDE/ATA interface runs can cause IDE hard disks to
behave spuriously. Since most SCSI host adapters also run on the PCI bus,
they can also behave strangely if the PCI bus is run faster than its normal
speed.

How a particular hard disk will react to overclocking is not easy to determine,
and like most overclocking activities, requires trial and error. It also depends
on how far you are pushing things, and especially, on the type of
motherboard you are using and its integrated hard disk controller. However
while it is true that "your mileage may vary", as the saying goes, it is also the
case that some hard disk brands and models take to overclocking more than
others. Research on any of the hundreds of overclocking sites, newsgroups
and other resources can help you decide on a suitable drive if overclocking is
one of your priorities.

Next: Diagnostic Software

Diagnostic Software

All hard disk manufacturers write and maintain special diagnostic software for
their drives. The purpose of diagnostic software is simple: to test drives and

mehedi hasan
mehedi@joinme.com

261

diagnose potential problems with them. These programs usually come with
retail drives on a floppy disk, or can be downloaded from the manufacturer's
web site (at no charge). In some cases a single program will function for any
of the manufacturer's drives, but in other cases a different program is needed
depending on the drive model; check the manufacturer's instructions.

If you suspect a problem with your hard disk, you should always run a
diagnostic program to check the status of the drive. For one thing, the
technical support department of most manufacturers will require the
information provided by the diagnostic tool in order to help you with any
problems you experience with the drive. Some will require an error code or
other status information before agreeing to declare a drive defective and
issue an RMA for it.

Often, the diagnostic functions of these utilities are combined with other
features for erasing the disk and are sometimes (incorrectly) called "low-level
format utilities". For more information on this software, see this section.

Warning: I recommend against using any diagnostic utility or other software
tool written by one manufacturer on another manufacturer's drives, unless
the manufacturer of your drive instructs you to do so. While it is very unlikely
that a problem will result--such software usually interrogates the drive to
determine its type and will refuse to touch a drive made by another
manufacturer--there is always the possibility of problems. It's best to use
utilities designed specifically for your particular make and model.

Tip: The operative word when using diagnostic software is "software". Like
any software program, diagnostic utilities can occasionally have bugs or
problems. There was recently a version of a diagnostic utility that was
incorrectly returning error codes on drives that turned out to be perfectly fine.
Be sure to double-check any error reports with your drive maker's technical
support department before concluding that the drive is bad.

Next: Failure Modes and Failure Determination

mehedi hasan
mehedi@joinme.com

262

Failure Modes and Failure Determination

There are a large number of different ways that a hard disk can fail; these are
normally called failure modes, and determining that a failure has occurred--
and why--is called failure determination. The most "famous" way that a hard
disk can go is via the infamous head crash. In reality, head crashes are the
"airline disasters" of the hard disk world: they are dramatic, well-known and
feared, but actually responsible for a small percentage of total drive
problems.

A comprehensive list of failures that can cause a drive to fail would be as long
as your arm, and there's really no point in compiling one. This short list will
give you a flavor for the types of failures that occur:

• Mechanical Failures: These include component failures related to the
mechanics of the disk. Problems of this type usually relate to the
spindle motor or bearings, such as motor burnout, "stuck" bearings,
excessive heat, or excessive noise and vibration. Actuator problems
would also fit into this general category. Unsurprisingly, mechanical
failures of hard disks comprise a large percentage of total problems.

• Head and Head Assembly Failures: The infamous head crash fits in
here, as do other problems related to the heads: improper flying
height, head contamination, defects in head manufacture, excessive
errors on reads or writes, bad wiring between the heads and the logic
board. These too comprise a large percentage of total failures.

• Media Failure: This class of problems relates to trouble with the
platters and the magnetic media, formatting, servo operation and the
like. This would include drives that fail due to read or write errors,
poor handling, scratches on the media surface, errors in low-level
formatting, etc. They are relatively uncommon.

• Logic Board or Firmware Failures: These are problems related to
the drive's integrated logic board, its chips and other components, and
the software routines (firmware) that runs it. Again, problems in this
area of the disk are fairly uncommon compared to the other
categories.

Determining that your drive has a failure isn't always the simplest thing to do.
Some failures manifest themselves rather clearly and obviously; others are
quite a bit more subtle. Here are some of the most common signs that your
hard disk may be failing--not definitely, but possibly. (Remember that
sometimes apparent drive failures turn out to only be problems with
configuration, drivers or the like... also see the Troubleshooting Expert
section on hard disks):

• Errors: If the drive is returning read errors or "sector not found"
errors, that is an obvious sign of a problem. Sometimes errors appear
at a "higher level"; for example, if you experience repeated corruption
of the Windows registry, this could be due to a drive problem (though
a hundred other things could cause it as well.)

• Changed Behavior: If the drive has suddenly changed its behavior in
a dramatic way due to nothing you (believe) you have done, this may
be a bearer of bad tidings. This is especially true of noise: if the drive

mehedi hasan
mehedi@joinme.com

263

always made a particular noise then that noise is probably normal for
the drive type (some models make certain clunks or clangs when they
start or shut down). But if the drive starts making new noises then you
should be concerned. If the drive starts vibrating more than it used to,
or spins up and down a lot more than before, these are also potential
warning signs.

• Scary Noises: The above said, there are certain noises a drive should
never make, even when new. If you hear something scraping as the
drive turns on, or the drive makes repeated clunking sounds during
operation, or emits a very high-pitched whine, then there may well be
a problem.

• Drive Not Recognized: If the drive is not recognized at all by the
BIOS of a motherboard to which it is connected where it was
recognized by that BIOS in the past, this is a sign of a failed drive.
(Non-recognition of a new drive can be due to BIOS compatibility
issues.)

• SMART Alarm: If your hard disk and system support the SMART
feature and you receive a SMART alert, consider this fair warning that
the drive may have a problem.

Warning: If you suspect that your hard disk is failing, take action. Back up
your data immediately, and contact the drive manufacturer for instructions.
See the section on warranty issues for more details.

Next: Software Causes for Reliability Issues

Software Causes for Reliability Issues

While most reliability problems with hard disks are due to troubles with
hardware, there are some reliability concerns that are actually related more
to software, or to how the hard disk is used. Software can't "break" hardware,
so perhaps this is a more "loose" definition of reliability--I'm certainly not
suggesting that the software you use can cause your hard disk to fail.
However, the way you use your system can cause you to lose data or to
experience system instability, and these are what most people are trying to
avoid by obtaining highly reliable hard disks in the first place. Your use of the
system can also sometimes create situations where it appears that there is a
hard disk reliability problem but there in fact is not.

To avoid problems with your hard disk and data, you need to take care of
them. I discuss data loss prevention and related issues in this section. Also,
see here for a full discussion on viruses, one of the leading causes of non-

hardware data loss in the PC world. Next: Hard Disk Quality and
Reliability Features

mehedi hasan
mehedi@joinme.com

264

Hard Disk Quality and Reliability Features

Hard disk manufacturers recognize the great importance of their customers'
data, and therefore, the importance of the quality and reliability of their hard
disk drives. In addition to generally improving the quality of their processes
and their products, most manufacturers have added special features to their
hard disks to help enhance their reliability. Most of these efforts are
predicated on the principle that "an ounce of prevention equals a pound of
cure". They are intended to either reduce the chances of a problem occurring,
or at least let the user know if a problem is likely to occur, before data loss
happens.

This chart shows several sample shock events that can affect hard disks,
mapped based on their duration and intensity. Notice that the more serious
shocks are those delivered to the drive by itself, while those caused to the
PC as a whole are less critical to the disk. Modern drives are equipped
with many reliability features that can reduce the likelihood of damage in
the event of common shock occurrences, but no advances will protect
adequately against outright abuse of such delicate hardware. (Not all of
the more serious shock events above will necessarily cause the drive to
fail or data to be lost, but they do definitely carry the potential.)

Image © Quantum Corporation
Image used with permission.

In this section I describe in detail the more common features being
implemented on today's drives to enhance their quality and reliability, and to
provide warning to the user if a hardware failure is imminent.

mehedi hasan
mehedi@joinme.com

265

Next: Self-Monitoring Analysis and Reporting Technology (SMART)

mehedi hasan
mehedi@joinme.com

266

Self-Monitoring Analysis and Reporting Technology (SMART)

In an effort to help users avoid data loss, drive manufacturers are now
incorporating logic into their drives that acts as an "early warning system" for
pending drive problems. This system is called Self-Monitoring Analysis and
Reporting Technology or SMART. The hard disk's integrated controller works
with various sensors to monitor various aspects of the drive's performance,
determines from this information if the drive is behaving normally or not, and
makes available status information to software that probes the drive and look
at it.

The fundamental principle behind SMART is that many problems with hard
disks don't occur suddenly. They result from a slow degradation of various
mechanical or electronic components. SMART evolved from a technology
developed by IBM called Predictive Failure Analysis or PFA. PFA divides
failures into two categories: those that can be predicted and those that
cannot. Predictable failures occur slowly over time, and often provide clues to
their gradual failing that can be detected. An example of such a predictable
failure is spindle motor bearing burnout: this will often occur over a long time,
and can be detected by paying attention to how long the drive takes to spin
up or down, by monitoring the temperature of the bearings, or by keeping
track of how much current the spindle motor uses. An example of an
unpredictable failure would be the burnout of a chip on the hard disk's logic
board: often, this will "just happen" one day. Clearly, these sorts of
unpredictable failures cannot be planned for.

The main principle behind failure prediction is that some failures cause
gradual changes in
various indicators that can be tracked to detect trends that may indicate
overall drive failure.

Image © Quantum Corporation
Image used with permission.

mehedi hasan
mehedi@joinme.com

267

The drive manufacturer's reliability engineers analyze failed drives and
various mechanical and electronic characteristics of the drive to determine
various correlations: relationships between predictable failures, and values
and trends in various characteristics of the drive that suggest the possibility
of slow degradation of the drive. The exact characteristics monitored depend
on the particular manufacturer and model. Here are some that are commonly
used:

• Head Flying Height: A downward trend in flying height will often
presage a head crash.

• Number of Remapped Sectors: If the drive is remapping many
sectors due to internally-detected errors, this can mean the drive is
starting to go.

• ECC Use and Error Counts: The number of errors encountered by
the drive, even if corrected internally, often signal problems
developing with the drive. The trend is in some cases more important
than the actual count.

• Spin-Up Time: Changes in spin-up time can reflect problems with the
spindle motor.

• Temperature: Increases in drive temperature often signal spindle
motor problems.

• Data Throughput: Reduction in the transfer rate of the drive can
signal various internal problems.

(Some of the quality and reliability features I am describing in this part of the
site are in fact used to feed data into the SMART software.)

Using statistical analysis, the "acceptable" values of the various
characteristics are programmed into the drive. If the measurements for the
various attributes being monitored fall out of the acceptable range, or if the
trend in a characteristic is showing an unacceptable decline, an alert condition
is written into the drive's SMART status register to warn that a problem with
the drive may be occurring.

SMART requires a hard disk that supports the feature and some sort of
software to check the status of the drive. All major drive manufacturers now
incorporate the SMART feature into their drives, and most newer PC systems
and motherboards have BIOS routines that will check the SMART status of the
drive. So do operating systems such as Windows 98. If your PC doesn't have
built-in SMART support, some utility software (like Norton Utilities and similar
packages) can be set up to check the SMART status of drives. This is an
important point to remember: the hard disk doesn't generate SMART alerts, it
just makes available status information. That status data must be checked
regularly for this feature to be of any value.

Clearly, SMART is a useful tool but not one that is foolproof: it can detect
some sorts of problems, but others it has no clue about. A good analogy for
this feature would be to consider it like the warning lights on the dashboard of
your car: something to pay attention to, but not to rely upon. You should not
assume that because SMART generated an alert, there is definitely a drive
problem, or conversely, that the lack of an alarm means the drive cannot

mehedi hasan
mehedi@joinme.com

268

possibly be having a problem. It certainly is no replacement for proper hard
disk care and maintenance, or routine and current backups.

If you experience a SMART alert using your drive, you should immediately
stop using it and contact your drive manufacturer's technical support
department for instructions. Some companies consider a SMART alert
sufficient evidence that the drive is bad, and will immediately issue an RMA
for its replacement; others require other steps to be performed, such as
running diagnostic software on the drive. In no event should you ignore the
alert. Sometimes I see people asking others "how they can turn off those
annoying SMART messages" on their PCs. Doing that is, well, like putting
electrical tape over your car's oil pressure light so it won't bother you while
you're driving! :^)

Next: Idle Time Error Checking

Idle Time Error Checking

Hard disks have extensive facilities built into them to detect, correct and
avoid data errors; these are discussed in some detail here. Most of the error-
recovery procedures discussed in that section are reactive; they are
concerned with how to deal with an error situation that has occurred when
data is requested by the user. As suggested in the description of SMART,
sometimes problems can occur due to gradual degradation, in this case of a
particular location on the media. If this is the case, it may possible to detect a
"bad spot" before it gets to the point where data loss might result. Since hard
disks use ECC to correct multiple-bit errors but can only do so if the number
of missing or incorrect bits is below a certain threshold, detecting such errors
quickly can prevent data loss that might occur if the problem were not
discovered until a later time.

To exploit this principle, some manufacturers are now incorporating routines
to do proactive error checking of the drive. During idle periods, the drive's
logic board performs reads over the surface of the disk to verify that the data
can be read without errors. Any errors encountered are typically treated the
same way an error would be addressed during a user read: the data may be
rewritten to "refresh" it, or the sector where the error is relocated may be
remapped. Drives that incorporate this feature usually integrate it with
SMART; if an extensive number of errors occurs during such idle checks then
this can signal problems with the drive.

This is a useful reliability feature, but one that can sometimes cause confusion
on the part of hard disk users. The reason is that this scanning activity can
cause the drive to make "active" sounds even when the PC not doing anything
involving the hard disk; the hard disk activity LED will also not be lit. (Since
this scanning is purely an internal activity, it will not cause the hard disk
controller or motherboard to light the LED.) If your drive is one that
incorporates this feature and you see this "ghost" activity, there's nothing to
be concerned about. There also should be no impact on the performance of
the drive, since the scanning occurs only when the drive is idle.

mehedi hasan
mehedi@joinme.com

269

Note: These scans typically run only after the drive has been idle for some
number of minutes. This means you have to leave the drive on some time
when you are not using it for them to activate. If your normal operating mode
is to turn on the PC, use it, and then turn it off, then the drive may never
become idle long enough for this idle-time scan to initiate.

Next: Enhanced Shock Protection

mehedi hasan
mehedi@joinme.com

270

Enhanced Shock Protection

Several major types of drive failures can be caused by excessive shock
applied to the drive, especially when it is in operation. This is not surprising,
considering the way hard disks work. When you have very precise read/write
heads floating a millionth of an inch above the surface of a smooth platter
spinning thousands of revolutions per minute, you shouldn't expect that you
can give the device rough handling without consequences! When the heads
contact the surface of the platters, this is called a head slap and each such
event carries the potential for damage or data loss.

Despite the fragility of hard disk technology, we do expect to be able to treat
them, well, if not roughly, then at least without kid gloves. We want to put
hard disks into laptop computers and carry them around, or use removable
drive trays, or incorporate tiny hard disks into devices ranging from handheld
PCs to digital cameras. And even with desktop machines, we certainly don't
expect the drive to fail if we bump into the case while the PC is on, or similar
minor mishaps occur.

To address the increased needs for portability, and to improve reliability and
reduce sensitivity to shocks in a general way, hard disk manufacturers have
been hard at work improving the shock resistance of drives. One great way to
do this would be to basically pack cushioning material around the drive;
unfortunately, this would create other problems, ranging from needing to
enlarge the drive's form factor, to making cooling more difficult. Therefore,
shock protection is primarily done by increasing the rigidity of the most
important components in the drive, such as the actuator assembly and
spindle motor. To reduce head slap in particular, the head arms are made
stronger. Structural support and some cushioning for the disk-head assembly
is also provided to help reduce the transmission of shock energy from the
outside of the drive to the platters and heads, where damage could occur.

mehedi hasan
mehedi@joinme.com

271

Anatomy of a head crash. Shock applied to the drive causes the heads to lift
off the surface of the platters, then snap back causing damage. Newer drives
using shock protection (which Quantum calls SPS) stiffen the head arms to
greatly
reduce the chances of head slap, and reduce the damage caused if it occurs.
(Note that the red rectangles are actually the sliders, not the heads...)

Image © Quantum Corporation
Image used with permission.

Enhanced shock protection is certainly a useful enhancement for drives, and it
has been adopted by pretty much every manufacturer in one form or another.
If you think about it, this is really a general way of improving the quality of a
drive as opposed to a discrete "feature", and all drive makers strive to
improve the quality of their units, even if they do it in different ways. Some
manufacturers do make more of a "big deal" about this than others.

And by the way, it should go without saying that no amount of shock
protection is license to treat your hard drives with anything but the utmost of
care!

Next: Fly Height Detection

mehedi hasan
mehedi@joinme.com

272

Fly Height Detection

The height at which the heads fly above the hard disk platters is one of the
most important design parameters of any hard disk. The reason is that this
gap represents a critical design trade-off: if the heads are too high above the
surface of the disk the heads then data errors can occur, but if they are too
low, the risk of a head crash dramatically increases. The fly height of the
heads must be maintained within tight parameters to ensure the reliability of
the drive.

Many manufacturers are now incorporating sensors into their drives to
monitor the height at which the heads float over the surface of the platters.
This is usually used as one of the data inputs to the drive's SMART feature, as
any trend downward in fly height can signal the possibility of a head crash in
the near future.

Next: Wear Leveling

Wear Leveling

Under normal circumstances--meaning, unless special reliability features are
implemented--when a hard disk drive is idle, the head-actuator assembly just
"sits there" wherever it happened to be when the last read or write occurred.
In theory, there should not be any problem that results from this since the
heads are floating on air and not touching the surface. However, at least one
manufacturer (Western Digital) theorized that it might not be a good idea to
keep the heads sitting in one spot for long periods of time even if in theory
this was OK. After all, head slaps can occur, and under normal usage the
location of the heads is not likely to be completely random: some files and
areas of the disk are more often accessed than others, especially those where
the file system structures are located.

To eliminate what they considered the potential for wear, Western Digital
incorporated onto its drives a feature called wear leveling. Every fifteen
seconds of idle time, the drive controller moves the heads by one track,
traversing the entire disk area, so that no area of the disk has the heads
sitting over it for very long. It takes about three hours for the entire surface
of the disk to be traversed.

The importance of this feature seems to still be under debate. In theory it
improves drive reliability, but it also causes the drive to make more noise. It
also makes some people think that there is something wrong with their drive.
(I did when I first encountered these strange clicking sounds on my drive
even when it was idle; I later realized the noises were exactly 15 seconds
apart every time, so I realized it must have been something that had been
done intentionally.) The fact that other manufacturers have apparently not
rushed to implement wear leveling says something, considering that most
technologies that are universally considered "good ideas" end up on all
manufacturers' drives within a few years of one company inventing them. It
may be that the other manufacturers don't consider wear leveling useful
enough to bother, or they may want to avoid the noise complaints that

mehedi hasan
mehedi@joinme.com

273

plagued some of WD's early efforts with this feature. Certainly, it would be
hard to argue that wear leveling is a better way to spend idle time than say,
error checking during idle time, which also moves the heads but does a lot
more at the same time.

Tip: After some initial complaints about the noise caused by wear leveling on
early implementations of the feature, Western Digital made available a
firmware patch to reduce the noise caused by this feature. It can be found
here on their web site. It is only necessary for drives 5.1 GB in size or below
that employ wear leveling, as the patch is built into the firmware in later
drives.

Next: Head Load/Unload Technology

Head Load/Unload Technology

Hard disks work by having the read/write heads fly over the surface of the
disk platters. However, this floating action occurs only when the platters are
spinning. When the platters are not moving, the air cushion dissipates, and
the heads float down to contact the surfaces of the platters. This contact
occurs when the drive spins down, as soon as the platters stop spinning fast
enough, and occurs again when the spindle motor is restarted, until the
platters get up to speed. Each time the heads contact the surface of the
platters, there is the potential for damage. In addition to friction (and thus
heat) on these sensitive components, dust can be created as the heads
scrape off minute amounts of material from the platters.

Knowing that this will occur, manufacturers plan for it by incorporating special
lubricants, and by ensuring that the heads normally contact the platters in a
special landing zone away from user data areas. While obviously good
planning, the entire way that starts and stops are handled--allowing contact
with the platters--is not a great design. After several decades of handling this
the same way, IBM engineers came up with a better solution.

Instead of letting the heads fall down to the surface of the disk when the
disk's motor is stopped, the heads are lifted completely off the surface of the
disk while the drive is still spinning, using special ramps. Only then are the
disks allowed to spin down. When the power is reapplied to the spindle motor,
the process is reversed: the disks spin up, and once they are going fast
enough to let the heads fly without contacting the disk surface, the heads are
moved off the "ramps" and back onto the surface of the platters. IBM calls
this load/unload technology. In theory it should improve the reliability of the
hard disk as a whole. Unfortunately, I am unaware of any other drive
manufacturers using it at this time.

mehedi hasan
mehedi@joinme.com

274

Diagram showing how IBM's load/unload
ramp technology functions. (One head and
surface is shown; there would be a different ramp
for each head and surface the disk has.)

Original image © IBM Corporation
Image used with permission.

This feature appeared at about the same time that IBM went to the use of
glass substrate platters. It may well be that the glass platters are more
susceptible to damage from head contact than traditional aluminum platters.
Regardless of the reason, load/unload technology is a great idea that I hope
is adopted by other drive makers. This feature is also likely part of the reason
why many IBM drives have very high start/stop cycle specifications. The only
possible drawback I can see to this feature, other than possibly a bit of extra
cost, is that spin-up time might be a bit slower on these drives.

Next: Temperature Monitoring

mehedi hasan
mehedi@joinme.com

275

Temperature Monitoring

Since heat has become much more of a concern for newer drives, particularly
high-end ones, some manufacturers have added a very good reliability
feature to their drives: thermal monitoring. IBM calls this feature the Drive
Temperature Indicator Processor or Drive-TIP. It has also been implemented
by at least one other manufacturer (Western Digital).

The idea behind this feature is very simple: a temperature sensor is mounted
on the drive, usually on the logic board, and it records the temperature of the
drive periodically over time. One or more trip points are set within the drive's
control logic, and status notifications are sent by the drive back to the system
if they are exceeded. Normally, thermal monitoring is integrated with the
drive's SMART feature for reporting. A typical setup is two trip points, one at
60°C and another at 65°C; the first trip point can be changed by the user of
the drive while the second often cannot. The controller may also keep track of
the highest temperature ever recorded by the drive, and may also take action
on its own accord if the trip point(s) are exceeded, such as slowing down the
drive's activity or even shutting it down completely. The exact implementation
depends on the manufacturer.

Due to mechanical failure--for example, a case cooling fan that malfunctions--
overheating is possible even in a system properly designed to avoid such
problems under normal circumstances. This makes temperature monitoring a
very useful and important feature for systems were reliability is essential. It is
more often found on high-end SCSI units than consumer-grade drives, but it
seems likely to me that in the future it will become standard on most drives.

Next: Expanded Remapping and Spare Sectoring

mehedi hasan
mehedi@joinme.com

276

Expanded Remapping and Spare Sectoring

When any hard disk detects a problem with a particular sector on the surface
of the drive, it will remap that sector and mark it as "bad" so that it will not
be written to again in the future. This ensures that repeat problems with this
bad spot will not recur. This process is called remapping and spare sectoring
and is described in this section on hard disk formatting.

Some drives go a step beyond ordinary remapping. Instead of just remapping
the sector where an error is encountered, or where a number of retries were
necessary to get the data from the disk, the controller remaps a zone of
sectors around the defective location. The logic behind this feature is that if
an area of the disk is damaged badly enough to create a bad sector, the
problem might not be limited to just that sector, even if the errors are only
showing up there right now. After all, a single sector on a hard disk is very
small; it stands to reason that there is a much higher chance that a sector
near the defective one will go bad than a random sector somewhere else on
the disk.

The "buffer area" that is remapped can include sectors before and after the
bad sector, as well as adjacent tracks, thus covering a two-dimensional space
centered on the bad disk location. This process occurs transparently to the
user. It makes use of spare sectors allocated on the drive for the purpose of
remapping.

Western Digital calls this feature defect margining. As with the wear leveling
feature, defect margining does not appear to have been universally adopted
by other hard disk manufacturers. Unlike wear leveling, there is not to my
knowledge any major drawback to this feature, and it seems in theory to be a
very good idea. (I suppose it might require a few extra spare sectors to be
placed on the drive, but capacity is very cheap these days.) I do not know
why the other drive makers are not also doing this--maybe they are doing it
but just not publicizing it.

Next: Redundant Arrays of Inexpensive Disks (RAID)

mehedi hasan
mehedi@joinme.com

277

Redundant Arrays of Inexpensive Disks (RAID)

Most of the reliability features and issues discussed in this part of the site
relate to making drives themselves more reliable. However, there is only so
much you can do to improve the reliability of a single drive without the cost
becoming exorbitant. Furthermore, since most people aren't willing to pay for
ultra-reliable drives, manufacturers have little incentive to develop them. For
those applications where reliability is paramount, the quality of no single-
drive solution is sufficient. For these situations, many businesses and power
users are increasingly turning to the use of multiple drives in a redundant or
partially-redundant array configuration. The common term that refers to this
technology is Redundant Arrays of Inexpensive (or Independent) Disks,
abbreviated RAID.

The principle behind RAID is "belt and suspenders": if you store redundant
information across multiple disks, then you insulate yourself from disaster in
the event that one of the disks fails. If done properly, you also improve
performance--sometimes in a substantial way--by allowing the drives to be
accessed in parallel. And you can make it so bad drives can be replaced
without the system even being taken down.

RAID is a big topic unto itself; there are many different ways that RAID can
be implemented; various hardware and software considerations; and many
tradeoffs to be considered when implementing a system. I have therefore
created a separate area that discusses RAID in detail. Check it out if the
subject interests you. RAID is rapidly increasing in popularity, and I believe it
will only be a few years before it starts showing up even in high-end home
systems.

Next: Hard Disk Warranty and Disaster Recovery Issues

Hard Disk Warranty and Disaster Recovery Issues

If you use computers long enough and often enough, you will eventually will
have to deal with a failed drive. It really is only a matter of time and luck.
When this occurs with a drive that is reasonably new, you'll want to have it
repaired or replaced under warranty. Unfortunately, most people couldn't tell
you anything about their hard disk's warranty other than its length--and in
some cases they later find out that they were mistaken about even that! The
vast majority of hard disk users don't read the "fine print", and many
manufacturers don't exactly make it easy to find even if you want to read it.

There are a lot of issues related to warranty coverage on hard disks that you
need to understand to be sure of your warranty status and what will happen
in the event that you need to exercise your warranty rights. Hard disk
manufacturers differ drastically in terms of their warranty and service
procedures, which is something most people don't think of at the time they
buy. But if reliability is important to you, you must understand how various
manufacturers approach warranty issues before making your purchase. For
some people, this matter is more important than all the other quality and
performance issues put together.

mehedi hasan
mehedi@joinme.com

278

In this section I take a close look at the warranty issues related to hard
drives. This includes a discussion of manufacturer warranty policies, a look at
the important matter of OEM and retail drives, and a look at issues involved in
returning a drive for repair or replacement. I also discuss data recovery and
data security, essential topics to those with very important or confidential
data.

Tip: You may also want to check out this related general discussion of
warranty and service issues.

Next: Warranty Coverage: Retail, OEM and Stolen Drives

Warranty Coverage: Retail, OEM and Stolen Drives

You can't spend more than a few weeks on technical discussion forums
without running into someone who has had The Rude Awakening [tm]. It
usually goes something like this:

"I have a drive made by manufacturer 'M' that I bought from retailer 'R'. It
died, and since it was within the 3-year warranty period that 'M' offers on
their drives, I called them for a replacement. They told me immediately that
this was an OEM drive and they could therefore not provide any warranty
coverage for it. So now I am stuck, and I have to go buy a new drive even
though this one was only 15 months old. I am really ticked off!"

(And that's a sanitized version. :^)) The same thing can just as easily
happen with a drive in a "PC bought from company 'C'". Welcome to the hard
disk "warranty caste system". As far as warranty coverage is concerned, all
drives are not always created equal, even if the drives are physically identical.

The reason that this happens is that manufacturers sell drives in two distinct
ways: retail and OEM. "OEM" stands for original equipment manufacturer and
refers (in this context) to a company that builds PCs. Hard drive makers
package some of their drives for sale directly to the public, and some for sale
in large lots to big companies that make thousands of PCs a month. Due to
the very different needs of these two types of customers, the packages are
very different. If you are not familiar with the difference between retail and
OEM packaging, read this page before continuing.

Aside from the contents of the drive package, the other big difference
between OEM and retail hard drives for some manufacturers is the warranty
provided on the drive. Most drive makers with big OEM contracts sell those
drives at a lower price to the OEM because they are specifically excluding
warranty coverage from them. Nothing comes free in this world, including
warranty support. The OEMs save money by not buying warranties on the
hard disks they use in their systems. The condition of the deal is that the OEM
will provide warranty coverage for the drive. It's important to understand that
this is commonly done not just for hard disk drives but also for many other
components used in PCs: optical drives, memory, video cards and even CPUs.
If OEMs did not do this, the people who buy PCs would be paying for all these

mehedi hasan
mehedi@joinme.com

279

individual warranties. Instead, the PC maker provides a warranty that covers
the entire system, and the buyer of the system is supposed to go to the OEM
for service.

The problem is that many of these parts being packaged for OEMs with no
warranty are ending up on the retail market; they are sometimes called gray
market components. Buyers who do not understand that OEM parts often do
not come with warranty coverage purchase them thinking they have the same
coverage as retail drives bought in their local computer superstore. They
think they just got the deal of the century and wonder why other people pay
extra for those retail-boxed drives. These are the people who are most
susceptible to The Rude Awakening [tm].

The same thing often happens with PC buyers, because of another little
problem: the warranties most PC vendors provide for their systems are one or
two years, while most drive warranties are three or five years. PC buyers
think they can call the drive manufacturer to get the drive replaced if it fails
after the PC warranty expires but before the drive warranty does, or if the PC
maker goes out of business or is just a pain in the butt to deal with. Well,
sometimes you can and sometimes you can't.

While similar in so many ways, the big hard disk manufacturers are very
different in their policies towards OEM drive warranty coverage. Some
companies intentionally provide a "no questions asked" warranty policy: if
they made the drive and it is within the warranty period, the drive is covered.
Others will refuse to cover any drives not specifically sold with warranty
coverage included. Warranty policies can change, so you must check before
making your purchase to see what the warranty policy is of the manufacturer
you are selecting.

It seems strange that the hard drive makers, who are so competitive and are
in a market with relatively low margins, could be so different on this issue.
How can the companies that cover all their drives afford to provide warranty
coverage on OEM drives when other companies don't do this? Well, there's a
simple answer: they can't. Their coverage of all OEM drives means they can't
cut their prices on OEM drives nearly to the extent that the companies that
refuse to cover OEM drives can. This means in general that they are not cost-
competitive with those companies and forego some of the big OEM business
in order to have simpler warranty policies and to engender the goodwill of the
end user base.

As for the companies that refuse to provide end-user warranty coverage on
OEM drives: while the frustration of being surprised on this matter is
understandable, I think these companies get just a bit too much flak on the
subject. Is it really reasonable to expect a company to sell a drive at a lower
price because no warranty is included, and then expect them still to provide
warranty coverage? Most of the people who expect hard disk makers to do
this don't expect it from the manufacturers of most other products. (I will say
this however: it is in my opinion inexcusable that companies such as IBM do
not provide any way for users to tell easily by looking at their drives whether
or not they come with warranty coverage. Surely putting some clear notation
on the drive would not be that difficult to do. At least, an online serial number

mehedi hasan
mehedi@joinme.com

280

warranty status check facility would give hard disk buyers a fighting chance.
Unfortunately, the party line on this issue usually seems to be "if you want to
be sure you have a warranty, buy a retail drive from an authorized dealer".
That's true, but they know that users are buying their drives OEM and they
should make it easier to check warranty status. Instead, they are turning a
blind eye to this problem.)

OK, now you understand what the issue is. The question then becomes: how
do you avoid making a mistake in this regard? Well, if you are buying a drive
separately, the simplest way is to either buy a retail boxed drive, or buy a
drive from one of the manufacturers that has a "no questions asked" warranty
coverage policy. If you are buying a PC, the situation becomes a bit more
complicated. If it's a large brand-name PC, the chances are close to 100%
that the drive it contains is only covered by the PC maker's warranty--plan for
this. However, if you buy a PC from a small local shop, it's possible that they
will be using drives bought in small lots that do come with a full retail
warranty. You have to ask. Even if buying from a big mail-order company,
you can sometimes ask to have a drive from a "no questions asked" vendor
substituted for a small charge, but again, verify the status of the warranty.

Another issue related to warranty coverage has to do with stolen drives. Since
hard disks are so small and so expensive, large lots of drives are often the
target of thieves who steal the drives and then dump them back on the
market for resale. Manufacturers who lose drives this way will often refuse to
honor the warranty on such drives. The only protection from this is the first
step you should always take anyway: buy from a reputable dealer with a good
reputation. If you are unsure about a drive you have just bought, contact the
drive maker's technical support department and they will probably be able to
check the drive's serial number against their database and tell you its status.

Next: Third Party Warranty Support

mehedi hasan
mehedi@joinme.com

281

Third Party Warranty Support

As if the matter of warranty coverage weren't confusing enough, some
companies have added to the brew by outsourcing support for some of their
drives. This is usually done for older product lines that the company does not
want to continue having to provide support for. Checking with the technical
support department will usually let you find out if a drive you own has support
provided for it by a third party. I am not aware of any companies presently
doing this for newer drives; it is usually for obsolete hardware (which I
suppose wouldn't be covered by warranty any more, making this more of a
general service and support issue; it's still a good thing to know about if you
plan to hold on to your drive past the warranty period.)

Another case where this issue comes into play is if a company goes out of
business. Hard disk manufacturers do go under from time to time. Usually
they don't just fold and "disappear" but rather are bought out by another
company. When this happens, the buying company normally inherits the
warranty and support load for the drives made by the company they are
buying. However, sometimes these are outsourced to still another company.
Also, a buyout can result in any number of changes relative to the warranty
status and policies of the old company, so be sure to check into the matter if
this happens to a company whose drives you are using.

Next: Warranty Replacement Policies

Warranty Replacement Policies

If companies vary in their willingness to provide warranty coverage to
different types of drives, they vary almost as much in the way they handle
warranty claims. Like coverage issues, these often come as a surprise to hard
disk users who only find out about them after disaster strikes. The way to
protect yourself is to be informed: read the fine print. Before purchasing a
hard disk, or selecting a hard disk brand for inclusion in a new system, do
your research. Visit the web sites of the hard drive manufacturers that you
are interested in and read about their warranty policies. If there's anything
you don't understand, call the company or write them an email and ask. They
will usually be happy to explain these policies (particularly if they understand
that you are making a pre-sale call!)

When it comes to warranty replacement there are two main policies to be
considered. The first is the matter of what the company will be replacing the
defective drive with. The second is how the company will be doing the
replacement.

When you send a hard disk in on a warranty claim, the drive you get back is
never the one you sent in. (This is a good thing, because if you got back the
same drive, you'd be twiddling your thumbs for weeks waiting for it to be
repaired.) In fact, many defective drives are in fact never repaired at all,
since it is so expensive to do so. Instead, the company sends you a
replacement drive, and this is one of the policy issues that distinguishes
companies: some send new drives and others send refurbished drives. Some

mehedi hasan
mehedi@joinme.com

282

send both (not to the same person, of course. :^)) Many people have good
luck with refurbished drives, but some others don't. Some people don't feel
confident about refurbished drives, which makes it hard for them to use these
units even if they are perfectly fine. All in all, it seems pretty obvious which is
the more optimal choice here.

Tip: If you have an older drive that fails near the end of its warranty period,
resist the temptation to "not bother" getting it replaced because it's "too
small and too slow anyway". Two and a half years after your drive is made,
the manufacturer sometimes won't have any of the same type of drive to
send as a replacement on a warranty claim, and you might get a newer or
faster drive as a replacement. This happens more than you might think!

The second issue is how the replacement drive will get to you; most
companies offer a choice of two options. The first is standard replacement,
where you send the drive back to the manufacturer, and then they send a
replacement back to you. This is simple, but time-consuming; you could be
without a drive for a week or more. Recognizing that many of their customers
could not tolerate being down for such a long period of time, most
manufacturers now offer an advanced replacement option. The company will
send out the replacement drive--usually by second-day air delivery--before
receiving back the defective drive. You have to give them a credit card
number as surety that you will in fact send back the defective drive.

If reliability and up-time are important to you at all, I would strongly advise
against buying a hard disk from any manufacturer that will not offer advanced
replacement. I have read testimonials from people who had to go out and buy
a new drive when their current one failed because even though it was under
warranty, they would have been waiting too long for a warranty replacement
and simply couldn't afford the down time. If your application or business are
such that you cannot afford to have your system down even for a day or two,
then your needs exceed what hard disk manufacturer warranties can provide.
You must look beyond a single-drive solution and consider a fault-tolerant
storage subsystem such as a RAID array. If RAID is too expensive, then a
cheap but much less optimal solution is to just buy a spare drive to keep
around in case the one you are using fails, so you can restore from your
backup immediately. If even that is too expensive then, well, avoiding
downtime is simply not a top priority. Everything has its costs.

Next: Obtaining Warranty Service

mehedi hasan
mehedi@joinme.com

283

Obtaining Warranty Service

If you suspect that the drive you are using has a problem, then you may need
to contact the company to obtain warranty service on the drive. Instructions
for doing this are easily found on the manufacturer's web site under a
heading typically called "Support". You will usually be asked to call the
company's technical support department for instructions and to obtain an
RMA (return of materials authorization) number. Some companies may let
you get an RMA number using an automated system.

Warning: Never send a drive, or in fact anything, back to any company
without an RMA number (unless you are instructed to do so, which is rare). At
best, the item will be refused and sent back to you. At worst, it will get lost in
their system because they will have no way of tracking it. Never
underestimate the odds of unidentified hardware getting lost in a large
company!

Companies vary in their policies regarding failure determination, and the
conditions you must satisfy before they will accept a drive back under
warranty. Some will make you use their diagnostic software to check out the
drive first; others will take your word on a claim that the drive is misbehaving
(reasoning that nobody would put themselves through the hassle of sending
back a drive without good cause!) Policies regarding paperwork and timing of
various actions also vary greatly from one drive maker to another.

For more general information on repairs and returns, see this section.

Next: Data Security

Data Security

Most people have personal information on their hard disks, and some worry
about what happens to this data when they send a drive in to a manufacturer
for warranty replacement (or to a data recovery company for that matter). If
your hard disk fails, most of the time almost all of the data is still intact on
the platters. A burned-out spindle motor or flaky actuator has no impact on
the data stored on the disk. Even a head crash or other defect related to the
data surfaces will result in little of the actual data being removed from the
drive.

If you are worried about the data on a disk that is totally dead, there is really
nothing you can do to get the data off the drive that won't also void the
warranty of the drive. If you are worried about the data on a drive that is
acting "funny" but has not totally failed, you can wipe the data off the drive
before sending it back to the manufacturer by using a zero-fill utility. This will
for all intents and purposes eliminate all data from the drive. There have been
"James Bond" like reports of experts retrieving data after a zero-fill has been
performed, due to trace magnetic fields on the disk; even if true, someone
would have to be remarkably motivated to even bother with such an exercise.
Unless you're a master spy, the contents of your hard disk probably aren't

mehedi hasan
mehedi@joinme.com

284

nearly interesting enough for anyone with the skill to do something like this to
even be bothered spending their time. And most of the real "cloak and
dagger" stories about genuises retrieving data from disks that have had their
data overwritten with various data patterns a dozen times or been blasted
with shotguns are probably apocryphal. It is true that data recovery
companies can do amazing things, but they aren't miracle workers. :^)

You should keep in mind that hard disk technicians are professionals. A hard
disk company cannot afford to have a reputation for snooping around in their
customers' files--and a data recovery company can afford such a black eye
even less. I personally have never heard of even one instance of a hard disk
manufacturer or data recovery company going through someone's "stuff" and
causing problems, so either it isn't happening, or nobody is talking about it.
Remember that most of the data that is so important to you, is important
only to you. This is especially true of most PCs used for personal purposes, as
opposed to businesses.

All of the above said, the bottom line of data security is that it is only truly
secure if it never leaves your hands. If you're really worried about data
security, if you truly can't afford any chance of the data on the drive falling
into the wrong hands because it contains the entire company's payroll
information or your almost-complete plans for a cold fusion reactor, then you
have an alternative: don't send it in for warranty service. Just buy a new
drive. After all, hard disks only cost a few hundred dollars, and if the data is
that important, it's worth eating the cost of a hard disk and just buying a new
one. This is in fact exactly what some businesses do. The old drive should be
destroyed or just put in the back of a safe somewhere. If you have access to
a smelter, well, that even worked on the Terminator. :^)

Next: Data Recovery

mehedi hasan
mehedi@joinme.com

285

Data Recovery

Hard disks differ from virtually every other component in the PC in one very
critical respect: when you lose a hard disk you lose more than just hardware-
-you lose software and data as well. The hard disk can be replaced, but the
data on it often cannot (and it certainly isn't covered by your warranty). This
is why annoying people like me always harp on users to back up their data.

If for some reason you fail to heed my sage advice :^) and do not back up
your important data, it is still sometimes possible to recover it in the event of
a hard disk failure. There are data recovery services that specialize in
restoring lost data from hard disks that have either failed or been corrupted
due to software problems (accidental formatting, viruses, etc.)

Some of these services are pretty amazing--many of them have a very good
success rate and can resurrect data even when it seems like it would be
impossible to the casual observer. They use specialized equipment and
software, and typically even have mini clean rooms that enable them to take
the cover off the drive and access the platters directly. All this wizardry comes
at a cost, of course. A full recovery usually starts at a few hundred dollars and
proceeds from there. The cost is high for three reasons: the equipment is
expensive, the people are highly skilled, and the company knows how
valuable the data is or you wouldn't be talking to them. Compared to
recreating a year's worth of data, $2,000 for a recovery is a bargain.
Compared to doing routine backups, it's a colossal waste of money.

One company well-known for performing data recovery is Ontrack.

This graph shows the most common causes of data loss
requiring the use of data recovery services, based on actual
Ontrack recoveries in the 1995-1996 timeframe.

Note: The use of RAID arrays will reduce the likelihood that data recovery will
be required, but can complicate matters if for some reason it is required. For
information on the implications of RAID on data recovery, see this section.

Note: Even though drives have labels and stickers on them saying that if the
drive is opened the warranty will be voided, this does not apply to
professional data recovery. These companies have arrangements with the
major hard disk manufacturers to allow them to work on the drives without
affecting the drive's warranty status. In some cases the recovery company

mehedi hasan
mehedi@joinme.com

286

may be required to send a letter to the drive manufacturer certifying that
your particular drive had recovery performed upon it.

Next: Redundant Arrays of Inexpensive Disks (RAID)

Redundant Arrays of Inexpensive Disks (RAID)

"KILLS - BUGS - DEAD!"
 -- TV commercial for RAID bug spray

There are many applications, particularly in a business environment, where
there are needs beyond what can be fulfilled by a single hard disk, regardless
of its size, performance or quality level. Many businesses can't afford to have
their systems go down for even an hour in the event of a disk failure; they
need large storage subsystems with capacities in the terabytes; and they
want to be able to insulate themselves from hardware failures to any extent
possible. Some people working with multimedia files need fast data transfer
exceeding what current drives can deliver, without spending a fortune on
specialty drives. These situations require that the traditional "one hard disk
per system" model be set aside and a new system employed. This technique
is called Redundant Arrays of Inexpensive Disks or RAID. ("Inexpensive" is
sometimes replaced with "Independent", but the former term is the one that
was used when the term "RAID" was first coined by the researchers at the
University of California at Berkeley, who first investigated the use of multiple-
drive arrays in 1987.)

The fundamental principle behind RAID is the use of multiple hard disk drives
in an array that behaves in most respects like a single large, fast one. There
are a number of ways that this can be done, depending on the needs of the
application, but in every case the use of multiple drives allows the resulting
storage subsystem to exceed the capacity, data security, and performance of
the drives that make up the system, to one extent or another. The tradeoffs--
remember, there's no free lunch--are usually in cost and complexity.

Originally, RAID was almost exclusively the province of high-end business
applications, due to the high cost of the hardware required. This has changed
in recent years, and as "power users" of all sorts clamor for improved
performance and better up-time, RAID is making its way from the "upper
echelons" down to the mainstream. The recent proliferation of inexpensive
RAID controllers that work with consumer-grade IDE/ATA drives--as opposed
to expensive SCSI units--has increased interest in RAID dramatically. This
trend will probably continue. I predict that more and more motherboard
manufacturers will begin offering support for the feature on their boards, and
within a couple of years PC builders will start to offer systems with
inexpensive RAID setups as standard configurations. This interest, combined
with my long-time interest in this technology, is the reason for my recent
expansion of the RAID coverage on this site from one page to 80. :^)

mehedi hasan
mehedi@joinme.com

287

Unfortunately, RAID in the computer context doesn't really kill bugs dead. It
can, if properly implemented, "kill down-time dead", which is still pretty good.
:^)

Next: Why Use RAID? Benefits and Costs, Tradeoffs and Limitations

Why Use RAID? Benefits and Costs, Tradeoffs and Limitations

RAID offers many advantages over the use of single hard disks, but it is
clearly not for everyone. The potential for increased capacity, performance
and reliability are attractive, but they come with real costs. Nothing in life is
free. In this section I take an overview look at RAID, to help explain its
benefits, costs, tradeoffs and limitations. This should give you a better idea if
RAID is for you, and help you to understand what RAID can do--and what it
can't do.

As you read on, it's essential to keep in mind that with RAID, it's definitely
the case that "the devil is in the details". Most common blanket statements
made about RAID like "RAID improves availability" or "RAID is for companies
that need fast database service" or "RAID level 5 is better than RAID level 0"
are only true at best part of the time. In almost every case, it depends.
Usually, what RAID is and what it does for you depends on what type you
choose and how you implement and manage it. For example, for some
applications RAID 5 is better than RAID 0; for others, RAID 0 is vastly
superior to RAID 5! There are situations where a RAID design, hardware and
software that would normally result in high reliability could result instead in
disaster if they are not properly controlled.

Next: RAID Benefits

mehedi hasan
mehedi@joinme.com

288

RAID Benefits

Alright, let's take a look at the good stuff first. :^) RAID really does offer a
wealth of significant advantages that would be attractive to almost any
serious PC user. (Unfortunately, there are still those pesky costs, tradeoffs
and limitations to be dealt with... :^)) The degree that you realize the
various benefits below does depend on the exact type of RAID that is set up
and how you do it, but you are always going to get some combination of the
following:

• Higher Data Security: Through the use of redundancy, most RAID
levels provide protection for the data stored on the array. This means
that the data on the array can withstand even the complete failure of
one hard disk (or sometimes more) without any data loss, and without
requiring any data to be restored from backup. This security feature is
a key benefit of RAID and probably the aspect that drives the creation
of more RAID arrays than any other. All RAID levels provide some
degree of data protection, depending on the exact implementation,
except RAID level 0.

• Fault Tolerance: RAID implementations that include redundancy
provide a much more reliable overall storage subsystem than can be
achieved by a single disk. This means there is a lower chance of the
storage subsystem as a whole failing due to hardware failures. (At the
same time though, the added hardware used in RAID means the
chances of having a hardware problem of some sort with an individual
component, even if it doesn't take down the storage subsystem, is
increased; see this full discussion of RAID reliability for more.)

• Improved Availability: Availability refers to access to data. Good
RAID systems improve availability both by providing fault tolerance
and by providing special features that allow for recovery from
hardware faults without disruption. See the discussion of RAID
reliability and also this discussion of advanced RAID features.

• Increased, Integrated Capacity: By turning a number of smaller
drives into a larger array, you add their capacity together (though a
percentage of total capacity is lost to overhead or redundancy in most
implementations). This facilitates applications that require large
amounts of contiguous disk space, and also makes disk space
management simpler. Let's suppose you need 300 GB of space for a
large database. Unfortunately, no hard disk manufacturer makes a
drive nearly that large. You could put five 72 GB drives into the
system, but then you'd have to find some way to split the database
into five pieces, and you'd be stuck with trying to remember what was
were. Instead, you could set up a RAID 0 array containing those five
72 GB hard disks; this will appear to the operating system as a single,
360 GB hard disk! All RAID implementations provide this "combining"
benefit, though the ones that include redundancy of course "waste"
some of the space on that redundant information.

• Improved Performance: Last, but certainly not least, RAID systems
improve performance by allowing the controller to exploit the
capabilities of multiple hard disks to get around performance-limiting
mechanical issues that plague individual hard disks. Different RAID
implementations improve performance in different ways and to

mehedi hasan
mehedi@joinme.com

289

different degrees, but all improve it in some way. See this full
discussion of RAID performance issues for more.

Next: RAID Costs

RAID Costs

The many benefits of RAID do not come without some costs. (This is self-
evident simply by the fact that most PCs do not use RAID arrays.) Most of the
attention when it comes to RAID costs is paid to the hardware, but there are
other costs that can dwarf the dollars (pounds, lira, shekels) paid for
hardware. It's impossible to say exactly what a RAID implementation will cost
because they can vary from simple setups costing only a couple of hundred
dollars, to enormous arrays that cost as much as a small house.

When considering if RAID is right for you, don't forget to add in the costs in
all of these major categories, where relevant:

• Planning and Design: For a decent-sized RAID system, you must
allow some resources for planning what type of RAID will be
implemented, deciding on array size, choosing hardware, and so on.

• Hardware: Hardware costs include hard disks, enclosures, power
supplies, power protection and possibly a hardware RAID controller.
While "high-end" RAID requires all of the above, "economy" RAID
implementations can be done within a regular PC case, using the
existing PC power supply and protection, and either an inexpensive
hardware controller or no controller. Most people think immediately of
the cost of the hard disks in a RAID system when they think about
expenses associated with RAID. This is only true to a point, and it
depends on what RAID level is being implemented. Remember that if
you need "X" amount of space for your files, you're going to have to
buy "X" worth of hard disks regardless. RAID only costs extra in this
regard to the extent that additional drives must be purchased for
redundancy. If you are implementing RAID 0, there is no additional
disk drive cost unless you are buying extra-large drives and you don't
really need the full capacity of the array.

• Software: Most hardware RAID solutions come with all the software
you need to operate them. If you are doing software RAID however,
you need an operating system such as Windows NT or Windows 2000
that provides this functionality. Of course, you may already be
planning to use an operating system with software RAID support
anyway...

• Setup and Training: Simple RAID systems in individual PCs don't
really require training, and are easy to set up. Larger RAID systems
can require many hours to set up and configure, and training of IS
professionals may be required.

• Maintenance: Enterprise-class RAID systems require ongoing
maintenance if they are to continue to provide the organization with
high availability and performance.

mehedi hasan
mehedi@joinme.com

290

Obviously, the costs are highest for businesses implementing large arrays.
For these companies, however, these costs must be compared to the costs of
data loss, data recovery and interruption of availability that would result if
RAID were not used. For many companies, the entire cost of a RAID setup
pays for itself the first time it prevents their enterprise system from having to
be taken down for half a day to deal with a hardware failure.

Next: RAID Tradeoffs

RAID Tradeoffs

"Fast, cheap, good: choose two"

The phrase above is a famous one in the world of computing, and elsewhere:
it's a good rule of thumb to keep in mind when making many purchase
decisions. It describes well what I call the "essential tradeoff triangle" that
applies to thousands of different technologies and devices, from PCs to race
car engines to kitchen blenders: you can easily get something that is
inexpensive and fast, but at the cost of quality; or something high quality and
fast, but it won't be cheap; or something cheap and high quality, but of lower
performance. In RAID, the "good" attribute refers specifically to reliability
concerns, and in particular, fault tolerance. The "fast" attribute refers to
either performance or capacity (it's not speed, but it does trade off against
fault tolerance and cost). In general, for a given price point, the performance
improvement of a RAID array trades off to some extent with the array's
redundancy and data security potential. If you want to improve both, you
have to pay more. The same applies to capacity: high capacity trades off
against economy and fault tolerance. (These are of course rules of thumb: the
attributes don't strictly trade off against one another in a linear way; I'm just
talking about general trends.)

mehedi hasan
mehedi@joinme.com

291

This triangle shows how performance (or capacity), cost and fault tolerance
trade off in the RAID world. At each of the corners, one of the attributes
is maximized at the expense of the other two. Point "A" represents a balance
between the three: not great in any of them, not poor in any either. Points
"B",
"C" and "D" represent doing well in two of the attributes at the expense of the
third: these are the "choose two" points that were mentioned earlier.

What it all really comes down to is: what are your priorities, and what are you
willing to spend? If high data availability and fault tolerance are not
important, you can get a high-performance RAID array for relatively little
money; if peak performance is not all that important, you can get a very
reliable system without spending a fortune. It's only when you need both that
things get expensive. The tradeoffs between performance, cost and reliability
are most readily seen when contrasting the different RAID levels. Some
emphasize performance over fault tolerance, others do the opposite, while
some try to balance the attributes. Some cost more than others. Some offer
very high fault tolerance but relatively low capacity. In no case, however, is
there a "free lunch". Cheap RAID solutions are limited in their ability to
protect your data or improve performance; high-end RAID implementations
that provide very high performance and very high data reliability are also
quite expensive.

Next: RAID Limitations

mehedi hasan
mehedi@joinme.com

292

RAID Limitations

I think it's important to point out that while RAID can do many things to
improve the reliability and performance of the storage subsystem of a PC,
there are many things it can't do. One very dangerous phenomenon that is
sometimes exhibited by those who are using RAID systems is that they
develop an "invulnerability complex". Much like those strange people who
think being behind the wheel of an SUV means they can drive up the side of
Mt. Everest and therefore zip around in bad weather at 60 mph, some PC
users who have RAID systems with redundancy seem to think that the data
protection means they are "all covered". They stop worrying as much about
maintenance and backups, just like those SUV owners think that four-wheel
drive has obviated safe and cautious driving.

While the redundancy that is built into RAID definitely gives you some very
important protection, it doesn't turn your PC into Superman (er... "SuperPC").
There are still sources of failure that can and do strike RAID systems. If you
examine this list of risks to your data, one thing will become clear
immediately: RAID not only doesn't protect against all of them, it doesn't
even protect against most of them! RAID won't help you if a virus wipes out
your system, or if a disgruntled employee decides to delete all your files, or if
lightning hits your building and causes a fire in your computer room. And
even in the area of hardware failure, RAID is not foolproof. There have been
cases where more than one drive has failed at the same time, causing the
entire array to fail and necessitating expensive data recovery. It's not
common, but then, neither are lightning strikes. This is one reason why
backups remain critical even when RAID is used.

And of course, a final note on RAID 0, which has become very popular
amongst those who strive for improved performance and "don't care" about
enhanced reliability: RAID 0 should really be called "AID", because there is no
redundancy at all, and therefore, you have no fault tolerance, and no
protection against data loss. In fact, the reliability of a RAID 0 system is much
worse than that of a regular hard disk: see here. Also, recovery from a failure
of any RAID 0 hard disk is extremely difficult. Keep your backups current, and
remember the risks you take if you go with RAID 0--most don't until disaster
strikes.

Next: Should You Use RAID?

mehedi hasan
mehedi@joinme.com

293

Should You Use RAID?

I don't know. You tell me. :^)

How easy it is to answer this question depends on who you are and what you
are trying to do. The only way to answer the question is to fully explore the
issue, weigh the costs against the benefits, compare the costs to your budget
and decide what your priorities are. Do this honestly and the question will
answer itself.

That said, I won't cop out completely. :^) Here are some very broad
guidelines:

• Business Servers: In this author's opinion, all but the smallest
businesses should be running their critical data on some sort of RAID
system. Data is so important, and interruptions can be so crippling to
most businesses, that the costs are usually worth it. Even an
inexpensive, small RAID setup is better than nothing, and if budget is
very tight, not all of the company's data has to reside on the array.

• Workstations: For those individuals who are doing intensive work
such as video file editing, graphical design, CAD/CAM, and the like
should consider a RAID array. RAID 0 will provide the improved
performance needed in many of these applications. (RAID 10 is
superior due to its redundancy, but the requirement for four drives
makes it expensive and space-consuming; if the RAID 0 array is
backed up each night then that's usually quite acceptable for a
workstation.)

• Regular PCs: Most "regular PC users" do not need RAID, and the
extra cost of one or more additional hard drives is usually not justified.
Most individuals who set up RAID on regular PCs cannot afford
hardware RAID and SCSI drives, so they use software RAID or
inexpensive IDE/ATA RAID controllers. They are typically setting up
RAID solely for performance reasons, and choose RAID 0.
Unfortunately, RAID 0 just doesn't improve performance all that much
for the way typical PCs are used; I often see gamers setting up RAID 0
systems when most games will take little advantage of it. Meanwhile,
the RAID 0 array puts all of the user's data in jeopardy.

Next: RAID Concepts and Issues

RAID Concepts and Issues

Most publications discussing RAID start with describing the different RAID
levels. As you probably know, I like to be different. :^) Well, not just for the
sake of being different, but where it makes sense to do so. In this case, I
think it makes sense to understand the different concepts and issues that
underlie RAID before we go to discussing the different levels. I hope that
doing this will not only give you the foundation necessary to understand
various design issues and concepts in RAID applications, but will frame the
various issues that differentiate RAID levels and make them easier to
understand as well.

mehedi hasan
mehedi@joinme.com

294

In this section I start off by describing the general concepts that define what
RAID is about. Then, since performance and reliability are the two "classes" of
reasons why PC users choose RAID, I discuss issues related to those two
subjects in some detail.

Next: General RAID Concepts

General RAID Concepts

In this section I will start "at the beginning", describing the key concepts that
define the fundamental characteristics of RAID. These are the concepts that
describe how RAID works, how arrays are set up, and how different RAID
levels work to improve reliability and performance. Understanding these
concepts provides the foundation for our subsequent discussions of
performance issues, reliability concerns, and the various RAID levels.

Next: Physical and Logical Arrays and Drives

Physical and Logical Arrays and Drives

The fundamental structure of RAID is the array. An array is a collection of
drives that is configured, formatted and managed in a particular way. The
number of drives in the array, and the way that data is split between them, is
what determines the RAID level, the capacity of the array, and its overall
performance and data protection characteristics. Deciding what types of
arrays to set up, and how to configure them, is the first thing you do when
setting up a RAID implementation.

Understanding arrays and drives can get awfully confusing because high-end
RAID systems allow for such complexity in how they are arranged. To get a
better handle on this, let's look at the "hierarchy" in which data in a RAID
system is organized:

1. Physical Drives: The physical, actual hard disks that comprise the
array are the "building blocks" of all data storage under RAID.

2. Physical Arrays: One or more physical drives are collected together
to form a physical array. Most simple RAID setups use just one
physical array, but some complex ones can have two or more physical
arrays.

3. Logical Arrays: Logical arrays are formed by splitting or combining
physical arrays. Typically, one logical array corresponds to one
physical array. However, it is possible to set up a logical array that
includes multiple physical arrays (typically used to allow multiple RAID
levels). It is also possible to set up two entirely different logical arrays
from a single physical, as described here.

4. Logical Drives: One or more logical drives are formed from one
logical array (much the same way they would normally be formed from
one physical drive in a non-RAID system). These appear to the
operating system as if they were regular disk volumes, and are treated

mehedi hasan
mehedi@joinme.com

295

accordingly, with the RAID controller managing the array(s) that
underlie them.

Notice how we start with drives, go to arrays, and then end up back talking
about drives. Isn't that nice and confusing? :^) This occurs so that the array
management is "hidden" from the operating system. (Under software RAID a
special part of the operating system does this management, hiding the arrays
from the rest of the software.) The really confusing thing is that the terms
above, which are similar-sounding enough, are often used loosely. Since most
RAID setups consist of one physical array made into one logical array made
into one logical drive, the term "logical array" is sometimes used
interchangeably with "physical array" or "logical drive". Ugh.

As you can see, better RAID controllers give you all the "rope" you need to
hang yourself when it comes to defining arrays. How many logical arrays and
drives you should define depends entirely on the RAID level(s) you are going
to be used. But in general, when defining arrays and drives, you should
always keep in mind the "KISS" rule--keep it simple. For most reasonably
simple applications, creating a single logical array for each physical array is
the best way to go. If you need multiple logical arrays for special applications,
using separate physical arrays for them may make management simpler than
having two arrays sharing physical arrays and therefore, sharing physical
drives.

Next: Mirroring

mehedi hasan
mehedi@joinme.com

296

Mirroring

Mirroring is one of the two data redundancy techniques used in RAID (the
other being parity). In a RAID system using mirroring, all data in the system
is written simultaneously to two hard disks instead of one; thus the "mirror"
concept. The principle behind mirroring is that this 100% data redundancy
provides full protection against the failure of either of the disks containing the
duplicated data. Mirroring setups always require an even number of drives for
obvious reasons.

The chief advantage of mirroring is that it provides not only complete
redundancy of data, but also reasonably fast recovery from a disk failure.
Since all the data is on the second drive, it is ready to use if the first one fails.
Mirroring also improves some forms of read performance (though it actually
hurts write performance.) The chief disadvantage of RAID 1 is expense: that
data duplication means half the space in the RAID is "wasted" so you must
buy twice the capacity that you want to end up with in the array. Performance
is also not as good as some RAID levels.

Block diagram of a RAID mirroring configuration. The RAID controller
duplicates the same information onto each of two hard disks. Note that
the RAID controller is represented as a "logical black box" since its functions
can be implemented in software, or several different types of hardware
(integrated controller, bus-based add-in card, stand-alone RAID hardware.)

Mirroring is used in RAID 1, as well as multiple-level RAID involving RAID 1
(RAID 01 or RAID 10). It is related in concept to duplexing. Very high-end
mirroring solutions even include such fancy technologies as remote mirroring,
where data is configured in a RAID 1 array with the pairs split between
physical locations to protect against physical disaster! You won't typically find
support for anything that fancy in a PC RAID card. :^)

Next: Duplexing

mehedi hasan
mehedi@joinme.com

297

Duplexing

Duplexing is an extension of mirroring that is based on the same principle as
that technique. Like in mirroring, all data is duplicated onto two distinct
physical hard drives. Duplexing goes one step beyond mirroring, however, in
that it also duplicates the hardware that controls the two hard drives (or sets
of hard drives). So if you were doing mirroring on two hard disks, they would
both be connected to a single host adapter or RAID controller. If you were
doing duplexing, one of the drives would be connected to one adapter and the
other to a second adapter.

Block diagram of a RAID duplexing configuration. Two controllers are used
to send the same information to two different hard disks. The controllers are
often regular host adapters or disk controllers with the mirroring done by the
system. Contrast this diagram with the one for straight mirroring.

Duplexing is superior to mirroring in terms of availability because it provides
the same protection against drive failure that mirroring does, but also
protects against the failure of either of the controllers. It also costs more than
mirroring because you are duplicating more hardware. Duplexing is one
option when implementing RAID 1 (though most people think of RAID 1 as
only being mirroring, and certainly, mirroring is much more commonly
implemented than duplexing.)

Since hardware RAID is typically set up under the assumption that the RAID
controller will handle all the drives in the array, duplexing is not supported as
an option in most PC hardware RAID solutions--even fairly high-end ones.
Duplexing is more often found in software RAID solutions managed by the
operating system, where the operating system is running the RAID
implementation at a high level and can easily split the data between the host
adapters. (There are hardware RAID duplexing solutions but usually only on
very expensive external RAID boxes.)

Next: Striping

mehedi hasan
mehedi@joinme.com

298

Striping

The main performance-limiting issues with disk storage relate to the slow
mechanical components that are used for positioning and transferring data.
Since a RAID array has many drives in it, an opportunity presents itself to
improve performance by using the hardware in all these drives in parallel. For
example, if we need to read a large file, instead of pulling it all from a single
hard disk, it is much faster to chop it up into pieces, store some of the pieces
on each of the drives in an array, and then use all the disks to read back the
file when needed. This technique is called striping, after the pattern that
might be visible if you could see these "chopped up pieces" on the various
drives with a different color used for each file. It is similar in concept to the
memory performance-enhancing technique called interleaving.

Striping can be done at the byte level, or in blocks. Byte-level striping means
that the file is broken into "byte-sized pieces" (hee hee, sorry about that, I
just couldn't resist. ;^)) The first byte of the file is sent to the first drive,
then the second to the second drive, and so on. (See the discussion of RAID
level 3 for more on byte-level striping.) Sometimes byte-level striping is done
as a sector of 512 bytes. Block-level striping means that each file is split into
blocks of a certain size and those are distributed to the various drives. The
size of the blocks used is also called the stripe size (or block size, or several
other names), and can be selected from a variety of choices when the array is
set up; see here for more details.

mehedi hasan
mehedi@joinme.com

299

Block diagram of a RAID striping configuration. One controller (which again
can be hardware or software) splits files into blocks or bytes and distributes
them across several hard disks. The block size determines how many "pieces"
files
will be split into. In this example, the first block of file 1 is sent to disk #1,
then the
second block to disk #2, etc. When all four disks have one block of file 1, the
fifth block goes back to disk #1, and this continues until the file is completed.
Note
that file 3 is only on one disk; this means it was smaller than the block size in
this case.

Striping is used in the implementation of most of the basic, single RAID levels
(and by extension, any multiple RAID levels that use those single RAID
levels). However, the actual way striping is set up, and how it is used, varies
greatly from level to level. RAID 0 uses block-level striping without parity;
RAID 3 and RAID 7 use byte-level striping with parity; and RAID 4, RAID 5
and RAID 6 use block-level striping with parity. Note the distinction between
striping with and without parity: striping by itself involves no redundancy, and
therefore, provides no data protection. Also see the discussion of RAID 2 for a
look at the oddball bit-level striping with ECC defined by that RAID type.

mehedi hasan
mehedi@joinme.com

300

Note: Some companies use the term "spanning" when they really mean
striping. Spanning really normally refers to JBOD.

Next: Parity

Parity

Mirroring is a data redundancy technique used by some RAID levels, in
particular RAID level 1, to provide data protection on a RAID array. While
mirroring has some advantages and is well-suited for certain RAID
implementations, it also has some limitations. It has a high overhead cost,
because fully 50% of the drives in the array are reserved for duplicate data;
and it doesn't improve performance as much as data striping does for many
applications. For this reason, a different way of protecting data is provided as
an alternate to mirroring. It involves the use of parity information, which is
redundancy information calculated from the actual data values.

You may have heard the term "parity" before, used in the context of system
memory error detection; in fact, the parity used in RAID is very similar in
concept to parity RAM. The principle behind parity is simple: take "N" pieces
of data, and from them, compute an extra piece of data. Take the "N+1"
pieces of data and store them on "N+1" drives. If you lose any one of the
"N+1" pieces of data, you can recreate it from the "N" that remain, regardless
of which piece is lost. Parity protection is used with striping, and the "N"
pieces of data are typically the blocks or bytes distributed across the drives in
the array. The parity information can either be stored on a separate,
dedicated drive, or be mixed with the data across all the drives in the array.

The parity calculation is typically performed using a logical operation called
"exclusive OR" or "XOR". As you may know, the "OR" logical operator is "true"
(1) if either of its operands is true, and false (0) if neither is true. The
exclusive OR operator is "true" if and only if one of its operands is true; it
differs from "OR" in that if both operands are true, "XOR" is false. This truth
table for the two operators will illustrate:

Input Output

#1 #2 "OR" "XOR"

0 0 0 0

0 1 1 1

1 0 1 1

1 1 1 0

Uh huh. So what, right? Well, the interesting thing about "XOR" is that it is a
logical operation that if performed twice in a row, "undoes itself". If you
calculate "A XOR B" and then take that result and do another "XOR B" on it,

mehedi hasan
mehedi@joinme.com

301

you get back A, the value you started with. That is to say, "A XOR B XOR B =
A". This property is exploited for parity calculation under RAID. If we have
four data elements, D1, D2, D3 and D4, we can calculate the parity data,
"DP" as "D1 XOR D2 XOR D3 XOR D4". Then, if we know any four of D1, D2,
D3, D4 and DP, we can XOR those four together and it will yield the missing
element.

Let's take an example to show how this works; you can do this yourself easily
on a sheet of paper. Suppose we have the following four bytes of data:
D1=10100101, D2=11110000, D3=00111100, and D4=10111001. We can
"XOR" them together as follows, one step at a time:

D1 XOR D2 XOR D3 XOR D4
= ((D1 XOR D2) XOR D3) XOR D4
= ((10100101 XOR 11110000) XOR 00111100) XOR 10111001
= (01010101.XOR 00111100) XOR 10111001
= 01101001 XOR 10111001
= 11010000

So "11010000" becomes the parity byte, DP. Now let's say we store these five
values on five hard disks, and hard disk #3, containing value "00111100",
goes el-muncho. We can retrieve the missing byte simply by XOR'ing together
the other three original data pieces, and the parity byte we calculated earlier,
as so:

D1 XOR D2 XOR D4 XOR DP
= ((D1 XOR D2) XOR D4) XOR DP
= ((10100101 XOR 11110000) XOR 10111001) XOR 11010000
= (01010101 XOR 10111001) XOR 11010000
= 11101100 XOR 11010000
= 00111100

Which is D3, the missing value. Pretty neat, huh? :^) This operation can be
done on any number of bits, incidentally; I just used eight bits for simplicity.
It's also a very simple binary calculation--which is a good thing, because it
has to be done for every bit stored in a parity-enabled RAID array.

Compared to mirroring, parity (used with striping) has some advantages and
disadvantages. The most obvious advantage is that parity protects data
against any single drive in the array failing without requiring the 50% "waste"
of mirroring; only one of the "N+1" drives contains redundancy information.
(The overhead of parity is equal to (100/N)% where N is the total number of
drives in the array.) Striping with parity also allows you to take advantage of
the performance advantages of striping. The chief disadvantages of striping
with parity relate to complexity: all those parity bytes have to be computed--
millions of them per second!--and that takes computing power. This means a
hardware controller that performs these calculations is required for high
performance--if you do software RAID with striping and parity the system
CPU will be dragged down doing all these computations. Also, while you can
recover from a lost drive under parity, the missing data all has to be rebuilt,
which has its own complications; recovering from a lost mirrored drive is
comparatively simple.

mehedi hasan
mehedi@joinme.com

302

All of the RAID levels from RAID 3 to RAID 7 use parity; the most popular of
these today is RAID 5. RAID 2 uses a concept similar to parity but not exactly
the same.

Next: RAID Performance Issues

RAID Performance Issues

RAID was originally developed as a way of protecting data by providing fault
tolerance; that's the reason for the "R" at the front of the acronym. Today,
while matters of reliability, availability and fault tolerance continue to be
essential to many of those who use RAID, performance issues are being given
about as much attention. There are in fact whole classes of implementers who
build RAID arrays solely for performance considerations, with no redundancy
or data protection at all. Even those who do employ redundancy obviously
care about getting the most from their array hardware.

The key to performance increases under RAID is parallelism. The ability to
access multiple disks simultaneously allows for data to be written to or read
from a RAID array faster than would be possible with a single drive. In fact,
RAID is in some ways responsible for the demise of esoteric high-performance
hard disk designs, such as drives with multiple actuators. A multiple-drive
array essentially has "multiple actuators" without requiring special
engineering; it's a win-win solution for both manufacturers (which hate low-
volume specialty products) and consumers (which hate the price tags that
come with low-volume specialty products).

There's no possible way to discuss every factor that affects RAID performance
in a separate section like this one--and there really isn't any point in doing so
anyway. As you read about RAID levels, and RAID implementation and
configuration, many issues that are related to performance will come up. In
this section I want to explore some of the fundamentals though, the basic
concepts that impact overall array performance. One of my goals is to try to
define better what exactly is meant by performance in a RAID context. Most
people who know something about RAID would say "RAID improves
performance", but some types improve it better than others, and in different
ways than others. Understanding this will help you differentiate between the
different RAID levels on a performance basis.

Next: Read and Write Performance

Read and Write Performance

Hard disks perform two distinct functions: writing data, and then reading it
back. In most ways, the electronic and mechanical processes involved in
these two operations are very similar. However, even within a single hard
disk, read and write performance are often different in small but important
ways. This is discussed in more detail here. When it comes to RAID, the
differences between read and write performance are magnified. Because of
the different ways that disks can be arranged in arrays, and the different

mehedi hasan
mehedi@joinme.com

303

ways data can be stored, in some cases there can be large discrepancies in
how "method A" compares to "method B" for read performance, as opposed
to write performance.

The fundamental difference between reading and writing under RAID is this:
when you write data in a redundant environment, you must access every
place where that data is stored; when you read the data back, you only need
to read the minimum amount of data necessary to retrieve the actual data--
the redundant information does not need to be accessed on a read. OK, this
isn't as complicated as I probably just made it sound. :^) Let's see how
various storage techniques used in RAID differ in this regard:

• Mirroring: Read performance under mirroring is far superior to write
performance. Let's suppose you are mirroring two drives under RAID
1. Every piece of data is duplicated, stored on both drives. This means
that every byte of data stored must be written to both drives, making
write performance under RAID 1 actually a bit slower than just using a
single disk; even if it were as fast as a single disk, both drives are tied
up during the write. But when you go to read back the data? There's
absolutely no reason to access both drives; the controller, if
intelligently programmed, will only ask one of the drives for the data--
the other drive can be used to satisfy a different request. This makes
RAID significantly faster than a single drive for reads, under most
conditions.

• Striping Without Parity: A RAID 0 array has about equal read and
write performance (or more accurately, roughly the same ratio of read
to write performance that a single hard disk would have.) The reason
is that the "chopping up" of the data without parity calculation means
you must access the same number of drives for reads as you do for
writes.

• Striping With Parity: As with mirroring, write performance when
striping with parity (RAID levels 3 through 6) is worse than read
performance, but unlike mirroring, the "hit" taken on a write when
doing striping with parity is much more significant. Here's how the
different accesses fare:

o For reads, striping with parity can actually be faster than
striping without parity. The parity information is not needed on
reads, and this makes the array behave during reads in a way
similar to a RAID 0 array, except that the data is spread across
one extra drive, slightly improving parallelism.

o For sequential writes, there is the dual overhead of parity
calculations as well as having to write to an additional disk to
store the parity information. This makes sequential writes
slower than striping without parity.

o The biggest discrepancy under this technique is between
random reads and random writes. Random reads that only
require parts of a stripe from one or two disks can be processed
in parallel with other random reads that only need parts of
stripes on different disks. In theory, random writes would be
the same, except for one problem: every time you change any
block in a stripe, you have to recalculate the parity for that
stripe, which requires two writes plus reading back all the other
pieces of the stripe! Consider a RAID 5 array made from five

mehedi hasan
mehedi@joinme.com

304

disks, and a particular stripe across those disks that happens to
have data on drives #3, #4, #5 and #1, and its parity block on
drive #2. You want to do a small "random write" that changes
just the block in this stripe on drive #3. Without the parity, the
controller could just write to drive #3 and it would be done.
With parity though, the change to drive #3 affects the parity
information for the entire stripe. So this single write turns into
a read of drives #4, #5 and #1, a parity calculation, and then a
write to drive #3 (the data) and drive #2 (the newly-
recalculated parity information). This is why striping with parity
stinks for random write performance. (This is also why RAID 5
implementations in software are not recommended if you are
interested in performance.)

o Another hit to write performance comes from the dedicated
parity drive used in certain striping with parity implementations
(in particular, RAID levels 3 and 4). Since only one drive
contains parity information, every write must write to this
drive, turning it into a performance bottleneck. Under
implementations with distributed parity, like RAID 5, all drives
contain data and parity information, so there is no single
bottleneck drive; the overheads mentioned just above still
apply though.

Note: As if the performance hit for writes under striping with parity weren't
bad enough, there is even one more piece of overhead! The controller has to
make sure that when it changes data and its associated parity, all the
changes happen simultaneously; if the process were interrupted in the
middle, say, after the data were changed and not the parity, the integrity of
the array would be compromised. To prevent this, a special process must be
used, sometimes called a two-phase commit. This is similar to the techniques
used in database operations, for example, to make sure that when you
transfer money from your checking account to your savings account, it
doesn't get subtracted from one without being certain that it was added to
the other (or vice-versa). More overhead, more performance slowdown.

The bottom line that results from the difference between read and write
performance is that many RAID levels, especially ones involving striping with
parity, provide far better net performance improvement based on the ratio of
reads to writes in the intended application. Some applications have a
relatively low number of writes as a percentage of total accesses; for
example, a web server. For these applications, the very popular RAID 5
solution may be an ideal choice. Other applications have a much higher
percentage of writes; for example, an interactive database or development
environment. These applications may be better off with a RAID 01 or 10
solution, even if it does cost a bit more to set up.

Note: Some controllers employ write caching to improve performance during
writes; see here for more on this advanced feature.

Next: Positioning and Transfer Performance

mehedi hasan
mehedi@joinme.com

305

Positioning and Transfer Performance

Much the way different RAID implementations vary in the degree to which
they improve read and write performance, they also differ in how much they
affect different types of accesses to data, both read and write. Data access to
a single hard disk involves two discrete steps: first, getting the heads of the
hard disk to exactly where the data is located, which I call positioning; and
second, transporting the data to or from the hard disk platters, which I call
transfer. Hard disk performance depends on both of these; the importance of
one relative to the other depends entirely on the types of files being used and
how the data is organized on the disk. For more on positioning and transfer,
and related issues, see this section (if you don't understand these two
concepts reasonably well, what follows may not mean as much to you as it
should...)

The use of multiple hard disks in a RAID environment means that in some
cases positioning or transfer performance can be improved, and sometimes
both. RAID levels are often differentiated in part by the degree to which they
improve either positioning or transfer performance compared to other levels;
this becomes another factor to be weighed in matching the choice of RAID
level to a particular application. It's important also to realize that the relative
performance of positioning or transfer accesses depends also on whether you
are doing reads or writes; often writes have overheads that can greatly
reduce the performance of random writes by requiring additional reads and/or
writes to disks that normally wouldn't be involved in a random write. See here
for more details.

In general terms, here's how the basic storage techniques used in RAID vary
with respect to positioning and transfer performance, for both writes and
reads:

• Mirroring: During a read, only one drive is typically accessed, but the
controller can use both drives to perform two independent accesses.
Thus, mirroring improves positioning performance. However, once the
data is found, it will be read off one drive; therefore, mirroring will not
really improve sequential performance. During a write, both hard disks
are used, and performance is generally worse than it would be for a
single drive.

• Striping: Large files that are split into enough blocks to span every
drive in the array require each drive to position to a particular spot, so
positioning performance is not improved; once the heads are all in
place however, data is read from all the drives at once, greatly
improving transfer performance. On reads, small files that don't
require reading from all the disks in the array can allow a smart
controller to actually run two or more accesses in parallel (and if the
files are in the same stripe block, then it will be even faster). This
improves both positioning and transfer performance, though the
increase in transfer performance is relatively small. Performance
improvement in a striping environment also depends on stripe size and
stripe width. Random writes are often degraded by the need to read all
the data in a stripe to recalculate parity; this can essentially turn a

mehedi hasan
mehedi@joinme.com

306

random write into enough operations to make it more resemble a
sequential operation.

Which is more important: positioning or transfer? This is a controversial
subject in the world of PCs, and one I am not going to be able to answer for
you. This discussion of ranking performance specifications is one place to
start, but really, you have to look at your particular application. A simple (but
often too simple) rule of thumb is that the larger the files you are working
with, the more important transfer performance is; the smaller the files, the
more important positioning is. I would also say that too many people
overvalue the importance of greatly increasing sequential transfer rates
through the use of striping. A lot of people seem to think that implementing
RAID 0 is an easy way to storage nirvana, but for "average use" it may not
help performance nearly as much as you might think.

Next: Stripe Width and Stripe Size

mehedi hasan
mehedi@joinme.com

307

Stripe Width and Stripe Size

RAID arrays that use striping improve performance by splitting up files into
small pieces and distributing them to multiple hard disks. Most striping
implementations allow the creator of the array control over two critical
parameters that define the way that the data is broken into chunks and sent
to the various disks. Each of these factors has an important impact on the
performance of a striped array.

The first key parameter is the stripe width of the array. Stripe width refers to
the number of parallel stripes that can be written to or read from
simultaneously. This is of course equal to the number of disks in the array. So
a four-disk striped array would have a stripe width of four. Read and write
performance of a striped array increases as stripe width increases, all else
being equal. The reason is that adding more drives to the array increases the
parallelism of the array, allowing access to more drives simultaneously. You
will generally have superior transfer performance from an array of eight 18
GB drives than from an array of four 36 GB of the same drive family, all else
being equal. Of course, the cost of eight 18 GB drives is higher than that of
four 36 GB drives, and there are other concerns such as power supply to be
dealt with.

The second important parameter is the stripe size of the array, sometimes
also referred to by terms such as block size, chunk size, stripe length or
granularity. This term refers to the size of the stripes written to each disk.
RAID arrays that stripe in blocks typically allow the selection of block sizes in
kiB ranging from 2 kiB to 512 kiB (or even higher) in powers of two (meaning
2 kiB, 4 kiB, 8 kiB and so on.) Byte-level striping (as in RAID 3) uses a stripe
size of one byte or perhaps a small number like 512, usually not selectable by
the user.

Warning: Watch out for sloppy tech writers and marketing droids who use
the term "stripe width" when they really mean "stripe size". Since stripe size
is a user-defined parameter that can be changed easily--and about which
there is lots of argument :^)--it is far more often discussed than stripe width
(which, once an array has been set up, is really a static value unless you add
hardware.) Also, watch out for people who refer to stripe size as being the
combined size of all the blocks in a single stripe. Normally, an 8 kiB stripe size
means that each block of each stripe on each disk is 8 kiB. Some people,
however, will refer to a four-drive array as having a stripe size of 8 kiB, and
mean that each drive has a 2 kiB block, with the total making up 8 kiB. This
latter meaning is not commonly used.

The impact of stripe size upon performance is more difficult to quantify than
the effect of stripe width:

• Decreasing Stripe Size: As stripe size is decreased, files are broken
into smaller and smaller pieces. This increases the number of drives
that an average file will use to hold all the blocks containing the data
of that file, theoretically increasing transfer performance, but
decreasing positioning performance.

mehedi hasan
mehedi@joinme.com

308

• Increasing Stripe Size: Increasing the stripe size of the array does
the opposite of decreasing it, of course. Fewer drives are required to
store files of a given size, so transfer performance decreases.
However, if the controller is optimized to allow it, the requirement for
fewer drives allows the drives not needed for a particular access to be
used for another one, improving positioning performance.

Tip: For a graphical illustration showing how different stripe sizes work, see
the discussion of RAID 0.

Obviously, there is no "optimal stripe size" for everyone; it depends on your
performance needs, the types of applications you run, and in fact, even the
characteristics of your drives to some extent. (That's why controller
manufacturers reserve it as a user-definable value!) There are many "rules of
thumb" that are thrown around to tell people how they should choose stripe
size, but unfortunately they are all, at best, oversimplified. For example,
some say to match the stripe size to the cluster size of FAT file system logical
volumes. The theory is that by doing this you can fit an entire cluster in one
stripe. Nice theory, but there's no practical way to ensure that each stripe
contains exactly one cluster. Even if you could, this optimization only makes
sense if you value positioning performance over transfer performance; many
people do striping specifically for transfer performance.

mehedi hasan
mehedi@joinme.com

309

A comparison of different stripe sizes. On the left, a four-disk RAID 0 array
with a stripe size of 4 kiB; on the right, the same array with the same data,
but using a 64 kiB stripe size. In these diagrams four files are shown color-
coded: the red file is 4 kiB in size; the blue is 20 kiB; the green is 100 kiB;
and the magenta is 500 kiB. They are shown drawn to scale to illustrate how
much space they take up in relative terms in the array (one vertical pixel
represents 1 kiB.)
You can see how dramatically differently "medium-sized" files are treated as
stripe size changes. The 4 kiB file takes only one block on one disk in both
arrays, and the 500 kiB file is spread across all four disks in both arrays. But
when the large stripe size is used, the blue file appears on only one disk
instead of all four, and the green file is on two instead of four. This improves
random positioning to these files. In both cases the stripe width is of course
four. For a view of the same array with an "in-between" stripe size of 16 kiB,
see the page on RAID 0.

So what should you use for a stripe size? The best way to find out is to try
different values: empirical evidence is the best for this particular problem.
Also, as with most "performance optimizing endeavors", don't overestimate
the difference in performance between different stripe sizes; it can be
significant, particularly if contrasting values from opposite ends of the
spectrum like 4 kiB and 256 kiB, but the difference often isn't all that large
between similar values. And if you must have a rule of thumb, I'd say this:
transactional environments where you have large numbers of small reads and
writes are probably better off with larger stripe sizes (but only to a point);
applications where smaller numbers of larger files need to be read quickly will
likely prefer smaller stripes. Obviously, if you need to balance these
requirements, choose something in the middle. :^)

Note: The improvement in positioning performance that results from
increasing stripe size to allow multiple parallel accesses to different disks in
the array depends entirely on the controller's smarts (as do a lot of other
things in RAID). For example, some controllers are designed to not do any
writes to a striped array until they have enough data to fill an entire stripe
across all the disks in the array. Clearly, this controller will not improve

mehedi hasan
mehedi@joinme.com

310

positioning performance as much as one that doesn't have this limitation.
Also, striping with parity often requires extra reads and writes to maintain the
integrity of the parity information, as described here.

Next: Degraded Operation and Rebuilding

Degraded Operation and Rebuilding

All of the discussions concerning RAID performance--both here and
elsewhere--are based on the assumption that the array is operating normally,
with all drives functioning. Redundancy-enabled RAID solutions provide the
ability for the system to continue even one of the drives in the array has
failed. However, when this occurs, performance is negatively affected; the
array is said to be operating in a degraded state when this happens (some
manufacturers may call this a critical state or use another synonym). The
impact on performance depends on the type of RAID used by the array, and
also how the RAID controller reacts to the drive failure.

When an array enters a degraded state, performance is reduced for two main
reasons. The first is that one of the drives is no longer available, and the
array must compensate for this loss of hardware. In a two-drive mirrored
array, you are left with an "array of one drive", and therefore, performance
becomes the same as it would be for a single drive. In a striped array with
parity, performance is degraded due to the loss of a drive and the need to
regenerate its lost information from the parity data, on the fly, as data is read
back from the array.

The second reason for degraded operation after a drive failure is that after
the toasted drive is replaced, the data that was removed from the array with
its departure must be regenerated on the new disk. This process is called
rebuilding. A mirrored array must copy the contents of the good drive over to
the replacement drive. A striped array with parity must have the entire
contents of the replacement drive replaced by determining new parity
information (and/or replacement data calculated from parity information) for
all the data on the good drives. Clearly, these procedures are going to be
time-consuming and also relatively slow--they can take several hours. During
this time, the array will function properly, but its performance will be greatly
diminished. The impact on performance of rebuilding depends entirely on the
RAID level and the nature of the controller, but it usually affects it
significantly. Hardware RAID will generally do a faster job of rebuilding than
software RAID. Fortunately, rebuilding doesn't happen often (or at least, it
shouldn't!)

Many RAID systems give the administrator control over whether the system
does automatic or manual rebuilds. In an automatic configuration, the array
will detect the replacement of the dead drive and begin rebuilding
automatically on the new one--or it may start the rebuild as soon as the bad
drive fails if the array is equipped with hot spares. In manual mode, the
administrator must tell the system when to do the rebuild. Manual is not
necessarily "worse" than automatic, because if the system is not one that

mehedi hasan
mehedi@joinme.com

311

runs 24 hours a day, 7 days a week, the administrator will often prefer to wait
until after hours to rebuild the array, thereby avoiding the performance hit
associated with the rebuild. However, take the following warning into account
as well...

Warning: Most regular RAID arrays using mirroring or striping with parity are
in a vulnerable state when they are running in degraded mode. Until the
offending drive is replaced and rebuilt, they provide no data protection. Do
not excessively procrastinate rebuilding a degraded array; even if you are just
waiting for the end of the day, recognize that you are taking risks in doing so.

Note: None of this section applies when you are doing striping without parity
(RAID 0). When a drive in a RAID 0 array fails, performance doesn't degrade,
it comes to a screeching halt. :^) The reason is that RAID 0 includes no
redundancy information, so the failure of any drive in the array means all the
data in the array is lost, short of heroics. See here for more details.

Next: RAID Reliability Issues

RAID Reliability Issues

While the performance improvements that result from the use of RAID are of
course important, the primary goal of the use of RAID for most businesses is
the protection of both their critical data and their employees' productivity. In
a properly-implemented RAID system, down-time due to hardware problems
can be dramatically reduced, and data loss due to drive failures all but
eliminated.

In order to understand how RAID really affects important reliability
considerations, it is necessary to first understand the various issues that are
related to that somewhat nebulous term. For example, a commonly-heard
phrase is that "RAID improves hard disk reliability", but that's not an accurate
statement. The truth depends to some extent on how you define reliability:
do you mean the reliability of the individual drives, or the whole system? Are
you talking about the data, or the hardware itself? And of course, not all RAID
implementations improve reliability in any way.

In this section, I take a closer look at the key issues related to the general
topic of reliability under RAID. This includes a more thorough look at the
concepts of fault tolerance, reliability and availability, a discussion of the
reliability of other system components that affect the reliability of the system
as a whole, and a discussion of backups and data recovery.

Next: Reliability

Reliability

mehedi hasan
mehedi@joinme.com

312

If you ask an IT professional to list the reasons why he or she set up a RAID
array, one of the answers likely to be mentioned is "increased reliability".
They probably don't really mean it though. ;^) As I have implied in many
other areas of the site's coverage of RAID, "reliability" is a vague word when
it comes to redundant disk arrays. The answer of increased reliability is both
true and not true at the same time.

The reliability of an individual component refers to how likely the component
is to remain working with a failure being encountered, typically measured
over some period of time. The reliability of a component is a combination of
factors: general factors related to the design and manufacture of the
particular make and model, and specific factors relevant to the way that
particular component was built, shipped, installed and maintained.

The reliability of a system is a function of the reliability of its components.
The more components you put into a system, the worse the reliability is of
the system as a whole. That's the reason why compex machines typically
break down more frequently than simple ones. While oversimplified, the
number used most often to express the reliability of many components,
including hard disks, is mean time between failures (MTBF). If the MTBF
values of the components in a system are designated as MTBF1, MTBF2, and
so on up MTBFN, the reliability of the system can be calculated as follows:

System MTBF = 1 / (1/MTBF1 + 1/MTBF2 + ... + 1/MTBFN)

If the MTBF values of all the components are equal (i.e., MTBF1 = MTBF2 = ...
= MTBFN) then the formula simplifies to:

System MTBF = Component MTBF / N

The implications of this are clear. If you create a RAID array with four drives,
each of which has an MTBF figure of 500,000 hours, the MTBF of the array is
only 125,000 hours! In fact, it's usually worse than that, because if you are
using hardware RAID, you must also include the MTBF of the controller, which
without the RAID functionality, wouldn't be needed. For sake of illustration,
let's say the MTBF of the controller card is 300,000 hours. The MTBF of the
storage subsystem then would be:

System MTBF = 1 / (1/MTBF1 + 1/MTBF2 + ... + 1/MTBFN)
= 1 / (1/500000 + 1/500000 + 1/500000 + 1/500000 + 1/300000)
= 88,235

So in creating our array, our "reliability" has actually decreased 82%. Is that
right? Why then do people bother with RAID at all? Well, that's the other side
of the reliability coin. While the reliability of the array hardware goes down,
when you include redundancy information through mirroring or parity, you
provide fault tolerance, the ability to withstand and recover from a failure.
This allows the decreased reliability of the array to allow failures to occur
without the array or its data being disrupted, and that's how RAID provides
data protection. Fault tolerance is discussed here. The reason that most
people say RAID improves reliability is that when they are using the term

mehedi hasan
mehedi@joinme.com

313

"reliability" they are including in that the fault tolerance of RAID; they are not
really talking about the reliability of the hardware.

What happens if you don't include redundancy? Well, then you have a ticking
time-bomb: and that's exactly what striping without parity, RAID 0, is. A
striped array without redundancy has substantially lower reliability than a
single drive and no fault tolerance. That's why I do not recommend its use
unless its performance is absolutely required, and it is supplemented with
very thorough backup procedures.

Next: Fault Tolerance

Fault Tolerance

When most people talk about the "enhanced reliability of RAID", what they
really are referring to is the fault tolerance of most RAID implementations.
Reliability and fault tolerance are not the same thing at all, as described in
the discussion of RAID array reliability. Fault tolerance refers to the ability of
a RAID array to withstand the loss of some of its hardware without the loss of
data or availability. When a fault occurs, the array enters a degraded state
and the failed drive must be replaced and rebuilt.

The capability of an array to tolerate hard disk faults depends entirely on the
RAID level implemented. RAID 0, which has no redundant information, has no
fault tolerance for that reason; if any drive fails the array goes down. RAID
levels 1, 2, 3, 4, 5 and 7 can tolerate the loss of one hard disk; RAID 6 can
tolerate the loss of two. The multiple RAID levels can often tolerate the loss of
multiple hard disks depending on which ones they are and how the array is
configured. For example, if you have a RAID 10 array consisting of two pairs
of mirrored drives striped together, the array can tolerate the simultaneous
loss of two of the four drives, as long as they are not in the same pair.

Ultimately, fault tolerance of a RAID-equipped PC depends not only on the
reliability of the drives, but also the other hardware in the system. For
example, most RAID implementations are dependent upon the RAID controller
not failing; if it goes down then your data is probably fine, but availability is
not--this is one reason why duplexing is sometimes used, since it can tolerate
the loss of a drive and a controller. Since items such as power supplies have a
high failure rate and ultimately can bring down any array, fault tolerance in a
PC equipped with RAID is also often used to describe features implemented
on the system as a whole to prevent faults in this support equipment; see
here for more details.

Next: Availability

Availability

Another issue related to reliability and fault tolerance but not the same as
either of them is availability. This term refers simply to the ability of users to
continue to get access to their data. If people are using the array to do their

mehedi hasan
mehedi@joinme.com

314

work, then it is "available"; if everyone's gathered around the water cooler
talking about how much money some guy won last night on "Who Wants To
Be A Millionaire?" then it is "not available". :^)

For many businesses that implement RAID, availability is the "bottom line"
reason why they decided to spend the money for that technology. (Data
protection is usually just as important, but you can get pretty good data
protection through backups, saving the cost of all the RAID hardware, and
you still need the backups anyway.) For some businesses, the cost of losing
access to their data for an hour can exceed the price of the entire RAID
system.

The availability of an array depends on several factors and features:

• Hardware Reliability: The higher the reliability of the hardware in
the array, the less the chances of there being a hardware problem in
the first place; this is the best way to keep availability high, of course.
:^) The reliability of support hardware is just as important as that of
the drives in the array.

• Fault Tolerance: RAID arrays and implementations that have higher
fault tolerance provide higher availability. Again here, the fault
tolerance of support hardware is also important.

• Hot Swapping: RAID arrays that include the ability to hot swap drives
eliminate the need to shut down the system in the event of a hardware
failure.

• Automatic Rebuilding: If the system runs continuously, the ability to
automatically rebuild the drive while the array continues to operate is
essential.

• Service: If an array goes down, availability is gone until the hardware
fault is corrected. Though this is uncommon in a properly-configured
RAID system it does occur, and when it does, availability rapidly boils
down to how fast the hardware can be serviced.

If high availability is important then it can be achieved--at a cost. There are in
fact companies that design special, highly-fault-tolerant systems that can
withstand just about anything not involving the use of explosives. :^) Very
high-end solutions for availability-critical applications go beyond RAID to the
use of complete redundant systems, often in different locations--these can
even handle explosives!

Next: Reliability of Other System Components

Reliability of Other System Components

As described in this section, the reliability of a system is a function of the
reliability of the various components that comprise it. The more components
in a system, the less reliable a system will be. Furthermore, in terms of
reliability, the chain is truly only as strong as its weakest link. When dealing
with a PC, there are a number of critical components without which the
system will not function; if one of these hardware pieces fails then your array
will go down, regardless of the number of disks you have or how well they are

mehedi hasan
mehedi@joinme.com

315

manufactured. This is an important point that too few people consider
carefully enough when setting up a RAID box.

One unreliable component can severely drag down the overall reliability of a
system, because the MTBF of a system will always be lower than the MTBF of
the least reliable component. Recall the formula for reliability of a system:

System MTBF = 1 / (1/MTBF1 + 1/MTBF2 + ... + 1/MTBFN)

Also recall that if the MTBF values of all the components are equal (i.e.,
MTBF1 = MTBF2 = ... = MTBFN) then this boils down to:

System MTBF = Component MTBF / N

This means that if we have four components with an MTBF of 1,000,000 hours
each, the MTBF of the system is 250,000 hours. But if we have four
components, of which three have an MTBF of 1,000,000 hours and the fourth
has an MTBF of 100,000 hours? In this case, the MTBF of the system drops to
only about 77,000 hours, one-third of the previous value.

What this all means is that you can have the greatest hard disks in the world,
and use multiple RAID levels to protect against drive failure, but if you put it
all in a system with lousy support components, you're not going to have a
reliable, high-availability system. It's as simple as that, but in fact, it's
actually worse than that. While RAID reduces reliability, it improves fault
tolerance; however, most of the other components in the system have no
fault tolerance. This means that the failure of any one of them will bring down
the PC. Of particular concern are components that affect all the drives in a
system, and which generally have a reputation for problems or relatively low
reliability.

To increase the reliability of the PC as a whole, systems using RAID are
usually designed to use high-quality components. Many systems go beyond
this, however, by introducing fault tolerance into other key components in the
system that often fail. Since many of the most common problems with PCs
are related to power, and since without the power supply nothing in the PC
will operate, many high-end RAID-capable systems come equipped with
redundant power supplies. These supplies are essentially a pair of supplies in
one, either of which can operate the PC. If one fails then the other can handle
the entire load of the PC. Most also allow hot swapping, just like hard disk hot
swapping in a RAID array. See this section for more.

Another critical issue regarding support hardware relates to power protection-
-your PC is completely dependent on the supply of electricity to the power
supply unless you use a UPS. In my opinion, any application important
enough to warrant the implementation of a fault-tolerant RAID system is also
important enough to justify the cost of a UPS, which you can think of as "fault
tolerance for the electric grid". In addition to allowing the system to weather
short interruptions in utility power, the UPS also protects the system against
being shut down abruptly while in the middle of an operation. This is
especially important for arrays using complex techniques such as striping with
parity; having the PC go down in the middle of writing striped information to

mehedi hasan
mehedi@joinme.com

316

the array can cause a real mess. Even if the battery doesn't last through a
power failure, a UPS lets you shut the PC down gracefully in the event of a
prolonged outage.

How about components like motherboards, CPUs, system memory and the
like? They certainly are critical to the operation of the system: a multiple-CPU
system can handle the loss of a processor (though that's a pretty rare event
in any case) but no PC around will function if it has a motherboard failure.
Most systems running RAID do not provide any protection against failure of
these sorts of components. The usual reason is that there is no practical way
to protect against the failure of something like a motherboard without going
to (very expensive) specialty, proprietary designs. If you require protection
against the failure of any of the components in a system, then you need to
look beyond fault-tolerance within the PC and configure a system of
redundant machines.

Next: The Continued Importance of Backups

The Continued Importance of Backups

I suppose I should apologize for the fact that I tend to hound my readers on
the subject of backups. Hmm. Nah. :^) Well, I do apologize to those of you
who already know to do backups and actually do them, but unfortunately, you
by far represent the minority of PC users. Lack of proper backup procedures is
risky at any time, but with some types of RAID, especially RAID 0, it becomes
riskier than ever.

Most RAID levels use striping, which causes most of the files on the system to
be "chopped up" into small pieces and distributed to various drives in the
array. This improves performance but poses a real risk to the integrity of your
data. If a drive goes on a striped array, "some part" of almost every file in the
system is gone, and there's really no way to figure out what is gone. A fault-
tolerant array that includes parity protection eliminates much of this risk by
allowing a single drive to fail, but a RAID 0 array does not. Since arrays have
much lower hardware reliability than individual drives, this means the odds of
a catastrophic, near-unrecoverable failure on a RAID 0 array are higher than
most people realize. (Data recovery companies can sometimes perform
miracles; frankly, if your data is important enough to warrant spending what
a recovery service would charge to reconstruct a RAID 0 array, it's important
enough that it shouldn't be on a RAID 0 array. An ounce of prevention and all
that...)

If you are using mirroring, either by itself or in combination with another
technique, your odds of losing your data due specifically to hardware failure
are greatly reduced, but they are far from zero. Regardless, there are a host
of other problems that could wipe out your data (for more on these risks, see
here):

• Unexpected Hard Disk Failures: It's not unheard of for two
mirrored drives to fail simultaneously, especially if they are the exact
same make and model and came from the same lot. Sometimes

mehedi hasan
mehedi@joinme.com

317

manufacturers have a "bad run" and the failure rate of a particular
batch of drives is very high.

• Failures of Support Hardware: The other hardware that runs the
entire array can fail. Power supplies fail, or a motherboard develops a
problem due to overheating, or memory goes bad. These can cause
either outright failure of the array, or even worse, gradual corruption
in some circumstances.

• Physical Damage: Due to natural disasters, carelessness or
sabotage, your hardware could be physically damaged. This will affect
all or most of the drives in the array.

• Software Problems: Software has bugs. This includes all operating
systems, although some are much better than others. Bugs can lead to
data loss.

• Viruses: A virus can wipe out individual files or entire disk volumes at
the system level; no form of RAID will help you.

• Human Error: This is one of the leading causes of data loss; again,
RAID will not protect you against an accidental file deletion, formatting
the wrong partition, etc.

That's not a comprehensive list, but it's good enough to make my point: even
a robust RAID implementation does not replace proper backup procedures.
The more you can afford to put together a good RAID system, the more
important your data is, and the more you should spend on a good backup
system.

Next: Data Recovery

Data Recovery

Under normal circumstances, if a hard disk fails, its data is no longer
accessible. Most failures, especially mechanical ones, do not actually cause
the data on the platter surfaces to be erased, however. This means that with
special procedures, it is possible to retrieve most, if not all, of the data on a
hard disk--if it is important enough to justify the expense. This process is
called data recovery and is discussed in general terms in this section.

RAID, particularly RAID that uses striping, complicates data recovery
significantly. The data is no longer placed in relatively simple fashion on a
single hard disk, but rather, distributed across many drives. Despite this
complication, it is possible to do data recovery in most cases; it just costs
more due to the complexity of the array. For example, there have been cases
of two drives failing on a RAID 5 array and the data being successfully
recovered.

That said, it should be remembered that compared to a single drive, a RAID
array that includes redundancy provides fault tolerance that means in most
cases a drive failure won't result in any lost data at all. If a fault occurs, and it
is dealt with quickly and competently, in most cases the need for data
recovery never arises. In fact, some companies refer to rebuilding a replaced
failed drive in a RAID array as "real-time data recovery", which I suppose it
is, in a way, though I personally find that term a bit confusing.

mehedi hasan
mehedi@joinme.com

318

Next: RAID Levels

RAID Levels

There are many different ways to implement a RAID array, using some
combination of mirroring, striping, duplexing and parity technologies. Several
standardized methods were defined in the 1988 Berkeley research publication
that is credited with starting the RAID phenomenon; for some (unfortunate)
reason, the researchers decided to call these different techniques levels. This
was a poor choice of words in my opinion because the word "level" implies
hierarchy or revision, or that the different RAID levels are somehow "built
upon each other", when in fact, that is not the case. The word "level" implies
to some people that "RAID level N+1" is better somehow than "RAID level N".
In fact, this isn't really true--the various levels are independent and different,
and no strict hierarchy should be inferred from the specific number attached
to a RAID level. A given RAID level that is "better" for one person may be
"worse" for another.

The original 1988 paper defined RAID levels 1 through 5; since then, single
RAID levels 0 and 6 have been added to the mix, and other extensions such
as the proprietary RAID 7 have shown up as well. Beyond these single-level
RAID designs, a number of multiple RAID levels have been defined, which use
two or more of the single RAID levels in combination to create new array
types with new capabilities (and limitations). Most of these different RAID
levels are in use today in different systems, a testament to the different
needs of various RAID users. Some have largely disappeared from the market
as experience over time has shown them to be inferior to other levels without
advantages to compensate.

In this section I take a detailed look at RAID levels. I start with a discussion
of some of the key technical factors that differentiate RAID levels; these are
then used to frame the coverage of the RAID levels themselves. I discuss the
eight single-level RAID designs, and take a look at several common multiple-
level RAID types as well. Each RAID level is discussed in detail and
information is provided about over a dozen of its various characteristics, with
general recommendations provided for typical uses of each level. Finally, I
show a summary comparison table that contrasts the different levels in terms
of their benefits and costs.

Tip: Carefully consider all the factors and variables when comparing different
RAID levels; sometimes, things are not what they seem. Pay careful attention
to the various performance attributes, to help differentiate levels based on
how you are most likely to use the array; sometimes the "common wisdom"
about different RAID levels will not apply to your needs.

Warning: As I am noticing increasingly these days in all areas of computing,
the RAID levels are sometimes not used consistently by manufacturers. For
example, I have encountered a significant RAID controller maker that
provides support for what they call "RAID 3"; when you examine the details,
however, you find that this RAID level is actually implemented as block

mehedi hasan
mehedi@joinme.com

319

striping with dedicated parity, which is RAID 4, not 3. Why they did this, I
have no idea. An organization called the RAID Advisory Board or RAB does
maintain RAID standards and certifies hardware that meets "official" RAID
level definitions, so you can look for their "seals of approval". Even so, it's still
best to ask for specific technical details about any RAID system if you aren't
certain of what the manufacturer has implemented.

Next: Technical Factors Differentiating RAID Levels

mehedi hasan
mehedi@joinme.com

320

Technical Factors Differentiating RAID Levels

The reason why there are so many different RAID levels is that there are
many different ways to configure a bunch of hard disks, and many different
needs of RAID users. Distinguishing between different levels isn't easy at
times, because many RAID levels are similar to others in various ways.
Worse, sometimes the differences between levels seem subtle, but these
small discrepancies can have a huge impact on the characteristics of the array
and the applications that make sense for it.

To completely and accurately portray each single and multiple RAID level, I
describe each in terms of its most important characteristics, including those
related to fault tolerance, capacity, performance, cost and other attributes. To
avoid duplication, I have provided this section that describes what each of
these technical factors or attributes are about. For each one I explain briefly
what the attribute means, how it is defined, and how and why it helps
differentiate between various RAID levels. In the last sub-section, I also
discuss the reasons why some implementers may wish to consider creating
more than one array for a system if the needs of that system can't be met by
one array type.

Note that in addition to the descriptions in this section, you may also want to
take a look at the more general discussions of performance and reliability
issues in the section covering general concepts and issues. Some of the pages
that follow in this area will refer back to those or other pages in the site's
coverage of RAID.

Next: Redundancy Technique: Mirroring vs. Parity

Redundancy Technique: Mirroring vs. Parity

The technique (or techniques) used to provide redundancy in a RAID array is
a primary differentiator between levels. Redundancy is provided in most RAID
levels through the use of mirroring or parity (which is implemented with
striping):

• Mirroring: Single RAID level 1, and multiple RAID levels 0+1 and 1+0
("RAID 10"), employ mirroring for redundancy. One variant of RAID 1
includes mirroring of the hard disk controller as well as the disk, called
duplexing.

• Striping with Parity: Single RAID levels 2 through 7, and multiple
RAID levels 0+3 (aka "53"), 3+0, 0+5 and 5+0, use parity with
striping for data redundancy.

• Neither Mirroring nor Parity: RAID level 0 is striping without parity;
it provides no redundancy

• Both Mirroring and Striping with Parity: Multiple RAID levels 1+5
and 5+1 have the "best of both worlds", both forms of redundancy
protection.

The exact way that striping with parity is implemented depends on the
particulars of the level as well. Some levels involve striping of individual bytes

mehedi hasan
mehedi@joinme.com

321

or sectors, while others use larger blocks; in the latter case, the size of the
blocks is controlled by the stripe size of the array. RAID 2 uses a special form
of striping with parity that is actually more like the ECC encoding used to
protect data on various computer devices.

The choice of method for attaining redundancy affects almost every other
characteristic of an array, which is why I consider it a primary differentiator.
All aspects of performance, fault tolerance, impact of rebuilding, storage
efficiency, cost and more: they all depend on the choice of redundancy
technique. For more information on how mirroring works and its general
advantages over parity; see here. For more on parity and its advantages over
mirroring, see here.

Next: Controller Requirements

Controller Requirements

RAID levels differ in terms of the controller required to implement them. In
general, simple controllers implement simple RAID levels, while more complex
RAID levels require more sophisticated (read: expensive) controllers. Some
levels don't require a dedicated controller at all, functioning acceptably using
operating system or other software to manage the array (albeit at a
performance price).

The simplest RAID levels, often supported by software RAID or low-end
controllers, include RAID 0, RAID 1, and RAID 0+1 or 1+0 (though many low-
end controllers only support one or the other, not both.) Some lower-end
controllers include support for the popular RAID 5 level, and so do some
software RAID implementations, but at a rather severe penalty in terms of
performance and advanced features. RAID levels 3, 4, 6 and 7, and the other
more esoteric multiple RAID levels such as RAID 53 and RAID 30, usually
require more capable controllers. RAID 2 is complex enough that it requires
special, proprietary hardware; it has for this reason all but disappeared from
the market.

Next: Hard Disk Requirements

mehedi hasan
mehedi@joinme.com

322

Hard Disk Requirements

Different RAID levels have varying requirements for the hard disks used in
the array. The most important difference between levels is related to the
minimum number of drives in the array, which depends entirely on how the
RAID level implements mirroring, striping, and parity. Simple striping (RAID
0) requires two or more drives; mirroring (RAID 1) requires two drives; and
striping with parity requires at least three drives (two or more for data stripes
and one for parity, whether it is dedicated to a single drive or distributed).
Striping with double parity (RAID 6) requires at least four drives. Multiple
RAID levels generally require a number of drives equal to the product of the
minimum number of drives of the single levels that comprise them. For
example, RAID 10 requires a minimum of four drives (and must consist of an
even number of drives) and RAID 50 requires at least six!

The maximum number of drives is typically limited by the RAID controller, not
by anything inherent in the definition of the RAID level. The exception to this
rule is RAID 1, which works with two drives only. This limitation is one reason
why RAID 1 is rarely used in larger arrays (RAID 0+1 or 1+0 are used where
the advantages of RAID 1 are required in combination with larger capacity.)

Finally, all RAID levels work best when fitted with identical drives of identical
capacity. Some RAID levels can tolerate differences in performance between
drives in the array better than others (typically the simpler levels). All RAID
arrays make best use of the space on the disk when the drives are the same
size; see here for more details.

For more on hard disk requirements for RAID and selecting hard disks, see
this section.

Next: Array Capacity and Storage Efficiency

Array Capacity and Storage Efficiency

The capacity of a RAID array is determined by multiplying the capacity of the
drives in the array by the number of non-redundant drives, i.e., drives used
for data as opposited to parity or mirrored data. The more redundancy in the
array, the lower the capacity of the array for a given number of drives. For
example, six 40 GB hard disks in a RAID 0 array would yield a 240 GB array;
in a RAID 5 configuration that same array would have 200 GB of usable
capacity; in a RAID 1+0 setup, only 120 GB. The total capacity of the array
depends on both the RAID level and the size and number of drives used.

The storage efficiency of the array is the percentage of the total size of the
array that can be used for user data; it is more useful for comparing RAID
levels because it does not depend on the size of the drives used in the array.
It can be calculated simply by dividing the total usable capacity of the drive
by the sum of the capacities of all the drives that underlie the array. For some
RAID levels it is a constant, while for others it depends on the number of
drives in the array. For example, the storage efficiency of RAID 0 is always
100%, and for RAID 1 and RAID 0+1, 50%. For levels that use striping with

mehedi hasan
mehedi@joinme.com

323

parity, storage efficiency increases as the number of drives is increased,
because the number of parity drives is a constant and therefore diminishes as
a percentage of the total.

While common parlance for calculating storage says to multiply the number of
data-containing drives by the capacity of the drives, bear in mind that this
assumes that all the drives are of the same size (which is the ideal way to set
up a RAID array). In fact, the capacity of any RAID array is constrained by
the size of the smallest drive in the array; it is that size that should be used
when calculating capacity. So, the capacity of a RAID 5 array containing four
drives that are 20 GB, 30 GB, 40 GB and 45 GB in size is 60 GB (calculated as
4-1 times 20 GB, the size of the smallest drive.) If you were to actually set up
an array using such drives, 55 GB of space would be lost in what is
sometimes called drive waste. If an array has drive waste due to unequal
drive sizes, this will reduce the storage efficiency of the array as well, of
course: the RAID 5 array given as an example here has a storage efficiency of
(60 / 135) = 44%, instead of the 75% that would result if all the drives were
the same size. Some controllers will let you use such "waste" as regular, non-
RAID storage. See this discussion of drive size for related issues.

Next: Fault Tolerance and Availability

Fault Tolerance and Availability

Of course, RAID levels vary a great deal in terms of their ability to handle
faults (usually meaning drive failures) and keep data availability high. The
need for fault tolerance dictates the choice of RAID level probably more than
any other requirement. In "boiled down" terms, the more redundancy in the
array, the more fault tolerant it is and the higher the availability of its data,
but the way the drives are connected is also very important. Each level has
the particulars of its ability to deal with these important reliability-related
issues discussed in detail in its own section. For a more thorough, more
general look at these matters, check out the section on reliability issues.

Note: While RAID levels obviously vary in the degree to which they can
tolerate faults, availability is often almost as much a function of
implementation as it is design. High availability in particular is dependent
upon the use of advanced features such as drive swapping and hot spares.

Next: Degradation and Rebuilding

mehedi hasan
mehedi@joinme.com

324

Degradation and Rebuilding

A fault-tolerant (redundant) array can continue operating after experiencing a
failure of one (or sometimes more) of its drives. When this happens the array
enters a degraded state until the faulty drive is replaced and its contents are
rebuilt. Running in a degraded state has an important impact on both the
performance and subsequent fault tolerance of the array; see this full
discussion for more.

Some RAID levels handle degradation more "elegantly" than others; some
can in fact tolerate the loss of more than one drive, while others cannot
handle the loss of even one. While in a degraded mode, some RAID levels
suffer much more performance loss than others; generally, the more complex
the RAID level, the more its performance decreases when the array is
degraded (simple mirroring shows little loss of performance, while striping
with parity shows much more). Also, alternate ways of implementing multiple
RAID levels can be surprisingly different in terms of the number of lost drives
they can tolerate, and also in the impact on performance when rebuilding
after a fault.

Next: Performance

Performance

Like fault tolerance, performance is one of the main reasons that many people
implement RAID arrays; and like fault tolerance, it is an important way that
RAID levels differ greatly from one to the next. In fact, some RAID levels
differ only in terms of performance.

Not only does performance vary between RAID levels, different types of
performance vary between RAID levels. It is not meaningful to boil things
down to just "performance"; rather, we must look at the issues of read and
write performance; and positioning and transfer performance. RAID level "A"
may be better than level "B" at one aspect of performance but much worse
than "B" in another.

To make things more clear in explaining and contrasting the different RAID
levels, I have combined these two two-element variables--read vs. write and
positioning (random access) vs. transfer (sequential access)--into a "matrix"
of four specific performance categories:

• Random Read Performance: How the RAID level performs on
random access reads of files in the array. Typically, this is most
important for transactional environments with smallish files, especially
ones with a high ratio of reads to writes.

• Random Write Performance: How the RAID level performs when
writing small files in random places on the array. Again, this is most
relevant to transaction-processing environments, however, it is even
more important to applications where a large number of writes are
done, because write performance is much worse than read
performance for many popular RAID levels.

mehedi hasan
mehedi@joinme.com

325

• Sequential Read Performance: The performance of the RAID level
when reading large files sequentially from the array. This is of greatest
concern in applications where there are many more reads than writes,
for example, a server containing many large graphics files.

• Sequential Write Performance: The RAID level's general
performance when writing large files. This is sometimes less important
than sequential read performance, but is critical for situations where
large files are written often, such as video or audio editing.

Notes about performance assessments and comparisons (i.e., "very good",
"fair", "poor", etc.) of RAID levels:

• All performance ratings are based on the assumption that hardware
RAID is being used. Software RAID will often be substantially slower.

• Keep in mind that they are just rough generalizations; exact
performance depends on disk type, controllers, stripe size,
implementation details and a dozen other factors.

• Rankings are relative to other RAID levels. A "poor" rating means that
RAID level does poorly on that type of transfer, even though it may
still be faster than a single drive at that task.

• Write performance is generally worse than read performance, "scores"
for write performance are generally rated against write performance of
other RAID arrays.

Next: Multiple Array Considerations

Multiple Array Considerations

When reading about the various RAID levels you will quickly come to the
(correct) conclusion that choosing a level is largely a matter of tradeoffs and
compromises. This is especially true when it comes to dealing with
performance considerations. If you have to serve two very different
applications, you may not be able to easily find a single RAID level that
satisfies all of your requirements. If that is the case, you may be better off
creating two separate arrays, using different RAID levels for each.

Let's suppose that you are setting up an enterprise server for a business of
100 people; you can afford a reasonable amount of hardware but you do not
have an unlimited budget. The primary application is a business system that
requires fast performance and some degree of fault tolerance. However, you
also have a design and engineering department, dealing with huge files, and
they need "speed, speed and more speed"; and an accounting department
that insists upon a mirrored setup for their data because they believe that
provides the highest integrity. You could just set up a RAID 5 array and make
everyone use it. It will provide fault tolerance and good performance for most
uses, but the engineering and accounting folks probably won't be too thrilled.
Instead, you could set up both a RAID 5 array and either a RAID 0 or RAID 1
array to satisfy at least one of the "specialty" groups. You could also set up
three arrays--RAID 5 for general use, RAID 0 for the design group and RAID 1
for accounting--but realize that you are then getting into more of an
administrative headache.

mehedi hasan
mehedi@joinme.com

326

An excellent way to consider doing multiple arrays is to use different
machines. This not only spreads the load around, it removes the machine
containing the arrays as a single point of failure, improving the overall fault
tolerance of the organization. So to continue the example above, perhaps the
best solution is to fit a main server with a larger RAID 5 array for general use
and a smaller RAID 1 array for accounting, and configure a second,
departmental server for design and engineering that runs RAID 0. The RAID 0
array can be set up with an inexpensive controller or even software RAID, to
avoid duplicating the controller costs. Just make sure it gets completely
backed up every night! :^)

If you do set up two (or more) arrays on the same machine, you will have to
decide exactly how to do this. Most better controllers will support multiple
arrays without too much trouble. Some will let you set up more than one
logical array based on a single physical array, but I personally recommend
using different drives for each array. This makes things conceptually simpler,
and you also may be able to avoid degrading both arrays in the event of a
drive failure.

Next: Single RAID Levels

Single RAID Levels

In this section I take a look at the "single" RAID levels--meaning, the
"regular" RAID levels, as opposed to multiple or nested RAID levels. Single
RAID levels are by far the most commonly used since they are simpler and
less expensive to implement, and satisfy the needs of most RAID users.
Generally, only very high-end or specialty applications require the use of
multiple RAID levels.

There are eight "regular" RAID levels, which are used to varying degrees in
the "real world" today. A few levels, especially RAID 0, RAID 1 and RAID 5,
are extremely popular, while a couple are rarely if ever seen in modern
systems. For each level, I provide a comprehensive discussion of its attributes
and characteristics in the areas of capacity, performance, fault tolerance, cost
and more.

Note: For an explanation of any of the categories used in describing the
RAID levels, see the section discussing technical factors differentiating RAID
levels.

Next: RAID Level 0

RAID Level 0

Common Name(s): RAID 0. (Note that the term "RAID 0" is sometimes
used to mean not only the conventional striping technique described here but
also other "non-redundant" ways of setting up disk arrays. Sometimes it is

mehedi hasan
mehedi@joinme.com

327

(probably incorrectly) used just to describe a collection of disks that doesn't
use redundancy.)

Technique(s) Used: Striping (without parity)

Description: The simplest RAID level, RAID 0 should really be called "AID",
since it involves no redundancy. Files are broken into stripes of a size dictated
by the user-defined stripe size of the array, and stripes are sent to each disk
in the array. Giving up redundancy allows this RAID level the best overall
performance characteristics of the single RAID levels, especially for its cost.
For this reason, it is becoming increasingly popular by performance-seekers,
especially in the lower end of the marketplace.

This illustration shows how files of different sizes are distributed between the
drives on a four-disk, 16 kiB stripe size RAID 0 array. The red file is 4 kiB in
size; the blue is 20 kiB; the green is 100 kiB; and the magenta is 500 kiB.
They are shown drawn to scale to illustrate how much space they take
up in relative terms in the array--one vertical pixel represents 1 kiB.
(To see the impact that increasing or decreasing stripe size has on the
way the data is stored in the array, see the 4 kiB and 64 kiB stripe size
versions of this illustration on the page discussing stripe size issues.)

Controller Requirements: Supported by all hardware controllers, both SCSI
and IDE/ATA, and also most software RAID solutions.

Hard Disk Requirements: Minimum of two hard disks (some may support
one drive, the point of which escapes me); maximum set by controller. Any
type may be used, but they should be of identical type and size for best
performance and to eliminate "waste".

Array Capacity: (Size of Smallest Drive * Number of Drives).

Storage Efficiency: 100% if identical drives are used.

mehedi hasan
mehedi@joinme.com

328

Fault Tolerance: None. Failure of any drive results in loss of all data, short
of specialized data recovery.

Availability: Lowest of any RAID level. Lack of fault tolerance means no
rapid recovery from failures. Failure of any drive results in array being lost
and immediate downtime until array can be rebuilt and data restored from
backup.

Degradation and Rebuilding: Not applicable.

Random Read Performance: Very good; better if using larger stripe sizes if
the controller supports independent reads to different disks in the array.

Random Write Performance: Very good; again, best if using a larger stripe
size and a controller supporting independent writes.

Sequential Read Performance: Very good to excellent.

Sequential Write Performance: Very good.

Cost: Lowest of all RAID levels.

Special Considerations: Using a RAID 0 array without backing up any
changes made to its data at least daily is a loud statement that that data is
not important to you.

Recommended Uses: Non-critical data (or data that changes infrequently
and is backed up regularly) requiring high speed, particularly write speed, and
low cost of implementation. Audio and video streaming and editing; web
servers; graphic design; high-end gaming or hobbyist systems; temporary or

"scratch" disks on larger machines. Next: RAID Level 1

mehedi hasan
mehedi@joinme.com

329

RAID Level 1

Common Name(s): RAID 1; RAID 1 with Duplexing.

Technique(s) Used: Mirroring or Duplexing

Description: RAID 1 is usually implemented as mirroring; a drive has its
data duplicated on two different drives using either a hardware RAID
controller or software (generally via the operating system). If either drive
fails, the other continues to function as a single drive until the failed drive is
replaced. Conceptually simple, RAID 1 is popular for those who require fault
tolerance and don't need top-notch read performance. A variant of RAID 1 is
duplexing, which duplicates the controller card as well as the drive, providing
tolerance against failures of either a drive or a controller. It is much less
commonly seen than straight mirroring.

Illustration of a pair of mirrored hard disks, showing how the
files are duplicated on both drives. (The files are the same as
those in the RAID 0 illustration, except that to save space I have
reduced the scale here so one vertical pixel represents 2 kiB.)

Controller Requirements: Supported by all hardware controllers, both SCSI
and IDE/ATA, and also most software RAID solutions.

mehedi hasan
mehedi@joinme.com

330

Hard Disk Requirements: Exactly two hard disks. Any type may be used
but they should ideally be identical.

Array Capacity: Size of Smaller Drive.

Storage Efficiency: 50% if drives of the same size are used, otherwise (Size
of Smaller Drive / (Size of Smaller Drive + Size of Larger Drive))

Fault Tolerance: Very good; duplexing even better.

Availability: Very good. Most RAID controllers, even low-end ones, will
support hot sparing and automatic rebuilding of RAID 1 arrays.

Degradation and Rebuilding: Slight degradation of read performance; write
performance will actually improve. Rebuilding is relatively fast.

Random Read Performance: Good. Better than a single drive but worse
than many other RAID levels.

Random Write Performance: Good. Worse than a single drive, but better
than many other RAID levels. :^)

Sequential Read Performance: Fair; about the same as a single drive.

Sequential Write Performance: Good; again, better than many other RAID
levels.

Cost: Relatively high due to redundant drives; lowest storage efficiency of the
single RAID levels. Duplexing is still more expensive due to redundant
controllers. On the other hand, no expensive controller is required, and large
consumer-grade drives are rather inexpensive these days, making RAID 1 a
viable choice for an individual system.

Special Considerations: RAID 1 arrays are limited to the size of the drives
used in the array. Multiple RAID 1 arrays can be set up if additional storage is
required, but RAID 1+0 begins to look more attractive in that circumstance.
Performance may be reduced if implemented using software instead of a
hardware controller; duplexing may require software RAID and thus may
show lower performance than mirroring.

Recommended Uses: Applications requiring high fault tolerance at a low
cost, without heavy emphasis on large amounts of storage capacity or top
performance. Especially useful in situations where the perception is that
having a duplicated set of data is more secure than using parity. For this
reason, RAID 1 is popular for accounting and other financial data. It is also
commonly used for small database systems, enterprise servers, and for
individual users requiring fault tolerance with a minimum of hassle and cost
(since redundancy using parity generally requires more expensive hardware.)

Next: RAID Level 2

mehedi hasan
mehedi@joinme.com

331

RAID Level 2

Common Name(s): RAID 2.

Technique(s) Used: Bit-level striping with Hamming code ECC.

Description: Level 2 is the "black sheep" of the RAID family, because it is
the only RAID level that does not use one or more of the "standard"
techniques of mirroring, striping and/or parity. RAID 2 uses something similar
to striping with parity, but not the same as what is used by RAID levels 3 to
7. It is implemented by splitting data at the bit level and spreading it over a
number of data disks and a number of redundancy disks. The redundant bits
are calculated using Hamming codes, a form of error correcting code (ECC).
Each time something is to be written to the array these codes are calculated
and written along side the data to dedicated ECC disks; when the data is read
back these ECC codes are read as well to confirm that no errors have
occurred since the data was written. If a single-bit error occurs, it can be
corrected "on the fly". If this sounds similar to the way that ECC is used
within hard disks today, that's for a good reason: it's pretty much exactly the
same. It's also the same concept used for ECC protection of system memory.

Level 2 is the only RAID level of the ones defined by the original Berkeley
document that is not used today, for a variety of reasons. It is expensive and
often requires many drives--see below for some surprisingly large numbers.
The controller required was complex, specialized and expensive. The
performance of RAID 2 is also rather substandard in transactional
environments due to the bit-level striping. But most of all, level 2 was
obviated by the use of ECC within a hard disk; essentially, much of what RAID
2 provides you now get for "free" within each hard disk, with other RAID
levels providing protection above and beyond ECC.

Due to its cost and complexity, level 2 never really "caught on". Therefore,
much of the information below is based upon theoretical analysis, not
empirical evidence.

Controller Requirements: Specialized controller hardware required.

Hard Disk Requirements: Depends on exact implementation, but a typical
setup required 10 data disks and 4 ECC disks for a total of 14, or 32 data
disks and 7 ECC disks for a total of 39! The disks were spindle-synchronized
to run in tandem.

Array Capacity: Depends on exact implementation but would be rather large
if built today using modern drives.

Storage Efficiency: Depends on the number of data and ECC disks; for the
10+4 configuration, about 71%; for the 32+7 setup, about 82%.

Fault Tolerance: Only fair; for all the redundant drives included, you don't
get much tolerance: only one drive can fail in this setup and be recoverable
"on the fly".

mehedi hasan
mehedi@joinme.com

332

Availability: Very good, due to "on the fly" error correction.

Degradation and Rebuilding: In theory, there would be little degradation
due to failure of a single drive.

Random Read Performance: Fair. Bit-level striping makes multiple
accesses impossible.

Random Write Performance: Poor, due to bit-level striping and ECC
calculation overhead.

Sequential Read Performance: Very good, due to parallelism of many
drives.

Sequential Write Performance: Fair to good.

Cost: Very expensive.

Special Considerations: Not used in modern systems.

Recommended Uses: Not used in modern systems.

Next: RAID Level 3

RAID Level 3

Common Name(s): RAID 3. (Watch out for some companies that say their
products implement RAID 3 when they are really RAID 4.)

Technique(s) Used: Byte-level striping with dedicated parity.

Description: Under RAID 3, data is striped across multiple disks at a byte
level; the exact number of bytes sent in each stripe varies but is typically
under 1024. The parity information is sent to a dedicated parity disk, but the
failure of any disk in the array can be tolerated (i.e., the dedicated parity disk
doesn't represent a single point of failure in the array.) The dedicated parity
disk does generally serve as a performance bottleneck, especially for random
writes, because it must be accessed any time anything is sent to the array;
this is contrasted to distributed-parity levels such as RAID 5 which improve
write performance by using distributed parity (though they still suffer from
large overheads on writes, as described here). RAID 3 differs from RAID 4
only in the size of the stripes sent to the various disks.

mehedi hasan
mehedi@joinme.com

333

This illustration shows how files of different sizes are distributed
between the drives on a four-disk, byte-striped RAID 3 array. As with
the RAID 0 illustration, the red file is 4 kiB in size; the blue is 20 kiB;
the green is 100 kiB; and the magenta is 500 kiB, with each vertical
pixel representing 1 kiB of space. Notice that the files are evenly
spread between three drives, with the fourth containing parity
information (shown in dark gray). Since the blocks are so tiny in
RAID 3, the individual boundaries between stripes can't be seen.
You may want to compare this illustration to the one for RAID 4.

Controller Requirements: Generally requires a medium-to-high-end
hardware RAID card.

Hard Disk Requirements: Minimum of three standard hard disks; maximum
set by controller. Should be of identical size and type.

Array Capacity: (Size of Smallest Drive) * (Number of Drives - 1)

Storage Efficiency: If all drives are the same size, ((Number of Drives - 1)
/ Number of Drives).

Fault Tolerance: Good. Can tolerate loss of one drive.

Availability: Very good. Hot sparing and automatic rebuild are usually
supported by controllers that implement RAID 3.

Degradation and Rebuilding: Relatively little degrading of performance if a
drive fails. Rebuilds can take many hours.

Random Read Performance: Good, but not great, due to byte-level
striping.

mehedi hasan
mehedi@joinme.com

334

Random Write Performance: Poor, due to byte-level striping, parity
calculation overhead, and the bottleneck of the dedicated parity drive.

Sequential Read Performance: Very good.

Sequential Write Performance: Fair to good.

Cost: Moderate. A hardware controller is usually required, as well as at least
three drives.

Special Considerations: Not as popular as many of the other commonly-
implemented RAID levels. For transactional environments, RAID 5 is usually a
better choice.

Recommended Uses: Applications working with large files that require high
transfer performance with redundancy, especially serving or editing large
files: multimedia, publishing and so on. RAID 3 is often used for the same
sorts of applications that would typically see the use of RAID 0, where the
lack of fault tolerance of RAID 0 makes it unacceptable.

Next: RAID Level 4

RAID Level 4

Common Name(s): RAID 4 (sometimes called RAID 3 by the confused).

Technique(s) Used: Block-level striping with dedicated parity.

Description: RAID 4 improves performance by striping data across many
disks in blocks, and provides fault tolerance through a dedicated parity disk.
This makes it in some ways the "middle sibling" in a family of close relatives,
RAID levels 3, 4 and 5. It is like RAID 3 except that it uses blocks instead of
bytes for striping, and like RAID 5 except that it uses dedicated parity instead
of distributed parity. Going from byte to block striping improves random
access performance compared to RAID 3, but the dedicated parity disk
remains a bottleneck, especially for random write performance. Fault
tolerance, format efficiency and many other attributes are the same as for
RAID 3 and RAID 5.

mehedi hasan
mehedi@joinme.com

335

This illustration shows how files of different sizes are distributed between
the drives on a four-disk RAID 4 array using a 16 kiB stripe size. As with the
RAID 0 illustration, the red file is 4 kiB in size; the blue is 20 kiB; the green
is 100 kiB; and the magenta is 500 kiB, with each vertical pixel representing
1 kiB of space. Notice that as with RAID 3, the files are evenly spread
between
three drives, with the fourth containing parity information (shown in gray).
You may want to contrast this illustration to the one for RAID 3 (which is very
similar except that the blocks are so tiny you can't see them) and the one
for RAID 5 (which distributes the parity blocks across all four drives.)

Controller Requirements: Generally requires a medium-to-high-end
hardware RAID card.

Hard Disk Requirements: Minimum of three standard hard disks; maximum
set by controller. Should be of identical size and type.

Array Capacity: (Size of Smallest Drive) * (Number of Drives - 1).

Storage Efficiency: If all drives are the same size, ((Number of Drives - 1)
/ Number of Drives).

Fault Tolerance: Good. Can tolerate loss of one drive.

Availability: Very good. Hot sparing and automatic rebuild are usually
supported..

Degradation and Rebuilding: Moderate degrading if a drive fails;
potentially lengthy rebuilds.

Random Read Performance: Very good.

mehedi hasan
mehedi@joinme.com

336

Random Write Performance: Poor to fair, due to parity calculation
overhead and the bottleneck of the dedicated parity drive.

Sequential Read Performance: Good to very good.

Sequential Write Performance: Fair to good.

Cost: Moderate. A hardware controller is usually required, as well as at least
three drives.

Special Considerations: Performance will depend to some extent upon the
stripe size chosen.

Recommended Uses: Jack of all trades and master of none, RAID 4 is not
as commonly used as RAID 3 and RAID 5, because it is in some ways a
"compromise" between them that doesn't have a target market as well
defined as either of those two levels. It is sometimes used by applications
commonly seen using RAID 3 or RAID 5, running the gamut from databases
and enterprise planning systems to serving large multimedia files.

Next: RAID Level 5

RAID Level 5

Common Name(s): RAID 5.

Technique(s) Used: Block-level striping with distributed parity.

Description: One of the most popular RAID levels, RAID 5 stripes both data
and parity information across three or more drives. It is similar to RAID 4
except that it exchanges the dedicated parity drive for a distributed parity
algorithm, writing data and parity blocks across all the drives in the array.
This removes the "bottleneck" that the dedicated parity drive represents,
improving write performance slightly and allowing somewhat better
parallelism in a multiple-transaction environment, though the overhead
necessary in dealing with the parity continues to bog down writes. Fault
tolerance is maintained by ensuring that the parity information for any given
block of data is placed on a drive separate from those used to store the data
itself. The performance of a RAID 5 array can be "adjusted" by trying different
stripe sizes until one is found that is well-matched to the application being
used.

mehedi hasan
mehedi@joinme.com

337

This illustration shows how files of different sizes are distributed
between the drives on a four-disk RAID 5 array using a 16 kiB stripe
size. As with the RAID 0 illustration, the red file is 4 kiB in size; the blue
is 20 kiB; the green is 100 kiB; and the magenta is 500 kiB, with each
vertical pixel representing 1 kiB of space. Contrast this diagram to the
one for RAID 4, which is identical except that the data is only on three
drives and the parity (shown in gray) is exclusively on the fourth.drive.

Controller Requirements: Requires a moderately high-end card for
hardware RAID; supported by some operating systems for software RAID, but
at a substantial performance penalty.

Hard Disk Requirements: Minimum of three standard hard disks; maximum
set by controller. Should be of identical size and type.

Array Capacity: (Size of Smallest Drive) * (Number of Drives - 1).

Storage Efficiency: If all drives are the same size, ((Number of Drives - 1)
/ Number of Drives).

Fault Tolerance: Good. Can tolerate loss of one drive.

Availability: Good to very good. Hot sparing and automatic rebuild are
usually featured on hardware RAID controllers supporting RAID 5 (software
RAID 5 will require down-time).

Degradation and Rebuilding: Due to distributed parity, degradation can be
substantial after a failure and during rebuilding.

Random Read Performance: Very good to excellent; generally better for
larger stripe sizes. Can be better than RAID 0 since the data is distributed

mehedi hasan
mehedi@joinme.com

338

over one additional drive, and the parity information is not required during
normal reads.

Random Write Performance: Only fair, due to parity overhead; this is
improved over RAID 3 and RAID 4 due to eliminating the dedicated parity
drive, but the overhead is still substantial.

Sequential Read Performance: Good to very good; generally better for
smaller stripe sizes.

Sequential Write Performance: Fair to good.

Cost: Moderate, but often less than that of RAID 3 or RAID 4 due to its
greater popularity, and especially if software RAID is used.

Special Considerations: Due to the amount of parity calculating required,
software RAID 5 can seriously slow down a system. Performance will depend
to some extent upon the stripe size chosen.

Recommended Uses: RAID 5 is seen by many as the ideal combination of
good performance, good fault tolerance and high capacity and storage
efficiency. It is best suited for transaction processing and is often used for
"general purpose" service, as well as for relational database applications,
enterprise resource planning and other business systems. For write-intensive
applications, RAID 1 or RAID 1+0 are probably better choices (albeit higher in
terms of hardware cost), as the performance of RAID 5 will begin to
substantially decrease in a write-heavy environment.

Next: RAID Level 6

RAID Level 6

Common Name(s): RAID 6. Some companies use the term "RAID 6" to refer
to proprietary extensions of RAID 5; these are not discussed here.

Technique(s) Used: Block-level striping with dual distributed parity.

Description: RAID 6 can be thought of as "RAID 5, but more". It stripes
blocks of data and parity across an array of drives like RAID 5, except that it
calculates two sets of parity information for each parcel of data. The goal of
this duplication is solely to improve fault tolerance; RAID 6 can handle the
failure of any two drives in the array while other single RAID levels can
handle at most one fault. Performance-wise, RAID 6 is generally slightly
worse than RAID 5 in terms of writes due to the added overhead of more
parity calculations, but may be slightly faster in random reads due to
spreading of data over one more disk. As with RAID levels 4 and 5,
performance can be adjusted by experimenting with different stripe sizes.

mehedi hasan
mehedi@joinme.com

339

This illustration shows how files of different sizes are distributed
between the drives on a four-disk RAID 6 array using a 16 kiB stripe
size. As with the RAID 0 illustration, the red file is 4 kiB in size; the blue
is 20 kiB; the green is 100 kiB; and the magenta is 500 kiB, with each
vertical pixel representing 1 kiB of space. This diagram is the same as the
RAID 5 one, except that you'll notice that there is now twice as much
gray parity information, and as a result, more space taken up on the
four drives to contain the same data than the other levels that use striping.

Controller Requirements: Requires a specialized (usually meaning
expensive) hardware controller.

Hard Disk Requirements: Minimum of four hard disks; maximum set by
controller. Should be of identical size and type.

Array Capacity: (Size of Smallest Drive) * (Number of Drives - 2).

Storage Efficiency: If all drives are the same size, ((Number of Drives - 2)
/ Number of Drives).

Fault Tolerance: Very good to excellent. Can tolerate the simultaneous loss
of any two drives in the array.

Availability: Excellent.

mehedi hasan
mehedi@joinme.com

340

Degradation and Rebuilding: Due to the complexity of dual distributed
parity, degradation can be substantial after a failure and during rebuilding.
Dual redundancy may allow rebuilding to be delayed to avoid performance hit.

Random Read Performance: Very good to excellent; generally better for
larger stripe sizes.

Random Write Performance: Poor, due to dual parity overhead and
complexity.

Sequential Read Performance: Good to very good; generally better for
smaller stripe sizes.

Sequential Write Performance: Fair.

Cost: High.

Special Considerations: Requires special implementation; not widely
available.

Recommended Uses: In theory, RAID 6 is ideally suited to the same sorts of
applications as RAID 5, but in situations where additional fault tolerance is
required. In practice, RAID 6 has never really caught on because few
companies are willing to pay for the extra cost to insure against a relatively
rare event--it's unusual for two drives to fail simultaneously (unless
something happens that takes out the entire array, in which case RAID 6
won't help anyway). On the lower end of the RAID 5 market, the rise of hot
swapping and automatic rebuild features for RAID 5 have made RAID 6 even
less desirable, since with these advanced features a RAID 5 array can recover
from a single drive failure in a matter of hours (where without them, RAID 5
would require downtime for rebuilding, giving RAID 6 a substantial
advantage.) On the higher end of the RAID 5 market, RAID 6 usually loses
out to multiple RAID solutions such as RAID 10 that provide some degree of
multiple-drive fault tolerance while offering improved performance as well.

Next: RAID Level 7

RAID Level 7

Common Name(s): RAID 7.

Technique(s) Used: Asynchronous, cached striping with dedicated parity.

Description: Unlike the other RAID levels, RAID 7 isn't an open industry
standard; it is really a trademarked marketing term of Storage Computer
Corporation, used to describe their proprietary RAID design. (I debated giving
it a page alongside the other RAID levels, but since it is used in the market, it
deserves to be explained; that said, information about it appears to be
limited.) RAID 7 is based on concepts used in RAID levels 3 and 4, but greatly
enhanced to address some of the limitations of those levels. Of particular note

mehedi hasan
mehedi@joinme.com

341

is the inclusion of a great deal of cache arranged into multiple levels, and a
specialized real-time processor for managing the array asynchronously. This
hardware support--especially the cache--allow the array to handle many
simultaneous operations, greatly improving performance of all sorts while
maintaining fault tolerance. In particular, RAID 7 offers much improved
random read and write performance over RAID 3 or RAID 4 because the
dependence on the dedicated parity disk is greatly reduced through the added
hardware. The increased performance of RAID 7 of course comes at a cost.
This is an expensive solution, made and supported by only one company.

Controller Requirements: Requires a specialized, expensive, proprietary
controller.

Hard Disk Requirements: Depends on implementation.

Array Capacity: Depends on implementation.

Storage Efficiency: Depends on implementation.

Fault Tolerance: Very good.

Availability: Excellent, due to use of multiple hot spares.

Degradation and Rebuilding: Better than many RAID levels due to
hardware support for parity calculation operations and multiple cache levels.

Random Read Performance: Very good to excellent. The extra cache can
often supply the results of the read without needing to access the array
drives.

Random Write Performance: Very good; substantially better than other
single RAID levels doing striping with parity.

Sequential Read Performance: Very good to excellent.

Sequential Write Performance: Very good.

Cost: Very high.

Special Considerations: RAID 7 is a proprietary product of a single
company; if it is of interest then you should contact Storage Computer
Corporation for more details on the specifics of implementing it. All the
caching creates potential vulnerabilities in the event of power failure, making
the use of one or more UPS units mandatory.

Recommended Uses: Specialized high-end applications requiring absolutely
top performance and willing to live with the limitations of a proprietary,
expensive solution. For most users, a multiple RAID level solution like RAID
1+0 will probably yield comparable performance improvements over single
RAID levels, at lower cost.

mehedi hasan
mehedi@joinme.com

342

Next: Multiple (Nested) RAID Levels

mehedi hasan
mehedi@joinme.com

343

Multiple (Nested) RAID Levels

The single RAID levels have distinct advantages and disadvantages, which is
why most of them are used in various parts of the market to address different
application requirements. It wasn't long after RAID began to be implemented
that engineers looked at these RAID levels and began to wonder if it might be
possible to get some of the advantages of more than one RAID level by
designing arrays that use a combination of techniques. These RAID levels are
called variously multiple, nested, or multi-RAID levels. They are also
sometimes called two-dimensional, in reference to the two-dimensional
schematics that are used to represent the application of two RAID levels to a
set of disks, as you shall see.

Multiple RAID levels are most commonly used to improve performance, and
they do this well. Nested RAID levels typically provide better performance
characteristics than either of the single RAID levels that comprise them. The
most commonly combined level is RAID 0, which is often mixed with
redundant RAID levels such as 1, 3 or 5 to provide fault tolerance while
exploiting the performance advantages of RAID 0. There is never a "free
lunch", and so with multiple RAID levels what you pay is a cost in complexity:
many drives are required, management and maintenance are more involved,
and for some implementations a high-end RAID controller is required.

Not all combinations of RAID levels exist (which is good, because I'd get
really bored of describing them all! :^)) Typically, the most popular multiple
RAID levels are those that combine single RAID levels that complement each
other with different strengths and weaknesses. Making a multiple RAID array
marrying RAID 4 to RAID 5 wouldn't be the best idea, since they are so
similar to begin with.

In this section I take a look at some of the more common multiple RAID
levels. Note that some of the multiple RAID levels discussed here are
frequently used, but others are rarely implemented. In particular, for
completeness I describe both the "X+Y" and "Y+X" configurations of each
multiple level, when in some cases only one or the other is commonly made
into product. For example, I know that RAID 50 (5+0) is an option in
commercial RAID controllers, but I am not sure if anyone makes a RAID 05
solution. There may also be other combinations of RAID levels that I am not
aware of.

Next: RAID X+Y vs. RAID Y+X

RAID X+Y vs. RAID Y+X

Before looking at the specific multiple RAID levels, I have to explain a few
things about the way multiple RAID levels are constructed. A multiple RAID
level is generally created by taking a number of disks and dividing them into
sets. Within each set a single RAID level is applied to form a number of
arrays. Then, the second RAID level is applied to the arrays to create a
higher-level array. This is why these are sometimes called nested arrays.

mehedi hasan
mehedi@joinme.com

344

Since there are two levels, there are two ways they can be combined. The
choice of which level is applied first and which second has an impact on some
important array characteristics. Let's take as an example multiple RAID
employing RAID 0 and RAID 1 to create an array of ten disks. Much as we can
define 10 to be 2*5 or 5*2, we can create our multiple RAID array two ways:

• RAID 0, then RAID 1: Divide the ten disks into two sets of five. Turn
each set into a RAID 0 array containing five disks, then mirror the two
arrays. (Sometimes called a "mirror of stripes".)

• RAID 1, then RAID 0: Divide the ten disks into five sets of two. Turn
each set into a RAID 1 array, then stripe across the five mirrored sets.
(A "stripe of mirrors").

Naming conventions for multiple RAID levels are just horrible. The standard
that most of the industry seems to use is that if RAID level X is applied first
and then RAID level Y is applied over top of it, that is RAID "X+Y", also
sometimes seen as "RAID XY" or "RAID X/Y". This would mean that
alternative number 1 above would be called "RAID 0+1" or "RAID 1+0", and
that's in fact the terminology that most companies use. Unfortunately, other
companies reverse the terms! They might call the RAID 0 and then RAID 1
technique "RAID 1/0" or "RAID 10" (perhaps out of fear that people would
think "RAID 01" and "RAID 1" were the same thing). Some designers use the
terms "RAID 01" and "RAID 10" interchangeably. The result of all this
confusion is that you must investigate to determine what exactly a company
is implementing when you look at multiple RAID. Don't trust the label.

Of course, I haven't even explained why you should care about the
distinctions, so I suppose I should do that. :^) After all, if you have ten
marbles, why would you care if they are arranged in five columns and two
rows, or two columns and five rows? Same here: aren't ten disks in an array
ten disks in an array? Clearly I am setting you up, so the answer is obviously
"no". :^)

In many respects, there is no difference between them: there is no impact on
drive requirements, capacity, storage efficiency, and importantly, not much
impact on performance. The big difference comes into play when we look at
fault tolerance. Most controllers implement multiple level RAID by forming a
"super array" comprised of "sub-arrays" underneath it. In many cases the
arrays that comprise the "super array"--often called sets--are considered to
be logical "single units", which means that the controller only considers one of
these "single units" to either be "up" or "down" as a whole. It will make use of
redundancy features within a sub-array, but not between sub-arrays, even if
the higher-level array means that drives in different sub-arrays will have the
same data.

That makes this sound much more complicated than it really is; it's much
easier to explain with an example. Let's look at 10 drives and RAID 0+1 vs.
RAID 1+0 again:

• RAID 0+1: We stripe together drives 1, 2, 3, 4 and 5 into RAID 0
stripe set "A", and drives 6, 7, 8, 9 and 10 into RAID 0 stripe set "B".
We then mirror A and B using RAID 1. If one drive fails, say drive #2,

mehedi hasan
mehedi@joinme.com

345

then the entire stripe set "A" is lost, because RAID 0 has no
redundancy; the RAID 0+1 array continues to chug along because the
entire stripe set "B" is still functioning. However, at this point you are
reduced to running what is in essence a straight RAID 0 array until
drive #2 can be fixed. If in the meantime drive #9 goes down, you
lose the entire array.

• RAID 1+0: We mirror drives 1 and 2 to form RAID 1 mirror set "A"; 3
and 4 become "B"; 5 and 6 become "C"; 7 and 8 become "D"; and 9
and 10 become "E". We then do a RAID 0 stripe across sets A through
E. If drive #2 fails now, only mirror set "A" is affected; it still has drive
#1 so it is fine, and the RAID 1+0 array continues functioning. If while
drive #2 is being replaced drive #9 fails, the array is fine, because
drive #9 is in a different mirror pair from #2. Only two failures in the
same mirror set will cause the array to fail, so in theory, five drives
can fail--as long as they are all in different sets--and the array would
still be fine.

Clearly, RAID 1+0 is more robust than RAID 0+1. Now, if the controller
running RAID 0+1 were smart, when drive #2 failed it would continue striping
to the other four drives in stripe set "A", and if drive #9 later failed it would
"realize" that it could use drive #4 in its stead, since it should have the same
data. This functionality would theoretically make RAID 0+1 just as fault-
tolerant as RAID 1+0. Unfortunately, most controllers aren't that smart. It
pays to ask specific questions about how a multiple RAID array
implementation handles multiple drive failures, but in general, a controller
won't swap drives between component sub-arrays unless the manufacturer of
the controller specifically says it will.

The same impact on fault tolerance applies to rebuilding. Consider again the
example above. In RAID 0+1, if drive #2 fails, the data on five hard disks will
need to be rebuilt, because the whole stripe set "A" will be wiped out. In RAID
1+0, only drive #2 has to be rebuilt. Again here, the advantage is to RAID
1+0.

Tip: For a diagram showing graphically the difference between RAID 0+1 and
RAID 1+0, see the page discussing those levels.

Some controllers offer the choice of "what order" you use to set up a multiple
RAID array; they will let you do either RAID X+Y or RAID Y+X, as you
choose. Others will force you to use only one or the other configuration.
Again, ask for details when considering a solution, and be specific with your
questions so you can figure out what exactly the controller you are
investigating does.

Next: RAID Levels 0+1 (01) and 1+0 (10)

RAID Levels 0+1 (01) and 1+0 (10)

Common Name(s): RAID 0+1, 01, 0/1, "mirrored stripes", "mirror of
stripes"; RAID 1+0, 10, 1/0, "striped mirrors", "stripe of mirrors". Labels are

mehedi hasan
mehedi@joinme.com

346

often used incorrectly; verify the details of the implementation if the
distinction between 0+1 and 1+0 is important to you.

Technique(s) Used: Mirroring and striping without parity.

Description: The most popular of the multiple RAID levels, RAID 01 and 10
combine the best features of striping and mirroring to yield large arrays with
high performance in most uses and superior fault tolerance. RAID 01 is a
mirrored configuration of two striped sets; RAID 10 is a stripe across a
number of mirrored sets. RAID 10 and 01 have been increasing dramatically
in popularity as hard disks become cheaper and the four-drive minimum is
legitimately seen as much less of an obstacle. RAID 10 provides better fault
tolerance and rebuild performance than RAID 01. Both array types provide
very good to excellent overall performance by combining the speed of RAID 0
with the redundancy of RAID 1 without requiring parity calculations.

This illustration shows how files of different sizes are distributed between the
drives on an eight-disk RAID 0+1 array using a 16 kiB stripe size for the RAID
0
portion. As with the RAID 0 illustration, the red file is 4 kiB in size; the blue is
20 kiB; the green is 100 kiB; and the magenta is 500 kiB, with each vertical

mehedi hasan
mehedi@joinme.com

347

pixel
representing 1 kiB of space. The large, patterned rectangles represent the
two
RAID 0 "sub arrays", which are mirrored using RAID 1 to create RAID 0+1.
The contents of the striped sets are thus identical. The diagram for RAID 1+0
would be the same except for the groupings: instead of two large boxes
dividing
the drives horizontally, there would be four large boxes dividing the drives
vertically into mirrored pairs. These pairs would then be striped together to
form level 1+0. Contrast this diagram to the ones for RAID 0 and RAID 1.

Controller Requirements: Almost all hardware controllers will support one
or the other of RAID 10 or RAID 01, but often not both. Even low-end cards
will support this multiple level, usually RAID 01. High-end cards may support
both 01 and 10.

Hard Disk Requirements: An even number of hard disks with a minimum of
four; maximum dependent on controller. All drives should be identical.

Array Capacity: (Size of Smallest Drive) * (Number of Drives) / 2.

Storage Efficiency: If all drives are the same size, 50%.

Fault Tolerance: Very good for RAID 01; excellent for RAID 10.

Availability: Very good for RAID 01; excellent for RAID 10.

Degradation and Rebuilding: Relatively little for RAID 10; can be more
substantial for RAID 01.

Random Read Performance: Very good to excellent.

Random Write Performance: Good to very good.

Sequential Read Performance: Very good to excellent.

Sequential Write Performance: Good to very good.

Cost: Relatively high due to large number of drives required and low storage
efficiency (50%).

Special Considerations: Low storage efficiency limits potential array
capacity.

Recommended Uses: Applications requiring both high performance and
reliability and willing to sacrifice capacity to get them. This includes enterprise
servers, moderate-sized database systems and the like at the high end, but
also individuals using larger IDE/ATA hard disks on the low end. Often used in
place of RAID 1 or RAID 5 by those requiring higher performance; may be
used instead of RAID 1 for applications requiring more capacity.

mehedi hasan
mehedi@joinme.com

348

Next: RAID Levels 0+3 (03 or 53) and 3+0 (30)

RAID Levels 0+3 (03 or 53) and 3+0 (30)

Common Name(s): The most confusing naming of any of the RAID levels.
:^) In an ideal world, this level would be named RAID 0+3 (or 03) or RAID
3+0 (30). Instead, the number 53 is often used in place of 03 for reasons I
have never been able to determine, and worse, 53 is often actually
implemented as 30, not 03. As always, verify the details of the
implementation to be sure of what you have.

Technique(s) Used: Byte striping with dedicated parity combined with block
striping.

Description: RAID 03 and 30 (though often called 53 for a reason that
utterly escapes me) combine byte striping, parity and block striping to create
large arrays that are conceptually difficult to understand. :^) RAID 03 is
formed by putting into a RAID 3 array a number of striped RAID 0 arrays;
RAID 30 is more common and is formed by striping across a number of RAID
3 sub-arrays. The combination of parity, small-block striping and large-block
striping makes analyzing the theoretical performance of this level difficult. In
general, it provides performance better than RAID 3 due to the addition of
RAID 0 striping, but closer to RAID 3 than RAID 0 in overall speed, especially
on writes. RAID 30 provides better fault tolerance and rebuild performance
than RAID 03, but both depend on the "width" of the RAID 3 dimension of the
drive relative to the RAID 0 dimension: the more parity drives, the lower
capacity and storage efficiency, but the greater the fault tolerance. See the
examples below for more explanation of this.

Most of the characteristics of RAID 0+3 and 3+0 are similar to those of RAID
0+5 and 5+0. RAID 30 and 03 tend to be better for large files than RAID 50
and 05.

Controller Requirements: Generally requires a high-end hardware
controller.

Hard Disk Requirements: Number of drives must be able to be factored
into two integers, one of which must be 2 or higher and the other 3 or higher
(you can make a RAID 30 array from 10 drives but not 11). Minimum number
of drives is six, with the maximum set by the controller.

Array Capacity: For RAID 03: (Size of Smallest Drive) * (Number of Drives
In Each RAID 0 Set) * (Number of RAID 0 Sets - 1). For RAID 30: (Size of
Smallest Drive) * (Number of Drives In Each RAID 3 Set - 1) * (Number of
RAID 3 Sets).

For example, the capacity of a RAID 03 array made of 15 18 GB drives
arranged as three five-drive RAID 0 sets would be 18 GB * 5 * (3-1) = 180
GB. The capacity of a RAID 30 array made of 21 18 GB drives arranged as
three seven-drive RAID 3 sets would be 18 GB * (7-1) * 3 = 324 GB. The

mehedi hasan
mehedi@joinme.com

349

same 21 drives arranged as seven three-drive RAID 3 sets would have a
capacity of 18 GB * (3-1) * 7 = "only" 252 GB.

Storage Efficiency: For RAID 03: ((Number of RAID 0 Sets - 1) / Number of
RAID 0 Sets). For RAID 30: ((Number of Drives In Each RAID 3 Set - 1) /
Number of Drives In Each RAID 3 Set).

Taking the same examples as above, the 15-drive RAID 03 array would have
a storage efficiency of (3-1)/3 = 67%. The first RAID 30 array, configured as
three seven-drive RAID 3 sets, would have a storage efficiency of (7-1)/7 =
86%, while the other RAID 30 array would have a storage efficiency of, again,
(3-1)/3 = 67%.

Fault Tolerance: Good to very good, depending on whether it is RAID 03 or
30, and the number of parity drives relative to the total number. RAID 30 will
provide better fault tolerance than RAID 03.

Consider the two different 21-drive RAID 30 arrays mentioned above: the first
one (three seven-drive RAID 3 sets) has higher capacity and storage
efficiency, but can only tolerate three maximum potential drive failures; the
one with lower capacity and storage efficiency (seven three-drive RAID 3
sets) can handle as many as seven , if they are in different RAID 3 sets. Of
course few applications really require tolerance for seven independent drive
failures! And of course, if those 21 drives were in a RAID 03 array instead,
failure of a second drive after one had failed and taken down one of the RAID
0 sub-arrays would crash the entire array.

Availability: Very good to excellent.

Degradation and Rebuilding: Relatively little for RAID 30 (though more
than RAID 10); can be more substantial for RAID 03.

Random Read Performance: Very good, assuming RAID 0 stripe size is
reasonably large.

Random Write Performance: Fair.

Sequential Read Performance: Very good to excellent.

Sequential Write Performance: Good.

Cost: Relatively high due to requirements for a hardware controller and a
large number of drives; storage efficiency is better than RAID 10 however and
no worse than any other RAID levels that include redundancy.

Special Considerations: Complex and expensive to implement.

Recommended Uses: Not as widely used as many other RAID levels.
Applications include data that requires the speed of RAID 0 with fault
tolerance and high capacity, such as critical multimedia data and large

mehedi hasan
mehedi@joinme.com

350

database or file servers. Sometimes used instead of RAID 3 to increase
capacity as well as performance.

Next: RAID Levels 0+5 (05) and 5+0 (50)

RAID Levels 0+5 (05) and 5+0 (50)

Common Name(s): RAID 0+5 or 05; RAID 5+0 or 50. As with the other
multiple RAID levels, verify the exact implementation instead of relying on the
label.

Technique(s) Used: Block striping with distributed parity combined with
block striping.

Description: RAID 05 and 50 form large arrays by combining the block
striping and parity of RAID 5 with the straight block striping of RAID 0. RAID
05 is a RAID 5 array comprised of a number of striped RAID 0 arrays; it is
less commonly seen than RAID 50, which is a RAID 0 array striped across
RAID 5 elements. RAID 50 and 05 improve upon the performance of RAID 5
through the addition of RAID 0, particularly during writes. It also provides
better fault tolerance than the single RAID level does, especially if configured
as RAID 50.

Most of the characteristics of RAID 05 and 50 are similar to those of RAID 03
and 30. RAID 50 and 05 tend to be preferable for transactional environments
with smaller files than 03 and 30.

mehedi hasan
mehedi@joinme.com

351

This illustration shows how files of different sizes are distributed between the
drives on an eight-disk RAID 5+0 array using a 16 kiB stripe size. As with the
RAID 0 illustration, the red file is 4 kiB in size; the blue is 20 kiB; the green is
100 kiB; and the magenta is 500 kiB, with each vertical pixel representing 1
kiB of space. Each of the large, patterned rectangles represents a four-drive
RAID 5 array. The data is evenly striped between these two RAID 5 arrays
using RAID 0. Then within each RAID 5 array, the data is stored using striping
with parity. So the first small file, and 12 kiB of the second file, were sent to
the top RAID 5 array; the remaining 8 kiB of the second file and the first 8 kiB
of the 100 kiB file went to the bottom RAID 5 array; then the next 16 kiB of
the 100 kiB went to the top array, and so on. Within each RAID 5 array the
data is striped and parity calculated just like a regular RAID 5 array; each
array just does this with half the number of blocks it normally would. Contrast
this diagram to the ones for RAID 0 and RAID 5.

Controller Requirements: Generally requires a high-end hardware
controller.

Hard Disk Requirements: Number of drives must be able to be factored
into two integers, one of which must be 2 or higher and the other 3 or higher
(you can make a RAID 30 array from 6 drives but not 7). Minimum number of
drives is six, with the maximum set by the controller.

Array Capacity: Same as RAID 03 and 30. For RAID 05: (Size of Smallest
Drive) * (Number of Drives In Each RAID 0 Set) * (Number of RAID 0 Sets -

mehedi hasan
mehedi@joinme.com

352

1). For RAID 50: (Size of Smallest Drive) * (Number of Drives In Each RAID 5
Set - 1) * (Number of RAID 5 Sets).

For example, the capacity of a RAID 05 array made of 15 18 GB drives
arranged as three five-drive RAID 0 sets would be 18 GB * 5 * (3-1) = 180
GB. The capacity of a RAID 50 array made of 21 18 GB drives arranged as
three seven-drive RAID 5 sets would be 18 GB * (7-1) * 3 = 324 GB. The
same 21 drives arranged as seven three-drive RAID 5 sets would have a
capacity of 18 GB * (3-1) * 7 = 252 GB.

Storage Efficiency: Same as for RAID 03 and 30. For RAID 05: ((Number of
RAID 0 Sets - 1) / Number of RAID 0 Sets). For RAID 50: ((Number of Drives
In Each RAID 5 Set - 1) / Number of Drives In Each RAID 5 Set).

Taking the same examples as above, the 15-drive RAID 05 array would have
a storage efficiency of (3-1)/3 = 67%. The first RAID 50 array, configured as
three seven-drive RAID 5 sets, would have a storage efficiency of (7-1)/7 =
86%, while the other RAID 50 array would have a storage efficiency of (3-
1)/3 = 67%.

Fault Tolerance: Same as for RAID 03 and 30. Good to very good,
depending on whether it is RAID 05 or 50, and the number of parity drives
relative to the total number. RAID 50 will provide better fault tolerance than
RAID 05.

Consider the two different 21-drive RAID 50 arrays mentioned above: the first
one (three seven-drive RAID 5 sets) has higher capacity and storage
efficiency, but can only tolerate three maximum potential drive failures; the
one with lower capacity and storage efficiency (seven three-drive RAID 5
sets) can handle as many as seven , if they are in different RAID 5 sets. Of
course few applications really require tolerance for seven independent drive
failures! And of course, if those 21 drives were in a RAID 05 array instead,
failure of a second drive after one had failed and taken down one of the RAID
0 sub-arrays would crash the entire array.

Availability: Very good to excellent.

Degradation and Rebuilding: Moderate for RAID 50; worse for RAID 05.

Random Read Performance: Very good to excellent.

Random Write Performance: Good.

Sequential Read Performance: Very good.

Sequential Write Performance: Good.

Cost: Relatively high due to requirements for a hardware controller and a
large number of drives; storage efficiency is better than RAID 10 however and
no worse than any other RAID levels that include redundancy.

mehedi hasan
mehedi@joinme.com

353

Special Considerations: Complex and expensive to implement.

Recommended Uses: Applications that require high fault tolerance, capacity
and random positioning performance. Not as widely used as many other RAID
levels. Sometimes used instead of RAID 5 to increase capacity. Sometimes
used for large databases.

Next: RAID Levels 1+5 (15) and 5+1 (51)

RAID Levels 1+5 (15) and 5+1 (51)

Common Name(s): RAID 1+5 or 15; RAID 5+1 or 51. "Common" is a bit of
a stretch with this level, as it is less common than probably any other, so it's
important to verify the details of each implementation.

Technique(s) Used: Mirroring (or duplexing) combined with block striping
with distributed parity.

Description: RAID 1+5 and 5+1 might be sarcastically called "the RAID
levels for the truly paranoid". :^) The only configurations that use both
redundancy methods, mirroring and parity, this "belt and suspenders"
technique is designed to maximize fault tolerance and availability, at the
expense of just about everything else. A RAID 15 array is formed by creating
a striped set with parity using multiple mirrored pairs as components; it is
similar in concept to RAID 10 except that the striping is done with parity.
Similarly, RAID 51 is created by mirroring entire RAID 5 arrays and is similar
to RAID 01 except again that the sets are RAID 5 instead of RAID 0 and
hence include parity protection. Performance for these arrays is good but not
very high for the cost involved, nor relative to that of other multiple RAID
levels.

The fault tolerance of these RAID levels is truly amazing; an eight-drive RAID
15 array can tolerate the failure of any three drives simultaneously; an eight-
drive RAID 51 array can also handle three and even as many as five, as long
as at least one of the mirrored RAID 5 sets has no more than one failure! The
price paid for this resiliency is complexity and cost of implementation, and
very low storage efficiency.

The RAID 1 component of this nested level may in fact use duplexing instead
of mirroring to add even more fault tolerance.

Controller Requirements: Requires at least a high-end controller; may in
fact require multiple systems and/or specialized hardware or software. RAID
51 is sometimes implemented as a "hybrid" of hardware and software RAID,
by doing software mirroring at the operating system level over a pair of RAID
5 controllers, thus implementing duplexing for even higher fault tolerance. In
theory this could be done with Windows NT software mirroring and a pair of
hardware RAID 5 cards, if you could set it all up to work together properly.

Hard Disk Requirements: An even number of hard disks with a minimum of
six; maximum dependent on controller. All drives should be identical.

mehedi hasan
mehedi@joinme.com

354

Array Capacity: (Size of Smallest Drive) * ((Number of Drives / 2) - 1). So
an array with ten 18 GB drives would have a capacity of 18 GB * ((10/2) - 1
) = just 72 GB.

Storage Efficiency: Assuming all drives are the same size, ((Number of
Drives / 2) - 1) / (Number of Drives). In the example above, efficiency is
40%. This is the worst storage efficiency of any RAID level; a six-drive RAID
15 or 51 array would have a storage efficiency of just 33%!

Fault Tolerance: Excellent; by far the best of any level.

Availability: Excellent.

Degradation and Rebuilding: Can be substantial.

Random Read Performance: Very good.

Random Write Performance: Good.

Sequential Read Performance: Very good.

Sequential Write Performance: Good.

Cost: Very high. An uncommon solution requiring a lot of storage devices for
relatively low capacity, and possibly additional hardware or software.

Special Considerations: Complex and very expensive to implement.

Recommended Uses: Critical applications requiring very high fault
tolerance. In my opinion, if you get to the point of needing this much fault
tolerance this badly, you should be looking beyond RAID to remote mirroring,
clustering or other redundant server setups; RAID 10 provides most of the
benefits with better performance and lower cost. Not widely implemented.

Next: "Just A Bunch Of Disks"

"Just A Bunch Of Disks" (JBOD)

If you have some disks in a system that you decide not to configure into a
RAID array, what do you do with them? Traditionally, they are left to act as
independent drive volumes within the system, and that's how many people in
fact use two, three or more drives in a PC. In some applications, however, it
is desirable to be able to use all these disks as if they were one single
volume. The proper term for this is spanning; the pseudo-cutesy term for it,
clearly chosen to contrast against "redundant array of inexpensive disks", is
Just A Bunch Of Disks or JBOD. How frightfully clever.

JBOD isn't really RAID at all, but I discuss it here since it is sort of a "third
cousin" of RAID... JBOD can be thought of as the opposite of partitioning:
while partitioning chops single drives up into smaller logical volumes, JBOD

mehedi hasan
mehedi@joinme.com

355

combines drives into larger logical volumes. It provides no fault tolerance, nor
does it provide any improvements in performance compared to the
independent use of its constituent drives. (In fact, it arguably hurts
performance, by making it more difficult to use the underlying drives
concurrently, or to optimize different drives for different uses.)

When you look at it, JBOD doesn't really have a lot to recommend it. It still
requires a controller card or software driver, which means that almost any
system that can do JBOD can also do RAID 0, and RAID 0 has significant
performance advantages over JBOD. Neither provide fault tolerance, so that's
a wash. There are only two possible advantages of JBOD over RAID 0:

• Avoiding Drive Waste: If you have a number of odd-sized drives,
JBOD will let you combine them into a single unit without loss of any
capacity; a 10 GB drive and 30 GB would combine to make a 40 GB
JBOD volume but only a 20 GB RAID 0 array. This may be an issue for
those expanding an existing system, though with drives so cheap
these days it's a relatively small advantage.

• Easier Disaster Recovery: If a disk in a RAID 0 volume dies, the
data on every disk in the array is essentially destroyed because all the
files are striped; if a drive in a JBOD set dies then it may be easier to
recover the files on the other drives (but then again, it might not,
depending on how the operating system manages the disks.)
Considering that you should be doing regular backups regardless, and
that even under JBOD recovery can be difficult, this too is a minor
advantage.

Note: Some companies use the term "spanning" when they really mean
striping, so watch out for that!

Next: Summary Comparison of RAID Levels

mehedi hasan
mehedi@joinme.com

356

Summary Comparison of RAID Levels

Below you will find a table that summarizes the key quantitative attributes of
the various RAID levels for easy comparison. For the full details on any RAID
level, see its own page, accessible here. For a description of the different
characteristics, see the discussion of factors differentiating RAID levels. Also
be sure to read the notes that follow the table:

RAID
Level

Number
of Disks

Capacity
Storage
Efficiency

Fault
Tolerance

Availability
Random
Read
Perf

0 2,3,4,... S*N 100% none

1 2 S*N/2 50%

2 many
varies,
large

~ 70-80%

3 3,4,5,... S*(N-1) (N-1)/N

4 3,4,5,... S*(N-1) (N-1)/N

5 3,4,5,... S*(N-1) (N-1)/N

6 4,5,6,... S*(N-2) (N-2)/N

7 varies varies varies

01/10 4,6,8,... S*N/2 50%

03/30 6,8,9,10,...
S*N0*(N3-
1)

(N3-1)/N3

05/50 6,8,9,10,...
S*N0*(N5-
1)

(N5-1)/N5

15/51 6,8,10,...
S*((N/2)-
1)

((N/2)-1)/N

0
Random
Write
Perf

Sequential
Read Perf

Sequential
Write Perf

Cost

1 $

2 $$

3 $$$$$

4 $$

5 $$

6 $$

mehedi hasan
mehedi@joinme.com

357

7 $$$

01/10 $$$$$

03/30 $$$

05/50 $$$$

15/51 $$$$

 $$$$$

Notes on the table:

• For the number of disks, the first few valid sizes are shown; you can
figure out the rest from the examples given in most cases. Minimum
size is the first number shown; maximum size is normally dictated by
the controller. RAID 01/10 and RAID 15/51 must have an even
number of drives, minimum 6. RAID 03/30 and 05/50 can only have
sizes that are a product of integers, minimum 6.

• For capacity and storage efficiency, "S" is the size of the smallest drive
in the array, and "N" is the number of drives in the array. For the RAID
03 and 30, "N0" is the width of the RAID 0 dimension of the array, and
"N3" is the width of the RAID 3 dimension. So a 12-disk RAID 30 array
made by creating three 4-disk RAID 3 arrays and then striping them
would have N3=4 and N0=3. The same applies for "N5" in the RAID
05/50 row.

• Storage efficiency assumes all drives are of identical size. If this is not
the case, the universal computation (array capacity divided by the sum
of all drive sizes) must be used.

• Performance rankings are approximations and to some extent, reflect
my personal opinions. Please don't over-emphasize a "half-star"
difference between two scores!

• Cost is relative and approximate, of course. In the real world it will
depend on many factors; the dollar signs are just intended to provide
some perspective.

Next: RAID Configuration and Implementation

mehedi hasan
mehedi@joinme.com

358

RAID Configuration and Implementation

You've probably heard this phrase before: "The devil is in the details". Well,
this probably applies to the computing field as much as any other, if not
more, and it certainly applies to RAID. All the discussion of RAID concepts,
levels, fault tolerance and performance are made with the implied assumption
that the RAID array will be properly configured and implemented. If this is not
done, you can quickly discover just how wide the gulf is between theory and
the "real world". :^)

Though perhaps not as interesting to read about as RAID levels, information
about the different ways to set up RAID arrays and the various constraints
and issues involved in implementing an array are no less important. In this
section I will cover some of the topics related to actually creating a RAID
array. This includes a look at hardware and software RAID, RAID controllers,
interfacing issues, drive selection criteria, and RAID management. I also
explore some advanced RAID features that can be critically important when
setting up a high-availability array, such as hot spares and drive swapping.

Next: RAID Controllers and Controller Features

RAID Controllers and Controller Features

While the RAID level of an array gets a lot of attention, and the drives used in
the array do too, the RAID controller often does not. This is unfortunate,
because in many ways your choices for implementing a RAID array are
dependent on the type of controller you use. The controller and related
hardware also have a very important impact on array capacity and
performance.

In this section I take a look at the different options available for controlling a
RAID array, examining in particular the important matter of "hardware RAID
vs. software RAID". I also explain related issues such as the different
interfaces that can be used for RAID implementations, the use of multiple
channels for increasing throughput, and also some operating system
concerns.

Next: Hardware RAID

Hardware RAID

Most "serious" RAID implementations use what is termed hardware RAID.
This means using dedicated hardware to control the array, as opposed to
doing array control processing via software. Good hardware controllers are in
many ways like miniature computers, incorporating dedicated processors that
exceed the power of processors that ran entire PCs just a few years ago. For
a list contrasting software and hardware RAID, showing the advantages and
disadvantages of each, see this page on software RAID.

mehedi hasan
mehedi@joinme.com

359

There are two main types of hardware RAID, differing primarily in how they
interface the array to the system:

• Bus-Based or Controller Card Hardware RAID: This is the more
conventional type of hardware RAID, and the type most commonly
used, particularly for lower-end systems. A specialized RAID controller
is installed into the PC or server, and the array drives are connected to
it. It essentially takes the place of the SCSI host adapter or IDE/ATA
controller that would normally be used for interfacing between the
system and the hard disks; it interfaces to the drives using SCSI or
IDE/ATA, and sends data to the rest of the PC over the system bus
(typically PCI). Some motherboards, particularly those intended for
server systems, come with some variant of integrated RAID controller.
These are built into the motherboard, but function in precisely the
same manner as an add-in bus-based card. (This is analogous to the
way that the integrated IDE/ATA controllers on all modern
motherboards function the same way that add-in IDE/ATA controllers
once did on older systems.) The only difference is that integrated
controllers can reduce overall cost--at the price of flexibility.

• Intelligent, External RAID Controller: In this higher-end design,
the RAID controller is removed completely from the system to a
separate box. Within the box the RAID controller manages the drives
in the array, typically using SCSI, and then presents the logical drives
of the array over a standard interface (again, typically a variant of
SCSI) to the server using the array. The server sees the array or
arrays as just one or more very fast hard disks; the RAID is
completely hidden from the machine. In essence, one of these units
really is an entire computer unto itself, with a dedicated processor that
manages the RAID array and acts as a conduit between the server and
the array.

A PCI-bus-based, IDE/ATA hard disk RAID
controller, supporting levels 0, 1, and 01.
(Promise's popular FastTrak 66.)

mehedi hasan
mehedi@joinme.com

360

Original image © Promise Technology Inc.
Image used with permission.

Bus-based RAID is cheaper and much simpler to implement than external
RAID controllers while still offering often impressive capabilities; they range
from entry-level cards for IDE/ATA systems that cost around $100, up to top-
of-the-line, full-featured devices costing several thousand dollars. Dedicated,
external RAID controller systems are still more expensive but offer many
advanced features, are typically more expandable than bus-based RAID
implementations (offering support for large array well into the terabytes) and
can offer better performance. They often cost well into the five figures, so
they are not something a typical PC user would even consider.

Note: External RAID controllers should not be confused with external RAID
enclosures. Enclosures provide power and physical infrastructure for the
drives in a RAID array, but not the smarts of the controller; they are
functionally a large, fancy PC system case. An external RAID controller can be
thought of as such an enclosure combined with a high-end, integrated
controller as well.

In most cases, the decision to use hardware RAID is made almost exclusively
on financial grounds: hardware RAID is superior to software RAID in virtually
every way, it just costs more. If you want to use any of the more esoteric
RAID levels such as RAID 3 or RAID 1+0, you pretty much require hardware
RAID, since support for these levels is usually not offered in software. If you
need top performance while using a computation-intensive RAID level such as
RAID 5, you also should consider a hardware solution pretty much
"mandatory", because software RAID 5 can really hurt performance.

Next: Software RAID

Software RAID

Software RAID is just like hardware RAID, except that it uses software instead
of hardware. (There, that was easy! And here I thought this section would be
hard to write. :^))

All kidding aside, that pretty much is what software RAID is about. Instead of
using a dedicated hardware controller to perform the various functions
required to implement a RAID array, these functions are performed by the
system processor using special software routines. Since array management is
a low-level activity that must be performed "underneath" the other software
that runs on the PC, software RAID usually is implemented at the operating
system level. Windows NT and Windows 2000, as well as most of the various
flavors of UNIX, support some RAID levels in software.

There are a few advantages of using software RAID over hardware RAID, but
more disadvantages. First, let's look at the pros of software RAID:

mehedi hasan
mehedi@joinme.com

361

• Cost: If you are already running an operating system that supports
software RAID, you have no additional costs for controller hardware;
you may need to add more system memory to the system, however.

• Simplicity: You don't have to install, configure or manage a hardware
RAID controller.

• Duplexing: Duplexed RAID 1 can sometimes be implemented in
software RAID but not in hardware RAID, depending on the controller.

That's pretty much it. Now the cons:

• Performance: The best-known drawback of software RAID is that it
provides lower overall system performance than hardware RAID. The
reason is obvious: cycles are "stolen" from the CPU to manage the
RAID array. In reality, this slowdown isn't that excessive for simple
RAID levels like RAID 1, but it can be substantial, particularly with any
RAID levels that involve striping with parity (like RAID 5).

• Boot Volume Limitations: Since the operating system has to be
running to enable the array, this means the operating system cannot
boot from the RAID array! This requires a separate, non-RAID partition
to be created for the operating system, segmenting capacity, lowering
performance further and slowing boot time.

• Level Support: Software RAID is usually limited to RAID levels 0, 1
and 5. More "interesting" RAID levels require hardware RAID (with the
exception of duplexing, mentioned above.)

• Advanced Feature Support: Software RAID normally doesn't include
support for advanced features like hot spares and drive swapping,
which improve availability.

• Operating System Compatibility Issues: If you set up RAID using a
particular operating system, only that operating system can generally
access that array. If you use another operating system it will not be
able to use the array. This creates problems with multiple-OS
environments that hardware RAID avoids.

• Software Compatibility Issues: Some software utilities may have
conflicts with software RAID arrays; for example, some partitioning
and formatting utilities. Again, hardware RAID is more "transparent"
and may avoid these problems.

• Reliability Concerns: Some RAID users avoid software RAID over
concern with potential bugs that might compromise the integrity and
reliability of the array. While hardware RAID controllers can certainly
also have bugs, I think it's reasonable to believe that some operating
systems are more likely to have these sorts of problems than a good-
quality hardware RAID controller would.

All things considered, software RAID doesn't seem to have much to
recommend it. At the same time, realize that in many cases it is much better
than using nothing at all. If you are running a small business, a software
RAID 1 solution is far superior to running without RAID at all, especially if you
aren't meticulous about your backups. (Then again, if you can afford two
drives to do mirroring, a hardware RAID card is often only a small incremental
cost...)

Next: Controller BIOS and BIOS Upgrades

mehedi hasan
mehedi@joinme.com

362

Controller BIOS and BIOS Upgrades

Much the way that a PC motherboard has its system BIOS--low-level software
that runs the chipset and other key components of the motherboard--
hardware RAID controllers do too. The controller BIOS is the code that
operates the controller, managing the RAID array.

Over time, the manufacturer of the RAID controller may change the BIOS
code; this is usually done to correct minor problems with the controller card,
but sometimes occurs to enable new features. It is also occasionally done to
enable support for hardware that did not exist at the time the controller
shipped. Like PC BIOSes, RAID controller card BIOSes can usually be
upgraded through a flash process similar to that used for motherboards. A
new BIOS is typically downloaded from the web site of the manufacturer and
written to the EEPROM (flash chip) on the RAID controller. A special software
program, called a flash program for unsurprising reasons, is used to ensure
that the BIOS upgrade works properly.

Warning: To avoid potential problems, always follow the manufacturers'
instructions carefully when attempting to flash any BIOS. Doing the flash
procedure incorrectly can render the controller card inoperative. Always use
the right BIOS image for your card, and make sure the data on the array has
been backed up before you begin.

It's not necessarily a good idea to update the BIOS every time the
manufacturer puts out new code. Check the release notes for the new version
to find out what has changed; if no important changes have been made that
affect how you will use the controller, you may not need to bother.

For software RAID there is no "controller BIOS", since the operating system is
running the array. The analog for the controller BIOS upgrade here is the
operating system patch, which most PC users know all too well. :^) It's rare
for problems with RAID in an operating system to occur that necessitate such
a software patch, but it's still worth keeping current on whatever operating
system you are using, since patches usually correct scores (or even
hundreds) of bugs and problems.

Next: RAID Interfaces

RAID Interfaces

There are two primary interfaces that are used for RAID arrays. Traditionally,
all RAID was done on high-end machines and used the SCSI interface. Lately,
hardware RAID cards for the ubiquitous IDE/ATA interface have begun to
explode in popularity. Therefore, when designing a system that you intend to
use RAID, you have a choice of interface to make. Of course, this is a choice
that affects the design of the system in a fundamental way. The matter of
SCSI vs. IDE/ATA for RAID is similar to the general ongoing debate over the
two interfaces, which I have contrasted in this section.

mehedi hasan
mehedi@joinme.com

363

The decision of SCSI vs. IDE is much like that of hardware RAID vs. software
RAID--it comes down to cost vs. features. IDE/ATA RAID is much less
expensive than SCSI RAID but much more limited in virtually every way:
array capacities are smaller since a smaller number of drives can be used;
performance is lower in many different ways; support for more complex RAID
levels is absent; and advanced features are much less common. And those
are just the more important ones. :^)

In practice, most serious RAID implementations still use SCSI; I don't see
IDE/ATA replacing SCSI RAID for heavy-duty use on servers or high-end
workstations, because it is just too limiting. What IDE/ATA RAID is doing
however, is opening up the world of consumer-grade hard disks to RAID,
enabling millions who cannot afford the cost of SCSI to enjoy some of the
important benefits of RAID economically. If you already have an IDE/ATA
system and want to install RAID, you no longer have to face the sometimes
daunting task of moving over to SCSI to do it.

Next: Multiple Channels and Throughput Issues

Multiple Channels and Throughput Issues

I consider the external data transfer rate of the interface to be one of the
most overrated hard disk performance specifications ever. The reason is that
there are no hard disks that can read or write data fast enough to max out
modern interfaces. They can only send at the interface's maximum speed for
short bursts; see this section for further explanation. It doesn't really matter
much if the drive is running on an Ultra ATA/100 interface capable of 100
MB/s theoretical throughput if the drive can only stream from the platters at
40 MB/s. The only data sent anywhere near 100 MB/s will be the small
amounts that happen to be in the drive's cache. The same applies to a single
drive on a high-speed SCSI bus.

However, when using large numbers of drives with RAID, suddenly things
become a bit different. Well, under IDE/ATA they aren't different, because
IDE/ATA can only handle transfers from one drive at a time. :^) With SCSI
though, it's a very different story. On the SCSI bus, multiple drives can be
transferring data simultaneously. This means that if you put a bunch of drives
on a single SCSI channel and want to run them all at their maximum
potential, you do have to be careful to watch the maximum throughput of the
bus.

As usual, an example is much easier than trying to explain it without one.
Let's take the Quantum Atlas 10K II. This drive has a maximum sustained
transfer rate of 40 MB/s. For ideal performance, we want to make sure that
the interface can supply at least that much bandwidth. Now if we put a single
one of these drives on an Ultra160 SCSI bus, we obviously have no problems;
the theoretical maximum speed of the bus is 160 MB/s (though actual will be
below that due to overhead considerations). But what if we want to make a
four-drive RAID 0 array for high-speed multimedia editing? In that case we do
care about the speed of the bus: we're going to use all of it when dealing with
large files, because all four drives will be streaming data simultaneously! In

mehedi hasan
mehedi@joinme.com

364

fact, we'll be slightly below theoretical maximum potential speed because of
overhead, but it's probably close enough, especially since that STR figure is
only that high for the outermost tracks of the drives, where the number of
sectors per track is at its maximum.

But what about if we decide we want to create a larger array, say, an eight-
drive array? Then we have a problem. Even if we use the average STR figure
of those drives, 32 MB/s, we need 256 MB/s, far in excess of what Ultra160
can provide. To avoid this problem, higher-end SCSI RAID controllers provide
support for multiple channels. Essentially, the RAID controller has not one
SCSI bus with which to communicate with the drives in the array, but two or
more. For example, some cards have four channels. Each of these is capable
of handling 160 MB/s in theory, yielding a whopping theoretical bandwidth of
640 MB/s. That's obviously more than enough to handle our eight-drive array;
we just put two drives on each of the four channels and we are in business;
we even have room to substantially expand the array in the future, or add a
second array if need be. The use of multiple channels also improves
performance by cutting down on contention for the SCSI bus. Of course you
don't get four channels on a RAID controller for free; these multi-channel
controller cards aren't cheap.

Another issue when dealing with very high transfer rates is the bandwidth of
the bus itself. The standard PCI bus as implemented in regular PCs--which
seemed to have so much bandwidth five years ago :^)--is 32 bits wide and
runs at 33 MHz, providing a total maximum theoretical bandwidth of about
127 MB/s, not nearly enough to handle multiple-channel SCSI RAID. For this
reason, high-end cards with multiple channels often use the enhanced 64-bit,
66 MHz PCI bus. This version of PCI has a theoretical bandwidth of over 500
MB/s, but it of course requires a server motherboard that has a matching
high-speed PCI slot. Again, not cheap.

Next: RAID Hard Disk Drive Requirements

RAID Hard Disk Drive Requirements

The "I" in "RAID" stands for Inexpensive (even though it sometimes rendered
as Independent). This seems somewhat puzzling, since it is only recently that
RAID has begun to become popular on inexpensive IDE/ATA hard disks--high-
end SCSI disks are still the primary domain of RAID, and more often than not,
RAID arrays are constructed of some of the fastest drives on the planet. The
reason for the term "inexpensive" is that RAID is designed to use regular hard
disks, as opposed to proprietary, special hard disks. This is in fact a major
reason why it is so appealing. Before RAID, to get high performance or fault
tolerance required the purchase of specialized, very expensive drives. RAID
lets you get those benefits while using off-the-shelf drives.

Perhaps ironically, hard disks today are becoming downright inexpensive
period, not just when compared to proprietary solutions (which RAID has
caused to all but disappear from the market). This has fueled the RAID
phenomenon and caused more and more RAID systems to be created using
disks of all pricing levels.

mehedi hasan
mehedi@joinme.com

365

While RAID arrays use standard hard disks, that doesn't mean that you can
just pick "any old drives" you find kicking around and make a successful RAID
array out of them. There are a number of requirements that must be
considered when choosing drives (beyond the obvious, such as choosing
drives matching the interface of your controller implementation!) In this
section, I will discuss factors such as drive size, number of drives and how to
choose specific units, along with taking a look at how to meet the "needs" of
your drives in terms of power, enclosures and cabling.

Next: Number of Drives

Number of Drives

The number of hard drives in the system has an important impact on both
capacity and performance. Many RAID enthusiasts believe that the more
drives you put in the array, the better off you are--and this usually is mostly
true. At the same time, there are also disadvantages to using more drives as
opposed to fewer.

The number of drives in the array affects the following aspects of the array
directly:

• Capacity and Storage Efficiency: The size of the array you end up
with depends on the RAID level implemented and the number of drives
in the array (as well as the size of each drive, of course). Storage
efficiency, meaning the percentage of the total amount of space on all
the drives that contains user data, is also a function of the number of
drives in the array for all RAID levels that use striping with parity (the
number of parity drives is fixed so the efficiency goes up as you add
more drives.) See this discussion of capacity and storage efficiency for
more.

• Performance: For RAID arrays that use striping, the stripe width (not
stripe size) is equal to the number of disks in the array. Adding more
drives improves both random and sequential performance; in the case
of sequential performance, theoretical throughput is roughly
proportional to the number of drives in the array (with random
performance it is more complicated).

• Cost: More drives cost more money, even if you don't increase the
capacity of the array. Ten 20 GB drives is 200 GB, but it will cost more
than five 40 GB drives do. Then, above the cost of the drives, you
have to consider support costs: more drives take more space, need
more power, and often require more cooling. Going to too many drives
may require the purchase of an extra enclosure, and this incremental
cost alone can dwarf the other hardware costs for a RAID array in a
smaller workstation or server. Also, see here for issues related to
power and cabling.

• Reliability: More hardware means more to potentially fail; the
reliability of the overall system will go down when more drives are
involved. See here for more.

mehedi hasan
mehedi@joinme.com

366

The #1 question that people ask about the number of drives to use in an
array goes something like this: "Should I use three 36 GB drives, or six 18 GB
drives?" The answer, of course, is "it depends". For people who really want to
maximize performance--which is most people--the answer is six 18 GB drives.
However, if you do this, you must be prepared for the extra costs. As
mentioned above, sometimes the deciding factor is how many drives the
system can hold; it might be ideal to make a striped array out of twelve 9 GB
drives instead of either of the options above, but few systems can handle
twelve drives without adding an expensive external enclosure, which totally
changes the cost picture of the entire system. The capabilities of the
controller can also enter the picture, as they will often have a limit on the
number of drives they will support.

Next: Drive Size

Drive Size

When I talk about drive size in a RAID array, I really mean two different
things: first, the capacity of the drives in gigabytes, and second, the physical
size of the drives. The first is important to the overall capacity of the array;
the second has important implementation implications (gotta love that
alliteration. :^)) And the two are related as well, because larger drives are
often physically larger than small ones.

The capacity of the drives used in a RAID array affects the capacity of the
overall array, of course. Larger drives yield larger overall capacity for the
array, all else being equal. For this reason, RAID arrays tend to be
constructed of large drives whenever possible. This is especially true because
the cost of hard drives per gigabyte decreases when you buy the larger sizes
of any given family. Another important issue is that drives should all be the
same capacity when used in a RAID array, or you will forfeit any additional
capacity on the larger drives in the array. For more on these and other
capacity issues, see here.

If you have a limited budget, you will be forced to some extent to trade off
individual drive capacity against the number of drives you purchase; this is
the reason for the "should I buy more small drives or fewer large" drives
conundrum examined here. More drives means better performance, but fewer
large drives can be substantially less expensive. If you need large capacity
but are limited by physical considerations to a small number of drives,
obviously, get large drives. Another reason to consider large drives besides
cost and space is expansion. If your system can handle a total of six drives
and you fill all six spots with small drives, you'll need to replace drives--
possibly all of them--if you want to increase capacity later on (which
sometimes is the best idea anyway, but can be expensive and time-
consuming; see here.)

Physical size is another issue, more specifically the form factor of the drives.
The standard hard disks used today in RAID configurations are almost always
3.5" form factor drives, which describes a standard width and depth for these
units. There are two different heights found in 3.5" form factor drives,

mehedi hasan
mehedi@joinme.com

367

however. The standard height, called slimline or low-profile, is used for all
standard IDE/ATA and most smaller SCSI hard disks; these drives are 1"
high. For high-end SCSI drives however, the largest member of most families
use anywhere from 6 to 12 platters, too large to fit in a 1" package; these
drives are 1.6" in height and are called half-height drives (the "half" being
relative to the full size of the ancient 5.25" floppy drive bay in the original PC-
-don't ask. :^)) The hard disk shown on the main page of the hard disk
reference section is a 1.6" "half-height" drive.

Most regular PCs are not designed to take these larger form factor drives,
because their drive bays are sized for low profile drives. Some may still take
1.6" drives, especially if there are two contiguous 3.5" bays without
obstructions between them. Still, if you really want to use half-height drives
you want to use a server case that is designed specifically for these larger
devices. This will also help avoid cooling and power problems when using
several larger drives.

Next: Drive Selection Criteria

Drive Selection Criteria

In other sections of the site's RAID coverage, I have hinted at some of the
considerations that go into selecting drives for a RAID array. Some of these
are fairly obvious, but others are not. Here is a fairly comprehensive list of
issues to keep in mind when considering drives for a RAID array:

• Interface: You must of course get drives that correspond to the
interface your controller uses (really, this is a "group decision" of
course.)

• Capacity: Get the largest drives that you can afford and that will
physically fit your system or enclosure.

• Physical Size: Don't get half-height drives unless you have a case or
enclosure that can handle them.

• Performance: Get the fastest drives you can afford. Hard disk
performance is a huge subject unto itself, which I won't try to
summarize in a paragraph here, other than to say that if performance
is important to you, you must educate yourself about performance
issues and choose drives that meet your needs. The only synopsis I'll
provide is to say that if your main concern is random access
performance, look for a drive model with low overall access time; if
transfer rate is of utmost importance, instead look for drives with the
highest sustained transfer rates.

• Quality: Get high-end, high-quality drives. See this discussion of
quality and reliability issues.

• Source: If you are buying a "pre-made" array, get it from a high-
quality manufacturer or system integrator. If you are setting up the
array yourself, always buy drives from a reputable source, preferably
an authorized dealer. This will ensure that you get a proper warranty,
that you have support if you need it, and that you don't end up buying
second-rate merchandise.

mehedi hasan
mehedi@joinme.com

368

• Uniformity: To keep performance balanced and to maximize storage
efficiency, drives should all be the same size and model. However, also
keep in mind the point below...

• Diversification: This is a very important consideration when selecting
drives for a RAID array. Drive failures are sometimes caused by
random flaws, making an individual unit fail while others made at the
same time are just fine. But sometimes, drive failures are related to
occasional manufacturing difficulties; this can cause a specific batch of
drives to have a much higher rate of failure than normal for that drive
family. If you set up six drives in a RAID 5 array and they are all from
a faulty lot, you run the very real risk of having two simultaneous
failures and losing the entire array. For this reason, you should get
drives that are all the same make, model and size, but you should if at
all possible get drives from different manufacturer lots. A good vendor
should be able to help you do this.

Next: Enclosures

Enclosures

Most PC system cases are designed, well, under the assumption that they will
be used for regular PCs. Typically, space is provided within the case for one,
two, or maybe three hard drives. Sometimes there will be enough space for
four or more, and you can also "make space" by using drive bay adapters. A
regular PC case can therefore be satisfactory for small RAID arrays of 2, 3 or
4 drives, and certainly this is the least expensive option. This is often how
low-end, IDE/ATA RAID is done.

For "serious RAID" using many drives and the SCSI interface however, this
sort of arrangement is not really acceptable. More drives are often needed,
and in particular, drive swapping has become an important feature that most
high-end RAID users insist upon. To enable hot swapping and large numbers
of drives, you must look beyond regular PC cases.

One way to enable RAID and features such as hot swapping is to use a case
specifically designed for servers; you can see a picture of one below, and a
different one here. Note the drive bays on both cases; the large number of
spaces for drives is specifically intended for RAID applications. You can see
the removable drive handles on the drives. These cases are usually very high
quality, and come with very beefy power supplies--and substantial price tags.

mehedi hasan
mehedi@joinme.com

369

A very large, very nice server case, which
would make easier the life of someone
using it to implement a RAID array.
(Enlight's 8850.)

Image © Enlight Corporation
Image used with permission.

If you already have an existing system or for another reason don't want to go
with a specialty server case, another way to go is a separate RAID enclosure.
This is a fancy word for what is in essence an auxiliary case. It functions
exactly the same way that a regular case would except that it is external to
the main system box and is connected to it using one or more interface
cables. Enclosures are also very expensive. (Incidentally, if the enclosure also
includes a RAID controller, then it is no longer just an enclosure, it's an
external, stand-alone hardware RAID array; see here for more.)

Next: Cabling and Power Requirements

Cabling and Power Requirements

Much the way the many drives used in larger RAID arrays can tax the
available space in a regular PC case, they do the same to the capabilities of
the system power supply. If you examine the output ratings of a typical
power supply, you'll find that the amount of +12 V power provided is more
than adequate for as many as four hard disks, but some lower-end supplies
may not be able to handle more than two. Virtually no regular PC power
supply will be up to the challenge of providing adequate power to a RAID
array of 8, 10, 12 or more hard drives. This is particularly true when you
consider the peak startup draw of hard drive motors.

For this reason, it's important to carefully check the capabilities of the power
supply when implementing a larger RAID array. The need for power is another
reason why larger RAID arrays are usually implemented in either specialized

mehedi hasan
mehedi@joinme.com

370

server cases or external enclosures. These cases are matched with larger
power supplies that can handle the load of many hard drives. Often these
cases will in fact be equipped with redundant power supplies, which provides
fault protection against problems with the power supply. If one supply fails
the other will continue to seamlessly provide power to the entire array. I
recommend these for those who are setting up a RAID array for fault
tolerance and can afford them.

Tip: Power supplies provide power using the integrated power cables and
connectors that come from the power supply box. You will often notice that
these connectors are in separate "groups"; for example, there may be 8
power connectors arranged into two groups of four connectors. If at all
possible, "spread these around" so that if a fault develops with one set of
cables it will not take the entire array down. In the example above, if you are
running a RAID 1+0 array, "split" each of the mirrored pairs so one drive is
attached to one group and the other drive is attached to the second group.
Even if the power is cut to entire group then, the array will stay up since one
drive in each RAID 1 sub-array will still be powered.

Another issue with larger arrays is cabling: it can become quite a mess if you
have a large number of drives. Snaking four large SCSI cables to a dozen
hard drives and running the power cables to them isn't a lot of fun. Separate
cables also make drive swapping difficult to impossible, so a drive failure
means taking down the system. Larger cases will help to keep the cabling
from becoming unmanageable, but a better solution now being used by many
server cases is a SCSI variation called single connector attachment or SCA.

In an SCA system the separate data and power cables that normally run to
each drive are eliminated and replaced with a single 80-pin connector. Special
backplanes are installed in the server case and the drives snap into the
mating connectors on the backplanes, in a process not dissimilar to how you
connect a printer cable to a parallel port. The connection between the
backplanes and the RAID controller is greatly simplified compared to running
data and power cables to each drive, and SCA is designed specifically to allow
drive swapping. Most RAID enclosures and server cases are now designed to
use SCA due to its significant advantages for RAID arrays.

A final not relates to controllers that use multiple channels. If your controller
has this useful feature then you should always use all of the channels
available to improve performance. The optimal way of connecting the drives
depends on the number of channels you have and the type of RAID array you
have implemented. In general, you want to evenly distribute the drives
between the channels to allow as little contention as possible within each
channel, and to improve throughput. So if you have a six-drive array on a
three-channel controller, put two drives on each channel. If you have eight
drives, split them up as into groups of 2, 3, and 3.

Next: RAID Management

RAID Management

mehedi hasan
mehedi@joinme.com

371

RAID systems, especially high-end ones, can be complex--more features
means more complexity. A simple IDE/ATA RAID array typically needs little in
the way of management, but it becomes important for larger arrays with
multiple RAID levels, many virtual drives, and so on. All RAID systems,
whether hardware or software, come with some sort of administration
program for setting up, configuring, and managing the array(s) they control.

In this section I will address some of the basic issues related to managing a
RAID array. This includes a description of RAID management software,
including a look at the types of errors and warnings that such software may
generate, a discussion of partitioning and partitioning software and how RAID
affects them, and an explanation of remote RAID management. I conclude
with a brief discussion of service and support issues, which can be very
important in a RAID environment where high availability is a priority.

Next: Management Software

Management Software

All RAID controllers come with some sort of software that lets you manage
the controller and its connected arrays and drives. This software can range
from very simple to very complex, depending on the type of controller and
the number of features it supports. Most hardware controllers come with two
different software components:

• Controller BIOS Setup Program: This is a hardware-based program
that can be run at boot time in exactly the same way that a
motherboard's BIOS setup program operates. By pressing the
appropriate key(s) at the appropriate time during the boot sequence, a
special program contained in a ROM chip on the controller appears on
the screen (usually in a text-only mode) and allows various functions
to be performed. This program manages a set of data contained on the
controller that is used by the controller's onboard BIOS. This type of
program is essential for hardware RAID since you need to be able to
set up and configure arrays before any operating system is loaded.

• Operating System Management Utility: This is a straight software
utility that runs after the operating system is loaded and running on
the array. It allows many of the same features as the setup program,
except it is designed more towards checking the status of the array
and changing various parameters that control how it operates. It
typically also will allow operations that continue while an array is
operating normally, such as a rebuild on a fault-tolerant array. It
works in conjunction with the setup program.

I couldn't even begin to describe in detail all the features and options found in
the software utilities that come with high-end RAID controllers--they often
come with manuals that approach 200 pages in length. Of course, the
software also varies significantly from one manufacturer to another, and one
product to another. Regardless of how it is set up, the functionality of RAID
management software allows you to perform the following basic categories of
functions:

mehedi hasan
mehedi@joinme.com

372

• Controller Configuration: Configuring the controller and its features
at a hardware level. For example, setting how the internal cache, if
any will work; controlling alarms; selecting manual vs. automatic
rebuild for failed drives, disabling the BIOS if necessary, and so on.

• Array Configuration: Defining and configuring RAID arrays, setting
up which drives are in which arrays, and more.

• Physical Drive Management: Checking the status of drives
connected to the controller, formatting drives, designating drives as
hot spares, and so on.

• Logical Drive Management: Creating logical drive volumes from an
array, formatting a logical volume, etc.

• SCSI Channel Management: For SCSI cards, controls various
settings and parameters related to setting up and managing the SCSI
channels on the RAID controller. Many of these are related to
managing SCSI bus termination.

Tip: As I mentioned above, RAID controllers normally come with extensive
documentation. You can usually find the manuals for most RAID products in
downloadable form on the web site of their manufacturer. Reading through
the software manual for a controller you are considering buying can give you
a much clearer picture of the controller's capabilities and limitations than you
will get from glossy marketing blurbs.

How about software RAID? Well, there's no surprises here: a management
program is required to manage all RAID features. There is obviously no BIOS
setup program because there is no controller BIOS, so everything is done at
the operating system level. RAID management functionality for Windows NT
and 2000 is integrated into the Disk Administrator tool that is used for
managing disk volumes.

Next: Remote Management

mehedi hasan
mehedi@joinme.com

373

Remote Management

Normally, the management of each RAID controller is performed by software
running on the machine where the RAID card is installed. This works fine for
smaller organizations that might only run RAID on a central server. For larger
companies, which might well have many machines with RAID controllers, this
can become cumbersome. It gets even worse if there are servers in different
geographical locations.

To address the need for central administration of multiple RAID arrays on
different machines, some high-end RAID solutions include support for remote
management This enables an administrator to monitor the operation and
status of a RAID array of a server or workstation without being physically
present. This is normally done over a local area network, with support from
the RAID controller card. In fact, some RAID controllers now actually support
certain management features over the Internet!

Remote management is a feature that most RAID users won't need to worry
about, but if you will be in a different location from the array it can be very
useful. You can usually find out if this feature is supported by a controller card
by checking its feature listings, or even better, downloading its user manual
from its manufacturer's web site.

Next: Partitioning and Partitioning Software

Partitioning and Partitioning Software

As explained in detail in this part of the discussion of file systems, partitioning
is the process of dividing up a hard disk into pieces so they can be treated as
logical disk volumes. Under RAID arrays are treated as "virtual hard disks"
and are partitioned just as any regular hard disk would be.

In theory, hardware RAID arrays should be completely transparent to any
software, including operating systems, that are installed on them. An
operating system driver may be required for the controller card, but that's
about it. Since it should be transparent, you should be able to use any
partitioning software you want, ranging from vanilla FDISK to more
sophisticated programs like Partition Magic. Despite this, some controller
manufacturers specifically say not to use third-party partitioning software
with their products. And despite that, many people use them anyway without
any problems. It is unclear if there is really a problem with third-party tools
on these (typically low-end) controllers, or if the manufacturers decide that
the easiest way to reduce support costs and hassles is just to say "don't use
anything but FDISK". At any rate, this should not occur with more expensive
controllers.

One real concern with RAID and partitioning software has to do with size. As
hard disk capacities increase, partitioning software is slowly revised or
updated to handle ever-increasing drive sizes. Unfortunately, some of these
programs are unprepared for the much larger "virtual disks" that a hardware
RAID solution may present to them as if they were single disks. Using the

mehedi hasan
mehedi@joinme.com

374

latest operating system updates should let you avoid these problems. When
running large arrays, the NTFS or UNIX file systems are preferable to the
different flavors of FAT.

Warning: Do not use overlay software in conjunction with hardware RAID
controllers. It's just asking for trouble, and it's really not necessary. The
controller should be able to handle any size drives you can throw at it; if not,
get a BIOS upgrade for it. If you are running software RAID you may be OK
with an overlay, but I still recommend hardware support, not drive overlay
software.

Next: Alarms and Warnings

Alarms and Warnings

While the software that comes with RAID controllers will let you check the
status of the array at any time, there are situations where the administrator
of the array needs to know that something has happened, now. Finding out
about important bad news "the next time you run the management utility"
just isn't good enough, and anyone who manages RAID arrays is typically too
busy to keep checking for problems all day long--especially since they occur
rarely anyway.

For this reason, controllers usually are programmed to generate alarms and
warning messages when certain problems occur with the controller or the
array. On better controllers these take the form of an audible alarm: loud
beeping coming from the controller card that will certainly make you sit up
and take notice, believe me. :^) Audible notification greatly increases the
chances that trouble will be addressed immediately. There are cases where
this feature can be the difference between a hardware problem being an
inconvenience, and being a disaster.

The conditions that will trigger a warning vary from one controller to another,
but the most common ones include these:

• Array Failure: An array connected to the controller has failed due to a
hardware fault. This would occur due to failure of enough drives to
compromise the array, so one failure will do it for RAID 0, two for
RAID 1, 3, 4 or 5, and so on. For a multiple RAID level, the failure of a
component "sub-array" will normally trigger an alert even if the
"super-array" continues working. So in RAID 0+1, one RAID 0 array
may fail while its mirror carries on, but the failure of the RAID 0 sub-
array will generate an alert. This error condition is sometimes
described as the array being "offline" (which of course it would be.)

• Degraded Mode Operation: An array connected to the controller is
running in a degraded state due to a hardware fault. This warning
situation will occur in a redundant RAID level where a number of
drives have failed, but not enough to take the array offline. The array
will continue to run but performance will be degraded until the fault is
corrected and the failed drive is rebuilt. This alert is arguably the most

mehedi hasan
mehedi@joinme.com

375

important one of all, because it's hard not to notice an outright array
failure, but it can be hard to know that an array is still up, but running
in a degraded state.

• Rebuild Completion: If an automatic rebuild of a degraded array is in
progress, the controller may signal when the rebuild is complete. This
signals that the array is no longer in degraded mode, which can be
important to know if, for example, a drive failed and a hot spare was
rebuilt in its stead in your absence (you'll know that the failure
occured and that you now need to replace the failed drive.)

• Controller Hardware Fault: The controller has detected some sort of
internal fault or problem. For example, some controllers monitor their
own temperature and may issue a warning if acceptable limits are
exceeded.

In addition to audible alerts, notification of important conditions can usually
be sent over a local area network to an administrator. Controllers that
support remote management will of course allow remote notification as well.
In addition, modern controllers also usually support the SMART feature and
will report SMART warnings generated by hard disks that include SMART.

Warning: Some RAID controllers will let you disable the audible warning
feature if you find it too "annoying". Doing this is like pulling all the batteries
out of your smoke detectors so they won't "irritate you" while you're trying to
sleep...

Next: Service, Support and Maintenance

Service, Support and Maintenance

No discussion of managing a hardware system would be complete without
mentioning maintenance. At least, it shouldn't be! :^) I think enough about
maintenance that I have a special section where I talk about it in some detail.
Rather than repeat all of that information here, I will once again exploit the
power of the web and simply refer you to there. Here I will only discuss
maintenance as it applies specifically to RAID arrays.

That said, there isn't a lot to say. :^) RAID arrays don't generally require a
lot in the way of regular preventive maintenance. You do need to maintain
your server hardware, and the array should be part of that, but that's really
all you need to do under normal circumstances: No special maintenance is
required for RAID controllers or drives. At the same time, many high-end
controllers do offer advanced maintenance features which can be useful, such
as the following:

• Consistency Checking: This important feature will proactively check
the data on a RAID array to ensure that it is consistent, meaning that
the array data is correct and has not become corrupted. It is especially
useful for RAID levels that use striping with parity, as it will check for
any situations where the parity information in a stripe has become
"out of sync" with the data it is supposed to match (which shouldn't

mehedi hasan
mehedi@joinme.com

376

happen in practice, but you know how Mr. Murphy works...) It will of
course also correct any problems it discovers.

• Spare Drive Verification: If you are using hot spares, they will tend
to sit there for weeks or months on end unused. This feature, if
present, will check them to ensure they are in good working order.

• Internal Diagnostics: Some better RAID controllers may include
routines to periodically check their own internal functions and ensure
that they are working properly.

Now, let's take a look at service and support issues with RAID (I discuss these
in more general terms in this troubleshooting section). In fact, there isn't
anything different about service and support of RAID hardware than any other
hardware. The difference is that RAID arrays are usually employed in servers
used by many people, or in other critical situations which require a minimum
of down-time. This means a failure that takes down an array can quickly cost
a lot of money, lending an urgency to RAID array service that may not be
present for other PCs.

There is no way to avoid down-time entirely unless you spend a truly
staggering amount of money (and even then, you should "expect the
unexpected".) If a failure occurs, you want to get it corrected as soon as
possible, and that means you are reliant to some extent on whatever
company is supporting your hardware. If uptime is critical to your application,
then in addition to incorporating fault tolerance into your RAID setup, you
should purchase an on-site service contract covering your system(s). Be sure
to look at all the conditions of a service contract to be sure you understand
what it covers--and what it doesn't. If you need immediate response in the
event of a hardware fault be sure that the contract specifies that--you'll
certainly pay more for it, but you have to weigh that against the cost of an
entire company "waiting for the system to come back up".

Note: Another important issue to keep in mind when considering service and
support of your RAID array, is that some arrays "insist" upon having failed
drives replaced with identical models. You want the company that supplies
you with hardware to be able to provide you with new drives of the
appropriate type for the life of the array.

Next: Advanced RAID Features

mehedi hasan
mehedi@joinme.com

377

Advanced RAID Features

There are several important features that have been developed over the last
few years to improve the capabilities of RAID-equipped systems. They are
usually found on high-end systems that use more expensive RAID controllers.
In addition to a capable controller, these features may also require other
hardware in the system to be designed to support them. For example, the
system case or RAID enclosure must be designed to support drive swapping
for that feature to work.

In this section I take a look at caching (including write caching), hot drive
spares and drive swapping, three key features that improve performance and
availability in RAID arrays. Finally, I discuss the important issue of RAID array
expansion, and how to plan for the future of your RAID array.

Next: Caching

Caching

Caching is a technique that is used to buffer discrepancies between the
performance of different hardware components. It is used throughout the PC:
cache is found within system processors, on motherboards, within hard disks
themselves, and many other places. In every case, the goal of the cache is
the same: to provide a temporary storage area that allows a faster device to
run without having to wait for a slower one. For more on the theory of
caching and how it works in PCs, see this explanation.

Most advanced RAID controllers include on-board cache, which in many ways
acts exactly the same way that the cache within a hard disk does: it improves
performance to some extent by storing information that was recently used, or
that the controller predicts will be used in the future, so it can be supplied to
the system at high speed if requested instead of necessitating reads from the
slow hard disk platters. Since a RAID controller turns an array of hard disks
into one "virtual hard disk", putting cache on the controller is a natural
enhancement. Typically this is implemented as a slot on the controller that
takes a standard PC memory module; some controllers can take an amount of
cache exceeding the total system memory on most regular PCs! While caching
does improve performance, as with cache size in hard disks, don't
overestimate the performance impact of increasing the size of the cache.

One area where caching can impact performance significantly is write caching,
sometimes also called write-back caching. When enabled, on a write, the
controller tells the system that the write is complete as soon as the write
enters the controller's cache; the controller then "writes back" the data to the
drives at a later time. As described in detail in this page on write caching, this
improves performance but imposes the risk of data loss or inconsistency if,
for example, the power to the system is cut off before the data in the cache
can be "written back" to the disk platters.

Tip: To avoid potential problems with power failures and write-back caching,
some controllers actually incorporate a built-in backup battery! This battery

mehedi hasan
mehedi@joinme.com

378

will allow any unwritten data in the cache to be retained for a period of time
until the power is restored to the system. A very neat feature--though if the
server is connected to a UPS, as it should be anyway, its value is debatable.

The reason that write-back caching is so important with RAID is that while
writes are slightly slower than reads for a regular hard disk, for many RAID
levels they are much slower. The cache insulates the system from the
slowdowns inherent in doing writes to arrays such as those using RAID 5,
which can improve performance substantially. The bigger the gap between
read and write performance for a given RAID level, the more that array will
benefit from using write caching. It is recommended for high-performance
applications using striping with parity (though it will improve performance
somewhat for all RAID levels.)

Next: Drive Swapping

Drive Swapping

In the "good old days" of RAID, fault tolerance was provided through
redundancy, but there was a problem when it came to availability: what do
you do if a drive fails in a system that runs 24 hours a day, 7 days a week?
Or even in a system that runs 12 hours a day but has a drive go bad first
thing in the morning? The redundancy would let the array continue to
function, but in a degraded state. The hard disks were installed deep inside
the server case, and this required the case to be opened to access the failed
drive and replace it. Furthermore, the other drives in the array that continued
to run despite the failure, would have to be powered off, interrupting all users
of the system anyway. Surely there had to be a better way, and of course,
there is.

An important feature that allows availability to remain high when hardware
fails and must be replaced is drive swapping. Now strictly speaking, the term
"drive swapping" simply refers to changing one drive for another, and of
course that can be done on any system (unless nobody can find a
screwdriver! :^)) What is usually meant by this term though is hot swapping,
which means changing a hard disk in a system without having to turn off the
power and open up the system case. In a system that supports hot swap, you
can easily remove a failed drive, replace it with a new one and have the
system rebuild the replaced drive immediately. The users of the system don't
even know that the change has occurred.

Unfortunately, "hot swap" is another one of those terms that is used in a non-
standard way by many, frequently leading to confusion. In fact, there are a
hierarchy of different swap "temperatures" that properly describe the state of
the system at the time a drive is swapped:

• Hot Swap: A true hot swap is defined as one where the drive can be
replaced while the rest of the system remains completely
uninterrupted. This means the system carries on functioning, the bus

mehedi hasan
mehedi@joinme.com

379

keeps transferring data, and the hardware change is completely
transparent.

• Warn Swap: In a so-called "warm swap", the power remains on to
the hardware and the operating system continues to function, but all
activity must be stopped on the bus to which the device is connected.
This is worse than a hot swap, obviously, but clearly better than a cold
one.

• Cold Swap: The system must be powered off before making the swap.

It is common for a system to be described as capable of hot swapping when it
really is only doing warm swaps. True hot swapping requires support from all
of the components in the system: the RAID controller, the bus (usually SCSI),
the enclosure (which must have open bays for the drives so they can be
accessed from the front of the case), and the interface. It requires special
connectors on the drives that are designed to ensure that the ground
connections between the drive and the bus are maintained at any time that
the device has power. This means that when removing a device, the power
connection has to be broken before the ground connection, and when re-
inserting a device, the ground connection has to be made before the power
connection is re-established. This is typically done by designing the
connectors so that the ground connector pins are a bit longer than the other
pins. This design is in fact used by SCSI SCA, the most common interface
used by hot-swappable RAID arrays. See this discussion of SCA for more, as
well as this discussion of drive enclosures.

As mentioned above, the SCA method on SCSI is most commonly used for
hot-swappable arrays. In the IDE/ATA world, the best you can usually do is
warm swapping using drive trays, which "convert" regular IDE/ATA drives to a
form similar in concept to how SCA works, though not quite the same. This is
still pretty good, but not really hot swapping. The system usually needs to be
halted before you remove the drives.

A system that cannot do hot swapping, or even warm swapping, will benefit
from the use of hot spares. If your system can only cold swap, you will at
some point have to take it down to change failed hardware. But if you have
hot spares, you can restore the array to full functionality immediately, and
thus delay shutting the system down to a more convenient time, like 3:00 am
(heh, I meant more convenient for the users, not you, the lucky
administrator. :^)) In fact, hot sparing is a useful feature even if you have
hot swap capability; read more about it here.

Next: Hot Spares

mehedi hasan
mehedi@joinme.com

380

Hot Spares

If a drive fails in a RAID array that includes redundancy--meaning all of them
except RAID 0--it is desirable to get the drive replaced immediately so the
array can be returned to normal operation. There are two reasons for this:
fault tolerance and performance. If the drive is running in a degraded mode
due to a drive failure, until the drive is replaced, most RAID levels will be
running with no fault protection at all: a RAID 1 array is reduced to a single
drive, and a RAID 3 or RAID 5 array becomes equivalent to a RAID 0 array in
terms of fault tolerance. At the same time, the performance of the array will
be reduced, sometimes substantially.

An extremely useful RAID feature that helps alleviate this problem is hot
swapping, which when properly implemented will let you replace the failed
drive immediately without taking down the system. Another approach is
through the use of hot spares. Additional drives are attached to the controller
and left in a "standby" mode. If a failure occurs, the controller can use the
spare drive as a replacement for the bad drive. A very simple concept, and a
feature that is supported by most RAID implementations, even many of the
inexpensive hardware RAID cards and software RAID solutions. Typically, the
only cost is "yet another" hard disk that you have to buy but can't use for
storing data. :^)

You may ask though: if I have hot swap capability, why do I need hot spares
anyway? I can just replace a drive when it fails, right? That's true, but the
main advantage that hot sparing has over hot swapping is that with a
controller that supports hot sparing, the rebuild will be automatic. The
controller detects that a drive has gone belly up, it disables it, and
immediately rebuilds the data onto the hot spare. This is a tremendous
advantage for anyone managing many arrays, or for systems that run
unattended--do you really want to have to go into the office at 4 am on a
rainy Sunday to hot-swap a drive for the benefit of your overseas users?

As features, hot sparing and hot swapping are independent: you can have
one, or the other, or both. They will work together, and often are used in that
way. However, sparing is particularly important if you don't have hot swap (or
warm swap) capability. The reason is that it will let you get the array back
into normal operating mode quickly, delaying the time that you will have to
shut down the system until when you want to do it. You of course lose the hot
sparing capability in the meantime; when the failed drive is replaced, the new
drive becomes the new hot spare.

Tip: Hot spares may sit dormant on a system for months at a time. It's a
good idea to periodically test the spare drive to make sure it is still working
properly. Some controllers offer a maintenance utility specifically for this
purpose. Some may automatically test the spares on occasion.

If for whatever reason your RAID setup won't support hot sparing, you can
still do the next best thing, which is what I call "cold sparing". :^) This is
simple: when you buy the drives for your RAID array, buy one extra drive;
keep it in a safe place near the system. If a drive ever fails in the array, you'll

mehedi hasan
mehedi@joinme.com

381

have to swap it out, but you won't have to wait for hours or days while you
try to locate, order and have delivered a replacement drive. Another good
reason to do this is that you will be sure that the drive you are replacing is
the exact same as the original ones in the array--some arrays don't like
having a drive replaced with anything but another of the exact same type.

Next: Array Expansion

Array Expansion

One of the most amazing phenomena in the world of storage is the way that
hard disks shrink. You probably know what I mean: in 1998 you installed a
massive 4 GB hard disk into your PC thinking you were set for life; 18 months
later you were lamenting the fact that you had "no space on this teeny hard
drive". Now you have a 40 GB drive and "can't imagine how you got by with
only 4 GB". Been there, done that. :^) The same thing happens to RAID
arrays--in fact, it often happens faster than it does with individual drives,
since RAID arrays are usually shared by many users and it can be hard to
anticipate the capacity needs of a business that is growing. This sometimes
necessitates array expansion, adding capacity to an existing RAID array. This
can be a process fraught with difficulties.

There are two main issues involved in expanding an array:

• Physical Expansion: You need to be able to physically put drive(s)
into the system.

• Logical Expansion: You have to somehow get the controller to add
the new drive(s) to the array so that the array is enlarged in overall
size.

Physical expansion is usually the easier of the two, but not always. As
discussed in some detail here, the number of bays in a case is usually limited.
If you use all the available spots when you first set up the array, you won't
have anywhere to add new drives. This happens more often than you might
think, because the performance of the array will generally be higher if you
use more smaller drives instead of fewer larger ones, so many people use as
many drives as will fit in the case. If you max out your case's physical
capacity, your only choices are to add an (expensive) external enclosure, or
replace the existing drives with higher-capacity models (which you may want
to do anyway; see below.)

Logical expansion comes down to the RAID level you choose to employ, and
the features of your RAID controller. Some will allow a drive to be added to a
striped set (with or without parity) while others will not. If your controller
supports expansion you are in good shape--the controller will let you add the
drive and then will reconfigure the array to use the added storage. If your
controller doesn't support this advanced feature, you will have to
destructively "disassemble" the smaller array and assemble the new, larger
array. This will generally result in all the data on the array being lost, so you
must be sure you have it properly backed up--and tested--before you do this.

mehedi hasan
mehedi@joinme.com

382

Even if your controller supports logical expansion and you have the room for
the drives, you should think twice about doing it for the following reasons:

• Size Matching and Capacity: With few exceptions, all RAID arrays
are constrained by the size of the smallest drive(s) in the array--any
drives larger than this will not utilize their additional capacity. This
means that if you have an array with five 9 GB drives and you add a
spankin' new 36 GB drive to it, surprise! 75% of the drive will sit there
wasted.

• Performance: Older drives that are much smaller than new ones are
also slower than new ones. You will lose most of the benefit of a new
drive if you put it in an array with a bunch of smaller ones.

• Reliability: If the existing drives are old enough to be too small, they
are probably at least nearing the end of their service life. This means
they will become increasingly likely to fail.

For all of the reasons above, many RAID users never expand their arrays:
they just use all the drive slots on the case, and when the drives get old, they
replace them. They give up the storage of the old array, but with drive
capacities doubling every year or two, this can make less difference than you
might think. If you pay $X for four drives of a given capacity today, in three
or four years that same $X will buy a single drive with capacity as high as the
entire array! There are arrays still in use from the mid-1990s that have 4 GB
drives in them; a new array with disks comparable to what these drives cost
five years ago would dwarf the capacity of the old array.

If you don't want to expand an existing array, and don't want to replace it
either, you can just create a new array alongside it. If there is room in the
server, add the new drives and create a new, separate array from them. Then
use the older array in a backup or secondary role, for older or less-important
data. Another alternative is to just set up a new array on a different machine.
Since servers are networked to allow many users to access them anyway, this
will let the extra capacity be used by everyone on the network without
necessitating changes to the existing system. In addition, it removes a single
server from being a sole point of failure, to some extent: you won't have all
your array eggs in the same basket. The drawbacks are obvious: the cost of
another entire machine (unless you already have one), other hardware costs,
and the effort to set it all up.

Next: Hard Disk BIOS and Capacity Factors

Hard Disk BIOS and Capacity Factors

The operation of your hard disk drives is controlled by the interface from the
system to the hard disk itself. This interface is the conduit for addressing
instructions and commands, sent to the hard disk to select what data is
requested, and then a conduit for the data itself, flowing to and from the
system. The system BIOS plays a role in the operation of the hard disk, as it
provides the standard software routines that allow applications and operating
systems such as DOS to access the hard disk. It is also the cause of many

mehedi hasan
mehedi@joinme.com

383

configuration and capacity limitation problems that many users have when
setting up their hard disks, especially newer ones on older systems.

This section takes a look at issues related to how the BIOS and operating
system interact with the hard disk, and BIOS-related issues and problems.
This includes a full look at the many capacity limitations inherent in using
IDE/ATA interface drives, and other BIOS restrictions on hard disk capacity.
Many of the items in this section are really of relevance only to IDE/ATA
drives; SCSI drives use their own BIOS and a different addressing mechanism
from IDE/ATA, and so suffer from fewer of these problems. However, some
BIOS issues affect SCSI as well, because of problems associated with
operating system limitations.

Next: BIOS and the Hard Disk

BIOS and the Hard Disk

The BIOS and operating system play an important role in how your hard disk
is used. While the BIOS itself has taken more of a "back seat" role to direct
access by the operating system over the last few years, it is still there "in the
mix" in several ways. This section takes a brief look at the impact of the BIOS
on hard disk setup and access. See the section on the BIOS for more
complete details on how it works.

Next: Role of the BIOS in Hard Disk Access

Role of the BIOS in Hard Disk Access

The system BIOS is the lowest-level interface between the hardware of your
system and the software that runs on it. It has several significant roles that it
plays in the control of access to hard disks:

• BIOS Interrupt Routines: In order to ensure the interoperability of
various hardware and software products, the BIOS of the system is
tailored to the needs of its hardware, and provides a standard way of
letting software addressing the hardware. These are called BIOS
services and are used by many operating system and application
programs. They provide a uniform interface to the hard disk, so
applications don't need to know how to talk to each type of hard disk
individually. (Many newer operating systems today regularly bypass
these BIOS services but still may use them for compatibility purposes.)

• Hard Disk Detection and Configuration: Standard IDE/ATA hard
disks are configured in the BIOS using various BIOS settings. Modern
BIOSes can in fact interrogate modern IDE/ATA disks to determine
these parameters, and automatically configure them.

• Hard Disk Interface Mode Support: The BIOS, working with the
system chipset on the motherboard and the system I/O bus, controls
which types of interface modes can be used with the hard disk. This
refers specifically to features such as high-performance PIO modes,
DMA modes, and block mode.

mehedi hasan
mehedi@joinme.com

384

Next: The Int13h Interface

The Int13h Interface

When the operating system or an application wants to access the hard disk, it
traditionally employs BIOS services to do this. The primary interface to the
BIOS has been the software interrupt known as Int13h, where "Int" stands of
course for interrupt and "13h" is the number 19 in hexadecimal notation.

The Int13h interface supports many different commands that can be given to
the BIOS, which then passes them on to the hard disk. These include most
anything that you would normally want to do with a disk--reading, writing,
formatting, and so on. Int13h has been the standard for many years because
it has been used by DOS for ages. It is only in recent years that the
limitations of this old interface have caused it to be abandoned in favor of a
new way of addressing hard disks, as described below.

Using Int13h requires the invoking program to know the specific parameters
of the hard disk, and provide exact head, cylinder and sector addressing to
the routines to allow disk access. The BIOS uses the geometry for the hard
disk as it is set up in the BIOS setup program. The Int13h interface allocates
24 bits for the specification of the drive's geometry, broken up as follows:

• 10 bits for the cylinder number, or a total of 1,024 cylinders.
• 8 bits for the head number, or a total of 256 heads.
• 6 bits for the sector number, or a total of 63 sectors (by convention,

sectors are numbered starting with one instead of zero, so there are
only 63).

This means that the Int13h interface can support disks containing up to
approximately 16.5 million sectors, which at 512 bytes per sector yields a
maximum of 8.46 GB (or 7.88 GiB). Of course, twenty years ago when this
methodology was developed, an 8 GB hard disk was Buck Rogers fantasyland
material; a 10 MB hard disk was a luxury. Today, for many PC users, an 8 GB
hard disk is "a bit on the small side". :^) As a result, the Int13h interface has
finally come to the end of its usefulness in modern systems, and has been
replaced with a newer interface called Int13h extensions. Int13h still may be
used by DOS and some other older operating systems, and for other
compatibility purposes.

Next: Int13h Extensions

Int13h Extensions

As discussed in the section on the standard Int13h BIOS interface, that older
standard has an important limitation that has become a serious issue for PC
upgraders over the last few years: it uses 24 bits of addressing information,
and as such can only handle drives that contain up to approximately 16.5
million sectors, which at 512 bytes per sector yields a maximum capacity of
8.46 GB (or 7.88 GiB). As modern drives approached 8 GB in size, hardware

mehedi hasan
mehedi@joinme.com

385

and operating system makers all realized that they had a problem here:
something had to be done to allow access to the larger hard disks of the
future.

When a bridge is too narrow to handle increased traffic, the usual solution is
to widen it, and that's exactly what was needed here: to widen the access
path from 24 bits to something larger. Unfortunately, it was not possible to
expand the existing Int13h BIOS interface. The reason is that if this were
done, a lot of older hardware and software would stop working. Making
changes that cause millions of older hardware and software products to stop
working is not how you win friends in the PC world. :^)

Instead, a new interface was developed to replace Int13h: these routines are
called Int13h extensions. This new interface uses 64 bits instead of 24 bits for
addressing, allowing a maximum hard drive size of 9.4 * 10^21 bytes. That's
9.4 trillion gigabytes! I'm sure that when the original Int13h interface was
developed, nobody ever expected us to hit 8 GB drives as fast as we did. Still,
even with the rapid pace of technological advancement, I'd say we're pretty
safe with 9.4 trillion gigabytes as a limit. If not, I'll be pleased as punch to
move to a still newer interface in exchange for a hard drive that big. ;^)

There's a catch to these Int13h extensions of course: they are different from
the old way of doing things, and therefore support for them must be
incorporated into several key areas of the system. This includes the system
BIOS and the operating system. For more information on this, see this
section.

For more information on the Int13h interface limitation and the problems it
causes, see the section on the Int13h interface size barrier.

Next: Direct Disk Access (Bypassing the BIOS)

Direct Disk Access (Bypassing the BIOS)

As I mentioned in the section on the role of the BIOS, one of its traditional
responsibilities is acting as a "middleman" between the operating system and
the hard disk. Well, there's a problem with middlemen: they may be
convenient in some situations, but they are inefficient. Having the BIOS in the
middle of every transaction can hurt performance, and make more advanced
transfer methods difficult to implement.

As a result, many more advanced operating systems take responsibility for
data transfer between themselves and the hard disk away from the BIOS. For
example, modern versions of Windows employ their own 32-bit protected
mode access routines for the hard disk, which are faster and more efficient
than using the default BIOS code. This has now in fact become pretty much
the standard way of doing things.

Unfortunately, bypassing the BIOS does not mean that we are able to avoid
its problems or limitations. :^) Traditional BIOS routines are still needed for
compatibility with DOS and older programs. The BIOS is also responsible for

mehedi hasan
mehedi@joinme.com

386

compatibility with older hardware, and also for its other roles. And
unfortunately, all that means that we still have to deal with the BIOS's
capacity barriers.

Next: Two and Four Disk BIOS IDE Support

Two and Four Disk BIOS IDE Support

From the early 1980s until about 1993 or so, many PCs supported only two
hard disks. For the first decade or so that hard disks were used in PCs,
partitioning of a drive into multiple volumes was not really done; as such, the
two hard disks in a system were usually just "C:" and "D:". BIOS code writers
would often refer to these two drives as "C" and "D". (Though in reality, drive
letters are dynamically assigned, and are not a matter of hardware at all.)

All modern BIOSes, since about 1994, have supported four IDE/ATA hard
disks: two channels (primary and secondary) and a master and slave device
on each. Some actually support more, and of course, additional IDE/ATA
channels can be added to existing systems.

Any system that supports only two hard disks may theoretically be
upgradable to allow four-disk support. In practice, any system that old has at
best a 486 processor and probably very little system memory. Such a PC is so
obsolete by today's standards that it really isn't worth the effort. Find a low-
demand use for the machine and get a more modern system; even a used
machine a few years old will be several notches above such an old machine.

Next: IDE/ATA Disk BIOS Settings

IDE/ATA Disk BIOS Settings

Since the system BIOS on virtually every PC provides native support for
IDE/ATA hard disks, there are a number of parameters that can be set to tell
the BIOS what hard disks are in the system, and how to control them. Each
hard disk in the system will have its own settings, so there is one set for the
primary master, one for the primary slave, and so on. This normally applies
only to IDE/ATA hard disks; SCSI hard disks are configured through their host
adapter and built-in SCSI BIOS.

Most modern BIOSes support hard disk autodetection, which allows the BIOS
to interrogate each hard disk to determine its logical geometry, supported
transfer modes and other information. This can be done either at setup time
or dynamically each time the machine is booted, depending on the BIOS. This
is described in detail here.

Dynamic autodetection is the standard way of setting up modern drives,
especially since drives over 8 GB in size cannot be described using traditional
IDE/ATA BIOS geometry parameters. In some situations, especially with older
PCs, you may still set some drive parameters manually. The following are the
settings normally found in the BIOS setup program for configuring IDE/ATA

mehedi hasan
mehedi@joinme.com

387

hard disks. Since these are described in full detail in the BIOS chapter, I
include only a very brief description of each here. Note that on modern
systems some of the oldest compatibility settings may not even be present
any more:

• Disk Type: Originally used to allow you to pick your hard disk from a
predefined list, this is now used to control automatic or manual
parameter setup for the drive. (The old tables describing ancient
drives are now often not even present on many modern BIOSes, since
they no longer serve any purpose.)

• Size: This is the size of the drive in decimal megabytes. It is
calculated from the other parameters.

• Cylinders: The number of logical cylinders on the disk. The value used
depends on whether BIOS translation is enabled, in some BIOSes. For
a drive set to "Auto", no number may be shown.

• Heads: The number of logical heads on the disk. The value used
depends on whether BIOS translation is enabled, in some BIOSes. For
a drive set to "Auto", no number may be shown.

• Sectors: The number of logical 512-byte sectors in each logical track
on the disk. This is usually 63 for modern drives. Again, for a drive set
to "Auto", you may not see a number here.

• Write Precompensation: A compatibility setting that specifies at
which cylinder number write adjustments should be made, for very
much older drives.

• Landing Zone: The cylinder where the heads are parked by the BIOS
when the drive is shut off; not used on modern drives since they
automatically park their heads.

• Translation Mode: The BIOS translation mode being used, for
support of hard disks over 504 MB. Translation issues are discussed in
detail here.

• Block Mode: Controls the BIOS's ability to perform disk transfers in
blocks.

• PIO or DMA Mode: The programmed I/O mode or DMA mode used to
perform transfers to and from the hard disk.

• 32-Bit Transfer Mode: Controls the use of higher-performance 32-bit
data transfers.

Next: Hard Disk Size Barriers

Hard Disk Size Barriers

One of the most common problems people have with hard disks, especially
when trying to add a new hard disk to an older system, is the frustration of
finding that not all of the hard disk is actually accessible. This is almost
always due to BIOS and operating system issues that are a result of short-
sighted planning done by the people that invented hard disk structures,
access routines and operating systems many years ago. In some cases they
are due to actual hardware or software bugs that are not detected until hard
disks grow in size beyond a certain point.

mehedi hasan
mehedi@joinme.com

388

Fortunately, there are now solutions to most of these problems. This section
takes a complete look at these issues so you can finally understand what
these barriers are all about. Hopefully. :^) And then also hopefully, solve the
problem through hardware and software changes.

Each of the barriers is described in its page title with a name that briefly
summarizes the reason for the barrier, and also the capacity figures generally
associated with that barrier. The capacity limits are given in both decimal
(GB) and binary (GiB) formats since some people look for specific decimal or
binary numbers when identifying a size barrier. For a full discussion of the
differences between decimal and binary measurements, see this page.

Note: Most of the issues discussed here are due to BIOS issues, and hence of
relevance primarily to IDE/ATA hard disks and not SCSI disks. Some though
are also relevant for SCSI drives, especially ones that are due to operating
system limits.

Note: The pages in this section are focused primarily on explaining the nature
of the various hard disk barriers and how they come about. To avoid
duplication, I do not discuss how to deal with size barriers here, because the
techniques are common to many different barrier types. Look at this section
for details on overcoming size barriers.

Next: Older Size Barriers

Older Size Barriers

The first widely-publicized hard disk barrier was the infamous 504 MiB / 528
MB barrier that showed up in the mid 1990s. Though not widely known, there
were a number of older capacity barriers that affected hard drives before the
504/528 limit made so many PC headlines. Most of these got little attention,
most likely because there were fewer PC users then, but also because
upgrading was less common. (Upgrades are often the cause of barrier
troubles.)

At any rate, these have no relevance at all to modern computing, but might
be of interest to those who have much older machines. I mention them here
for completeness, if for no other reason, but I will describe them only briefly
since again, they have no impact on modern PCs:

• PC/XT Parameter (10.4 MiB / 10.9 MB) Barrier: The very first PC
to use a hard disk was IBM's PC/XT. This machine was specifically
designed to use a particular type of disk with 312 cylinders, 4 heads
and 17 sectors per track. As such, it was hard-wired to the
approximately 10 MB capacity of those very early drives.

• FAT12 Partition Size (16 MiB / 16.7 MB) Barrier: The first FAT
format used for hard disks was the 12-bit FAT12 partition type (still
used for floppy disks). This allowed a maximum of 4,086 clusters of
4,096 bytes, for a total of 16,736,256 bytes per disk.

mehedi hasan
mehedi@joinme.com

389

• DOS 3 (32 MiB / 33.6 MB) Barrier: To get around the 16 MiB
barrier, DOS 3.x was altered when the IBM PC/AT was introduced with
larger drives. The first support for the FAT16 file system was added.
However, a new barrier was introduced by the rather limited way in
which FAT16 was originally implemented: cluster size was set to 2,048
bytes, and only 16,384 FAT entries were allowed, fixing maximum
capacity at around 32 MiB. The ability to have multiple partitions was
introduced at around the same time, but each partition could only be
32 MiB or less.

• DOS 4 (128 MiB / 134 MB) Barrier: DOS 4.x improved over DOS
3.x by allowing 65,526 clusters instead of 16,384, quadrupling
maximum partition size to about 128 MiB. Cluster size was still fixed at
2,048 bytes.

As you can see, most of these early limits were not due to BIOS issues, but
rather some very short-sighted thinking on the part of the MS-DOS design
team, which was apparently only trying to stay a year or two ahead of the
hard disk technology curve! In addition to the above, there was a 512 MiB
barrier as well, caused by the change made with DOS 5. That operating
system changed DOS 4 by allowing cluster size in a single partition to
increase to 8,192 bytes, allowing a theoretical maximum partition size of
about 512 MiB or 537 MB. However, most systems that had drives large
enough for this to be an issue were not able to use that full size due to the
slightly smaller 504 MiB / 528 MB barrier, caused by BIOS issues.

Next: The 1,024 Cylinder (504 MiB / 528 MB) Barrier

The 1,024 Cylinder (504 MiB / 528 MB) Barrier

The most (in)famous hard disk barrier of all time was probably the 504 MiB
limitation for standard IDE/ATA hard disks, which started showing up in
systems starting in around 1994. Today hard disks are so much larger and
this barrier is so many years in the past, that many PC users aren't aware of
how much trouble this first big size barrier caused. At the time though, this
barrier was a very new experience for PC users and technicians alike.

Due to this barrier, a hard disk with a size over 504 MiB will normally appear
only as having 504 MiB under some circumstances. This problem is a result of
combining the geometry-specification limitations of the IDE/ATA standard and
the BIOS Int 13h standard. This barrier is alternatively referred to as the 504
MB or the 528 MB barrier, depending on whether you are looking at binary or
decimal megabytes.

OK, now I'll try explaining it in English. :^) Every hard disk is presented to
the BIOS through its geometry, which tells the BIOS how many cylinders,
heads and sectors the disk uses. This is the way that the hard disk is
addressed, when a sector needs to be read or written. The geometry that a
modern hard disk uses for the BIOS is normally its logical geometry, and not
the physical geometry actually inside the hard disk assembly.

mehedi hasan
mehedi@joinme.com

390

Various software structures reserve a certain amount of space for specifying
each of the three parameters that make up the hard disk geometry. The
amount of space reserved is dictated by standards that control how IDE/ATA
hard disks are supposed to work, and also how the BIOS sees hard disks
through its Int13h software interface.

The problem is that due to (very) poor planning and coordination, the
standards are not the same; they each reserve different numbers of bits for
the geometry. In order to use an IDE/ATA hard disk with the standard BIOS
disk routines then, the limitations of both standards must be observed, which
means that only the smaller of each geometry number can be used. Here is
how the two standards allocate bits for the geometry:

Standard
Bits For
Cylinder
Number

Bits for
Head
Number

Bits for
Sector
Number

Total Bits
for
Geometry

IDE/ATA 16 4 8 28

BIOS Int 13h 10 8 6 24

Combination
(Smaller of
Each)

10 4 6 20

Since each geometry figure is a binary number with a number of bits
indicated above, this means that the maximum number supported for any
parameter is 2^N, where N is the number in the table above. So for example,
under IDE/ATA, 2^16 or 65,536 cylinders are supported. We can then
multiply all the figures together to get a total number of sectors supported,
and then multiply that by 512 bytes (per sector) to get the maximum
supported capacity:

Standard
Maximum
Cylinders

Maximum
Heads

Maximum
Sectors

Maximum
Capacity

IDE/ATA 65,536 16 256 128 GiB

BIOS Int 13h 1,024 256 63 7.88 GiB

Combination
(Smaller of
Each)

1,024 16 63 504 MiB

Note: The BIOS Int 13h limit for sectors is 63, and not 64, because by
convention sectors are numbered starting at 1 and not 0.

As you can see, the 504 MiB figure is just 1,024 * 16 * 63 * 512, which
equals 528,482,304. The problem is the combination of the limitations of the
two standards. Due to the 16-head limitation of IDE/ATA, no IDE hard disk is

mehedi hasan
mehedi@joinme.com

391

ever specified with more than 16 logical heads; they always have a large
number of cylinders instead. The problem is that when you put the disk in a
machine with a standard, non-translating BIOS, it can't see more than 1,024
of the cylinders. There are several different ways that the system may react
to a drive too large for it to handle.

The normal solution to the 504 MiB problem is to use a system that supports
BIOS translation. This gets around the problem by using what is little more
than a software trick, but it does work. Software drive overlays will also avoid
the problem, but at a cost. See this section for a full discussion on dealing
with this disk size barrier.

Next: The 4,096 Cylinder (1.97 GiB / 2.11 GB) Barrier

The 4,096 Cylinder (1.97 GiB / 2.11 GB) Barrier

As discussed in great detail in the section discussing the 504 MiB barrier, the
basic problem with BIOS-related capacity barriers is that the normal system
BIOS interface on older PCs is not designed to handle hard disks that employ
over 1,024 cylinders. Every hard disk made today uses more than 1,024,
which causes a drastic reduction in visible capacity due to this limitation. See
that section if you need to get an understanding of this basic matter.

Systems that use an enhanced BIOS are able to employ translation to get
around the 1,024 cylinder limitation. However, some BIOSes, despite
supporting translation, will again choke if the number of cylinders exceeds
4,095, causing the same problems with the 504 MiB barrier to occur all over
again. 2^12 is 4,096, which means that if you go beyond 4,095 cylinders on
a drive, the number requires a 13th bit to properly represent it (for example,
4,097 in decimal is 1000000000001 in binary). This should be no problem,
but due to poor BIOS code writing on some systems, only 12 bits of the
cylinder number are recognized. The actual limitation is 4,096 * 16 * 63 *
512 bytes, which is about 1.97 binary gigabytes or 2.11 decimal gigabytes.
Some BIOSes with this problem will show a disk with more than 4,096
cylinders as being 1.97 GB, while others will show it as substantially less. For
example, 4,097 cylinders may show up as only 1 cylinder if the 13th bit is just
ignored and the lower-order 12 bits are used by themselves!

Note: Do not confuse this capacity barrier with the other capacity barrier
which is exactly 2 binary gigabytes. That one is a file system issue and is
unrelated to the BIOS matter we are discussing here.

This particular size barrier began to show up on systems in 1996. The options
for solving it are similar to those for dealing with the 504 MiB limitation.

Next: The FAT16 Partition Size (2.00 GiB / 2.15 GB) Barrier

The FAT16 Partition Size (2.00 GiB / 2.15 GB) Barrier

mehedi hasan
mehedi@joinme.com

392

The 2 GiB capacity barrier is, unlike most of the other barriers discussed here,
a file system problem that has nothing to do with the BIOS. It is different
than the 1.97 GiB barrier, which is BIOS-related, and is in many ways most
similar to the older BIOS barriers that preceded the 504 MiB barrier.

The 2 GiB capacity barrier is a limitation on the size of disk volumes in the
FAT16 file system. Due to the way that disks are set up using clusters, it is
not possible to have more than 2 GiB in a single partition when using the DOS
or Windows 3.x operating systems, or the first version of Windows 95
(sometimes called "Windows 95A"). Under Windows NT, the limit is 4 GiB
instead of 2 GiB when using FAT partitions (NTFS partitions do not have this
limitation). This is all discussed in great detail in the section on file system
structures.

Note: Using 4 GiB FAT partitions under Windows NT requires the use of 64
kiB clusters. This is supported but non-standard, and will result in problems if
you try to set up a system using other operating systems in addition to
Windows NT.

If you put a hard disk over 2 GiB into a machine that is using regular FAT (16-
bit FAT) under DOS, Windows 3.x or the first version of Windows 95, you can
use all of it--assuming that you aren't limited by one of the other BIOS-
related barriers mentioned in adjacent sections. However, to access the full
contents of the disk, you must partition it into multiple pieces. Since this
limitation is a function of the operating system, it affects IDE/ATA and SCSI
hard disks equally.

This limitation does not apply to disks formatted using the newer FAT32 file
system. FAT32 is an enhancement that was in fact created specifically to get
around this problem, and was introduced in Windows 95 OEM SR2. It is also
supported in Windows 98, Windows ME and Windows 2000. There is also the
NTFS file system, supported by Windows NT and Windows 2000, which uses a
completely different set of structures and can have truly enormous-sized
partitions (tens of gigabytes).

Next: The 6,322 Cylinder (3.04 GiB / 3.26 GB) Barrier

The 6,322 Cylinder (3.04 GiB / 3.26 GB) Barrier

This is one of the most obscure size barriers around, apparently affecting only
a small percentage of systems. It appears that on these units, the BIOS
cannot handle hard disk geometry that has more than 6,322 cylinders.
Attempting to set a higher cylinder value than 6,322 may cause the PC to
hang. This typicall fixes capacity on such systems to about 3.04 GiB or 3.26
GiB (6322 cylinders * 16 heads * 63 sectors * 512 bytes).

Note: I have absolutely no idea what the significance of the "6,322" number
is at all. It is not a "round number" in either decimal or binary!

mehedi hasan
mehedi@joinme.com

393

Getting around this barrier is typically accomplished in a manner similar to
how other BIOS barriers are tackled. I have not encountered this particular
barrier myself on any of my systems.

Next: The Phoenix BIOS 4.03 / 4.04 Bug (3.05 GiB / 3.28 GB) Barrier

mehedi hasan
mehedi@joinme.com

394

The Phoenix BIOS 4.03 / 4.04 Bug (3.05 GiB / 3.28 GB) Barrier

This is another rather obscure size barrier, and one that differs from most of
the others I have described in this area of the site. It is different because it is
not due to any inherent BIOS design issue, nor due to an operating system
limit or characteristic. It occurs due specifically to a programming error or
bug in a few types of systems made in the mid-to-late 1990s. Some systems
that use Phoenix BIOSes, versions 4.03 or 4.04, have a problem with the
BIOS routine that calculates the size of hard disk drives. Note that BIOS code
is initially written by the BIOS maker, and is subsequently tailored by specific
system or motherboard manufacturers. This means that some specific
implementations of these BIOS versions may not have this bug while others
will.

This problem is also strange because the barrier actually isn't just a single
value; it seems to depend on the values of the geometry parameters, and
behavior can be different based on the values entered. Assuming standard
IDE head and sector values of 16 and 63 respectively, the cylinder field can
have a maximum value of 6,349 without any problems, resulting in a
maximum capacity of 3.05 GiB or 3.28 GB. If a cylinder value of 6,350 to
8,322 is used the BIOS setup program may lock up. Cylinder values of 8,323
to 14,671 apparently work but the displayed drive size is incorrect.

Subsequent versions of this BIOS code have of course corrected this bug,
which occurred several years ago. If you still have a system exhibiting this
problem, you may be able to get a BIOS upgrade to correct the problem.

Next: The 8,192 Cylinder (3.94 GiB / 4.22 GB) Barrier

The 8,192 Cylinder (3.94 GiB / 4.22 GB) Barrier

After the discovery of the 504 MiB BIOS barrier, the normal way of getting
around that problem was to make use of BIOS geometry translation. (This
continued until hard drives exceeded about 8 GB in size and the whole
IDE/ATA geometry scheme had to be abandoned altogether.) In a nutshell,
this translation works by dividing the hard disk's number of cylinders by a
binary number such as 2, 4, 8 or 16, and multiplying the number of heads by
the same number. This lets the number of cylinders that the BIOS sees fall
below the Int13h limit of 1,024. This translation however causes a problem in
some systems when using a hard disk over about 4 GB in size.

Note: To understand how translation causes this particular new barrier to
arise, you need to understand how BIOS translation works. See here for an
explanation if you are not familiar with this.

When the number of cylinders on the drive is between 8,192 and 16,383, the
number typically used for translation is 16. Here's an example of how this
might work with a theoretical 6.4 GB hard disk if it used the normal way that
IDE/ATA drives are specified, with 16 heads and 63 sectors per track:

mehedi hasan
mehedi@joinme.com

395

 Cylinders Heads Sectors Capacity

IDE/ATA Limits 65,536 16 256 137 GB

Hard Disk Logical
Geometry

12,496 16 63 6.45 GB

BIOS Translation
Factor

divide by
16

multiply by
16

-- --

BIOS Translated
Geometry

781 256 63 6..45 GB

BIOS Int 13h Limits 1,024 256 63 7.88 GB

This should actually work just fine; it overcomes the BIOS issues and results
in geometry that falls within acceptable limits. However, there's an
unfortunate gotcha that was discovered when drives first exceeded 8,192
cylinders in around 1997: MS-DOS and early versions of Windows choked
when presented with a drive that had (apparently) 256 heads! Thus, this is
actually a barrier that is due to both the operating system and the system
BIOS: the operating system should have been able to handle 256 heads, but
the BIOS was creating the problem due to its translation.

It was decided that the easiest way to deal with this problem was to change
the way the BIOS did translation. As a result, BIOSes stopped creating
translated geometries that had 256 heads. One common way that this was
done was to use 15 as the translation factor instead of 16, resulting in this
sort of conversion:

 Cylinders Heads Sectors Capacity

IDE/ATA Limits 65,536 16 256 137 GB

Hard Disk Logical
Geometry

12,496 16 63 6.45 GB

BIOS Translation
Factor

divide by
15

multiply by
15

-- --

BIOS Translated
Geometry

833 240 63 6..45 GB

BIOS Int 13h Limits 1,024 256 63 7.88 GB

Of course, if you have a BIOS that doesn't know about the 256 head problem,
you will need to address this with either a hardware or software solution. To
help avoid some of these problems, many hard disk manufacturers also
changed their specified geometries to use only 15 heads instead of 16. So
instead of the example drive above being specified with 12,496 cylinders, 16
heads and 63 sectors, it might have been 13,329 cylinders, 15 heads and 63
sectors. With these parameters, even if the BIOS uses a translation factor of
16, the resulting number of heads will be only 240.

mehedi hasan
mehedi@joinme.com

396

Next: The 240 Head Int 13 Interface (7.38 GiB / 7.93 GB) Barrier

The 240 Head Int 13 Interface (7.38 GiB / 7.93 GB) Barrier

The Int13h interface limit normally restricts some systems to 7.88 GiB or 8.46
GiB as a result of the limits of the BIOS Int13h interface: 1,024 cylinders, 256
heads and 63 sectors of 512 bytes. (I discuss this very important size barrier
in some detail here, and you may want to read that section before you read
this one.) However, in some systems the Int13h interface restriction results in
a smaller limit: only 7.38 GiB (7.93 GB).

The reason why this occurs is related to a different size barrier problem (sigh,
can't these engineers get their acts together? :^)) As I described in the
discussion of the 8,192 cylinder limit, DOS and some Windows versions
cannot handle translated geometry that specifies 256 heads. To get around
this, some BIOSes change their translation method so that only 240 heads
are presented to the operating system. This fixes the "256 head problem" but
shaves some capacity off the Int13h limit. The 1,024 cylinder and 63 sector
restrictions remain, but with only 240 heads the maximum drive capacity
becomes 1024 * 240 * 63 = 15,482,880 sectors of 512 bytes, or
7,927,234,560 bytes.

In practical terms, there isn't any difference in how this barrier is handled
than the standard Int13h problem is tackled. You still need to use Int13h
extensions; see the discussion of the Int13h interface barrier for more.

Next: The Int 13 Interface (7.88 GiB / 8.46 GB) Barrier

The Int 13 Interface (7.88 GiB / 8.46 GB) Barrier

This barrier, often just called the "8 GB barrier", is one of the most important
in the hard disk world. Now that hard disk capacities have moved into the
tens of gigabytes and beyond, it gets most of the attention that the old 504
MiB / 528 MB barrier used to get in the mid-to-late 1990s. Many people run
into this particular barrier as they attempt to upgrade systems originally
purchased in the late 1990s with hard disks of 1 GB to 8 GB or so in size.

Like most of the others, this barrier is also based on a BIOS limitation. It is a
tougher nut to crack than most of the smaller-valued barriers, however. The
reason for this is that with this particular barrier, we have actually come up
against one of the traditional limits of how hard disks are used in the PC: the
Int13h interface. That standard allocates 10 bits for the cylinder number (and
thus a maximum of 1,024 cylinders), 8 bits for the head number (maximum
of 256) and 6 bits for the sector number (maximum of 63, since the number
0 is not used). Multiplying these together, and assuming the standard of 512
bytes per sector, you get a maximum of 8,455,716,864 bytes. This is the
largest hard disk size that can be addressed using the standard Int13h
interface.

mehedi hasan
mehedi@joinme.com

397

Unlike the old 504 MiB barrier, there is no translation that can get around this
because it isn't the result of a combination of limitations like the 504 MiB
barrier is. It is in fact the limit of how hard disks can be represented using the
BIOS Int 13h routines used by DOS and applications to access the hard disk.
To get around this barrier, we must change the way hard disks are accessed
entirely. This means leaving Int13h behind and using Int13h extensions.

Note: Int13h extensions require support from both the BIOS and the
operating system. Some older operating systems do not support Int13h
extensions, and there are no plans to provide it for them. In particular, all
versions of straight non-Windows DOS (6.22 and earlier), and Windows NT
version 3.5 will not support Int13h extensions and cannot use hard disks over
8.4 GB in size.

Note: Some systems have a smaller Int13h capacity limit due to the use of
modified translation to avoid presenting geometry with 256 heads to the
operating system. See here for details.

Next: The Windows 95 Limit (29.8 GiB / 32.0 GB) Barrier

The Windows 95 Limit (29.8 GiB / 32.0 GB) Barrier

Microsoft officially announced in 1999 that Windows 95 does not support hard
disks over 32 GB in size. For that reason, I am including this in my discussion
of hard disk capacity barriers. However, I must embarrassingly admit that
after many months of trying to determine the reason for this exclusion, I have
been unable to find out what it is! So I can't give an explanation for this limit,
because I don't know myself. All I know is that Microsoft would not officially
announce that Windows 95 could not handle hard disks over 32 GB if it could-
-at least, I don't think they would, would they? ;^) At any rate, you can read
their knowledge base article on the subject here and make up your own mind.
Don't expect to find any details there however, or I'd discuss them myself. (If
by any chance you do know the reason for this barrier, please let me know,
I'd certainly appreciate it.)

All Microsoft says for its description of the limit is "32 GB"; since I don't know
the details behind this I don't know the exact number that the capacity limit
represents. In the same knowledge base article where Microsoft says
Windows 95 won't support drives over 32 GB, they say that Windows 98 (and
presumbly, Windows ME) will support drives over 32 GB, but that a patch
may be needed due to a bug in Scandisk on drives over 32 GB in size; see
here. It may be that this Scandisk problem is the same as the one that
caused Microsoft to write off large drives under Windows 95. Microsoft may
have just decided it would not bother to patch Windows 95. Alternatively,
they could be separate issues. Again, if you have any information on this
subject, I'm all ears. :^)

Next: The 65,536 Cylinder (31.5 GiB / 33.8 GB) Barrier

mehedi hasan
mehedi@joinme.com

398

The 65,536 Cylinder (31.5 GiB / 33.8 GB) Barrier

This is a relatively new hard disk barrier that showed up in early 1999. It is
yet another in a long series of limits caused by the inability of a BIOS version
or type to handle a particular number of cylinders, much like several smaller
barriers have been. It is often called the "32 GB size barrier", which is
approximately correct anyway. :^)

In this particular case, some versions of Award BIOS cannot handle drives
that have more than 65,535 cylinders. Since hard disk parameters usually use
16 heads and 63 sectors, this works out to a capacity of about 33.8 GB or
31.5 GiB before trouble occurs. As of about June 1999, this problem had been
corrected, so it is most likely to show up on systems purchased before that
month.

I must say that I find this to be a rather strange hard disk barrier, because
hard disks above about 8 GB in size no longer really use discrete geometry for
access; they are instead addressed using LBA and a flat sector number from 0
to one less than the number of sectors on the drive. This 65,536 cylinder
problem must be a remnant of some older code, or something related to
compatibility with older hard drives. Regardless of its origin, many system
owners will have to deal with it.

Next: The ATA Interface Limit (128 GiB / 137 GB) Barrier

The ATA Interface Limit (128 GiB / 137 GB) Barrier

To get around past hard disk barriers, most modern hard disks are now no
longer addressed using discrete geometry (cylinder, head and sector
numbers) but rather logical block addressing and a sector number. However,
even if we go away from the problems associated with assigning some bits in
an address to cylinder number and others for head number and sector
number, we eventually reach the limit of the addressability of all the bits
taken together. In the case of the ATA interface, 28 bits are used for the
sector number interface between the operating system, BIOS and the hard
disk. This means a hard disk can have a maximum of 2^28 or 268,435,456
sectors of 512 bytes. This puts the ATA interface maximum at 128 GiB or
approximately 137.4 GB.

Of course, as of this writing in mid-2000, there aren't any ATA hard disks that
are this large. As a result, most people don't think much about this particular
barrier. But things change quickly in the hard disk world, and we'll be there
before you know it. Based on the current rate of hard disk capacity
improvement, I'd guess that we'll be pushing the limits of the ATA interface
no later than 2002. So consider this one the "big hard disk size barrier of the
future". :^)

Much as the Int13h interface barrier was a tough nut to crack, this one will be
as well, and for similar reasons. Fairly significant changes will need to be
made to the interface between the hard disk and the rest of the system.
Seeing this barrier on the horizon, the T13 technical committee (which works

mehedi hasan
mehedi@joinme.com

399

on standards for the IDE/ATA interface) is working on a couple of different
proposals for expanding ATA addressing from 28 bits to either 48 or 64,
either of which would allow rather monstrous hard disk sizes (even the
smaller 48-bit proposal would result in drive sizes a million times higher than
the current limit).

This page will be updated as we get closer to hitting this barrier, and more
information becomes available about how it will be addressed.

Next: BIOS Handling of "Oversized" Hard Disks

BIOS Handling of "Oversized" Hard Disks

When you put a hard disk into a machine that has a BIOS unable to handle its
size, the system can react in a number of different ways. How it responds
depends on the system, how old the BIOS is, and how well tested and
debugged the BIOS routines are. These issues normally are a result of the
hard disk having a number of cylinders larger than the maximum the BIOS
supports.

These are the four most common ways that a machine with an older BIOS will
handle a hard disk larger than it supports:

• Truncation: Many BIOSes, when presented with a logical geometry
containing more cylinders than they can handle, will simply truncate
the total to the maximum they support. This is usually seen in older
BIOSes that don't support more than 1,024 cylinders, and also in some
cases in a BIOS that maxes out at 4,096 cylinders. It is also commonly
found in systems that do not support Int13h extensions--these units
will typically see a drive larger than 8.4 GB as being just 8.4 GB in
size. Truncation of course wastes some space on the drive, but is still
far preferable to the other possibilities described below.

• Wrap-Around: Some very old BIOSes, assuming that the number of
cylinders will always be 1,024 or below, only look at the bottom 10
bits of the cylinder number coming from the hard disk (2^10 =
1,024). As a result, when used with numbers over 1,023, they do the
equivalent of counting up to 1,024 and then "wrapping around" to zero
again and starting over. (This is equivalent to N modulo 1024, where N
is the number of real cylinders, for those who know what that means).
As an example, if you tried to use a drive with 3,500 cylinders, the
BIOS would see 428 cylinders, because it would count up 1,024 three
times (to yield 3,072), wrap around three times, and then end up with
428 cylinders (3,500 minus 3,072).
The same exact thing can happen to a BIOS that support only 4,096
cylinders: it may only look at the bottom 12 bits. This means that in
some cases you can put a 2.5 GB hard disk into your system and end
up with only about 400 MB of usable space showing up. This is
unfortunately a common failure mode with BIOSes that don't support
more than 4,096 cylinders.

mehedi hasan
mehedi@joinme.com

400

Note: Some BIOSes that support translation will do this wrapping around if
you disable translation. When you turn it on again, the problem may go away.

• "Ignorance": Some BIOSes will report the true number of logical
cylinders that the drive has, making you think your system supports
the full size of the hard disk. Really, the BIOS just has no clue what it
is seeing. When you go to partition and format the hard disk, you will
be stuck with the same limit (which can be both confusing and
frustrating). This is usually seen with older BIOSes and the 1,024
cylinder limitation.

• Failure: Some BIOSes will totally lock up if you try to use them with a
disk larger than they can support. These are actually pretty
uncommon, fortunately. They are also more common with some of the
larger hard disk barriers and also with some of the more obscure ones.

Next: BIOS Translation Modes

Hard Disk BIOS Translation Modes

One of the most important techniques used to break the 504 MiB disk size
barrier that results from the combination of BIOS and IDE/ATA hard disk
restrictions is the use of BIOS translation. This can be a rather confusing
subject and so this section discusses in detail the various types of BIOS
translation that are used in PCs. A BIOS that supports the extended CHS
and/or LBA modes is often said to be an enhanced BIOS.

Note: For completeness, and to assist those working with older hardware, I
maintain the descriptions of translation modes in some detail here. Realize
however that on most modern systems they are no longer of much relevance.
Drives over 8.4 GB in size, which is what modern PCs use, are generally
accessed by setting the BIOS to dynamically autodetect their size at boot
time, and then using logical block addressing. Most of the issues that PC users
once had to deal with in terms of tweaking BIOS translation modes are no
longer necessary for modern drives over 8.4 GB in size, because these drives
are no longer address using cylinder, head and sector numbers.

Note: Little of this section has any relevance when using only SCSI hard
disks. They are not generally subject to the BIOS limitations that are
overcome through translation.

Next: Normal / Standard CHS Mode

Normal / Standard CHS Mode

The normal or default mode used by "regular" hard disks that are below 504
MiB in size is called variously Normal or CHS mode, where "CHS" stands for
"cylinder, head, sector", the three parameters used in hard disk geometry

mehedi hasan
mehedi@joinme.com

401

specifications. In this mode, there is no translation done at the BIOS level,
and the logical geometry presented by the disk is used by the BIOS directly.
Remember that this is still logical geometry. The actual physical geometry is
known only to the disk controller.

Each hard disk using CHS mode is limited to 1,024 cylinders, 16 heads and 63
sectors, or 504 binary megabytes. This is also the only mode available on
older BIOSes, from before about 1994. When hard disks above 504 MiB in
size are used with one of these older BIOSes, the infamous 504 MiB barrier is
hit.

Next: Extended CHS (ECHS) / Large Mode

Extended CHS (ECHS) / Large Mode

Extended CHS, also called ECHS or large mode in some BIOSes, uses BIOS
translation to get around the 504 MiB size barrier inherent in standard CHS
mode. It's kind of amusing to realize this, but the BIOS translation that is
usually used to get around the 504 MiB barrier is not a great innovation of
any sort. In fact, it's basically a hack. :^) It's a trick that is employed to get
around a problem.

The idea behind translation is as follows. Recall that the 504 MiB barrier is a
combination of the limitations of the IDE/ATA standard and the BIOS Int 13h
routines, due to the different limits they place on the numbers of cylinders,
heads and sectors allowed for a drive. This table shows how the 504 MiB
barrier comes about:

Standard
Maximum
Cylinders

Maximum
Heads

Maximum
Sectors

Maximum
Capacity

IDE/ATA 65,536 16 256 128 GiB

BIOS Int 13h 1,024 256 63 7.88 GiB

Combination
(Smaller of
Each)

1,024 16 63 504 MiB

As you can see, the IDE/ATA standard allows for many more cylinders than
the BIOS does, and the BIOS allows for many more heads than IDE/ATA
does. (In practice, no IDE/ATA hard disk ever specifies more than 63 logical
sectors--despite the theoretical limit of 256--for the exact reason that the
BIOS's limit is 63. If they did go over 63, this would confuse matters even
more). Again, remember that these are logical disk parameters, not physical
ones.

BIOS translation works by having the BIOS act as a "middleman" of sorts
between the IDE/ATA hard disk and the standard BIOS Int 13h, and by taking
advantage of the fact that one standard allows more heads than the other but
fewer cylinders. The BIOS takes the logical geometry that the hard disk

mehedi hasan
mehedi@joinme.com

402

specifies according to the IDE/ATA standard, and translates it into an
equivalent geometry that will "fit" into the maximums allowed by the BIOS Int
13h standard. This is done by dividing the number of logical cylinders by an
integer, and then multiplying the number of logical heads by the same
number. The technique is sometimes called bit shift translation (since the
multiplication and division is done by shifting the cylinder and head bits).

This is hard to understand, so here is an example (you may find referring to
the table immediately below helpful when reading this). Let's take the case of
a 3.1 GB Western Digital Caviar hard drive, AC33100. This drive actually has
a capacity of 2.95 binary GB, and logical geometry of 6,136 cylinders, 16
heads and 63 sectors. This is well within the bounds of the IDE/ATA
limitations, but exceeds the BIOS limit of 1,024 cylinders. The BIOS picks a
translation factor such that dividing the logical number of cylinders by this
number will produce a number of cylinders below 1,024. Usually one of 2, 4,
8, or 16 are selected; in this case the optimal number is 8. The BIOS then
divides the number of cylinders by 8 and multiplies the number of heads by 8.
This results in a translated geometry of 767 cylinders, 128 heads and 63
sectors. The capacity is of course unchanged, and the new geometry fits quite
nicely into the BIOS limits:

 Cylinders Heads Sectors Capacity

IDE/ATA Limits 65,536 16 256 128 GiB

Hard Disk Logical
Geometry

6,136 16 63 2.95 GiB

BIOS Translation
Factor

divide by 8
multiply by
8

-- --

BIOS Translated
Geometry

767 128 63 2.95 GiB

BIOS Int 13h Limits 1,024 256 63 7.88 GiB

The BIOS presents the translated geometry to the operating system and
application, and as far as basically every piece of software in the PC is
concerned, the hard disk really has 767 cylinders, 128 heads and 63 sectors.
Whenever the operating system or an application wants to use BIOS Int13h
calls, they use this geometry. The BIOS, when it executes its disk access
routines, translates back to the real logical geometry used by the hard disk
before sending its request to the disk. The result is that everyone is happy,
and there is a minor amount of extra work for the BIOS to do, but not very
much.

Extended CHS or large mode are important to understand, but in practice are
not that frequently used. Instead, LBA mode is more popular; it is similar in
concept but does the translation differently. It is described in the next
section.

Next: Logical Block Addressing (LBA)

mehedi hasan
mehedi@joinme.com

403

Logical Block Addressing (LBA)

Regular addressing of IDE/ATA drives is done by specifying a cylinder, head
and sector address where the data that is required resides. Extended CHS
addressing adds a translation step that changes the way the geometry
appears in order to break the 504 MiB barrier, but the addressing is still done
in terms of cylinder, head and sector numbers (they are just translated one or
more times before they get to the actual disk itself).

In contrast, logical block addressing or LBA involves a totally new way of
addressing sectors. Instead of referring to a cylinder, head and sector
number, each sector is instead assigned a unique "sector number". In
essence, the sectors are numbered 0, 1, 2, etc. up to (N-1), where N is the
number of sectors on the disk. An analogy would be as follows. Your address
(assuming you live in the U.S. and have a regular address) is composed of a
street number, street name, city name and state name. This is similar to how
conventional CHS addressing works. Instead however, let's say that every
house in the U.S. were given a unique identifying number. This would be
more how LBA works.

In order for LBA to work, it must be supported by the BIOS and operating
system, but since it is also a new way of talking to the hard disk, the disk
must support it as well. All newer hard disks do in fact support LBA, and when
autodetected by a BIOS supporting LBA, will be set up to use that mode.

A drive using LBA is not subject to the 504 MiB disk size barrier, however
there has been a great deal of confusion regarding LBA and what it does. In
particular, a lot of people think that it is the LBA addressing that "gets around
the 504 MiB barrier". Strictly speaking, this is inaccurate. It isn't the LBA that
is getting around the barrier, because LBA is just a different way of
addressing the same geometry; if you were still limited to 1,024 cylinders, 16
heads and 63 sectors, you would still have logical sectors numbered 0, 1, 2,
etc. up to 1,032,191, and you would still be stuck with 504 MiB.

The reason that setting a drive's mode to LBA will get around the 504 MiB
barrier is that in virtually every case, LBA mode automatically enables
geometry translation as well. This translation is still required because the
software calling the BIOS Int 13h routines knows nothing about LBA. It is the
translation that is what really gets around the barrier, but of course all of this
happens transparently to the user.

When LBA is turned on, the BIOS will enable geometry translation. This
translation may be done in the same way that it is done in Extended CHS or
large mode, or it may be done using a different algorithm called LBA-assist
translation. The translated geometry is still what is presented to the operating
system for use in Int 13h calls. The difference between LBA and ECHS is that
when using ECHS the BIOS translates the parameters used by these calls
from the translated geometry to the drive's logical geometry. With LBA, it
translates from the translated geometry directly into a logical block (sector)
number.

mehedi hasan
mehedi@joinme.com

404

LBA has in recent years become the dominant form of hard disk addressing.
Since the 8.4 GB limit of the Int13h interface was reached, it became
impossible to express the geometry of large hard disks using cylinder, head
and sector numbers, translated or not, while remaining below the Int13h
limits of 1,024 cylinders, 256 heads and 63 sectors. Therefore, modern drives
are no longer specified in terms of classical geometry, but rather in terms of
their total number of user data sectors and addressed using LBA. See here for
more on this.

Next: Comparison of Translation Modes

mehedi hasan
mehedi@joinme.com

405

Comparison of Translation Modes

The table below shows how the three translation modes compare. This is done
by showing a summary of the different modes used in the overall path from
the operating system, through the BIOS, to the hard disk controller, to the
physical drive platters:

Interface
Standard
CHS

Extended
CHS
(ECHS) /
Large

Logical
Block
Addressing

Physical Drive Platters to
Integrated Disk Controller

Physical
Geometry

Physical
Geometry

Physical
Geometry

Integrated Disk Controller
to BIOS

Logical
Geometry

Logical
Geometry

Logical Block
Address

BIOS to Operating System
and Applications (through
Int 13h)

Logical
Geometry

Translated
Geometry

Translated
Geometry

Notice how in all three schemes the physical geometry is hidden within the
hard disk itself. In the case of LBA, the logical geometry is presented to the
BIOS only so it can be translated for use by the operating system;
communication between the BIOS and the hard disk controller occur using the
logical block address.

For modern drives that use Int13h extensions, only logical block addressing is
used.

Next: Caveats on Changing Translation Modes and Transferring Hard
Disks Between PCs

Caveats on Changing Translation Modes and Transferring Hard Disks
Between PCs

It is important to recognize that even though both enhanced CHS and LBA
modes involve the use of translated geometry, this does not mean that it is
guaranteed that they will work the same way. In particular, LBA translation
may result in a different set of geometries than ECHS translation. Similarly,
different BIOSes can in theory use different means of translating. Moving a
hard disk that was formatted on one PC to another will usually work OK, but
sometimes may not. The chances of a problem increase as the difference in
age between the two systems increases.

Warning: If you change the translation mode of your hard disk, you risk
permanent loss of all the data on the drive. Setting the translation mode
should normally be done only once, when the disk is set up. If you later
discover that you set up originally using the wrong mode, make sure your
data is backed up before changing the mode. In many cases there will be no

mehedi hasan
mehedi@joinme.com

406

problem, but better safe than sorry. This also applies to removing a dynamic
drive overlay (software translation) from a drive. Only attempt to remove a
DDO using the appropriate utility provided by the drive overlay company for
this purpose, and only after doing a full backup of the drive's contents.

Next: Overcoming BIOS Disk Size Barriers

Overcoming BIOS Disk Size Barriers

As hard disk capacity has reached and then exceeded the various hard disk
size barriers, various methods have come about to allow these larger disks to
be used. These solutions include various hardware and software techniques,
primarily aimed at getting around limitations imposed by the system BIOS.
This section looks at these in detail.

It's important to realize that some of these solutions are simpler and more
elegant than others; some are based on fixing the BIOS problem, while others
are oriented more towards working around it. The simpler the solution, in
general, the better. More complex solutions, especially ones involving
software drivers, tend to have a higher incidence of incompatibilities and
other issues.

Note: One solution to overcoming BIOS size barriers that I don't discuss in
detail here is to upgrade an older motherboard to a new one. Needless to say,
this is not a cheap or simple solution, and not one that I would generally
recommend solely to get around a size barrier problem. Still, it's an option I
wanted to mention, if but briefly. :^)

Next: BIOS Upgrades

BIOS Upgrades

The most commonly used and important method of getting around the key
504 MiB barrier is through the use of an enhanced BIOS that supports BIOS
translation. This translation allows the BIOS to break the 504 MiB barrier by
translating between disk parameters that the disk understands, and a
different set that the BIOS understands. The main problem with BIOS
translation is that very old BIOSes don't support it. In some cases, a BIOS
upgrade can enable an older system to employ BIOS translation, and a
system that supports flash BIOS upgrades can be updated to this support
without even opening up the system case. The manufacturer of the system or
motherboard is the place to start when considering a BIOS upgrade.

Similarly, since many of the later size barriers are due to limitations in BIOS
code, they can similarly be overcome by upgrading the BIOS with new code
that can handle larger drives. A new BIOS today will enable Int13h extensions
to get around the 8 GB size barrier, for example. It will also address other

mehedi hasan
mehedi@joinme.com

407

BIOS code problems such as the one that causes the so-called 32 GB size
barrier.

A BIOS upgrade from the system or motherboard manufacturer is generally
the best solution to a hard disk size barrier problem, for two reasons. First, it
is generally free, if the upgrade has been provided by the original hardware
maker. Second, it is the simplest and most direct solution to the problem: you
are replacing broken code with fixed code, and once that is done your hard
drives will work properly without any other work being required. These two
attributes make this solution far superior to the others I discuss in this
section, and I strongly advise that you look for a BIOS upgrade before you
consider the others.

Unfortunately, some BIOSes cannot be easily upgraded. This is usually
because the manufacturer has obsoleted the motherboard and has decided to
no longer support it. (This is understandable for very old machines, but
occasionally manufacturers give up on hardware as little as two years old,
which I consider unacceptable--avoid such hardware.) In some cases where
this has happened, you may be able to purchase a third-party BIOS upgrade.
This is BIOS code that has been written by a company other than the one that
initially made your system or motherboard. This is a viable option, and retains
the advantage of being an elegant solution, but not the one about the
upgrade being free! In some cases these upgrades are $75 or more, and
frankly, if all you want is updated hard disk size support it's often not worth
the money compared to other solutions. If you want other features that can
come with a BIOS upgrade then it may be worthwhile.

Next: Enhanced BIOS Expansion Cards

mehedi hasan
mehedi@joinme.com

408

Enhanced BIOS Expansion Cards

One possible solution to a system with a size barrier that cannot have its
BIOS natively upgraded, is the use of an enhanced BIOS expansion card. In
essence, this is a "BIOS upgrade on a card". It goes into a system expansion
slot and contains nothing more than new BIOS code for controlling your
motherboard's IDE/ATA controllers. The new BIOS code takes over for the
hard disk controller code of your system's BIOS, and in doing so, gets around
hard disk size barriers. You continue to use the IDE/ATA connectors on your
existing motherboard or controller card.

These expansion cards are very inexpensive--often under $20. They usually
use an ISA expansion slot, and most older systems have an extra ISA slot
available, so this is a fairly easy upgrade. (Many newer systems have only
one ISA slot or even no ISA slots at all, but they usually don't run into size
barriers the same way.)

An add-in ISA BIOS expansion card.
(The Promise DriveMAX.)

Image © Promise Technology, Inc.
Image used with permission.

Despite their low cost, these cards have never seemed to be quite as popular
amongst PC enthusiasts as add-in controller cards that include actual IDE/ATA
interface ports. This may be because the add-in cards continue to let you use
the existing motherboard controllers for other devices, or it may be the ISA
slot requirement. BIOS expansion cards were more popular in the 1990s
when the earliest hard disk size barriers began to appear, but add-in cards
are now more commonly prescribed for BIOS size barrier problems, even
though they generally cost more.

mehedi hasan
mehedi@joinme.com

409

Next: Upgraded Controller Cards

Upgraded Controller Cards

Another solution to size barriers for a system that cannot have its BIOS
upgraded is the purchase and installation of an upgraded hard disk controller
card. Such a card completely replaces the on-board IDE/ATA controller
hardware of your system, and in doing so, eliminates any BIOS size
restrictions associated with the controller in your system.

These cards differ from BIOS expansion cards in that they are not just BIOS
code, but rather a complete controller including the IDE/ATA ports. To use
this hardware, you install the card and then move your hard disk cable(s) to
attach to the new card instead of the ports on your motherboard. These
controller cards are also generally more expensive than straight BIOS
expansion cards, but we're still not talking about a lot of money here:
generally less than $50.

The Promise Ultra66 PCI IDE/ATA controller
card, one of the most popular on the market.

Image © Promise Technology, Inc.
Image used with permission.

Despite being more expensive and more complicated than BIOS expansion
cards, these upgraded controller cards are more popular. There are a few
issues involved in choosing them however:

• System Bus Matching: You need to make sure you get a card that
works with the system bus type that you are using. Today, PCI
controller cards are pretty much the only ones available. If your
system uses the VESA local bus (VLB) you may be able to find a
controller that will work with that older bus, but to be honest, any

mehedi hasan
mehedi@joinme.com

410

system that old is probably getting to the point where spending money
upgrading it may be a bad use of funds. If your system only supports
ISA then you should really be looking at a new system! The ISA bus is
so slow and such systems are so ancient that there's generally no
point in even trying to upgrade them.

• Controller Conflicts: If you use an add-in card to replace an older
hard disk controller card (as is the case with most VLB systems) you
just need to take the old card out and replace it with the new one,
making sure it is configured properly. If you are putting the card into a
PCI-based system that has the hard disk controller built into the
motherboard, you should disable the controller in the BIOS setup
program or the two controllers may conflict and your system will not
work. (Some systems will stubbornly refuse to disable the controller; if
your system is like this then this solution is not for you.) Many newer
systems that support PnP will let an add-in controller work with its
existing controller, but there are other issues. You will spend an IRQ
on the new card, and you may not be able to control whether the
drives on the new card are "seen" by the system before or after the
ones on the existing controller.

• Compatibility Issues: These are atypical but there have been
occasional problems caused by replacing the existing controller with an
add-in card. Mostly these add-in controllers work rather well, though.

Next: Software Translation Drivers (Dynamic Drive Overlays)

Software Translation Drivers (Dynamic Drive Overlays)

I always suggest that those who are trying to overcome a hard disk size
barrier, first attempt to correct the problem through a free BIOS upgrade, if
possible. If that's not an option for whatever reason, however, you will have a
key decision to make in choosing between the other alternatives I am
presenting: do you want to spend money on a hardware solution, or go with a
"free" software solution?

For those who can afford to do so, I strongly recommend a hardware solution,
such as an expansion BIOS card, an add-in controller card, or a third-party
(not free) BIOS upgrade. The reason is simple: these solutions get around the
hard disk barrier at a very low level within the system, and in doing so ensure
that you will have few problems using your new hard disk on your old system.
There are not likely to be any software issues with such a solution.

If you cannot spend funds on a hardware solution (or simply don't want to for
whatever reason) then your alternative to allow access to the full capacity of
your hard disk is the use of a software translation driver, also called a
dynamic drive overlay or DDO. These usually go by names like Disk Manager,
EZ-Drive and the like. The idea behind one of these programs is pretty
simple: they override in software some of the BIOS code in your motherboard
or hard disk controller, allowing access to the full size of a new hard disk on
an older system. The software must be loaded immediately when the machine
is booted, to ensure that the driver is in place before any other piece of
software tries to access the disk. Otherwise, the disk will not work properly.

mehedi hasan
mehedi@joinme.com

411

To ensure that they are always loaded immediately at boot time, the installer
for this sort of program modifies the boot disk's master boot record and
installs the driver at the beginning of the disk.

When you buy a new hard disk at retail, the drive manufacturer will often
include a copy of one of these driver programs, "free", with the drive. (You
can often download them for free from the drive maker's web site too.) These
are normally a specially modified version of something like Ontrack's Disk
Manager that is customized for that manufacturer's drives; these utilities
normally have proprietary names as part of the licensing agreement between
the drive maker and the company that writes the overlay. Drive
manufacturers provide these as a convenience for those whose machines
don't have real hardware BIOS support for larger disks, and using them is a
viable option.

However, do not believe these manufacturers when they sometimes say that
using these software drivers is as good as proper BIOS support. It isn't. There
are numerous problems associated with using these drivers for large disk
support, which is why I do not recommend their use. Here are just a few:

• Compatibility Problems: When you use one of these drivers they
essentially set up their own logical disk volumes using a non-standard
format. This means you are not using your disks the standard way.
This isn't usually a problem in and of itself, since most operating
systems know about these drivers, but the potential for incompatibility
exists.

• Reduced Drive Interoperability: The drivers that come with the
various manufacturers' drives are normally customized for that
manufacturer's equipment only. This means that if you put a Quantum
disk in your PC and later want to add a Seagate, for example, you may
have a bit of a problem. You will have to at this point probably
purchase the full version of something like Disk Manager, and for the
extra cost you will be better off buying an add-in hard disk controller.

• Problems Removing the Driver: Some of these overlays can be
very difficult to remove from the disk, and require you to use uninstall
facilities that come with the driver, if you want to get rid of them.
When you do remove the driver, say because you have upgraded to a
PC that supports large drives, you may have to repartition and
reformat the disks (though this may not be required).

• Floppy Disk Booting Complications: Because the driver is located
on the hard disk, you must boot from the hard disk to load it. If you
boot from a floppy, your hard disk may seem to "disappear" because
the overlay wasn't loaded. The driver will allow you to boot from a
floppy, but you must do it by booting the hard disk, waiting for the
overlay to load and a message to be displayed that says "To boot from
a floppy disk, press the space bar", and then put the floppy into the
drive and press the space bar.

• Operating System Installation Issues: The drive overlay located
on the hard disk can cause problems when using alternative operating
systems, attempting to set up a multiple-OS system, and so on. You
must verify that every operating system that you install is capable of
handling the driver you are using.

mehedi hasan
mehedi@joinme.com

412

Again, most of the time these drivers will work OK, especially if you are not
doing anything too unusual with your PC. With so many people upgrading
older systems and running into size barriers, they are becoming more
prevalent than ever. I just think that they are not the best way to deal with
BIOS translation, given that much more reliable, and relatively inexpensive,
hardware solutions exist. It's all a matter of your priorities, really.

Next: Disk Size Reduction Jumpers

Disk Size Reduction Jumpers

A rather sub-optimal solution that is offered as an alternative by some hard
disk manufacturers is the disk size reduction jumper. Certain hard disk size
barriers can cause a hard drive to not be seen by a system at all. If you set
one of these jumpers on the hard disk, this tells the disk to change the drive
parameters it presents to the system, reducing the size of the drive. Since the
system sees the drive as being small enough to avoid the size barrier, the
barrier is avoided. Of course, this costs you capacity: you lose the storage of
the drive above the size barrier, unless you supplement the jumper with a
software overlay.

The first time size reduction jumpers were commonly used was to get around
the 4,096 cylinder barrier. One of the common ways that a BIOS with this
barrier may treat a disk that is over about 2.1 GB is wrapping around. So a
2.5 GB disk would be seen as only around 400 MB. The size reduction
jumpers would cause the hard disk to "pretend" that it had less than 4,096
cylinders, so it was only 2.1 GB in size. This is of course a waste of however
much space the disk really has over 2.1 GB, but it is better than only using
400 MB of the disk.

Similarly, some newer drives may come with size reduction or capacity
limiting jumpers to get around the 32 GB size barrier. These force the drive to
present a size small enough to avoid triggering that capacity barrier.

This "solution" is in some ways the hard disk equivalent of that old Marx
Brothers routine: "Doctor, it hurts when I do this"... "So don't do that!" ;^)
It's not really a solution, but rather a way to avoid the consequences of the
problem. It's better than having your PC hang when you try to boot the
system, but still, this solution is a very poor one. The only time these
reduction jumpers really make sense is when you use them in conjunction
with drive overlay software--in some cases, without the jumpers you may not
even be able to get the system booteed so you can install the overlay! Proper
hardware support is still a better solution of course.

Next: Manually Entering Drive Geometry Parameters

Manually Entering Drive Geometry Parameters

Some drive problems associated with older size barriers and drives that are
small by today's standards, can be avoided simply by avoiding the use of

mehedi hasan
mehedi@joinme.com

413

BIOS hard disk autodetection and entering drive parameters manually. Yes, I
know, I am always saying to use autodetection. I do think it is the best way
for most people to set up their drives--assuming their BIOS is new enough
and supports the drives being used.

In some cases, for example, where the BIOS wraps around when the disk is
too large, you can get around the problem by manually entering the
maximum parameters that your disk can support. Let's suppose that you
have a 540 MB hard disk that your old 486 system is choking on. The drive
has 1048 (logical) cylinders, 16 heads and 63 sectors per track. If you
manually set the disk up in your BIOS as having 1023 cylinders, 16 heads and
63 sectors per track, it will probably work fine, but as a 528 MB disk. You still
get the use of 97% of the disk.

Note that this technique will be of no help for modern systems with large
drives; for example, it will do nothing to get around larger size barriers such
as the 8 GB barrier.

Next: Int 13h Extensions

Int 13h Extensions

The only solution to the 8GB hard disk size barrier is to do away with using
the standard Int13h disk access routines. This new method of access requires
changes to the BIOS to support what are called Int 13h Extensions. These
extensions are discussed in general terms here.

Using Int13h extensions in fact requires changes to everything that is
associated with accessing the disk: the disk itself, the BIOS, and the
operating system. Newer operating systems all support this important change
to how hard disks are addressed, including all versions of Windows from
Windows 95 on. Modern drives also support this method of being addressed.
This means that getting past the 8 GB hard disk barrier is generally a matter
of ensuring that the system BIOS or hard disk controller supports Int13h
extensions.

Tip: Some hard disk manufacturers make available drive utilities that can test
your system BIOS and determine if it will natively support Int13h extensions.
Check the download section of the drive manufacturer you are considering.

Another implication of going away from Int13h is that the tired old "geometry
method" of specifying hard disk size finally must be put to rest. In fact, due to
multiple levels of translation both within the BIOS and the hard disk itself, the
logical geometry parameters of IDE/ATA hard disks stopped having any real
relationship to the actual drive characteristics long ago. However with drives
now above 8.4 GB in size, they cannot even be expressed using traditional
geometry terms, without going over the cylinder, head and sector limits
mentioned above. Instead, the total number of sectors on the drive is now
the key parameter, and the drive is accessed using logical block addressing.
For example, a 45 GB IBM Desktop 75GXP drive would, if expressed in

mehedi hasan
mehedi@joinme.com

414

conventional geometry, have to be said to have 89,355 cylinders, 16 heads
and 63 sectors. Instead, it is just said to have 90,069,840 data sectors. By
convention, and for compatibility, all drives over 8.4 GB have logical
geometry parameters of 16,383 cylinders, 16 heads and 63 sectors, which is
why these drives show up as being about 8.4 GB in size if Int13h extensions
have not been implemented.

Next: Hard Disk Interfaces and Configuration

Hard Disk Interfaces and Configuration

The interface that the hard disk uses to connect to the rest of the PC is in
some ways as important as the characteristics of the hard disk itself. The
interface is the communication channel over which all the data flows that is
read from or written to the hard disk. The interface can be a major limiting
factor in system performance. The choice of interface also has an essential
impact on system configuration, compatibility, upgradability and other
factors.

Over time, several different standards have evolved to control how hard disks
are connected to the other major system components used in the PC. These
have tended to build upon one another, and often use confusing and
overlapping terminology. The result has been a great deal of confusion
surrounding the entire subject. Each time a new variant or enhancement of
an interface is introduced, the interface becomes just a bit more confusing,
particularly for those trying to use older hardware, or to mix newer and older
devices.

To help you understand what can be a baffling subject, this section of the site
takes a comprehensive look at the different interfaces used to connect hard
disks to the PC. I begin by discussing two obsolete interfaces no longer used,
and also provide brief coverage of some "alternative" interfaces that are not
commonly employed by typical PC users, but are important for special
applications. Most of the focus is on the two interfaces most often used on the
hard disk. I discuss in detail IDE/ATA and its enhancements, with a focus on
clarifying the confusion that surrounds the use of this most popular PC
interface. I then cover SCSI, the more advanced and flexible interface that
dominates the business workstation and server world, and is becoming the
choice of a growing number of performance-oriented desktop PC users.

Note: This part of the site is in the discussion of hard disks, and so they will
be my primary focus. However, many other devices use the same interfaces
that hard disks do; where appropriate, distinctions between how hard disks
and other devices use the interfaces will be specified. Otherwise, you can
assume that using the interface for optical drives and similar storage devices
will be similar to how hard disks use the interface.

Next: Hard Disk General Interface Factors

mehedi hasan
mehedi@joinme.com

415

Hard Disk General Interface Factors

There are a number of attributes that determine the quality and usefulness of
a hard disk interface. One can theoretically evaluate a hard disk interface by
looking at how well it "scores" in these various attributes, and comparing it to
alternative interfaces. In the real world, of course, we are limited in our
choices to what the industry uses as a standard; it's not like one can easily
design a new interface. Still, it's useful to understand these general interface
factors, and in particular, how they trade off against each other--as with most
areas of life, you "can't have everything". :^)

In this section I begin by looking at compatibility issues related to the system
bus, and then cover the very important matter of interface performance, and
a related issue, command overhead. Then I examine issues of device support
and expandability. Last, but definitely not least, is the essential matter of
cost.

Next: System Bus Interface

System Bus Interface

Every hard disk interface communicates with the PC over one of the system's
I/O buses. On modern systems, the main system bus is PCI, with some
support for the old ISA standard still provided. Older systems used the VESA
local bus (VLB) in combination with ISA. Logically, the hard disk interface is
one device on the system I/O bus, which is connected to the memory,
processor and other parts of the system.

The choice of bus type has a great impact on the features and performance of
the interface. Higher-performance interfaces, including the faster transfer
modes of both IDE/ATA and SCSI, require an interface over a high-speed local
bus. On modern systems, this means PCI. Older systems that use VLB for the
hard disk interface still offer acceptable performance. Extremely old systems
that still use ISA for the hard disk controller will be severely limited in
performance.

The speed of the system bus is also important; the faster the bus, the faster
the interface (simplistically speaking). The standard speed for the PCI bus on
Pentium-class systems is 33 MHz, which is fast enough for current hard disks
but will need to be replaced within a few years as hard disk performance
continues to increase. Some disk subsystems are even now moving to higher-
performance versions of PCI, as the limits of conventional PCI are reached.
Some older systems used slower versions of the PCI bus, running at 25 or 30
MHz, which wasn't an issue for hard disks of that era.

Most older machines use a dedicated hard disk interface card that goes into a
system bus slot and then connects to the drives internally. For the last
several years, however, all newer PCs have had the ports for two IDE/ATA
channels built into the motherboard itself. In practical terms, there is no real
difference except for the cost savings associated with not needing to put a
separate hard disk interface card into the PC when it is built into the

mehedi hasan
mehedi@joinme.com

416

motherboard. In fact, many people add PCI after-market controller cards to
their systems, to enable access to a different interface (such as SCSI) or
features not supported at the time their systems were originally designed. For
example, inexpensive PCI cards are available to provide support for Ultra DMA
modes for newer IDE/ATA drives, which can augment or replace the disk
controller built into the motherboard.

Next: Interface Performance

Interface Performance

Obviously, the interface's job is to allow for the expedient transfer of data
between the hard disk and the system. Since the hard disk is an important
performance component in the PC, the performance of the hard disk interface
is probably the most frequently examined aspect of an interface's overall
quality. In fact, it is generally given far too much emphasis in my opinion,
particularly by companies looking to sell hardware based on the speed of the
interface.

I'm certainly not suggesting that the performance of the interface is not
important. However, it's important to keep it in perspective. The main
problem when it comes to looking at interface performance is that on modern
systems, the speed of the interface is not the limiting factor to overall hard
disk performance. If a given hard disk can't read data from its platters fast
enough to saturate an interface of a given speed, going to a faster interface
yields improvement only on reads of data already in the drive's internal
buffer--which makes virtually no difference in overall, real-world performance.
Despite this, companies try to claim that (for example) drives using Ultra
DMA/100 are "50% faster" than those using Ultra DMA/66. In fact, at the
time of this writing (late 2000) no IDE/ATA drive can saturate even a 66 MB/s
interface, so going to 100 MB/s is essentially pointless. For a more complete
discussion of this issue, see this page on the interface transfer rate
specification.

Actually, I have devoted an entire section of the site to discussing hard disk
performance, so you should look there for a lot more detail on this important
subject. Of particular interest will be the page I referenced above on the
interface transfer rate specification, as well as the general discussion of
interface performance factors.

Next: Command Overhead

Command Overhead

All interface communication is done through command and data transfer; the
host (the PC, through the interface controller) sends commands over the
interface to the disk, and the disk sends data over the interface back to the
host. Some interfaces are simpler to use than others and therefore require
less command "talk" over the interface. This can lead to improved
responsiveness in simple setups, such as when there is only one disk on the

mehedi hasan
mehedi@joinme.com

417

interface. The amount of time that the interface, its controller, and the hard
disk, require for processing commands is referred to as command overhead.

This is one factor that influences overall interface performance. For more
information on command overhead and its performance implications, see this
page in the discussion of hard disk performance.

Next: Device Type Support and Software Compatibility

Device Type Support and Software Compatibility

Not all interfaces support the same devices. Depending on what devices and
models you are trying to use, one interface may make much more sense than
another. Fortunately, the market has evolved so that there are really only two
main interfaces used today for hard disks: IDE/ATA and its variants, and SCSI
and its variants. The fact that there are only two standards in common use
means that each of them supports a large number and variety of devices. In
addition, this makes it easier for software support to be made universal, and
this is no longer much of an issue when using these mainstream interfaces.

IDE/ATA tends in general to support a larger number of hard disk models, and
also optical drives and other devices, especially economy models. This is not
due to any particular technical advantages that IDE/ATA possesses over SCSI.
It's simply a function of IDE/ATA being more popular than SCSI, and
therefore offering manufacturers more of a target market than SCSI does.
SCSI tends to have better support for high-end devices and also more device
types.

All of this means that the casual home user is more likely to be interested in
IDE/ATA, while SCSI is usually the choice for businesses and performance
hounds. See this comparison of the two interfaces for more. In addition, some
of the specialty interfaces fill a particular "niche" by offering connection
options and device types not found in the "big two" interfaces. For example,
using USB or a PC Card adapter, you can easily connect an external hard disk
to your notebook PC.

Next: Multiple Devices and Expandability

Multiple Devices and Expandability

All interfaces are limited in terms of the number of devices they can support,
but some are more limited than others. This is rarely perceived to be an
important issue by most new PC users, but after a couple of years of
accumulating devices it can rather suddenly grab your attention. :^) For
example, the standard IDE/ATA controllers included in most systems will
support a total of four devices. Most PCs come with a single hard disk and one
optical drive, leaving room for two more devices. No problem right? Not at
first. :^) However, you may decide to add to this a Zip drive and then
perhaps a CD-RW unit. Then, two years down the road, you might realize you

mehedi hasan
mehedi@joinme.com

418

want to add a new hard disk... This happens to a lot of people who never
expected they would ever need more than four IDE/ATA devices. :^)

Expanding a system to allow for more IDE/ATA devices can be done; in many
cases it is fairly simple to do, but in others it is far more involved. In contrast,
some interfaces are relatively easy to expand. For example, once one has a
SCSI host adapter and a SCSI bus running, adding a new device to the
existing SCSI bus is fairly trivial, and support is provided for 7 or 15 different
devices in a single chain.

Easy expansion is also part of the appeal of specialty interfaces like USB: you
simply plug the device in and load a driver, and off you go! This makes it very
flexible for a variety of uses. For systems like notebooks, USB, PCMCIA or the
parallel interface may be selected for additional hard disks or similar devices
primarily because of the limited expansion options of the IDE/ATA
implementations on such systems.

Next: Cost

mehedi hasan
mehedi@joinme.com

419

Cost

A final consideration when evaluating different interfaces is the cost of the
interface. In fact, I should really says costs, because there are several
different aspects involved in assessing the monetary costs associated with an
interface. While this is a non-technical consideration, cost considerations are
actually probably the most often used by those making an interface choice,
not technical ones.

The most important cost consideration is the hardware and software cost for
implementing the interface. What this often boils down to is whether or not
support for the interface is already included in a given system. For example,
the presence of IDE/ATA controllers on all modern motherboards makes this
interface less expensive for most people than going with SCSI, which would
require the addition of a SCSI host adapter. Similarly, USB has been around
for years, but is only becoming popular now that almost all new systems have
built-in support for it, both hardware and software. Some interfaces also
require more expensive support hardware than others--such as specialized
cabling, termination, external enclosures and so on.

Another cost consideration is the cost of the actual devices that are used on
the interface, as not all are equal. Generally speaking, this matter is related
to the cost of the interface hardware as well--interfaces that are more
expensive to implement generally have more expensive hardware sold with
them, while inexpensive interfaces have cheaper storage devices. This results
naturally from market forces: few people will want to pay $200 to implement
a particular interface to enable use of a $50 device.

When considering the costs associated with an interface, be sure to look at all
of the costs, including some that may be hidden. For example, the SCSI
interface may require an up-front investment, but once set up offers
expandability and other advantages that may offset its cost. Of course, what
is a worthwhile expenditure depends primarily on the needs of the individual.

Next: Obsolete Hard Disk Interfaces

Obsolete Hard Disk Interfaces

There are two hard disk interfaces that were used in the early days of the PC,
in the 1980s. These are still found on any systems of this "bygone era" that
are still in operation; this may surprise you, but there are in fact many
thousands of 15-year-old hard disks still chugging along! :^) However, they
are no longer used in modern systems, nor are new drives made that use
these interfaces.

What makes an interface "obsolete"? Essentially, when something new comes
along that is sufficiently superior that it pushes the old standard out of the
market completely. Just being "newer" or "better" isn't really enough: it has
to be so superior that the market sees no reason to keep using the older
standard. Both of the interfaces described here were made obsolete by
IDE/ATA and SCSI, which offered significant advantages over them without

mehedi hasan
mehedi@joinme.com

420

imposing any real cost. (It's actually fairly uncommon in the PC world for a
standard to be made obsolete by another, because in most cases the older
standard still has adherents due to some particular advantage it offers.)

Since these interfaces are of little or no interest to 99% of current PC users,
their descriptions will be brief.

Next: ST-506 / ST-412 Interface

ST-506 / ST-412 Interface

The original hard disk interface used in the PC world was developed in 1980
by Seagate Technologies, to work with that company's 5 MB ST-506 hard
disk. It was later revised to support the 10 MB ST-412, which was the first
hard disk drive model used in the IBM PC/XT. You can obviously see where
the name of the interface comes from, given this bit of history! In common
parlance, this older interface is sometimes called "MFM" or "RLL", so you may
hear someone refer to a drive using this interface as an "RLL drive" for
example. These actually refer to the encoding method used for storing data
on the disk. Both encoding methods were used on these early drives. (In fact,
RLL is used on some IDE and SCSI drives also, making it a poor name for
referring to drives of one particular interface.)

The ST-506/ST-412 interface differs from the IDE/ATA and SCSI standards in
one very important respect: the hard disks were "dumb", meaning there was
no built in logic board as modern drives have. All of the smarts resided in the
controller card that plugged into the PC. This caused a host of problems
relating to compatibility, data integrity and speed, because the raw data from
the read/write heads was traveling over a cable between the controller and
the drive. This interface also required a lot more work on the part of the user,
because while a newer drive ships with an integrated controller card built into
the drive that is optimized for that drive, these older ones didn't have this,
and therefore the person setting up the drive had to program the interleave
ratios and other factors into the drive to achieve maximum performance.

By today's standards, this interface and the drives that use it are microscopic
in capacity (although enormous in physical size), slow, cumbersome, error-
prone and completely obsolete. You will never see ST-506/ST-412 used in a
new system, and in fact, it's hard to find them in any systems still being used,
unless you look around or know a very frugal person. :^) You can recognize
this interface in older systems by the use of two ribbon cables (instead of the
single cable used by IDE/ATA and SCSI). One of the cables is 20 pins wide
and carries data, and the other is 34 pins and carries control signals.

Next: Enhanced Small Device Interface (ESDI)

Enhanced Small Device Interface (ESDI)

The first attempt at improving the original ST-506/ST-412 hard disk interface
was the Enhanced Small Device Interface or ESDI. ESDI was developed in the

mehedi hasan
mehedi@joinme.com

421

mid-1980s by a consortium of hard disk manufacturers led by Maxtor. It was
eventually codified as an ANSI standard; the peak of its popularity was in the
late 1980s.

ESDI improved on ST-506/ST-412 in several ways. It moved some drive
controller functions to the hard disk from the controller card, eliminating
some of the reliability problems associated with its predecessor. It had a
maximum theoretical bandwidth of 24 Mbits/second (fairly fast for those
days), though in practice the limit was about half of that. There were other
added features and small performance enhancements as well. Its primary
design still had almost all of the intelligence on the controller and not on the
hard disk.

While ESDI was a real improvement over the older ST-506/ST-412 interface,
it was "too little, too late" in a lot of ways. In the late 1980s ESDI suffered
under competition from IDE/ATA in the mainstream market and from SCSI in
the high-end market, both of which offered significant advantages over ESDI,
such as simpler configuration, lower cost and improved performance. As a
result, by the early 1990s ESDI had been all but wiped off the interface map.

Next: Specialty and Future Hard Disk Interfaces

Specialty and Future Hard Disk Interfaces

While IDE/ATA and SCSI are used for the vast majority of hard disks in the PC
world, there are some other interfaces that are used on occasion, or even
used heavily in certain segments of the market. These are typically employed
to fill a particular need where IDE/ATA and SCSI don't fit well. In particular,
many of these interfaces allow for easy, inexpensive connection of external
devices to PCs, especially ones that have limited expansion options, such as
notebooks.

In this section I will first discuss some of the less common interfaces that are
used for special applications or purposes in the hard disk world. This includes
coverage of the parallel port interface, PCMCIA (PC Card) options, USB, IEEE-
1394 (Firewire) and Fiber Channel. I will then also discuss two upcoming
interfaces that may significantly change the landscape of the hard disk
interface world: USB 2.0 and Serial ATA.

Note: Most of the interfaces described in this section are used for connecting
a wide variety of devices to the PC, and many are not even generally
associated with storage at all. Consistent with the goals of this part of the
site, the discussion of these interfaces here will be limited to an overview, and
focused primarily on each interface's role in the interfacing of hard disks and
other storage devices. Complete discussion of various PC interfaces in a
general way will be provided in a future expansion of The PC Guide.

Next: Parallel Port Interface

mehedi hasan
mehedi@joinme.com

422

Parallel Port Interface

Originally designed only for printers, the parallel port turned out to be an
amazingly flexible and universal interface for attaching a host of different
devices to a variety of PCs. While rather slow, the parallel port has the
advantages of being (mostly) standard, and present on virtually every PC. For
this reason, it is often used for attaching external devices such as hard disks,
CD-ROM drives and tape drives, especially for PCs that lack other expansion
alternatives such as notebooks. For many years, I personally used a parallel-
port Iomega Zip drive when I was maintaining several dozen PCs that were
not networked; it was very helpful for transferring files between machines
and doing backups. The parallel port can also be used with special software to
connect two PCs together to let them share files.

Today, the role of the parallel port for storage devices is diminishing rapidly,
as its "niche" is increasingly being filled by other interfaces that offer
advantages over it. Almost all notebook PCs, for example, now come with PC
Card slots and USB ports, which offer plug-and-play operation and better
performance than the parallel port. The rise of networking has also largely
obviated the need to use the parallel port for file sharing or connecting PCs
together. I do expect use of the parallel port interface to "hang around" for
many, many years, for the same reason floppy disk drives continue to be
used: they are universal and there are a lot of devices around that make use
of the parallel interface. As long as printers continue to use the parallel port
as a primary means of attachment, other devices will be available for the
parallel port as well.

Next: PCMCIA (PC Card) and CardBus

PCMCIA (PC Card) and CardBus

The first laptop PCs had very few expansion options. They typically had serial
and parallel ports, and some expensive units had add-on docking stations
(port replicators) but these are quite limited in their capabilities. In 1989, a
group of PC system and computer manufacturers created the Personal
Computer Memory Card International Association or PCMCIA. The goal of this
group was to define a standard for expansion devices--called PC Cards--to be
used in special slots in mobile computing equipment. The group of course
succeeded--probably beyond even their own expectations! Virtually all mobile
PCs made in the last five years have the ability to accept these credit-card-
sized PC Cards (often called "PCMCIA cards" after the name of the trade
organization, even though they don't like it). In addition, this technology is
also used in other types of electronic gear, outside of the PC world.

As the name "PCMCIA" suggests, one of the original main applications of PC
Card technology was memory expansion. Ironically, today many laptops don't
even need expansion slots for this purpose: they have separate user-
upgradeable memory slots! The new PC Card slots however were quickly
embraced, and are now used for many other purposes. Due to the explosion
in mobile computing, manufacturers of devices of all sorts moved quickly to
exploit this new interface--in addition to memory cards, you can get modems,

mehedi hasan
mehedi@joinme.com

423

network interface cards, sound cards, and other devices that fit into PC Card
slots. Of course, this includes a rather wide variety of storage devices, or I
wouldn't be bothering to tell you all of this. :^)

There are actually two different interfaces that are used with PC Cards today.
The first is the older, "original" PC Card or PCMCIA interface, which is a 16-bit
interface that runs at 8 MHz. If this sounds a bit like the regular ISA system
bus found on desktop PCs, there's a good reason for that: the traditional PC
Card interface is based on ISA. Of course the form factor and device
packaging is different, but in terms of operation, they are similar. This means
that conventional 16-bit PCMCIA cards have similar performance constraints
to ISA: they are perfectly fine for modems and similar slow devices, but
inadequate for performance-intensive applications such as networking--or
storage devices.

To address the limitations of conventional PC Cards, in 1995 the PCMCIA
announced a new interface called CardBus, which is a 32-bit interface running
at 33 MHz. Say... doesn't that sound a bit like good old PCI? Bingo, you win
again. :^) In some ways, CardBus is to PC Card what PCI is to ISA. Cards
using this newer interface maintain the same physical packaging as older
cards--they just run faster. Most newer notebook PCs have PC Card slots that
will automatically support both 32-bit CardBus devices and also the older 16-
bit PC Cards. CardBus support is essential for high performance devices such
as modern hard disks or high-speed Ethernet.

There are in fact several ways that hard disks can be interfaced to a system
using the PC Card or CardBus interfaces:

• PC Card Hard Disks: Several companies make tiny hard disks that
actually fit within the very small physical dimensions of PC Cards. For
more on these PC Card form factor hard disks, see this page. Note that
few notebooks use these as primary hard disks, because they are
relatively small and rather expensive; the 2.5" form factor is standard
for main hard disks on modern notebook systems.

• Proprietary PC Card Storage Devices: Many manufacturers make
storage devices that connect to notebook systems directly through a
proprietary PC Card interface. For example, a tape backup unit may
come with a special adapter card in the form of a PC Card to connect it
to a notebook.

• PC Card "Interface Converter" Cards: PC Cards are made that
"convert" the PC Card or CardBus interface to either IDE/ATA or SCSI.
These let notebook PCs connect regular IDE/ATA or SCSI storage
devices (though providing power for them may be an issue.)

PC Cards continue to be a force in the growing mobile computing market, and
I don't expect them to go away any time soon. While PC Card slots are
standard equipment on notebooks, you can add support for them to desktop
PCs, using hardware kits that include an interface card and slots that mount
in a regular drive bay. While of little attraction to most PC users, these can be
helpful to some people who want to share devices between a desktop PC and
a notebook.

mehedi hasan
mehedi@joinme.com

424

For more information on PC Cards and the PCMCIA, see
http://www.PCMCIA.org.

Next: Universal Serial Bus (USB)

Universal Serial Bus (USB)

The conventional serial ports used on PCs have been around since the earliest
PCs; they have changed a little, but not much. While functional, they have
serious limitations in terms of expandability, software support and
performance. In the mid-1990s, a consortium of PC and telecommunications
industry giants--including Compaq, IBM, Intel, Microsoft, NEC and Nortel
Networks (then Northern Telecom) developed a new interface standard for
attaching relatively low-speed devices to the PC. This interface is called the
Universal Serial Bus or USB. While USB support started being supported in
many PCs many years ago, it has only recently started to gain widespread
acceptance. All new PCs are now equipped with USB support, and USB ports
can also be added to many older systems as well.

The USB interface is specifically designed to allow easy connection of a wide
variety of devices; it is intended to be user-friendly and truly "plug and play".
On a system equipped with USB, one can "hot swap" devices, meaning they
can be plugged into the system or removed without needing to power the
system down or doing anything to it before the change is made. Up to 127
devices are supported, and multiple devices can easily be added to a single
PC by chaining them together using hubs. The USB connection is of course
serial, and the current version (1.1) runs with a maximum throughput of 12
Mbits/second (1.5 Mbytes/second), which is shared by all devices. There is
also a slower-speed, 187.5 kbytes/second mode available for very slow
devices, such as keyboards.

USB's initial acceptance was relatively slow in coming, but once it got going,
the variety of USB devices that appeared on the market surprised many
people, probably including its developers. The flexibility and expandability of
the interface, and the ease with which devices could be attached, made it
very attractive to many users. Many of the devices that were made available
in the USB interface were never intended for USB when it was first created.
Most storage devices would certainly fall into this category.

Today, one can get a wide variety of storage units that use the USB interface.
This includes floppy disk drives, hard disks and optical drives. They work on
the USB interface, and certainly there is no issue with floppy disk drives for
example. The problem is that the maximum throughput of the interface is 1.5
MB/second--and that's a theoretical maximum, meaning the reality is
somewhat lower. This is fine for mice, modems and scanners, but it's very
slow for hard disks, considering that modern drives can have throughput level
20 to 30 times above that number. Even something like a 40X CD-ROM drive
has a maximum throughput far above 1.5 MB/second. Of course, USB was
never envisioned as an interface for high-speed devices like hard disks, so its
designers can't be blamed for these limitations.

mehedi hasan
mehedi@joinme.com

425

USB remains popular for hard disks and other storage devices for those who
don't have other options; however, in almost every case a higher-speed
interface is a better idea if that's at all possible. Otherwise, you will seriously
restrict the performance of the device. This is fine for some tasks, such as
occasional backup, but far from ideal. Responding to the faster devices that
many companies began developing for USB, USB 2.0 was developed, with
similar attributes but much faster performance. IEEE-1394 is another high-
speed serial interface that competes for the same areas of the market.

Note: For more information on USB, see the USB Implementers Forum site.

Next: IEEE-1394 (FireWire, i.Link)

IEEE-1394 (FireWire, i.Link)

IEEE-1394 is the rather bland name for a relatively new, high-speed serial
interface that has actually been around in one form or another for many
years. In some ways, the name is the most confusing aspect of this
technology. It was originally developed by Apple, who called it FireWire; this
name became popular, but Apple owns the rights to it, and many companies
refused to pay to license the name. So then everyone started to refer to it by
the standard number assigned it by the IEEE, which formally published the
interface as a standard in 1995. To further muddle the issue, Sony then
created its own marketing term for the interface, i.Link.

IEEE-1394 is defined part of the SCSI-3 family of related standards, and was
at one point sometimes called "serial SCSI". It is, in fact, a type of SCSI,
based on the broad converage of SCSI-3, which goes beyond regular SCSI to
cover several similar, "SCSI-like" technologies. In terms of signaling and
some aspects of operation, IEEE-1394 really can be thought of as "serial
SCSI".

In terms of configuration and how it is used in the PC however, IEEE-1394 is
better thought of as "USB, only faster". (Or alternately, USB is IEEE-1394,
only slower. ;^)) It is a serial interface that supports dozens of daisy-chained
devices, hot-swapping, and plug-and-play. However, instead of USB's 12
Mbits/second maximum transfer rate, IEEE-1394 supports up to 400
Mbits/second. Sounds good, right? In fact, it does; when originally
introduced, IEEE-1394 had considerable promise, and there were some
analysts who thought it would eventually become a major player in the
mainstream hard disk interface market. For example, it is not as fast as high-
speed implementations of SCSI, but is considerably simpler to implement,
and doesn't suffer from the speed limitations of USB.

In reality, though, IEEE-1394 still has not taken off as a storage interface
within the PC. There could be any number of reasons for this, but as of 2000,
IEEE-1394 is not a major player in the storage industry. Some systems are
now equipped with this interface, and a variety of storage devices are made
for it, so it is a viable option if your system supports it, or if you wish to add

mehedi hasan
mehedi@joinme.com

426

support for it. IEEE-1394 does continue to grow in popularity in a variety of
specialty markets, especially digital video, where it has established quite a
following. It may well become the next big interfacing standard for consumer
electronics devices like camcorders and VCRs. As for the PC world, the future
is uncertain, and the creation of the new, faster USB 2.0 standard continues
to keep the waters cloudy.

Note: For more information on IEEE-1394, see the web site of the IEEE-1394
trade association.

Next: Fibre Channel (FC-AL)

Fibre Channel (FC-AL)

You probably know that parallel SCSI is a high-end hard disk interface that is
an alternative to the ubiquitous IDE/ATA. However, you may not realize that
regular SCSI itself has a "big brother" of sorts. This interface is called Fibre
Channel. The name comes from the fact that it was originally designed to
operate over fiber-optic physical channels; copper wiring is now also
supported. (The correct spelling is also "Fibre", not "Fiber"; this reflects the
standard's European origins.) Like IEEE-1394, Fibre Channel is actually
defined as part of the SCSI-3 family of standards, so it really is sort of a
"sibling" to conventional SCSI. Sort of. :^)

Like regular SCSI, Fibre Channel is a collection of protocols and options, and
it would take some time for me to explain them all in detail, which I'm not
going to do at present. The current implementation that is in use is a subset
of Fibre Channel called Fibre Channel Arbitrated Loop or FC-AL. FC-AL allows
many servers and storage devices to be connected into what is essentially a
"storage network". This configuration offers flexibility, performance and
reliability advantages to high-end systems.

Despite being a serial interface, FC-AL allows for throughput of up to 4
Gbits/s, with future versions likely to increase this. One of the primary
benefits of Fibre Channel is that when using fiber optic connections, devices
can be separated by up to 10 kilometers--yes, 10,000 meters. Even with
copper connections, 30 meters is the limit, which is pretty good compared to
other interfaces.

So if Fibre Channel is so great, why isn't it used by PCs? The main reasons
are cost, and the lack of necessity. FC-AL is currently used almost exclusively
on servers--and groups of servers working together. It's a high-end interface
that you aren't likely to run into in your personal system, at least for now. I
did want to mention it, however, so you know it is out there. :^) I will
provide more explanation of Fibre Channel in the future if and when it
becomes more widely implemented. In the meantime, for more information
on this technology, see the Fibre Channel Industry Association web site.

Next: Universal Serial Bus 2 (USB 2.0)

mehedi hasan
mehedi@joinme.com

427

Universal Serial Bus 2 (USB 2.0)

After a slow start, the Universal Serial Bus (USB) is taking the PC world by
storm. USB ports are showing up on all new PCs, and at the same time, a
surprisingly wide array of USB peripherals is appearing on the market.
However, the initial implementation of USB (version 1.1) has a critical
restriction that limits its ability to function as an effective interface for high-
speed devices, such as storage units: it is too slow. With a maximum
bandwidth of 12 Mbits per second, conventional USB is already many times
slower than what most optical and hard disks need, and that bandwidth must
be shared amongst all peripherals using the interface.

Seeing the limitations of USB, Intel has spurred the development and
implementation of USB 2.0, an updated version of the interface that increases
throughput from 12 Mbits per second all the way up to 480 Mbits per second!
USB 2.0 devices and systems will be both forward and backward compatible
with USB 1.1 devices, which means that you will be able to mix both types of
devices on systems that have either USB 1.1 or USB 2.0 host controllers. (Of
course, systems without a USB 2.0 controller will only function at the slower
1.1 speed.)

You might wonder: why bother with this at all? Why not leave USB for slower
devices, as it was originally intended, and use IEEE-1394 for high-speed
devices, as it was intended? It's a good question. The answer is: that would
make too much sense. :^) More seriously, one reason may be that USB has
just been more widely-accepted in the PC world, and with USB 2.0 both
backward and forward compatible with USB 1.1, hardware makers felt it made
more sense to upgrade USB's capabilities. USB 2.0 may also be cheaper to
implement. I suspect that the driving reason, however, is "more of the same"
in terms of big companies clashing for control over the market: Apple
Computer owns the FireWire name and has royalty rights on IEEE-1394, and
Intel probably doesn't want to "play the game with Apple's ball", if you know
what I mean. Just my personal suspicions, but this has happened many times
before in the world of computers...

So will USB 2.0 become the next standard, or will IEEE-1394 finally gain
acceptance in the PC world? Your guess is as good as mine. :^) As for our
area of prime concern here, storage devices, USB 2.0 is a big win. While the
fastest hard disks will eventually saturate 480 Mbits/second, it will be many
years before USB 2.0's bandwidth comes even close to being a big issue,
while USB 1.1 is today. With USB 2.0, serially-connected, high-speed hard
disks and optical drives will be a practical reality. Look for USB 2.0 to hit the
shelves early in 2001, barring any major complications in development (which
are always a possibility...)

Note: For more information on USB 2.0, see the USB Implementers Forum
site.

Next: Serial ATA

mehedi hasan
mehedi@joinme.com

428

Serial ATA

The current IDE/ATA standard is a parallel interface; this means that multiple
bits of data are transmitted at one time. In the case of ATA, 16 bits are
moved across the interface simultaneously during each transfer. The
advantage of a parallel interface is that it allows for high throughput; the
problem with it is that as the frequency of the interface is increased, signaling
problems and interference between signals become common. To combat this,
techniques such as CRC and special 80-conductor cables are used in higher-
speed transfer modes such as Ultra DMA. These are really "kludges" that are
used to work around problems with the interface as it moves to higher
speeds. A different approach, however, is to abandon the parallel concept in
favor of a serial interface, where only one bit is transferred at a time. This is
what the Serial ATA proposal is all about: creating a serial version of ATA for
attaching IDE/ATA hard disks.

Obviously, in going from 16 bits to 1 bit, the speed of the interface must be
increased by a factor of 16 just to "break even". The idea is that the simplicity
of the serial interface will enable much higher speeds than would be possible
from a parallel implementation, because the signaling problems are largely
eliminated. In fact, this is the same reasoning that led to the creation of other
high-speed serial interfaces, such as IEEE-1394. Serial ATA is still in
development at the time that I write this page, but indications are that it will
support maximum throughput of somewhere between 150 and 300 MB/s.

As enticing as the higher speed of the interface is its promise of
improvements to some of the well-known (and well-hated) weaknesses of
IDE/ATA. Since Serial ATA is a point-to-point serial protocol, each device
communicates directly with the host system over a flexible, thin cable that
can be made a reasonable length. This means no more master/slave
jumpering hassles, elimination of the difficult-to-deal-with ribbon cables, and
more flexibility in the placement of devices within the PC. It's also possible
that hot-swapping will be supported when Serial ATA is implemented, which
would be a welcome feature as far as I am concerned!

We'll have to see what happens regarding Serial ATA. I am a little skeptical
about both its likelihood of being successfully implemented, and in fact with
whether it is even needed. Proponents of serial hard disk interfaces have been
saying "the end is nigh" regarding parallel interfaces for many years; I
remember hearing about the "end of the road" when parallel IDE/ATA was at
16.6 MB/s, and parallel SCSI was at 40 MB/s, but these interfaces continue to
get faster and faster. However, if they can really make Serial ATA work,
especially at such high speeds, it may be a welcome improvement on what
has really become a rather outdated design.

I guess we'll just have to see what happens. At any rate, I wouldn't look for
Serial ATA to even be introduced to the market until late 2001 or even 2002.
Even if it is successful, conventional parallel IDE/ATA will be popular for
many, many years due to the hundreds of millions of systems that use it, so
don't worry about obsolescence just yet. :^)

mehedi hasan
mehedi@joinme.com

429

Next: Integrated Drive Electronics / AT Attachment (IDE/ATA) Interface

Integrated Drive Electronics / AT Attachment (IDE/ATA) Interface

The most popular interface used in modern hard disks--by far--is the one
most commonly known as IDE. This interface is also known by a truly
staggering variety of other names such as ATA, ATA/ATAPI, EIDE, ATA-2, Fast
ATA, ATA-3, Ultra ATA, Ultra DMA and many more as well. The invention of
this interface catapulted hard disks into a new era of performance, reliability,
and compatibility. IDE/ATA hard disks are used on the vast majority of
modern PCs, and offer excellent performance at relatively low cost. They are
challenged only by SCSI, which has certain advantages and disadvantages
when the two interfaces are compared..

One problem with this interface is the ridiculous number of different names
that are used to refer to it, and how misleading some of those names are. For
starters, the most commonly used name for this interface, "IDE" is a
misnomer itself. (See this page for a discussion of the history behind this
term.) The "proper" name for the IDE interface is AT Attachment, or ATA. This
name is not as commonly used, for historical reasons (people are stubborn
:^)). I use the generic term "IDE/ATA" to convey the dual naming
conventions used for the various generations and variants of this interface.

In this section I examine the IDE/ATA interface in detail. I begin with a brief
overview of the interface, discussing a bit of its history and how it works in
general terms. I describe the different generations of the various standards
that define the ATA interface. I then discuss the plethora of "unofficial
standards" or marketing terms that are used to refer to IDE/ATA, in a
hopefully fruitful attempt to clarify what all those strange acronyms are. :^)
The following two sections get into the nitty gritty of the interface, describing
the various IDE/ATA transfer modes and protocols, and then providing
relevant information on how to configure and connect IDE/ATA devices on
your PC.

Next: Overview of the IDE/ATA Interface

Overview and History of the IDE/ATA Interface

As I mentioned in the introductory page to my coverage of this interface, its
common name, "IDE", also tells you quite a bit about its history. IDE drives
were the first ones to popularize integrating the logic controller onto the hard
disk itself. This change corrected many of the problems that had been
associated with hard disks up to that point, such as poor signal integrity,
complexity and the need for every controller to be "generically" capable of
dealing with any hard disk. You can read more about the logic board and its
significance on this page. Here's a (brief) bit of history of how integrated disk
controllers, and the IDE/ATA interface itself, came about.

The very first hard disks to have integrated controllers weren't technically
using the IDE/ATA interface as we currently know it. They were in fact so-

mehedi hasan
mehedi@joinme.com

430

called "hardcards", which were designed and sold by the "Plus Development"
division of Quantum. These devices were simply 3.5" hard disks that were
mounted directly to a controller card that plugged into an ISA expansion slot.
They were popular amongst those who wanted to add additional storage to
existing systems, because of their simplicity: with the disk and controller
integrated, one could just slap the package into an existing PC like any add-in
peripheral, without affecting the existing hard disk and controller.

While an ingenious idea--one that basically put Quantum "on the map" in the
hard disk world--these hardcards had several problems. Hard disks are heavy,
and are mechanical devices. They just aren't well-suited to being mounted in
expansion slots like a video card or modem. Physical support for expansion
cards is poor, because they are held in place using just one screw; this
resulted in vibration issues. The width of the drive would typically block off at
least one additional bus slot, meaning one of these devices took two
expansion bus slots. Cooling was also sometimes a problem. Of course, all of
these are physical implementation issues, and don't detract from the
significance of the advance in integrating the controller and disk assembly.

It didn't take long until manufacturers realized that there was really no reason
to keep the hard disk physically on the controller at all. They decided to put
the controller on the bottom of the hard disk and move the entire hard disk
and controller assembly to a regular drive bay. The connection to the system
bus was maintained through the use of a cable that ran either directly to a
system bus slot, or to a small interfacing card that plugged into a system bus
slot. In many ways, then, these drives were connected directly to the ISA
system bus. The official name for the interface, "AT Attachment", reflects this,
as the IBM PC/AT was the first PC to use the now-standard 16-bit ISA bus.

The origins of the actual IDE/ATA interface go back to around the same time
of the hardcard. Compaq Computer, an up-and-coming competitor to IBM at
the time (and still a major market player today) wanted to integrate the hard
disk controller into the hard disk itself to improve flexibility and save a bus
slot. They worked to create the precursors of the modern IDE interface
electronics with Western Digital (which was then an interface logic company
and not a hard disk maker) and a division of Control Data Corporation that is
now part of Seagate--isn't this fun? :^) Compaq began selling PCs with
integrated hard disks using Western Digital controllers starting with their IBM-
compatible Deskpro 386 in 1986. Other manufacturers quickly caught on to
the idea and the IDE concept grew in popularity rather quickly.

As system and hard disk performance improved, the slow speed of the ISA
bus became an issue, so interface cards--often called controller cards, despite
the confusion that this causes--were created for the higher speed VESA local
bus, and then the PCI bus. Today, all modern PCs have their IDE/ATA
interface attached directly to the PC bus.

The next evolution of how IDE/ATA drives interface to the system occurred
when it became obvious that every PC was going to have a hard disk, and it
was therefore silly to waste an expansion slot even on a hard disk interface
card. Chipset manufacturers began integrating IDE/ATA hard disk controllers
into their chipsets, so that instead of connecting the drives to a controller

mehedi hasan
mehedi@joinme.com

431

card, they were connected directly to the motherboard. With this change,
integration of the interface was complete, with all the logic either on the
motherboard, or the hard disk itself. This is the technique that is used today
(though one can still add a physical controller card if necessary.)

In terms of its basic operation, the IDE/ATA interface is fairly straight-
forward, and also reflects its origins as an extension of the ISA system bus.
The connection between the system and the hard disks is 16 bits wide, so two
bytes of data are passed at a time between the system and any hard disk.
This is true regardless of the width of the system bus, and persists even
today with high-performance enhancements like Ultra DMA. Two drives are
supported on each IDE/ATA channel, with special signaling used to ensure
that commands sent for one drive don't interfere with the other. Over time,
many performance and reliability features have evolved as the interface has
matured, which I will go into in detail as we discuss the various aspects of the
IDE/ATA interface.

Note: In the early days of IDE, there were two other variants on the IDE/ATA
interface, that were not compatible with regular IDE/ATA. One was an 8-bit
version intended for use on the ancient 8-bit ISA bus of the first IBM PC/XT
machines and clones. Another was a 16-bit version designed for IBM's MCA
(MicroChannel) systems. Both of these have been obsolete for a decade or
more and are no longer seen in modern systems; I do not cover them on this
site (other than this note. :^))

Next: Official IDE/ATA Standards and Feature Sets

Official IDE/ATA Standards and Feature Sets

There's an old joke that says the great thing about standards is that there are
so many to choose from. Anyone who has tried to understand hard disk
interface standards knows exactly what this means. :^) To help you
comprehend what can be a very confusing subject, I have spent considerable
time researching all of the issues related to IDE/ATA standards, and have
presented them here in what I hope is fairly plain English.

Standards probably get just a bit too much flak. Despite the confusion that
standards can cause, that's nothing compared to the confusion caused by a
lack of standards. So it was in the early days of the IDE/ATA interface. During
the late 1980s, IDE/ATA grew in popularity, but there were no standards in
place to ensure that the interface decisions made by different hardware
companies were compatible with each other. Several manufacturers
succumbed to the temptation to make slight "improvements" to the interface.
As a result, many early IDE/ATA drives exhibited compatibility problems,
especially when one attempted to hook up a master and slave device on the
same cable.

Recognizing the potential for utter chaos here, a number of designers and
manufacturers of hard disks and related technology got together to form the
Common Access Method (CAM) committee on the AT Attachment interface.

mehedi hasan
mehedi@joinme.com

432

The first document describing the proposed IDE/ATA standard was introduced
in early 1989. It was submitted in 1990 to the American National Standards
Institute (ANSI), and eventually became the first formal ATA standard. The
CAM committee was eventually replaced with other similar groups charged
with the various tasks associated with managing the IDE/ATA interface.

Today, ATA standards are developed, maintained and approved by a number
of related organizations, each playing a particular role. Here's how they all fit
together:

• American National Standards Institute: ANSI is commonly thought
of as an organization that develops and maintains standards, but in
fact they do neither. They are an oversight and accrediting
organization that facilitates and manages the standards development
process. As such, they are the "high level management" of the
standards world. They qualify other organizations as Standards
Developing Organizations or SDOs. ANSI also publishes standards once
they have been developed and approved.

• Information Technology Industry Council: ITIC is a group of
several dozen companies in the information technology (computer)
industry. ITIC is the SDO approved by ANSI to develop and process
standards related to many computer-related topics.

• National Committee for Information Technology: NCITS is a
committee established by ITIC to develop and maintain standards
related to the information technology world. NCITS was formerly
known under the name "Accredited Standards Committee X3,
Information Technology", or more commonly, just "X3". It maintains
several sub-committees that develop and maintain standards for
various technical subjects.

• T13 Technical Committee: T13 is the actual technical standards
committee responsible for the IDE/ATA interface specifically.

So basically, T13 is the group that actually does the work of developing new
IDE/ATA standards. ;^) The T13 group is comprised primarily of technical
people from various hard disk and other technology companies, but the group
(and the development process itself) is open to all interested parties.
Comments and opinions on standards under development are welcomed from
anyone, not just T13 members. The standards development process is
intended to create consensus, to ensure that everyone who will be developing
hardware and software agrees on how to implement new technology.

Once the T13 group is done with a particular version of the standard, they
submit it to NCITS and ANSI for approval. This approval process can take
some time; which is why the official standards are usually published several
months, or even years, after the technology they describe is actually
implemented. While approval of the standard is underway, companies develop
products using technology described in the standard, confident that
agreement has already been reached. Meanwhile, the T13 group starts work
on the next version of the standard.

Now that you understand how the standards process works, you are in much
better shape to read the rest of this section, which describes all of the

mehedi hasan
mehedi@joinme.com

433

different standards that describe the IDE/ATA interface. They are listed in
approximately chronological order. Remember when reading that subsequent
standards build upon earlier ones, and that in general, hardware
implementing newer standards is backward-compatible with older hardware.

Note: Standards that have been approved and published by ANSI are
available for purchase in either print form or electronic format from ANSI's
web site. Draft standards that are under development (as well as older drafts
of approved standards) can be found at the T13 Technical Committee web
site.

Tip: If there's an IDE/ATA standard you are looking for information on but
can't find in this section, it might in fact be an "unofficial" standard or
marketing term.

Next: ATA (ATA-1)

ATA (ATA-1)

The first formal standard defining the AT Attachment interface was submitted
to ANSI for approval in 1990. It took a looooooong time for this first ATA
standard to be approved. :^) Presumably, it took so long because it was the
first standard to define the interface, and therefore much debate and
discussion probably took place during the approval process. It was finally
published in 1994 as ANSI standard X3.221-1994, titled AT Attachment
Interface for Disk Drives. This standard is sometimes called ATA-1 to
distinguish it from its successors.

The original IDE/ATA standard defines the following features and transfer
modes:

• Two Hard Disks: The specification calls for a single channel in a PC,
shared by two devices that are configured as master and slave.

• PIO Modes: ATA includes support for PIO modes 0, 1 and 2.
• DMA Modes: ATA includes support for single word DMA modes 0, 1

and 2, and multiword DMA mode 0.

"Plain" ATA does not include support for enhancements such as ATAPI support
for non-hard-disk IDE/ATA devices, block mode transfers, logical block
addressing, Ultra DMA modes or other advanced features. Drives developed
to meet this standard are no longer made, as the standard is old and
obsolete. In fact, at the recommendation of the T13 Technical Committee,
ATA-1 was withdrawn as an official ANSI standard in 1999. This is presumably
due to its age, and the large number of replacement ATA standards already
published by that time.

Next: ATA-2

mehedi hasan
mehedi@joinme.com

434

ATA-2

The original ATA standard defined features that were appropriate for early
IDE/ATA hard disks. However, it was not well-suited to support the growing
size and performance needs of a newer breed of hard disks. These disks
required faster transfer rates and support for enhanced features.

In an ideal world, the standards committee would have gotten the various
hard disk manufacturers together to define a new standard to support the
added features everyone wanted. Unfortunately, several companies were
impatient, and once again started the industry down the road to incompatible
proprietary extensions to the original ATA standard. Seagate defined what it
called "Fast ATA", an extension to regular ATA, and "Fast ATA-2" soon
followed. These extensions were also picked up and used by Quantum.
Western Digital, meanwhile, created "Enhanced IDE" or "EIDE", a somewhat
different ATA feature set expansion. All of this happened in around 1994.

To try to once again correct the growing confusion being caused by all these
unofficial standards, the ATA interface committee created a new, official ATA-
2 specification that essentially combines the features and attributes defined
by the marketing programs created by Seagate, Quantum and Western
Digital. This standard was published in 1996 as ANSI standard X3.279-1996,
AT Attachment Interface with Extensions.

ATA-2 was a significant enhancement of the original ATA standard. It defines
the following improvements over the base ATA standard (with which it is
backward compatible):

• Faster PIO Modes: ATA-2 adds the faster PIO modes 3 and 4 to
those supported by ATA.

• Faster DMA Modes: ATA-2 adds multiword DMA modes 1 and 2 to
the ATA modes.

• Block Transfers: ATA-2 adds commands to allow block transfers for
improved performance.

• Logical Block Addressing (LBA): ATA-2 defines support (by the
hard disk) for logical block addressing. Using LBA requires BIOS
support on the other end of the interface as well.

• Improved "Identify Drive" Command: This command allows hard
disks to respond to inquiries from software, with more accurate
information about their geometry and other characteristics.

Unfortunately, even after consensus was reached on ATA-2, the old marketing
terms continued to be used. Fortunately, all of the drives of this era have now
passed into obsolescence, and the hard disk companies are in much better
agreement now on what terms should be used to describe the hard disk
interface. Although the marketing people keep trying. ;^)

Next: ATA-3

ATA-3

mehedi hasan
mehedi@joinme.com

435

The ATA-3 standard is a minor revision of ATA-2, which was published in
1997 as ANSI standard X3.298-1997, AT Attachment 3 Interface. It defines
the following improvements compared to ATA-2 (with which it is backward
compatible):

• Improved Reliability: ATA-3 improves the reliability of the higher-
speed transfer modes, which can be an issue due to the low-
performance standard cable used up to that point in IDE/ATA. (An
improved cable was defined as part of ATA/ATAPI-4.)

• Self-Monitoring Analysis and Reporting Technology (SMART):
ATA-3 introduced this reliability feature.

• Security Feature: ATA-3 defined security mode, which allows devices
to be protected with a password.

ATA-3 was approved rather quickly after ATA-2, while the market was still
spinning from all the non-standard "ATA-2-like" interface names being tossed.
This, combined with the fact that ATA-3 introduced no higher-performance
transfer modes, caused it to be all but ignored in the marketplace. Hard disk
manufacturers added features defined in the standard (such as SMART) to
their drives, but didn't tend to use the "ATA-3" term itself in their literature.

Note: You may see a so-called "PIO Mode 5" described in some places, with
the claim that it was introduced in ATA-3. This mode was suggested by some
controller manufacturers but never approved and never implemented. It is
not defined in any of the ATA standards and only exists in some BIOS setup
programs... See the discussion of PIO modes for more information.

Note: ATA-3 does not define any of the Ultra DMA modes; these were first
defined with ATA/ATAPI-4. ATA-3 is also not the same as "ATA-33", a slang
term for the 33 MB/s first version of Ultra ATA, itself a slang term for the 33
MB/s Ultra DMA transfer mode 2. :^)

Next: SFF-8020 / ATA Packet Interface (ATAPI)

SFF-8020 / ATA Packet Interface (ATAPI)

Originally, the IDE/ATA interface was designed to work only with hard disks.
CD-ROMs and tape drives used either proprietary interfaces (often
implemented on sound cards), the floppy disk interface (which is slow and
cumbersome) or SCSI. In the early 1990s it became apparent that there
would be enormous advantages to using the standard IDE/ATA interface to
support devices other than hard disks, due to its high performance, relative
simplicity, and universality. The intention was not to replace SCSI of course,
but rather to get rid of the proprietary interfaces (which nobody really likes)
and the slow floppy interface for tape drives.

Unfortunately, because of how the ATA command structure works, it wasn't
possible to simply put non-hard-disk devices on the IDE channel and expect
them to work. Therefore, a special protocol was developed called the AT
Attachment Packet Interface or ATAPI. The ATAPI standard is used for devices

mehedi hasan
mehedi@joinme.com

436

like optical, tape and removable storage drives. It enables them to plug into
the standard IDE cable used by IDE/ATA hard disks, and be configured as
master or slave, etc. just like a hard disk would be. When you see a CD-ROM
or other non-hard-disk peripheral advertised as being an "IDE device" or
working with IDE, it is really using the ATAPI protocol.

Internally, however, the ATAPI protocol is not identical to the standard ATA
(ATA-2, etc.) command set used by hard disks at all. The name "packet
interface" comes from the fact that commands to ATAPI devices are sent in
groups called packets. ATAPI in general is a much more complex interface
than regular ATA, and in some ways resembles SCSI more than IDE in terms
of its command set and operation. (At the time it was created, SCSI was the
interface of choice for many CD-ROM and higher-end tape drives.)

A special ATAPI driver is used to communicate with ATAPI devices. This driver
must be loaded into memory before the device can be accessed (most newer
operating systems support ATAPI internally and in essence, load their own
drivers for the interface). The actual transfers over the channel use regular
PIO or DMA modes, just like hard disks, although support for the various
modes differs much more widely by device than it does for hard disks. For the
most part, ATAPI devices will coexist with IDE/ATA devices and from the
user's perspective, they behave as if they are regular IDE/ATA hard disks on
the channel. Newer BIOSes will even allow booting from ATAPI CD-ROM
drives.

The first standard that described ATAPI wasn't actually even developed by the
people who maintain the ATA standards. It was defined by the Small Form
Factor committee, an industry group that traditionally defined standards for
physical issues like PC cables and screw hole locations, but somehow got
involved in storage interfacing. The first ATAPI standard document produced
by this group was called SFF-8020 (later renamed INF-8020), which is now
quite old and obsolete. In the late 1990s, the T13 Technical Committee took
over control of the ATAPI command set and protocol, combining it with ATA
into the ATA/ATAPI-4 standard.

Next: ATA/ATAPI-4

ATA/ATAPI-4

The next significant enhancement to the ATA standard after ATA-2 saw the
ATA Packet Interface (ATAPI) feature set merged with the conventional ATA
command set and protocols to create ATA/ATAPI-4. This standard was
published by ANSI in 1998 as NCITS 317-1998, AT Attachment with Packet
Interface Extensions. (Note the change to "NCITS" in the document number,
from the "X3" used in earlier ATA standards; see here for an explanation of
these organization names.)

Aside from combining ATA and ATAPI, this standard defined several other
significant enhancements and changes:

mehedi hasan
mehedi@joinme.com

437

• Ultra DMA Modes: High-speed Ultra DMA modes 0, 1 and 2, defining
transfer rates of 16.7, 25 and 33.3 MB/s were created.

• High-Performance IDE Cable: An improved, 80-conductor IDE cable
was first defined in this standard. It was thought that the higher-speed
Ultra DMA modes would require the use of this cable in order to
eliminate interference caused by their higher speed. In the end, the
use of this cable was left "optional" for these modes. (It became
mandatory under the still faster UDMA modes defined in ATA/ATAPI-
5.)

• Cyclical Redundancy Checking (CRC): This feature was added to
ensure the integrity of data sent using the faster Ultra DMA modes.
Read more about it here.

• Advanced Commands Defined: Special command queuing and
overlapping protocols were defined.

• Command Removal: The command set was "cleaned up", with
several older, obsolete commands removed.

Of course, the Ultra DMA modes were the most exciting part of this new
standard. Ultra DMA modes 0 and 1 were never really implemented by hard
disk manufacturers, but UDMA mode 2 made quite a splash, as it doubled the
throughput of the fastest transfer mode then available. Ultra DMA mode 2
was quickly dubbed "Ultra DMA/33", and drives conforming to ATA/ATAPI-4
are often called "Ultra ATA/33" drives, which technically does not exist.

Next: ATA/ATAPI-5

ATA/ATAPI-5

Not content to rest on their laurels with the adoption of ATA/ATAPI-4, the T13
committee immediately began work on its next generation, ATA/ATAPI-5. This
standard was published by ANSI in 2000 as NCITS 340-2000, AT Attachment
with Packet Interface - 5.

The changes defined in ATA/ATAPI-5 include:

• New Ultra DMA Modes: Higher-speed Ultra DMA modes 3 and 4,
defining transfer rates of 44.4 and 66.7 MB/s were specified.

• Mandatory 80-Conductor IDE Cable Use: The improved 80-
conductor IDE cable first defined in ATA/ATAPI-4 for optional use, is
made mandatory for UDMA modes 3 and 4. ATA/ATAPI-5 also defines
a method by which a host system can detect if an 80-conductor cable
is in use, so it can determine whether or not to enable the higher
speed transfer modes.

• Miscellaneous Command Changes: A few interface commands were
changed, and some old ones deleted.

Like ATA-3, not that many changes were made in ATA/ATAPI-5 (compared to
ATA/ATAPI-4 and ATA-2, for example). Unlike ATA-3, the main change made
here was a high-profile one: another doubling of the throughput of the
interface to 66.7 MB/second. Unsurprisingly, the same companies that called
ATA/ATAPI-4 drives "Ultra ATA/33" labeled ATA/ATAPI-5 drives running Ultra

mehedi hasan
mehedi@joinme.com

438

DMA mode 4 as "Ultra ATA/66". During 1999 and early 2000, new IDE/ATA
drives conforming to this standard were the most common on the market.

Next: ATA/ATAPI-6

ATA/ATAPI-6

At the time that I write this in late 2000, the T13 Technical Committee is
working on he next version of the ATA standard, ATA/ATAPI-6. It is likely that
this standard will be completed in 2001 and published sometime later that
year or early in 2002.

Since this standard is still in development, it is impossible to be sure exactly
what features and changes it will include. One addition to the standard does
seem almost certain: the new Ultra DMA mode 5, which increases transfer
throughput to 100 MB/s. Since this is already the standard on currently-
shipping drives, I can't imagine it not making the next standard! Beyond that,
only the T13 folks know, and at this point, perhaps not even them. :^) Aside
from Ultra DMA mode 5, some of the rumored possible new features for the
next standard include:

• LBA Address Size Expansion: Hard disk sizes are now approaching
the maximum that can be represented under the traditional 28-bit LBA
scheme; this is the 137 GB size barrier. Most people don't know
anything about this "size barrier of the future" now, but I predict that
in 2001 or 2002 it's going to be a hot topic of conversation. :^) To get
around this limitation, an addressing mode will probably be included in
ATA/ATAPI-6 that expands the address width from 28 bits to either 48
or 64 (either of which will keep us busy for quite a while...)

• Hard Disk Noise Reduction ("Acoustic Management"): Some
hard disk companies are working on technologies to allow the
mechanics of the hard disk to be modified under software control,
letting the user choose between higher performance or quieter
operation. Commands to cover this feature may make the next
standard, as they are mentioned in the current draft.

• Audio and Video Streaming: Some manufacturers have apparently
suggested new commands related to multimedia streaming, but I don't
know any more about them than that right now.

I will update this page as more becomes known about the ATA/ATAPI-6; or at
least, as I come to know more about it. :^)

Next: Summary of IDE/ATA Standards

mehedi hasan
mehedi@joinme.com

439

Summary of IDE/ATA Standards

With the creation of several new ATA standards over the last few years, there
are now quite a few of them "out there". The table below provides a quick
summary of the different official IDE/ATA interfaces, showing their key
attributes and features.

Interface
Standard

ANSI
Standard
Number
(includes
date)

PIO
Modes
Added

DMA
Modes
Added

Ultra
DMA
Modes
Added

Notable
Features or
Enhancements
Introduced

ATA-1 X3.221-1994 0, 1, 2

Single
word 0, 1,
2;
multiword
0

-- --

ATA-2 X3.279-1996 3, 4
Multiword
1, 2

--

Block transfers,
Logical block
addressing,
Improved
identify drive
command

ATA-3 X3.298-1997 -- -- --

Improved
reliability,
SMART, Drive
security

ATA/ATAPI-
4

NCITS 317-
1998

-- -- 0, 1, 2
Ultra DMA, 80-
conductor IDE
cable, CRC

ATA/ATAPI-
5

NCITS 340-
2000

-- -- 3, 4 --

mehedi hasan
mehedi@joinme.com

440

ATA/ATAPI-
6

Under
Development

-- -- 5?

LBA expansion?
Acoustic
management?
Multimedia
streaming?

Note: Since the columns only show which modes and features were added in
a given standard, the table should be viewed as cumulative. This means that
all standards shown include all the modes and features of all prior standards
as well. Standards are also backward-compatible with drives designed to
earlier standards.

Next: Unofficial IDE/ATA Standards and Marketing Programs

mehedi hasan
mehedi@joinme.com

441

Unofficial IDE/ATA Standards and Marketing Programs

There are a number of official IDE/ATA standards that have defined the
characteristics of the IDE/ATA interface over the years. The existence of so
many standards can cause such confusion unless there is a good explanation
of what they all are, which is why I wrote one. :^) Unfortunately, the
situation is actually much more confusing than one would expect merely from
the evolution of a formal standard over a period of a decade or so. The real
confusion comes from all of the unofficial standards that are sometimes
created by manufacturers, and the marketing terms that they think up to try
to position and sell their products.

Unofficial standards often arise due to impatience on the part of a
manufacturer that does not want to wait for the next version of a real
standard. Sometimes a company has a desire to try to lead the market by
extending a formal standard themselves, in the hopes that other companies
will follow. A manufacturer may take an existing standard and add features or
capabilities in an attempt to win part of the market from other companies that
are still adhering to the "old standard". All of this of course prompts the other
companies to respond with their own "extensions" to existing standards, and
the result is often a chaos of competing and incompatible interface variations.
This is why the formal standards development process now used for the
IDE/ATA interface was created, and why it is so important.

Marketing programs cause confusion by creating different names for official
standards or feature sets defined in the official standards. This may be done
because the formal name for a feature is not considered sufficiently
"exciting", or in an attempt to build name-brand recognition of, or market
preference for, a particular hard disk brand. Here again, the result is often
confusion, because two companies may be selling drives with the identical
interface, but using two very different names.

In an attempt to shed a little light on all of these terms and "unofficial"
standards, I describe each of the common ones here. Where relevant, I
provide links to the official standards and features that correspond to the
unofficial terms. If you have not yet done so, you may wish to first read the
section describing official IDE/ATA standards.

Next: Integrated Drive Electronics (IDE)

Integrated Drive Electronics (IDE)

Drives that use the interface officially known as AT Attachment or ATA are
also often called something else entirely: Integrated Drive Electronics or IDE
drives. In fact, the term "IDE" is probably more widely used than the correct
name for the interface! (This is changing, however, as new terms such as
"Ultra ATA" grow in popularity.) IDE can be considered the unofficial "overall
name" for this hard disk interface; it has been used since the earliest days of
these drives, and will probably always be used by a large segment of the
industry.

mehedi hasan
mehedi@joinme.com

442

The reason for the name, of course, is that the IDE interface was the first
where the logic board was integrated on the hard disk itself. As described in
some detail in the overview and history of the interface, drives prior to this
point had the hard drive control logic on a separate controller card that
plugged in a system bus slot. This led to a number of compatibility and
reliability problems that were corrected by mating the logic board to the hard
disk itself.

The name "IDE" really reflects this design decision and has nothing to do with
the interface per se. Today, all drives have integrated logic boards, including
those that use interfaces quite different from ATA, such as SCSI or USB.
However, habits are hard to break in the computer world, and use of the
name persists. This has the potential for confusion, though most people today
know that "IDE" refers to the IDE/ATA interface specifically. (One of the
reasons that the name "IDE" was never adopted for the formal standards is
that the developers of the standards considered it confusing.)

It's important to remember that today, being told that a particular drive is an
"IDE drive" tells you only that it uses some variant of the IDE/ATA interface.
"IDE" by itself is a generic term that does not tell you anything about the
drive, such as what modes it supports or what official standard it adheres to.
You need to find out more about the drive to understand the details of its
interface.

Next: Enhanced IDE (EIDE)

Enhanced IDE (EIDE)

Enhanced IDE, also called EIDE, is a term that Western Digital coined in 1994
to represent a particular set of extensions it devised to the original AT
Attachment standard. At that time, the official ATA standard was rather
limiting, and work was progressing towards the new ATA-2 standard. Western
Digital decided that it did not want to wait for the new standard, and also that
it could better position itself as a market leader by creating a new feature set
for (then) future drives. The name "Enhanced IDE" was presumably selected
to build upon the common name for ATA then in popular use: IDE.

The original Enhanced IDE program included the following improvements over
ATA:

• ATA-2 Enhancements: EIDE includes all (most?) of the
improvements that are defined as part of the ATA-2 standard,
including the higher-speed transfer modes.

• ATAPI: The EIDE definition includes support for non-hard-disk ATAPI
devices on the IDE/ATA channel. Note that at that time, ATAPI was not
part of the ATA standard at all.

• Dual IDE/ATA Host Adapters: The EIDE standard specifically
includes support for dual IDE/ATA channels, allowing four
IDE/ATA/ATAPI devices to be used. (In fact, the ATA standard at the
time never precluded the use of two IDE/ATA channels; it just was not
commonly done.)

mehedi hasan
mehedi@joinme.com

443

EIDE has become a widely-accepted term in the industry, which would be
great if not for the fact that it is so incredibly confusing. Objections to EIDE
include the following issues:

• Proprietary Standard: EIDE is not an official standard, and it
competed with other non-standard IDE/ATA terms like Fast ATA. Of
course, that criticism applies not just to EIDE.

• Scope: Much of the criticism of the original EIDE program is that its
scope was too wide, and that it encompassed features that are really
the domain of the BIOS. For example, support for dual IDE/ATA host
adapters, meaning a secondary IDE/ATA channel, has nothing to do
with the interface or the hard disk itself. And ATAPI is a standard that
is defined for use with optical drives and other non-hard-disk devices,
which again requires BIOS and driver support and really has nothing to
do with the hard disk. At the time, other hard disk manufacturers not
only excluded these from their own standard proposals (such as Fast
ATA), they made a point of criticizing Western Digital for bringing
these issues into the interface discussion.

• The Word "Enhanced": The choice of the word "enhanced" was
unfortunate, as it led to confusion in another area. At around the same
time that EIDE was introduced, the 504 MB hard disk size barrier
became a big issue. To work around this required an "enhanced BIOS".
Because of the fact that both of these phrases use the word
"enhanced", and because EIDE defines BIOS support standards, many
people have come to think of the terms as interchangeable when they
really are not. This has lead to claims that you need an enhanced IDE
interface to support disks over 504 MB, when you don't--you just need
an enhanced BIOS. As if this weren't bad enough, some companies
advertised add-in cards with enhanced BIOSes as "enhanced IDE
cards"! :^)

• Redefinition: Since EIDE is Western Digital's term, they have the
right to change its meaning, and unfortunately, they do this on a
regular basis. At first, EIDE included only PIO modes up to mode 3;
then mode 4 was added. When the new Ultra DMA modes came out,
WD of course added support for them to their newest models, but they
kept calling the drives "EIDE"! Today other drive manufacturers also
say things like "EIDE compatible", leaving you wondering what exactly
this means.

Some people in the hard disk industry apparently feel that the creation of
"Enhanced IDE" was one of the worst things to ever happen to the IDE/ATA
interface! I think that is probably a bit over-stated, though I do agree that it
is probably one of the most confusing things to ever happen to the IDE/ATA
interface. :^) Much of the criticism is valid, but some of it is just the usual
conflicts between rivals in a very competitive industry. And I do think Western
Digital's goal of expanding IDE/ATA capabilities was a laudable one, even if
the implementation of the program left a bit to be desired.

Of all the criticisms leveled at Western Digital, there's one that I personally
agree with strongly, and that's the issue of redefining the term. Every time
the IDE/ATA interface standards change, Western Digital changes the actual
interface specifics of its drives, but continues to list the interface of the drive

mehedi hasan
mehedi@joinme.com

444

as just "EIDE". A term that is constantly redefined is a term that is utterly
meaningless. As a result, I can only tell people at this point that if they see a
drive labeled as being "EIDE", to keep digging to find out the specifics of the
modes and official standards it supports, because "EIDE" by itself doesn't tell
you anything (other than the generic interface of the drive, as the terms
"IDE" or "ATA" do.) It would be nice if Western Digital would just drop the
term entirely, but I doubt this will happen since they have spent so many
years promoting it.

Next: Fast ATA and Fast ATA-2

Fast ATA and Fast ATA-2

At around the same time that Western Digital began promoting Enhanced
IDE, Seagate Technology created its own unofficial extension to the original
AT Attachment standard. Like Western Digital, they wanted to improve the
performance of newer hard drives; they also didn't want to wait for the next
official standard. And they certainly weren't going to just follow Western
Digital! So they created a new "standard" that they called Fast ATA. Quantum
joined Seagate in supporting this program. Later, Fast ATA-2 was created,
adding more functionality to Fast ATA.

While at the time Western Digital got the lion's share of the criticism for its
Enhanced IDE program, these two terms fare only a bit better in the
confusion department. The term "Fast" is meant to connote that the interface
runs at higher speed than regular ATA; which it did. The names are confusing,
however, because they make it sound like Fast ATA-2 is related to ATA-2, and
Fast ATA is related to regular ATA. This is not so, as both are really subsets of
ATA-2, including the higher speed transfer modes and some of the other
features of the official standard. Specifically, Fast ATA includes PIO mode 3
and multiword DMA mode 1. Fast ATA-2 includes PIO modes 3 and 4, and
multiword DMA modes 1 and 2.

I will give Quantum and Seagate credit for one thing: they at least stopped
using these confusing terms in the late 1990s, while Western Digital keeps
painting fresh bulls-eyes around the term "EIDE". ;^) As the IDE/ATA
interface evolved, these "Fast" terms were eventually dropped, in favor of
terms like "Ultra ATA" (which are still not technically correct, but at least are
universally used in the industry).

Unfortunately, the "Fast" business persists in some places; I recently saw a
datasheet for a Maxtor drive that claimed it was "Fast ATA-4 compatible". I
have no idea what in the blazes "Fast ATA-4" is supposed to be, but the same
spec sheet says that drive is capable of Ultra DMA/66 transfers. That's Ultra
DMA mode 4, which was defined in the ATA/ATAPI-5 standard, not
ATA/ATAPI-4. Perhaps this odd "Fast ATA-4" term was supposed to mean that
the drive was using the newer DMA mode that was anticipated to make the
ATA/ATAPI-5 standard, and therefore was faster than ATA-4? Argh, these
marketing people drive me crazy sometimes. :^)

Next: Ultra ATA (Ultra ATA/33)

mehedi hasan
mehedi@joinme.com

445

Ultra ATA (Ultra ATA/33)

With the introduction of the new Ultra DMA modes in what became the
ATA/ATAPI-4 standard, manufacturers quickly adopted the new technology.
The doubling of the maximum interface transfer rate was big news, and
companies wasted no time trumpeting the new capabilities of the drives. One
of the most common terms used to refer to these new drives was Ultra ATA,
which appears to be a combination of the terms "Ultra DMA" and "ATA".
Sometimes the drives were called Ultra ATA/33, referring to the maximum
speed of the new Ultra DMA modes, 33 MB/s. Others called the drives just
ATA/33. Still others called the drives late for dinner. ;^)

All of these are unofficial marketing terms, and not real standards. The
bottom line is that even though you will see it used all the time, there really is
no such thing as "Ultra ATA", at least in the official ATA standards. A drive
that is marketed as using "Ultra ATA/33" is actually using Ultra DMA mode 2,
which provides throughput at 33 MB/s. Some drives are sold as "Ultra
DMA/33", which is a bit more accurate, but even that is a "slang" term. The
correct designation for the interface of such drives would probably be "ATA-4,
using Ultra DMA mode 2". That's a bit cumbersome and kind of boring, of
course; I would never make a good marketing person. :^)

Note: When Ultra DMA mode drives first started being sold, they all operated
at 33 MB/s, and thus "Ultra DMA" or "Ultra ATA" (without a number) implied
mode 2 (33 MB/s). Today, there are faster Ultra DMA modes, so be careful
about interpreting what those terms mean if no number is provided. They
may be older drives using the Ultra DMA/33 standard, or the term may be
being used generically to refer to drives using any of the Ultra DMA modes.

Next: Ultra ATA/66

Ultra ATA/66

Within a year or two of the introduction of Ultra DMA modes in ATA/ATAPI-4,
two new Ultra DMA modes were created. These new modes allowed data
transfer at 44 MB/s and 66 MB/s respectively (actually, the latter should
really be 67 MB/s, since the number is really two-thirds of 100, but
anyway...) The 44 MB/s speed never caught on, but new drives appeared on
the market implementing Ultra DMA mode 4 at 66 MB/s. Just as the first 33
MB/s Ultra DMA mode drives were dubbed Ultra ATA/33, the new drives of
course were called Ultra ATA/66 or ATA/66.

As with the original ATA/33, there is no real standard called "Ultra ATA/66";
this is a slang term for ATA drives using 66 MB/s Ultra DMA (UDMA mode 4).
Still, this is the common term given to drives that use the new Ultra DMA
modes defined in the true standard, ATA/ATAPI-5. In most cases you can
assume that drives sold as Ultra ATA/66 are compatible with ATA/ATAPI-5,
though early "Ultra ATA/66" drives may not include all the features defined in
the formal standard.

mehedi hasan
mehedi@joinme.com

446

Note: At some point in your travels, you might also stumble upon some
documentation that refers to the following mysterious specification: "Ultra
ATA/66+". See the discussion of Ultra ATA/100 for the amusing story behind
this term. :^)

Next: Ultra ATA/100

Ultra ATA/100

If you've already read my discussions of Ultra ATA/33 and Ultra ATA/66, you
can probably guess what I am going to say on this page already. :^) Yes,
Ultra ATA/100 is the marketing term for hard disks that use the new Ultra
DMA mode 5, supporting interface transfers at 100 MB/s. This new Ultra DMA
mode is the fastest available as of this writing in late 2000. It has not been
codified in any formally approved and published ATA standard, but will be
documented in the new ATA/ATAPI-6 standard that is currently under
development.

Pretty much all new ATA drives are now sold using some variant of the "Ultra
ATA/100" moniker. Note that for a few weeks in 2000, some IBM "Ultra
ATA/100" Deskstar drives were advertised as the somewhat strange "Ultra
ATA/66+". The story behind this is rather amusing. Earlier in that year, work
was progressing on drafts for the new ATA/ATAPI-6 standard. The key feature
of this new standard was Ultra DMA mode 5, allowing interface speeds of 100
MB/s. Even though all hard drive companies are now selling drives that
operate at this speed (despite the fact that ATA/ATAPI-6 is still in
development), there apparently was some sort of agreement in place that no
drives would be marketed at the 100 MB/s speed before a particular date.
Someone at IBM obviously jumped the gun, and specifications for IBM Ultra
ATA/100 drives began showing up early on the Internet. Unsurprisingly,
people started asking what exactly this was all about!

So IBM apparently had to stop selling the drives as "Ultra ATA/100". They still
wanted to send everyone the message, however, that these drives would be
compatible with the new higher-speed transfer mode. So some marketing
genius decided to label the drives as "Ultra ATA/66+". :^) I often praise IBM
in my hard disk materials for their industry leadership role, but this was a
really silly move in my opinion. Since of course nobody knew what on earth
"Ultra ATA/66+" was supposed to mean, this led to even more confusion than
the too-early use of "Ultra ATA/100" did. Fortunately, a couple of months
later the magic date (whatever it was) passed and the "Ultra ATA/66+"
nonsense went away, replaced with "Ultra ATA/100" again. You can still find
mention of "66+" around, if you do some searching for that term on the web.

Next: Plug and Play ATA

Plug and Play ATA

mehedi hasan
mehedi@joinme.com

447

A final "standard" that you may occasionally see reference to is something
called Plug and Play ATA. This appears to be a proposal made by Quantum
and Hewlett-Packard to standardize the connection and configuration of ATA
hard disks in order to eliminate the need for master and slave configuration
jumpers. The idea is based on the cable select feature that has been used by
a number of manufacturers to get around the need for setting specific drives
as master or slave.

This specification has never gained any widespread acceptance; after reading
it several times I can understand why. The document leaves me puzzled as to
what exactly the point was in introducing it in the first place, because it
appears to have almost nothing in terms of new concepts. There's nothing
novel about using cable select to automatically select which drive in a dual-
drive configuration is the master and which the slave. The other main
requirement seems to be support for the "Identify Drive" command to allow
autodetection of drive size and other parameters on the part of the system
BIOS. But again, this is already supported by every IDE/ATA drive made since
at least the mid-1990s.

Perhaps the main point was to exploit the buzzword potential of the phrase
"plug and play", to help convince consumers that a great breakthrough in
configuration ease had been made. I don't really know, but based on the lack
of substance in the specification, that's my bet. At any rate, I have not seen
any other hard disk manufacturers make reference to it, and it does not
appear to be destined to play an important role in the market at this time. For
more details, you may be able to find the original white paper on Quantum's
web site.

If you run into a system that is advertised as using "Plug and Play ATA", this
most likely just means that the drive(s) are set to the cable select method of
configuration, and a cable select cable is being used.

Next: Making Sense of IDE/ATA Standards and Compatibility

Making Sense of IDE/ATA Standards and Compatibility

I hope that in my effort to reduce all the confusion surrounding real and
unofficial IDE/ATA standards, that I have not made you even more confused.
:^) There are a lot of buzzwords being tossed around, and the marketing
people are hard at work introducing new ones every year. ;^)

Fortunately, the technology itself is pretty easy to use, even if the labels
given to it often stink. So one useful way of dealing with all the standards and
labels is simply to ignore them! Look past the hype, and focus on what the
drive's actual capabilities are. If you want to really understand what a drive
can do and what it supports, you should look at its specification sheet and see
what features and transfer modes it is designed to use. Ignore labels like
"EIDE" or "Ultra ATA/whatever" and find out what modes and functions the
drive supports. Getting the real scoop on the drive means you don't need to
worry about the pretty stickers slapped all over the box, or whatever the
manufacturer is trying to claim.

mehedi hasan
mehedi@joinme.com

448

It's also important to realize that despite all of the various names and flavors,
to some extent IDE/ATA is IDE/ATA. Especially since the late 1990s, virtually
all IDE/ATA drives and controllers will work together with a minimum of fuss.
The folks who create the IDE/ATA standards always ensure backwards
compatibility. This means that a drive corresponding to a newer standard will
still work on an IDE channel in an older PC. Similarly, older drives will work on
newer systems, in most cases. When older and newer hardware are mixed,
the newer hardware will just run at whatever the maximum speed is of the
older hardware.

For example, suppose you want to use an older hard disk that does not
support Ultra DMA, on a newer PC with Ultra DMA support. This will work fine,
but the drive won't run at Ultra DMA speed. As a second example, suppose
you want to install a new hard drive that runs Ultra DMA/100 on an older PC
with a hard disk controller only supporting Ultra DMA/33. This will also work,
but the drive's throughput will be limited to 33 MB/s.

Note: There can be issues with using some newer drives on some older
systems, if they come enabled to run at higher-speed Ultra DMA modes by
default. A utility may be needed to change the default transfer mode of the
drive. See here for more details. Similarly, using new drives on older systems
may cause problems related to the larger sizes of new drives (which isn't an
interface issue).

One issue that many people have when upgrading an older system with a
newer hard disk is that the older system may not support the highest transfer
rate supported by the drive (as in the second example I just gave). This often
causes great consternation and anguish, because the hard disk manufacturers
hype interface transfer speeds to the high heavens. In fact, running an Ultra
DMA/100 drive on an Ultra DMA/66-capable controller will produce no
noticeable difference in performance compared to running it on an "Ultra
ATA/100 controller". Even a 33 MB/s "regular" Ultra ATA channel will not
result in a huge performance hit. For a full explanation of the reasons why,
see this page.

Next: IDE/ATA Transfer Modes and Protocols

IDE/ATA Transfer Modes and Protocols

Since performance is of utmost concern when using a hard disk, the different
transfer modes and protocols that a drive (and interface) supports are very
important. In fact, they get more attention than any other issues and features
associated with the interface! Most of the advances in newer IDE/ATA
standards are oriented around creating faster ways of moving data between
the hard disk and the PC system. Since the IDE/ATA interface is in essence a
communication channel, support for a given transfer mode or protocol
requires support from the devices on both ends of the channel. This means
that both the hard disk and the system chipset and BIOS must support the
mode in question.

mehedi hasan
mehedi@joinme.com

449

In this section I describe all of the transfer modes and protocols used for the
IDE/ATA interface. First I discuss programmed I/O (PIO) modes, the oldest
IDE/ATA transfer mode. I then talk about direct memory access (DMA)
modes, and then the new Ultra DMA modes that superceded regular DMA and
are the transfer modes of choice for newer hardware. I also talk about a a few
features and protocols related to IDE data transfer.

Next: Programmed I/O (PIO) Modes

Programmed I/O (PIO) Modes

The oldest method of transferring data over the IDE/ATA interface is through
the use of programmed I/O. This is a technique whereby the system CPU and
support hardware directly control the transfer of data between the system
and the hard disk. There are several different speeds of programmed I/O,
which are of course called programmed I/O modes, or more commonly, PIO
modes.

Through the mid-1990s, programmed I/O was the only way that most
systems ever accessed IDE/ATA hard disks. Three lower-speed modes were
defined as part of the original ATA standards document; two more were
added as part of ATA-2 (as well as part of several unofficial standards.) The
table below shows the five different PIO modes, along with the cycle time for
each transfer and the corresponding throughput of the PIO mode:

PIO
Mode

Cycle Time
(nanoseconds)

Maximum
Transfer Rate
(MB/s)

Defining Standard

Mode 0 600 3.3 ATA

Mode 1 383 5.2 ATA

Mode 2 240 8.3 ATA

Mode 3 180 11.1 ATA-2

Mode 4 120 16.7 ATA-2

A few things about this table bear mention. First of all, the PIO modes are
defined in terms of their cycle time, representing how many nanoseconds it
takes for each transfer to occur. The maximum transfer rate is the reciprocal
of the cycle time, doubled because the IDE/ATA interface is two bytes (16
bits) wide. (For a basic explanation of cycle time and related issues, check out
this fundamentals section). Also, conspicuous by its absence from the table
above is the so-called "PIO mode 5", which does not exist and was never
implemented in any IDE/ATA hard disks. Apparently, at one point some
discussion occurred about creating a faster PIO mode, which was tentatively
called "PIO mode 5". This mode was to support a transfer rate of 22.2 MB/s,
but it was never implemented (probably because the much faster 33 MB/s
Ultra DMA mode 2 was on the horizon). Some motherboard manufacturers

mehedi hasan
mehedi@joinme.com

450

made a point of providing early support for this proposed mode in their BIOS
setup programs, so you may occasionally see it mentioned.

Obviously, faster modes are better, because they mean a higher theoretical
burst transfer rate over the interface. This transfer rate represents the
external data transfer rate for the drive. Remember that this is the speed of
the interface and not necessarily the sustained transfer rate of the drive itself,
which is almost always slower (and should be). Of course today all new drives
have sustained transfer rates well in excess of what even the fastest PIO
mode can handle, which is one reason why PIO has fallen out of favor. Also
worth mention is that very old systems using ISA hard disk controllers cannot
use even PIO modes 3 or 4, because their transfer rate exceeds the capacity
of the ISA bus!

As I mentioned, programmed I/O is performed by the system CPU; the
system processor is responsible for executing the instructions that transfer
the data to and from the drive, using special I/O locations. This technique
works fine for slow devices like keyboards and modems, but for performance
components like hard disks it causes performance issues. Not only does PIO
involved a lot of wasteful overhead, the CPU is "distracted" from its ordinary
work whenever a hard disk read or write is needed. This means that using
PIO is ideally suited for lower-performance applications and single tasking. It
also means that the more data the system must transfer, the more the CPU
gets bogged down. As hard disk transfer rates continue to increase, the load
on the CPU would have continued to grow. This is the other key reason why
PIO modes are no longer used on new systems, having been replaced by DMA
modes, and then later, Ultra DMA.

As discussed in detail here, each IDE channel supports the use of two devices,
designated as master and slave. Modern systems allow the use of master and
slave devices running at different PIO modes on the same channel; this is
called independent device timing and is a function of the system chipset and
BIOS. When this feature is not supported, both devices may be limited to the
slower of the two devices' maximum PIO mode, but this hasn't been a big
issue since the mid-to-late 1990s.

PIO modes do not require any special drivers under normal circumstances;
support for them is built into the system BIOS. This universal support, along
with their conceptual simplicity, is why they were traditionally the default way
that most drives are used. Today, however, PIO is just not up to handling
modern drives, which use Ultra DMA to keep the load on the CPU down and to
allow access to Ultra DMA's much higher performance. Support for PIO modes
is still universal on almost all systems and drives made since the mid-1990s,
for backwards compatibility. It is used, for example, as a "last resort" when
driver or software issues cause problems with Ultra DMA accesses.

Next: Direct Memory Access (DMA) Modes and Bus Mastering DMA

mehedi hasan
mehedi@joinme.com

451

Direct Memory Access (DMA) Modes and Bus Mastering DMA

As described in the page describing programmed I/O, that method of
transferring data between the hard disk and the rest of the system has a
serious flaw: it requires a fair bit of overhead, as well as the care and
attention of the system's CPU. Clearly, a better solution is to take the CPU out
of the picture entirely, and have the hard disk and system memory
communicate directly. Direct memory access or DMA is the generic term used
to refer to a transfer protocol where a peripheral device transfers information
directly to or from memory, without the system processor being required to
perform the transaction. DMA has been used on the PC for years over the ISA
bus, for devices like sound cards and the floppy disk interface. Conventional
DMA uses regular DMA channels which are a standard system resource. DMA
is discussed in full detail here.

Several different DMA modes have been defined for the IDE/ATA interface;
they are grouped into two categories. The first set of modes are single word
DMA modes. When these modes are used, each transfer moves just a single
word of data (a word is the techie term for two bytes, and recall that the
IDE/ATA interface is 16 bits wide). There are (or were!) three single word
DMA modes, all defined in the original ATA standard:

DMA
Mode

Cycle Time
(nanoseconds)

Maximum
Transfer Rate
(MB/s)

Defining Standard

Single
Word
Mode 0

960 2.1 ATA

Single
Word
Mode 1

480 4.2 ATA

Single
Word
Mode 2

240 8.3 ATA

(As I discussed in the page on PIO, maximum transfer rate is double the
reciprocal of the specific cycle time for each mode.) Obviously, these are not
impressive transfer rate numbers by today's standards. Further, performing
transfers of a single word at a time is horribly inefficient--each and every
transfer requires overhead to set up the transfer. For that reason, single word
DMA modes were quickly supplanted by multiword DMA modes. As the name
implies, under these modes a "burst" of transfers occurs in rapid succession,
one word after the other, saving the overhead of setting up a separate
transfer for each word. Here are the multiword DMA transfer modes:

DMA Mode
Cycle Time
(nanoseconds)

Maximum
Transfer
Rate (MB/s)

Defining
Standard

mehedi hasan
mehedi@joinme.com

452

Multiword
Mode 0

480 4.2 ATA

Multiword
Mode 1

150 13.3 ATA-2

Multiword
Mode 2

120 16.7 ATA-2

Since multiword DMA transfers are more efficient, and also have higher
maximum transfer rates, single word DMA modes were quickly abandoned
after ATA-2 was widely adopted--they were actually removed from the ATA
standards in ATA-3. So all DMA accesses today (including Ultra DMA) are
actually multiword; the term "multiword" is now often assumed and no longer
specifically mentioned.

Another important issue with DMA is that there are in fact two different ways
of doing DMA transfers. Conventional DMA is what is called third-party DMA,
which means that the DMA controllers on the motherboard coordinate the
DMA transfers. (The "third party" is the DMA controller.) Unfortunately, these
DMA controllers are old and very slow--they are basically unchanged since the
earliest days of the PC. They are also pretty much tied to the old ISA bus,
which was abandoned for hard disk interfaces for performance reasons. When
multiword DMA modes 1 and 2 began to become popular, so did the use of
the high-speed PCI bus for IDE/ATA controller cards. At that point, the old
way of doing DMA transfers had to be changed.

Modern IDE/ATA hard disks use first-party DMA transfers. The term "first
party" means that the peripheral device itself does the work of transferring
data to and from memory, with no external DMA controller involved. This is
also called bus mastering, because when such transfers are occurring the
device becomes the "master of the bus". Bus mastering allows the hard disk
and memory to work without relying on the old DMA controller built into the
system, or needing any support from the CPU. It requires the use of the PCI
bus--older buses like MCA also supported bus mastering but are no longer in
common use. Bus-mastering DMA allows for the efficient transfer of data to
and from the hard disk and system memory. Bus mastering DMA keeps CPU
utilization low, which is the amount of work the CPU must do during a
transfer.

Interestingly, despite the obvious advantages of bus mastering DMA, the use
of bus-mastering multiword DMA mode 2 never really caught on. There are
several reasons for this. The most important was the poor state of support for
the technology for the first couple of years. Using PIO required no work and
was very simple; DMA was not supported by the first version of Windows 95,
so special drivers had to be used. Problems with implementing bus mastering
DMA on systems in the 1996 to 1998 time frame were numerous: issues with
buggy drivers, software the didn't work properly, CD-ROM drives that
wouldn't work with the drivers, and so on. In the face of these problems, DMA
didn't offer much incentive to make the switch. Sure, the lower CPU utilization
was good, but since the maximum DMA mode's speed was the same as that
of the highest PIO mode (16.7 MB/s) there wasn't a great perception that

mehedi hasan
mehedi@joinme.com

453

DMA offered much of an advantage over PIO. Given little upside potential,
many people (including this author) stayed away from using DMA, to avoid
the compatibility and stability problems that sometimes resulted.

Bus mastering DMA finally came into its own when the industry moved on to
Ultra DMA. Once Ultra DMA/33 doubled the interface transfer rate, DMA had
an obvious speed advantage over PIO in addition to its other efficiency
improvements. Support for DMA was also cleaned up and made native in
Windows 9x, and most of the problems with the old drivers were eliminated.
Today, the use of Ultra DMA is the standard in the industry. See here for
details on the Ultra DMA modes.

Next: Ultra DMA (UDMA) Modes

Ultra DMA (UDMA) Modes

With the increase in performance of hard disks over the last few years, the
use of programmed I/O modes became a hindrance to performance. As a
result, focus was placed on the use of direct memory access (DMA) modes. In
particular, bus mastering DMA on the PCI bus became mainstream due to its
efficiency advantages. If you have not yet, you should read the description of
the various DMA modes and how bus mastering DMA works; this will help you
understand this page much better.

Of course, hard disks get faster and faster, and the maximum speed of
multiword DMA mode 2, 16.7 MB/s, quickly became insufficient for the fastest
drives. However, the engineers who went to work to speed up the interface
discovered that this was no simple task. The IDE/ATA interface, and the flat
ribbon cable it used, were designed for slow data transfer--about 5 MB/s.
Increasing the speed of the interface (by reducing the cycle time) caused all
sorts of signaling problems related to interference. So instead of making the
interface run faster, a different approach had to be taken: improving the
efficiency of the interface itself. The result was the creation of a new type of
DMA transfer modes, which were called Ultra DMA modes.

The key technological advance introduced to IDE/ATA in Ultra DMA was
double transition clocking. Before Ultra DMA, one transfer of data occurred on
each clock cycle, triggered by the rising edge of the interface clock (or
"strobe"). With Ultra DMA, data is transferred on both the rising and falling
edges of the clock. (For a complete description of clocked data transfer and
double transition clocking, see this fundamentals section.) Double transition
clocking, along with some other minor changes made to the signaling
technique to improve efficiency, allowed the data throughput of the interface
to be doubled for any given clock speed.

In order to improve the integrity of this now faster interface, Ultra DMA also
introduced the use of cyclical redundancy checking or CRC on the interface.
The device sending data uses the CRC algorithm to calculate redundant
information from each block of data sent over the interface. This "CRC code"
is sent along with the data. On the other end of the interface, the recipient of
the data does the same CRC calculation and compares its result to the code

mehedi hasan
mehedi@joinme.com

454

the sender delivered. If there is a mismatch, this means data was corrupted
somehow and the block of data is resent. (CRC is similar in concept and
operation to the way error checking is done on the system memory.) If errors
occur frequently, the system may determine that there are hardware issues
and thus drop down to a slower Ultra DMA mode, or even disable Ultra DMA
operation.

The first implementation of Ultra DMA was specified in the ATA/ATAPI-4
standard and included three Ultra DMA modes, providing up to 33 MB/s of
throughput. Several newer, faster Ultra DMA modes were added in
subsequent years. This table shows all of the current Ultra DMA modes, along
with their cycle times and maximum transfer rates:

Ultra
DMA
Mode

Cycle Time
(nanoseconds)

Maximum
Transfer Rate
(MB/s)

Defining Standard

Mode 0 240 16.7 ATA/ATAPI-4

Mode 1 160 25.0 ATA/ATAPI-4

Mode 2 120 33.3 ATA/ATAPI-4

Mode 3 90 44.4 ATA/ATAPI-5

Mode 4 60 66.7 ATA/ATAPI-5

Mode 5 40 100.0 ATA/ATAPI-6?

The cycle time shows the speed of the interface clock; the clock's frequency is
the reciprocal of this number (see here for more on clocking.) The maximum
transfer rate is four times the reciprocal of the cycle time--double transition
clocking means each cycle has two transfers, and each transfer moves two
bytes (16 bits). Only modes 2, 4 and 5 have ever been used in drives; I'm not
sure why they even bothered with mode 0, perhaps for compatibility. Ultra
DMA mode 5 is the latest, and is implemented in all currently-shipping drives.
It is anticipated that it will be included in the forthcoming ATA/ATAPI-6
standard.

Note: In common parlance, drives that use Ultra DMA are often called "Ultra
ATA/xx" where "xx" is the speed of the interface. So, few people really talk
about current drives being "Ultra DMA mode 5", they say they are "Ultra
ATA/100".

Double transition clocking is what allows Ultra DMA mode 2 to have a
maximum transfer rate of 33.3 MB/s despite having a clock cycle time
identical to "regular DMA" multiword mode 2, which has half that maximum.
Now, you may be asking yourself: if they had to go to double transition
clocking to get to to 33.3 MB/s, how did they get to 66 MB/s, and then 100
MB/s? Well, they did in fact speed up the interface after all. :^) But the use of
double transition clocking let them do it while staying at half the speed they
would have needed. Without double transition clocking, Ultra DMA mode 5

mehedi hasan
mehedi@joinme.com

455

would have required a cycle time of 20 nanoseconds instead of 40, making
implementation much more difficult.

Even with the advantage of double transition clocking, going above 33 MB/s
finally exceeded the capabilities of the old 40-conductor standard IDE cable.
To use Ultra DMA modes over 2, a special, 80-conductor IDE cable is
required. This cable uses the same 40 pins as the old cables, but adds 40
ground lines between the original 40 signals to separate those lines from each
other and prevent interference and data corruption. I discuss the 80-
conductor in much more detail here. (The 80-conductor cable was actually
specified in ATA/ATAPI-4 along with the first Ultra DMA modes, but it was
"optional" for modes 0, 1 and 2.)

Today, all modern systems that use IDE/ATA drives should be using one of
the Ultra DMA modes. There are several specific requirements for running
Ultra DMA:

1. Hard Disk Support: The hard disk itself must support Ultra DMA. In
addition, the appropriate Ultra DMA mode must be enabled on the
drive.

2. Controller Support: A controller capable of Ultra DMA transfers must
be used. This can be either the interface controller built into the
motherboard, or an add-in IDE/ATA interface card.

3. Operating System Support: The BIOS and/or operating system
must support Ultra DMA transfers, and the hard disk must be set to
operate in Ultra DMA in the operating system.

4. 80-Conductor Cable: For Ultra DMA modes over 2, an 80-conductor
cable must be used. If an 80-conductor cable is not detected by the
system, 66 MB/s or 100 MB/s operation will be disabled. See the
discussion of the 80-conductor cable for more.

On new systems there are few issues with running Ultra DMA, because the
hardware is all new and designed to run in Ultra DMA mode. With older
systems, things are a bit more complex. In theory, new drives should be
backwards compatible with older controllers, and putting an Ultra DMA drive
on an older PC should cause it to automatically run in a slower mode, such as
PIO mode 4. Unfortunately, certain motherboards don't function well when an
Ultra DMA drive is connected, and this may result in lockups or errors. A BIOS
upgrade from the motherboard manufacturer is a good idea, if you are able to
do this. Otherwise, you may need to use a special Ultra DMA software utility
(available from the drive manufacturer) to tell the hard disk not to try to run
in Ultra DMA mode. The same utility can be used to enable Ultra DMA mode
on a drive that is set not to use it. You should use the utility specific to
whatever make of drive you have.

I discuss more issues and considerations for implementing Ultra DMA in the
section on configuration.

Next: 16-Bit and 32-Bit Access

16-Bit and 32-Bit Access

mehedi hasan
mehedi@joinme.com

456

One of the options on some chipsets and BIOSes is so-called 32-bit access or
32-bit transfers. In fact, the IDE/ATA interface always does transfers 16 bits
at a time, reflecting its name ("AT attachment"--the original AT used a 16-bit
data bus and a 16-bit ISA I/O bus). For this reason, the name "32-bit" access
or transfer is somewhat of a misnomer.

Since modern PCs use 32-bit I/O buses such as the PCI bus, doing 16-bit
transfers is a waste of half of the potential bandwidth of the bus. Enabling 32-
bit access in the BIOS (if available) causes the PCI hard disk interface
controller to bundle together two 16-bit chunks of data from the drive into a
32-bit group, which is then transmitted to the processor or memory. This
results in a small performance increase.

Note: Some BIOSes (or add-in controller cards) may automatically and
permanently enable this feature, and therefore not bother to mention it in the
BIOS setup program.

Note: It should be noted that this has nothing to do at all with the very
similar sounding "32-bit disk access" and "32-bit file access" that are options
within Windows 3.x. These have more to do with how Windows and its drivers
function than anything to do with the hard disk itself.

Next: Block Mode

Block Mode

On some systems you will find an option in the system BIOS called block
mode. Block mode is a performance enhancement that allows the grouping of
multiple read or write commands over the IDE/ATA interface so that they can
be handled on a single interrupt.

Interrupts are used to signal when data is ready to be transferred from the
hard disk; each one, well, interrupts other work being done by the processor.
Newer drives, when used with a supporting BIOS allow you to transfer as
many as 16 or 32 sectors with a single interrupt. Since the processor is being
interrupted much less frequently, performance is much improved, and more
data is moving around with less command overhead, which is much more
efficient than transferring data one sector at a time.

Note: Some systems can have trouble running disks in block mode, even if
they are supposed to allow it. You may have better luck with the drive or
system if it is disabled.

Next: IDE/ATA Configuration and Cabling

IDE/ATA Configuration and Cabling

mehedi hasan
mehedi@joinme.com

457

In most respects, IDE/ATA devices are relatively easy to install and configure,
especially if you are only using one, or maybe two. However--you knew it was
coming--the issues get more involved when many devices are to be used,
when older drives are being configured, when mixing hard disks and ATAPI
devices like CD-ROMs, or when using advanced transfer protocols like bus
mastering DMA. The rise to prominence of Ultra DMA in the last few years has
also made configuration and cabling just a bit much more complex,
particularly with the introduction of a new 80-conductor IDE/ATA interface
cable.

This section discusses issues relating to how IDE/ATA devices are set up and
configured. This includes a complete look at how IDE/ATA hard disks are set
up and configured, a discussion of IDE/ATA channels and resources,
descriptions of the interface signals and cables used, and a look at software
driver issues. I discuss various issues and options related to configuring
multiple devices; choosing a better IDE/ATA hard disk configuration can result
in performance improvements for the system, something that many people
don't realize. I also talk a bit about notebook hard disks.

For specific instructions on configuring IDE/ATA devices, check out this
procedure; for directions on physically installing the drive, this one; and for
instructions on connecting the drive to the motherboard, this one.

Next: IDE/ATA Controllers

mehedi hasan
mehedi@joinme.com

458

IDE/ATA Controllers

Every PC system that uses the IDE/ATA interface has at least one IDE/ATA
controller. Now, as soon as you read that, a question probably formed in your
mind: isn't the drive controller built into the drive in IDE, and in fact, wasn't
that the whole point of how the name "IDE" came about? And you're
absolutely right. Unfortunately, naming conventions in the PC world often
leave much to be desired. A device that resides within the system and
interfaces with a peripheral device is often commonly called a "controller",
even though this isn't technically accurate. (As just one other example, the
circuit on the motherboard that interfaces to the keyboard is called a
"keyboard controller" even though keyboards also have their own built-in
controllers.) At any rate, "a rose is a rose" and all that... :^)

So what exactly does this so-called IDE/ATA controller do, if not control the
hard disk? Well, it acts as the middleman between the hard disk's internal
controller and the rest of the system. As such, its less common name is the
more accurate one: IDE/ATA interface controller. The controller (whatever its
name) is what manages the flow of information over the IDE/ATA channels,
allowing the hard disk to talk to the rest of the PC.

Traditionally--meaning: "back in the olden days" :^)--the IDE/ATA controller
was a discrete interface card that plugged into a system expansion slot. The
first IDE/ATA controllers were ISA bus cards. These were functional, and
appropriate for technology of the late 1980s and early 1990s, but the ISA bus
is very slow--throughput was limited to a maximum of about 8 MB/s. Other
uncommon buses of that era such as EISA and MCA also had IDE/ATA
controllers to suit, but those technologies never caught on. The creation of
the VESA local bus meant a great improvement in performance for hard disks
using controllers on that bus. In some cases, multi-function controller cards
were used, providing both IDE/ATA interfacing, floppy drive interfaces and
serial and parallel ports as well.

IDE/ATA controllers were transformed with the creation of the PCI bus in the
mid-1990s, and Intel's decision to integrate the interface control functions
into their new chipsets. Since that time, virtually every new motherboard has
come with the interface controller built in, saving the cost of a separate
controller card and also saving a PCI bus slot. The IDE/ATA cables simply
connect to appropriate connectors on the motherboard; a much simpler
arrangement.

mehedi hasan
mehedi@joinme.com

459

A pair of IDE/ATA interface connectors on a typical motherboard.
If you look closely, you can see the word "PRIMARY" above the top
connector, identifying it as the connector for the primary IDE/ATA channel.

Of course, discrete PCI controllers continue to be made, and they are
relatively inexpensive. These are commonly used for two main reasons: for
expansion, if more IDE/ATA devices need to be used on a system, or to get
around BIOS limitations of the built-in IDE/ATA controllers, enabling access to
larger drives or faster transfer modes. In most cases, it is possible to use
both the built-in and added-in controllers, as long as they are properly
configured--or the built-in controllers can be disabled to free up system
resources.

Tip: Another reason that sometimes add-in controllers are installed in a
system is to provide support for IDE/ATA RAID. You can read more about
RAID in general here.

mehedi hasan
mehedi@joinme.com

460

An after-market, PCI-based IDE/ATA controller (the Promise Ultra66).
Note the PCI interface connector on the bottom. The two
IDE/ATA channel connectors on the top of the card are where
IDE/ATA cables from the drives are attached to the card.

Some time in the next few years, even PCI will eventually become too limiting
to handle the maximum throughput of the fastest IDE/ATA drives. The
practical limit of the standard 32-bit, 33 MHz PCI bus is about 100 MB/s, and
that's already the interface speed of current Ultra DMA/100 drives; maximum
sustained transfer rates are about half that. It won't be long before regular
PCI is just not up to the task. In fact, this is already happening with SCSI,
because SCSI drives are faster and more than one can transfer data at a
time. SCSI host adapters ("controllers") are now showing up using
enhancements to the PCI bus such as 64-bit PCI, or PCI-X.

Note: Add-in ATA controllers may appear to the system as if they were
actually SCSI controllers. This means that they may be listed as SCSI
controllers in the Windows device manager. To enable booting from the
device you may also have to set your BIOS's boot sequence to be SCSI first.
See this page for more on configuration issues.

Next: IDE/ATA Channels and Resource Usage

mehedi hasan
mehedi@joinme.com

461

IDE/ATA Channels and Resource Usage

The data pathway over which information flows in the IDE/ATA interface is
called a channel. Each IDE channel is capable of communicating with up to
two IDE/ATA devices (including ATAPI devices if they are supported by the
BIOS). Despite Western Digital going so far as to define "dual IDE channels"
as part of its enhanced IDE "standard", there has never really been anything
barring the use of more than one IDE/ATA channel in a PC. It just wasn't
regularly done prior to the mid 1990s. Before the popularity of ATAPI CD-
ROMs and removable drives, and plentiful and cheap hard disk storage, the
vast majority of PCs used one or two hard disks on a single IDE channel, and
so a single channel was sufficient.

In fact, it is theoretically possible to configure and use as many as four (or
even more) different IDE/ATA interface channels on a modern PC. There is
nothing inherently different in concept between these channels, although
there can be a difference in terms of how they are implemented. In theory,
they are independent system devices, each using their own set of system
resources. If configured correctly (so they don't try to use the same resources
and therefore conflict), each IDE channel can behave basically independently.

This table shows the names of the four standard IDE channels, and the
resources used by each under "classical" configuration:

Channel
IRQ
Used

I/O
Addresses
Used

Popularity and Support

Primary 14
1F0-1F7h and
3F6-3F7h

Used by all PCs using IDE/ATA

Secondary 15 (10)
170-177h and
376-377h

Present on all modern PCs;
usually used for an ATAPI
optical drive

Tertiary 11 (12)
1E8-1EFh and
3EE-3EFh

Used uncommonly, can have
software support problems

Quaternary 10 or 11
168-16Fh and
36E-36Fh

Very rarely used, can have
software support problems

Note: The I/O address range for the slave device on the primary IDE channel
actually overlaps with the standard address range for the floppy disk
controller. This is in fact not a conflict since this overlap is well known and
accounted for.

As you can see, each IDE/ATA channel has traditionally required both an
interrupt request (IRQ) line and two ranges of I/O addresses. The first two
IDE channels are pretty much standard among all newer PCs, as are the
resources that they use. IRQs 14 and 15 are generally reserved on most
systems for use by the primary and secondary IDE channels, and most newer

mehedi hasan
mehedi@joinme.com

462

PCI motherboards have support for both of these channels built into the
chipset and BIOS, so there are two IDE connectors on the motherboard, one
for the primary channel and one for the secondary. Most operating systems
and other software "know" about these two channels, and software problems
or resource conflicts with them are rare. With the exception of SCSI host
adapters, it was hard to even find an expansion card that will use IRQ 14,
until recently. (SCSI host adapters can replace IDE entirely in a PC so having
them be able to use IRQ 14 can make some sense. Similarly, add-in IDE/ATA
controllers can use IRQ 14 or 15.)

While all modern systems have the primary and secondary IDE controllers
built into the motherboard, some older systems didn't implement both
channels identically. The better systems included full transfer mode support
and bus mastering for both the primary and secondary channels, but some
systems--especially early Pentiums from the mid-1990s--wimped out. In
order to save a few bucks, they included support for the faster PIO modes (3
and 4) only on the primary channel, meaning that the secondary channel
would only run at the lower PIO modes (0, 1 and 2). The idea was that the
primary channel would be used by the main hard disks (fast) and the
secondary channel by extra, older hard disks and ATAPI devices (slow).
Really, having full support on both channels is a much smarter idea, and this
practice has fortunately been abandoned.

The tertiary and quaternary channels have always been far less frequently
used, and software issues with them are far more frequent. There are also
resource issues to be addressed; the IRQs used by the third and fourth
channels can also be "claimed" by other peripherals such as sound cards,
network cards and even PS/2 style mice; see this section on system
configuration. The I/O addresses they use can conflict with network cards,
COM ports, and other devices.

Using the tertiary and quaternary channels requires that additional controllers
be added to the two built into the motherboard (or provided by the existing
controller or controllers). Through the mid-to-late 1990s, the most common
way that a tertiary channel was introduced into a PC was through the use of a
sound card. Many SoundBlaster and compatible sound cards included support
for an IDE/ATA controller that could be configured to implement an IDE/ATA
channel. There are two reasons for this: first, sound cards were commonly
sold in "multimedia kits" that include ATAPI CD-ROM drives, and so this
provides a place for them to be attached. Second, the very first CD-ROMs
were attached to proprietary (non-IDE) ports on early sound cards, so the
trend has continued for historical reasons even into the ATAPI CD-ROM
era.(See here for more on CD-ROM interfacing issues.)

The use of sound cards for IDE/ATA channels causes resource issues, as
mentioned, and just generally isn't the best way to connect a high-speed
device to the system. For starters, many sound cards use the ISA bus,
meaning the IDE/ATA controller is also on the slow ISA bus. This practice has
diminished in recent years, though if you have a sound card and want to run
a slower ATAPI device on it, you can certainly do so. Bear in mind that
software support for the tertiary and quaternary IDE channels is not nearly as
consistent as it is for the primary and secondary channels. For example,

mehedi hasan
mehedi@joinme.com

463

Windows NT 4.0 will not recognize an IDE device attached to a tertiary IDE
channel on a sound card. Most BIOSes also only have space to set up four
IDE/ATA/ATAPI devices. This means that using a tertiary IDE requires some
sort of driver or add-in BIOS support.

Over the last few years, the way that channels are added to a PC has changed
greatly. I said earlier that each channel "traditionally" required separate
resources, but cards like Promise's "Ultra" series support two IDE/ATA
channels while using just a single IRQ line. Further, modern systems running
Windows 95 OEM SR2 or later support the use of PCI IRQ Steering, which
allows several PCI devices to share an interrupt. The combination of these
two has caused the whole issue of system resources for IDE/ATA channels to
be much improved, which is why my discussion of tertiary and quaternary
channels above is largely in the past tense. :^)

Today, the best way of providing support for up to eight IDE/ATA devices
(four channels) is through the addition of one of these PCI-based cards. Doing
so allows you the use of four channels, while taking only three IRQs (two by
the original motherboard channels and one for the card). Support for the card
is provided through a driver provided by the maker of the card. As an
additional bonus, these cards usually support the latest Ultra DMA transfer
modes, and support for large hard disks as well. If you have an older system,
the best way to go is to put the hard disks on the add-in card to get support
for high-speed transfers, and then use the motherboard's channels for slower
ATAPI devices. And as if that weren't enough, these cards cost under $50!

Tip: If you are tight on IRQs in a system, you can add a Promise-type
controller card and disable both of the on-board channels. This leaves you
with support for four devices as before, but only one IRQ is required for the
add-in controller. This is a net gain of one IRQ!

Next: Single, Master and Slave Drives and Jumpering

Single, Master and Slave Drives and Jumpering

Each IDE/ATA channel can support either one or two devices. IDE/ATA
devices of course each contain their own integrated controllers, and so in
order to maintain order on the channel, it is necessary to have some way of
differentiating between the two devices. This is done by giving each device a
designation as either master or slave, and then having the controller address
commands and data to either one or the other. The drive that is the target of
the command responds to it, and the other one ignores the command,
remaining silent.

Note that despite the hierarchical-sounding names of "master" and "slave",
the master drive does not have any special status compared to the slave one;
they are really equals in most respects. The slave drive doesn't rely on the
master drive for its operation or anything like that, despite the names (which
are poorly-chosen--in the standards the master is usually just "drive 0" and
the slave "drive 1"). The only practical difference between master and slave is

mehedi hasan
mehedi@joinme.com

464

that the PC considers the master "first" and the slave "second" in general
terms. For example, DOS/Windows will assign drive letters to the master
drive before the slave drive. If you have a master and slave on the primary
IDE channel and each has only one regular, primary partition, the master will
be "C:" and the slave "D:". This means that the master drive (on the primary
channel) is the one that is booted, and not the slave.

Devices are designated as master or slave using jumpers, small connectors
that fit over pairs of pins to program the drive through hardware. Each
manufacturer uses a different combination of jumpers for specifying whether
its drive is master or slave on the channel, though they are all similar. Some
manufacturers put this information right on the top label of the drive itself,
while many do not; it sometimes takes some hunting around to find where
the jumper pins are on the drive even once you know how the jumpers are
supposed to go. The manufacturers are better about this now than they have
been in the past, and jumpering information is always available in the manual
of the hard disk, or by checking the manufacturer's web site and searching for
the model number. I describe (and illustrate) the jumpers on IDE/ATA disks in
detail in the section on hard disk construction. For a fundamental description
of what jumpers are, see here.

ATAPI devices such as optical, Zip and tape drives are jumpered in pretty
much the same way as hard disks. They have the advantage of often having
their jumpers much more clearly labeled than their hard disk counterparts.
Most optical drives, for example, have three jumper blocks at the back,
labeled "MA" (master), "SL" (slave) or "CS" (cable select).

If you are using two drives on a channel, it is important to ensure that they
are jumpered correctly. Making both drives the master, or both the slave, will
likely result in a very confused system. Note that in terms of configuration, it
makes no difference which connector on the standard IDE cable is used in a
standard IDE setup, because it is the jumpers that control master and slave,
not the cable. This does not apply when cable select is being used, however.
Also, there can be electrical signaling issues if one connects a single drive to
only the middle connector on a cable, leaving the end connector unattached.
In particular, the use of Ultra DMA is not supported in such a configuration;
see the discussion of the 80-conductor Ultra DMA cable for more information.

As long as one drive is jumpered as master and the other as slave, any two
IDE/ATA/ATAPI devices should work together on a single channel.
Unfortunately, some older hard disks will fail to work properly when they are
placed on a channel with another manufacturer's disk. One of the reasons
why drives don't always "play nicely together" has to do with the Drive Active
/ Signal Present (/DASP) signal. This is an IDE/ATA interface signal carried on
pin #39, which is used for two functions: indicating that a drive is active
(during operation), and also indicating that a slave drive is present on the
channel (at startup). Some early drives don't handle this signal properly, a
residue of poor adherence to ATA standards many years ago. If an older slave
drive won't work with a newer master, see if your master drive has an "SP"
(slave present) jumper, and if so, enable it. This may allow the slave drive to
be detected.

mehedi hasan
mehedi@joinme.com

465

Drive compatibility problems can be extremely frustrating, and beyond the
suggestion above, there usually is no solution, other than separating the
drives onto different channels. Sometimes brand X won't work as a slave
when brand Y is the master, but X will work as a master when Y is the slave!
Modern drives adhere to the formal ATA standards and so as time goes on
and more of these older "problem" drives fall out of the market, making all of
this less and less of a concern. Any hard disk bought in the last five years
should work just fine with any other of the same vintage or newer.

When using only a single drive on a channel, there are some considerations to
be aware of. Some hard disks have only a jumper for master or slave; when
the drive is being used solo on a channel it should be set to master. Other
manufacturers, notably Western Digital, actually have three settings for their
drives: master, slave, and single. The last setting is intended for use when
the drive is alone on the channel. This type of disk should be set to single,
and not master, when being used alone.

Also, a single device on an IDE channel "officially" should not be jumpered as
a slave. In practice, this will often work despite being formally "illegal". Many
ATAPI drives come jumpered by default as slave--because they are often
made slaves to a hard disk's master on the primary IDE channel, this saves
setup time. However, for performance reasons they are sometimes put on the
secondary channel, and often the system assemblers don't bother to change
the jumpers. It will work, but I don't recommend it; if nothing more, it's
confusing to find a slave with no master when you or someone else goes back
into the box a year or two later to upgrade.

For performance reasons, it is better to avoid mixing slower and faster
devices on the same channel. If you are going to share a channel between a
hard disk and an ATAPI device, it is generally a good idea to make the hard
disk the master. In some situations there can be problems slaving a hard disk
to an optical drive; it will usually work but it is non-standard, and since there
is no advantage to making the ATAPI device the master, the configuration is
best avoided.

There are many more performance considerations to take into account when
deciding how to jumper your IDE devices, if you are using several different
ones on more than one channel. Since only one of the master and slave can
use any channel at a time, there are sometimes advantages to using more
than one IDE/ATA channel even if not strictly necessary based on the number
of devices you are trying to support. There can also be issues with using a
drive that has support for a fast transfer mode like Ultra DMA with older
devices that don't support these faster modes. See this section for a
discussion of performance issues and IDE/ATA configuration.

Next: Configuration Using Cable Select

Configuration Using Cable Select

An alternative to the standard master/slave jumpering system used in the
vast majority of PCs is the use of the cable select system. As the name

mehedi hasan
mehedi@joinme.com

466

implies, with this system the cable--or more correctly, which connector on the
cable a device is attached to--determines which device is master and which is
slave. The goal of cable select is to eliminate having to set master and slave
jumpers, allowing simpler configuration.

To use cable select, both devices on the channel are set to the "cable select"
(CS) setting, usually by a special jumper. Then, a special cable is used. This
cable is very similar in most respects to the regular IDE/ATA cable, except for
the CSEL signal. CSEL is carried on wire #28 of the standard IDE/ATA cable,
and is grounded at the host's connector (the one that attaches to the
motherboard or controller). On a cable select cable, one of the connectors
(the "master connector") has pin #28 connected through to the cable, but the
other (the "slave connector") has an open circuit on that pin (no connection).
When both drives on the channel are set cable select, here's what happens:

• Master: The device that is attached to the "master connector" sees
the CSEL signal as grounded, because its connector has pin #28
attached to the cable, and the host's connector has that signal
grounded. Seeing the "zero value" (grounded), the device sets itself to
operate as master (device 0).

• Slave: The drive that is attached to the "slave connector" does not see
the CSEL signal as grounded, because its connector is not attached to
the CSEL signal on the cable. Seeing this "no connection", the device
configures itself as a slave (device 1).

If you switch the devices between the two connectors, they swap
configuration, the master becoming the slave and vice-versa. Not a very
complicated arrangement, and a good idea, it would seem. In fact, if cable
select had actually caught on, it would have been great. The problem is that it
has never been widely used, and this lack of universality has made cable
select unattractive, which is a bit of a chicken and egg situation. Since cable
select was never accepted in the industry, most drives come, by default, with
the drive jumpered as a master or single drive. This means that to enable
cable select, you have to change a jumper anyway, which obviously negates
some of the advantage.

But the biggest reason why cable select never caught on was the cable itself.
From the very beginning, all 40-conductor IDE/ATA cables should have been
made so that they would work with cable select. There's actually no need to
have different cable types, because if you set a drive to "master" or "slave"
explicitly, it just ignores the CSEL setting. So a cable select cable can be used
either way: regular jumpering or cable select.

Unfortunately, regular 40-conductor IDE/ATA cables don't support cable
select. (Why this came about I do not know, but I suspect that some bean
counter determined they could save five cents on each PC by doing this.) So
to use cable select you need a special cable, and these are of course non-
standard, making them a special purchase. Also, many people don't
understand cable select, nor do they realize it needs a special cable. If you
set both drives to "CS" and then use them on a regular (non-cable-select) IDE
cable, both drives will configure themselves as "master", causing a
configuration conflict.

mehedi hasan
mehedi@joinme.com

467

Making matters worse, the 40-conductor IDE/ATA cable select cables have the
"master connector" as the middle device and the "slave connector" as the
device at the end of the cable, farthest from the host. For signaling reasons,
it's best to put a single drive at the end of a cable, not put it in the middle
leaving a "stub" of wire hanging off the end of the channel. But if you do this,
that single drive sets itself as a slave with no master, a technically illegal
configuration. Worse, suppose you do this, and your hard disk sets itself as a
slave, and the system boots from it without problem, as most would. Then,
you decide to add a new hard disk. You set it to cable select and attach it to
the middle connector. The new drive then becomes the master, and thus
moves ahead of the old drive in precedence! The system will try to boot from
it instead of your old drive (which some people might want, but many do
not.)

To get around this problem, a second type of 40-wire cable select cable was
created, the so-called "Y-shaped" cable. On this one, the connector to the
system is in the middle, and the slave and master connectors are on the two
opposite ends of the cable. This certainly makes things less confusing, but has
its own difficulties. For starters, IDE/ATA cables are very limited in length,
which means this "Y-shaped" cable was hard to use in large tower systems.
All your drives had to be mounted very close to the motherboard or controller
card so the cable would reach. And again, the cable was a special item.

As you can see, the traditional way of doing cable select was a total mess,
which was why it was never widely adopted. The key reason for this mess
was--once again--lack of standardization. I rather expected cable select to
eventually wither away. However, when the 80-conductor Ultra DMA cable
was introduced, the cable select feature was much improved, changing the
potential of this feature. The two key changes were:

• Drive Position: Unlike the old cables, with the 80-conductor cable,
the master connector is at the end of the cable, and the slave is in the
middle. As I explained above, this is a much more sensible
arrangement, since a single drive placed at the end of the cable will be
a master, and a second drive added in the middle a slave.

• Universality: All 80-conductor IDE/ATA cables support cable select
(or at least, all of the ones that are built to meet the ATA standards).
This means there's no confusion over what cables support the feature,
and no need for strange "Y-cables" and other non-standard solutions.

These two changes mean a world of difference for the future of cable select.
Since these cables will eventually completely replace all of the 40-conductor
cables, all systems will be capable of running cable select without any special
hardware being needed. As I mentioned before, you can still explicitly set
drives to master or slave if you want to, and the CSEL signal will be ignored
by the drives. So the bottom line is that these cables work either way, cable
select or not. What will finally make cable select catch on? If drive
manufacturers and systems integrators widely agree to use it, and the
manufacturers start shipping drives with the "CS" jumpers on by default.
We'll have to see if this happens.

mehedi hasan
mehedi@joinme.com

468

Warning: 80-conductor IDE/ATA cables are often said to be compatible with
40-conductor cables. That's true of normal 40-conductor cables with drives
jumpered as master and slave, but not cable select cables. If you swap a
regular (non-"Y-shaped") 40-conductor cable select cable with an 80-
conductor IDE cable, the master and slave drives will swap logical positions. If
you don't that to happen, you'll need to change the order that the devices
connect to the cable.

Note: A special thanks to Hale Landis of www.ata-atapi.com for his
assistance in deciphering the mysteries of cable select, especially with the 80-
conductor cable.

Next: IDE/ATA Connectors and Signals

IDE/ATA Connectors and Signals

Standard IDE/ATA hard disks and ATAPI devices use two different connectors.
The first is the data connector, to which the IDE/ATA cable attaches. The
second is the power connector, which comes from the power supply, and of
course, provides power to the drive. The power connectors are standardized
and discussed in more detail in this construction page, and this power supply
page. The data connectors and signals I will describe below.

Let's begin with the signals themselves. There are 40 wires in a regular
IDE/ATA cable, so it's no surprise that there are 40 corresponding signals.
(Incidentally, the newer 80-conductor cable uses the same pins and signals.
For compatibility, and because the 40 extra conductors that were added are
just grounds, the pin assignments are the same.) The table below lists the
names of the signals, along with the pin number of the standard connector
that each uses:

Pin

Signal
Pin

Signal

1 -RESET 2 GROUND

3 DD7 4 DD8

5 DD6 6 DD9

7 DD5 8 DD10

9 DD4 10 DD11

11 DD3 12 DD12

13 DD2 14 DD13

15 DD1 16 DD14

17 DD0 18 DD15

mehedi hasan
mehedi@joinme.com

469

19 GROUND 20 (key)

21 DMARQ 22 GROUND

23 -DIOW: STOP 24 GROUND

25 DIOR:-HDMARDY:HSTROBE 26 GROUND

27
IORDY:-
DDMARDY:DSTROBE

28 CSEL

29 -DMACK 30 GROUND

31 INTRQ 32 (reserved)

33 DA1 34 -PDIAG:-CBLID

35 DA0 36 DA2

37 -CS0 38 -CS1

39 -DASP 40 GROUND

(For a general description of what signals are, and what the "dash" ("-XXX")
notation means, see this page.)

Now, I'm not going to describe all of these signals in detail; if you are
interested in learning all about them, you should order the latest IDE/ATA
standard and read up all about the signaling. However, I do have a few
explanatory notes:

• Pins 3 through 18: These are the 16 data lines used for transferring
data over the interface.

• Pin 20: This is a "key" location, used for orientation; see below for
more.

• Pin 28: This is the cable select signal used for cable select operation.
• Pin 32: This was once known as "/IOCS16" but is not currently used.
• Pin 34: This pin is used (in part) to detect the presence of an 80-

conductor IDE/ATA cable for Ultra DMA operation; see here for more.

The data connectors for IDE/ATA are standardized. Drives and hosts
(controllers) have male connectors consisting of two rows of 20 pins, with a
plastic "fence" surrounding them. Cables have female connectors with two
rows of 20 holes for the pins. There are two ways that these connectors are
supposed to be keyed for proper orientation (to prevent the cable from being
inserted into the drive or controller upside-down). On the male connectors,
pin #20 is supposed to be missing, and on the cable, the hole for pin #20 is
supposed to be blocked. Also, the female (cable) connectors are supposed to
have a tab in the middle on top that matches a gap in the plastic surrounding
the male pins. If you tried to put a cable in upside-down, these keyings would
prevent insertion.

Unfortunately, yet again, these measures were never standardized. Some
drives and controllers were produced that had pin #20 in place, even if it was

mehedi hasan
mehedi@joinme.com

470

not used, and some did not have the "gap" in the plastic surrounding the
pins. If you used a properly-designed cable with an improperly-constructed
drive or controller, the cable wouldn't fit. To avoid this, many IDE/ATA cable
makers just said "to heck with it" and made the cables with no plastic tab on
the connectors, and no block for hole #20. As a result, the entire orientation
scheme fell apart, so one must be careful to line up pin #1 on the cable with
pin #1 on the drive. There is usually a red stripe on the edge of the cable on
the side where pin #1 is, but it's still easy to get the cable backwards.
Fortunately, the standard data connector has no live power signals, so
damage is not typical if the cable is inserted upside-down (though the drive
won't work that way, of course!)

An IDE/ATA interface connector on a hard disk (above) and on a
regular 40-conductor IDE/ATA cable (below). Note the keying features
on the hard disk connector: pin #20 is missing, and there's a gap
in the plastic surrounding the pins (top middle). However, these features
are not matched on the cable: hole #20 has not been plugged, and
there's no notch on the top of the connector. This is a common
situation, which is why IDE/ATA cables can be and often are inserted
improperly, unless you are careful to install them the right way. You must
look for the red stripe on the cable (see it?) that marks pin #1, and then
find which is pin #1 on the hard disk drive or motherboard connector.

Note: The 2.5" form factor drives used in notebook PCs use different
connectors and are attached differently. See this page for details.

Next: Standard (40-Conductor) IDE/ATA Cables

Standard (40-Conductor) IDE/ATA Cables

mehedi hasan
mehedi@joinme.com

471

Each IDE/ATA channel uses one IDE/ATA cable. The cable that has been used
for over a decade on this interface was once just called "an IDE cable", since
there was only one kind (with the exception of special cable select cables.)
Today, however, there is also the new 80-conductor Ultra DMA cable; to avoid
confusion, I refer to the old cable as a standard 40-conductor cable.

A standard IDE cable is a rather simple affair: a flat ribbon cable, normally
gray in color, with a (usually red) stripe running down the edge. The cable
has 40 wire connectors in it, and usually has three identical female
connectors: one is intended for the IDE controller (or motherboard header for
PCs with built in PCI ATA controllers) and the other two are for the master
and slave devices on the interface. The stripe is used to line up pin 1 on the
controller (or motherboard) with pin 1 on the devices being connected, since
the techniques used for keying the cables are not standardized. For more
information on IDE/ATA connectors and signals, see this page.

A standard, 40-wire IDE/ATA cable. Note the presence of three black
connectors, and the 40 individual wires in the ribbon cable. (Go ahead,
get that magnifying glass out and count 'em. :^)) Also note the red
wire that marks wire #1 and hence pin #1 on each connector.

Some cheapskate PC makers that ship PCs with only one IDE device per
channel save a few pennies by using an interface cable that has only two
connectors. This means you can't use two IDE devices on a channel, unless
you replace the cable with one that has three connectors. Fortunately this is
easy to do, and the cables are cheap and readily available at most any store
that sells computer supplies and parts (this is also a great component to buy
cheap at a computer show). Even more fortunately, most companies don't do
this any more.

In many ways, the cable is the weak link in the IDE/ATA interface. It was
originally designed for very slow hard disks that transferred less than 5 MB/s,

mehedi hasan
mehedi@joinme.com

472

not the high-speed devices of today. Flat ribbon cables have no insulation or
protection from electromagnetic interference. Of course, these are reasons
why the 80-conductor cable was developed for Ultra DMA. However, even
with slower transfer modes there are limitations on how the cable can be
used.

The main issue is the length of the cable. The longer the cable, the more the
chance of data corruption due to interference on the cable and uneven signal
propagation, and therefore, it is often recommended that the cable be kept as
short as possible. According to the ATA standards, the official maximum
length is 18 inches, but if you suspect problems with your hard disk you may
find that a shorter cable will eliminate them. Sometimes moving where the
disks are physically installed in the system case will let you use a shorter
cable.

Warning: There are companies that sell 24" and even 36" IDE cables. They
are not recommended because they can lead to data corruption and other
problems. Many people use these with success, but many people do a lot of
things they shouldn't and get away with it. :^)

In terms of its mechanics, the IDE cable could certainly be much better
designed as well. As described here, a keying mechanism exists to prevent
incorrect cable insertion, but it's not universally implemented. This means
there is the risk of inserting the cable backwards--the red stripe on the cable
should be used to align pin 1 of the IDE/ATA device with pin 1 of the
controller's connector port. Also, the cable has no latching mechanism, so it is
not very securely attached to the hard disk or the motherboard. If you work
inside the box and apply any pressure on the cable by accident, it can easily
come loose (sometimes only partially) which will lead to device failure.
Fortunately, neither backwards insertion or a partially loose cable usually
cause any permanent damage--your hard disk just won't work.

Assuming cable select is not being used, any connector on a standard 40-
conductor cable can go to any device, because all 40 wires are connected
"straight through" to all three connectors. Since two of the connectors are
closer to each other than the third, the distant connector is normally attached
to the motherboard (or hard disk controller card). The other two devices can
be used for either the master or the slave, and it doesn't matter which is
which. If a single device is used, it should be attached to the connector at the
end of the cable, and the connector in the middle of the cable left unattached.
Using the middle connector and leaving the end connector unattached is
technically allowed for regular PIO and DMA transfer modes, but leaves part
of the cable "dangling". This is called a stub and creates much worse electrical
characteristics on the cable, due to reflections from the unterminated ends of
the cable wires. It is not recommended.

Tip: The new 80-conductor cable is compatible with regular 40-conductor
cables (not cable select cables). If you are having integrity problems with an
older system using a 40-conductor cable, try replacing it with one of the
newer cables, which are superior electrically to the older design. Many people
now use the 80-conductor cables exclusively on all systems, even ones not

mehedi hasan
mehedi@joinme.com

473

using Ultra DMA.

Next: Ultra DMA (80-Conductor) IDE/ATA Cables

Ultra DMA (80-Conductor) IDE/ATA Cables

There are a lot of issues and problems associated with the original 40-
conductor IDE cable, due to its very old and not very robust design.
Unterminated flat ribbon cables have never been all that great in terms of
signal quality and dealing with reflections from the end of the cable. The
warts of the old design were tolerable while signaling speeds on the IDE/ATA
interface were relatively low, but as the speed of the interface continued to
increase, the limitations of the cable were finally too great to be ignored.

In the ATA/ATAPI-4 standard that introduced the Ultra DMA transfer mode
set, a new cable was introduced to replace the old standby: the 80-conductor
IDE/ATA cable. The name is important: the new cable has 80 conductors
(wires)--it does not have 80 pins on each connector, though, just 40. This
means that the new cable is pin-compatible with the old drive. No change has
been made to the IDE/ATA connectors, aside from the color-coding issue (see
below).

The obvious question, of course, is this: what's the point of adding 40 extra
wires to a cable if they aren't connected to anything? :^) Well for starters,
the 40 wires are connected to something, just not their own pins on the
interface connectors. The extra 40 wires don't carry new information, they are
just used to separate the "real" 40 signal wires, to reduce interference and
other signaling problems associated with higher-speed transfers. So the 40
extra conductors are connected to ground, interspersed between the original
40 conductors of the old cable. Any stray signals that would "cross-talk"
between adjacent wires on the 40-conductor cable are "absorbed" by these
extra ground wires, improving signal integrity. The extra ground wires can be
either all of the even-numbered wires, or all of the odd-numbered wires in the
cable.

There are a number of other attributes and characteristics of the 80-
conductor cable, which I'm going to list in bullet form for easier absorption:

• Requirement: The 80-conductor cable was first defined with the
original Ultra DMA modes 0, 1 and 2, covering transfer speeds up to
33.3 MB/s. The cable is considered "optional" for those modes.
However, for any Ultra DMA modes above mode 2, the 80-conductor
cable is mandatory.

• Detection: Since the cable is mandatory for high-speed modes, the
system has to have some way of knowing it is installed. This is done
by having the /PDIAG:/CBLID signal, carried on pin #34 of the
interface, grounded in the connector that attaches to the motherboard.
Since the older 40-conductor cable would not have this pin grounded,
by looking for the grounding on this pin at startup the host can
determine if the 80-conductor cable is installed.

mehedi hasan
mehedi@joinme.com

474

• Cable Select Support and Drive Assignment: All 80-conductor
cables that meet the ATA specifications support the cable select
feature automatically. This is accomplished by special connection of
the CSEL signal on pin #28. The cable can still be used with drives that
have been manually configured as master or slave, of course. See the
discussion of cable select for more.

• Connector Assignments and Color Coding: For the first time, the
80-conductor cable defines specific roles for each of the connectors on
the cable; the older cable did not. Color coding of the connectors is
used to make it easier to determine which connector goes with each
device:

o Blue: The blue connector attaches to the host (motherboard or
controller).

o Gray: The gray connector is in the middle of the cable, and
goes to any slave (device 1) drive if present on the channel.

o Black: The black connector is at the opposite end from the host
connector and goes to the master drive (device 0), or a single
drive if only one is used.

There are a couple of reasons why this coding was done. The main one
is the issue mentioned in the discussion of the 40-conductor cable: it is
not a good idea to connect a single drive to the middle connector on a
ribbon cable, because the "stub" of left-over, unconnected cable
causes signaling problems. With Ultra DMA this "stub" connection is
not just "not recommended", it is illegal: a single device must be at
the end of the cable. The other reason is that since these cables
support cable select inherently, the position of each drive on the cable
matters if cable select is being used. With these two needs combined,
it just made sense to design the cable so that drive positioning was
explicitly clear.

mehedi hasan
mehedi@joinme.com

475

A standard 80-conductor Ultra DMA IDE/ATA interface cable.
Note the blue, gray and black connectors, and the 80 thin wires.
The red marking on wire #1 is still present (but hard to see in this photo.)

• Width: Despite the extra 40 wires, the 80-conductor cable is about
the same width as a 40-conductor cable--which is good, because the
current width is difficult enough to work with. :^) This bit of "magic" is
accomplished by using thinner, lower-gauge wires within the cable.

A comparison of the wires used in 80-conductor and 40-conductor cables.
The 80-conductor cable is about the same width as the older style
because thinner gauge wires are used to make up the ribbon.

mehedi hasan
mehedi@joinme.com

476

Aside from the above, the cable can be treated the same way as a 40-
conductor cable. Since it is of higher quality, it can be used in place of a 40-
conductor cable in older systems without any issues. However, it does not
directly replace a 40-conductor cable select cable. Note also that the 18"
length restriction associated with the original 40-conductor cable applies to
this variation as well.

Next: Notebook IDE/ATA Configuration

Notebook IDE/ATA Configuration

Notebook PCs are very similar to desktop PCs in terms of overall architecture,
but very different in implementation. Hard disks and hard disk interfaces are
certainly no exception to this general rule of thumb. Virtually all notebooks
have built-in hard disks using the IDE/ATA interface, but the way they are
actually connected the machine is not the same as for desktop PCs.

Hard disks are installed in notebooks in two very different ways--which
method is used on a particular model depends on the decisions made by the
engineers that created it. The first is a proprietary installation, where the hard
disk is just rammed "in there somewhere"; the second is an open or
removable installation. The differences between the two are pretty obvious. If
a notebook has a proprietary hard disk installation, it probably still uses the
regular IDE/ATA interface, but the drive is attached using special cables and
connectors, and is not intended to be touched by the user. Needless to say,
this is a very inflexible arrangement, because if you ever need or want to
replace or upgrade the drive, you have to refer to qualified service personnel
for service. This was the most common way of putting hard disks into
notebooks during their early years.

Most modern hard disks today use the open arrangement; unlike the
proprietary installations these are probably easier to install and remove than
the hard disks in a regular PC! A typical hard disk will use a special hard disk
bay that has room for a standard, 2.5" form factor hard disk. Bays differ
between models, especially in terms of the height of the drive, but the form
factor itself is pretty much standardized at this point; you can read more
about it here. The advantages of a standard interface are obvious:
interchangeability and competition (allowing you choices between drive
makers).

The usual method of attachment of notebook hard disks is through a special
44-pin connector that includes all of the signals needed by the drive, instead
of the usual 40-pin data connector and 4-pin power connector. This provides
the basis for allowing the drives to be quickly and easily removed and
replaced. The drive itself uses a regular set of straight pin connectors, just
like a desktop drive. Since these pin connectors are not well-suited for easy
insertion and removal from a notebook, the drive is mounted into a special
carrier or "caddy". This device includes as part of its hardware an adapter
which converts the regular pins into a single connector designed for drive
swapping. The technique used for this attachment is very similar in concept to

mehedi hasan
mehedi@joinme.com

477

the SCA connectors used for some types of SCSI drives (though the two are
obviously very different in all but this concept.)

The first 40 signals on a notebook's connector are the same as those of the
regular 40-pin connector; the additional four signals are defined as follows:

Pin

Signal
Pin

Signal

41 +5 V (logic) 42 +5 V (motor)

43 GROUND 44 (reserved)

You may immediately notice that there is no +12 V connection as exists for
regular drives, because 2.5" form factor drives have 5-volt motors. Two
separate +5 lines are provided; one for the motor and the other for the hard
disk's circuit board.

Underside of a 2.5" form factor notebook hard drive.
You can see the main connector, with its two rows of
22 pins (the second row is hard to see). On the right
are two more pins which are used for jumpers.
To see what this drive looks like in a caddy, complete
with its single attachment connector, see this page

Notebooks are of course very limited in space, so "expansion" is usually not
an option, at least not using the built-in IDE/ATA interface. The hard disk
usually is assigned as the single device on the primary IDE/ATA channel, and
the drive's optical drive (if any) assigned to the secondary. There's no way to
decide to add a second device to these channels on a typical notebook.
Expanding a notebook to add a second hard disk is usually done using one of
the specialty interfaces such as USB or PCMCIA.

Next: Independent Master/Slave Device Timing

Independent Master/Slave Device Timing

Since the transfer modes associated with the IDE/ATA interface are constantly
being improved, new devices support faster transfer modes than older ones
do. In addition, hard disks often support faster transfer modes than ATAPI
devices such as optical drives do. Yet, these devices can be combined on the

mehedi hasan
mehedi@joinme.com

478

same IDE/ATA channel, raising the question of compatibility when the devices
are together.

The ability of an IDE/ATA channel to operate a master and slave device using
different transfer modes is called independent device timing. The hard disk
controllers integrated on modern chipsets all pretty much support
independent timing, as do modern add-in controllers, but this was not always
the case. Independent timing can be an issue if, for example, you upgrade an
older PC and get a new, high-speed drive, but want to continue to be able to
use the older one on the same channel with the new one.

If your system does not support independent device timing, and you use a
newer hard disk that supports PIO mode 4 on the same channel as an older
hard disk that operates only at PIO mode 0, the system will knock down the
PIO mode to 0 for both drives. This will hamper the performance of the newer
hard disk. The lack of independent device timing on many older systems is
one reason why placing ATAPI devices like CD-ROMs on the same channel as
a fast hard disk is usually not recommended. (It should be pointed out that
we are talking here about the interface or external transfer speed of these
devices. Reducing the speed of the interface only causes big issues if the
effective interface speed becomes less than the sustained transfer rate of the
disk. For a full discussion of these issues, please see this page.)

Again, today's chipsets all pretty much support independent timing, so this is
less of an issue than it once was. However, there are still other good reasons
to be careful about how you assign drives to the IDE/ATA channels in your
system; see this page for a full discussion of these issues.

Note: It is not possible to use PIO modes to control one device on a channel
and DMA (or Ultra DMA) modes to control the other one. Do not mix devices
that don't support DMA with ones that do on the same channel, if you want to
use DMA.

Next: Windows Drivers and DMA Support

Windows Drivers and DMA Support

Traditionally, support for IDE/ATA hard disks has been provided by the
system BIOS and operating system. This support was at first limited the
simple programmed I/O (PIO) access modes. Over time, the IDE/ATA world
has moved away from PIO towards DMA modes. At first this was because
DMA modes allow hard disk transfers to occur without excessive CPU
utilization--PIO modes drag down the CPU while DMA modes allow transfers
to occur while letting the CPU do other things. With the introduction of Ultra
DMA, DMA support became that much more important.

DMA began to rise in popularity at around the time the first version of
Windows 95 was released. Unfortunately, Windows 95 "A" did not have native
support for first-party bus mastering DMA, so special drivers had to be added
to support DMA. These frequently caused compatibility and stability issues,

mehedi hasan
mehedi@joinme.com

479

and it took several years for DMA support to "mature". Starting with the
second OEM-only release of Windows 95 ("OEM SR2", "Windows 95b") DMA
support was provided by the operating system. Windows 98 and Windows ME
also provide built-in support for DMA operation, and DMA works quite well
today.

On modern systems, DMA support should be enabled by default. You can
check for DMA support by looking in the Device Manager. From the Control
Panel, open "System", then click the "Device Manager" tab. Open the icon for
"Disk drives", and then highlight the drive you are interested in. Click
"Properties" and then the "Settings" tab. Among the other settings you should
find a "DMA" check box, which should be checked. If it is not, try checking it
to enable DMA support. If you then reboot and the check box does not stay
checked, this probably means your system does not support Ultra DMA; try
looking on this page to be sure you meet all the requirements.

The "Settings" page for a DMA-capable hard disk under Windows 95,
accessed through the Control Panel. Note the DMA checkbox.

Note: Hard drives connected to some Ultra DMA add-in controllers will not
display a "DMA checkbox". Since these cards are designed primarily to
provide Ultra DMA support, they don't bother showing it as an explicit option.

mehedi hasan
mehedi@joinme.com

480

Next: Performance Factors and Tradeoffs in Configuring for Multiple
Devices

mehedi hasan
mehedi@joinme.com

481

Performance Factors and Tradeoffs in Configuring for Multiple Devices

Configuring a single IDE/ATA or ATAPI device is very simple. You pretty much
just need to jumper it, and then connect it with an IDE/ATA cable, and you
are usually done. Setting up more than one device is really not much more
complicated. Except for some special cases, you just jumper pairs as master
and slave (or use cable select) and use both the primary and secondary
channels to get support for up to four devices. You can also add additional
IDE/ATA channels to get support for up to eight devices, although these
involve a bit more work and slightly more risk of resource issues or other
complications.

While setting up multiple devices isn't difficult, there are real performance
reasons why it makes sense to put some thought into how you decide to
allocate different drives to different IDE channels, and which to make master
and which slave. As time goes on, the trend in more and more systems is
towards more and more drives. As more removable drives are implemented
using ATAPI, and as PC users add new hard disks to their systems in greater
numbers, many PC users are finding that they have to figure out how to
arrange all these drives in a way that makes sense. A common occurrence is
a PC user who starts out with a new PC that has just a hard disk and a CD-
ROM drive. Over a couple of years, it's easy to add to this a CD-RW drive for
backups or making music, and a new hard disk to improve performance or
expand capacity. Suddenly, whammo, you're looking at four IDE/ATA devices,
and probably only the original two IDE/ATA channels. Some are surprised to
find themselves juggling five or even six IDE/ATA drives in a single PC!

The following are some of the issues that you should take into account when
configuring multiple IDE/ATA devices, to maximize the performance of your
system:

• Master/Slave Channel Sharing: By its very nature, each IDE/ATA
channel can only deal with one request, to one device, at a time. You
cannot even begin a second request, even to a different drive, until the
first request is completed. This means that if you put two devices on
the same channel, they must share it. In practical terms, this means
that any time one device is in use, the other must remain silent. In
contrast, two disks on two different IDE/ATA channels can process
requests simultaneously on most motherboards. The bottom line is
that the best way to configure multiple devices is to make each of
them a single drive on its own channel, if this is possible. (This
restriction is one major disadvantage of IDE compared to SCSI). An
add-in controller like the Promise "Ultra" series is a cheap way of
adding extra IDE/ATA channels to a modern PC.

• Boot Devices and Boot Order: The boot device of the PC is usually
the first hard disk that the operating system "sees" when it boots up.
By default, this means the master drive on the primary IDE/ATA
channel. If you want to boot from a drive on an add-in controller, you
may actually need to set up your BIOS boot sequence to boot from
SCSI first, so the add-in controller is seen before the ones on the
motherboard. (These controllers often "look" like SCSI controllers to
the system.) This is only an issue if you have hard disks on both the

mehedi hasan
mehedi@joinme.com

482

existing and the add-in controller; if you have hard disks on the add-in
controller but not on the built-in motherboard controllers, this won't be
necessary.

• Independent Master/Slave Device Timing: Hard disk controllers
on modern systems support running the master and slave device at
different speeds, if one supports faster transfer modes than the other.
Some systems, however, especially older ones, do not. If you are
using two devices with radically different maximum transfer rates, and
the chipset doesn't support independent timing, you will slow down the
faster device to the speed of the slower one.

• Hard Disk and ATAPI Device Channel Sharing: There are several
reasons why optical drives (or other ATAPI devices) should not be
shared on the same channel as a fast hard disk. ATAPI allows the use
of the same physical channels as IDE/ATA, but it is not the same
protocol; ATAPI uses a much more complicated command structure.
Opticals are also generally much slower devices than hard disks, so
they can slow a hard disk down when sharing a channel. Finally, some
ATAPI devices cannot deal with DMA bus mastering drivers, and will
cause a problem if you try to enable bus mastering for a hard disk on a
channel they are using.

• Older Hard Disks: Older hard disks, typically those three years in age
or more, typically only support the older, low-speed PIO modes for
transfers (check the drive's specifications to be sure). In this case, the
caveats about hard disk performance matter much less, since the drive
is relatively slow anyway.

• Interface Bus Type: High-speed transfer modes require the use of a
local bus (PCI or VLB) hard disk controller. ISA-based controllers, such
as regular sound cards that are sometimes used as tertiary IDE
channels, are not suitable for use with high-speed modern disks.

• IRQ Resource Usage: Each conventional IDE channel requires an
IRQ line, and in some PCs these are a scarce commodity. In some
cases devices can be combined on a single channel with minimal
impact on performance, allowing the reclamation of one or more IRQs
for use by other peripherals. Add-in controllers can also provide you
with two channels on a single IRQ; see here for more.

For information on how to use these factors to choose configurations for
different combinations of IDE/ATA and ATAPI devices, see this page.

Next: Recommended IDE Device Configurations

Recommended IDE Device Configurations

Based on the IDE/ATA configuration performance factors outlined in this
section, I have identified what I think are sensible configuration options for
setting up IDE channels for different hard disk and ATAPI device
combinations. These recommendations are oriented towards maximizing
overall system performance, and are based primarily on my experience and
understanding of the IDE/ATA interface and the way most people use their
systems.

mehedi hasan
mehedi@joinme.com

483

The following is a list of assumptions and notes regarding these
recommended configurations:

• Systems vary more today in terms of how many IDE/ATA channels
they have, and of what type, than ever before. I cannot list every
possible configuration, and I certainly am not going to bother with the
ones that obviously make no sense.

• The best setup depends to a great extent on the needs of the
individual, so use the recommendations on this page as guidelines
only. Do what works for you.

• If at all possible, the best configuration is always to have each device
on a separate channel. Of course, not all channels are created equal.
Hard disks and faster ATAPI devices should always be on a channel
connected to the PCI bus (or VLB for 486-class systems). Older or
slower ATAPI devices like slower CD-ROMs or tape drives can be
connected to an ISA-bus tertiary channel such as the one on a sound
card, though this is still usually not optimal.

• I am assuming that the channels on the motherboard, and any
channels on an add-in controller, have the same support for transfer
modes and hard disk size. If an add-in card is installed in an older
system to provide support for faster transfer modes not supported by
the integrated controllers, or to get around a hard disk size barrier,
then newer, larger drives should be connected to those channels, and
the built in controllers used for older devices. Note that booting from a
drive connected to an add-in card may require a change to the BIOS
boot sequence setting. See here for more.

• Some people are most concerned with absolute performance, and are
willing to use extra controllers to get it, even if it costs them extra
IRQs. Other people don't have IRQs to burn and may not even want to
use the secondary IDE controller. I assume that most people will not
disable the secondary IDE/ATA channel just to save an IRQ, though
this is an option if you have only two devices.

• Finally, remember that choosing an ideal drive configuration is really
an optimization; in most cases the differences between various
alternatives are not enormous.

These are my recommendations for the more common mixtures of up to five
hard disks and/or ATAPI (optical, tape, removable storage) drives:

Hard
Disks

ATAPI
Devices

Notes

1 0

This is fairly uncommon today, since almost all systems
have at least one optical drive. The best configuration is to
use the primary master for the hard disk and disable the
secondary controller (to save one IRQ).

1 1

The most common default configuration. Unless system
resources are very tight, put the hard disk as a single drive
on the master channel, and the ATAPI drive on the
secondary channel.

mehedi hasan
mehedi@joinme.com

484

2 1

The best configuration is to put each device on a separate
channel through the use of a third IDE/ATA channel. If only
two channels are available, it is generally best to put the
fastest drive as a single device on the primary channel, the
second hard disk as the master on the secondary channel,
and the ATAPI as the slave on the secondary.

1 2

This is a common configuration when a second ATAPI
device is added to a new system; the best configuration
depends on what that device is. In general, put the hard
disk by itself and share the secondary channel between the
two ATAPI drives. However, if your two drives are a CD-
ROM and a CD-RW drive, and you are doing a lot of
copying from the CD-ROM drive to the CD-RW, you may
have better luck separating those devices onto separate
channels.

2 2

For optimal performance, buy an add-in controller card and
use all four channels for the four devices. If you have three
channels, then put the boot drive by itself on the primary
channel, and then split the remaining three devices on the
secondary and tertiary channels as described in the row
just above. If you have only two channels, there are
several options. I would put the fastest drive as the boot
device on the primary master, and whatever drive is the
least used as the slave on that channel. Then put the other
two devices on the secondary channel. Avoid putting drives
that can't be run in Ultra DMA with the boot device.

3 1

Fairly similar configuration to the two rows above. Use four
channels if possible. If there are three put the two slowest
devices together. If there are only two channels, configure
as for the 2+2 option above.

1 3 Same as for 3+1 just above.

3 2

If you have more than four devices, you will need to add a
controller to get a third IDE/ATA channel--or get rid of one
of your devices. ;^) The best option is to add a PCI-based
IDE/ATA controller card, which will give you four channels.
If this is the case, put the three fastest or more used
devices on their own channels, and the two slowest
devices together. If you have three channels, put the boot
drive by itself and split the other four drives up over the
remaining two channels as described in the discussion for
the 2+2 case.

2 3 Same as for 3+2 just above.

Next: Small Computer Systems Interface (SCSI)

mehedi hasan
mehedi@joinme.com

485

Small Computer Systems Interface (SCSI)

The second-most popular hard disk interface used in PCs today is the Small
Computer Systems Interface, abbreviated SCSI and pronounced "skuzzy".
SCSI is a much more advanced interface than its chief competitor, IDE/ATA,
and has several advantages over IDE that make it preferable for many
situations, usually in higher-end machines. It is far less commonly used than
IDE/ATA due to its higher cost and the fact that its advantages are not useful
for the typical home or business desktop user.

In terms of standards, SCSI suffers from the same problem that IDE/ATA
does: there are too many different ones and it can be hard to understand
what is what. Fortunately, this situation is coming under control now. Also,
SCSI standards aren't as much of a problem as they are for IDE/ATA, because
in the SCSI world, each SCSI protocol has a name that indicates rather clearly
what its capabilities are, and there is much less reliance on using the name of
the standard to infer transfer rates and other characteristics. Unfortunately,
there is still a lot of confusion if you try to figure out the standards
themselves and what each one means. And there are still manufacturers
playing fast and loose with how they label their drives.

SCSI is a much higher-level protocol than IDE is. In fact, while IDE is an
interface, SCSI is really a system-level bus, with intelligent controllers on
each SCSI device working together to manage the flow of information on the
channel. SCSI supports many different types of devices, and is not at all tied
to hard disks the way IDE/ATA is--ATAPI supports non-hard-disk IDE devices
but it is really a kludge of sorts. Since it has been designed from the ground
up as almost an additional bus for peripherals, SCSI offers performance,
expandability and compatibility unmatched by any other current PC interface.

In this section of the site I describe the SCSI interface in detail. I begin with
an overview of the interface and a brief history. I then discuss SCSI
standards, focusing on the ones of most relevance to today's PC SCSI user. I
then examine the various protocols and features of the interface, followed by
the popular transfer modes and feature sets used. I then discuss practical
implementation matters, including SCSI host adapters, cable and connector
types, and configuration issues.

Note: Despite the fact that IDE stands for "integrated drive electronics", and
that IDE and SCSI are "competing" interfaces, SCSI devices all have
integrated drive controllers. IDE is really a misnomer for the IDE/ATA
interface.

Note: Most of the attention in this section is oriented towards "regular"
parallel SCSI, as commonly used on PCs. The SCSI-3 standard also defines
several other "cousins" of parallel SCSI; these are mentioned briefly, but
parallel SCSI is the focus, since it continues to be the most widely
implemented.

mehedi hasan
mehedi@joinme.com

486

Next: Overview and History of the SCSI Interface

Overview and History of the SCSI Interface

What we currently know of as the SCSI interface had its beginnings back in
1979. Shugart Associates, led by storage industry pioneer Alan Shugart (who
was a leader in the development of the floppy disk, and later founded Seagate
Technology) created the Shugart Associates Systems Interface (SASI). This
very early predecessor of SCSI was very rudimentary in terms of its
capabilities, supporting only a limited set of commands compared to even
fairly early "true" SCSI, and rather slow signaling speeds of 1.5
Mbytes/second. For its time, SASI was a great idea, since it was the first
attempt to define an intelligent storage interface for small computers. The
limitations must be considered in light of the era: we are talking about a time
when 8" floppy drives were still being commonly used. :^)

Shugart wanted to get SASI made into an ANSI standard, presumably to
make it more widely-accepted in the industry. In 1981, Shugart Associates
teamed up with NCR Corporation, and convinced ANSI to set up a committee
to standardize the interface. In 1982, the X3T9.2 technical committee was
formed to work on standardizing SASI. A number of changes were made to
the interface to widen the command set and improve performance. The name
was also changed to SCSI; I don't know the official reason for this, but I
suspect that having Shugart Associates' name on the interface would have
implied that it was proprietary and not an industry standard. The first "true"
SCSI interface standard was published in 1986, and evolutionary changes to
the interface have been occurring since that time. (You can read more about
SCSI standards here.)

It's important to remember that SCSI is, at its heart, a system interface, as
the name suggests. It was first developed for hard disks, is still used most for
hard disks, and is often compared to IDE/ATA, which is also used primarily for
hard disks. For those reasons, SCSI is sometimes thought of as a hard disk
interface. (I must admit that placing my SCSI coverage in my own hard disk
interfaces section certainly suggests this as well!) However, SCSI is not an
interface tied specifically to hard disks. Any type of device can be present on
the bus, and the very design of SCSI means that these are "peers" of sorts--
though the host adapter is sort of a "first among equals". :^) My point is that
SCSI was designed from the ground up to be a high-level, expandable, high-
performance interface. For this reason, it is frequently the choice of high-end
computer users. It includes many commands and special features, and also
supports the highest-performance storage devices.

Of course, these features don't come for free. Most PC systems do not provide
native, "built in" support for SCSI the way they do for IDE/ATA, which is one
of the key reasons why SCSI isn't nearly as common as IDE/ATA in the PC
world. Implementing SCSI on a PC typically involves the purchase of a
storage device of course, but also a special card called a host adapter. Special
cables and terminators may also be required. All of this means that deciding
between SCSI and IDE/ATA is an exercise in tradeoffs.

mehedi hasan
mehedi@joinme.com

487

SCSI began as a parallel interface, allowing the connection of devices to a PC
or other systems with data being transmitted across multiple data lines.
Today, parallel or "regular" SCSI is still the focus of most SCSI users,
especially in the PC world. SCSI itself, however, has been broadened greatly
in terms of its scope, and now includes a wide variety of related technologies
and standards, as defined in the SCSI-3 standard.

Next: SCSI Standards

SCSI Standards

There was a time that SCSI standards were relatively few, and not that
difficult to understand. That time is now long past. :^) In some ways, the
best way I could describe the current situation regarding SCSI standards,
feature sets and marketing terms is that it makes the standards and terms
associated with IDE/ATA seem simple by comparison. That would really be a
rather strong indictment, however, so I won't say that. ;^) Still,
understanding all of the documents and labels associated with SCSI can be
very baffling at times.

It's not that the standards are poorly written, or that the technology is all that
hard to understand. The main issue with SCSI today is that it has become so
broad, and includes so many different protocols and methods, that it's hard to
get a handle on all of it. The confusion surrounding SCSI standards has
increased since the creation of SCSI-3, which is really a collection of different
standards, some of them rather different from each other. The situation is
made worse by manufacturers that like to create funky new "unofficial
names" for transfer modes or feature sets, or apply overly-broad labels to
specific hardware.

As described in the page describing the history of SCSI, the first organization
that was charged with developing the first SCSI standard was ANSI technical
committee X3T9.2. Today, SCSI standards are developed, maintained and
approved by a number of related organizations, each playing a particular role.
Here's how they all fit together:

• American National Standards Institute: ANSI is usually thought of
as an organization that develops and maintains standards, but in fact
they do neither. They are an oversight and accrediting organization
that facilitates and manages the standards development process. As
such, they are the "high level management" of the standards world.
They qualify other organizations as Standards Developing
Organizations or SDOs. ANSI also publishes standards once they have
been developed and approved.

• Information Technology Industry Council: ITIC is a group of
several dozen companies in the information technology (computer)
industry. ITIC is the SDO approved by ANSI to develop and process
standards related to many computer-related topics.

• National Committee for Information Technology: NCITS is a
committee established by ITIC to develop and maintain standards
related to the information technology world. NCITS was formerly

mehedi hasan
mehedi@joinme.com

488

known under the name "Accredited Standards Committee X3,
Information Technology", or more commonly, just "X3". It maintains
several sub-committees that develop and maintain standards for
various technical subjects.

• T10 Technical Committee: T10 is the actual technical standards
committee responsible for the SCSI interface.

Note: If this description looks similar to the one on the page where I defined
the structure of the organizations supporting the T13 technical committee
that develops ATA standards, that's because it is. T10 and T13 are sibling
committees.

If you boil all of this down, T10 is the group that actually does the work of
developing new SCSI standards. ;^) The other organizations support their
activities. The T10 group is comprised primarily of technical people from
various hard disk and other technology companies, but the group (and the
development process itself) is open to all interested parties. Comments and
opinions on standards under development are welcomed from anyone, not
just T10 members. The standards development process is intended to create
consensus, to ensure that everyone who will be developing hardware and
software agrees on how to implement new technology.

Once the T10 group is done with a particular version of a standard, they
submit it to NCITS and ANSI for approval. This approval process can take
some time; which is why the official standards are usually published several
years after the technology they describe is actually implemented. While
approval of the standard is underway, companies develop products using
technology described in the standard, confident that agreement has already
been reached. Meanwhile, the T10 group starts work on the next version of
the standard. With SCSI-3 now including a number of different "sub-
standards" (hmm, bad name :^)), it is in some ways constantly "under
development".

There are also other organizations that are involved in the creation and
maintenance of SCSI-related standards. Since SCSI-3 has a broad scope, it
defines and structures certain standards that are in fact "owned" by other
groups. In particular, the documents describing the physical layer for Fibre
Channel are developed by the T11 technical committee, and the IEEE-1394
interface is of course an IEEE standard.

In this section I describe the three main standards that define SCSI. They are
listed in chronological order, and SCSI-3 is expanded into its own full section,
reflecting its new status as an "umbrella" standard containing several others.

Note: Standards that have been approved and published by ANSI are
available for purchase in either print form or electronic format from ANSI's
web site. Draft standards that are under development (as well as older drafts
of approved standards) can be found at the T10 Technical Committee web
site.

mehedi hasan
mehedi@joinme.com

489

Tip: If there's a SCSI term or "standard" that you are looking for information
on but can't find in this section, it might in fact be a transfer mode or feature
set.

Warning: You may occasionally see a hardware device being sold based on
the name of a standard; for example, a "SCSI-3 drive". Be aware that this is
a meaningless label, because it is very vague. With the possible exception of
SCSI-1, the standards define several different transfer speeds and signaling
methods, so just giving the name of a standard is insufficient information to
properly describe a SCSI device. With SCSI-3 especially, the label could mean
just about anything--always ask for specifics.

Next: SCSI-1

SCSI-1

SCSI evolved from the Shugart Associates Systems Interface or SASI, which
was originally created in 1979. The first SCSI standard was approved by ANSI
in 1986 as standard X3.131-1986. To avoid confusion when subsequent SCSI
standards came out, the original specification was later renamed "SCSI-1".

SCSI-1 defines the basics of the first SCSI buses, including cable length,
signaling characteristics, commands and transfer modes. It was quite limited,
especially by today's standards, and defined only the most fundamental of
SCSI features and transfer modes. Devices corresponding to the SCSI-1
standard use only a narrow (8-bit) bus, with a 5 MB/s maximum transfer rate.
Only single-ended transmission was supported, with passive termination.
There were also difficulties associated with the standard gaining universal
acceptance, due to the fact that many manufacturers implemented different
subsets of its features. The standard did not call for all devices to implement
support for the same commands, so there was no guarantee that any given
device would work with any other!

SCSI-1 is now obsolete, and the standard has in fact been withdrawn by
ANSI. Devices that adhere to the SCSI-1 standard can in most cases be used
with host adapters and other devices that use the higher transfer rates of the
more advanced SCSI-2 protocols, but they will still function at their original
slow speed.

Note: Since all SCSI-1 devices are single-ended, they may cause
performance degradation if placed onto a multimode LVD SCSI bus. If you
want to run LVD devices to their full potential, you will want to avoid mixing
them with single-ended devices.

Next: SCSI-2

SCSI-2

mehedi hasan
mehedi@joinme.com

490

In 1985, a year before the SCSI-1 standard was formally approved, work
began on the SCSI-2 specification. Important goals of this evolution of the
SCSI standard were to improve performance, enhance reliability, and add
features to the interface. However, the most important objective was to
formalize and properly standardize SCSI commands. After the confusion that
arose from the non-standardized implementations of original SCSI, a working
paper was created to define a set of standard commands for SCSI hard disks,
called the common command set or CCS. This paper eventually formed the
basis for the new SCSI-2 standard. SCSI-2 was approved by ANSI in 1994
and released as document X3.131-1994.

Note: The SCSI-2 standard was originally released in 1990 as X3.131-1990,
but it was retracted for further changes and didn't actually get formally
approved until four years later. You may see reference to the 1990 version of
the standard on occasion; there are actually few differences between it and
the 1994 version.

SCSI-2 is an extensive enhancement of the very limited original SCSI. The
command set used for SCSI devices was standardized and enhanced, and
several confusing "options" removed. In addition, the standard defines the
following significant new features as additions to the original SCSI-1
specification:

• Fast SCSI: This higher-speed transfer protocol doubles the speed of
the bus to 10 MHz, meaning 10 MB/s transfer rate with 8-bit regular
SCSI cabling or even higher when used with Wide SCSI.

• Wide SCSI: The width of the original SCSI bus was increased to 16
(or even 32) bits. This permits more data throughput at a given
signaling speed. Wide SCSI eventually replaced original "narrow" SCSI
buses for the fastest drives.

• More Devices per Bus: On buses that are running with Wide SCSI,
16 devices are supported (as opposed to 8 with regular SCSI).

• Improved Cables and Connectors: As discussed in detail here, SCSI
uses a large number of different cable and connectors. SCSI-2 defined
new higher-density connections, extending the basic 50-pin connectors
defined in SCSI-1.

• Active Termination: Termination is an important technical
consideration in setting up a SCSI bus. SCSI-2 defined the use of
active termination, which provides more reliable termination of the
bus.

• Differential Signaling: To allow longer cable lengths, differential
signaling was introduced. (This was later renamed "high-voltage
differential" to distinguish it from low voltage differential (LVD)
signaling.)

• Command Queuing: One of SCSI's strengths is its ability to allow
multiple outstanding requests between devices on the bus,
simultaneously. Command queuing was introduced in SCSI-2.

• Additional Command Sets: SCSI-2 added new command sets to
support the use of more devices such as CD-ROMs, scanners and
removable media. The older command set focused more on hard disks.

mehedi hasan
mehedi@joinme.com

491

There were also several other minor changes to the standard, mostly low-
level technical changes that I don't really need to get into. It is important to
note that one of the major design criteria in the creation of SCSI-2 was
backward compatibility with SCSI-1. SCSI-2 devices will in most cases work
with older SCSI-1 devices on a bus. This is not always done, however,
because the older devices have no ability to support the SCSI-2
enhancements and faster transfer protocols.

Note: SCSI-2 is not the same as Ultra2 SCSI, which is a much newer and
higher-performance feature set.

Next: SCSI-3

SCSI-3

Work on the next version of the SCSI standard, called SCSI-3 of course,
began in 1993. At the time, a large number of different technologies,
command sets and features were being considered for SCSI. At the time
SCSI-3 work started, the SCSI-2 standard was eight years old and had not
yet been formally released; SCSI-2 was also a much bigger document than
SCSI-1 had been. Considering how much more technology was vying for
inclusion in SCSI-3, and how many different parties would have been involved
in defining it, trying to do everything in one large document as had been done
with SCSI-1 and SCSI-2 would have been a bad idea. The standard would
have been much too long, would have required too many people to work on
it, and development of hardware would have been held up during discussions
of the standard. Standards that take too long to develop, or that are too
cumbersome, get ignored by impatient companies that start developing their
own proprietary extensions. If this happens, it causes a lot of confusion in the
industry.

Recognizing the potential for problems here, the decision was made to make
SCSI-3 not one huge standards document, but rather a collection of different,
but related standards. Splitting up SCSI into these different sub-documents
has allowed for a "divide and conquer" strategy that enables multiple
standards to be worked on at once by different groups. In addition, it lets
popular technologies advance at a faster rate than ones where changes are
needed less frequently. Keeping all the standards together under one
"banner" helps to ensure that the commands and other common attributes
used between technologies remain synchronized.

Unfortunately, SCSI-3 tries to bite off a lot; some would say, more than it can
chew. Within this umbrella standard are over a dozen other standards that
define command sets, protocols and signaling methods related to SCSI and
"SCSI-like" interfaces such as IEEE-1394 and Fibre Channel. Each of these
documents has its own standards name and is revised independently of the
others. For example, the most implemented form of SCSI, that which was
formerly known as just "SCSI" in the earlier standards, became the SCSI-3
Parallel Interface (SPI) under SCSI-3. There are now several versions of SPI,
each defining new features and transfer speeds for conventional, parallel SCSI

mehedi hasan
mehedi@joinme.com

492

devices. (In some cases, other organizations are involved in maintaining the
documents, such as the T11 technical committee for Fibre Channel.) The large
number of different technologies that all fall under the name "SCSI-3" has
caused many people to be confused by that term. And since all of these
constituent standards documents are constantly changing, it's unclear when
(or even if) the overall "SCSI-3" standard will be formally approved!

In this section I discuss SCSI-3 in a fair bit of detail. I start by describing the
basic architecture of the standard, and then describe very briefly the various
standards that make up SCSI-3. I then focus most of my attention on several
revisions of the SPI parallel specification, because these are the standards
used by PC SCSI hard disks and other devices.

Note: As this section will amply demonstrate, saying that a device is "SCSI-
3" or "SCSI-3 compatible" can mean anything--which of course is the same as
saying it means nothing. Two devices labeled "SCSI-3" may not even use the
same physical interface or commands! If you ever see a device advertised in
this manner, be sure to get clarification on what is meant: specific details on
the interface type and signaling method.

Note: It seems that the standards committee is trying to drop the "-3"
designation from all of the SCSI-3 standards documents. The stated reason is
that each standard is revised, it gets its own "dash number" extension. For
example, the second SPI parallel specification is SCSI-3 Parallel Interface - 2.
Some people thought the "-3" in "SCSI-3" would be confused with the dash
number at the end of the document name, so they are dropping it and just
calling SCSI-3 "SCSI" within these documents. Frankly, I wish they wouldn't
do this--every time folks in the computer industry rename documents to
"avoid confusion", they create more. :^)

Next: SCSI-3 Architecture

SCSI-3 Architecture

Since SCSI-3 defines a number of different standards, each covering different
aspects of SCSI, it is necessary to organize these into a format that defines
how they relate to each other, and the goals of the interface as a whole. This
structure is called the architecture of SCSI-3. SCSI-3 architecture is defined
by a document called the SCSI-3 Architecture Model or SAM, which has been
approved as ANSI standard X3.270-1996. The T10 technical committee is also
currently working on a revision to this document, called the SCSI-3
Architecture Model - 2 or SAM-2. (SAM-2 is actually on its 14th revision at the
time of this writing; it's been in progress for over four years!)

The SCSI-3 Architecture Model has several functions. An important one is to
organize and categorize the various other standards that fall under SCSI-3.
This serves to structure these standards in a way that makes sense to SCSI
standards developers, hardware designers and users. The structure defines
broad, generic requirements at a high level, which are refined to more specific
low-level requirements through the use of particular implementation

mehedi hasan
mehedi@joinme.com

493

standards. Most of the different SCSI-3 documents fall into the following three
general categories:

• Commands: These are standards that define specific command sets
for either all SCSI devices, or for particular types of SCSI devices.

• Protocols: These standards formalize the rules by which various
devices communicate and share information, allowing different devices
to work together. These standards are sometimes said to describe the
transport layer of the interface.

• Interconnects: These are standards that define specific interface
details, such as electrical signaling methods and transfer modes. They
are sometimes called physical layer standards as well.

The protocols and interconnects are often closely related, with a particular
interconnect document typically being associated with a specific protocol
standard. In some cases, especially lately, the protocol and interconnect
standards are being combined into a single document. All of these standards
are tied together by the architecture model, and also by the Common Access
Method or CAM, which defines software services for host systems (computers)
to interface with SCSI devices.

The architecture model is also responsible for providing much of the
"foundation" for the other standards. This is important, because while the
standards are developed and enhanced independently of each other, they
must share certain common features if SCSI-3 is to remain a coherent
standard as a whole. The SAM documents define high-level models of how
SCSI works, requirements that apply to all SCSI implementations, and some
of the fundamentals of how SCSI devices should be identified and addressed.
The architecture model documents also serve as a single, unified place where
common terms and concepts are defined. This is useful from a practical
standpoint, to avoid the confusion that would result if the various SCSI-3
standards used inconsistent definitions for key terms and acronyms.

For a list and brief description of the standards defined in the SCSI-3
architecture, see the next page.

Next: Overview of SCSI-3 Standards

mehedi hasan
mehedi@joinme.com

494

Overview of SCSI-3 Standards

The SCSI-3 standard is a family of other standards, as I have mentioned.
These standards are organized into a structure as defined by the SCSI-3
architecture documents, which categorize the other documents into several
groups. On this page I will list, and briefly describe, the documents that make
up the SCSI-3 standard family. I am not going to get into too much detail
here, as most of these standards will be of only passing interest to the PC
user--even one who uses SCSI hardware. :^)

Note: These documents are constantly being updated as a result of ongoing
work. While current as of this writing in late 2000, every month documents
are revised and change status. For the latest status, or to download drafts of
any documents under development, see the T10 technical committee web site
or the other web sites referenced below.

The first group are the command sets, which define commands used for
various SCSI commands. These include the following:

Command
Set

Description Document
Abbreviation
and
Generation

Status
Standard
or Project

SPC Published
X3.301-
1997

SPC-2
Pending
Publication

T10 1236-
D

Shared

Commands
defined for
all SCSI
devices

SCSI-3
Primary
Commands

SPC-3 Development
T10 1416-
D

SBC Published
NCITS.306-
1998

Block

Commands
defined for
random-
access
devices that
transfer
data in
blocks, such
as hard
disks

SCSI-3
Block
Commands

SBC-2 Development
T10 1417-
D

Block
(Reduced)

A
"simplified"
version of
the block
command
set

SCSI-3
Reduced
Block
Commands

RBC Published
NCITS.330-
2000

Stream Commands
for

SCSI-3
Stream

SSC Published
NCITS.335-
2000

mehedi hasan
mehedi@joinme.com

495

streaming,
sequential-
access
devices such
as tape
drives

Commands

SSC-2 Development
T10 1434-
D

SMC Published
NCITS.314-
1998

Medium
Changer

Commands
for medium-
changing
devices such
as tape or
disk
"jukeboxes"

SCSI-3
Medium
Changer
Commands SMC-2 Development

T10 1383-
D

MMC Published
X3.304-
1997

MMC-2 Published
NCITS.333-
2000

Multimedia

Commands
for
"multimedia
devices"
(typically,
optical
drives)

SCSI-3
Multimedia
Commands

MMC-3 Development
T10 1363-
D

Multimedia
(Reduced)

A
"simplified"
version of
the
multimedia
command
set

SCSI-3
Reduced
Multimedia
Commands

RMC Development
T10 1364-
D

SCC Published
X3.276-
1997

Controller
Commands
for RAID
controllers

SCSI-3
Controller
Commands

SCC-2 Published
NCITS.318-
1998

Enclosure
Services

Commands
for SCSI
device
enclosures

SCSI-3
Enclosure
Services

SES Published
NCITS.305-
1998

Object
Based
Storage
Devices

Defines an
object-
oriented
command
set for
accessing
data

Object
Based
Storage
Device
Commands

OSD Development
T10 1355-
D

The other two groups of standards are protocols and interconnects. Protocols
define how data is interchanged, and transports describe the physical ways
that protocols are implemented. They are closely related and in some cases

mehedi hasan
mehedi@joinme.com

496

now are defined by a single document, which makes them a bit difficult to
present in an organized way. I will start by discussing the various protocols
(also called transports by some):

Protocol Description Document
Abbreviation
and
Generation

Status
Standard
or Project

Interlocked
(Parallel
Bus)

Defines the
protocol for
"regular"
parallel
SCSI

SCSI-3
Interlocked
Protocol

SIP

Withdrawn;
now
incorporated
into later
versions of
the SCSI-3
Parallel
Interface

--

FCP Published
X3.269-
1996

Fibre
Channel

Defines the
protocol for
running
SCSI on the
Fibre
Channel
interface

SCSI-3
Fibre
Channel
Protocol FCP-2

Pending
Publication

T10 1144-
D

SBP Withdrawn --

Serial Bus

Defines the
protocol for
transporting
commands
over the
IEEE-1394
(serial)
interface

Serial Bus
Protocol

SBP-2 Published
NCITS.325-
1998

Serial
Storage
Architecture
SCSI-3
Protocol

SSA-S3P Published
NCITS.309-
1998

Serial
Storage
Architecture

Defines the
transport
layer for
Serial
Storage
Architecture,
an advanced
interface
used in
servers and
enterprise
hardware;
there are
two
documents
that specify
the protocol

Serial
Storage
Architecture
Transport
Layer

SSA-TL2
Published
(replaced
SSA-TL1)

NCITS.308-
1998

mehedi hasan
mehedi@joinme.com

497

Finally, this table shows the interconnect standards, also sometimes called
physical layer documents (since they describe how devices are physically
connected):

Whew. Well, you can certainly understand now why some people find SCSI-3

"a bit confusing". :^) I hope that this "road map" helps to make things a bit
more clear for my readers though!

Next: SCSI(-3) Parallel Interface (SPI)

SCSI-3 Parallel Interface (SPI)

Interconnect Description Document
Abbreviation
and
Generation

Status
Standard
or Project

SPI Published
X3.253-
1995

Fast-20
(addendum to
SPI)

Published
X3.277-
1996

SPI-2 Published
X3.302-
1999

SPI-3
Pending
Publication

T10 1302-
D

Parallel Bus

Describes
the
electrical
signaling,
connectors
and related
issues
associated
with
"regular"
parallel
SCSI;
starting with
SPI-2 these
include the
formerly
separate
SIP protocol
document

SCSI-3
Parallel
Interface

SPI-4 Development
T10 1365-
D

Fibre
Channel

Several documents define alternative physical layer standards for
Fibre Channel; these are maintained by the T11 technical committee
and include Fibre Channel Arbitrated Loop (FC-AL) and several
revisions of the Fibre Channel Physical Interface (FC-PHx)

Serial Bus
The physical layer standards for the serial bus (IEEE-1394) are
developed by the IEEE High Performance Serial Bus Bridges Working
Group (P1394)

SSA-PH Published
X3.293-
1996

Serial
Storage
Architecture

Defines the
physical
connections
for the
Serial
Storage
Architecture
interface

Serial
Storage
Architecture
Physical
Layer SSA-PH2 Published

NCITS.307-
1998

mehedi hasan
mehedi@joinme.com

498

When the decision was made to expand the scope of SCSI-3 to include a
number of different physical interfaces and protocols, what had been "just
SCSI" had to be given a more specific name. Since "regular SCSI" uses a
parallel bus (many wires transferring data in parallel), this technology became
known as the SCSI-3 Parallel Interface or SPI. The first description of the
parallel interface was accomplished in a rather confusing way, through the
use of three different documents (see this page for more details on the
standards documents):

• Protocol: The protocol for parallel SCSI was defined in a document
entitled SCSI-3 Interlocked Protocol (SIP).

• Physical Layer: The physical layer was defined in the SCSI-3 Parallel
Interface or SPI document, ANSI standard X3.253-1995. This
specification only called for bus speeds of up to 10 MHz, which is so-
called "Fast SCSI", first defined in SCSI-2.

• Fast-20: This is an addendum to the original SPI document, published
as ANSI standard X3.277-1996. It defined faster 20 MHz bus signaling,
increasing maximum throughput to as much as 40 MB/s on the SCSI
bus.

Taken collectively, these are sometimes called Ultra SCSI or Wide Ultra SCSI,
which are really informal or marketing terms; sometimes, Ultra SCSI refers
specifically to the faster signaling rates themselves. Aside from the faster
signaling, which allows for speeds of up to 20 MB/s on narrow (8-bit) SCSI
buses or 40 MB/s on wide (16-bit) buses, the other main change associated
with SPI is the creation of new cabling. Wide buses previously required two
cables, a cumbersome solution that was never widely accepted. SPI
introduced the high-density, 68-pin "P" cable and connectors now widely used
for faster SCSI buses.

This collection of documents was "retired" in 1999 and replaced with a single
document, SPI-2.

Next: SCSI(-3) Parallel Interface - 2 (SPI-2)

SCSI(-3) Parallel Interface - 2 (SPI-2)

The second generation of the SCSI-3 parallel interface standard is called the
SCSI(-3) Parallel Interface - 2, or SPI-2. (The "-3" was dropped from "SCSI-
3" to uh... reduce confusion. Sure. :^)) This ANSI standard, document
X3.302-1999, replaced the older SPI standard, and also incorporated the
SCSI-3 Interlocked Protocol (SIP) document. Thus, SPI-2 included everything
from the earlier SCSI-2, SPI, SIP and Fast-20 documents--as well as adding
some new features of course. SPI-2 formally replaced the earlier collection of
SPI documents in 1999, and in doing so simplified matters significantly, since
at least now everything associated with parallel SCSI was back in one
document.

Several important new technologies and features were defined as part of SPI-
2; the most important changes are the following:

mehedi hasan
mehedi@joinme.com

499

• Fast-40 Data Transfer: SPI-2 defines another doubling of the
maximum speed of the SCSI bus, from 20 MHz to 40 MHz, allowing
maximum throughput of 40 MB/s on a narrow (8-bit) channel or 80
MB/s on a wide (16-bit) channel. The document also defines several
restrictions associated with these faster signaling speeds, such as the
use of differential signaling.

• Low Voltage Differential Signaling: A new type of signaling for the
SCSI bus, called low voltage differential or LVD signaling, was specified
as part of SPI-2. LVD is an attempt to blend the best attributes of
conventional single-ended (SE) signaling and the older type of
differential signaling that is now called high voltage differential (HVD).
LVD (or the older HVD) is required to run the SCSI bus at Fast-40
speeds; you can read more about it here.

• Multimode Operation: Specification is provided for a way to create
devices that will automatically work on both LVD and regular single-
ended buses; such units are called multimode devices. They are also
discussed in the section on LVD.

• SCA-2 Single Connector Attachment Connectors: An improvement
to the original SCA connectors, called SCA-2, was defined.

• Very High Density Connectors: SPI-2 defined a smaller version of
the older high-density 68-pin connectors. This new standard is called
Very High Density Cable Interconnect, abbreviated VHDCI. Read more
about them here.

Note: The features defined as part of SPI-2 are sometimes referred to by the
informal (marketing) terms Ultra2 SCSI.and Wide Ultra2 SCSI.

Next: SCSI(-3) Parallel Interface - 3 (SPI-3)

SCSI(-3) Parallel Interface - 3 (SPI-3)

The third generation of the SCSI parallel interface is, unsurprisingly, called
the SCSI(-3) Parallel Interface - 3 or SPI-3. This document builds upon the
physical and protocol definitions of the SPI-2 document. It is in the process of
approval at the time of this writing, so it has no ANSI standard number yet,
but should be published by early 2001 (it's T10 project 1302-D).

Five main features were added to parallel SCSI in the SPI-3 standard:

• Fast-80(DT) Data Transfer: Reflecting the continuing appetite for
speed on the SCSI bus, data transfer rates were again doubled, this
time to 160 MB/s on a wide bus. This was accomplished not by
increasing the speed of the bus from 40 MHz to 80 MHz, but rather
through the use of double transition clocking; thus the "DT" sometimes
found in the name for this signaling speed. See here for more.

• Cyclic Redundancy Check (CRC): This is a common error checking
protocol used to ensure data integrity. It was added as a safety
measure since transfer speeds were being increased, leading to the
possibility of data corruption.

mehedi hasan
mehedi@joinme.com

500

• Domain Validation: This feature improves the robustness of the
process by which different SCSI devices determine an optimal data
transfer rate; read more about it here.

• Quick Arbitration and Selection (QAS): This feature represents a
change in the way devices determine which has control of the SCSI
bus, providing a small improvement in performance.

• Packetization: Another small change to improve performance,
packetization reduces the overhead associated with each data
transfer; it is described here.

Other, smaller changes were also made. SPI-3 also does some "cleanup" of
the parallel SCSI standard, by making obsolete several older features that
either never caught on in the industry, or were replaced with superior ways of
accomplishing the same tasks:

• High Voltage Differential: With the widespread adoption of low
voltage differential, the older "high voltage" differential became
unnecessary. Since it was never very popular, it was removed from
the standard.

• 32-Bit Bus Width: Introduced in SCSI-2, the 32-bit parallel SCSI
option never caught on in the industry and was finally removed from
the specification in SPI-3.

• SCAM: SPI-3 removed the "SCSI Configured AutoMatically" (SCAM)
feature, which was a good idea but never was universally adopted and
sometimes led to configuration problems. In doing so, the SCSI world
was mercifully rid of one of the worst acronyms in the history of the
computer industry. :^)

• Narrow High-Speed Transfers: Narrow (8-bit) SCSI hasn't been
technically "made obsolete", but 8-bit transfers are not defined for
Fast-80 transfers. (Considering that faster transfer modes are used to
get more throughput, increasing data transfer speeds while staying on
an 8-bit bus never really made much sense.)

Unfortunately, despite the lessons that should have been learned in the past
regarding what happens when standards aren't kept universal, the SCSI
industry managed to create another mess out of the SPI-3 standard. The
SCSI Trade Association defined the marketing term "Ultra3 SCSI" to
correspond to the features introduced in SPI-3. However, they allowed a
device that implemented any sub-set of the five main new features to be
called "Ultra3 SCSI"; this "optionality" meant that there was no guarantee
that any two devices labeled "Ultra3 SCSI" had the same features! Hardware
manufacturers didn't like this, so they decided to market alternative names
for more concrete subsets of the Ultra3 features, and we were off to the
competing standards races yet again. The results were Ultra160 and
Ultra160/m SCSI, and Ultra160+ SCSI.

(Someday, all these companies will get their act together and these things
won't happen any more--and I'll probably die of shock. ;^))

Next: SCSI(-3) Parallel Interface - 4 (SPI-4)

mehedi hasan
mehedi@joinme.com

501

SCSI(-3) Parallel Interface - 4 (SPI-4)

The latest revision of SPI will be called the SCSI(-3) Parallel Interface - 4 or
SPI-4. It is still in development within T10, and goes by the project name
"T10 1365-D". Since it is still in the fairly early stages of development, it is
unclear at this time exactly what it will include, beyond one feature.

The one feature that we now know will be included in SPI-4 is yet another
doubling of maximum throughput on the SCSI bus. This will be accomplished
through the implementation of what is being called Fast-160(DT). Like Fast-
80, this transfer mode uses double transition clocking, but increases the
speed of the bus from 40 MHz to 80 MHz. This results in a maximum
theoretical throughput of 320 MB/s on a wide bus. Like the Fast-80 transfers
defined in SPI-3, Fast-160 is only supported on 16-bit buses and requires the
use of LVD. The marketing people are calling this Ultra320, and despite SPI-4
only being in a draft form at present, products are being readied for the
market using the new Fast-160 timing.

Beyond Fast-160, the crystal ball gets a bit hazy. I have seen mention of
something called Intersymbol Interference Compensation (ISI), but can't find
any information on it at present. I have also read that the packetization
feature introduced in SPI-3 may be required for Fast-160 transfers. All of this
information should be considered just rumor until the standard gets closer to
being approved. Since new standards often change frequently before being
finalized, I will probably wait until the dust settles before updating this page.

Next: SCSI Data Transfer Modes and Feature Sets

SCSI Data Transfer Modes and Feature Sets

The technologies used in SCSI are defined by the formal standards created
and maintained by industry groups and standards associations. However,
SCSI hardware is usually not sold labeled with the name of the standard
whose features it implements. This is probably a good thing; considering the
number of different protocols and transfer modes that are covered by both
the SCSI-2 and SCSI-3 names, being told a drive is a "SCSI-2 drive" or
"SCSI-3 device" doesn't really tell you much of anything at all!

Instead, SCSI devices are usually sold using specific names that define
particular "flavors" of SCSI. Each of these is a particular intersection of
various important SCSI characteristics, such as bus speed, bus width and
signaling type. In most cases new feature sets are created when new transfer
modes are created by the adoption of new standards; they are then given
cute names by various hardware makers or manufacturers' associations and
used to promote the new products. The various feature set names can be
hard to understand since some of them are similar to each other despite
different-sounding names.

In this section I provide a description of each of the common feature sets
used for regular parallel SCSI. For each one I provide the following
information in a standardized format:

mehedi hasan
mehedi@joinme.com

502

• Description: A brief description of the particular SCSI "flavor".
• Defining Standard: The specific SCSI standard that introduced the

technology used in this type of SCSI.
• Special Features: Specific features or requirements of a hardware

device of this particular SCSI type.
• Bus Width: The width of the bus for this SCSI type, either narrow (8-

bit) or wide (16-bit).
• Signaling Method: What combination of single-ended (SE),

differential (HVD) and low voltage differential (LVD) signaling is used
by this type of SCSI. Note that HVD has been withdrawn from the
SCSI standard, but some HVD hardware is still "out there" and will of
course still work with HVD host adapters.

• Signaling Speed and Bus Throughput: The speed that this SCSI
bus runs at, and the data throughput in MB/s.

• Number of Devices Supported: The number of devices that can be
put on a single SCSI chain. This is the total number of devices;
remember that the host adapter counts as one device.

• Termination: The type of SCSI bus termination required or normally
used.

• Cabling and Maximum Cable Length: The type of cables supported,
and the maximum length of the SCSI chain supported, in meters.
Some types of SCSI support different cable lengths depending on the
signaling method. Oh, for you folks still stuck in the land of Imperial
measure, 1 meter is about 3.28 feet. :^)

Next: "Regular" SCSI (SCSI-1)

"Regular" SCSI (SCSI-1)

Description: With the creation of so many new types of SCSI over the years,
the oldest SCSI implementations really have no specific name; they are
sometimes called "regular" SCSI or other similar names. Since the only type
of SCSI defined by the original SCSI-1 standard is this "plain" variety, some
people call this variety of SCSI "SCSI-1".

Defining Standard: SCSI-1.

Special Features: None.

Bus Width: Narrow (8-bit).

Signaling Method: SE or HVD.

Signaling Speed and Bus Throughput: 5 MHz bus speed; 5 MB/s.

Number of Devices Supported: 8.

Termination: For SE, any type (passive, active or forced perfect
termination). For HVD, HVD termination.

mehedi hasan
mehedi@joinme.com

503

Cabling and Maximum Cable Length: "A" cable (50 pins). Maximum of 6m
for SE, 25m for HVD.

Next: Wide SCSI

Wide SCSI

Description: Wide SCSI refers to devices that use a standard-speed, 5 MHz
SCSI bus but on a wide, 16-bit bus. It is also sometimes called Wide SCSI-2
after the standard that defined it.

Defining Standard: SCSI-2.

Special Features: None.

Bus Width: Wide (16-bit).

Signaling Method: SE or HVD.

Signaling Speed and Bus Throughput: 5 MHz bus speed; 10 MB/s.

Number of Devices Supported: 16.

Termination: For SE, any type (passive, active or forced perfect
termination). For HVD, HVD termination.

Cabling and Maximum Cable Length: "P" cable (68 pins). (Formerly, "A"
cable plus "B" cable.)Maximum of 6m for SE, 25m for HVD.

Next: Fast SCSI

Fast SCSI

Description: Fast SCSI refers to devices that use 10 MHz SCSI signaling
speed on a narrow, 8-bit bus. It is also sometimes called Fast SCSI-2 after
the standard that defined it.

Defining Standard: SCSI-2.

Special Features: None.

Bus Width: Narrow (8-bit).

Signaling Method: SE or HVD.

Signaling Speed and Bus Throughput: 10 MHz bus speed; 10 MB/s.

Number of Devices Supported: 8.

mehedi hasan
mehedi@joinme.com

504

Termination: For SE, either active or forced perfect termination. For HVD,
HVD termination.

Cabling and Maximum Cable Length: "A" cable (50 pins). Maximum of 3m
for SE, 25m for HVD.

Next: Fast Wide SCSI

Fast Wide SCSI

Description: Fast Wide SCSI combines the features of Wide SCSI and Fast
SCSI, so it uses 10 MHz SCSI bus speed on a 16-bit wide bus. This doubles
the maximum transfer rate to 20 MB/s, the fastest bus defined under the
SCSI-2 standard. This protocol is sometimes called Fast Wide SCSI-2.

Defining Standard: SCSI-2.

Special Features: None.

Bus Width: Wide (16-bit).

Signaling Method: SE or HVD.

Signaling Speed and Bus Throughput: 10 MHz bus speed; 20 MB/s.

Number of Devices Supported: 16.

Termination: For SE, either active or forced perfect termination. For HVD,
HVD termination.

Cabling and Maximum Cable Length: "P" cable (68 pins). (Formerly, "A"
cable plus "B" cable.)Maximum of 6m for SE, 25m for HVD.

Next: Ultra SCSI

Ultra SCSI

Description: Ultra SCSI is the term usually applied to devices that use 20
MHz SCSI bus speed on a narrow, 8-bit bus. This is sometimes called Fast-20
SCSI in reference to the Fast-20 signaling specification that defines Ultra
SCSI speed. Note that "Ultra SCSI" is sometimes used vaguely; for example,
some people call both Wide Ultra SCSI and (non-wide) Ultra SCSI just "Ultra
SCSI" collectively.

Defining Standard: SCSI-3 / SPI (including Fast-20 addendum).

Special Features: None.

Bus Width: Narrow (8-bit).

mehedi hasan
mehedi@joinme.com

505

Signaling Method: SE or HVD.

Signaling Speed and Bus Throughput: 20 MHz bus speed; 20 MB/s.

Number of Devices Supported: 8 if HVD signaling is used or SE signaling is
used with a maximum cable length of 1.5m; 4 if SE signaling is used with a
cable length of over 1.5m.

Termination: For SE, either active or forced perfect termination. For HVD,
HVD termination.

Cabling and Maximum Cable Length: "A" cable (50 pins). Maximum of 3m
for SE if no more than 4 devices are used, otherwise 1.5m; 25m for HVD.

Next: Wide Ultra SCSI

Wide Ultra SCSI

Description: Wide Ultra SCSI refers to devices that use 20 MHz SCSI bus
speed on a wide, 16-bit bus, allowing for throughput of up to 40 MB/s. This is
sometimes called Fast-20 Wide SCSI in reference to the Fast-20 signaling
specification that defines Ultra SCSI speed. It is also sometimes called Ultra
Wide SCSI.

Defining Standard: SCSI-3 / SPI (including Fast-20 addendum).

Special Features: None.

Bus Width: Wide (16-bit).

Signaling Method: SE or HVD.

Signaling Speed and Bus Throughput: 20 MHz bus speed; 40 MB/s.

Number of Devices Supported: 16 if HVD signaling is used; 8 if SE
signaling is used with a maximum cable length of 1.5m; 4 if SE signaling is
used with a cable length of over 1.5m.

Termination: For SE, either active or forced perfect termination. For HVD,
HVD termination.

Cabling and Maximum Cable Length: "P" cable (68 pins). Maximum of 3m
for SE if no more than 4 devices are used, otherwise 1.5m; 25m for HVD.

Next: Ultra2 SCSI

Ultra2 SCSI

mehedi hasan
mehedi@joinme.com

506

Description: Ultra2 SCSI is the marketing term for devices corresponding to
the SCSI-3 Parallel Interface - 2 (SPI-2) standard that run on a narrow (8-bit)
bus. These units support a maximum throughput of 40 MB/s using Fast-40
signaling; they are occasionally (rarely) called Fast-40 SCSI devices. See the
SPI-2 standard discussion and the details below for more on this type of
SCSI.

Note: While narrow Ultra2 SCSI has been formally defined, it was never very
popular; most devices using Ultra2 SCSI are in fact Wide Ultra2 SCSI devices,
because "giving away" half the maximum throughput by using narrow cabling
has become quite unpopular. The sparsity of narrow Ultra2 implementations
means that many people use just "Ultra2 SCSI" to refer to what are really
wide devices. Watch out for this.

Note: Don't confuse Ultra2 SCSI with SCSI-2, which is a totally different (and
much older) standard.

Defining Standard: SCSI-3 / SPI-2.

Special Features: LVD signaling; multimode (LVD/SE) optional.

Bus Width: Narrow (8-bit).

Signaling Method: LVD or HVD. (HVD is officially supported for Ultra2 SCSI,
though it is not generally used; LVD offers significant advantages over HVD
and has become the standard for modern high-speed SCSI buses.) Note that
multimode drives may optionally run in SE mode, but throughput will drop to
Fast-20 (Ultra) levels if this is done.

Signaling Speed and Bus Throughput: 40 MHz bus speed; 40 MB/s.

Number of Devices Supported: 8 for HVD or LVD cables up to 12m in
length; 2 for LVD cables over 12m.

Termination: For LVD, LVD termination; for HVD, HVD termination.

Cabling and Maximum Cable Length: "A" cable (50 pins). Maximum of
25m for LVD if no more than 2 devices are used, otherwise 12m; 25m for
HVD.

Next: Wide Ultra2 SCSI

Wide Ultra2 SCSI

Description: Wide Ultra2 SCSI is the marketing term for devices
corresponding to the SCSI-3 Parallel Interface - 2 (SPI-2) standard that run
on a wide (16-bit) bus. These units support a maximum throughput of 80
MB/s using Fast-40 signaling; they are occasionally (rarely) called Wide Fast-

mehedi hasan
mehedi@joinme.com

507

40 SCSI devices. See the SPI-2 standard discussion and the details below for
more on this type of SCSI.

Note: Most SCSI implementations that use Ultra2 signaling are in fact wide
implementations. Narrow Ultra2 SCSI is supposed to be called just "Ultra2
SCSI" while the wide version is "Wide Ultra2"; however, since narrow never
really caught on for Ultra2, some people say "Ultra2 SCSI" when they really
mean "Wide Ultra2 SCSI".

Note: Don't confuse Wide Ultra2 SCSI with Wide SCSI-2; the latter is a less
common name for Wide SCSI, a much older and slower transfer mode.

Defining Standard: SCSI-3 / SPI-2.

Special Features: LVD signaling; multimode (LVD/SE) optional.

Bus Width: Wide (16-bit).

Signaling Method: LVD or HVD. (HVD is officially supported for Wide Ultra2
SCSI, though it is not generally used; LVD offers significant advantages over
HVD and has become the standard for modern high-speed SCSI buses.) Note
that multimode drives may optionally run in SE mode, but throughput will
drop to Fast-20 (Ultra) levels if this is done.

Signaling Speed and Bus Throughput: 40 MHz bus speed; 80 MB/s.

Number of Devices Supported: 16 for HVD or LVD cables up to 12m in
length; 2 for LVD cables over 12m.

Termination: For LVD, LVD termination; for HVD, HVD termination.

Cabling and Maximum Cable Length: "P" cable (68 pins). Maximum of
25m for LVD if no more than 2 devices are used, otherwise 12m; 25m for
HVD.

Next: Ultra3 SCSI

Ultra3 SCSI

Description: Ultra3 SCSI is the marketing term created by the SCSI Trade
Association to refer to devices that implement some or all of the key features
defined in the SCSI-3 Parallel Interface - 3 (SPI-3) standard. The units can
support a maximum throughput of up to 160 MB/s using Fast-80 signaling
with double transition clocking. See the SPI-3 standard discussion and the
details below for more on this type of SCSI. Note that Ultra3 SCSI is wide
(16-bit) only; 8-bit support was dropped for this version of the interface. This
means the name is just "Ultra3 SCSI"; the "Wide" is implied and not explicitly
mentioned.

mehedi hasan
mehedi@joinme.com

508

Unfortunately, the decision by the SCSI TA to define the five main features of
SPI-3 as optional for Ultra3 SCSI led to a revolt of sort on the part of
hardware manufacturers. They made the (very valid) point that this definition
of Ultra3 SCSI allows for devices with very different features to all be called
"Ultra3 SCSI"--even devices that don't support Fast-80 signaling, the key
feature of SPI-3! The hardware makers wanted a more concrete standard,
and this led to the creation of the rather similar Ultra160(/m) SCSI and
Ultra160+ SCSI feature sets.

Note: Don't confuse Ultra3 SCSI with SCSI-3, which is a generic term that
can refer to any device corresponding to any of the myriad SCSI-3 standards
(and is therefore meaningless.)

Defining Standard: SCSI-3 / SPI-3.

Special Features: Ultra3 SCSI devices include support for at least one of the
following five features:

• Fast-80(DT) data transfer
• Cyclic Redundancy Check (CRC)
• Domain validation
• Quick Arbitration and Selection (QAS)
• Packetization

Bus Width: Wide (16-bit). Narrow mode is not supported.

Signaling Method: LVD only, if Fast-80 is being used. (Multimode drives
may optionally run in SE mode, but throughput will drop to Fast-20 (Ultra)
levels.)

Signaling Speed and Bus Throughput: Depends on implementation;
assuming Fast-80, 40 MHz bus speed; 160 MB/s.

Number of Devices Supported: 16 for cables up to 12m in length; 2 for
cables over 12m.

Termination: LVD termination.

Cabling and Maximum Cable Length: "P" cable (68 pins). Maximum of
25m if no more than 2 devices are used, otherwise 12m.

Next: Ultra160 (Ultra160/m) SCSI

Ultra160 (Ultra160/m) SCSI

Description: The SCSI Trade Association created the Ultra3 SCSI marketing
program to identify drives implementing some or all of the main features
associated with the SCSI-3 Parallel Interface - 3 (SPI-3) standard. This
created a controversy, because hardware could be called "Ultra3 SCSI" even if

mehedi hasan
mehedi@joinme.com

509

it implemented only one of the five key features in the SPI-3 standard.
Hardware makers feared this would create compatibility problems, especially
since some "Ultra3 SCSI" devices might not support the 160 MB/s transfer
speed that is the key feature of the new standard.

To address this possible source of confusion, several SCSI hardware
companies decided to stay way from the "Ultra3 SCSI" label, and created a
specific feature set called Ultra160/m, where the "160" refers to the
maximum throughput of the interface--the "/m" means "maximum" or
"manageability". The "/m" suffix was later dropped to "prevent confusion",
yielding just Ultra160. Once again, this created more confusion, not less,
because many people think Ultra160 and Ultra160/m are different. (Hardware
makers! Stop confusing people by renaming standards to avoid confusing
people! ;^))

Note: Ultra160+ is a different subset of Ultra3 SCSI, and is not the same as
Ultra160 or Ultra160/m. Aren't standards great? ;^)

See the discussion of the SPI-3 standard and the items below for more details
on Ultra160 SCSI. Incidentally, in 1999 the SCSI trade association recognized
the Ultra160 feature set; it also seems to be sticking with that terminology
going forward, given that the next generation of SCSI will be called Ultra320
and not "Ultra4".

Defining Standard: SCSI-3 / SPI-3.

Special Features: Ultra3 SCSI devices include support for the following three
SPI-3 features:

• Fast-80(DT) data transfer
• Cyclic Redundancy Check (CRC)
• Domain validation

The following features are considered optional for Ultra160:

• Quick Arbitration and Selection (QAS)
• Packetization

Bus Width: Wide (16-bit). Narrow mode is not supported.

Signaling Method: LVD only. (Multimode drives may optionally run in SE
mode, but throughput will drop to Fast-20 (Ultra) levels.)

Signaling Speed and Bus Throughput: 40 MHz bus speed; 160 MB/s.

Number of Devices Supported: 16 for cables up to 12m in length; 2 for
cables over 12m.

Termination: LVD termination.

mehedi hasan
mehedi@joinme.com

510

Cabling and Maximum Cable Length: "P" cable (68 pins). Maximum of
25m if no more than 2 devices are used, otherwise 12m.

Next: Ultra160+ SCSI

Ultra160+ SCSI

Description: Ultra160 SCSI--a.k.a. "Ultra160/m"--defines a specific subset of
the features associated with Ultra3 SCSI. It was created to avoid the
confusion associated with the various options that make up the Ultra3 SCSI
definition. Ultra160+ SCSI is another feature set based on the five key
enhancements to the SCSI interface introduced in the SCSI-3 Parallel
Interface - 3 (SPI-3) standard. While Ultra160 SCSI defines three of the five
key features as being mandatory, Ultra160+ SCSI refers to devices that
implement all five of the key SPI-3 features.

To summarize the differences between these three related feature sets:

• Ultra3 SCSI: At least one, and as many as five, of the main SPI-3
features.

• Ultra160(/m) SCSI: Fast-80 signaling, CRC and domain validation
are mandatory; QAS and packetization optional.

• Ultra160+ SCSI: All five features are mandatory.

Aside from these definitional differences, all these terms refer to the same
basic interface. See the discussion of the SPI-3 standard and the items below
for more details.

Defining Standard: SCSI-3 / SPI-3.

Special Features: Ultra3 SCSI devices include support for all of the following
five SPI-3 features:

• Fast-80(DT) data transfer
• Cyclic Redundancy Check (CRC)
• Domain validation
• Quick Arbitration and Selection (QAS)
• Packetization

Bus Width: Wide (16-bit). Narrow mode is not supported.

Signaling Method: LVD only. (Multimode drives may optionally run in SE
mode, but throughput will drop to Fast-20 (Ultra) levels.)

Signaling Speed and Bus Throughput: 40 MHz bus speed; 160 MB/s.

Number of Devices Supported: 16 for cables up to 12m in length; 2 for
cables over 12m.

Termination: LVD termination.

mehedi hasan
mehedi@joinme.com

511

Cabling and Maximum Cable Length: "P" cable (68 pins). Maximum of
25m if no more than 2 devices are used, otherwise 12m.

Next: Ultra320 SCSI

Ultra320 SCSI

Description: Ultra320 SCSI is the current name given by the SCSI Trade
Association to hardware being developed to the next generation of the SCSI
parallel interface, as defined in drafts of the SCSI-3 Parallel Interface - 4
(SPI-4) standard. As the name implies, these drives support a maximum
throughput of 320 MB/s using 80 MHz bus signaling and double transition
clocking. This technology was at one point known by the name "Ultra4 SCSI",
but it appears that this terminology will not be used going forward.

For more information, see the discussion of the SPI-4 standard and the
information below. Bear in mind that SPI-4 and Ultra320 are still under
development. Not much is known about the specific features that will be
agreed to in this new version of the interface, so details are not yet complete.

Defining Standard: SCSI-3 / SPI-4 (in development).

Special Features: Fast-160(DT) data transfer; others not yet confirmed at
this time.

Bus Width: Wide (16-bit) only.

Signaling Method: LVD only. (Multimode drives may optionally run in SE
mode, but throughput will drop to Fast-20 (Ultra) levels.)

Signaling Speed and Bus Throughput: 80 MHz bus speed; 320 MB/s.

Number of Devices Supported: 16 for cables up to 12m in length; 2 for
cables over 12m.

Termination: LVD termination.

Cabling and Maximum Cable Length: "P" cable (68 pins). Maximum of
25m if no more than 2 devices are used, otherwise 12m.

Next: SCSI Protocol Compatibility

SCSI Transfer Mode and Feature Set Compatibility

I sometimes call the various types of SCSI "flavors"; well, if that's so, the way
the interface is heading we'll soon be in Baskin Robbins territory. ;^) The
sheer number of different kinds of SCSI can certainly make the interface
seem overwhelming! How does a SCSI user make it all of this hardware work
together? Fortunately, while the standards and feature sets can be quite

mehedi hasan
mehedi@joinme.com

512

confusing, the hardware is actually well-engineered, and the standards are
designed to allow different hardware types to work together fairly readily.

It's important to remember that a key design goal of all SCSI standards is
backwards compatibility. Few people want to buy new hardware that won't
work with their older hardware. Therefore, in most cases, at least in theory,
you can mix older, slower hardware with newer, faster hardware. You can,
again in theory, put a brand-new Ultra160 SCSI hard disk on the same SCSI
bus with a decade-old SCSI-1 host adapter (albeit with added hardware and
suboptimal results.) This is generally true, but note the important qualifier: in
theory. Since changes are always being made to the signaling and other
aspects of the interface, there is no guarantee that any two very different
pieces of SCSI hardware will work together.

There are no hard and fast rules regarding the compatibility of different SCSI
transfer modes and feature sets, especially if they are very different in terms
of key attributes. Here are some issues that you should keep in mind as you
consider device compatibility:

• Age: The greater the difference in age between two devices, the
greater the difficulties associated with getting them to work together.
The extreme example I gave above of trying to get an Ultra160 drive
to work with a SCSI-1 host adapter (or vice-versa) would probably not
be much fun. :^) However, mixing Ultra160 and Ultra2 devices is fairly
straightforward.

• Drive and Host Speed Negotiation: You can use faster drives on
slower host adapters or vice versa, but communication will only occur
as fast as the slowest device can handle. For example, you can
connect a Wide Ultra SCSI drive to an Ultra160 host adapter, but the
drive will only run at a maximum of 40 MB/s throughput, not 160
MB/s.

• Signaling: Mixing different types of signaling on the same bus can
lead to problems ranging from slowdowns to disaster. :^) The older
(high voltage) differential signaling is not electrically compatible with
either single-ended or LVD devices, and should never be mixed with
those types, or you risk disaster such as smoked hardware. Multimode
LVD devices can be mixed with SE devices, but they won't function at
Ultra2 or higher speeds if you do so.

• Bus Width: You can mix wide and narrow devices on the same SCSI
bus, but there are specific requirements in doing this, to ensure that
the bus functions properly.

• Packages: If you want to be sure that a particular SCSI
implementation will work, buy a complete system or SCSI "package"
(including a host adapter, drives, cables and terminators) from a
reputable dealer.

• Ask For Help: If you are considering a particular hardware
combination, ask for advice on it before trying the setup. Unless the
setup is extremely strange, someone may have already done what you
are contemplating. A good place to try is the comp.periphs.scsi
newsgroup.

Next: SCSI Protocols and Interface Features

mehedi hasan
mehedi@joinme.com

513

SCSI Protocols and Interface Features

In detailing the various standards, transfers modes and feature sets
associated with the SCSI interface, I have introduced several important
concepts that define the attributes of various types of SCSI buses. New
technologies are often introduced specifically to change these traits, to
improve the interface. It's important to understand how the various aspects
of SCSI combine to create different specific SCSI varieties.

In this section I describe the most important characteristics of the SCSI
interface. This includes a discussion of the three most important defining
characteristics of any SCSI bus: signaling, bus speed and bus width. I then
discuss several important SCSI bus features, many of which have been
introduced to improve performance or reliability on the newest, highest-
performance SCSI implementations. This includes a discussion of bus integrity
protection, and advanced features such as command queuing and reordering,
domain validation, quick arbitration and selection, and packetization.

Next: Single-Ended (SE) and Differential (High Voltage Differential,
HVD) Signaling

Single-Ended (SE) and Differential (High Voltage Differential, HVD)
Signaling

Conventional SCSI signaling is very similar to that used for most other
interfaces and buses within the PC. Conventional logic is used: a positive
voltage is a "one", and a zero voltage (ground) is a "zero" (see this
fundamentals page on signaling for more). This is called single-ended
signaling, abbreviated SE. Up until recently, single-ended SCSI had been by
far the most popular signaling type in the PC world, for a simple reason: it is
relatively simple and inexpensive to implement.

There's an important problem with SE signaling, however. SCSI is a high-
speed bus capable of supporting multiple devices, including devices connected
both inside and outside the PC. As with all high-speed parallel buses, there is
always a concern about signal integrity on the bus; problems can arise due to
bouncing signals, interference, degradation over distance and cross-talk from
adjacent signals. The faster the bus runs, the more these problems manifest
themselves; the longer the cable, the more the problems exist for any given
interface speed. As a result, the length of a single-ended SCSI cable is rather
limited, and the faster the bus runs, the shorter the maximum allowable cable
length.

To get around this problem, a different signaling method was also defined for
SCSI, which uses two wires for each signal that are mirror images of each
other. For a logical "zero", zero voltage is sent on both wires. For a logical
"one", the first wire of each signal pair contains a positive voltage, similar to
the signal on an SE bus, but not necessarily at the same voltage. The second
wire contains the electrical opposite of the first wire. The circuitry at the
receiving device takes the difference between the two signals sent, and thus
sees a relatively high voltage for a one, and a zero voltage for a zero. This

mehedi hasan
mehedi@joinme.com

514

method is much more resilient to signaling problems than regular SE
signaling. It is called differential signaling, after the technique used to
determine the value of each signal by the recipient. The two signals in each
pair are usually named with "+" and "-" signs; for example, the signal
carrying data bit 0 would use "+DB(0)" and "-DB(0)". See the section cabling
for more information.

This table shows the great difference in cable length that exists between SE
and differential devices, particularly as bus speed increases:

Signaling
Speed

Bus
Speed
(MHz)

Single-Ended
SCSI Maximum
Cable Length (m)

Differential
SCSI Maximum
Cable Length
(m)

Slow 5 6 25

Fast 10 3 25

Fast-20 20 1.5 25

As you can see, each doubling of the bus speed results in a halving of the
maximum cable length for single-ended SCSI, but differential SCSI allows
long (25m) cables for all three speeds. (Fast-20 buses allow a cable length of
3m if no more than four devices are used, but this is really a kludge of sorts
to get around the limitations associated with a 1.5m cable restriction.)

Differential SCSI is a great idea in theory, and one might have thought it
would become very popular. In fact, this never happened in the PC world,
largely due to cost. The circuits needed to drive differential signals are more
expensive and use more power than those for single-ended SCSI. For many
years, single-ended SCSI was "good enough", and allowed cable lengths
sufficient for the needs of most users, so little impetus was seen to move to
the more expensive differential signaling. From there, "chicken-and-egg"
syndrome kicked in: since differential was less popular, it was not produced in
volume and so never saw its costs come down due to economies of scale.

The end result of all of this is that the older type of differential signaling is
rarely seen in the PC world. The concept of differential signaling, however, did
not die out. As the SCSI bus was pushed to faster and faster speeds, the
cable limits of SE were finally too great to be worked around. However, the
cost of regular differential was unappealing, so a new type of differential
signaling was created, called low voltage differential or LVD. See this page for
more on LVD signaling. With the creation of LVD, the old name of
"differential" for the higher-voltage version became vague, so the older style
was renamed high voltage differential or HVD.

High voltage differential signaling has been around since the earliest SCSI-1
standard, so devices have been theoretically available as either SE or HVD
since the start of SCSI use on the PC--of course, whether any particular
model has been implemented in HVD is another story altogether. :^) With the
creation of the SPI-3 specification and the standardization of LVD, HVD had

mehedi hasan
mehedi@joinme.com

515

no more raison d'etre, and has been removed from the SCSI standard
entirely, leaving only LVD. There are no new drives being produced that use
HVD.

Note: Since differential signaling uses complementary positive and negative
voltages, it is sometimes called balanced signaling; single-ended signaling is
similarly called unbalanced. This is just different terminology for the same
technologies.

Warning: Since single-ended and HVD SCSI use very different voltage levels,
they are incompatible at the electrical level. You should not mix single-ended
(or low voltage differential) devices with high voltage differential SCSI devices
on the same bus. If you do, actual physical damage could result--this is one
of those cases where actually smoking your hardware is a distinct possibility,
because of the high voltages that might be sent to the single-ended or LVD
devices! To compound the matter, the cables and connectors used for single-
ended and differential SCSI look the same.

To help reduce the chances that similar-looking SE and HVD hardware will be
interconnected, special icons are imprinted on SCSI hardware that indicates
the signaling method used by the device. Make sure you know what you have
before putting together your SCSI bus, and look for these identifying symbols
on devices to be sure they are electrically compatible. Note that slightly
different symbols are used for LVD and LVD/SE devices, as described here.
Also see this section for more on cables and connectors.

Icons for hardware using single-ended SCSI (left)
and regular (high voltage) differential SCSI (right).

Images © Information Technology Industry Council (ITI)
(See here for more on ITI.) Images used with permission.

Next: Low-Voltage Differential (LVD) Signaling

Low-Voltage Differential (LVD) Signaling

Differential signaling has been around since the first SCSI specification, SCSI-
1. As described in detail on this page, high voltage differential (HVD) signaling
uses two wires for each signal to improve signal integrity and allow long
cables to be used without data loss or corruption. However, it is expensive to

mehedi hasan
mehedi@joinme.com

516

implement, and uses a great deal of power. For this reason, it has never
caught on, and through the late 1990s, conventional single-ended (SE)
signaling was the standard in the SCSI world.

Single-ended SCSI signaling worked fine for many years. However, when the
SCSI industry was ready to increase the speed of the SCSI bus to 40 MHz,
they had a serious problem. As the table on this page shows, each doubling of
the bus speed results in a halving of the maximum cable length allowed under
SE. Since 20 MHz speeds had already dropped maximum cable length to
1.5m, halving it again would have resulted in a maximum length of only
0.75m--that's just a little over two feet for an entire SCSI chain! The
alternative was to go to the older type of (high voltage) differential signaling,
with its high cost and catastrophic electrical incompatibility with single-ended
hardware.

Instead, a third option was created, with the intention of marrying the best
attributes of both SE and HVD signaling. This is a differential signaling
method that was designed to use the advantages of differential signaling to
allow long cable lengths, while reducing implementation cost and allowing for
electrical compatibility with single-ended devices. This technology is called
low voltage differential or LVD signaling. It was first defined in the SPI-2
standard and is rapidly becoming the signaling method of choice in the SCSI
world. In fact, LVD signaling is required for Ultra2 or Wide Ultra2 SCSI (unless
HVD is used), and LVD is the exclusive signaling method for all SCSI modes
faster than Ultra2. Even the fastest LVD SCSI chains can be up to 12m in
length, or 25m if only two devices are used on the chain (this is called point-
to-point operation; remember that one of these must be the interface card,
the host adapter.)

The concept behind LVD is relatively straight-forward: continue using two
wires for each signal, but use lower voltage to create the complementary
signal pairs. Using lower voltage allows cost to be reduced and power
requirements to be kept under control. It also means that the dangers
associated with mixing SE and differential devices is eliminated. In fact,
single-ended devices are not just electrically compatible with LVD devices,
some types of LVD devices can even function on single-ended SCSI buses.

A particular type of LVD device was defined when LVD was created; drives
that correspond to this variant of LVD are called multimode LVD device. These
are usually abbreviated LVD/SE or LVD/MSE (the "M" is for "multimode"). A
multimode LVD device will automatically switch between LVD and single-
ended operation by detecting whether the other devices on the chain are
running in SE or LVD mode. (Note that only one or the other can be used at a
time; the device won't use both simultaneously.)

In addition to the usual SCSI rules--such as unique IDs for each device and
proper topology and termination--LVD operation requires the following:

1. All devices on the chain must be LVD-capable; if even one device is
only SE, all devices "drop down" and run as single-ended.

mehedi hasan
mehedi@joinme.com

517

2. All devices must not be set to run in SE mode; some multimode
devices have a jumper to "force" SE operation, which will cause the
entire SCSI chain to not work in LVD.

3. LVD (or multimode LVD/SE) terminators must be used.

Remember that bus speeds over 20 MHz are not supported under single-
ended operation. This means that a multimode LVD/MSE Ultra160 device will
run at only a maximum of 40 MB/s if it is connected to a SCSI chain with
single-ended devices.

Warning: As soon as multimode LVD devices begin running as single-ended,
all the rules and restrictions of single-ended operation apply, including cable
length. For example, suppose you have a 4m cable connecting an LVD
Ultra160 host adapter to a multimode LVD Ultra160 device; this is perfectly
fine. Now, let's say you decide to add to this cable a Wide Ultra single-ended
device. As soon as this happens, the other devices will drop down to single-
ended operation, and probably will try to run at Ultra speeds (Fast-20).
Communication problems will then result due to the fact that a 4m cable is
not supported at Ultra speeds in single-ended operation.

LVD signaling is rapidly taking over the SCSI world. Single-ended operation is
not supported for bus speeds faster than 20 MHz ("Ultra" bus speeds), so to
use Ultra2 or faster SCSI, differential must be used. HVD for its part was
made obsolete in the SPI-3 standard, so for Ultra3, Ultra160, Ultra160+ and
faster speeds, LVD is the only option.

Warning: Low voltage differential devices are not electrically compatible with
high voltage differential hardware; do not mix them on the same SCSI cable
or damage to the LVD devices may occur.

To help reduce the chances that similar-looking LVD and HVD hardware will
be interconnected, special icons are imprinted on SCSI hardware that
indicates the signaling method used by each device. Make sure you know
what you have before putting together your SCSI bus, and look for these
identifying symbols on devices to be sure they are electrically compatible.
Note that slightly different symbols are used for SE and HVD devices, as
described here. Also see this section for more on cables and connectors.

Icons for hardware using LVD SCSI (left)

mehedi hasan
mehedi@joinme.com

518

and multimode LVD/SE SCSI (right).

Images © Information Technology Industry Council (ITI)
(See here for more on ITI.) Images used with permission.

Next: SCSI Bus Width

mehedi hasan
mehedi@joinme.com

519

SCSI Bus Width

There are two commonly used SCSI bus widths: narrow and wide. Narrow
SCSI uses a data pathway that is 8 bits wide, and was the first type of
parallel SCSI defined in the original SCSI-1 standard. Wide SCSI uses a data
pathway 16 bits wide, and was first defined as part of SCSI-2. Since its
introduction, wide SCSI has been steadily increasing in popularity, since it
allows a doubling of bus bandwidth for any given signaling speed. It also
allows the use of 16 devices on the SCSI bus, compared to the standard 8
devices for narrow SCSI.

Wide SCSI originally required the use of two cables: a 68-pin "B" cable in
addition to the regular 50-conductor "A" cable used for narrow SCSI. This use
of two cables was expensive and cumbersome, and the "A+B" configuration
was eventually replaced by a single 68-pin "P" cable. See here for more on
cabling issues.

Today, narrow SCSI is actually being left behind, as the need for extra
performance has led to the dominance of wide forms of SCSI, especially for
hard disks. This has actually led to some terminology difficulties. Traditionally,
the narrow SCSI bus has been considered the "regular" or default type, so
"narrow" was not generally mentioned in the name of SCSI type. For
example, saying "Ultra SCSI" implied narrow operation; wide buses running
at Ultra speeds were called "Wide Ultra SCSI". However, at around the time
that Ultra2 SCSI was created, narrow operation began to fall out of favor, and
as a result most Ultra2 implementations are wide, and many people stopped
bothering with explicitly saying "Wide Ultra2 SCSI", even though this is the
technically accurate name.

Transfer modes faster than Ultra2 have done away with narrow buses
altogether. Presumably, if one is designing a device that needs throughput
enough to justify going to speeds faster than Ultra2, it would be silly to "give
away" half the throughput by going narrow instead of wide. Fast-80(DT) and
Fast-160(DT) signaling, as defined in the SPI-3 and SPI-4 standards
respectively, are only for wide implementation. As a result, all relevant
marketing terms such as Ultra3, Ultra160, Ultra160+ and Ultra320 have wide
bus operation implied, reversing the way it was with the earlier SCSI flavors.

It is possible to mix narrow and wide SCSI on the same bus, but there are
issues that must be overcome to do so. These typically revolve around
cabling, which is different for narrow and wide SCSI, and also with
termination. Adapters may be required to convert between the narrow and
wide cables. See this discussion for more information. Note that there are
also host adapters available that are specifically designed to support both
wide and narrow devices.

Note: A "very wide" 32-bit form of SCSI was defined as part of the SCSI-2
standard, but was never accepted by the industry due to cost. It required the
use of two 68-conductor cables, for one thing! It was also non-standard; with
the extra costs involved, there was little interest in it. After laying the
proverbial egg for several years, it was finally withdrawn from the SCSI

mehedi hasan
mehedi@joinme.com

520

standard in SPI-3.

Next: SCSI Bus Speed

SCSI Bus Speed

SCSI buses run at a variety of different speeds. Generally, newer buses run
faster than older ones, reflecting the increased performance of newer
hardware. In order to understand SCSI bus speeds, we must first tackle some
terminology issues (yet again, sorry) There are several different ways that
SCSI bus speeds are specified, which can lead to a tremendous amount of
confusion. The situation is particularly bad because base SCSI speeds vary by
powers of two, and the differences between the various ways of specifying
SCSI bus speeds also differ by powers of two!

These are the three ways that SCSI bus speeds are commonly quoted:

• Clock Speed: This refers strictly to the frequency of the clock (strobe)
used to control synchronous transfers of data on the SCSI bus. With
current technology this can be 5, 10, 20, 40 or 80 MHz. For more on
clocks and how clock speeds work, see this fundamentals page.

• Transfer Rate: This refers to the number of times per second that
data is transferred across the interface. This is only the same as the
clock speed of the bus if single transition (conventional) clocking is
used. Faster SCSI implementations now use double transition clocking,
and this means the transfer rate (in millions of transfers per second)
will be double the clock speed in MHz.

• Throughput: This number represents the theoretical maximum
amount of data that can be moved across the SCSI bus, and is
measured in millions of bytes per second (MB/s). On a narrow bus,
throughput and transfer rate are the same, because each transfer is of
8 bits (one byte). But for a wide bus, throughput is double transfer
rate, because each transfer is of 16 bits--two bytes.

Now that we understand all of that--we do understand it, right? :^)--we can
look at the various bus speeds used in the SCSI world and understand what
they mean. The table below shows all of the bus speeds used for parallel
SCSI. (You may also find that looking at the table makes more clear the
relationship between clock speed, transfer rate and throughput):

Throughput
(MB/s)

Standard-
Defined
Bus
Speed

Common
Signaling
Speed
Name

Clock
Speed
(MHz)

Clocking
Transfer Rate
(Mtransfers/s)

Narrow
(8-bit)

Wide
(16-

mehedi hasan
mehedi@joinme.com

521

bit)

SCSI-1 "Regular" 5 Single 5 5 --

Fast "Fast" 10 Single 10 10 20

Fast-20 "Ultra" 20 Single 20 20 40

Fast-40 "Ultra2" 40 Single 40 40 80

Fast-
80(DT)

"Ultra3"
or
"Ultra160"

40 Double 80 -- 160

Fast-
160(DT)

"Ultra320" 80 Double 160 -- 320

Note: The "(DT)" in "Fast-80(DT)" and "Fast-160(DT)" represents the fact
that this suffix is sometimes attached to represent the use of double
transition clocking for those interfaces.

As you can see, the use of double transition clocking and wide buses means
that the numbers in the latest transfer modes do not refer to the actual speed
of the bus at all. The "160" in "Ultra160" represents the maximum throughput
of such devices, but the clock speed is "only" 40 MHz.

Finally, I must include my standard disclaimer: we are discussing interface
transfer rates here. These represent only the maximums that data can be
transmitted across the interface under theoretical conditions. The big
numbers that are popularly discussed ignore command overhead and other
inefficiencies, so you will not actually get a full 160 MB/s on an Ultra160
interface. Also, remember that true performance will be limited by the speed
of the devices on the interface. Simply increasing the speed of the interface is
not enough to really improve performance unless the interface was already
the limiting factor (such as if multiple drives were saturating it). See here for
more on this issue. Also remember that the maximum throughput of any
SCSI device will be limited by the throughput of the host adapter's system
bus interface.

Next: Bus Parity and Cyclic Redundancy Checking (CRC)

Bus Parity and Cyclic Redundancy Checking (CRC)

As mentioned in a few places in this discussion of SCSI, parallel buses can
have signal integrity problems, especially if used on long cables or at high
signaling speeds. To help ensure that the data sent from one device arrives
intact at its destination, various SCSI buses use two different data protection
methods.

The first technique is SCSI bus parity. The parity method uses an extra bit for
each eight bits of data, which is computed by the sending device so that the

mehedi hasan
mehedi@joinme.com

522

sum of all the "ones" in the nine bits taken together is either odd or even--
one is chosen as the standard for the interface, and for SCSI odd parity is
used. At the receiving device, the data is checked to see if the total is still
odd; if an even number of "ones" is seen, this means there was a data
corruption problem (because one bit is the wrong value somewhere) and the
sender is signaled to retransmit. This simple data protection method is not
unique to SCSI; it has also been used for years for serial communications and
in memory circuits. For more details on parity, including examples showing
how it works, see this comprehensive discussion in the memory section.

Note: SCSI parity is almost universally supported, but some very early host
adapters may not work with parity checking enabled; to allow for this, many
drives include a jumper to disable parity operation.

SCSI parity is useful, but is limited in its effectiveness, especially for very
high transfer rates. It cannot detect if two bits in a given byte of data flip, for
example. To further safeguard data, the SPI-3 standard introduced cyclic
redundancy checking or CRC to the SCSI world when double transition
clocking was introduced, allowing 160 MB/s data throughput on the bus. CRC
is another technique that is not new, just "new to SCSI". It has been used in
a variety of places in the computing world for decades, for example, in
modems.

CRC is a bit difficult to describe in brief terms, and a full explanation is
beyond the scope of this site. In a nutshell, it is a more robust way of
checking for data corruption that can occur anywhere in a transmitted data
message. A special algorithm is used that calculates a binary code as a result
of arithmetic operations on the data; this is called a cyclic redundancy code
(also abbreviated CRC). This code is sent along with the data over the bus.
The recipient runs the same computation on the data and checks to see if it
gets the same value that the sender computed; if there is any difference then
an error occurred. In fact, modern CRC implementations don't actually run
the computations using formulas, but rather use pre-created tables to speed
up the process. This is sort of like using "multiplication tables" as you might
have memorized as a child, instead of doing the computation from scratch
each time.

At any rate, the bottom line is that CRC does a much better job of protecting
data transmitted on the bus, especially at high signaling speeds. It can in
theory be used in conjunction with parity, as they are independent. However,
once CRC is being used, parity is somewhat unnecessary, except perhaps for
compatibility with older hardware. CRC is one of the "optional" features of
Ultra3 SCSI, and is a required feature for hardware meeting the Ultra160 or
Ultra160+ specifications.

Tip: If you really want the "full scoop" on CRC, try this site. Be warned that it
is definitely not for the technically faint of heart. :^)

Next: Command Queuing and Reordering

mehedi hasan
mehedi@joinme.com

523

Command Queuing and Reordering

SCSI is often described as being "advanced", or is called an "intelligent
interface". One of the reasons for these descriptions is that SCSI hardware
incorporates features that improve overall system performance, where
simpler interfaces such as IDE/ATA do not. One of these techniques is a
special feature that allows for concurrent, multiple requests to devices on the
SCSI bus. This feature is called command queuing and reordering; sometimes
the name is given as tagged command queuing. It was first introduced in the
SCSI-2 standard.

Traditionally, a simple interface like SCSI-1 or IDE/ATA will allow only a single
command to be outstanding at a time to any device. This means that once a
particular command is sent to a device, any other commands must wait for
the first one to be completed, which slows down performance. Command
queuing allows a device to accept as many as 64 or even 256 concurrent
commands. The commands can also come from different originating devices.
Command reordering allows a device that has multiple commands
outstanding to fill them "out of order", meaning, not necessarily in the order
that they were received.

For a very simple SCSI bus, such as a single hard disk on a host adapter in a
desktop PC, command queuing and reordering may not make a particularly
huge difference in performance. The reason is simply that there aren't that
many concurrent processes running, and not a great deal of activity on the
bus. This feature really comes into its own in a multiple-device, multitasking
environment, such as that experienced by a shared server. In that
environment, command queuing and reordering will improve performance
significantly, by allowing devices to accept multiple simultaneous requests
from different users, and fill them in the most efficient manner.

This is very important for devices like hard disks, which are very slow
compared to the rest of the system. If commands are processed only as they
are received, a great deal of time may be wasted while the hard disk's
mechanical components move past a physically close piece of data that will be
needed one or two requests "down the road". For a more thorough
explanation of how drives can improve performance by reordering commands,
see this discussion.

Next: Negotiation and Domain Validation

Negotiation and Domain Validation

SCSI hardware supports many different speeds, and newer, faster hardware
is generally backwards-compatible with older, slower devices. You can use a
host adapter capable of 160 MB/s throughput with drives that can only
support 20 MB/s transfers, or vice-versa. This leaves an obvious question:
how does each device determine what speeds the others on the bus are
capable of? Without knowing this, senders can't figure out how fast receivers
can handle data being sent.

mehedi hasan
mehedi@joinme.com

524

Since this is so important, the SCSI protocols build in support for a method by
which the host adapter can interrogate all devices on the bus to find out what
speeds they support. This process is called negotiation, and is one of the first
tasks performed by the SCSI host adapter when the system power is applied.
Under conventional SCSI rules, this negotiation is done with each device; the
host adapter records the maximum transfer speed that each device claims to
support, and then uses that information when the device is accessed.

This works great in theory, but there's a problem with it: theory doesn't
always translate into practice, especially when the technology "pushes the
envelope" with high-speed signaling. For example, even if the host adapter
can support Ultra160 transfers and the device says it can as well, this doesn't
mean that 160 MB/s signaling is actually possible on the bus. Perhaps the
cabling being used is inferior or too long, or there's a problem with a
terminator, or the system is in a particularly electrically noisy environment.
Regular negotiation just "trusts" that everything will work at the speed the
hardware decides is possible, but it may not actually work. If there are
difficulties, they may manifest themselves in the form of data errors or
reliability problems.

To improve negotiation, the SPI-3 standard introduced a new feature called
domain validation, sometimes abbreviated DV. This feature basically adds a
verification step to the normal negotiation procedure (note that "domain" is
another word for a SCSI channel or bus). After a device tells the host adapter
that it is capable of transfers at a particular speed, the host adapter tests the
device by sending write requests to the device's internal buffer at that speed.
The data just written is then read back and compared. If the data is different,
or if parity or CRC errors occur during either the read or the write, the host
adapter knows that communication at that speed is not reliable. It will then
retry at the next lower speed, and continue until reliable operation is
established. (If this sounds similar to the way that two regular analog
modems determine a communications speed, that's because it is!)

Domain validation is one of the five "optional" features of Ultra3 SCSI, and is
a required feature for hardware meeting the Ultra160 or Ultra160+
specifications. This feature may be expanded in the future to include more
frequent validation during the operation of the system, since over time errors
may occur on a channel that worked fine when the system was first powered
up.

Next: Quick Arbitration and Selection (QAS)

Quick Arbitration and Selection (QAS)

During the time when the system is running, the SCSI bus is generally either
active or idle. If active, the bus is busy transmitting data from one device to
another; if idle, it is available for a device to begin sending a command or
data. When a device decides it wants to use the bus, it "bids" for control of
the bus. It is also possible that other devices on the bus will want to use it at
the same time, so they too may "bid" for control. A specific method is used to
resolve these requests and decide which device gets to use the bus first; this

mehedi hasan
mehedi@joinme.com

525

is based to some extent on the devices' respective priority levels. This process
is called arbitration.

While arbitration works fine in regular SCSI configurations, it introduces
overhead. During the time that arbitration is going on, no data is being
transferred on the bus, so it makes sense that doing this faster will allow
improved performance of the entire SCSI subsystem. To this end, the SPI-3
standard defined a feature that reduces the overhead required for arbitration.
This feature is called quick arbitration and selection or QAS. You may also see
it called by the name it carried during development, quick arbitration and
select; IBM calls it quick arbitration select and Adaptec, simply quick
arbitrate. These are all different names for the same feature.

In a nutshell, QAS works by reducing the number of times arbitration must
occur on the bus. When the feature is used, a device waiting for the bus can
grab it more quickly after the last device on the bus sends the signal that it is
done, without having to begin a new arbitration process. Provision is made in
the specification to ensure that one device does not "dominate" the bus by
"unfairly" blocking out other devices that may be of a lower priority or may
not implement QAS.

Quick arbitration and selection is one of the five "optional" features of Ultra3
SCSI. It was not included as one of the required features for hardware
meeting the Ultra160 specification, but is present in Ultra160+ devices.

Next: Packetization

Packetization

While the SCSI interface is widely implemented on high-end hardware due to
its flexibility and high performance, its complexity does mean that some of its
potential performance is lost to overhead. In an effort to improve SCSI bus
performance by reducing overhead, the SPI-3 SCSI standard describes a new
feature that is generally called packetization or packetized SCSI.

Packetization is a technique whereby some of the phases that are involved in
setting up a command request and data transfer are combined. For example,
under traditional SCSI interfacing, several different types of information are
sent over the bus separately: commands, data, status messages and so on.
With packetization, these are grouped together into packets (also called
information units) and sent as a single entity. This reduces some of the
wasted bus cycles normally sent on managing all the individual transfers in
regular SCSI.

Packetization is one of the five "optional" features of Ultra3 SCSI. It was not
included as one of the required features for hardware meeting the Ultra160
specification, but is present in Ultra160+ devices. It may also be part of the
requirements for Ultra320 SCSI when that specification is complete.

Next: SCSI Protocol Map

mehedi hasan
mehedi@joinme.com

526

SCSI Protocol Map

The table below shows how the two most important protocol characteristics--
bus width and bus speed--map into the different names for SCSI transfer
modes and feature sets that are commonly seen in the SCSI world. Links are
included to each of the SCSI transfer modes or feature sets. The throughput
for each SCSI variety is also shown:

Narrow Wide
Signaling
Speed

Mode
Throughput
(MB/s)

Mode
Throughput
(MB/s)

SCSI-1 SCSI-1 5 Wide SCSI 10

Fast
Fast
SCSI

10 Fast Wide SCSI 20

Fast-20
Ultra
SCSI

20 Wide Ultra SCSI 40

Fast-40
Ultra2
SCSI

40
Wide Ultra2
SCSI

80

Fast-
80(DT)

--

Ultra3 SCSI,
Ultra160(/m)
SCSI, Ultra160+
SCSI

160

Fast-
160(DT)

-- Ultra320 SCSI 320

Next: Summary of SCSI Protocols and Transfer Modes

mehedi hasan
mehedi@joinme.com

527

Summary of SCSI Protocols and Transfer Modes

For easier comparison, the chart below shows all of the different SCSI
transfer modes and feature sets, along with their key characteristics. For your
clicking pleasuer, I've also hyperlinked everything that wasn't nailed down
;^)

Transfer
Mode

Defining
Standard

Bus
Width
(bits)

Bus
Speed
(MHz)

Through-
put
(MB/s)

Special
Features

Cabling
Signaling
Method

Maximum
Devices
Per Bus

Maximum
Cable
Length
(m)

SE 8 6 "Regular"
SCSI (SCSI-
1)

SCSI-1 8 5 5 50-pin

HVD 8 25

SE 16 6
Wide SCSI SCSI-2 16 5 10 68-pin

HVD 16 25

SE 8 3
Fast SCSI SCSI-2 8 10 10 50-pin

HVD 8 25

SE 16 3
Fast Wide
SCSI

SCSI-2 16 10 20 68-pin

HVD 16 25

mehedi hasan
mehedi@joinme.com

528

8 1.5
SE

4 3

SCSI-3 /
SPI

8 20 20 50-pin

HVD 8 25

8 1.5
SE

4 3

ltra SCSI-3 /
SPI

16 20 40 68-pin

HVD 16 25

8 12
LVD

2 25

SI
SCSI-3 /
SPI-2

8 40 40 50-pin

HVD 8 25

16 12
LVD

2 25

ra2 SCSI-3 /
SPI-2

16 40 80 68-pin

HVD 16 25

16 12
SI

SCSI-3 /
SPI-3

16
40
(DT)

160

At least
one of
Fast-80,
CRC, DV,
QAS,
Packet

68-pin LVD

2 25

mehedi hasan
mehedi@joinme.com

529

16 12
Ultra160(/m)
SCSI

SCSI-3 /
SPI-3

16
40
(DT)

160
Fast-80,
CRC, DV

68-pin LVD

2 25

16 12
Ultra160+
SCSI

SCSI-3 /
SPI-3

16
40
(DT)

160

Fast-80,
CRC, DV,
QAS,
Packet

68-pin LVD

2 25

16 12
Ultra320
SCSI

SCSI-3 /
SPI-4

16
80
(DT)

320
Fast-160,
?

68-pin LVD

2 25

Some notes on this table:

• "(DT)" means that transfer mode uses double transition clocking.
• Throughput numbers are in decimal megabytes per second.
• To keep the table from getting cluttered, I've only mentioned current

cabling, not obsolete cables.
• The number of devices includes the host adapter.
• For Ultra and faster speeds, the maximum length of cable for some

signaling types depends on the number of devices on the chain; thus,
the multiple rows.

• Ultra320 specifications are not final as of this writing.

Note: The number of devices (8 or 16) includes the host adapter.

Next: SCSI Host Adapters

SCSI Host Adapters

Most IDE/ATA hard disks are controlled today by integrated IDE controllers
that are built into the chipset on the motherboard. The SCSI interface is not,
for the most part, controlled by built-in motherboard SCSI controllers,
although some are and this is growing in popularity. Most systems require the
addition of a special card which serves as the interface between the SCSI bus
and the PC.

mehedi hasan
mehedi@joinme.com

530

This device is called a SCSI host adapter, or alternately a host bus adapter
(sometimes abbreviated HBA). It is sometimes called a SCSI controller or
even just a SCSI card, though these are technically incorrect names. They are
not accurate because SCSI is a systems-level interface, and every device on
the bus has its own controller. Logically, the host adapter is just a SCSI
device like any other. Its job is to act as the gateway between the SCSI bus
and the internal PC's I/O bus. It sends and responds to commands and
transfers data to and from devices on the bus and inside the computer itself.
Since it is inside the PC, of course, the host adapter really isn't the same as
the other devices on the bus--it's sort of a "first among equals", if you want
to think about it that way. ;^)

Since SCSI is a very "intelligent" interface--meaning it has a lot of capabilities
and the devices on it are able to interact in advanced ways--many SCSI host
adapters have evolved rather exceptional capabilities, and can act in many
ways to improve performance. In some ways, the host adapter is the key to
good SCSI implementation in the PC, since no matter how advanced the
peripherals are that you attach to the bus, everything goes through that host
adapter.

A PCI-based Adapter Wide Ultra2 SCSI host adapter.
Note the numerous connectors, which allow several chains
of internal and external devices to be attached to the host adapter. You
can see a 50-pin connector for internal devices on the right side near
the top, pointing straight out towards you. There are two high-density
Wide Ultra2 connectors on the top of the card. There is also one
high-density external connector on the expansion slot insert on the
left-hand side of the card. The PCI interface connector is on the bottom.

In this section I take a reasonably detailed look at host adapters. I focus
primarily on the most important attributes and features that someone

mehedi hasan
mehedi@joinme.com

531

considering a SCSI setup might look for. This includes a discussion of device
support, interfacing, connectors, resources and compatibility.

Tip: Motherboard support for SCSI is actually on the rise, especially in higher-
end systems, as SCSI becomes more "mainstream". It is still not common to
find it in most motherboards because it increases cost, and most people still
are not using SCSI. If you are building a new PC and want to go with SCSI,
consider a motherboard with an integrated SCSI host adapter. When selecting
such a motherboard, however, it is critical to pay specific attention to what
SCSI transfer modes and feature sets the motherboard will support. While
most built-in SCSI controllers can be disabled, having to buy a SCSI host
adapter six months after you buy a SCSI-capable motherboard--because the
motherboard-based controller doesn't do what you need it to--is just a waste
of time and money.

Next: Adapter Types and PC Bus Connections

Adapter Types and PC Bus Connections

In selecting a SCSI host adapter, one of the first decisions to be made is what
type of host adapter you want. There are many different kinds of SCSI host
adapters on the market, and they vary in cost and capabilities dramatically.
Many lower-end adapters are designed specifically are designed to keep costs
down to allow easy, inexpensive access to SCSI devices like scanners or CD-
RW drives. Higher-end devices provide more capabilities and performance for
users who require a full-featured implementation for hard disks and other
performance drives.

A key distinguishing characteristic between various host adapter models is the
type of system bus the card is designed for. SCSI host adapters have been
made for all of the common PC I/O buses, including ISA, EISA, VLB, MCA and
PCI. You obviously need to choose a host adapter that matches the system
bus(es) in your machine. Until recently, motherboards that featured both PCI
and ISA slots were common, giving you a choice. As is the case with most
interfaces that have a significant impact on performance, an ISA-based card
is generally a bad idea since this will greatly limit the performance of the bus.
You cannot efficiently use even something like Fast SCSI through an ISA-bus-
based host adapter, because ISA cannot handle more than about 8 MB/s of
data throughput. (Or rather, you can use it, but you won't get all the
performance possible.) Of course, by today's standards Fast SCSI isn't all that
fast, and higher-performance transfer modes are even less suitable for ISA.
However, ISA cards can be perfectly acceptable for slow SCSI devices such as
scanners, Zip drives, optical drives and so on.

After 20 years, the ISA bus is finally going the way of the dodo; Intel and
Microsoft are hard at work trying to kill off this old system bus interface, and
many systems come only with PCI slots, making a PCI host adapter the only
real option. Of course, not all PCI cards are alike; you certainly still have
plenty of decisions to make even within PCI. Here too, low-end, inexpensive

mehedi hasan
mehedi@joinme.com

532

cards are more suitable for simple applications, and more expensive cards are
appropriate for performance-demanding applications.

As I mentioned above, a very important performance issue concerning SCSI
host adapters and the system bus they use is the throughput of the bus. If
the throughput of the system bus is less than the maximum throughput of the
SCSI channel, SCSI performance will be limited to whatever the bus's
maximum rate is. Until recently, this wasn't much of a concern as long as a
PCI host adapter was used, because PCI had more than enough "overhead" to
handle any SCSI bus. In the last few years, however, with SCSI channels
continuing to increase in speed, even the performance of regular PCI is now
reaching a limiting point. The maximum practical bandwidth of regular (32-
bit, 33 MHz) PCI is a little over 100 MB/s, and the newest SCSI devices use
Ultra160 SCSI, capable of well over 100 MB/s of throughput. To get maximum
performance from such an interface, regular PCI is not sufficient.

To this end, some higher-end Ultra160 and faster SCSI host adapters are
designed to use new enhancements to traditional PCI. These include 64-bit
PCI, capable of throughput of over 200 MB/s, and also the new PCI-X bus,
which promises performance of up to 1 GB/s. Cards using 64-bit PCI are
readily available and are backwards-compatible with regular 32-bit PCI, so
they can be used on both newer systems with 64-bit PCI slots, or systems
that have only 32-bit slots.

Note: As I discuss at the end of the page on SCSI bus speeds, one should
always remember that SCSI throughput specifications are for the SCSI chain
as a whole, not individual devices. 160 MB/s is the maximum for all the
devices on an Ultra160 bus. The limits of regular PCI only become an issue if
one is using enough devices simultaneously to push the limits of the bus--
such as if RAID is being used. If you are just using one or two Ultra160
devices, regular PCI is probably sufficient for your needs.

Another reason to use PCI is that most newer host adapters that run on the
PCI local bus support the use of bus mastering. This can be a very important
feature, as it allows for more efficient transfer of data from the host adapter
to the system memory. Full performance from high-end SCSI chains requires
bus mastering support.

Next: Protocol Support

Protocol Support

Obviously, a key issue in selecting a host adapter is support for the particular
transfer modes and feature sets that you want to use. The host adapter must
be able to support all of the protocols that you want to use on the bus. If you
want to use wide SCSI, the adapter must support 16-bit operation; if you
want to use Ultra160 SCSI hard disks, your host adapter must be capable of
supporting this speed. Nothing too surprising here.

mehedi hasan
mehedi@joinme.com

533

Typically, host adapters are backwards compatible with older devices, so you
can run a newer drive on an older, slower host adapter--you just give up
some of the performance of the drive in doing so. Similarly, newer host
adapters will support older, slower devices, providing that they are properly
configured. See this page for more on compatibility between different SCSI
flavors.

Of course, host adapters that support faster transfer modes are generally
more expensive than ones that only support slower devices. Remember
though, that if you purchase a cheaper, less capable host adapter, you will be
limiting your expansion capabilities should you later decide that you do want
to use the faster mode. Whether the more capable host adapter is worth the
extra money depends on your situation and the chances that you will want or
need to upgrade in the future.

Next: Signaling Type Support (SE, HVD, LVD)

Signaling Type Support (SE, HVD, LVD)

With the arrival of Ultra2 SCSI, the SCSI world now uses three different types
of electrical signaling: conventional, single-ended SCSI, high-voltage
differential (HVD) SCSI, and low voltage differential (LVD) SCSI. The host
adapter used in a system must be electrically compatible with the drives that
are to be used.

Let's deal with high voltage differential first. This is the "oddball"; it was
never very popular in the market because of its expense and the fact that it is
not compatible at the electrical level with the more popular single-ended
devices. To use high voltage differential drives, you need to use a host
adapter specifically designed to support HVD signaling. Adapters do exist to
allow HVD drives to run on SE SCSI chains, but this is an expensive solution.

Warning: Do not attempt to connect HVD drives on a SCSI chain with non-
HVD devices, or the latter may be damaged.

Since low voltage differential signaling is required for the newest, fastest
devices, host adapters supporting LVD are taking over the market. Host
adapters that support only SE signaling are still available, but these are
severely restricted in terms of the performance and cable lengths they will
allow, so they are generally used only for devices other than hard disks.

LVD also creates an issue for people who want to use both high-speed hard
disks and also slower devices on the same host adapter. LVD and SE are
electrically compatible--assuming that the LVD devices are multimode capable
(LVD/SE or LVD/MSE)--so it isn't the same issue as with mixing SE and HVD.
The problem is that LVD only works if all the devices on the SCSI bus are
running in LVD mode. If you put a single-ended drive on a SCSI chain with an
Ultra160 hard disk, the hard disk will run at no greater than Ultra speeds,
knocking down performance. You will also see your maximum cable length
reduced from 12m to either 3m or 1.5m!

mehedi hasan
mehedi@joinme.com

534

To get around this problem, many SCSI host adapters that support LVD
modes (Ultra2 SCSI and higher) generally include separate support for
running devices at Ultra or slower speeds in single-ended mode. This is
implemented either through two distinct segments on the same SCSI
channel--using translater chips that allow the SE and LVD devices to share
data without interfering with each other electrically--or separate, independent
SCSI channels within the same card. (See here for details on multiple
segments and channels.) Be aware that if your SCSI host adapter does not
support this feature, you will not be able to run Ultra speed or slower devices
and Ultra2 or faster devices on the same machine. Of course, you can choose
to use two SCSI host adapters, but this causes other complications...

Next: Connectors

Connectors

SCSI is a bus that supports both internal and external devices. To support
these two types of devices, most SCSI host adapters come with both internal
and external connectors. Internal connectors are usually mounted along the
top edge of the SCSI host adapter, and are used for the ribbon cables
employed for internal SCSI devices. External connectors are mounted along
the outside edge of the host adapter (the part accessible from the back of the
PC when the card is inserted into a system bus slot.)

Internal (above) and external (below) connectors on a Wide Ultra2 SCSI

mehedi hasan
mehedi@joinme.com

535

host adapter. In the upper photo you can see two connectors; facing you is a
68-pin (wide) high-density connector, and facing up is a 50-pin (narrow)
"regular
density" connector. In the lower photo is a 68-pin (wide) high-density
connector.

The exact type of connectors provided on any given card depends on its
design, and more specifically, the type of SCSI it is intended to support. A
card that is designed to support narrow devices will have narrow (50-pin)
connectors, while cards that are built to run wide devices will have 68-pin
connectors. There are also different types of each of these two sizes of
connector; for example, an older or lower-end host adapter may use the older
high-density 68-pin connectors while high-end Ultra160 card may use the
smaller very-high-density (VHDCI) connectors.

Obviously, when purchasing a host adapter check to make sure it has the
connectors you need for your devices. Remember that adapters are available
to interface devices that use different styles of connectors, but they can add
significant cost to a SCSI implementation. For much more information on
cable and connector issues, see this section of the site.

Next: Caching

Caching

Many higher-end SCSI controllers have built-in caches. The idea behind a
cache is to use high-speed memory to hold recently retrieved results, to save
time if the results are needed again in the near future. This improves
performance because most SCSI devices are drives, much slower than
memory in relative terms. Caching is a concept that is used extensively within
the PC world; it is found in CPUs, hard disks, optical drives and a variety of
other devices. To read more about caching in general terms, see this section.

Caching that is done by the SCSI controller adds an additional caching level
that exists, logically, in front of the cache (buffer) that resides within SCSI
hard disks or other components. When data is requested from a device on the
SCSI bus, the host adapter sees if it is already in its internal cache and if so,
returns the results much more quickly, saving transaction bandwidth on the
SCSI bus at the same time. This of course improves performance over a
system that does not have this type of cache.

The amount of cache memory on a host adapter depends on the model; some
are user-upgradeable. Note that there are diminishing returns associated with
cache memory; each megabyte you add helps performance less than the
previous megabyte did...

Next: Multiple Segment and Channel Support

Multiple Segment and Channel Support

mehedi hasan
mehedi@joinme.com

536

In its simplest form, a host adapter provides support for a single SCSI chain:
that is, a single set of devices that are all connected together on the same
SCSI bus. This is the way that many older and low-end SCSI host adapters
work. They are fine for simple implementations, but are too limiting for
complex SCSI setups. Especially with modern systems that need to use both
LVD and single-ended devices, an adapter with support for just a single
segment is insufficient for maximum performance. To expand capabilities,
host adapter manufacturers make cards that support multiple segments,
multiple channels, or both.

A segment is an electrically-isolated "piece" of a SCSI bus; a single bus can
be made up of one or more segments. Cards that implement multiple
segments allow for more flexibility because the segments are electrically
separate. Each segment can have a cable as long as the normal maximum
cable length allowed for that particular type of SCSI, for example. One
segment can use an internal cable within the PC and another an external
cable. It's important to remember though that two segments on a single
channel are logically considered to be part of the same SCSI bus even if they
are electrically separate. This means all devices on all segments must have
unique IDs, and that maximum bandwidth is shared between all devices on all
segments that make up the bus.

The most expensive host adapters go beyond multiple segment support and
actually have multiple channels. These are similar in concept to the way an
IDE/ATA controller typically has two channels. Each channel is completely
independent of the other, both electrically and logically. This means the two
run in parallel with each other: you get support for twice as many devices,
and twice as much throughput. In essence, a card with two channels is two
host adapters in the same package. For example, an Ultra160 host adapter
with dual channels will support 30 drives (16 per channel less one each per
channel for the host adapter) and theoretical throughput of up to 320 MB/s
(160 MB/s per channel). Note that each channel can itself have more than
one electrical segment.

Host adapters that support multiple channels are not really needed for most
applications, especially if already using high-performance SCSI like Ultra160;
they are more common in servers than desktop PCs. Multiple segments,
however, are commonly found even in desktop SCSI cards. One common use
for multiple segments is to allow independent use of LVD and SE devices on
the same host adapter without causing the LVD devices to degrade to SE
operation. See this page for more on this important feature of Ultra2 and
faster host adapters. Some cards use multiple channels to isolate LVD and SE,
which is probably even better (though it may be more expensive.)

Next: RAID Support

RAID Support

SCSI is the interface of choice for servers and high-end workstations, where
both performance and reliability are critical. One of the most important ways
that performance, data integrity and reliability are improved in modern PC

mehedi hasan
mehedi@joinme.com

537

systems is through the use of redundant arrays of inexpensive disks, or RAID.
This term simply refers to the use of multiple hard disks in an array, with data
spread across the disks. Accessing multiple disks simultaneously allows for
faster performance; the optional use of redundancy allows for protection
against hardware faults. You can read all the details about RAID here.

Most higher-end RAID solutions use SCSI, so support for RAID is commonly
found in SCSI host adapters. In practice, these are not usually sold as "SCSI
host adapters with RAID support" but rather are considered as a separate
product line: "SCSI RAID controllers". For more information on RAID
controllers, see this section. If purchasing a RAID controller, be sure to read
all RAID controller specifications carefully, in addition to the information I just
referenced--RAID cards vary widely in terms of features and implementation
requirements.

Next: Drivers and Compatibility Issues

Drivers and Compatibility Issues

It's important to ensure that your operating system will support whatever
host adapter you decide to use. Selecting a quality card from a well-known
company is key to success in many cases. You want to make sure that the
card comes with configuration software and drivers that will support whatever
operating system and applications you are using. Most well-known cards will
either be supported natively in Windows (and other operating systems) or will
be provided with good drivers.

There are, in rare cases, problems with compatibility between older devices
and cards, due to some loose interpretations of the SCSI standards. This has
been pretty much cleaned up with the newer devices, however. Other
compatibility difficulties may result from the mixing of devices using different
types of SCSI transfer modes or feature sets; see here for more details.

Warning: One thing that is important to know is that different SCSI host
adapters may use different addressing or translating methods to access data
on hard disks to which they are connected. This means that switching host
adapters can render the contents of the hard disk inaccessible. In some cases
the disk must be reformatted after the new host adapter is installed. See here
for more on this.

Next: Manual vs. Automatic Configuration

Manual vs. Automatic Configuration

Host adapters vary in terms of the methods that are used for configuring
them. Older and cheaper cards, particularly ones that use the ISA bus to
connect to the PC, typically require the use of hardware jumpers for
configuration tasks such as setting the SCSI device ID for the host adapter,
enabling or disabling termination, and so on. These are relatively inconvenient

mehedi hasan
mehedi@joinme.com

538

because making changes requires opening up the PC, and in some cases,
pulling out the card to tinker with it.

Newer cards, especially those that use the PCI bus, are generally configured
through software. This is done either using a separate configuration utility, or
the built-in SCSI BIOS, a hardware program that resides on a chip within the
host adapter (much like the system BIOS in concept, but dedicated to the
SCSI card, not the system as a whole.) Some cards may use both. Some
better cards may also automatically configure certain options, such as
termination, by detecting which connectors are in use, for example.

These issues are discussed in more detail in the section on configuration. Note
that when I talk about configuration here I am speaking of configuring the
SCSI bus, not the host adapter itself; see this page for more on that subject.

Next: Resource Usage

Resource Usage

From the perspective of the PC as a whole, SCSI host adapters are expansion
devices, since they plug into a system bus and represent a peripheral device
on the system bus. (Some motherboards have integrated SCSI host adapter
chips, but these are logically similar to separate host adapters even if no
distinct physical card is used.) Host adapters typically require several different
system resources, depending on the system bus that the host adapter is
designed for, and the method it is using for transferring data over the system
bus.

The following resource types are typically used on various adapters:

• Interrupt Request Line (IRQ): All SCSI host adapters use an
interrupt request line or IRQ. The most commonly used ones are 9, 10,
11 or 12. IRQs 14 or 15 can usually be used as well if one or the other
of the IDE/ATA channels in the system are not being used (see here
for details on IDE/ATA resource usage). It should be noted that PCI-
based host adapters will not require an explicit IRQ assignment.
Rather, they will use one the system IRQ mapped to whatever PCI slot
they are placed into. PCI also supports IRQ sharing. See here for
more.

• DMA Channel: Many older host adapters based on the ISA or VLB
buses use DMA channels to permit the transfer of data directly from
SCSI devices to system memory. Usually DMA channels 1, 3 or 5 are
used. PCI-based host adapters typically make use of PCI bus
mastering to improve performance, which is a separate type of DMA
that does not use regular ISA system DMA channels.

• I/O Address: The I/O address is used as the place through which
data is transferred to the system. There are several ranges that are
used by some SCSI cards.

• BIOS ROM Memory: The SCSI BIOS that contains the commands for
controlling the host adapter typically takes up a 4000h address

mehedi hasan
mehedi@joinme.com

539

location in the upper memory area. This is usually one of the five
4000h spaces in the address range of CC000h to DDFFFh.

Most newer SCSI host adapters, especially those using the PC bus, support
the Plug and Play initiative. Plug and Play allows the system to configure
resources for the host adapter automatically in many cases, reducing
configuration difficulties. (Note that I am speaking here of Plug and Play at
the system level, which deals with system resources. This is different than so-
called Plug and Play SCSI, which is similar in concept but is applied to
dynamically allocating SCSI device IDs on the SCSI bus, not PC system
resources.)

Next: SCSI Cables and Connectors

SCSI Cables and Connectors

There are many different aspects about SCSI that can be confusing to
someone new to the technology--and even someone not new to it. :^) Of all
of the aspects of SCSI that sometimes cause a bit of difficulty, cables and
connector issues are probably the worst. Unlike the IDE/ATA world, where
there are a handful of different cable types, with SCSI there are literally
dozens of different types of cables! It is difficult to even describe all of the
options available. This is a result of the flexibility of the SCSI interface--more
choice means more options, and hence, more decisions. :^)

In this section, I describe the cable and connector hardware most commonly
seen on the SCSI interface. There are many different types of cables, and
many types of connectors, and to some extent they can be "mixed and
matched"--meaning that you may find different types of cables for each
connector type and vice-versa. Therefore, I begin by first discussing general
cabling issues, and then describing the most common technologies found for
cables, and then the same for connectors. I then cover the specifics of the
three most common general categories of cables: narrow, wide, and LVD
cables, and provide pin-out listings for the signals they use as well. I then
explain the single connector attachment method of connecting SCSI drives,
talk about adapters, and discuss different ways that the SCSI bus is
terminated.

Note: I have to state "up front" that I do not describe every type of SCSI
cable and connector that exists in this section, just the most common ones.
There are so many types of cables, including some that are created for very
particular applications, that I couldn't even begin to describe them all. By
reading this section you will know most of what you need to know about SCSI
cables and connectors. However, if you are looking to buy SCSI cables, the
most important thing you should look for is a quality vendor that will help you
choose the correct cable for your application. SCSI cables can be expensive; a
reputable vendor will be able to ask the correct questions to ensure that you
get the hardware you need.

Next: General Cable and Connector Issues

mehedi hasan
mehedi@joinme.com

540

General Cable and Connector Issues

The main reason why there are so many types of SCSI cables is simply that
there are so many types of SCSI--and so many different ways of
implementing them. This great flexibility is actually one of the key strengths
of the interface. The design of any SCSI cable is based on a combination of
different attributes chosen to implement a particular kind of SCSI bus.

Each SCSI cable must meet the specific electrical requirements associated
with the SCSI signaling speeds and methods it supports. This refers not just
to obvious matters--such as how many pins are on a particular connector
type, or which signals are carried on which wires--but the more complex
factors that are the domain of electrical engineering professionals. For
example, the thickness of each wire in a cable, the characteristic impedance
of the cable, materials used for the wires, connectors and covers, and so on.

The following are other factors that have an impact on the design of SCSI
cables, as well as on the selection of cables to meet a particular application:

• Cable Type: SCSI is different from most PC interfaces in that it
supports both internal and external devices. These use drastically
different types of cabling, because the environment inside the PC is
very different from that outside it. Both internal and external cables
come in a variety of styles themselves. This is all discussed in more
detail on this page.

• Connector Type: Different types of connectors are used for different
kinds of SCSI. These are only partially dependent on the type of
physical cable used; to some extent, connector types are "mixed and
matched" with cable technologies to make particular cables. See here
for more.

• Cable Length: The maximum length of a SCSI cable is dictated by the
signaling type and signaling speed of the interface; this summary table
shows the length limits for all the different types of SCSI. However,
not all cables are built to the maximum length. Cables of all different
lengths are made to suit different needs and budgets (most people
don't need 12-meter-long cables for LVD devices, for example, even
though they are legal.)

• Number of Connectors: Cables vary in terms of the number of
connectors they include. Generally speaking, longer cables have more
connectors, allowing more devices to be attached to the same SCSI
bus segment. Specialized cables may have fewer connectors; for
example, LVD cables can be 25m in length instead of the usual 12m if
they are used "point to point"--just two devices on the cable.

• Connector Spacing: Some types of SCSI have limits regarding how
closely two connectors can appear on the cable. If the cable has many
connectors you may have to leave some of the connectors unused for
maximum performance. In all cases, it is recommended that devices
be evenly spaced across the cable.

• Termination: Some cables have a built-in terminator at the end of
the cable while others require the addition of a separate terminator.
See the page on termination for more.

mehedi hasan
mehedi@joinme.com

541

• General Quality: The overall quality of a SCSI cable is very
important, but is not something tangible that can be easily measured
or quantified. Remember that not all cables are created equal. SCSI
cables are often the culprits in problematic SCSI buses, so don't skimp
on the quality of your cables.

Warning: Some companies sell cables with labels such as "SCSI-1 cable",
"SCSI-2 cable" or "SCSI-3 cable". With the possible exception of "SCSI-1",
these are extremely vague terms that do not tell you nearly enough about the
cable to decide if it is the one you want. These terms refer to SCSI standards,
which define SCSI families, not specific types.

Next: SCSI Cable Types

SCSI Cable Types

The term "SCSI cable" usually refers to a complete cable, including the wire,
connectors and possibly a terminator as well. On this page I want to start by
looking at the cable itself, the actual wires that make up the "overall cable".
There are a number of different types of cables available; these are combined
with various connector types to create specific cable implementations.

SCSI cables come in two distinct varieties: external and internal. External
cables are used to connect SCSI devices that do not reside inside the PC, but
rather have their own enclosures and power supplies; internal cables connect
SCSI devices installed within the PC system box. These cables are totally
different in construction, primarily because the external environment
represents much more of a risk to data corruption. This means external
cables must be designed to protect the data traveling on the cable. Internal
cables don't have this problem because the metal case of the PC shields the
components inside from most of the electromagnetic and radio frequency
noise and interference from the "outside world". Thus, internal cables can be
made more simply and cheaply than external ones.

Let's start by looking at external cables. These are commonly called shielded
cables because they are made specifically to protect the data they carry from
outside interference. They have a very specific design in order to ensure that
data traveling on the cable is secured, including the following properties:

• Twisted Pair Wiring: All the wires in the cable are formed into pairs,
consisting of a data signal paired with its complement. For single-
ended signaling, each signal is paired with a "signal return" wire--a
fancy name for a ground wire. For differential signaling, each "positive"
signal is paired with its corresponding "negative" signal (see the
description of differential signaling for an explanation of this). The two
wires in each pair are then twisted together. This twisting improves
signal integrity compared to running all the wires in parallel to each
other. So an external narrow cable with 50 wires actually contains 25
pairs; a 68-wire cable 34 pairs. (This sort of wiring is also commonly

mehedi hasan
mehedi@joinme.com

542

used in other applications, such as network cabling, for the same
reason.)

• Shielding: The entire cable is wrapped with a metallic shield, such as
aluminum or copper foil or braid, to block out noise and interference.

• Layered Structure: The pairs of wires aren't all just tossed into the
cable at random; instead, a structure of layers is used. The "core
layer" of the cable contains the pairs carrying the most important
control signals: REQ and ACK (request and acknowledge). Around that
core, pairs of other control signals are arranged in a "middle layer".
The outer layer of the cable contains the data and other signals. The
purpose of this three-layer structure is to further insulate the most
important signals to improve data integrity.

External cables have a round cross-section, reflecting the circular layers
mentioned just above. Needless to say, these cables aren't simple to
manufacture! All this precise engineering doesn't come without a cost:
external SCSI cables are generally quite expensive. For internal cables all
these special steps are not required to protect the data in the wires from
external interference. Therefore, instead of special shielded, multiple-layer
construction, internal devices use unshielded cables, which are flat ribbon
cables similar to those used for floppy drives and IDE/ATA devices. These are
much cheaper than external cables to make.

Close-up view of an external SCSI cable.
Note the round shape of the cable's cross-section,
and the labeling, which indicates that this is LVD-compliant,
shielded cable, using AWG 28 conductors.

Original image © Computer Cable Makers, Inc.
Image used with permission.

Even with internal cables, there are differences in construction (beyond the
width issue, 50 wires for narrow SCSI or 68 wires for wide SCSI). One issue is
the thickness of the wires used; another is the insulation that goes over the
wires. Better cables generally use Teflon as a wire insulation material, while
cheaper ones may use PVC (polyvinyl chloride; vinyl). Regular flat cables are
typically used for single-ended SCSI applications up to Ultra speeds (20 MHz).

mehedi hasan
mehedi@joinme.com

543

An assortment of different internal ribbon cables used for
connecting SCSI hardware. Note that some are strictly flat
cables, but the one on the far left and the one third from the right
are partially flat and partially twisted pair cable.

Original image © CS Electronics
Image used with permission.

For Ultra2 or faster internal cables using LVD signaling, the poor electrical
characteristics of cheap flat ribbon cables begin to become an issue in terms
of signal integrity even within the PC. Therefore, a new type of internal ribbon
cable was created for these cables, which actually combines some of the
characteristics of regular internal and external cables. With these ribbon
cables, pairs are twisted between the connectors on the cable--just like in
external cables--but the ribbon remains flat near where the connectors go, for
easier attachment. The return to pair twisting improves performance for high-
speed SCSI applications, while increasing cost somewhat, though not as much
as if external cables are used. This technology is sometimes called "Twist-N-
Flat" cable, since it is partially flat and partially twisted-pair.

Next: SCSI Connector Types

SCSI Connector Types

Connectors are of course the physical devices that are used to attach a SCSI
cable to a SCSI device. Several different types of SCSI connectors are used to
construct SCSI cables. This is in itself unfortunate in a way; whenever there
are multiple types of connectors for an interface, this means the potential
exists for mismatched connectors between devices. Different connector types
have evolved over the years as the SCSI interface has matured. In particular,
the desire for miniaturization has been a driving force in the creation of new
connector types--the oldest SCSI connectors were large, and creating smaller
connectors improves the usability of SCSI cables and devices.

Below are the connector types most commonly seen used with SCSI cables in
the PC world. Note that this list is not exhaustive, in part because there are
several obscure variations used for some proprietary SCSI implementations.
However, most of the cables you will find in the SCSI world use one of these
connector types. The SCSI standards call different connector types
"alternatives" (not really a good name since the "alternatives" describe
different devices types and not really "choices" as that word implies). Since

mehedi hasan
mehedi@joinme.com

544

external and internal cables generally use different connectors, each has four
different "alternatives". I'll begin with external connector types:

• D-Shell (D-Sub, DD): The earliest SCSI standard, SCSI-1, defined a
50-pin D-shell connector for narrow SCSI implementations. The name
of this connector comes from the "D-shaped" metal shell that goes
around the pins on the male half of the connector. The design is
identical to the 25-pin and 9-pin D-shell connectors used for parallel
and serial connections on PCs, but bigger. This connector type was
very large and cumbersome, never really caught on. However, an
alternative 25-pin version of the D-shell was widely used in the Apple
hardware world. (Apple "stripped out" the 25 signal return and ground
wires that normally would be paired with the true SCSI signals, to save
cost). This also never became a standard in the PC world and is not
generally seen unless you go looking for it.

A male DD-50 SCSI connector.
Note the "D-shaped" metal shell around the pins.

Original image © Computer Cable Makers, Inc.
Image used with permission.

Warning: The Apple DB-25 SCSI connector is mechanically identical to a PC's
parallel port connector. Be sure not to accidentally connect a DB-25 SCSI
device to a PC's parallel port or something might be damaged.

• Centronics: The other external connector type defined by the SCSI-1
standard is a 50-pin connector that is commonly called a Centronics
connector, after a formerly-popular printer that first used this type of
connector. In Centronics connectors, instead of thin pins, two rows of
flat contacts are used. Two latches on either side are used to hold the
connector in place. Centronics connectors are still used for PC printer
cables, on the end that attaches to the printer; SCSI Centronics
connectors are the same, just with a different number of pins. These
50-pin connectors are still present in the current SCSI specification
and are called "Alternative 2" external connectors.

mehedi hasan
mehedi@joinme.com

545

Male (above) and female 50-pin Centronics connectors.
As you can see, there are no pins; the contacts are flat.
Note the tabs on the sides of the male connector and the
latches on the sides of the female connector, which snap
into the tabs to secure the connector in place.

Original images © Computer Cable Makers, Inc.
Images used with permission.

• High-Density (HD): The D-shell connectors defined in the SCSI-1
standard were replaced by newer, high-density shielded connectors in
SCSI-2. These are really not all that different from the older D-shell
connectors, but the space between pins was reduced, making the
connectors smaller, cheaper to make and easier to use. The narrow,
50-pin version is called "Alternative 1", and the wide, 68-pin version
"Alternative 3". These connectors use a "squeeze to release" latching
mechanism instead of Centronics-style latches, and are still used by
hardware devices today.

Male 50-pin (above) and 68-pin
external high density connectors.

Original images © Computer Cable Makers, Inc.
Images used with permission.

• Very High Density Cable Interconnect (VHDCI): To further
improve the flexibility of SCSI hardware, a new type of external
connector was defined as part of the SPI-2 standard. This connector is
wide only (68 pins) and is sometimes called a "micro-Centronics"
connector, because it uses the same design as the Centronics
connectors, only with the contacts much smaller and closer together.
This is "Alternative 4" for external connectors and is growing in

mehedi hasan
mehedi@joinme.com

546

popularity because of its small size. One way that VHDCI is useful; for
example, is that two of these connectors can be squeezed side-by-side
within the width of a single SCSI host adapter's back edge (expansion
slot insert). This doubles the number of external connectors that can
be crammed onto a high-end SCSI host adapter.

A male 68-pin VHDCI connector.

Original image © Computer Cable Makers, Inc.
Image used with permission.

OK, now let's look at internal (unshielded) connectors:

• Regular Density: The SCSI-1 standard defined a single connector
type for internal narrow (8-bit) devices. This is a rectangular connector
with two rows of 25 pins. This connector type is very similar to that
used for IDE/ATA devices, except that there are five extra pins in each
row. It is most often seen in older devices and also some newer,
slower drives. It is called unshielded "Alternative 2" in the current
SCSI standards.

Male (above) and female 50-pin regular density internal connectors.
Note the gap in the plastic shield around the male connector,
and the tab on the female connector, for keying.

Original images © Computer Cable Makers, Inc.
Images used with permission.

• High Density: SCSI-2 defined two new connector types, which are
both called high density because their pin spacing is half that of the
older SCSI-1 connectors, making them much smaller. These are the
most common SCSI connectors used today within the PC box. The
narrow, 50-pin version is unshielded connector "Alternative 1" and the
68-pin version is "Alternative 3".

mehedi hasan
mehedi@joinme.com

547

A male, internal, high-density 68-pin connector.
The 50-pin connector is the same, just narrower.
(It is much less common than the 68-pin version.)

• Single Connector Attachment (SCA): "Alternative 4" in the SCSI
standards for unshielded connectors doesn't actually refer to cable
connectors, but the connector used for the single connector
attachment system for backplane-connection of SCSI drives. See the
section on SCA for more details.

A female 80-pin SCA connector. This is the
connector that would be found on a backplane
designed for SCA SCSI drives.

Original image © Computer Cable Makers, Inc.
Image used with permission.

Phew. :^) You may also find the cable and connector summary page helpful
in understanding all of these "alternatives".

Next: Narrow (50-Conductor) Single-Ended Cables, Connectors and
Signals

Narrow (50-Conductor) Single-Ended Cables, Connectors and Signals

Narrow cables are used for all narrow (8-bit) SCSI transfer modes. These are
also sometimes called 50-conductor or 50-pin cables after the number of
wires in the cable or pins in its connectors, respectively. They are also
sometimes called SCSI-1 cables since the SCSI-1 standard only included
narrow SCSI; this is not really a preferred way of naming cables however.
Officially, narrow cables in the SCSI standards are called "A" cables. There are
many different types of narrow cables, depending on the type of cable and
connectors used. They are all collectively called "A" cables, though obviously
just knowing that a particular cable is an "A" cable isn't enough to tell you if it
is one you can use for your application.

Narrow SCSI uses 50 signals, carried on the 50 conductors in the cable. These
are organized into 25 pairs of two wires each. For single-ended SCSI, each

mehedi hasan
mehedi@joinme.com

548

pair generally consists of a signal and a signal return, which is the same as a
ground line. The signals are the same for the wires in all "A" cables, but the
numbering of pins depends on the type of connectors used. Here are the
signals and numbering conventions for narrow SCSI:

Pin # Pin #
Signal

Set
2

Set 1

Cable
Conductor
Set

1
Set 2

Signal

SIGNAL
RETURN

1 1 1 2 2 26 -DB(0)

SIGNAL
RETURN

2 3 3 4 4 27 -DB(1)

SIGNAL
RETURN

3 5 5 6 6 28 -DB(2)

SIGNAL
RETURN

4 7 7 8 8 29 -DB(3)

SIGNAL
RETURN

5 9 9 10 10 30 -DB(4)

SIGNAL
RETURN

6 11 11 12 12 31 -DB(5)

SIGNAL
RETURN

7 13 13 14 14 32 -DB(6)

SIGNAL
RETURN

8 15 15 16 16 33 -DB(7)

SIGNAL
RETURN

9 17 17 18 18 34 -P_CRCA

GROUND 10 19 19 20 20 35 GROUND

GROUND 11 21 21 22 22 36 GROUND

(reserved) 12 23 23 24 24 37 (reserved)

(no
connection)

13 25 25 26 26 38 TERMPWR

(reserved) 14 27 27 28 28 39 (reserved)

GROUND 15 29 29 30 30 40 GROUND

SIGNAL
RETURN

16 31 31 32 32 41 -ATN

GROUND 17 33 33 34 34 42 GROUND

SIGNAL
RETURN

18 35 35 36 36 43 -BSY

mehedi hasan
mehedi@joinme.com

549

SIGNAL
RETURN

19 37 37 38 38 44 -ACK

SIGNAL
RETURN

20 39 39 40 40 45 -RST

SIGNAL
RETURN

21 41 41 42 42 46 -MSG

SIGNAL
RETURN

22 43 43 44 44 47 -SEL

SIGNAL
RETURN

23 45 45 46 46 48 -C/D

SIGNAL
RETURN

24 47 47 48 48 49 -REQ

SIGNAL
RETURN

25 49 49 50 50 50 -I/O

Note: "-P_CRCA" was "-DB(P0)" (parity zero) before the introduction of CRC.

"Woah, woah, what are all those numbers, shouldn't it just be one number
per signal?" Nothing's simple with SCSI, unfortunately, so let's see if I can
explain this table. The table is double-width to prevent its length from getting
excessive, and is "mirror-imaged" to make the data easier to understand and
to show how the wires are "paired". On the outside are the signal names.
Notice that all the "real signals" are on the right-hand side, and the "signal
returns" and grounds are on the left. The middle two columns show the
conductor numbers assigned to each signal; these are the numbers of the
wires in the cable. The numbers between those two columns and the signal
names represent two different sets of pin number assignments, which are
used for different connector types in the SCSI standards. "Set 1" is the same
as the conductor numbering; since the numbers alternate, this means that
consecutive numbers are "pairs"; #1 and #2, #3 and #4 and so on, to #49
and #50. "Set 2" instead numbers going down the left column and then does
the right column.

This table shows which connector types use which numbering schemes (see
the page on connector types for help in making sense of the terms below):

External Cables Internal Cables
Connector
Alternative Connector

Type
Pin Set
Number

Connector
Type

Pin Set
Number

"Alternative 1"
High
Density

2
High
Density

2

"Alternative 2" Centronics 1
Regular
Density

1

mehedi hasan
mehedi@joinme.com

550

This means that the older cable styles--Centronics for external and regular
density for internal--have the pin numbers the same as the conductor
numbers. Cables using the newer, high density connectors--for both internal
and external cables--use the different numbering specified as "Set 2". I really
do not know what the reason was for this change, though I would guess that
it made attaching the connectors easier somehow.

OK, now I probably have you more confused than ever. Let's dig past all
these formalities and talk about practical "A" cables. These are the most
common types of "A" cables that are used in real SCSI systems in the PC for
narrow, single-ended implementations:

• External Centronics "A" Cables: These are the oldest common type
of external SCSI cables, using Centronics-style ("Alternative 2")
connectors. They connect older external devices to narrow SCSI buses.

• External High Density "A" Cables: These cables are used for newer
external devices that have high density ("Alternative 1") connectors
instead of Centronics connectors.

• Internal Regular Density "A "Cables: Flat, 50-conductor ribbon
cables using the older "regular density" ("Alternative 2") connectors.
Widely used for connecting to older hard disks and slower devices such
as CD-ROMs.

• Internal High Density "A" Cables: 50-conductor ribbon cables using
the newer high density ("Alternative 1") connectors are used for newer
or faster devices (though most of these are now wide devices, and so
use wide cabling.)

mehedi hasan
mehedi@joinme.com

551

An external, male Centronics "A" cable (above) and a female
regular density internal ribbon "A" cable. These are two of
the most common narrow cable types in the SCSI world.

Original images © Computer Cable Makers, Inc.
Images used with permission.

To a great extent, the choice of cable depends on the connectors used on the
host adapter and the devices being considered. There are some cables that
have two different connector types on them, for special applications.There are
also a myriad of adapters to allow different connector types to be attached to
the same cable.

Next: Wide (68-Conductor) Single-Ended Cables, Connectors and
Signals

Wide (68-Conductor) Single-Ended Cables, Connectors and Signals

Wide cables are used for wide (16-bit) SCSI transfer modes. These are also
sometimes called 68-conductor or 68-pin cables after the number of wires in
the cable or pins in its connectors, respectively. Wide cables are formally
called "P" cables in the SCSI standards, though there are several different
types of "P" cables.

Note: Wide SCSI was defined in the SCSI-2 standard, many years after
narrow SCSI was already established. The first wide SCSI implementations
were designed to use a 68-pin "B" cable in combination with the regular
narrow "A" cable. This combination was cumbersome and expensive, and very
unpopular in the hardware industry. The "P" cable replaced the "A+B"
combination and is now the standard for wide SCSI implementations.

Wide SCSI uses 68 signals, carried on the 68 conductors in the cable. These
are organized into 34 pairs of two wires each. For single-ended SCSI, each
pair generally consists of a signal and a signal return, which is the same as a
ground line. The numbering of the signals is different for the cable conductors
and the connector pins, though fortunately there is only one set of pin
numbers, unlike narrow SCSI (see the narrow SCSI cable description for
more). Here are the signals and numbering conventions for wide SCSI:

mehedi hasan
mehedi@joinme.com

552

Signal
Pin

Cable
Conductor

Pin

Signal

SIGNAL RETURN 1 1 2 35 -DB(12)

SIGNAL RETURN 2 3 4 36 -DB(13)

SIGNAL RETURN 3 5 6 37 -DB(14)

SIGNAL RETURN 4 7 8 38 -DB(15)

SIGNAL RETURN 5 9 10 39 -DB(P1)

SIGNAL RETURN 6 11 12 40 -DB(0)

SIGNAL RETURN 7 13 14 41 -DB(1)

SIGNAL RETURN 8 15 16 42 -DB(2)

SIGNAL RETURN 9 17 18 43 -DB(3)

SIGNAL RETURN 10 19 20 44 -DB(4)

SIGNAL RETURN 11 21 22 45 -DB(5)

SIGNAL RETURN 12 23 24 46 -DB(6)

SIGNAL RETURN 13 25 26 47 -DB(7)

SIGNAL RETURN 14 27 28 48 -P_CRCA

GROUND 15 29 30 49 GROUND

GROUND 16 31 32 50 GROUND

TERMPWR 17 33 34 51 TERMPWR

TERMPWR 18 35 36 52 TERMPWR

(reserved) 19 37 38 53 (reserved)

GROUND 20 39 40 54 GROUND

SIGNAL RETURN 21 41 42 55 -ATN

GROUND 22 43 44 56 GROUND

SIGNAL RETURN 23 45 46 57 -BSY

SIGNAL RETURN 24 47 48 58 -ACK

SIGNAL RETURN 25 49 50 59 -RST

SIGNAL RETURN 26 51 52 60 -MSG

SIGNAL RETURN 27 53 54 61 -SEL

SIGNAL RETURN 28 55 56 62 -C/D

mehedi hasan
mehedi@joinme.com

553

SIGNAL RETURN 29 57 58 63 -REQ

SIGNAL RETURN 30 59 60 64 -I/O

SIGNAL RETURN 31 61 62 65 -DB(8)

SIGNAL RETURN 32 63 64 66 -DB(9)

SIGNAL RETURN 33 65 66 67 -DB(10)

SIGNAL RETURN 34 67 68 68 -DB(11)

Note: "-P_CRCA" was "-DB(P0)" (parity zero) before the introduction of CRC.

The numbering of the conductors alternates between the left column of signal
returns and the right column of signals, facilitating the creation of matched
pairs within the cable, and also allowing for the creation of "partially twisted
pair" LVD cables. The pins are numbered sequentially down the left column,
and then the right column. This probably facilitates manufacturing in some
way.

In practical terms, the following are the most common "P" cables used in the
PC world for single-ended wide SCSI:

• External High Density Cables: The older style of external wide
cables uses the larger high density connector.

• External Very High Density Cables: The newer style of external
wide cables uses the very high density (VHDCI) connector. It is most
common with the newest devices (though typically, VHDCI cables use
LVD, not single-ended signaling.)

• Internal High Density Cables: Only one general type of internal
wide cable is used for single-ended signaling, a 68-wire ribbon cable
with high density connectors.

mehedi hasan
mehedi@joinme.com

554

Above, an external wide cable that has one high density
connector and one very high density connector. Below, an
internal wide cable with five high density connectors. Note the
integrated terminator on the internal connector (upper left).

Top image © Computer Cable Makers, Inc.
Image used with permission.

As with narrow SCSI, the choice of external cable depends on the
requirements of the hardware being used. There are cables available that
have mixed connector types for special requirements, and also many kinds of
adapters. Note that high-end SCSI now uses LVD, so LVD cables are required,
which are similar in some ways to single-ended "P" cables, yet different. ;^)
They are also, unfortunately, called "P" cables, so watch out for that! Note
also that some wide SCSI implementations use single connector attachment
(SCA) instead of discrete cables.

mehedi hasan
mehedi@joinme.com

555

Next: Low Voltage Differential (LVD) Cables, Connectors and Signals

Low Voltage Differential (LVD) Cables, Connectors and Signals

The newest SCSI cables are designed to implement the newest SCSI signaling
method, low voltage differential (LVD). Since LVD is a different method of
signaling than regular, single-ended (SE) SCSI, the signals used on these
cables are quite different than those of SE cables. There are also some
differences in terms of the physical cables as well.

First, let's talk about the signals. LVD cables have their signals organized into
pairs just like SE cables. However, instead of each pair consisting of a signal
and a signal return (ground), each pair consists of the positive and negative
complements of the signal. There is also a change to the function of one cable
conductor: a special signal called DIFFSENS, which is used to control
differential signaling.

Other than these small changes, the signals for LVD narrow cables are the
same as for SE narrow cables, and the signals for LVD wide cables are the
same as for SE wide cables. Rather than repeat two large tables full of signals
with nearly-identical versions, I would refer you to the tables for narrow and
wide cables respectively. As you look at those tables, remember that for LVD,
each "SIGNAL RETURN" is replaced with the "positive" complement of the
active-low regular signal. So for example, cable conductor #15 for an LVD "A"
cable carries the signal "+DB(7)", and cable conductor #57 for an LVD "P"
cable carries the signal "+REQ". For narrow ("A") cables, DIFFSENS replaces
one ground signal on cable conductor #21; for wide ("P") cables it is cable
conductor #31.

Note: I should point out that I mention narrow LVD cables primarily for
"completeness"--they are defined in the SCSI standards but have never been
widely used. LVD is generally only implemented for wide devices.

The physical cables used for LVD SCSI chains are also different from single-
ended cables, despite the fact that the connectors used are the same for
single-ended. This is really a different matter than the changes in signaling;
since the wires don't know what signals they are carrying, in theory one
should be able to use the same cables for LVD as for SE. In practice,
however, the greater demands placed by the high speed used in LVD
signaling means that problems can occur if you try to use SE cables for LVD
implementations.

mehedi hasan
mehedi@joinme.com

556

An internal, 68-wire, 5-connector LVD cable. Note the
distinctive "loose" twisted pair wiring between the connectors.
The circuit board at bottom right is an integrated LVD/SE
terminator. (Incidentally, one of the connectors
is hidden behind the terminator and hard to see.)

For external cables, you want to use cabling that is specifically rated for LVD
use; these cables have been designed and tested for LVD applications, even if
they look the same as their single-ended cousins. As with regular wide cables,
they may be found with either high density or very high density connectors.
Internal LVD cables are actually very different from SE cables. The reason is
that to improve signal integrity, internal LVD cables typically don't use regular
flat ribbon cabling. Instead, they use so-called "Twist-N-Flat" cabling, where
adjacent pairs of wires are twisted between the connectors, and the wires
"flatten out" where the connectors attach. See the discussion of cabling types
for more on this kind of wiring.

mehedi hasan
mehedi@joinme.com

557

Detail of the cable pictured above, showing one of the high density
connectors, along with a flat section of the cable where the connector
attaches, and the twisted pairs of the cable on either side.

Next: Single Connector Attachment (SCA, SCA-2)

mehedi hasan
mehedi@joinme.com

558

Single Connector Attachment (SCA, SCA-2)

The SCSI standards define four "alternative" connector types for both internal
and external SCSI connections. Of those eight, seven involve the use of
traditional SCSI cabling of one sort or another. Internal connection
"Alternative 4", however, defines a totally different way of connecting SCSI
drives to host systems. Instead of the use of discrete cables, the drives are
plugged directly into the system. A single connector is used that includes all
of the signaling and power inputs and outputs needed by the drive. This
technique is called single connector attachment or SCA.

The reason why this attachment method was developed was to respond to the
needs of higher-end systems. Better workstations and servers now employ
advanced technology to allow multiple hard disks to be used together to
increase performance and improve reliability. This is done through the use of
Redundant Arrays of Inexpensive Disks (RAID); these high-end machines
may have anywhere from two to dozens of SCSI drives in them. One
important feature of RAID is hot swapping, which means that failed hard disks
can be removed from the disk array and replaced with new ones without
powering down the system. This allows busy machines to keep on running
even if a drive fails. Conventional attachment protocols with separate power
and data cables--and manual configuration--do not work well in this
environment. Regular SCSI hard disk connection methods don't allow for hot
swapping. In addition, all the cables involved in connecting power and data to
a dozen drives are cumbersome

With the SCA system, the regular 68-pin data connector, 4-pin power
connector, and several configuration jumpers on a hard disk are all replaced
by a single, unified 80-pin connector. (Incidentally, SCA is a wide-only
interface; there is no narrow SCA). This is a Centronics-style connector with
special properties used to ensure safe hot plugging of devices into an active
system. On the host side, mating connectors are mounted onto a backplane
consisting of several removable drive bays (you can see a picture of a server
case providing removable SCSI SCA drive bays here.)

Simplified schematic showing how SCA SCSI works.

mehedi hasan
mehedi@joinme.com

559

The female connector is on the backplane within the PC,
and the male attached to the device (typically a hard disk).
The advanced grounding contacts allow hot swapping without
creating electrical problems (see further down the page for more).

Image © Information Technology Industry Council (ITI)
(See here for more on ITI.) Image used with permission.

The first SCA implementation had some issues, and the technology was
revised in a new version now called SCA-2. Several attributes about the
interface were changed with this new version of SCA, and SCA-2 is now the
standard in the industry. In order to frame the discussion of the features of
SCA, let's take a look at the single-ended signals and contact numbering
scheme for the current standard 80-contact SCA connector:

Signal
Long
Host
Contact?

Connector
Contact #

Long
Host
Contact?

Signal

12V CHARGE YES 1 41 YES 12V GROUND

12V 2 42 YES 12V GROUND

12V 3 43 YES 12V GROUND

12V 4 44 MATED 1

3.3V 5 45 YES 3.3V CHARGE

3.3V 6 46 YES GROUND

-DB(11) 7 47
SIGNAL
RETURN

-DB(10) 8 48
SIGNAL
RETURN

-DB(9) 9 49
SIGNAL
RETURN

-DB(8) 10 50
SIGNAL
RETURN

-I/O 11 51
SIGNAL
RETURN

-REQ 12 52
SIGNAL
RETURN

-C/D 13 53
SIGNAL
RETURN

-SEL 14 54
SIGNAL
RETURN

mehedi hasan
mehedi@joinme.com

560

-MSG 15 55
SIGNAL
RETURN

-RST 16 56
SIGNAL
RETURN

-ACK 17 57
SIGNAL
RETURN

-BSY 18 58
SIGNAL
RETURN

-ATN 19 59
SIGNAL
RETURN

-P_CRCA 20 60
SIGNAL
RETURN

-DB(7) 21 61
SIGNAL
RETURN

-DB(6) 22 62
SIGNAL
RETURN

-DB(5) 23 63
SIGNAL
RETURN

-DB(4) 24 64
SIGNAL
RETURN

-DB(3) 25 65
SIGNAL
RETURN

-DB(2) 26 66
SIGNAL
RETURN

-DB(1) 27 67
SIGNAL
RETURN

-DB(0) 28 68
SIGNAL
RETURN

-DB(P1) 29 69
SIGNAL
RETURN

-DB(15) 30 70
SIGNAL
RETURN

-DB(14) 31 71
SIGNAL
RETURN

-DB(13) 32 72
SIGNAL
RETURN

-DB(12) 33 73
SIGNAL
RETURN

mehedi hasan
mehedi@joinme.com

561

5V 34 74 MATED 2

5V 35 75 YES 5V GROUND

5V CHARGE YES 36 76 YES 5V GROUND

SPINDLE
SYNC

YES 37 77 YES
ACTIVE LED
OUT

RMT_START YES 38 78 YES DLYD_START

SCSI ID (0) YES 39 79 YES SCSI ID (1)

SCSI ID (2) YES 40 80 YES SCSI ID (3)

Looking at this table, you will notice several differences compared to the
signal chart for regular wide SCSI attachment. These really define the special
characteristics of the SCA interface:

• Regular Signals: The "core" SCSI signals are the same as for wide
SCSI; they are found in the middle part of the connector. The only
difference is that the signals are in the left column and the returns on
the right, instead of the other way around.

• Power Signals: Three voltages of power are supplied to the hard
disks: 3.3 V, 5 V and 12 V. Again, these are provided so that the drive
can operate without needing a separate Molex-style four-pin power
connector.

• Long Contacts: The "Long Host Contact?" column has the word "YES"
in it for several contacts. The connector on the host (PC) side is
specially designed so that these contacts are made a bit longer than
the regular length associated with most of the contacts in the
connector. This is an important feature: what it does is to ensure that
these signals make contact before any others when a drive is inserted,
and also that they break contact last when a drive is removed. Without
this feature, subtle changes in the angle of insertion or pressure
applied to the drive as it is pushed into the system could cause
spurious results--a voltage contact might connect before the ground
contacts, for example. (Remember that compared to the speed of
electricity, human hands are extremely slow; even the split-second
that passes while a connector is being seated represents an eternity to
electronic circuits.)

• Power Charge Signals: Each of the three voltages mentioned above
has associated with it a "precharge" signal. These are on long contacts
while the regular voltage signals are on short contacts. When a drive is
inserted, these precharge circuits make contact a bit before the
regular voltage circuits do. A drive can be designed to use these
charge signals to "precharge" its internal circuits during hot plugging,
to soften the sudden "surge" of current when the regular power signals
connect.

• SCSI ID Signals: Instead of using jumpers, SCA drives have their
device IDs set through software control. This is obviously important to
enable the use of many drives and hot swapping.

mehedi hasan
mehedi@joinme.com

562

• Other Control Signals: Extra signals are provided to allow control
over other drive features such as remote or delayed starting of the
drive motor. A signal is also provided for the drive to indicate that it is
active, so the system can light the appropriate drive activity LED.

The physical SCA connectors also incorporate physical features to make hot
plugging of drives easier. SCA drives slide into drive bays and mate with the
system connector in the back without the user being able to see what is going
on; this is called blind connector mating. To ensure that the connectors line
up properly, special guides are provided on the host connector.

There is also an LVD version of the SCA interface, which is now taking over
from the single-ended type of SCA, as all new hard disks use LVD. The
difference between LVD SCA and SE SCA is the same as the difference
between LVD wide cable signals and SE wide cable signals: there are two
changes. The first is that all of the signal returns are replaced with positive
complement signals; for example, contact #58 on an LVD SCA connector is
"+BSY", and so on. The second is that one ground is replaced by the
DIFFSENS signal, in this case contact #46.

Warning: Though physically identical, LVD drives must use the LVD version
of the SCA interface to function properly.

Next: SCSI Adapters

SCSI Adapters

With so many different types of SCSI protocols, cables and connection
methods, it's no surprise that there also exists on the market an enormous
number of different SCSI adapters. These devices are generally manufactured
and sold by the same people who make and sell SCSI cables, and are
intended to solve some of the problems that crop up when SCSI users try to
interconnect different kinds of SCSI hardware.

There are probably over a hundred different types of SCSI adapters available;
some of the most popular ones fall into these general categories:

• Mechanical Connector Adapters: The most common types of
adapters are used to allow devices with different types of connectors
to be used on the same cable. These are simple, purely mechanical
adapters that don't contain any logic or live circuitry, and are relatively
inexpensive. For example, you might have an existing external SCSI
cable using high density connectors, and want to add to the SCSI
chain a device that has a Centronics connector. There are dozens of
different connector adapters, reflecting the myriad of combinations of
connector types.

• SCA Adapters: These are adapters that let you use SCA drives on
regular systems that don't have SCA backplanes.

mehedi hasan
mehedi@joinme.com

563

• Wide/Narrow Adapters: Adapters that let you put a narrow SCSI
device on a wide cable or vice-versa. There are complications involved
in doing this; see here for more.

• Internal/External Adapters: Adapters that let you use an internal
cable outside the PC.

• Signaling Method Adapters: Adapters that let you use differential
drives on a single-ended SCSI chain or vice-versa. These are
electrically active adapters and are generally expensive.

• Interface Adapters: Adapters that let you use SCSI devices on other
interfaces; the most common is an adapter to let you use certain types
of SCSI drives on a PC's parallel port. Again, these can be a bit
expensive. Also, you will be limited to (at best) the maximum speed of
whichever interface is slowest.

Two adapters that are representative of two categories of adapter

mehedi hasan
mehedi@joinme.com

564

types. Above, a simple mechanical adapter, which converts from a
high density 68-pin male connector to a Centronics-style 50-pin female.
(There are actually two of them, stacked to show both connectors.)
Below, an SCA to high-density 68-pin adapter.

Original images © Computer Cable Makers, Inc.
Images used with permission.

It's important to remember that there can be reliability issues with using
adapters. It might be possible to mate two devices to each other with the use
of a mechanical adapter, but that doesn't mean that the interface will
necessarily function reliably with that configuration. To some extent it
depends on the nature of the SCSI bus being implemented, and the quality of
the hardware. In some cases adapters work just fine with no problems, but in
others getting everything to work together can be a bit tricky. It's best to
consult with a qualified hardware vendor if you are unsure of how to make
different devices work together.

Another aspect to keep in mind is that the cost of some SCSI adapters can be
very high. It might be possible to adapt one type of device to use it with a
very different type of host adapter, but in many cases it will not be cost-
effective. Some adapters are so expensive that it would be cheaper to get a
new cable, host adapter or other "incompatible" hardware rather than buy the
adapter. This is particularly true of adapters that change between signaling
methods.

Next: SCSI Bus Termination

SCSI Bus Termination

You can do an experiment (either physically or mentally) to illustrate why
termination is required on a SCSI bus. Hold one end of a piece of rope about
six feet long and have someone else hold the other end. Stretch the string so
it is reasonably taut, but not tight, and then snap down on one end sharply.
You will form a wave that travels down the string. When it reaches the end of
the string it will "reflect" off the end and travel back again toward you, and
then reflect again. It will go back and forth across the string, decreasing in
amplitude each time until it eventually dies out.

Electrical signals travel across wires in much the same way as physical waves
travel across a string. When they reach the end of the wire, they will reflect
and travel back across the wire. The problem is that if this is allowed to
happen, the reflected signals will interfere with the "real" data on the bus and
cause signal loss and data corruption. To ensure that this does not happen,
each end of the SCSI bus is terminated. Special components are used that
make the bus appear electrically as if it is infinite in length. Any signals sent
along the bus appear to go to all devices and then disappear, with no
reflections.

There are several different kinds of termination used on SCSI buses. They
differ in the electrical circuitry that is used to terminate the bus. Better forms

mehedi hasan
mehedi@joinme.com

565

of termination make for more reliable SCSI chains; the better the
termination, the fewer problems (all else being equal) with the bus, though
cost is generally higher as well. In general terms, slower buses are less
particular about the kind of termination used, while faster ones have more
demanding requirements. In addition, buses using differential signaling
(either HVD or LVD) require special termination.

Here are the different types of SCSI termination:

• Passive Termination: This is the oldest, simplest and least reliable
type of termination. It uses simple resistors to terminate the bus,
similar to the way terminators are used on coaxial Ethernet networks.
Passive termination is fine for short, low-speed single-ended SCSI-1
buses but is not suitable for any modern SCSI speeds; it is rarely used
today.

• Active Termination: Adding voltage regulators to the resistors used
in passive termination allows for more reliable and consistent
termination of the bus. Active termination is the minimum required for
any of the faster-speed single-ended SCSI buses.

• Forced Perfect Termination (FPT): This is a more advanced form of
active termination, where diode clamps are added to the circuitry to
force the termination to the correct voltage. This virtually eliminates
any signal reflections or other problems and provides for the best form
of termination of a single-ended SCSI bus.

• High Voltage Differential (HVD): Buses using high voltage
differential signaling require the use of special HVD terminators.

• Low Voltage Differential (LVD): Newer buses using low voltage
differential signaling also require their own special type of terminators.
In addition, there are special LVD/SE terminators designed for use
with multimode LVD devices that can function in either LVD or SE
modes; when the bus is running single-ended these behave like active
terminators.

mehedi hasan
mehedi@joinme.com

566

Internal (above) and external active terminators.
The LED on the external shows that the terminator is connected.
Some multimode LVD/SE terminators have LEDs that light up
one color when the bus is running in LVD mode, and a different
color when it is running in SE mode. This is useful for troubleshooting.

Original images © Computer Cable Makers, Inc.
Images used with permission.

Terminators must be at the very ends of the bus, after all of the actual
devices on the chain. This includes any devices that may be powered off or
temporarily disconnected. Therefore, there are always exactly two
terminators per bus or bus segment. Many devices contain internal
terminators that can be used if the device is at one of the ends of the SCSI
bus. However, differential drives typically do not include the ability to
terminate the bus, so newer LVD applications require explicit terminator
hardware. Sometimes terminators are built in to the end of the SCSI cable. In
addition, systems using the Single Connector Attachment system have a
different termination arrangement because the connection system is different.
SCA drives do not have termination on them.

Note: Host adapters usually do include the ability to terminate the SCSI bus.
In fact, many host adapters include multiple segments, and so have the
ability to terminate each segment they support. Termination should only be
enabled on a host adapter if the host adapter is the last device on any
segment. If you are using both internal and external devices on a host
adapter that has only one logical segment being shared by both internal and
external drives, the host adapter is going to typically be in the middle of the
chain between them, and its internal termination should be disabled.

Termination is a rather straight-forward affair when all of the devices on the
SCSI bus are the same width: either narrow (regular, 8 bit) or wide (16 bit)
SCSI. When you mix narrow and wide SCSI on the same bus, you must be
more careful about termination. The issue that arises is that if part of the
device is running in wide mode, but not all devices are wide, half of the data
lines (the "high byte") may end somewhere on the bus; they need to be
terminated, and that termination may occur in a different place than where
the "low byte" data signals are terminated.

mehedi hasan
mehedi@joinme.com

567

Normally these issues are handled using special adapters or cables that only
extend the extra width to the devices that are using the wide portion of the
bus. However, the extra signals on the wide part of the bus must also be
terminated properly. Problems can result with wide devices when these extra
signals are not terminated and are left "dangling". See this discussion of
mixing wide and narrow devices for more details.

Next: Summary of SCSI Cables and Connectors

Summary of SCSI Cables and Connectors

The table below provides a quick reference summary of the different
connector types used for both internal and external SCSI cables:

Cable
Type

Connector
"Alternative"

Connector
Type

Contacts Cable Name

1 High Density 50
External High
Density "A" Cable

2 Centronics 50
External Centronics
"A" Cable

3 High Density 68
External High
Density "P" Cable

External

4 VHDCI 68
External Very High
Density "P" Cable

1 High Density 50
Internal High Density
"A" Cable

2
Regular
Density

50
Internal Regular
Density "A" Cable

3 High Density 68
Internal High Density
"P" Cable

Internal

4 SCA 80 (n/a)

Note: I only included current connector types; for a description of the older
D-shell connectors that were formerly internal connector "alternative 1", see
the page on connector types.

Next: SCSI Configuration

mehedi hasan
mehedi@joinme.com

568

SCSI Configuration

I've already devoted entire sections of this SCSI discussion to several
important issues related to configuring and setting up SCSI systems. These
include discussions of the various SCSI transfer modes, SCSI host adapters,
and important cable and connector issues. You'll want to be sure you
understand those key aspects of the technology before you try to equip a
system with SCSI hardware.

However, there are several more considerations that must be taken into
account when setting up a SCSI bus. In this section I will cover important
issues that any person setting up or managing a SCSI PC will need to
understand. I begin with a discussion of SCSI bus topology, which covers
legal and illegal ways of connecting devices. I then talk about the number of
devices allowed on a SCSI chain and how to set device IDs to prevent
conflicts. I then cover several miscellaneous configuration issues, including
software control, BIOS issues, and physical installation considerations. Finally,
I talk about how to mix wide and narrow devices, and also how to use SCSI
drives along with IDE/ATA drives in the same system.

Next: SCSI Bus Topology

SCSI Bus Topology

Topology is a term that refers to the shape or structure of things. In the
computer world, it usually refers to the way that devices are connected or
arranged. The SCSI interface uses a bus topology. This means that all devices
are daisy-chained linearly in a long line. This is identical to how a thin
Ethernet (10base2) network is set up (the cables and signals aren't the same
of course, I am referring to how the devices are logically linked together in a
line). This is sometimes called a SCSI chain as well.

When setting up a SCSI bus, it is imperative that each device be in a straight
line. This means that each device (including the host adapter) is connected to
either one or two other devices, and never more than that. The two devices
at the end of the bus must be terminated, either internally or externally. The
bus should never be connected in a loop, star or other formation.

For a two-device bus, the topology typically looks like this:

Terminator -- Device A -- Device B -- Terminator

For a four-device bus, it is as follows:

Terminator -- Device A -- Device B -- Device C -- Device D -- Terminator

It does not matter which device is located where on the chain, and any of the
devices can be either internal or external, but the terminators must be at the
ends. The terminators can be either explicit devices or part of the final
devices on the cable. So in the second example, if Device D had internal
termination, it could be enabled instead of using a separate terminator on

mehedi hasan
mehedi@joinme.com

569

that end of the cable. Obviously, having the internal devices at one end of the
bus, and the external devices at the other end, with the host adapter in the
middle, is going to be the setup that makes the most sense for those that are
using both internal and external drives. If the host adapter is placed in the
middle of the chain, it must have its termination disabled, otherwise the
devices past it on the chain will not function. (The exception is if the host
adapter implements multiple channels or segments. If so, each channel or
segment must be separately terminated; see here more.)

If using a cable with more connectors than you have devices, it is acceptable
to leave some of the connectors unused, but they should be left in the middle
of the cable, with the terminators still at the end of the cable. Terminating a
SCSI chain while leaving connectors "dangling" is not a good idea, as this can
create signaling problems. So the following is legal:

Terminator -- Device A -- (unconnected) -- Device B -- Device C --
(unconnected) -- Terminator

But the following is not legal:

Terminator -- Device A -- Device B -- Device C -- Terminator --
(unconnected) -- (unconnected)

Some SCSI chains, particularly those used for faster transfer modes or LVD
signaling, work better if the last device on any SCSI cable is connected to the
last connector on the cable, the one closest to the terminator. Also, evenly
spacing devices out over the bus is preferable from a reliability
standpoint.Thus, the following would probably be a better configuration than
prior example, even though that one is technically legal:

Terminator -- Device A -- (unconnected) -- Device B -- (unconnected) --
Device C -- Terminator

Next: Number of Devices

Number of Devices

One of SCSI's strengths as an interface is its support for large numbers of
devices on the bus, and the fact that different "conversations" between
devices can be taking place simultaneously. SCSI buses can support as many
as 16 different devices; compared to the IDE/ATA interface and its limit of
two, this offers significant flexibility.

There are four different issues that influence the number of devices that can
be used on a single SCSI channel:

• Bus Width: SCSI was originally defined as a narrow, 8-bit bus, with
support for 8 different devices. When wide 16-bit SCSI was created,
this was expanded to support for 16 devices. Since the host adapter is
itself a SCSI device, this means a theoretical maximum of 7 other
devices for narrow SCSI, or 15 for wide.

mehedi hasan
mehedi@joinme.com

570

• Transfer Mode and Signaling Method: Certain transfer modes and
signaling methods limit the theoretical maximum number of devices,
due to electrical signal integrity considerations. This is particularly true
of Wide Ultra SCSI, where single-ended implementations are limited to
8 devices despite being 16 bits wide, because single-ended signaling
can't handle 16 devices on a cable at that speed.

• Cable Length: Many SCSI transfer modes involve a "tradeoff"
between cable length and the number of devices that can be
supported. For Ultra SCSI in particular, reducing the number of
devices on the chain allows the use of longer cables and vice-versa.
Newer implementations that use LVD signaling are normally limited to
12m in length, but this can be extended to 25m if only two devices are
used on the cable.

• Practical Considerations: The limitations above are all based on
theoretical considerations. There are also practical issues involved in
running many devices on a SCSI bus. For example, you may be able to
run 16 hard disks on your SCSI bus in theory, but to do this would
require a very large system case and a very power power supply. For
external devices there are similar issues to be addressed. Long cables
with many connectors are also very expensive and may require
devices to be placed close to each other so the cable will reach all the
devices. Having many devices can make high reliability more difficult.
And so on...

This table shows a summary of all the different transfer modes and signaling
methods, and the number of devices supported for each.

Note: It's pretty unusual in most systems to need more than 8 devices, much
less 16. If this is an issue, however, you can connect more devices either by
using two host adapters in the PC, or a single host adapter that supports
multiple independent channels.

Next: SCSI Device IDs

SCSI Device IDs

Each SCSI device is addressed on the bus via a specific number. For narrow
SCSI (which allows up to 8 total devices), these are numbered 0 through 7;
for wide SCSI (16 devices) the numbering is 0 through 15. The priority that a
device has on the SCSI bus is based on its ID number. For the first 8 IDs,
higher numbers have higher priority, so 7 is the highest and 0 the lowest. For
Wide SCSI, the additional IDs from 8 to 15 again have the highest number as
the highest priority, but the entire sequence is lower priority than the
numbers from 0 to 7. So the overall priority sequence for wide SCSI is 7, 6,
5, 4, 3, 2, 1 , 0, 15, 14, 13, 12, 11, 10, 9, 8.

The priority levels are used to guide the arbitration process. I describe
arbitration in some detail here, but in a nutshell, it is the process by which
different devices decide which one can have control of the bus. If more than
one device wants control at the same time, the higher-priority device will

mehedi hasan
mehedi@joinme.com

571

"win", while the lower-priority device will have to wait for its turn. Since
devices are addressed specifically by other devices, the ID setting on the bus
doesn't matter a great deal on low-traffic buses--all that is essential is that no
two devices be set to the same ID, or obviously great confusion will ensue. In
high-traffic settings, you will typically want to set the slower devices
(scanners, tape drives) to the higher-priority IDs, to ensure that they are not
crowded off the bus by the faster devices like hard disks.

Another consideration is that if you have any devices that absolutely cannot
tolerate delays in receiving their stream of data--such as a CD recording drive
or a video encoder--they should be given top priority on the bus. Many people
also like to make the host adapter the highest-priority device on the bus,
which is why host adapters will often default to a SCSI ID of 7. It should be
noted that some older host adapters can be finicky about device IDs. Some
will only boot a hard disk if it is set to device ID 0. (This is inflexible and has
been basically done away with in newer hardware.)

Warning: Some host adapters support multiple bus segments on the same
SCSI bus. Device IDs must be unique across all segments that are on the
same bus. You can't put two devices both with ID #7 for example on two
different segments of the same SCSI chain.

The method of actually configuring the ID depends on the specific device.
Many devices use hardware jumpers or switches, or even a rotary dial to set
the device ID, on the back of the device enclosure. More sophisticated devices
use software utilities--this is most common with more modern SCSI host
adapters. If the drive uses jumpers, be sure to check the configuration
settings carefully; different drives use different jumper combinations to set
particular numbers.

Finally, the use of Plug and Play SCSI allows for automatic assignment of
device IDs on the bus, to eliminate devices trying to use the same IDs
simultaneously, for systems that support the feature (and when it works).
Single Connector Attachment drives also have their IDs set by the host
system, to allow for automatic configuration and hot swapping.

Next: BIOS Issues

BIOS Issues

SCSI hard disks do not suffer from most of the BIOS "barrier" issues that
plague IDE/ATA hard disks, because they do not have to deal with the severe
restrictions that result from the incompatible IDE and BIOS geometry
specification limits. SCSI by its nature uses logical block addressing (LBA) to
address devices, and does not rely on the system BIOS for geometry
information as IDE/ATA does.

Since SCSI hard disks are controlled by the internal SCSI bios on the host
adapter, this gets around the issues inherent with the motherboard's BIOS.
However, it means that any limits of the host adapter BIOS can affect access

mehedi hasan
mehedi@joinme.com

572

to devices it controls. Some older host adapters did have problems that made
them unable to access hard disks over 1 GB in size, or some other arbitrary
limits. Newer host adapters should not have these limitations. Of course, if
you are using the FAT file system, you are still restricted to 2 GB per
partition, since this is a file system issue, not a hardware or BIOS one. See
here for a full discussion.of this barrier.

Next: SCSI Software Interface Protocols (ASPI and CAM)

SCSI Software Interface Protocols (ASPI and CAM)

In order for a device to be used on the SCSI bus, it is necessary for it to have
a driver that interfaces it to the bus. (The exception is hard disks, which are
normally usable directly by the host adapter, since it is designed for that
purpose). The problem with this is making sure the drivers are available for
all the devices you want to use and that they work properly. A further
problem is making sure that operating systems and applications can work
with all of the drivers that are written for various devices.

To help make the situation with drivers more standardized, Adaptec--the
biggest name in SCSI host adapters--developed the Advanced (originally
Adaptec) SCSI Programming Interface, or ASPI. This driver acts as an
abstraction layer that hides the details of the host adapter from the operating
system or application and makes device support more universal.

Most of the popular operating systems can make use of ASPI. DOS requires
an ASPI driver to be loaded, while the protected mode operating systems
such as Windows 95 and Windows NT have native support for ASPI. One
problem with using SCSI under DOS or Windows 3.x is that the lack of
protected-mode drivers means yet another real-mode drive that uses up
precious conventional memory.

An alternative interface protocol is called Common Access Method or CAM.
This is a more sophisticated and complex software interface protocol, which is
defined as one of the SCSI-3 standards. CAM and ASPI both do basically the
same thing; which is used depends on the particular system.

Next: Plug and Play SCSI (SCAM)

Plug and Play SCSI (SCAM)

Each SCSI device is required to have a unique device ID in order to be
addressed over the shared SCSI bus. This has usually involved setting
jumpers or switches on devices like hard disks, and either physical or
software setup for host adapters. To eliminate this need for manual
configuration, a specification was developed to automate the assignment of
device IDs. This protocol allows the SCSI bus to dynamically shift and
reallocate IDs when a new device is added to the bus, and is called Plug and
Play SCSI or alternatively, SCSI Configured AutoMatically (SCAM). (Yuck,

mehedi hasan
mehedi@joinme.com

573

what a contrived acronym.) Plug and Play SCSI also supports automatic
termination of the SCSI bus.

Note: This idea is similar in concept to "regular" Plug and Play in the overall
PC system, but remember that Plug and Play SCSI is used to assign SCSI
device IDs, not system resources. In fact, many modern SCSI host adapters
also support system plug and play over the PCI bus to allow dynamic setting
of system resources. This is a different matter altogether, though these may
be sold as "Plug and Play SCSI controllers"...

While a great idea in theory, SCAM never lived up to its potential. The main
issue with the feature is that it doesn't always work reliably--it's not a simple
matter to automatically assign device IDs or figure out which devices should
enable termination. Many people would find that they needed to disable the
feature and manually configure drives to eliminate problems. There were also
difficulties if devices supporting SCAM were mixed with other devices that did
not support the feature. Eventually, hardware makers started recommending
that people avoid the feature altogether and just configure devices manually,
reasoning that this would reduce the likelihood of problems. And let's be
honest--it doesn't take that long to set the IDs of a few devices, and you
typically only have to do it once anyway.

SCAM was eventually removed from the SCSI parallel interface standard in
the SPI-3 revision.

Next: Physical Installation Issues

Physical Installation Issues

SCSI hard disks are not inherently any different in terms of physical
construction than their cousins that use other interfaces such as IDE/ATA.
However, there are often more issues related to proper installation of SCSI
drives, not due to the interface per se, but due to the fact that SCSI drives
tend to be faster and run hotter than IDE/ATA drives do. The fastest SCSI
devices may require active cooling; even if it isn't needed, attention must
definitely be paid to where the drives are installed in the system case, and
the cooling capacity of the case as a whole. See here for more on hard disk
cooling and installation issues.

The issues with installing a SCSI system will vary from one system to
another. Simple SCSI installs with only a few devices are actually fairly
straight-forward, so don't let this page scare you off. :^) However, more
involved configurations require more planning. For example, a special
("server") case will generally be needed for installations with many drives;
special enclosures are often used for RAID arrays. Providing sufficient power
to a number of SCSI drives means that the power supply of the system must
often be "beefed up" as well.

Cabling concerns can also affect the physical installation of SCSI systems.
Since it is best to use shorter cables if at all possible--both for improved

mehedi hasan
mehedi@joinme.com

574

signal quality and to reduce cost--it may be preferable to place SCSI drives
relatively close together, as long as they are not so close to each other that
cooling or ventilation suffers. This would also apply to external devices.
Fortunately, it does not matter which devices are connected to which cable
connectors.

Next: Mixing Narrow and Wide Devices

Mixing Narrow and Wide Devices

The simplest SCSI configurations use only narrow devices, or only wide
devices. When this is done, the correct cable is chosen, all the devices are
connected in a bus topology, and the appropriate type of termination is placed
at both ends of the bus. Termination is relatively straight-forward because all
devices have the same width. However, there are often situations where
narrow and wide devices may need to be mixed on a single SCSI channel.
This has become even more of an issue in recent years, because the newest
hard disks are wide only, but many other kinds of devices are still produced
for the narrow interface.

The best way of mixing wide and narrow devices is to use a host adapter that
has built in support for separate segments or channels for wide and narrow
devices. If you use this sort of host adapter, you can effectively set up the
wide and narrow devices separately, using a narrow cable and terminator for
the narrow segment (or channel), and wide hardware for the wide segment
(or channel). The host adapter takes care of the issues involved in mixing the
devices (though you may need to help through the setting of configuration
parameters). Another reason why this sort of adapter is a good idea is that
narrow devices generally use single-ended signaling, while modern wide
devices require LVD for maximum performance. The two cannot be mixed on
the same bus segment without the hard disks dropping down to single-ended
mode.

If you do not have a host adapter with separate support for narrow and wide
devices, you will have to mix them on the same SCSI chain, which introduces
several complications. Here are some of the issues you will need to take into
account when doing this:

• Adapters: You will have to use either a wide or a narrow cable,
depending on whether the host adapter you are using is wide or
narrow. Then, whichever drives are the opposite width will need an
adapter so they fit onto the cable. For example, if you have a wide
cable connected to a wide host adapter and several wide devices, to
add a narrow device to this chain you will need an adapter for the
narrow device to let it plug into the wide cable.

• Performance: If you put a wide device on a narrow SCSI channel,
you will cut its potential maximum performance since it will only be
able to send data 8 bits at a time. This is generally only a big issue for
hard disk drives. The converse is not true, of course; putting narrow
devices on a wide channel will not double their performance. Nice try
though. ;^)

mehedi hasan
mehedi@joinme.com

575

• Device Addressing: Narrow devices cannot see or access device IDs
over 7. If you are going to use narrow devices on a wide host adapter,
set the host adapter's device ID to something between 0 and 7 or the
device won't work. (It's a good idea to just leave host adapters at
device 7 period.)

• Termination: This is really the biggest issue with mixing devices. The
problem is this: what happens to the extra 8 data bits present on the
wide SCSI bus when they are connected to narrow devices? If you just
connect the narrow data signals and leave the wide signals "hanging",
then that part of the bus will be unterminated! Similarly, many wide
devices, when connected to narrow buses, won't work properly if the
high bits are not properly dealt with. Therefore, the wide data signals
must be terminated when bus widths are mixed. This is often done by
the adapters used for mixing devices, as long as you purchase the
right hardware. Connectors that automatically terminate the extra
"wide" signals are said to include high byte termination.

A wide/narrow adapter that includes high byte termination.

Original image © Computer Cable Makers, Inc.
Image used with permission.

As you can see, mixing narrow and wide devices on the same cable can be a
bit complicated. If you are having trouble getting a mixed configuration to
work, try asking for help from the vendor that sold you your hardware.
Whatever the problem, chances are that someone else has experienced it
before you. :^)

Next: Using SCSI With IDE/ATA

Using SCSI With IDE/ATA

There are now many PC systems in common use that combine SCSI drives or
devices with IDE/ATA ones. This is easier to do now that it has been in the
past, but still takes more work than using only one or the other by itself. For
the most part you end up having to do double the work since you have to
configure two different interfaces. Still, there are situations where it makes
sense. For example, you may want to add a SCSI optical disk or other device

mehedi hasan
mehedi@joinme.com

576

but continue using IDE/ATA hard disks, since they are significantly less
expensive than SCSI ones. Many people also add IDE drives to existing SCSI
systems to store infrequently-used large files, or for backup purposes.

In most cases, IDE and SCSI devices can be combined without too much
difficulty. In particular, adding non-hard-disk SCSI devices to an existing
IDE/ATA system rarely poses much of a problem. The difficulties seem to be
largely confined to mixing SCSI and IDE/ATA hard disks. In particular, many
people who mix SCSI and IDE hard disks want to boot from the SCSI drive,
because it is probably the fastest one in the system. However, by default, PCs
will look for and boot the first IDE/ATA drive they see in the system, since the
system BIOS natively supports IDE/ATA and not SCSI. This causes fits for
people who have been using an all-SCSI system and add an IDE drive, and
find the PC now wants to boot the new drive.

There are a couple of ways to get around this. The easiest one is to use a
system whose BIOS supports booting from SCSI instead of IDE in a system
that has both. This is typically implemented via the boot sequence BIOS
setting. Today, most newer PCs will support this feature, but some retail PCs
don't provide the boot sequence feature. Many older PCs don't have this
setting either.

Another option is to set up your drives so that only the SCSI drive has a
bootable primary partition. Configure the IDE/ATA drive to only contain
logical, non-bootable volumes in the extended partition. If you do this, the
system may boot from the SCSI drive because it is the only one that is
bootable. Of course, if the IDE/ATA drive already has a primary partition, you
will have to use a third-party repartitioning tool to change it. This also may
not work on all systems or with all operating systems; the boot sequence
solution is preferable.

Finally, there can be complications if you try to use a SCSI host adapter and
some types of add-in IDE/ATA controllers in the same PC. IDE cards like the
Promise "Ultra" series appear to the system as if they were a SCSI card. If
there is also a real SCSI host adapter, which drives are recognized first comes
down to which card is seen first by the operating system at boot time. If you
have this configuration and the drives are being seen in the "wrong order",
you may be able to fix the problem by manually changing the various cards'
resource settings. Swapping the PCI slots used by the two cards may also
correct the problem.

Next: IDE/ATA vs. SCSI: Interface Comparison

Cut To The Chase

I still think it is best to read all of the other sections in this area and look at
how IDE/ATA and SCSI compare in various respects. However, I realize that
(as usual) I have made this large by blabbing too much and perhaps some
people are looking for a quick answer. Just recognize that a short answer is
rarely as good as a long one.

mehedi hasan
mehedi@joinme.com

577

Overall, the SCSI interface is technologically superior to the IDE/ATA
interface. It supports more devices, allows for better multitasking, more
expansion, use of more high-end devices, more types of devices, and more
performance-enhancing features. IDE/ATA is intended primarily for PCs that
are not using a lot of peripherals, or for those that are cost conscious.

For the average person who is using their PC for light office work, games,
internet use, etc., I still recommend IDE/ATA. The reasons are simple: cost
and simplicity. Virtually all PCs today ship with IDE/ATA hard disks standard,
and if you are using a small number of devices--say one hard disk and one
CD-ROM drive, IDE/ATA offers more than adequate performance for the
typical office or home user. As long as the machine is reasonably modern and
the PC is set up properly, IDE/ATA will work without much difficulty, and
there is no need to special-order or customize the machine, since it is really
the "standard". The cost of a simple IDE/ATA setup is far less than an
equivalent SCSI bus.

For the user who is performance-conscious, who will be doing real
multitasking, using many devices at once, doing heavy development work,
supporting multiple users at once on the machine, or who otherwise wants
the best and is not afraid if it costs a few hundred dollars more, SCSI is the
obvious choice. SCSI offers the most flexibility, the most choice of
peripherals, and the best performance in a multitasking or multi-user
environment.

So if you are looking to set up a low-end or middling system, I would say
SCSI is out of the question. The simple reason is that for the additional cost
of going to SCSI, you could probably improve overall performance more by
buying a faster processor, more system RAM, or a faster hard disk. For a
high-end system, SCSI has definite advantages and is preferred. It is those
who are "in the middle" who might have a tough decision to make.

Also bear in mind that there are some peripherals that generally are only
available on SCSI, or that have significant enough advantages on SCSI that if
you want to use this type of device, SCSI is pretty much a must. Once you
make the decision to go with SCSI, the cost of going to SCSI for your hard
disks is reduced because you've already made the commitment for the host
adapter, which is the large up-front cost of SCSI.

The final, real bottom line is: if you want it cheap and simple with good
performance, use IDE/ATA. If you want maximum performance and flexibility
and have the money to pay for it, use SCSI.

Next: Cost

Cost

In terms of cost, the IDE/ATA interface is superior to the SCSI interface in
virtually every way. The only exception would be if you needed to use, say,
10 devices, in which case SCSI might be cheaper because this would require a

mehedi hasan
mehedi@joinme.com

578

special solution to do in IDE/ATA. I am assuming that nobody would use
IDE/ATA for that many drives anyway.

Here are four specific reasons why SCSI is more expensive than IDE/ATA
(there are probably others as well):

• Additional Hardware: SCSI setups require a host adapter, which
means either an add-in card or a more expensive motherboard.
Cables, terminators and adapters also add to the cost of most SCSI
implementations.

• Lower Volume: Far fewer SCSI devices are sold than IDE/ATA
devices. The price of an item manufactured in high volume is usually
less than one manufactured in low volume.

• Niche Market: Since SCSI has a reputation for being higher-
performance and is generally used by those who are less cost
sensitive, sellers can afford to run higher margins and still make the
sale, and will usually do so. People are willing to pay more for SCSI,
and SCSI costs more because of this.

• More Advanced Technology: This is really a matter of appearances:
since the performance-conscious use SCSI, it is the interface where
the most advanced new drives will typically show up first. Newer and
faster technology is more expensive than older and slower technology.
The price gap between the cost of SCSI and IDE/ATA drives has
actually increased over the last few years. Just remember that
comparing a "36 GB IDE drive" to a "36 GB SCSI drive" is making an
apples-and-oranges comparison, because the SCSI drive is almost
certain to offer much more performance, and for reasons that have
nothing to do with the interface.

For those for whom cost is an important consideration, IDE/ATA will win over
SCSI virtually every time. For low-end systems, the extra funds required to
go to SCSI will usually be better spent upgrading core parts of the system
such as the processor or system RAM. This is important to remember: those
building performance systems should make sure they have addressed proper
component balance and adequate system memory and other key components
before making the jump to SCSI.

Next: Performance

Performance

Comparing the performance of the SCSI and IDE/ATA interfaces is not an
easy task. While those who favor SCSI are quick to say that it is "higher
performance" than IDE/ATA, this is not true all of the time. There are many
different considerations and performance factors that interact when
considering the performance equation, because performance is so dependent
on system setup and on what is being done with the PC. I will try to look at
some of these factors and how they influence system performance for both
interfaces:

mehedi hasan
mehedi@joinme.com

579

• Device Performance: When looking at particular devices, there is
theoretically no difference between SCSI and IDE/ATA. The device
itself should be the same in terms of its internal performance factors.
In practice, this is rarely the case. Many manufacturers only make a
particular drive as SCSI or IDE/ATA, not both, so direct comparisons
aren't easy. Since SCSI is known to be the choice for those seeking
performance, higher-performance drives tend to show up on the SCSI
interface well before they do on IDE/ATA (you pay for this
performance, of course, but that's a separate issue). Another issue is
the implementation of the integrated device controller logic and the
interface chip. Some companies that produce the same device (the
physical hard disk assembly, for instance) for both SCSI and IDE/ATA
may do a much better job of writing the control logic for one interface
than for another. In general, SCSI drives offer higher performance
than IDE/ATA ones.

• Maximum Interface Data Transfer Rate: The interface or external
data transfer rate describes the amount of data that can be sent over
the interface. As described here, it's important not to place too much
emphasis on the interface transfer rate if you are only using a small
number of devices. Comparing SCSI and IDE/ATA, both interfaces
presently offer very high maximum interface rates, so this is not an
issue for most PC users. However, if you are using many hard disks at
once, for example in a RAID array, SCSI will offer better overall
performance.

• Single vs. Multiple Devices and Single vs. Multitasking: For
single devices, or single accesses (as in DOS), in many cases IDE/ATA
is faster than SCSI, because the more intelligent SCSI interface has
more overhead for sending commands and managing the channel. If
you are just using a single hard disk, or doing simple work in DOS or
Windows 3.x where everything happens sequentially, most of the
benefits of SCSI are lost. For multitasking operating systems,
especially where transfers are occurring between multiple devices,
SCSI allows multitasking and command queuing and reordering, which
enables devices to set up multiple transactions and have them take
place basically simultaneously. In contrast, IDE/ATA transactions to
one device "block" the channel and the other device cannot be
accessed. Putting two devices on two different channels allows
simultaneous access, but severely restricts expandability. IDE/ATA still
does not have the advanced features that SCSI has for handling
multiple devices.

• Device-Mixing Issues: IDE/ATA channels that mix hard disks and
CD-ROMs are subject to significant performance hits in some
situations, due to the fact that these are really different protocols on
the same channel. SCSI does not have this problem.

• Technological Currency: IDE/ATA has one big advantage over SCSI
in terms of performance, if cost is a consideration. Both interfaces are
constantly being updated to offer faster performance, both in terms of
the interfaces themselves and the drives produced for them. However,
to take advantage of these improvements requires additional hardware
purchases. For SCSI, the extra investments are much more costly than
IDE/ATA. If one is on a limited budget, it could well be argued that
staying current with IDE/ATA technology will offer better long-term

mehedi hasan
mehedi@joinme.com

580

performance than going with SCSI but only being able to upgrade
every three or four years due to cost considerations.

Overall, SCSI is a higher-performance interface. For very simple applications,
like a single hard disk and a single CD-ROM drive on different channels,
IDE/ATA has a marginal advantage. For complex applications, SCSI has a
significant advantage.

Next: Configuration and Ease of Use

Configuration and Ease of Use

Much like the performance issue, the winner here depends on how many
devices you want to use. Both IDE/ATA and SCSI have had a rather spotty
history in terms of their ease of setup and configuration, and both are much
better today than they have been in the past. Overall, I would say that
IDE/ATA is easier to set up, especially if you are using a reasonably new
machine and only a few devices. IDE/ATA support is built into the BIOS, and
there are fewer issues to deal with: far fewer different cable types, no bus to
terminate, only one type of signaling, fewer issues with software drivers, and
in general fewer ways that you can get yourself into trouble.

The difference between the interfaces is, if anything, increasing. Over the
past few years IDE/ATA has in many ways become simpler to deal with, as
manufacturers have agreed on standards and fixed problems with drivers and
support hardware. SCSI has gotten more complex, especially now that new
hard disks use LVD signaling, which is more complex to set up.

The configuration simplicity advantage for IDE/ATA drops off quickly if you
want to get maximum performance while using more than a few devices. You
then have to worry about where they are being placed on the channel, finding
IRQs and other resources for multiple channels, etc. This can be done without
too much difficulty, but there are many different things to take into
consideration. In contrast, once SCSI is set up, you can put 7 devices on the
bus (or 15 for wide SCSI) with very little effort, although you do have to
watch the termination as you expand the bus.

SCSI has a significant advantage over IDE/ATA in terms of hard disk
addressing issues. While IDE/ATA hard disks are subject to a host of capacity
barriers due to conflicts between the IDE/ATA geometry specifications and the
BIOS Int 13h routines, SCSI is not.

Next: Expandability and Number of Devices

Expandability and Number of Devices

On this particular score there isn't much of a competition: SCSI beats
IDE/ATA hands down. While SCSI is more involved and expensive to set up,
once you make the appropriate investments of money and time you get a bus
that can be expanded relatively easily to either 7 devices (with narrow SCSI)

mehedi hasan
mehedi@joinme.com

581

or 15 (with wide SCSI, which is what most new systems use). On the other
hand, IDE/ATA normally supports only four devices; you can expand this to
eight if you add an after-market IDE/ATA controller, but that can introduce its
own issues.

Of course, this advantage of SCSI only matters if you actually need this much
expansion capability. For most users, four device expandability is certainly
sufficient, and eight is definitely more than enough.

Next: Device Type Support

Device Type Support

At one point, SCSI held a significant advantage over IDE/ATA in terms of the
types of devices each interface supported. Since SCSI is a high-level system
interface used by performance machines, there has always been a wide
variety of different kinds of hardware produced for the SCSI interface. In
contrast, IDE/ATA began as a hard disk interface, and support for other types
of hardware was only added later on. Even as late as 1997, there were many
more hardware choices if you had a SCSI system than if you went with IDE.

This has changed in recent years. As the number of IDE/ATA systems on the
market has grown, many manufacturers have migrated their devices to the
IDE interface. A good example is that of CD-RW drives; a few years ago you
needed a SCSI system if you wanted to use a CD-RW drive, but they are now
commonly available for both interfaces. There are still more different device
choices for SCSI than IDE, but the difference is less important than it once
was.

One place where SCSI beats IDE/ATA easily is in support for external devices:
IDE/ATA has none. SCSI drives can even be located in a different room from
the machine that is using them, if that's an issue for some reason.

Next: Device Availability and Selection

Device Availability and Selection

SCSI leads IDE/ATA in terms of the number of different types of devices
available, but often trails behind it in terms of the number of different models
available for each device type. Since the IDE/ATA market is so much larger
than the SCSI market, there are many more brands and types of various
devices available for the IDE/ATA market than for SCSI.

One area where this can be an issue is with hard disks. Hard disk options for
the IDE/ATA interface range from small value models to large performance
units. For SCSI, there are fewer choices, particularly on the low end of the
scale. This means that you will have more difficulty finding economical drives
for SCSI setups unless you go with older units (which is certainly an option).
Of course, if you want the fastest technology, SCSI gives you more choices.

mehedi hasan
mehedi@joinme.com

582

Of course, this isn't to say that your choices with SCSI are necessarily few;
there are many different companies producing SCSI hardware. You will have
more difficulty trying to set up SCSI inexpensively, but that's sort of par for
the course. :^)

Next: Software / Operating System Compatibility

Software / Operating System Compatibility

For many years, there were significant support and compatibility issues with
SCSI that did not occur with IDE/ATA. Since IDE was the "native" hard disk
interface for most PCs, and was by far the most common interface used, all
software worked with it. SCSI on the other hand was much less common in
PCs, especially in their earlier years, and so there were occasional support
issues. Extra drivers or special software would be needed to get older
operating systems like "straight DOS" and Windows 3.x to function with SCSI
at all.

Today, this is pretty much a non-issue. Modern operating systems all provide
support for SCSI host adapters and devices. You may need to install a driver
or some utility software, but if you stick with well-known brand names even
this may not be necessary.

Next: System Resource Usage

System Resource Usage

Generally speaking, SCSI is superior to IDE/ATA in terms of how many
system resources are used. If you are only using a single IDE/ATA channel,
the two are basically a wash in terms of resource usage. However, once you
go to a dual IDE channel situation you will generally consume more resources
than SCSI uses--and most PCs have dual channels by default, unless you
disable one. If you were ever to set up a four-channel IDE implementation
you would be using significantly more resources than if you had just set up a
SCSI bus.

There are in fact some people who set up SCSI specifically to get around the
system resource constraints for which the PC is "famous", and which using
multiple IDE/ATA channels exacerbates. Doing this also allows you to worry
less about needing to take more resources in the future if you expand to
many different devices.

There is one system resource issue involved in using SCSI under DOS or
Windows 3.x, however, that doesn't apply to newer Windows operating
systems. Both of the older operating systems generally require a driver in
order to use SCSI, which can take up a decent-sized chunk of conventional or
upper memory. The IDE interface does not normally have this requirement.
This is only an issue for some systems, of course, and the importance of
conventional memory has diminished somewhat today, as those older
operating systems are less and less used.

mehedi hasan
mehedi@joinme.com

583

Next: Support for Non-PC Platforms

Support for Non-PC Platforms

While not an issue for most people, there are some for whom support for
devices by machines outside the PC platform can be an issue. For these
applications, SCSI is almost always a better choice than IDE/ATA. SCSI is
more universally found outside the PC world. It is used by many different
manufacturers of computer hardware, including the Apple platform, many
types of UNIX workstations, minicomputers and more. IDE/ATA is mostly a PC
interface, though Apple has started using the interface as well in recent years
(likely to reduce cost).

For applications where devices or data must be shared between machines,
external SCSI devices give you the flexibility to dynamically share or move
information from one platform to another. It's even possible to have more
than one computer on the same SCSI bus, something not possible with
IDE/ATA at all. Of course, compatibility in terms of software and file systems
is still an issue to be dealt with.

Next: Summary of IDE/ATA and SCSI Comparisons

Summary of IDE/ATA and SCSI Comparisons

The following table summarizes the comparison of SCSI and IDE/ATA. See the
individual sections for a more thorough explanation of the summary
conclusions below:

Interface Factor IDE/ATA SCSI

Cost Low Moderate to high

Performance

High for single devices or
single tasking, moderate to
low for multiple devices or
multitasking

High in most
situations

Ease of
Configuration
and Use

High for small number of
devices, moderate for large
number of devices

Low to moderate for
both small and large
numbers of devices

Expansion and
Number of
Devices

Moderate High

Device Type
Support

Moderate High

Device
Availability and
Selection

High Moderate

mehedi hasan
mehedi@joinme.com

584

Software /
Operating
System
Compatibility

High Moderate to high

System
Resource Usage

Moderate to poor Good

Support for
non-PC
Platforms

Moderate Good

Next: Hard Disk Logical Structures and File Systems

mehedi hasan
mehedi@joinme.com

585

Hard Disk Logical Structures and File Systems

The hard disk is, of course, a medium for storing information. Hard disks grow
in size every year, and as they get larger, using them in an efficient way
becomes more difficult. The file system is the general name given to the
logical structures and software routines used to control access to the storage
on a hard disk system. Operating systems use different ways of organizing
and controlling access to data on the hard disk, and this choice is basically
independent of the specific hardware being used--the same hard disk can be
arranged in many different ways, and even multiple ways in different areas of
the same disk. The information in this section in fact straddles the fine line
between hardware and software, a line which gets more and more blurry
every year.

The nature of the logical structures on the hard disk has an important
influence on the performance, reliability, expandability and compatibility of
your storage subsystem. This section takes a look at the logical structures on
the hard disk and how they are set up and used for a typical PC installation. I
begin with a discussion of different PC operating systems, and an overview of
different file system types. I then go into significant detail describing the
major structures and key operating details of the most common PC file
system, FAT (FAT12/FAT16/VFAT/FAT32). I talk about utilities used for
partitioning and formatting hard disks, and also talk a bit about disk
compression (even though it is no longer nearly as important as it once was.)
I place special emphasis on how to organize the disk for maximum
performance--while not getting bogged down in the minutiae of optimization
where it will buy you little.

Most of the focus in this section is on the FAT family of file systems, because
these are by far the most commonly used, and also the ones with which I am
most familiar. I do mention alternative file systems, but do not go into
extensive detail on them, with one exception. Recognizing the growing role of
Windows NT and Windows 2000 systems, a separate, comprehensive section
has been added that describes the NTFS family of file systems. If you are
mostly interested in reading about NTFS, you may want to skip some of the
earlier subsections that describe FAT, and skip directly to the NTFS material.
Bear in mind, however, that some of the NTFS discussions build upon the
descriptions of FAT, since in some ways the file systems are related. So I
recommend reading the section in order, if possible.

Note: If you are running a less-common operating system such as OS/2,
Linux or BeOS, you likely know more about those operating systems than I
do. :^) While I have done my best to research file system support for the
alternative operating systems, my personal experience with them is limited. I
decided it was better to mention these operating systems and cover their file
system support to the best of my knowledge, rather than just leave them out.
However, I probably missed something somewhere, so if you find any
mistakes, please let me know.

Next: Operating Systems and File Systems

mehedi hasan
mehedi@joinme.com

586

Operating Systems and File Systems

The operating system is the large, relatively complex, low-level piece of
software that interfaces your hardware to the software applications you want
to run. The operating system you use is closely related to the file system that
manages your hard disk data. The reason is a simple one: different operating
systems use different file systems. Some are designed specifically to work
with more than one, for compatibility reasons; others work only with their
own file system.

This section takes a brief look at the most common operating systems in use
on the PC, provides a bit of their history as it relates to file systems, and
mentions the file systems that they use. The operating systems are listed
approximately in the chronological order of when they were first used for PC
hardware (although not exactly, since I chose to keep the discussions of the
consumer Windows 9x/ME operating systems near each other, as this seems
a more clear way to describe them). Note that different "sub-versions" of a
particular operating system (such as different variants of Windows 95) may
provide support for different kinds of file systems (thanks to the strange way
that Microsoft sometimes chooses to operate... :^))

Next: DOS (MS-DOS, PC-DOS, etc.)

DOS (MS-DOS, PC-DOS, etc.)

The very first operating system used on the earliest IBM PCs was called
simply the Disk Operating System, abbreviated DOS. There are few PC users
who have not heard of DOS; at one time it was used on pretty much every
PC, and it is still around today in many different forms. Microsoft's version of
DOS is the most common one, and is called MS-DOS--with the "MS"
abbreviation being rather self-explanatory. :^) For a while IBM Corporation
was producing a competing product called PC-DOS, and there are other
companies' alternatives around as well.

As the name "DOS" implies, the use of disks is an inherent part of the DOS
operating system. The FAT file system has been an essential component of
DOS since the beginning, and generally speaking, DOS uses only various
versions of FAT for managing files. Different flavors of FAT (sorry :^)) are
supported by different versions of DOS, as follows:

• DOS 1.x and 2.x: These ancient DOS versions support only the FAT12
file system, used today primarily for floppy disks. If you're still using
DOS 1.x or 2.x, man do you need a new computer! :^)

• DOS 3.x through 6.x: These are more common versions of DOS for
older PCs running either straight DOS or Windows 3.x. DOS 6.x was
especially popular; millions of copies of these operating systems were
sold. DOS 3.x through 6.x support the older FAT12 and the newer
FAT16, which was the file system standard for many years in the PC
world.

• DOS 7.0: MS-DOS 6.22 was the last "standalone" version of DOS sold
by Microsoft. After DOS6.22, Microsoft sold DOS only as the

mehedi hasan
mehedi@joinme.com

587

underpinnings of other operating systems, such as Windows 95/98/ME.
The first of these was MS-DOS 7.0, which runs "underneath" the first
Windows 95 version (Windows 95A). It supports FAT12, FAT16 and
VFAT, the enhanced version of FAT that includes support for long file
names.

• DOS 7.1 and later: These versions of DOS underlie Windows versions
from Windows 95 OEM Service Release 2 (Windows 95B) and later.
They support FAT12, FAT16, VFAT and FAT32.

The most confusion is caused by the "appearance" of FAT32 support in the
second release of Windows 95--corresponding to DOS 7.1--which was
complicated by the fact that later versions of Windows that support FAT32
were not "officially" sold to the public. See the discussions of Windows 95A
and Windows 95B and 95C for more information.

Tip: You can check the version of DOS your system is running by using the
"VER" command from any DOS command line. Note that this may not work
for DOS running under a Windows version, as Microsoft desperately wants
people to think that Windows 95/98/ME do not run on the ancient DOS
platform. ;^)

Next: Windows 3.x

Windows 3.x

Microsoft's first foray into the world of the graphical operating system was
Microsoft Windows 1.0. I never used this product, but it is universally
considered to have been rather scary. :^) Bill Gates and company did not
give up, and subsequent versions of Windows followed. Microsoft finally
started to pick up a head of steam with the release of Windows 3.0. The
versions that followed, including Windows 3.1, Windows 3.11 and Windows
for Workgroups 3.11, were the most common graphical operating systems
used in the early 1990s, prior to the creation of Windows 95. These are often
collectively called Windows 3.x.

To the technical purist, Windows 3.x isn't a true "operating system". The
reason is that it runs strictly on top of DOS, and uses DOS (and BIOS)
facilities and routines for most of its hardware management, including disk
access. For this reason, some consider it just a "graphical shell". Another
famous "Bill" made the point that names don't matter all that much, but for
our purposes, the matter of what Windows 3.x really is does matter. Since it
uses DOS for disk access, this means that Windows has the same file system
support as whatever version of DOS underlies it. In most cases that is MS-
DOS 6.x, most commonly MS-DOS 6.22. See this discussion of DOS file
system support for more information.

The last version of Windows 3.x, Windows for Workgroups 3.11, includes an
enhancement called "32-Bit File Access". This is really a poorly-named feature
that refers to the use of 32-bit protected mode routines for accessing the
disk, instead of using the standard 16-bit DOS routines. In fact, this is really

mehedi hasan
mehedi@joinme.com

588

the first, partial implementation of the VFAT file system used by Windows 95,
although not all of the VFAT features are included--only the use of 32-bit
access routines. The only thing different here is how the disk is accessed; the
file system structures are still "plain" FAT, so special features like long
filenames are not included.

Next: Windows 95A (Initial Release)

Windows 95A (Initial Release)

The early versions of Windows that Microsoft created in the early 1990s
represented a significant improvement to those who had been used to the
mostly text-based and single-tasking environment that DOS represented. (Of
course, Microsoft didn't exactly invent the graphical operating system! They
just used their marketing muscle to make Windows the standard on the PC
desktop. But that's a different matter altogether. :^)) Still, early versions of
Windows were very rudimentary in a number of respects. They ran on top of
DOS and were limited to 16-bit applications. Multitasking capability was
limited and problems were frequent.

In 1995, Microsoft introduced Windows 95, which represented the "next step"
towards a comprehensive consumer-oriented graphical operating system for
PCs (Windows NT had already been created at the time, but was geared
towards businesses and servers.) Windows 95 is the great "compromise"
operating system. In some respects, it has its own way of handling access to
the hard disk, but in other ways it resembles, and even uses, standard DOS.
This is how Windows 95 strives for performance while retaining compatibility
with older software. As mentioned in the discussion of DOS, Windows 95 in
fact includes a version of DOS, that is designed to work with it and its file
structures.

When Windows 95 was released, it came with a new and updated version of
the traditional FAT file system: VFAT. At the same time, Windows 95 was
compatible with older FAT12 and FAT16 partitions and disks The initial version
of Windows 95 is now sometimes called "Windows 95A" to distinguish it from
later editions, or "Windows 95 Retail" in recognition of the fact that it was the
only revision of Windows 95 officially sold to the public. It's important to
remember that this version of Windows 95 does not support the now
ubiquitous FAT32 file system. Since modern hard disks basically require
FAT32 (or NTFS) for reasonably convenient management, those still running
the first version of Windows 95 may need to consider an upgrade (Windows
98 or Windows ME being the successors to Windows 95, but certainly not the
only choices.)

Tip: If you are not sure of which version of Windows 95 is on your PC, use
this procedure to find out.

Next: Windows 95B and 95C (OEM SR 2.x)

mehedi hasan
mehedi@joinme.com

589

Windows 95B and 95C (OEM SR 2.x)

Windows 95 was a big success for Microsoft, and I would say this was for
good reason: while certainly sharing many of the flaws associated with other
Microsoft operating systems, Windows 95 was a significant improvement over
Windows 3.x in virtually every way. However, Microsoft developed a problem
with the operating system as time went on, specifically related to the file
systems it supported. As hard disks grew in size, they began to approach the
maximum size allowed by a FAT16 partition. This meant that PC makers were
forced to divide the drives in their new systems into multiple partitions, which
was extra work and which some customers didn't like. People buying new
hard disks also had a similar problem. Since hard disks were only going to
keep getting bigger, Microsoft had to do "something".

That "something" came in the form of the FAT32 file system, which allows for
much larger single partitions than the older 16-bit version of FAT. FAT32
support was included in an updated version of Windows 95 that Microsoft
released in 1996, along with some other new features. In a move that was
controversial at the time, Microsoft decided to make these new operating
systems available only to OEMs (original equipment manufacturers, in this
case PC and PC component makers)--no retail version was ever created. The
new version of Windows 95 was called "Windows 95 OEM Service Release 2",
which is usually abbreviated to "Windows 95 OEM SR2" or "Windows 95
OSR2". It is also sometimes called "Windows 95B".

OSR2 was never sold to the public at retail, so if you wanted to use the newer
version with FAT32 support you had to either buy a new PC, motherboard or
hard disk, or buy a "gray market" copy from a retailer willing to break
Microsoft's rules (and doing this was quite popular in 1996 and 1997).
Microsoft never really explained why they refused to make FAT32 available to
the unwashed masses, but speculation is that they didn't want to expend the
energy involved in doing a full quality assurance cycle to ensure that it would
work with all the hardware in use at the time. By restricting it to OEMs and
new systems, they didn't have to worry as much about whether OSR2 would
work with all older hardware and software, and could even push some of the
validation effort onto the OEMs themselves.

Between 1996 and 1997, Microsoft actually released three slightly different
variants of Windows 95 OSR2:

• OEM SR2.0: This is the first OSR2 version, also called "Windows 95B".
• OEM SR2.1: This is OSR2.0 with the addition of a patch to allow

(rudimentary) USB support within Windows 95. Also called "Windows
95B".

• OEM SR2.5: This was produced at around the time that Microsoft
became obsessed with tying browsers into their operating system. :^)
It includes everything from OSR2.1 and also Internet Explorer 4. This
variant is often called "Windows 95C".

Note that all of these are identical, except as noted, and they all support the
FAT12, FAT16, VFAT and FAT32 file systems.

mehedi hasan
mehedi@joinme.com

590

Well, I included all this verbiage so that you would understand all of the
various issues surrounding FAT32 support under Windows 95. The matter of
FAT32 not being available at retail became a non-issue when Microsoft
introduced Windows 98, which all but removed Windows 95 OSR 2.x from the
market. Of course, millions of PCs are still running this operating system. If
you have the older Windows 95 (now called "Windows 95A") and want FAT32
you should upgrade to Windows 98 or Windows ME, not Windows 95 OSR 2.x
(unless there is a specific reason why you prefer Windows 95 of course!)

Next: Windows 98, Windows 98 Second Edition and Windows ME

Windows 98, Windows 98 Second Edition and Windows ME

Microsoft took a lot of heat when it created Windows 95 OEM SR 2, because
they decided not to sell that version of the operating system at retail. As hard
disks got bigger and bigger, demand for FAT32 support increased.
Unfortunately, as a "regular customer" of Microsoft's, you would have no way
to get FAT32 support, unless you chose to buy new hardware or buy a copy
that had been sold contrary to Microsoft's licensing rules. As a result, 1996
and 1997 were two years of confusion in the area of file system support on
Microsoft operating systems. :^) This situation persisted until 1998, when
Microsoft released the first version of Windows 98.

Windows 98, among other improvements to Windows 95 (and some
subtractions, depending on your perspective) includes full support for FAT32,
and was definitely sold at retail. :^) The operating system also provides the
capability of converting an existing FAT16 partition to FAT32. This was the
first Microsoft operating system to provide complete "official" support for
FAT32. It also of course supports the older FAT variants.

In 1999, Microsoft released Windows 98 Second Edition ("Windows 98 SE"),
which in this author's opinion was little more than a glorified bug patch that
Microsoft was able to sell as a new product. In 2000 came Microsoft
Millennium Edition ("Windows ME") which is another evolutionary tweak on
the Windows 98 OSes. Neither of these new operating systems added any
additional file system support (and as far as I am concerned, neither added
anything of much substance in any way, though others would probably
disagree with that...)

Next: Windows NT

Windows NT

All of the other operating systems that I have mentioned in the earlier pages
in this section are, in one form or another, evolutionary enhancements that
hearken back to the very first version of MS-DOS 1.0, written in 1981. This
includes Windows 3.x, Windows 95, Windows 98 and Windows ME. While
Microsoft would like very much for people to forget this fact, I refuse to. :^)
These operating systems are generally capable for most users, but are not
designed for the rigors of heavy use. In the early 1990s, Microsoft recognized

mehedi hasan
mehedi@joinme.com

591

that if it wanted to tackle the growing (and lucrative) business and corporate
market, a more advanced, capable, secure and scalable operating system
would be required.

The result was a new version of Windows, designed and built from the ground
up. This new operating system was released in 1993 as Windows NT, with the
"NT" supposedly standing for "New Technology" (though since its arrival was
delayed for some time, pundits began to joke that it really stood for "Not
There". ;^)) Windows NT was specifically designed for the corporate
environment, and intended for use on high-powered servers and
workstations. Unlike the "consumer" Windows operating systems, it is not
based on MS-DOS, though it can run some MS-DOS programs (through
emulation of a virtual MS-DOS machine.)

For compatibility, Windows NT supports the older FAT family of file systems,
but not FAT32. However, NT's intended file system of choice is the highly-
capable NTFS, which is discussed in this section of the site. Many of the more
advanced features of Windows NT are in fact tied to the use of the NTFS file
system. However, FAT support provides flexibility for certain applications,
especially ones that involved multiple operating system installs on the same
PC. Note that even though Windows NT will read both FAT and NTFS
partitions, the two file systems are not compatible with each other.

Several versions of Windows NT were created. The first was version 3.1,
which was named to coincide with Windows 3.1, the then-current consumer
operating system. Windows NT 3.5 followed shortly thereafter, and then
Windows NT 3.51. All of these early NT versions had some limitations, and
used the older Windows 3.1-style interface that many people found somewhat
lacking. They support FAT and NTFS partitions, as mentioned, and will also
support HPFS, the native file system of IBM's OS/2.

NT came into its own with Windows NT 4.0, which was released in 1996 and
became very popular in the late 1990s. It supports FAT and NTFS, like the
earlier NT versions, but not HPFS, support for which was removed in version
4.0. From a file system support standpoint, Windows NT 4.0 was perceived as
having one major weakness, and that was lack of support for FAT32 (support
for FAT32 under Windows NT was possible through the use of third-party
drivers, but not natively). As the 1990s closed, Windows NT became
somewhat dated, and was "replaced" by Windows 2000, which included
FAT32 support (amongst other things).

Next: Windows 2000

Windows 2000

Windows NT was very successful for Microsoft through the 1990s, but the
software giant didn't rest on its laurels. As Windows NT 4.0 began to age,
certain flaws began to show, including a lack of support for the latest
hardware and other limitations. From a file systems perspective, the most
important was the lack of support for FAT32. Microsoft addressed some of
these through the use of service packs, but mostly concentrated on the next

mehedi hasan
mehedi@joinme.com

592

version of the operating system. It had been unofficially called "Windows NT
5.0" for some time, but Microsoft instead called the new operating system
Windows 2000.

Windows 2000 builds upon Windows NT 4.0 in most respects, and differs from
the older operating system in two ways when it comes to file systems. The
first is the addition of support for FAT32, as I hinted at in the preceding
paragraph. :^) This was a much-desired change, especially with FAT32 all but
replacing FAT16 in newer Windows 9x/ME systems. The other was that NTFS
under Windows 2000 was enhanced, through the creation of the NTFS 5.0
version of that file system. Windows 2000 will still read older NTFS partitions,
but it must be installed on an NTFS 5.0 partition; NTFS 5.0 is Windows 2000's
"preferred" file system.

Note: For a full discussion of NTFS, see this section of the site. For more on
NTFS versions, see here.

Next: OS/2

OS/2

In the early 1990s, two of the biggest names in the PC world, IBM and
Microsoft, joined forces to create OS/2, with the goal of making it the "next
big thing" in graphical operating systems. Well, it didn't quite work out that
way. :^) The story behind OS/2 includes some of the most fascinating bits of
PC industry history, but it's a long story and not one that really makes sense
to get into here. The short version goes something like this:

1. Microsoft and IBM create OS/2 with high hopes that it will revolutionize
the PC desktop.

2. OS/2 has some significant technical strengths but also some problems.
3. Microsoft and IBM fight over how to fix the problems, and also over

what direction to take for the future of the operating system.
4. Microsoft decides, based on some combination of frustration over

problems and desire for absolute control, to drop OS/2 and focus on
Windows instead.

5. IBM and Microsoft feud.
6. IBM supports OS/2 (somewhat half-heartedly) on its own, while

Microsoft dominates the industry with various versions of Windows.

Now, OS/2 afficionados will probably take issue with at least some of that
summarization, but that is what happened in a nutshell, or at least I think so.
:^) At any rate, OS/2 continues to be supported today, but really has been
relegated to a niche role. I don't know how long IBM will continue to support
it.

OS/2's file system support is similar, in a way to that of Windows NT's. OS/2
supports FAT12 and FAT16 for compatibility, but is really designed to use its
own special file system, called HPFS. HPFS is similar to NTFS (NT's native file
system) though it is certainly not the same. OS/2 does not have support for

mehedi hasan
mehedi@joinme.com

593

FAT32 built in, but that there are third-party tools available that will let OS/2
access FAT32 partitions. This may be required if you are running a machine
with both OS/2 and Windows partitions. I believe that OS/2 does not include
support for NTFS partitions.

Note: As I mentioned in the introduction to this section, I have little personal
experience with OS/2, so if anything has changed with respect to file system
support in OS/2, please feel free to let me know.

Next: UNIX / Linux

UNIX is one of the very oldest operating systems in the computer world, and
is still widely used today. However, it is not a very conspicuous operating
system. Somewhat arcane in its operation and interface, it is ideally suited for
the needs of large enterprise computing systems. It is also the most common
operating system run by servers and other computers that form the bulk of
the Internet. While you may never use UNIX on your local PC, you are using it
indirectly, in one form or another, every time you log on to the 'net.

While few people run UNIX on their own systems, there are in fact a number
of different versions of UNIX available for the PC, and millions of PC users
have chosen to install "UNIXy" operating systems on their own desktop
machines. There are dozens of variants of the basic UNIX interface; the most
popular one for the PC platform is Linux, which is itself available in many
flavors. While UNIX operating systems can be difficult to set up and require
some knowledge to operate, they are very stable and robust, are efficient
with system resources--and are generally free or very inexpensive to obtain.

UNIX operating systems are designed to use the "UNIX file system". I put that
phrase in quotes, because there is no single UNIX file system, any more than
there is a single UNIX operating system. However, the file systems used by
most of the UNIX operating system types out there are fairly similar, and
rather distinct from the file systems used by other operating systems, such as
DOS or Windows.

As an operating system geared specifically for use on the PC, Linux is the
UNIX variant that gets the most attention in PC circles. To improve its appeal,
the programmers who are continually working to update and improve Linux
have put into the operating system compatibility support for most of the other
operating systems out there. Linux will read and write to FAT partitions, and
with newer versions this includes FAT32. I believe Linux can also read and
write HPFS volumes, and can read NTFS volumes as well, but not write to
them. Even BeFS is now supported. Some of these may require special
drivers or utilities to be added to a basic Linux install.

While I use UNIX every day (The PC Guide runs on a UNIX server) my
experience with Linux specifically is limited. Fortunately, one of the best
things about Linux is that there is a myriad of helpful information about it all
over the Internet: a popular one is slashdot.org. Since the Linux operating
system is constantly being updated, your best bet is to hook up with one or

mehedi hasan
mehedi@joinme.com

594

more of the better Linux web sites to keep yourself informed on the
happenings in this alternative operating system for PCs.

Next: BeOS

BeOS

In 1996, a new operating system was introduced to the world by a company
called simply "Be". Its product, the BeOS, was intended to be an alternative
to the "big" operating systems used by most people. Support for PowerPC
(Apple hardware platform) came first, and then in 1998, BeOS for x86 (PC)
computers was released. BeOS was developed from the "ground up" and was
intended to be especially suited for dealing with multimedia applications, such
as video and audio, on consumer-level hardware. To the PC user dissatisfied
with Microsoft operating systems, BeOS represents another important option.
While still a very small percentage of the overall operating system market
(and for that reason mostly ignored in traditional hardware and software
circles) it is the choice of a number of PC hobbyists and power users.

BeOS's primary file system is its own, the BeOS File System, alternately
abbreviated as BFS or befs. This file system is unique to BeOS, but from my
understanding most resembles a UNIX-type file system. One of BeOS's
strengths, however, is that to encourage its use by those already running
other operating systems, Be has built into BeOS the capability of accessing a
multitude of other file systems. BeOS can read or write to FAT12, FAT16,
VFAT and HPFS partitions. Support for FAT32 has either been added to the
operating system recently, or is available through a third-party add-on. BeOS
can even read NTFS partitions with the appropriate tool added, though it
cannot write to them.

My experience with BeOS would be best categorized as follows: "Between
Slim and Nil, with Slim having just left town". (Hey, honesty is supposed to
be a virtue. :^)) Any of you BeOS aficionados who find anything incorrect in
what I have written above, please let me know. While I don't use BeOS
myself I think it is important that alternative operating systems be at least
given a fair mention when discussing PC hardware.

Next: PC File Systems

PC File Systems

As I described in the introduction to this part of The PC Guide's hard disk
coverage, the file system refers to structures and software used to organize
and manage your data and programs on your hard disk. Most people are
familiar with only the most common file system family (FAT and its variants)
which are used on most PC-platform machines. These common file systems
are the ones that get most of the attention, while others are largely ignored; I
have been guilty of this myself on this site. However, there are in fact many
different types of file systems in use by different operating systems for PC

mehedi hasan
mehedi@joinme.com

595

hardware. Many PC users actually employ more than one type of file system,
to handle different tasks.

In this section I provide an overview of most of the various file systems that
are commonly (or even less commonly) used on PC hardware. This includes a
look a look at the various types of FAT file systems, as well the NTFS file
systems used by Windows NT and Windows 2000. I also discuss several less
common file systems: HPFS, UNIX file systems and the BeOS File System.

Note: In this section I only provide a brief overview of the major
characteristics of each file system. The remainder of the subsections in the
Hard Disk Logical Structures and File Systems section expand on the details
of the FAT family of file systems, and there is also a separate section with
details on NTFS. For the less common file systems, coverage is mostly limited
to the appropriate page in this subsection of the site.

Next: File Allocation Table File System (FAT, FAT12, FAT16)

File Allocation Table File System (FAT, FAT12, FAT16)

The most common file system in the PC world is actually a family of file
systems. The basic name for this file system is FAT; the name comes from
one of the main logical structures that the file system uses: the file allocation
table. This file system is the one that was used by DOS on the first IBM PCs,
and it became the standard for the PCs that followed. Today, most PCs still
use a variant of the basic FAT file system created for those early machines
over two decades ago.

The most common name of the file system, "FAT", is problematic, even
though it is still often used. The first FAT file system used 12-bit file allocation
tables; this was later expanded to 16 bits, and became the most common file
system implementation for hard disks from the late 1980s to the late 1990s.
To distinguish these versions of FAT from the 32-bit successor called FAT32,
the older FAT variants are now sometimes called FAT12 or FAT16. However,
you will still hear just "FAT" used a lot; if so, you need to find out what
specifically is being referred to, if it matters in that particular context. For
more elaboration on the differences between FAT12, FAT16 and FAT32, see
this page.

While designed specifically for MS-DOS and used by all of the Microsoft
operating systems that followed (in one way or another) FAT's ubiquitousness
has caused support for it to become an important characteristic for other
operating systems as well. Virtually all PC operating systems can support the
basic FAT file system, even ones that bear little resemblance to Microsoft DOS
or Windows. FAT12 and FAT16 partitions are the "least common denominator"
of file systems--while they are limited in many ways, they are the easiest file
systems to use when compatibility is a concern. Even non-PC platforms can in
many cases read disks formatted in the FAT file system.

mehedi hasan
mehedi@joinme.com

596

Note: Most of the other subsections of the Hard Disk Logical Structures and
File Systems section describe the structures and operation of the FAT file
system family in more detail, so I will not get into a larger discussion of FAT
here. Please refer to the other sections for details on how FAT works.

Next: Virtual FAT (VFAT)

mehedi hasan
mehedi@joinme.com

597

Virtual FAT (VFAT)

When Microsoft introduced Windows 95 in, well, 1995, they made several
improvements to the operating system when compared to its predecessors.
One of the changes made was an enhancement to the classical FAT16 file
system that had been in use up until that point. The new variation of FAT was
called Virtual FAT or VFAT for short. (Note that many people use the terms
"FAT" and "VFAT" interchangeably, even though they are technically not the
same. All "FAT" partitions created under Windows 95 or later operating
systems are really VFAT partitions.)

VFAT has several key features and improvements compared to FAT12 and
FAT16:

• Long File Name Support: One of the most annoying limitations of
operating systems prior to Windows 95 was the eleven-character file
name restriction. For most people, VFAT's most important
accomplishment was enabling the use of long file names by the
Windows 95 operating system and applications written for it, while
maintaining compatibility with older software that had been written
before VFAT was implemented.

• Improved Performance: The disk access and file system
management routines for VFAT were rewritten using 32-bit protected-
mode code to improve performance. At the same time, 16-bit code
was maintained, for use when required for compatibility.

• Better Management Capabilities: Special support was added for
techniques like disk locking, to allow utilities to access a disk in
"exclusive mode" without fear of other programs using it in the
meantime.

Despite the new name and new capabilities, VFAT as a file system is basically
the same as FAT. Most of the new capabilities relate to how the file system is
used, and not the actual structures on the disk The only significant change in
terms of actual structures is the addition of long file names. Even here, VFAT
supports these using what is basically a hack, as opposed to anything really
revolutionary. See the discussion of long file names for more information on
how VFAT implements longer file names under Windows 9x/ME.

Note that as with FAT, much of the rest of the discussion of file systems in
other subsections in this area of the site deals with VFAT.

Next: 32-Bit FAT (FAT32)

32-Bit FAT (FAT32)

As hard disks continued to increase in size through the 1990s, the limitations
of the FAT16 and VFAT file systems began to become obvious. The use of
large cluster sizes led to a significant amount of wasted hard disk space
(slack). Eventually, hard disk manufacturers started to create drives so large
that FAT16 could not be used to format a whole drive in a single partition. PC
makers complained that FAT16 was unwieldy for modern machines, and users

mehedi hasan
mehedi@joinme.com

598

were confused with PCs that came with what seemed like two or three
different "hard disks" (which were of course really just different partitions
created to get around the FAT16 volume size limit.)

To correct this situation, Microsoft created FAT32. This newest FAT variant is
an enhancement of the FAT/VFAT file system (even though the "V" was
dropped from the name, FAT32 is based more on VFAT than FAT). It is named
FAT32 because it uses 32-bit numbers to represent clusters, instead of the
16-bit numbers used by FAT16. FAT32 was created primarily to solve the two
problems mentioned above. It allows single partitions of very large size to be
created, where FAT16 was limited to partitions of about 2 GiB. It also saves
wasted space due to slack when compared to FAT16 partitions, because it
uses much smaller cluster sizes than FAT16 does.

FAT32 was first introduced in Windows 95's OEM Service Release 2, and was
originally available only in later versions of Windows 95 when purchased from
a hardware manufacturer. FAT32 support was later included in Windows 98,
Windows ME and Windows 2000 as well. Many non-Microsoft operating
systems can also now either read from or read/write FAT32 partitions. With
hard disk sizes headed into the stratosphere, FAT32 has all but replaced
FAT16 for those using "consumer grade" Microsoft operating systems.

Note: Operating systems older than Windows 95 OSR2, including the first
version of Windows 95 ("Windows 95A"), Windows 3.x, and all versions of
DOS before version 7.1, cannot read FAT32 partitions.

Aside from the difference in the way clusters are assigned and numbered,
FAT32 is at its essence the same as regular VFAT, and the descriptions of FAT
file structures apply to FAT32 as well in most cases. There are, however,
some minor structural differences between FAT32 and its predecessors, in
areas such as the use of file allocation tables, and the location and size of the
root directory. The matter of using regular FAT16 vs. FAT32, and choosing
partition and cluster sizes, is discussed in detail here.

Next: New Technology File System (NTFS) Version 1.1 / 4.0

New Technology File System (NTFS) Version 1.1 / 4.0

When Microsoft created Windows NT, it built the operating system pretty
much from scratch--it was based on certain existing concepts, of course, but
was totally different from older Microsoft operating systems. One of the key
elements of NT's architecture was the file system created especially for the
operating system, called the New Technology File System or NTFS. NTFS
enables many of the goals of Windows NT to be realized.

NTFS is a much more complex and capable file system than any of the FAT
family of file systems. It was designed with the corporate and business
environment in mind; it is built for networking and with the goals of security,
reliability and efficiency. It includes many features, including file-by-file
compression, full permissions control and attribute settings, support for very

mehedi hasan
mehedi@joinme.com

599

large files, and transaction-based operation. It also does not have the
problems with cluster sizes and hard disk size limitations that FAT does, and
has other performance-enhancing features such as RAID support. Its most
significant drawbacks are increased complexity, and less compatibility with
other operating systems compared to FAT.

The NTFS file system actually has more than one version. The one used by
Windows NT is commonly called either version 1.1 or version 4.0, and has a
few less features than the newer NTFS 5.0 used by Windows 2000. You can
find a full discussion of NTFS in this subsection of the site, and a discussion of
different NTFS versions and their differences here.

While originally created for Windows NT and now used primarily by Windows
NT and its successor, Windows 2000, limited NTFS support has also been
added to other operating systems. For example, operating systems like Linux
(as well as some other UNIX variants) and BeOS can read NTFS partitions,
which helps with the interoperability of different operating systems on the
same machine. However, non-Microsoft operating systems usually cannot
write to NTFS partitions, generally because of the security features built into
NTFS by Microsoft.

Next: New Technology File System (NTFS) Version 5.0

New Technology File System (NTFS) Version 5.0

With the creation of Windows 2000, Microsoft added several new features to
the operating system originally known as Windows NT 5.0. Several of these
features are tied closely to the characteristics of the file system, which
Microsoft updated at the same time. The new variation of NTFS is called NTFS
5.0. In fact, Windows 2000 relies on the changes that NTFS 5.0 includes so
much that NTFS 5.0 is required; the operating system will convert older NTFS
volumes to NTFS 5.0, and in some cases NTFS is required to enable key
Windows 2000 capabilities.

NTFS 5.0 includes several new and useful features compared to the older
NTFS versions used in Windows NT 4.0 and earlier. You can find a full
discussion of NTFS in this area of the site, and a discussion of different NTFS
versions and their differences here.

NTFS 5.0 was designed for Windows 2000 and that is the only operating
system that provides full support for the file system. Windows NT 4.0 can also
access NTFS 5.0 partitions if the operating system is updated with service
pack #4 (SP4), however, it cannot make use of the new features that NTFS
5.0 facilitates. Much in the way that alternative operating systems have had
third-party drivers created for them to allow them to read the older NTFS file
systems, I would imagine that similar drivers will be created to allow Linux,
BeOS and other operating systems to read NTFS 5.0 partitions, if this has not
been done already.

Next: High Performance File System (HPFS)

mehedi hasan
mehedi@joinme.com

600

High Performance File System (HPFS)

When Microsoft and Intel created OS/2, they sought to create an operating
system that was more capable than the DOS and Windows versions then
available. At the time, the only file system widely used on the PC was the FAT
file system, which had a number of significant limitations. The FAT file system
was restricted in terms of the size of partitions it could support, only allowed
11-character names, and it had none of the organization, security and
reliability features that are so important to corporate, business and individual
"power" users. To address these concerns, a new file system was created
specifically for OS/2: the High Performance File System or HPFS.

HPFS offers many significant improvements over the FAT file system. These
include the following:

• Support for long file names (up to 254 characters) and mixed-case file
names.

• More efficient use of disk space, since files are stored on a per-sector
basis instead of using multiple-sector clusters.

• Better performance due to overall design, including an internal
architecture designed to keep related items closer to each other on the
disk volume.

• Less fragmentation of data over time, and less need to defragment the
file system.

Considering how much more advanced it was than FAT, one might have
expected that HPFS would have become quite popular. Unfortunately, HPFS's
wagon was hitched to OS/2, and for a number of reasons (many of them
related to politics between IBM and Microsoft) OS/2 never really caught on.
As interest in OS/2 waned, so did support for HPFS. While early versions of
Windows NT (3.51 and earlier) supported HPFS volumes natively, this support
was removed in Windows NT 4.0. Support for HPFS volumes can be added to
some non-OS/2 operating systems by using third-party support software, but
overall this file system seems to be firmly in a "niche status". Many of its
features were incorporated into NTFS by Microsoft, one should note--or at
least, NTFS has some definite similarities to HPFS.

You can find more information about HPFS by reading this HPFS FAQ, which
isn't "official" but seems to be well-written and fairly detailed. This page
includes a discussion of the internal architectural characteristics of HPFS
volumes. Note that you'll find them easier to understand if you comprehend
the internal structures of FAT file systems first. Comprehending NTFS also
helps. :^)

Next: UNIX / Linux File Systems

UNIX / Linux File Systems

mehedi hasan
mehedi@joinme.com

601

All file systems perform the same basic functions, based on their fundamental
goals: the intelligent organization of data and efficient control of and access
to that data. As a result, most of them resemble each other to some extent,
even if they are also different from each other in important ways. Even if two
PC file systems differ greatly in terms of their internal architecture and
structures, they can be made to resemble each other closely in their outward
appearance. For example, Windows NT will support both FAT and NTFS
partitions, which are totally different in terms of their internal structures, but
have virtually the same interface for the user (and for software applications).

UNIX has been around for many decades, making it the oldest of all file
systems used on PC hardware. UNIX file systems are also probably the most
different from the other file systems used on PC, both internally and
externally (referring to how the user accesses the file system). While most
Windows users are accustomed to the Explorer-type interface for managing
files and folders, UNIX files are usually managed with discrete text
commands--similar to how DOS works (in fact, many principles of the FAT file
system are based on UNIX.). There are graphical UNIX shells as well, of
course, but many UNIX users (myself included) never use them.

The more important differences, however, are internal. UNIX file systems are
designed not for easy use, but for robustness, security and flexibility. UNIX
file systems offer the following features, and have for many years:

• Excellent expandability, and support for large storage devices.
• Directory-level and file-level security and access controls, including the

ability to control which users or groups of users can read, write or
execute a file.

• Very good performance and efficient operation.
• The ability to create "flexible" file systems containing many different

devices, to combine devices and present them as a single file system,
or to remotely mount other storage devices for local use.

• Facilities for effectively dealing with many users and programs in a
multitasking environment, while requiring a minimum of
administration.

• Ways to create special constructs such as logically linked files.
• Reliability and robustness features such as journaling and support for

RAID.

If these features sound similar to those of NTFS, that's because UNIX and
Windows NT/2000 now compete for much of the same market, so NTFS was
given most of the capabilities that UNIX has. There are many other features
as well, which differ from one implementation to another--there is no single
"UNIX file system", any more than there is a single "UNIX operating system".
Each UNIX variant (including the popular Linux for the PC, which itself has
many different flavors) has a slightly different file system, though they are of
course very similar to each other, and it is usually possible for different UNIX
implementations to read each other's files.

UNIX file systems were one of the first (if not the first) to use the hierarchical
directory structure, with a root directory and nested subdirectories. (Most of
us are familiar with this from using it with the FAT file system, which works

mehedi hasan
mehedi@joinme.com

602

the same way). One of the key characteristics of UNIX file systems is that
virtually everything is defined as being a file--regular text files are of course
files, but so are executable programs, directories, and even hardware devices
are mapped to file names. This provides tremendous flexibility to
programmers and users, even if there is a bit of a learning curve at first.

Since few PC users run UNIX on their own machines, it's unlikely that you will
ever actually use a UNIX file system directly. However, you may find yourself
using a UNIX file system if you run a web site, for example, so understanding
the basics of how UNIX works is a good idea. For more information, you may
wish to consult this page, which provides a nice overview of the file system.
This page provides more detail and also describes common UNIX file-
manipulation commands. There are literally thousands of other sites and
pages about UNIX on the Internet!

Next: BeOS File System (BFS)

BeOS File System (BFS)

The BeOS operating system is designed to use its own file system, called
(unsurprisingly) the BeOS File System, abbreviated BFS or sometimes befs.
BFS is based strongly on the fundamental design concepts of the UNIX file
systems, so those experienced with UNIX will find much that is familiar in
BFS. However, BFS has also been tailored to meet some of the goals of the
Be operating system, so BFS also has some special features that reflect Be's
objective of positioning BeOS as a multimedia-friendly operating system.

Some of the special characteristics of BFS include:

• The ability to represent multiple media devices as a single partition or
volume.

• Support for advanced caching methods.
• Performance optimizations for multimedia applications.
• Portability; BFS partitions can be moved between different hardware

platforms easily.

These are in addition to most of the benefits associated with UNIX file
systems, though there are of course tradeoffs; it wouldn't be accurate to say
that BFS was "better than" UNIX file systems, for example.

BFS is not used on many PCs, for the simple reason that BeOS is not widely
implemented. To my knowledge, Windows operating systems cannot access
BFS partitions, but someone may have written a third-party driver that will
allow DOS or Windows to access BFS. There is also an interface that will allow
BFS partitions to be used by Linux, which to some extent reflects the fact that
both Linux and BeOS tend to attract the same user base--technically
knowledgeable PC users looking for something outside the realm of Microsoft
operating systems.

For more information on BFS, see this page.

mehedi hasan
mehedi@joinme.com

603

Next: PC Operating System and File System Cross-Reference

PC Operating System and File System Cross-Reference

In separate sections, I discussed the various operating systems used by most
PCs, and also the file systems used for most PC storage devices. In each
case, I described which file systems went with which operating systems.
There are a lot of operating systems and file systems, however, so I have
included this summary cross-reference table, which shows at a glance what
supports what:

FAT NTFS Operating
System

FAT12 FAT16 VFAT FAT32 1.1 / 4.0 5.0
HPFS

MS-DOS
(Straight)

Yes
Yes,
DOS 3.0
or later

-- -- -- -- --

Windows 3.x Yes Yes -- -- -- -- --

Windows 95A Yes Yes Yes -- -- -- --

Windows
95B / 95C

Yes Yes Yes
Yes
(OEM
Only)

-- -- --

Windows
98 / 98SE / ME

Yes Yes Yes Yes -- -- --

Windows NT Yes Yes Yes -- Yes
Partial, with
NT 4.0 SP4

Yes, patch or
hack needed
for NT 4.0

Windows 2000 Yes Yes Yes Yes Yes Yes Third Party?

OS/2 Yes Yes Yes Yes -- -- Yes

UNIX / Linux Yes Yes Yes Yes
Read
Only

Read
Only

Yes

BeOS Yes Yes Yes Yes
Read
Only

Read
Only

Yes

Note: Support for non-native file systems in the alternative operating
systems such as OS/2, Linux or BeOS depends entirely on the version of the
operating system being used. Later versions generally support more file
system types. In some cases special modules must be added or modifications
made to the source code.

mehedi hasan
mehedi@joinme.com

604

Next: Major Disk Structures and the Boot Process

Major Disk Structures and the Boot Process

File systems organize hard disks and other storage devices so that they can
be used. When you are dealing with large storage units in the gigabytes, such
as modern hard disk drives, it is necessary to have a structured way of
arranging the data. At the highest level, hard disks and other large media
must sometimes be broken into multiple pieces for easier use. In any event, it
is necessary to have some fundamental structures that make it possible for a
PC to determine the characteristics of the file system on the hard disk, to
permit the system to be started up and files accessed.

In this section I describe the major disk structures that organize data in the
FAT family of file systems (FAT12/FAT16/VFAT/FAT32). I begin by describing
the master boot record (MBR) and explaining the way that hard disks are
organized into partitions. I also explain what the different partition types are,
and what the limitations are in mixing them. I then discuss volume boot
sectors and the role of the active partition. Finally, I describe the DOS boot
process (which is also used for consumer versions of Windows) and conclude
with a discussion of boot sector viruses.

Note: The descriptions in this section apply to the FAT file systems primarily.
If you are using an operating system like Linux exclusively, then only some of
the material in this section will be of relevance to you. However, all operating
systems running on a PC use the high-level partition structure to some
extent, because all file systems on a PC must fit into the overall partitioning
scheme used for PC hardware (though this is a bit of an over-simplification.)

Next: Master Boot Record (MBR)

Master Boot Record (MBR)

When you turn on your PC, the processor has to begin processing. However,
your system memory is empty, and the processor doesn't have anything to
execute, or really even know where it is. To ensure that the PC can always
boot regardless of which BIOS is in the machine, chip makers and BIOS
manufacturers arrange so that the processor, once turned on, always starts
executing at the same place, FFFF0h. This is discussed in much more detail
here.

In a similar manner, every hard disk must have a consistent "starting point"
where key information is stored about the disk, such as how many partitions
it has, what sort of partitions they are, etc. There also needs to be
somewhere that the BIOS can load the initial boot program that starts the
process of loading the operating system. The place where this information is
stored is called the master boot record (MBR). It is also sometimes called the
master boot sector or even just the boot sector. (Though the master boot
sector should not be confused with volume boot sectors, which are different.)

mehedi hasan
mehedi@joinme.com

605

The master boot record is always located at cylinder 0, head 0, and sector 1,
the first sector on the disk (see here for more on these disk geometry terms).
This is the consistent "starting point" that the disk always uses. When the
BIOS boots the machine, it will look here for instructions and information on
how to boot the disk and load the operating system. The master boot record
contains the following structures:

• Master Partition Table: This small table contains the descriptions of
the partitions that are contained on the hard disk. There is only room
in the master partition table for the information describing four
partitions. Therefore, a hard disk can have only four true partitions,
also called primary partitions. Any additional partitions are logical
partitions that are linked to one of the primary partitions. Partitions
are discussed here. One of the partitions is marked as active,
indicating that it is the one that the computer should use for booting
up.

• Master Boot Code: The master boot record contains the small initial
boot program that the BIOS loads and executes to start the boot
process. This program eventually transfers control to the boot program
stored on whichever partition is used for booting the PC.

Due to the great importance of the information stored in the master boot
record, if it ever becomes damaged or corrupted in some way, serious data
loss can be--in fact, often will be--the result. Since the master boot code is
the first program executed when you turn on your PC, this is a favorite place
for virus writers to target.

Next: Primary, Extended and Logical Partitions

Primary, Extended and Logical Partitions

In order to use the space in a hard disk, it must be partitioned. Partitioning is
the process of dividing the hard disk's space into chunks, so they can be
prepared for use, or even dedicated to different uses. Even if the entire disk is
intended to be left in one piece, it must be partitioned so that the operating
system knows that it is intended to be left in one piece. There are many
different considerations that go into deciding how to partition a hard disk.

The rules that determine how partitions are used were set down very early in
the original design of the PC, and have remained virtually unchanged since
that time. Recall that when the PC was first invented there was only (really)
one type of file system. Still, it was envisioned that in the future, multiple
operating systems and/or file systems might be wanted on a single machine.
Therefore, provision was made in the partitioning scheme to allow for several
different partitions. The rules that govern partition setup are as follows:

• A maximum of four partitions can be placed on any hard disk. These
are sometimes called primary partitions. The limitation of four is one
that is imposed on the system by the way that the master boot record
is structured.

mehedi hasan
mehedi@joinme.com

606

• Only one partition may be designated, at any given time, as active.
That partition will be used for booting the system. See here for more
on active partitions and switching active status between partitions.

• DOS (and the operating systems that depend on it for booting, which
includes all consumer Windows operating systems) will only recognize
the active primary partition. Any other primary partitions will be
ignored.

• One of the four partitions may be designated as an extended DOS
partition. This partition may then be subdivided into multiple logical
partitions. This is the way that two or more logical DOS volumes can
be placed on a single hard disk.

Alright, I realize that this is somewhat confusing, so let's take a look at some
examples of systems, to show you how this scheme is used:

• Single Partition Windows PC: Many PCs have all of their disk space
made into a single partition, and use one of the FAT file systems. Such
a machine would have just a single FAT primary partition on it, and
nothing else. The other three "slots" for partitions on the disk would be
empty.

• Multiple Partition Windows PC: To use more than one partition at a
time on a DOS/Windows system, two partitions are used. One is a
regular DOS primary partition (which becomes the "C:" drive). The
other is the extended DOS partition. Within the extended DOS
partition, all the other logical drives are created. So a drive with four
logical drive letters would have the first (C:) be the active primary
partition, and the other three (D:, E: and F:) would be logicals within
the extended DOS partition.

• Multiple Operating System PC: A system with multiple operating
systems could use one primary partition for each of up to four different
file systems.

If you want, you can also combine multiple partitions with multiple operating
systems. For example, you could have a primary DOS partition, an extended
DOS partition, and a Linux partition. Such setups are far less common than
the simpler examples above.

The extended DOS partition causes most of the confusion on the part of those
setting up new DOS/Windows PCs. It really functions as a "container" that
holds all DOS partitions except for the first (primary) volume. The reason that
this structure was used is that the original design, with its limit of four
partitions, was too restrictive. The extended DOS partition system allows you
to have up to 24 disk partitions in a single system, without violating
compatibility with older hardware and software designed based on the original
four-partition limit. Of course, nobody would use that many partitions on a
system in most cases, because it would be a data organization nightmare! :^)

Within the extended DOS partition, the logical drives are stored in a linked
structure. The extended partition's information is contained in the master
partition table (since the extended partition is one of the four partitions stored
in the master boot record). It contains a link to an extended partition table
that describes the first logical partition for the disk. That table contains

mehedi hasan
mehedi@joinme.com

607

information about that first logical partition, and a link to the next extended
partition table which describes the second logical partition on the disk, and so
on. The extended partition tables are linked in a chain starting from the
master partition table.

In terms of how the disk is used, there are only two main differences between
a primary and a logical partition or volume. The first is that a primary
partition can be set as bootable (active) while a logical cannot. The second is
that DOS assigns drive letters (C:, D: etc.) differently to primary and logical
volumes.

Here's an example to hopefully make all of this a bit more clear. Let's suppose
you are setting up a new system and starting with an empty 60 GB hard disk.
You could create a single 60 GB partition, which would be a primary DOS
partition. However, in many cases dividing up such a large disk will make it
easier to manage the space, will reduce lost disk space due to slack, and will
reduce defragmentation time on partitions containing more actively-used
data. (See here for much more on the issues involved in partitioning.) So
instead, let's say you want to split up this drive as follows:

• One 8 GB primary partition for Windows and other operating system
and program files.

• One 12 GB partition for data.
• One 16 GB partition for games.
• The rest of the disk in a 24 GB partition for large multimedia files,

short-term backups and "future expansion".

I'm assuming no complicating factors here, just a simple example. To do this,
you will first set up a primary DOS partition 8 GB in size. This is the first of
your four partitions. You will then create an extended DOS partition that is 52
GB in size. This is the second partition on the hard disk. Within the extended
DOS partition you will create three logical volumes: one 12 GB, one 16 GB
and one 24 GB. These are your second, third and fourth volumes (logical
partitions). The first partition will be your C: drive from which you boot the
machine, and DOS will (normally) assign D:, E: and F: to the other three
logical partitions. Your hard disk will have one primary DOS partition, and one
extended DOS partition containing three logical DOS volumes.

Graphical depiction of the partitioning of a 60 GB hard disk,
as described in the example above. Each square represents
1 GB of space on the hard disk. The blue squares are the 8 GB
primary partition; the green, red and purple squares are the

mehedi hasan
mehedi@joinme.com

608

12 GB, 16 GB and 24 GB partitions respectively. The latter
three partitions are logical partitions contained within an extended
DOS partition, indicated by the larger, gray-shaded rectangle.

Once the system is set up, there is no functional difference between these
partitions, other than the fact that C: is the only bootable one and is where all
the DOS system files reside. Regular files can reside wherever you want them
to.

Next: Volume Boot Sectors

Volume Boot Sectors

Each partition (also sometimes called a "logical DOS volume" in the
DOS/Windows world) has its own volume boot sector. This is distinct from the
master boot sector (or record) that controls the entire disk, but is similar in
concept. It is also sometimes called the volume boot record or partition boot
sector. Each volume boot sector contains the following:

• Disk Parameter Block: Also sometimes called the media parameter
block, this is a data table that contains specific information about the
volume, such as its specifications (size, number of sectors it contains,
etc.), label name, and number of sectors per cluster used on the
partition.

• Volume Boot Code: This is code that is specific to the operating
system that is using this volume and is used to start the load of the
operating system. This code is called by the master boot code that is
stored in the master boot record, but only for the primary partition
that is set as active. For other partitions, this code sits unused.

The volume boot sector is created when you do a high-level format of a hard
disk partition. The boot sector's code is executed directly when the disk is
booted, making it a favorite target for virus writers. The information
contained in the disk parameter block is used by the operating system to
determine where other internal structures of the partition are located, such as
the file allocation tables.

Next: Active Partitions and Boot Managers

Active Partitions and Boot Managers

Only primary partitions can be used to boot the operating system, and of
these, only the specific primary partition that is set to be bootable. DOS calls
the bootable partition the active partition. Only one partition can be set active
at a time because otherwise, the master boot record does not know to which
volume's boot code to give control of the boot process when the machine is
turned on.

mehedi hasan
mehedi@joinme.com

609

If you partition a new hard disk and create a primary DOS partition using the
standard DOS utility FDISK, but forget to set the primary partition active, the
BIOS will be unable to boot the operating system. This usually results in an
error message like "No boot device available". Some BIOSes will give much
more cryptic messages; older AMI BIOSes are (in)famous for giving the
bizarre "NO ROM BASIC - SYSTEM HALTED" message when it cannot find a
boot device. The reason for this error is that early IBM systems had a hard-
coded version of the BASIC language built into its BIOS ROM. If no boot
device could be found, the BIOS would execute this hard-coded BASIC
interpreter instead. Since non-IBM systems don't have this BASIC ROM, their
BIOSes must display an error message instead of going into BASIC. Why AMI
chose this confusing message is a mystery to me, but at least you understand
its history now. :^)

Most people are only going to have one primary partition on their PC, because
most people only use one operating system. Remember that even if you want
to split your disk up into multiple FAT file system partitions, only the first will
be a primary partition--the rest will be logical drives within an extended
partition. However, if you are using more than one operating system--
meaning ones that use different file formats, like Linux and Windows ME, not
DOS and Windows ME, which use the same file systems generally--then you
may want to set up multiple primary partitions, one per operating system.
You then have the problem of telling the system at boot time which operating
system you want to use.

There are programs specifically designed for this task; they are usually called
boot managers or boot loaders. What a boot manager does is insert itself into
the very beginning of the boot process, sometimes by setting up a special
boot manager partition and making itself the active partition. When you boot
up the PC, the code in this partition runs. It analyzes the primary partitions
on the disk and then presents a menu to you and asks which operating
system you want to use. Whichever one you select, it marks as active, and
then continues the boot process from there. Other methods may also be used
to accomplish the same general objectives.

Boot managers are in many ways indispensable when working with multiple
operating systems. However, you still want to take care when using one,
since it does modify the disk at a very low level. Some boot managers require
their own, dedicated partitions to hold their own code, which complicates
slightly the setup of the disk. There are now a variety of different boot
manager products on the market, including some that come included with
utilities like Partition Magic.

Next: The DOS Boot Process

The DOS Boot Process

The system boot sequence is the series of steps that the system performs
when it is turned on (or rebooted with the reset switch, for example). This
always starts with the special boot program software that is in the system
BIOS ROM. The BIOS has several steps that it must perform to test the

mehedi hasan
mehedi@joinme.com

610

system and set it up, before any operating system can be loaded. These steps
are described in detail here.

Once the BIOS has completed its startup activities, the last thing it does is to
begin the process of loading the operating system. It does this by searching
for a boot device containing boot code to which it can hand off the boot
process. It will search for boot devices in the order specified by the BIOS
setting that controls the boot sequence. If it cannot find a boot device it will
terminate with an error.

Assuming that the BIOS finds a boot sector on a device, the process of
loading the operating system begins. If the operating system is DOS, or any
variant of Windows that starts out by booting the equivalent of DOS--which is
all of them other than Windows NT or Windows 2000--then a specific
operating system load sequence commences, which is normally called the
DOS Boot Process. In the case of Windows, additional steps are added to the
end of the process after the underlying DOS operating system has loaded.

The process below outlines how booting from the hard disk functions. Booting
from the floppy disk differs only in the first few steps, because the floppy
disk's structures are slightly different. Floppies cannot be partitioned, and
hence have no master boot record or partitions. This means that the steps
where the master boot record are searched are skipped.

Here are the steps in the DOS boot process:

1. The BIOS, having completed its functions, loads the boot code in the
master boot record and transfers control to it. The master boot record
code begins execution. If the boot device is a floppy disk, the process
continues with step 6.

2. The master boot code examines the master partition table. It is
searching for two things. First, it must determine if there is an
extended DOS partition. Second, it must determine if there is a
bootable partition specified in the partition table.

3. If the master boot code finds an extended partition on the disk, it
loads the extended partition table that describes the first logical
volume in the extended partition. This extended partition table is
examined to see if it points to another extended partition table. If it
does, then that table contains information about the second logical
volume in the extended partition, so it is loaded and examined. (Recall
that logical volumes in the extended partition have their extended
partition table chained one to the next.) This process is continued until
all of the extended partitions have been loaded and recognized by the
system.

4. After loading the extended partition information (if any), the code
attempts to boot the primary partition that is marked active
(bootable). If there are no partitions marked active, then the boot
process will terminate with an error. The error message is often the
same one that occurs if the BIOS finds no boot device, and is generally
something like "No boot device", but can be the infamous "NO ROM
BASIC - SYSTEM HALTED".

mehedi hasan
mehedi@joinme.com

611

5. If there is a primary partition marked active, the code will boot it. The
rest of the steps assume this is a DOS primary partition.

6. The volume boot sector is loaded into memory and tested, and the
boot code that it contains is given control of the remainder of the boot
process.

7. The volume boot code examines the structures on the disk that it is
booting to ensure that everything is correct and in the right place. If
not, the boot process will end in an error here as well.

8. The code searches the root directory of the device being booted for the
operating system files that contain the operating system. For a system
running MS-DOS these are the files "IO.SYS", "MSDOS.SYS" and
"COMMAND.COM".

9. If the operating system files are not found, the boot program will
display an error message, which is usually something like "Non-system
disk or disk error - Replace and press any key when ready". Some
people think that this message means the system was never booted,
that the BIOS examined the floppy disk for example and just rejected
it because it couldn't boot it. As you can see from this description of
the boot process, the volume boot code was indeed loaded and
executed, and in fact it is what prints the message when it can't find
the operating system files! See here for an explanation of why this
distinction is so important.

10. If the operating system files are found, the boot program will load
them into memory and transfer control to them. First, IO.SYS is loaded
and its code executed. IO.SYS will then executed MSDOS.SYS (in pure
DOS systems--MSDOS.SYS is just a text file in Windows 95 and
later.) Then the more complete operating system code loads and
initializes the rest of the operating system structures. For MS-DOS,
this means loading the command interpreter (COMMAND.COM) and
then reading and interpreting the contents of the CONFIG.SYS and
AUTOEXEC.BAT system control files.

At this point the operating system code itself has control of the PC. In the
case of 32-bit Windows versions like Windows 95/98/ME, the steps above are
only the beginning of the process. The initial DOS operating system files
control the loading and execution of many more routines as the boot
progresses, which perform tasks such as reading the system registry,
initializing hardware devices and starting the graphical operating system
shell. In fact, it is surprising in some ways just how many different pieces of
code have a hand in starting up the PC.

Next: Boot Sector Viruses

Boot Sector Viruses

Computer viruses are small programs designed to attach themselves to your
computer, running without your knowledge and spreading themselves to
"infect" other systems. Sometimes malicious, and sometimes just annoying,
they are always a concern to the modern computer user. Viruses are
discussed in substantial detail here.

mehedi hasan
mehedi@joinme.com

612

The boot code that is stored on the hard disk and executed when the disk is
booted up, is a prime target for viruses. The reason is simple: the goal of the
virus writer is to get the virus code executed as often as possible, to allow it
to spread and cause whatever other mischief it is written to create. What
better place to put the virus than in code that is executed every time the PC
is run, automatically, and before anything else is in memory?

One of the major classes of viruses, called boot sector infectors, targets the
vulnerable boot areas of the hard disk. (The other major groups of viruses
attack individual files, or spread using email and other Internet protocols.)
Some infect the code in the master boot record while others infect the code in
the volume boot sector(s). By infecting this code, the virus assures itself of
always being able to load into memory when the machine is booted, as long
as you boot from the volume that is infected. There is always code in any disk
(hard or floppy) that is formatted, whether or not the system files are present
on the disk.

Many people think that when you boot a system from a floppy or hard disk
that has no system files--because it was formatted without transferring them-
-that the system doesn't boot. It's worth pointing out that in truth, it does
boot; the boot process just halts very quickly when no operating system files
can be found, as described here. In fact, the error message "Non-system disk
or disk error - Replace and press any key when ready", is printed by the
volume boot code that is read from the volume boot sector on the disk.

The importance of this distinction has to do with the spread of viruses. Since
the volume boot code is always executed when the system attempts to boot
from a device, a virus can be present on a floppy disk even if you don't
format it with the system files on it using "FORMAT /S" or the "SYS"
command. As soon as you see the "Non-system disk..." message, the virus
could already be in your system memory.

Next: FAT File System Disk Volume Structures

FAT File System Disk Volume Structures

The highest-level logical disk structures are the master boot record and
partition tables, which define the way the entire disk is sized and organized. I
explored these high-level structures in this section. Moving down to the next
level of detail, we now will explore some of the key characteristics of each
disk volume's internal structure. It is at this level that we examine such
issues as the organization of files and directories on the disk volume.

This section takes a look at the disk volume structures used in the FAT file
system. I start with a look at the file allocation tables (FATs) used for each
volume. Then, I describe the way directories are structured within each
volume, and describe the differences between root and regular directories.
Finally, a full exploration of file names is provided, including a discussion of
conventional DOS file naming conventions, long file name implementation
under VFAT and FAT32, and a description of file attributes.

mehedi hasan
mehedi@joinme.com

613

Incidentally, I should mention that the volume boot sector is also part of each
disk volume, but it is discussed on this page in the major disk structures
section. (Originally, I had a page on it here too, but it was just duplication, so
I removed it.)

Note: The descriptions in this section are geared specifically towards the
characteristics of the FAT family of file systems: FAT12, FAT16, VFAT and
FAT32. Other file system share some of the same characteristics, but also
differ in important structural ways. For more information on NTFS, see here.
For more information on other file systems, check the appropriate pages in
this section, which contain links to external pages with more detail.

Next: File Allocation Tables

File Allocation Tables

The structure that gives the FAT file system its name is the file allocation
table. In order to understand what this important table does, you must first
understand how space on the hard disk is allocated under operating systems
that use FAT family file systems (including DOS and most versions of
Windows.)

Data is stored in individual 512-byte sectors on the hard disk. In theory, it is
possible for each file to be allocated to a number of individual sectors, and
this is in fact done for some file systems (such as HPFS.) However, for
performance reasons, individual sectors are not allocated to files in the FAT
system. The reason is that it would take a lot of overhead (time and space) to
keep track of pieces of files that were this small: a 10 GB disk partition has
20,000,000 sectors! The hard disk is instead broken into larger pieces called
clusters, or alternatively, allocation units. Each cluster contains a number of
sectors. Typically, clusters range in size from 2,048 bytes to 32,768 bytes,
which corresponds to 4 to 64 sectors each. Clusters and how they work are
described in full detail in this section.

The file allocation table is where information about clusters is stored. Each
cluster has an entry in the FAT that describes how it used. This is what tells
the operating system which parts of the disk are currently used by files, and
which are free for use. The FAT entries are used by the operating system to
chain together clusters to form files. This chaining process is described here.

The file allocation tables are stored in the area of the disk immediately
following the volume boot sector. Each volume actually contains two identical
copies of the FAT; ostensibly, the second one is meant to be a backup of sorts
in case of any damage to the first copy. Damage to the FAT can of course
result in data loss since this is where the record is kept of which parts of the
disk contain which files. The idea behind the backup copy is that it could be
used in the event that the primary becomes damaged.

In the conventional FAT system, however, the backup FAT system doesn't
work too well. The problem is that the two copies are kept right next to each

mehedi hasan
mehedi@joinme.com

614

other on the disk, so that if, for example, bad sectors develop on the disk
where the first copy of the FAT is stored, chances are pretty good that the
second copy will be affected as well. Another problem is that disk utilities
frequently duplicate the primary FAT to the backup FAT location. This means
that any corruption that arises in the primary FAT may be duplicated to the
backup copy before it is noticed.

Under FAT32, some improvements were made to the FAT backup scheme.
First, either copy of the FAT can be designated the "primary" and either the
"backup". Second, the method by which the FAT is copied from the primary to
the backup location can be disabled. The combination of these features allows
the second FAT to be protected and used in the event of problems with the
first.

Next: Files, Directories, Paths and the Directory Tree

Files, Directories, Paths and the Directory Tree

The basis for the storage model on the PC, at a logical level, is the file. The
universal concept of the file is one of the strengths of the PC file system, and
is one that the PC shares with many other successful file systems such as that
used by UNIX (of course, UNIX predates the PC by over a decade!) A file is
simply a collection of bytes stored together with a name to identify it. A file
can contain anything: program code, data, pictures, a movie, you name it.
The meaningfulness of a file, and what it is used for, is determined by what
you put in it, and what software you use with it. Even the file extension
doesn't distinguish a file; it is just a naming convention.

As you probably know, files are stored in virtually every PC-based operating
system using a paradigm known as the directory tree. The "base" of the tree
is the (somewhat appropriately named) root directory. Within the root
directory you can create either simple files or more directories (often called
subdirectories). Each directory is a container that holds files or more
subdirectories (or both). The directories can be "nested" to many levels of
depth. Taken as a whole, the structure of directories and subdirectories forms
a logical tree. (Well, it actually looks like the root structure of a tree. The
"root" and "branch" analogies are used interchangeably in the computer
world, much to the confusion of some arborists. :^))

Each file or directory on the hard disk can be uniquely identified using two
pieces of information: its filename, and the path along the directory tree that
you traverse to get to it. For example, let's suppose you have a set of
customer information files organized by region. The entire database is in a
directory called "Customers" on the "D:" logical drive. Within this is a
directory for each state. Within each of these state directories is a text file
called "customer-list.txt". The file containing information about your
customers in Texas would then be addressed as
"D:\Customers\Texas\customer-list.txt". The filename is "customer-list.txt",
and the path is "D:\Customers\Texas".

mehedi hasan
mehedi@joinme.com

615

Note: Windows sometimes calls directories "folders". They are exactly the
same thing.

Next: Internal Directory Structures

mehedi hasan
mehedi@joinme.com

616

Internal Directory Structures

Every file on the hard disk is stored in a directory. A directory is nothing more
than a file itself, except that it is specially structured and marked on the disk
so that it has special meaning to the operating system. A directory is a table
that contains information about files (and subdirectories) that it contains, and
links to where the file (or subdirectory) data begins on the disk. The paper
analogy would be a table of contents to a book, except that directories of
course use a hierarchical tree structure and books do not. (In some ways, a
better analogy would be this web site itself; each index frame points to either
individual pages, or another sub-index. The PC Guide is hierarchical in the
same way as a PC's directory structure, and the home page would be the
equivalent of the root directory.)

Each entry in a directory is 32 bytes in length, and stores the following
information:

• File Name and Extension: This is the 11-character name of the file
using the conventional 8.3 DOS file naming standard, for example,
COMMAND.COM. Note that the "dot" in "COMMAND.COM" is implied
and not actually stored on the disk. See here for more on file naming
and also on VFAT long file names, which use a special structure. The
file name field is also used to indicate directory entries that have been
deleted.

• File Attribute Byte: There are several different attributes which the
operating system uses to give special treatment to certain files; these
are stored in a single byte in each directory entry. These attributes are
discussed in detail here. Note that it is one of these file attributes that
indicates whether an entry in any directory represents a "real" file, or
a subdirectory.

• Last Change Date/Time: There is a space for each file to indicate
the date and time that it was created or modified. You should know
that these fields can be arbitrarily modified by any program to be
whatever is wanted, so this date/time shouldn't be taken too seriously.
I occasionally am asked if the date/time on a file can be used to prove
when someone did something or not on their PC. It cannot, because
it's too easy to change this information. Under normal circumstances
the date/time stamp can be useful for telling when you last modified a
file, for example, but you should not count on it to "prove" anything
about when someone was last using their PC, for example.

• File Size: The size of the file in bytes.
• Link to Starting Cluster: The number of the cluster that starts the

file (or subdirectory) is stored in the directory. This is what allows the
operating system to find a file when it is needed, and how all the
different files and directories are linked together on the disk. See here
for more on cluster chaining.

Every regular directory on the disk has two special entries. These are named
"." (single dot), which refers to the current directory, and ".." (double dot),
which refers to the parent directory. These entries are used for navigation
purposes; if you type "chdir .." then DOS will change your current directory to

mehedi hasan
mehedi@joinme.com

617

the parent of the one you were in. Note that the root directory has no parent
directory, for obvious reasons. :^)

Next: Root Directory and Regular Directories

Root Directory and Regular Directories

A hierarchical directory structure is used to organize the files that exist on any
hard disk volume. This "logical tree" is used on almost every file system,
because of the intuitive way it arranges files, and the power it gives the user
to create meaningful organization schemes for files. Much as a real tree has
all its branches and roots come together in one spot, so too does a file system
directory structure. The directory at the "base" of the logical tree is called,
appropriately enough, the root directory. The root directory is special because
it follows rules that do not apply to the other, "regular" directories on the
hard disk.

There can only be one root directory for any disk volume; obviously, having
more than one would result in confusion, and there isn't any need to have
more than one anyway. In the conventional FAT file system, the root
directory is fixed in place at the start of the DOS volume; it "anchors" the
directory tree. The root directory located on the disk volume directly after the
two copies of the FAT, which are themselves directly below the other key disk
structures. This contrasts with regular directories, which can be located
anywhere on the disk.

In addition to being fixed in location, the root directory is also fixed in size
(under FAT12/FAT16/VFAT). Regular directories can have an arbitrary size;
they use space on the disk much the way files do, and when more space is
needed to hold more entries, the directory can be expanded the same way a
file can. The root directory is limited to a specific number of entries because
of its special status. The number of entries that the root directory can hold
depends on the type of volume:

Volume Type
Maximum Number of
Root Directory
Entries

360 kB 5.25" Floppy Disk 112

720 kB 3.5" Floppy Disk 112

1.2 MB 5.25" Floppy Disk 224

1.44 MB 3.5" Floppy Disk 224

2.88 MB 3.5" Floppy Disk 448

Hard Disk 512

One of the improvements introduced in the newer FAT32 version of the FAT
file system was to remove these restrictions on the root directory. Under

mehedi hasan
mehedi@joinme.com

618

FAT32, the root directory is treated much more like a regular directory, and
can be relocated and expanded in size like any other. (It's still a good idea
not to load up the root directory with too many files.)

There are a couple of other special things you should know about the root
directory. One is that it cannot be deleted; the reason for this I would think to
be obvious. :^) Also, the root directory has no parent, since it is at the top of
the tree structure. The root directory still contains a ".." entry, but instead of
pointing to the cluster number of the parent directory like a regular
directory's parent entry, it contains a null value (zero).

Next: File Names and Extensions

File Names and Extensions

As virtually every PC user knows, standard (DOS-based) PC files are named
using a fixed format convention that has been around since the "beginning of
time" (i.e., the first IBM PC :^)). The file name is comprised of two parts:

• File Name: The base name of the file itself. This part of the file name
must be between one and eight characters in length. A special code is
used as the first character of the file name to indicate deleted files.

• File Extension: The extension of the file, which is optional and hence
can be from zero to three characters.

Since the file name is limited to eight characters and the extension to three,
the conventional DOS naming scheme is sometimes called 8.3 naming.

The file extension is occasionally the source of some confusion. Modern
operating systems use them as a "file type" of sorts. They tell you--and your
operating system--what kind of file you are looking at, at a glance. For
example, a file with an extension of "EXE" is normally an executable program
file, "HTM" usually means an HTML document, and "BAT" a DOS batch file.

However, it's important to remember that there is nothing special at all about
these extension names. There is nothing inherently different between an
"EXE" file, an "HTM" file, and a "BAT" file--they are all "just files" to the file
system, and any special meaning arising from the file extension is a function
of the operating system and software, and how they interpret them. For
example, I said that an EXE file is normally an executable file, because the
use of the EXE extension to refer to executable files is a convention, and not
anything that is enforced by the system. You could open up your text editor
and type "This is a test", and when you go to save the file, save it as
"TEST.EXE", and this will work perfectly fine. The text editor may default to a
different extension, but it won't cry foul at your choosing "TEST.EXE" as a file
name.

So why are file extensions used? They are essentially a shorthand way of
organizing files by type. They are used by various pieces of software,
including DOS and Windows themselves, to indicate which programs should
be used with which files without having to look into the structure of the file

mehedi hasan
mehedi@joinme.com

619

itself. The reason that having an EXE extension on a file matters, is that the
operating system is pre-programmed so that when you type the name of a
file, it will look for that file with certain types of extensions to try to execute
them. One of those is "EXE". So if you create this silly "TEST.EXE" file with a
text line in it and then type "TEST" at the command line, DOS will try to run
this "program". What do you think will happen when it does? Probably just an
error message, but you can cause errors or confuse applications by changing
file extensions (which is one reason why Windows will warn you if you try to
change a file extension in Windows Explorer.)

Similarly, other programs usually try by default to look only at files that have
extensions that they are meant to use. If you run Microsoft Word and go to
the "Open" dialog box, by default it will look for files with an extension of
"DOC", for "document". Graphics programs will look for "JPG" or "GIF" files,
amongst others. This standard functionality is why using consistent file
extensions is important.

This use of file extensions by software programs is now universal, and there
are in fact hundreds of different kinds in use. Windows maintains a list of file
associations that tell Windows Explorer which programs go with which file
types (extensions). When you double-click a file in Explorer to open it,
Explorer will automatically launch the program that it knows uses the file you
selected, and tell the program to open the file you clicked on. Just remember
that Explorer is only determining the program to use by looking at the file
extension, and not by analyzing anything within the file itself. (Also, many
programs use the same file extensions, which can be confusing at times. If
you've ever had Internet Explorer and Netscape Navigator fighting for the
"right" to be associated with your "HTM" files you know exactly what I mean.
:^))

Tip: You can change the program associated with any file extension by
editing the file associations. Within Windows Explorer, select "Options..." from
the "View" menu. Then click the "File Types" tab, select the item to be
modified, and select "Edit...". Find the file type you want to modify, highlight
the "open" Action, and select "Edit..." again. Change the program and close
all the windows and you should be all set. Note that some programs will
automatically "re-establish" associations to themselves whenever you run
them! (They are supposed to ask first but software writers can be a tad, uh,
possessive. :^))

The following characters are allowed in legal DOS file names: A-Z 0-9 $ % ' -
_ @ ~ ` ! () ^ # &. Note that a space is an officially valid character for a file
name, but I strongly recommend against using spaces in standard file names
because many programs become very confused by file names with spaces in
them. Even Windows 9x/ME specifically avoid using spaces in file names when
they create 8.3 aliases for long file names.

Next: Long File Names

Long File Names

mehedi hasan
mehedi@joinme.com

620

Until the initial release of Windows 95, all file names using DOS or Windows
3.x (which uses the DOS file system) were limited to the standard eight
character file name plus three character file extension. This restriction tends
to result in users having to create incredibly cryptic names, and having the
situation still like this 15 years after the PC was invented seemed laughable,
especially with Microsoft wanting to compare its ease of use to that of the
Macintosh. Users want to name their files "Mega Corporation - fourth quarter
results.DOC", not "MGCQ4RST.DOC". The second name makes sense when
you create it, because you know what you're saving in the file. A few months
later, however, that name will probably be nearly impossible to decipher.
Users didn't enjoy this limitation.

Microsoft was determined to bring long file names (LFNs) to Windows 95
much as it had for Windows NT. The latter, however, has a new file system
designed from the ground up to allow long file names--NTFS. Microsoft had a
big problem on its hands with Windows 95: it wanted to maintain
compatibility with existing disk structures, older versions of DOS and
Windows, and older applications. It couldn't just "toss out" everything that
came before and start fresh, because doing this would have meant no older
programs could read any files that used the new long file names. File names
were restricted to "8.3" (standard file name sizes) within the directories on
the disk if they wanted compatibility to be continued.

What Microsoft needed was a way to implement long file names so that the
following goals were all met:

• Windows 95 and applications written for Windows 95 could use file
names much longer than 11 total characters.

• The new long file names could be stored on existing DOS volumes
using standard directory structures, for compatibility.

• Older pre-Windows-95 software would still be able to access the files
that use these new file names, somehow.

Long file name support was provided as part of the Virtual FAT (VFAT) system
created for Windows 95. The VFAT file system accomplishes these goals, for
the most part, as follows. Long file names of up to 255 characters per file can
be assigned to any file under Windows 95 or by any program written for
Windows 95 (although file names under 100 characters are recommended so
that they don't get too cumbersome to use). Support for these long file
names is also provided by the version of DOS (7.x) that comes with Windows
95. File extensions are maintained, to preserve the way that they are used by
software. The long file name is limited to the same characters as standard file
names are, except that the following additional characters are allowed: + , ;
= [].

Note: The VFAT system for file names was created for Windows 95, and kept
for subsequent versions of Microsoft operating systems. This includes
Windows 98 and Windows ME. The FAT32 file system builds on VFAT and also
uses the same scheme.

mehedi hasan
mehedi@joinme.com

621

To allow access by older software, each file that uses a long file name also
has a standard file name alias that is automatically assigned to it. This is
sometimes called a short file name to distinguish it from a long file name.
Aliasing is performed by truncating and modifying the file name as follows:

• The long file name's extension (up to three characters after a ".") are
transferred to the extension of the alias file name.

• The first six non-space characters of the long file name are analyzed.
Any characters that are valid in long file names but not in standard file
names (+ , ; = [and]) are replaced by underscores. All lower-case
letters are converted to upper case. These six characters are stored as
the first six characters of the file name.

• The last two characters of the file name are assigned as "~1". If that
would cause a conflict because there is already a file with this alias in
the directory, then it tries "~2", and so on until it finds a unique alias.

So to take our example from before, "Mega Corporation - fourth quarter
results.DOC" would be stored as shown, but also under the alias
"MEGACO~1.DOC". If you had previously saved a file called "Mega
Corporation - third quarter results.DOC" in the same directory, then that file
would be "MEGACO~1.DOC" and the new one would be "MEGACO~2.DOC".
Any older software can reference the file using this older name. Note that
using spaces in long file names really doesn't cause any problems because
Windows 95 applications are designed knowing that they will be commonly
used, and because the short file name alias has the spaces removed.

Long file names are stored in regular directories using the standard directory
entries, but using a couple of tricks. The Windows 95 file system creates a
standard directory entry for the file, in which it puts the short file name alias.
Then, it uses several additional directory entries to hold the rest of the long
file name. A single long file name can use many directory entries (since each
entry is only 32 bytes in length), and for this reason it is recommended that
long file names not be placed in the root directory of a VFAT partition, where
the total number of directory entries is limited. (FAT32 removes this
restriction, but it's still good form to avoid putting lots of files in the root
directory of a partition.)

In order to make sure that older versions of software don't get confused by
this non-standard usage of directories, each of the extra directory entries
used to hold long file name information is tagged with the following odd
combination of file attributes: read-only, hidden, system and volume label.
The objective here is to make sure that no older versions of DOS try to do
anything with these long file name entries, and also to make sure they don't
try to overwrite these entries because they think they aren't in use. That
combination of file attributes causes older software to basically ignore the
extra directory entries being used by VFAT, because prior to the creation of
long file names, such a combination of file attributes had no valid meaning.
(This was a major league kludge on the part of Microsoft, but one that
works!)

While long file names are a great idea and improve the usability of Windows
95, Microsoft's streeeeeetch to keep them compatible with old software kind

mehedi hasan
mehedi@joinme.com

622

of shows. Basically, the implementation is a hack built on top of the standard
FAT file system, and there are numerous problems that you should be aware
of when using LFNs:

• Compatibility Problems with Older Utilities: While marking its
extra entries as read-only, hidden, system and volume label will trick
standard applications into leaving these entries alone, a disk utility
program like Norton Disk Doctor will not be fooled. If you use an older
version that is not aware of long file names, it will detect these entries
as errors on your disk and happily "correct" them for you, and that's
that for your long file names. Utilities run under Windows 9x/ME must
be aware of long file names to work properly. Of course today, with
long file names having been in common use for many years, this is not
nearly the issue that it was when Windows 95 was first released.

• "Loss" of Long File Names with Older Software: While older apps
will work with the long file names using the short name alias, they
have no ability to access the long file name at all. It is easy for one of
these applications to "drop" the long file name by accident. A common
cause of frustration is that if you use older DOS backup software that
doesn't know about long file names, it will save only the alias, and if
you have a crash and need to restore, the long file names will be lost.
Another concern is that if you load a file into an older program using
the alias, you can only save back to the same file name, or to another
8.3 file name. (If you save back to the same name in the same
directory, the original long file name will be retained.)

• Problems with Conflicting Alias File Names: There are two
significant problems with the long file name aliasing scheme:

o Alias Changes: The alias is not permanently linked to the long
file name, and can change. Let's suppose we take our "Mega
Corporation - fourth quarter results.DOC" and save it in a new
empty directory. It will be assigned the alias
"MEGACO~1.DOC". Now let's say we copy it to a directory that
already has the file "Mega Corporation - Water Cooler
Policy.DOC" in it, which is using the same "MEGACO~1.DOC"
alias. When we do this, the alias for the fourth quarter results
file will magically change (well, the operating system does it
:^)) to "MEGACO~2.DOC". This can confuse some people who
refer to the file both by the long name and the alias.

o Overwriting: The second problem is more serious. Let's replay
this same scenario using an older file copy application that isn't
aware of long file names. Since all it sees is "MEGACO~1.DOC"
in two different places, it thinks they are the same file, and will
overwrite the water cooler memo with the fourth quarter results
when you do the copy! If you are lucky it will ask "Are you
sure?" first; otherwise...

• Problems with Short File Name Realiasing: Copying a file with a
long file name from one partition to another, or restoring one from a
backup, can cause the short file name alias associated with the long
file name to be changed. This can cause spurious behavior when hard-
coded references to the short file name no longer resolve to the
correct target. For example, many registry entries refer to the short
file name alias, not the long file name. For a full discussion of this
problem, please read the PC Guide article Xcopy Xposed. Note that

mehedi hasan
mehedi@joinme.com

623

despite the fact that Windows NT's NTFS file system was rebuilt from
the ground up, it has this problem as well because the system aliases
long file names for limited backward compatibility.

Overall, long file names are a useful advance in the usability of the FAT file
system, but you need to be aware of problems when using them, especially
with older software.

Next: File Attributes

File Attributes

Each file is stored in a directory, and uses a directory entry that describes its
characteristics such as its name and size. The directory entry also contains a
pointer to where the file is stored on disk. One of the characteristics stored
for each file is a set of file attributes that give the operating system and
application software more information about the file and how it is intended to
be used.

The use of attributes is "voluntary". What this means is that any software
program can look in the directory entry to discern the attributes of a file, and
based on them, make intelligent decisions about how to treat the file. For
example, a file management program's delete utility, seeing a file marked as
a read-only system file, would be well-advised to at least warn the user
before deleting it. However, it doesn't have to. Any programmer that knows
what it is doing can override the attributes of a file, and certainly, the writers
of viruses do this as a matter of course!

That said, most operating systems assign definite meanings to the attributes
stored for files, and will alter their behavior according to what they see. If at
a DOS prompt you type "DIR" to list the files in the directory, by default you
will not see any files that have the "hidden" attribute set. You have to type
"DIR /AH" to see the hidden files.

A file can have more than one attribute attached to it, although only certain
combinations really make any sense. The attributes are stored in a single
byte, with each bit of the byte representing a specific attribute (actually, only
six bits are used of the eight in the byte). Each bit that is set to a one means
that the file has that attribute turned on. (These are sometimes called
attribute bits or attribute flags). This method is a common way that a bunch
of "yes/no" parameters are stored in computers to save space. The following
are the attributes and the bits they use in the attribute byte:

Attribute Bit Code

Read-Only 00000001

Hidden 00000010

System 00000100

mehedi hasan
mehedi@joinme.com

624

Volume Label 00001000

Directory 00010000

Archive 00100000

The attribute bits are summed to form the attribute byte. So, the attribute
byte for a hidden, read-only directory would be 00010011, which is simply
the codes for those three attributes from the table above, added together.
Here is a more detailed description of what these attributes mean (or more
accurately, how they are normally used). Note that each of the attributes
below apply equally to files and directories (except for the directory attribute
of course!):

• Read-Only: Most software, when seeing a file marked read-only, will
refuse to delete or modify it. This is pretty straight-forward. For
example, DOS will say "Access denied" if you try to delete a read-only
file. On the other hand, Windows Explorer will happily munch it. Some
will choose the middle ground: they will let you modify or delete the
file, but only after asking for confirmation.

• Hidden: This one is pretty self-explanatory as well; if the file is
marked hidden then under normal circumstances it is hidden from
view. DOS will not display the file when you type "DIR" unless a
special flag is used, as shown in the earlier example.

• System: This flag is used to tag important files that are used by the
system and should not be altered or removed from the disk. In
essence, this is like a "more serious" read-only flag and is for the most
part treated in this manner.

• Volume Label: Every disk volume can be assigned an identifying
label, either when it is formatted, or later through various tools such
as the DOS command "LABEL". The volume label is stored in the root
directory as a file entry with the label attribute set.

• Directory: This is the bit that differentiates between entries that
describe files and those that describe subdirectories within the current
directory. In theory you can convert a file to a directory by changing
this bit. Of course in practice, trying to do this would result in a mess--
the entry for a directory has to be in a specific format.

• Archive: This is a special bit that is used as a "communications link"
between software applications that modify files, and those that are
used for backup. Most backup software allows the user to do an
incremental backup, which only selects for backup any files that have
changed since the last backup. This bit is used for this purpose. When
the backup software backs up ("archives") the file, it clears the archive
bit (makes it zero). Any software that modifies the file subsequently, is
supposed to set the archive bit. Then, the next time that the backup
software is run, it knows by looking at the archive bits which files have
been modified, and therefore which need to be backed up. Again, this
use of the bit is "voluntary"; the backup software relies on other
software to use the archive bit properly; some programs could modify
the file without setting the archive attribute, but fortunately most
software is "well-behaved" and uses the bit properly. Still, you should

mehedi hasan
mehedi@joinme.com

625

not rely on this mechanism absolutely to ensure that your critical files
are backed up.

Most of the attributes for files can be modified using the DOS ATTRIB
command, or by looking at the file's properties through the Windows 95
Windows Explorer or other similar file navigation tools.

Next: Clusters and File Allocation

Clusters and File Allocation

As I have been explaining in various sections in this discussion of hard disk
structures and file systems, the purpose of the file system is to organize data.
The most popular file system in the PC world is the FAT family of file systems:
FAT12, FAT16, VFAT and FAT32. All of these file systems use a specific
technique for dividing the storage on a disk volume into discrete chunks, to
balance the needs of efficient disk use and performance. These chunks are
called clusters. The process by which files are assigned to clusters is called
allocation, so clusters are also sometimes called allocation units.

In this section I describe how FAT file system clusters and file allocation work.
I start by describing what clusters are themselves. I then talk about the
mechanism by which clusters are assigned to files. I explain how the FAT file
system handles deleting files--and undeleting them as well. I then discuss
how the cluster system can cause the file system to become fragmented. I
conclude with a discussion of file system errors that can occur under the FAT
file system.

Next: Clusters (Allocation Units)

Clusters (Allocation Units)

As described here, the smallest unit of space on the hard disk that any
software can access is the sector, which normally contains 512 bytes. It is
possible to have an allocation system for the disk where each file is assigned
as many individual sectors as it needs. For example, a 1 MB file would require
approximately 2,048 individual sectors to store its data. The file system HPFS
uses this type of arrangement.

Under the FAT file systems (and in fact, most file systems) individual sectors
are not used. There are several performance reasons for this. It can get
cumbersome to manage the disk when files are broken into 512-byte pieces.
A 20 GB disk volume using 512 byte sectors managed individually would
contain over 40 million individual sectors, and keeping track of this many
pieces of information is time- and resource-consuming. Some operating
systems do allocate space to files by the sector, but they require some
advanced intelligence to do this properly. FAT was designed many years ago
and is a simple file system, and is not capable of managing individual sectors.

mehedi hasan
mehedi@joinme.com

626

What FAT does instead is to group sectors into larger blocks that are called
clusters, or allocation units. The cluster size is determined primarily by the
size of the disk volume: generally speaking, larger volumes use larger cluster
sizes. For hard disk volumes, each cluster ranges in size from 4 sectors
(2,048 bytes) to 64 sectors (32,768 bytes). In some situations 128-sector
clusters may be used (65,536 bytes per cluster). Floppy disks use much
smaller clusters, and in some cases use a cluster of size of just 1 sector. The
sectors in a cluster are continuous, so each cluster is a continuous block of
space on the disk.

Cluster sizing (and hence partition or volume size, since they are directly
related) has an important impact on performance and disk utilization. The
cluster size is determined when the disk volume is partitioned. Certain third-
party partitioning utilities can alter the cluster size of an existing partition
(within limits) but aside from using these, once the partition size is selected it
is fixed.

Every file must be allocated an integer number of clusters--a cluster is the
smallest unit of disk space that can be allocated to a file, which is why
clusters are often called allocation units. This means that if a volume uses
clusters that contain 8,192 bytes, an 8,000 byte file uses one cluster (8,192
bytes on the disk) but a 9,000 byte file uses two clusters (16,384 bytes on
the disk). This is why cluster size is an important consideration in making
sure you maximize the efficient use of the disk--larger cluster sizes result in
more wasted space because files are less likely to fill up an integer number of
clusters. This issue is given a full treatment here.

Next: File Chaining and FAT Cluster Allocation

File Chaining and FAT Cluster Allocation

The file allocation table (FAT) is used to keep track of which clusters are
assigned to each file. The operating system (and hence any software
applications) can determine where a file's data is located by using the
directory entry for the file and the file allocation table entries. Similarly, the
FAT also keeps track of which clusters are open and available for use. When
an application needs to create (or extend) a file, it requests more clusters
from the operating system, which finds them in the file allocation table.

There is an entry in the file allocation table for each cluster used on the disk.
Each entry contains a value that represents how the cluster is being used.
There are different codes used to represent the different possible statuses
that a cluster can have.

Every cluster that is in use by a file has in its entry in the FAT a cluster
number that links the current cluster to the next cluster that the file is using.
Then that cluster has in its entry the number of the cluster after it. The last
cluster used by the file is marked with a special code that tells the system
that it is the last cluster of the file; for the FAT16 file system this may be a
number like 65,535 (16 ones in binary format). Since the clusters are linked
one to the next in this manner, they are said to be chained. Every file (that

mehedi hasan
mehedi@joinme.com

627

uses more than one cluster) is chained in this manner. See the example that
follows for more clarification.

In addition to a cluster number or an end-of-file marker, a cluster's entry can
contain other special codes to indicate its status. A special code, usually zero,
is put in the FAT entry of every open (unused) cluster. This tells the operating
system which clusters are available for assignment to files that need more
storage space. Another code is used to indicate "bad" clusters. These are
clusters where a disk utility (or the user) has previously detected one or more
unreliable sectors, due to disk defects. These clusters are marked as bad so
that no future attempts will be made to use them.

Accessing the entire length of a file is done by using a combination of the
file's directory entry and its cluster entries in the FAT. This is confusing to
describe, so let's look at an example. Let's consider a disk volume that uses
4,096 byte clusters, and a file in the C:\DATA directory called "PCGUIDE.HTM"
that is 20,000 bytes in size. This file is going to require 5 clusters of storage
(because 20,000 divided by 4,096 is around 4.88).

OK, so we have this file on the disk, and let's say we want to open it up to
edit it. We launch our editor and ask for the file to be opened. To find the
cluster on the disk containing the first part of the file, the system just looks at
the file's directory entry to find the starting cluster number for the file; let's
suppose it goes there and sees the number 12,720. The system then know to
go to cluster number 12,720 on the disk to load the first part of the file.

To find the second cluster used by this file, the system looks at the FAT entry
for cluster 12,720. There, it will find another number, which is the next
cluster used by the file. Let's say this is 12,721. So the next part of the file is
loaded from cluster 12,721, and the FAT entry for 12,721 is examined to find
the next cluster used by the file. This continues until the last cluster used by
the file is found. Then, the system will check the FAT entry to find the number
of the next cluster, but instead of finding a valid cluster number, it will find a
special number like 65,535 (special because it is the largest number you can
store in 16 bits). This is the signal to the system that "there are no more
clusters in this file". Then it knows it has retrieved the entire file.

Since every cluster is chained to the next one using a number, it isn't
necessary for the entire file to be stored in one continuous block on the disk.
In fact, pieces of the file can be located anywhere on the disk, and can even
be moved after the file has been created. Following these chains of clusters
on the disk is done invisibly by the operating system so that to the user, each
file appears to be in one continuous chunk of disk space.

Next: File Deletion and Undeletion

File Deletion and Undeletion

As you use any PC, you will routinely create and delete files. Now, deleting a
file means to erase it from the disk, which you would think means the file is
destroyed. Naturally, you would only do this to files you no longer need.

mehedi hasan
mehedi@joinme.com

628

However, in many circumstances, it is useful to be able to "undo" the results
of deleting a file. Accidental deletions happen far more often than you might
imagine, believe me. :^)

One of the advantages of the FAT file system is the ease with which it allows
for files to be undeleted, because of the way that it deletes files. Contrary to
what many people believe, deleting a file does not result in the contents of
the file actually being removed from the disk. Instead, the system places the
hex byte code E5h into the first letter of the file name of the file. This is a
special tag that tells the system "this file has been deleted". The space that
was formerly used by the file is available for use by other files, but it is not
cleared. It is just sort of "left there".

Over time, these "freed" clusters will eventually be reused by other files, as
they request more space for storage. However, if you accidentally delete a file
you can very often recover it if you act quickly. In DOS you can use the
UNDELETE command. There are also third-party tools that will undelete files,
such as Norton Utilities' UNERASE. If you run one of these tools immediately,
it can identify and recover the deleted files in a directory. You will have to
provide the software with the missing first character of the file name (which
was overwritten by the E5h code in that file's directory entry when the file
was deleted).

The less work you do between the time the file is deleted and the time when
you try to undelete it, the more likely you will be able to recover the file. If
you delete a file on a system that is fairly full, and then start making many
new files, some of the clusters formerly used by the deleted file may be
reused, and their former contents lost. Obviously, if you defragment your disk
or do some other large-scale disk work, you will most likely lose the contents
of deleted files forever.

Many operating systems have made deletion and undeletion less of an issue
by integrating protection for erased files into the operating system itself.
Newer Windows versions send all deleted files initially to a "Recycle Bin", from
which they can be restored if needed. These deleted files stay around for a
while, in case you want to undelete them, and if they are in the Recycle Bin
they can be restored to their former locations with no data loss. However, the
size of the Recycle Bin is limited and eventually files will be permanently
removed from it.

Warning: If you value your files, you will not rely too much on the
capabilities of utilities that restore deleted files. They are no substitute at all
for proper backup procedures.

Next: Fragmentation and Defragmentation

Fragmentation and Defragmentation

Since each file is stored as a linked list of clusters, the data that is contained
in a file can be located anywhere on the disk. If you have a 10 MB file stored

mehedi hasan
mehedi@joinme.com

629

on a disk using 4,096-byte clusters, it is using 2,560 clusters. These clusters
can be on different tracks, different platters of the disk, in fact, they can be
anywhere.

However, even though a file can be spread all over the disk, this is far from
the preferred situation. The reason is performance. As discussed in the
section describing performance, hard disks are relatively slow devices, mainly
because they are mechanical (they have moving parts--your processor,
chipset, memory and system bus do not). Each time the hard disk has to
move the heads to a different track, it takes time that is equivalent to
thousands and thousands of processor cycles.

Therefore, we want to minimize the degree to which each file is spread
around the disk. In the ideal case, every file would in fact be completely
contiguous--each cluster it uses would be located one after the other on the
disk. This would enable the entire file to be read, if necessary, without a lot of
mechanical movement by the hard disk. There are, in fact, utilities that can
optimize the disk by rearranging the files so that they are contiguous. This
process is called defragmentation or defragmenting. The utilities that do this
are, unsurprisingly, called defragmenters. The most famous one is Norton's
SpeedDisk, and Microsoft now includes a DEFRAG program for DOS and a
built-in defragmenter for most versions of Windows as well.

So the big question is: how does fragmentation occur anyway? Why not just
arrange the disk so that all the files are always contiguous? Well, it is in most
cases a gradual process--the file system starts out with all or most of its file
contiguous, and becomes more and more fragmented as a result of the
creation and deletion of files over a period of time.

To illustrate, let's consider a very simple example using a teeny hard disk that
contains only 12 clusters. The table below represents the usage of the 12
clusters. Initially, the table is empty:

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

OK, now let's suppose that we create four files: file A takes up 1 cluster, file B
takes 4, file C takes 2, and file D takes 3. We store them in the free available
space, and they start out all contiguous, as follows:

A B B B B C C D D D

Next, we decide that we don't need file C, so we delete it. This leaves the disk
looking like this:

A B B B B D D D

Then, we create a new file E that needs 3 clusters. Well, there are no
contiguous blocks on the disk left that are 3 clusters long, so we have to split

mehedi hasan
mehedi@joinme.com

630

E into two fragments, using part of the space formerly occupied by C. Here's
what the "disk" looks like now:

A B B B B E E D D D E

Next, we delete files A and E, leaving the following:

 B B B B D D D

Finally, we create file F, which takes up 4 clusters. The disk now looks like
this:

F B B B B F F D D D F

As you can see, file F ends up being broken into three fragments. This is a
highly simplified example of course, but it gives you the general idea of what
happens. Since real disks have thousands of files and thousands of clusters,
the fragmentation problem with real disks is much greater than what I have
illustrated here. What a defragmentation program does is to rearrange the
disk to get the files back into contiguous form. After running the utility, the
disk would look something like this:

B B B B F F F F D D D

Note that the exact order of the files after defragmentation is not guaranteed;
in fact, a classical defragmenter won't pay much attention to the order in
which files are placed on the disk after defragmenting. Some newer, more
capable defragmenters include special technology that will put more
frequently-used files near the front of the disk, where performance is slightly
faster. They can also move the operating system swap file to the front of the
disk for a slight speed increase.

Next: FAT File System Errors

FAT File System Errors

As a result of how the FAT file system allocates space and chains file together,
there are several common types of errors that can crop up over time. Note
that I am talking here about errors in the logical structure of the disk, not
physical disk errors, bad sectors, and so on, which are discussed in some
detail here. Most of these errors can be detected by using a standard disk
error-checking program that analyzes the file system's integrity, such as
Microsoft's SCANDISK or Norton's Disk Doctor (NDD). In fact, I highly
recommend in the System Care Guide that every hard disk volume be
scanned for routine file system problems on a daily basis, if possible.

mehedi hasan
mehedi@joinme.com

631

File system errors are occasionally the result of corruption on the disk that
can have at its root a real hardware problem. These errors can therefore
result from any system problem that can cause disk corruption, such as
resource conflicts, bad drivers, etc. Far more often, however, file system
problems occur as a result of a software problem. Program crashes, for
example, often leave around clusters that had space allocated to them but not
assigned to a file.

A power failure on a PC running Windows will often result in one or more file
system errors due to files not being closed properly. This is why you are
always supposed to exit Windows before shutting down a PC. It is also why
newer versions of Windows automatically scan the disk for errors when they
starts, if they detect that Windows ended without doing a proper file system
shutdown.

The following are the most common errors encountered on a FAT disk:

• Lost Clusters: Virtually every user has come across this problem from
time to time. Lost clusters are simply ones that are marked in the FAT
as being in use, but that the system cannot link to any file. Every file
consists of a series of clusters that can be traced by starting with the
directory entry and following the linked list of clusters to the end of the
file. Disk checking programs can scan an entire disk volume for lost
clusters using the following procedure (or something similar to it):

1. Create a copy in memory of the FAT, noting all of the clusters
marked as in use.

2. Starting at the root directory, trace through the clusters used
by each file and mark them as "accounted for", since they have
been seen to be connected to a file. Then do the same for all
the subdirectories of the root directory, and then their
subdirectories, and so on.

3. When finished, every cluster that is marked in the FAT as in use
should be accounted for. Any that are in use but not accounted
for are "orphans" that don't belong to any file--lost clusters.

Lost clusters are usually the result of interrupted file activity of some
sort--a program will allocate some clusters to a file it is building, and if
the file is not properly finished and closed, the clusters never get
correctly linked to a file name. The program that detects lost clusters
will usually give you the choice of clearing them (marking them as
"available" and returning them to the pool of free clusters) or saving
them as a file. In the latter case, the program generates an artificial
file name and links the lost clusters to that name, so that a real file is
formed. Usually this file will then be damaged in some way, but you
can often at least see what this orphaned data was and in some cases,
recover at least part of it.

• Cross-Linked Files: On rare occasions, two files can end up pointing
to the same data on the disk. Both files will have the starting cluster
number in the directory entry pointing to the same cluster number.
Alternately, one of the clusters in the middle of two or more cluster
chains may point to the same place. Obviously this is a problem: the

mehedi hasan
mehedi@joinme.com

632

same cluster cannot be part of more than one file, at least not in this
universe! :^) Each time you use either of the cross-linked files, you
will overwrite all or part of the other one. The only solution to this
problem is to make new copies of each of the affected files. You will
generally lose the contents of one or the other of the files (in fact, by
the time you discover this problem, you have already lost the contents
of at least one of them.) Often, both files will be lost and you will need
to restore them from a backup.

• Invalid Files or Directories: Very rarely, the internal structures of
file or directories can become damaged so that some entries are no
longer following the "rules" for how a file or directory is supposed to be
laid out. An example would be a directory that doesn't have a pointer
to its parent directory, or a file that has an invalid start cluster.
Sometimes files get assigned an invalid date or time by a buggy piece
of software. These problems can usually be fixed by the disk scanning
software.

• Allocation or FAT Errors: Occasionally the entries in the FAT can
become corrupted or set to invalid values. Again, most disk-checking
utilities will detect and correct these sorts of problems on the fly.

Next: Partitioning, Partition Sizes and Drive Lettering

Partitioning, Partition Sizes and Drive Lettering

Partitioning the hard disk is the act of dividing it into pieces; into logical
volumes. This is one of the first things done when setting up a new hard disk,
because partitions are one of the major disk structures that define how the
disk is laid out. In fact, you must partition a hard disk, even if only
"partitioning" it into a single volume, before you can format and use the disk.

The choice of how the disk is partitioned is important because partition size
has an important impact on both performance and on how efficiently the
disk's space is utilized. Even the matter of "efficiency" has several different
facets, depending on one's priorities. Even though you can fit an entire disk
into one partition (with proper operating system support), in many cases you
will not want to do this, for a variety of reasons that we will explore in this
section. The pages that follow examine all of the issues involved in selecting
partition types and deciding how to organize a hard disk into volumes under
the FAT family of file systems. This includes a look at the relative merits of
the FAT16/VFAT file systems and the newer FAT32 file system, and a
discussion of related issues such as partition conversion. I also describe the
somewhat tricky mechanism by which partitions are assigned drive letters.

Note: I should point out that my emphasis in the discussions in this rather
large section has changed since I first wrote it back in 1997. At that time hard
disks were of a decent size, but not tremendously large. Most people were
still using the FAT16 file system and relatively slow CPUs, so there were
significant issues with performance and disk storage efficiency--many users
had problems with big chunks of their disk space being used up by slack. As I
rewrite this material in 2001, hard disks have increased in size by 10 times or
more, and both hard disks and other components are much faster as well.

mehedi hasan
mehedi@joinme.com

633

Thus, I no longer believe it is worthwhile, for most people, to invest many
hours on tweaking the file system for small performance or space gains. I
continue to note, where appropriate, the most optimal ways of doing things,
but I also point out where spending a great deal of effort may not yield
acceptable returns. As with other areas of the site, I continue to bear in mind
that many people aren't using the latest hardware. For this reason,
optimization tricks that may be of significant value for older machines have
been maintained, and I do not just assume that everyone is running the latest
hardware.

Next: FAT Sizes: FAT12, FAT16 and FAT32

FAT Sizes: FAT12, FAT16 and FAT32

Throughout my discussion of file systems, I have referred to the FAT family of
file systems. This includes several different FAT-related file systems, as
described here. The file allocation table or FAT stores information about the
clusters on the disk in a table. There are three different varieties of this file
allocation table, which vary based on the maximize size of the table. The
system utility that you use to partition the disk will normally choose the
correct type of FAT for the volume you are using, but sometimes you will be
given a choice of which you want to use.

Since each cluster has one entry in the FAT, and these entries are used to
hold the cluster number of the next cluster used by the file, the size of the
FAT is the limiting factor on how many clusters any disk volume can contain.
The following are the three different FAT versions now in use:

• FAT12: The oldest type of FAT uses a 12-bit binary number to hold
the cluster number. A volume formatted using FAT12 can hold a
maximum of 4,086 clusters, which is 2^12 minus a few values (to
allow for reserved values to be used in the FAT). FAT12 is therefore
most suitable for very small volumes, and is used on floppy disks and
hard disk partitions smaller than about 16 MB (the latter being rare
today.)

• FAT16: The FAT used for most older systems, and for small partitions
on modern systems, uses a 16-bit binary number to hold cluster
numbers. When you see someone refer to a "FAT" volume generically,
they are usually referring to FAT16, because it is the de facto standard
for hard disks, even with FAT32 now more popular than FAT16. A
volume using FAT16 can hold a maximum of 65,526 clusters, which is
2^16 less a few values (again for reserved values in the FAT). FAT16
is used for hard disk volumes ranging in size from 16 MB to 2,048 MB.
VFAT is a variant of FAT16.

• FAT32: The newest FAT type, FAT32 is supported by newer versions
of Windows, including Windows 95's OEM SR2 release, as well as
Windows 98, Windows ME and Windows 2000. FAT32 uses a 28-bit
binary cluster number--not 32, because 4 of the 32 bits are
"reserved". 28 bits is still enough to permit ridiculously huge volumes-
-FAT32 can theoretically handle volumes with over 268 million

mehedi hasan
mehedi@joinme.com

634

clusters, and will support (theoretically) drives up to 2 TB in size.
However to do this the size of the FAT grows very large; see here for
details on FAT32's limitations.

Here's a summary table showing how the three types of FAT compare:

Attribute FAT12 FAT16 FAT32

Used For
Floppies and very
small hard disk
volumes

Small to
moderate- sized
hard disk
volumes

Medium-sized to
very large hard
disk volumes

Size of Each
FAT Entry

12 bits 16 bits 28 bits

Maximum
Number of
Clusters

4,086 65,526 ~268,435,456

Cluster Size
Used

0.5 KB to 4 KB 2 KB to 32 KB 4 KB to 32 KB

Maximum
Volume Size

16,736,256 2,147,123,200 about 2^41

Tip: If you are not sure of whether a given disk volume on your PC is
formatted using FAT16 or FAT32, you can use this procedure to find out.

Next: FAT Partition Efficiency: Slack

FAT Partition Efficiency: Slack

One issue related to the FAT file system that has gained a lot more attention
over the years is the concept of slack, which is the colloquial term used to
refer to wasted space due to the use of clusters for storing files. This began in
the mid-1990s when larger and larger hard disks began shipping with most
systems. Typically, retail systems were not being divided into multiple
partitions, and users began noticing that large quantities of their hard disk
seem to "disappear". In many cases this amounted to hundreds of megabytes
on a disk of only 1 to 2 GB in size. When the use of FAT32 became more
common this problem was less of an issue for a while. Today, with hard disks
sized at 40 GB or more commonplace, even FAT32 has problems with slack.

Of course the space doesn't really "disappear", assuming we are not talking
about lost clusters, which can make space really unusable on a disk unless
you use a scanning utility to recover it. The space is simply wasted as a result
of the cluster system that FAT uses. A cluster is the minimum amount of
space that can be assigned to any file. No file can use part of a cluster under
the FAT file system. This means, essentially, that the amount of space a file

mehedi hasan
mehedi@joinme.com

635

uses on the disk is "rounded up" to an integer multiple of the cluster size. If
you create a file containing exactly one byte, it will still use an entire cluster's
worth of space. Then, you can expand that file in size until it reaches the
maximum size of a cluster, and it will take up no additional space during that
expansion. As soon as you make the file larger than what a single cluster can
hold, a second cluster will be allocated, and the file's disk usage will double,
even though the file only increased in size by one byte.

Think of this in terms of collecting rain water in quart-sized glass bottles.
Even if you collect just one ounce of water, you have to use a whole bottle.
Once the bottle is in use, however, you can fill it with 31 more ounces, until it
is full. Then you'll need another whole bottle to hold the 33rd ounce.

Since files are always allocated whole clusters, this means that on average,
the larger the cluster size of the volume, the more space that will be wasted.
(When collecting rain water, it's more efficient to use smaller, cup-sized
bottles instead of quart-sized ones, if minimizing the amount of storage space
is a concern). If we take a disk that has a truly random distribution of file
sizes, then on average each file wastes half a cluster. (They use any number
of whole clusters and then a random amount of the last cluster, so on
average half a cluster is wasted). This means that if you double the cluster
size of the disk, you double the amount of storage that is wasted. Storage
space that is wasted in this manner, due to space left at the end of the last
cluster allocated to the file, is commonly called slack.

The situation is in reality usually worse than this theoretical average. The files
on most hard disks don't follow a random size pattern, in fact most files tend
to be small in size. (Take a look in your web browser's cache directory
sometime!) A hard disk that uses more small files will result in far more space
being wasted. There are utilities that you can use to analyze the amount of
wasted space on your disk volumes, such as the fantastic Partition Magic. It is
not uncommon for very large disks that are in single partitions to waste up to
40% of their space due to slack, although 25-30% is more common.

Let's take an example to illustrate the situation. Let's consider a hard disk
volume that is using 32 kiB clusters. There are 17,000 files in the partition. If
we assume that each file has half a cluster of slack, then this means that we
are wasting 16 kiB of space per file. Multiply that by 17,000 files, and we get
a total of 265 MB of slack space. If we assume that most of the files are
smaller, and so therefore on average each file has slack space of around two-
thirds of a cluster instead of one-half, this jumps to 354 MB!

If we were able to use a smaller cluster size for this disk, the amount of space
wasted would reduce dramatically. The table below shows a comparison of
the slack for various cluster sizes for this example. The more files on the disk,
the worse the slack gets. To consider the percentage of disk space wasted in
this example, divide the slack figure by the size of the disk. So if this were a
(full) 1.2 GB disk using 32 kiB clusters, a full 30% of that space is slack. If
the disk is 2.1 GB in size, the slack percentage is 17%:

Cluster Size Sample Slack Space, Sample Slack Space,

mehedi hasan
mehedi@joinme.com

636

50% Cluster Slack Per
File

67% Cluster Slack Per
File

2 kiB 17 MB 22 MB

4 kiB 33 MB 44 MB

8 kiB 66 MB 89 MB

16 kiB 133 MB 177 MB

32 kiB 265 MB 354 MB

As you can see, the larger the cluster size used, the more of the disk's space
is wasted due to slack. Therefore, it is better to use smaller cluster sizes
whenever possible. This is, unfortunately, sometimes easier said than done.
The number of clusters we can use is limited by the nature of the FAT file
system, and there are also performance tradeoffs in using smaller cluster
sizes. Therefore, it isn't always possible to use the absolute smallest cluster
size in order to maximize free space. One way that cluster sizes can be
reduced is to use FAT32 instead of FAT16, as described in other pages in this
section. However, on very large modern hard disks, big partitions even in
FAT32 use rather hefty cluster sizes!

Slack analysis of the C: drive from one of my PCs, as displayed by Partition
Magic 5.0. Partition Magic is probably the most popular third-party
partitioning tool. It allows you to change the cluster size of the partitions on
your disk. This analysis tool shows you how much slack would be wasted for

mehedi hasan
mehedi@joinme.com

637

various cluster sizes on a given disk volume, to let you decide what cluster
size you would like to use. It also shows the minimum and maximum partition
sizes that are allowed for the cluster size and file system under consideration.

Also realize that there will always be some space wasted regardless of the
cluster size chosen. Most people consider the amount of slack obtained when
using 4 kiB or 8 kiB partitions to be acceptable; most consider the slack of 32
kiB cluster size partitions excessive; and the 16 kiB partitions seem to go
both ways. It depends entirely on your needs, and how critical your disk
space is. With today's large disks, many people don't care as much about
slack as they used to; a typical PC user bringing home a new machine with a
30 GB hard disk isn't going to get it half full even after quite a while. For
others, slack is still very important. I personally only avoid the 32 kiB
partitions when possible, but I (more than many others) also dislike having
my disk broken into many pieces. See this discussion of the tradeoffs
between slack space waste and "end of volume" space waste as well for more
perspective on choosing cluster sizes.

Tip: Do remember not to go overboard in your efforts to avoid slack. To keep
it all in perspective, let's take the worst case above, where 354 MB of space is
wasted. With the cost per megabyte of disk now below 1 cent, this means
that the "cost" of this problem is less than $5. That doesn't mean that
wasting hundreds of megabytes of storage is smart; obviously I don't think
that or I wouldn't have written so much about slack and partitioning. :^) But
on the other hand, spending 20 hours and $50 on utility software to avoid it
may not be too smart either, considering that for not much more than that
you can get a second hard disk with dozens of gigabytes! Moderation is often
the key to using partitioning to reduce slack, so don't be taken in by some of
the "partitioning fanatics" who seem to have lost sight of the fact that disk
space is really very cheap today.

Next: Relationship of Partition Size and Cluster Size

Relationship of Partition Size and Cluster Size

Since the size of the FAT is fixed, there is a hard maximum on the number of
clusters that the FAT can hold. The maximum depends on the size of FAT
used by the volume. For FAT12 partitions it is only 4,086; for FAT16 it is
65,526, and for FAT32 it is in the hundreds of millions.

FAT12 is only used for very small partitions, so it isn't really very interesting
in terms of an analysis of partition and cluster size; virtually no hard disks
today use partitions below 16 MB, which is FAT12's limit. The place where
partition size and cluster size begin to interact is in the use of FAT16, the
standard FAT type used for hard disk partitions between 16 MB and 512 MB in
size, and used for drives up to 2,048 when FAT32 is not supported. The
partitioning utility that you use to create your disk partitions will normally
make the decision of what cluster size to use, by trying to use the smallest
possible clusters in order to reduce slack. Since FAT16 is limited in size to
65,525 clusters, what happens is that each cluster size has a maximum

mehedi hasan
mehedi@joinme.com

638

partition size that it can support. If you want to make a partition larger than
that maximum, you are forced to go up to the next larger cluster size.

The table below shows the FAT16 partition limits (a similar table for FAT32
can be found here). The values are simply 65,526 times the cluster size, in
bytes. It's important to realize that since there are only 65,526 clusters
maximum, which is less than 64 kiB (65,536), the maximum partition sizes
fall short of the "round" MB numbers that everyone always uses. Thus the
maximum partition size for 8 kiB clusters is 511.92 MiB, not 512 MiB:

Cluster
Size

Maximum Partition Size
(MiB)

Maximum Partition Size
(bytes)

2 kiB 127.98 134,197,248

4 kiB 255.96 268,394,496

8 kiB 511.92 536,788,992

16 kiB 1,023.84 1,073,577,984

32 kiB 2,047.69 2,147,155,968

Note: Windows NT supports a 64 kiB cluster size in FAT16, allowing a
maximum partition of just under 4,096 MB. The amount of slack waste in a
partition of this size is astronomical, and since the 64 kiB cluster partitions
aren't supported by Windows 9x/ME or other FAT-using operating systems,
this isn't a popular option. I would recommend using NTFS under NT for a
partition this large, or FAT32 under Windows 2000.

Despite what you will read in many articles, there really is no hard-set
minimum for these cluster sizes. (Mind you, I've never tried a really teeny
partition; I'm sure there is some limit, but it's much smaller than most people
usually say it is). It sometimes appears that 512 MB is the minimum size for a
16 kiB cluster size partition, for example, because most utilities are pre-
programmed to always pick the smallest possible cluster size, in order to cut
down on slack. This means that if you use FDISK for example to create a
partition that is 300 MB in size, it will always pick 8 kiB for the cluster size
and not 16 kiB or 32 kiB. But that doesn't mean you can't have a 300 MB
partition that uses 32 kiB clusters; Partition Magic will let you set this up if
you want, and in certain special cases you may in fact want to (although
usually not).

What does this all mean in terms of setting up your hard disk? It generally
means that if you are using FAT16 (as opposed to FAT32) and have a hard
disk that is greater than about 512 MB in size, you need to carefully consider
how many partitions you want to use for it. If you are using a hard disk that
is larger than 1,024 MB in size (this generally means a 1.2 GB or larger hard
disk, since hard disk manufacturers specify disks in decimal GB) then you are
strongly advised to partition your hard disk into more than one volume to

mehedi hasan
mehedi@joinme.com

639

avoid the tremendous slack space waste of partitions that use 32 kiB clusters.
Of course, if your operating system supports FAT32, you should just use that.

Next: FAT32 Performance Tradeoff: FAT32 Cluster Sizes and FAT Sizes

mehedi hasan
mehedi@joinme.com

640

FAT32 Performance Tradeoff: FAT32 Cluster Sizes and FAT Sizes

It is generally believed to be a "rule" of cluster size selection that "smaller is
better". As FAT16 partitions have gotten larger and slack waste has gone
through the roof, the push toward using FAT32 to reduce cluster sizes has
been tremendous. While FAT32 does allow the use of larger hard disks and
greatly reduced cluster sizes, there is an important performance consideration
in using FAT32 that is not often talked about. Now that huge hard disks with
dozens of gigabytes have made FAT32 essential for newer systems, you often
don't have a practical choice between FAT16 and FAT32 any more. However,
the principles in this page are still relevant, depending on how you are setting
up your hard disk. They can also help influence your decisions regarding how
to partition very large drives under FAT32.

Let's consider a partition that is just under 2,048 MB, the largest that FAT16
can support. If this partition is set up under FAT16, it will result in a file
allocation table with 65,526 clusters in it, with each cluster taking up 32 kiB
of disk space. The large cluster size will indeed result in a great deal of
wasted space on the disk in most cases. Therefore, often it will be
recommended that FAT32 be used on this volume, which will result in the
cluster size being knocked down from 32 kiB to 4 kiB. This will, in fact,
reduce slack on the disk by an enormous amount, often close to 90%, and
potentially free hundreds of megabytes of previously wasted disk space. It is
usually the right thing to do in this situation.

However, there is another side to this; you don't get this reduced cluster size
for free. Since each cluster is smaller, there have to be more of them to cover
the same amount of disk. So instead of 65,526 clusters, we will now have
524,208. Further more, the FAT entries in FAT32 are 32 bits wide (4 bytes),
as opposed to FAT16's 16-bit entries (2 bytes each). The end result is that
the size of the FAT is 16 times larger for FAT32 than it is for FAT16! The
following table summarizes:

FAT Type FAT16 FAT32

Cluster Size 32 kiB 4 kiB

Number of
FAT Entries

65,526 524,208

Size of FAT ~ 128 kiB ~ 2 MiB

Still worse, if we increase the size of the FAT32 volume from 2 GiB in size to 8
GiB, the size of the FAT increases from around 2 MiB to a rather hefty 8 MiB.
The significance of this is not the fact that the FAT32 volume will have to
waste several megabytes of space on the disk to hold the FAT (after all, it is
saving far more space than that by reducing slack a great deal). The real
problem is that the FAT is referred to a lot during normal use of the disk,
since it holds all the cluster pointers for every file in the volume. Having the
FAT greatly increase in size can negatively impact system speed.

mehedi hasan
mehedi@joinme.com

641

Virtually every system employs disk caching to hold in memory disk
structures that are frequently accessed, like the FAT. The disk cache employs
part of main memory to hold disk information that is needed regularly, to
save having to read it from the disk each time (which is very slow compared
to the memory). When the FAT is small, like the 128 kiB FAT used for FAT16,
the entire FAT can be held in memory easily, and any time we need to look up
something in the FAT it is there at our "fingertips". When the table increases
in size to 8 MiB for example, the system is forced to choose between two
unsavory alternatives: either use up a large amount of memory to hold the
FAT, or don't hold it in memory.

For this reason, it is important to limit the size of the file allocation table to a
reasonably-sized number. In fact, in most cases it is a matter of finding a
balance between cluster size and FAT size. A good illustration of this is the
cluster size selections made by FAT32 itself. Since FAT32 can handle around
268 million maximum clusters, the 4 kiB cluster size is technically able to
support a disk volume 1 TiB (1,024 GiB) in size. The little problem here is that
the FAT size would be astronomical--over 1 GB! (268 million times 4 bytes
per entry).

For this reason, FAT32 only uses 4 kiB clusters for volumes up to 8 GiB in
size, and then quickly "upshifts" to larger clusters, as this table shows:

Cluster
Size

"Minimum"
Partition Size (GiB)

"Maximum"
Partition Size (GiB)

4 kiB 0.5 8

8 kiB 8 16

16 kiB 16 32

32 kiB 32 !?

Note: I am not really sure what the maximum partition size is for a FAT32
partition. :^) I have heard various different numbers, but nobody seems to
be able to produce an authoritative answer. "Officially" it is 2,048 GiB (2 TiB),
but there are likely to be other limiting factors...

As you can see, despite the claims that FAT32 would solve large cluster
problems for a long time, it really hasn't. As soon as you hit 32 GiB partitions,
you are back to the dreaded 32 kiB clusters we all knew and hated in FAT16.
Obviously 32 GiB is a lot better than having this happen at 1 GiB, of course,
but still, FAT32 is more of a temporary work-around than a permanent
solution. When FAT32 was first introduced, many people said "Yeah, but 32
GiB is huge. I'll probably never have a disk that large and if I do, I won't care
about a little wasted disk space!" In fact, it took less than five years for hard
disk makers to move from selling 1 to 2 GB hard disks, to selling ones 32 GB
in size or more! And those same people are finding they do care about the
wasted disk space, though perhaps less than they did when they only had 1
GB. :^)

mehedi hasan
mehedi@joinme.com

642

The table below is a little exercise I did for fun, to show the size of the FAT (in
MiB) as the partition size increases, for various cluster sizes. You can see why
FAT32 doesn't stick with 4 kiB clusters for very long--if it did, you'd need
enormous amounts of memory just to hold the table. (A 60 GB partition, if
formatted with 4 kiB clusters, would result in a FAT that is 64 MiB in size,
which is about as much as the entire system memory in many newer PCs.)
The entries in bold show what FAT32 will choose for a partition of the given
size; by going up in cluster size Microsoft keeps the size of the FAT to no
more than about 8 MiB through partitions of size 64 GiB:

Partition
Size

4 kiB
Clusters

8 kiB
Clusters

16 kiB
Clusters

32 kiB
Clusters

8 GiB 8 MiB 4 MiB 2 MiB 1 MiB

16 GiB 16 MiB 8 MiB 4 MiB 2 MiB

32 GiB 32 MiB 16 MiB 8 MiB 4 MiB

64 GiB 64 MiB 32 MiB 16 MiB 8 MiB

2 TiB
(2,048 GiB)

-- 1,024 MiB 512 MiB 256 MiB

The last entry, 2 terabytes, is for fun, to show how laughable I find it when
people go on about 2 TiB hard disks "being supported by FAT32". Technically
they are, I guess, if you want to deal with a FAT that is 256 MiB in size and go
back to having 40% of your disk wasted by slack. We had better hope our
system memory goes up by a factor of 1,000 before our hard disks do again.
We also better hope that no other little "surprises" show up as disks get
larger: several did pop up when the 64 GiB barrier was reached, such as
difficulties with the FDISK program.

Really, what this page shows is that the FAT file system is stretched beyond
its limits even with FAT32. To get both good performance and disk space
efficiency for very large volumes requires a clean break with the past and the
use of a high performance file system like NTFS. I should make clear that I
am not recommending against the use of FAT32 on Windows 9x/ME systems.
With modern drives of 50 to 100 GB, FAT16 is just too impractical, with its 2
GiB partition limit. At the same time, I want to make sure that people realize
that FAT32 has its own limitations. It is really more of a kludge than a
permanent solution to the problems of large partitions and cluster-based file
allocation.

Next: Using Partitioning with Hard Disks Over 2 GB

Using Partitioning with Hard Disks Over 2 GB

While partitioning can be somewhat complicated, there is one aspect to it that
is pretty clear-cut: if you have a hard disk that is over 2 GB in size, and you
are not using FAT32, you must divide the disk into partitions such that each is

mehedi hasan
mehedi@joinme.com

643

no larger than 2 GB, in order to access the entire disk. If you do not, you will
not be able to access more than the first 2 GB on the disk.

This was a big issue for the users of the first Windows 95 version, which did
not have FAT32. In some cases a system would ship with say, a 6 GB hard
disk, and it would be necessary to split it into at least three partitions due to
FAT32's 2 GB limit. Even in that case, you would end up with three partitions
with 32 kiB clusters, creating a lot of waste due to slack. To avoid this, many
people would segment a 6 GB disk into six or even more partitions, but this
introduces other issues, as described here.

With the introduction and widespread adoption of FAT32 in newer operating
systems, the problems with hard disks over 2 GB have been rendered largely
moot. If you are running Windows 95 OSR2, Windows 98 or Windows ME, you
should use FAT32, which will let you use the full size of a large hard disk in a
single partition. Of course, even with FAT32 you may want to use partitioning
to reduce lost space due to slack, as described on the next page. However,
the need is much reduced compared to using FAT16.

Next: Using Partitioning to Reduce Slack

Using Partitioning to Reduce Slack

Since slack is dependent on the cluster size used for the partition, and the
cluster size is directly linked to partition size, it is possible to dramatically
improve the storage efficiency of the hard disk simply by dividing it into
multiple partitions. The larger the current partitions are, and the more files on
the disk, the greater the opportunity for improvement. This applies both to
FAT16 and FAT32 partitions--on older systems that use FAT16 partitions for
volumes over 512 MiB, cluster sizes will be 16 kiB or 32 kiB, and slack will be
significant, and the same goes for FAT32 partitions that are 16 GiB or more.

Let's take the example of a 2 GB disk (usually called a 2.1 GB disk by hard
disk manufacturers, since they talk in decimal gigabytes). Let's say that we
have 24,000 files on our disk and each has an average amount of slack
amounting to 60% of a cluster. Now consider various partitioning
alternatives; we can either keep the disk in one piece or break it into smaller
pieces. Here is the impact on (approximate) slack space:

FAT16
Cluster
Size

Size of
Each
Partition

Number
of
Partitions

Typical Total
Slack (All
Partitions)

Typical
Total Slack
(% of Disk
Space)

2 kiB 128 MiB 16 28 MiB 1.4%

4 kiB 256 MiB 8 56 MiB 2.8%

8 kiB 512 MiB 4 112 MiB 5.6%

16 kiB 1 GiB 2 225 MiB 11.2%

mehedi hasan
mehedi@joinme.com

644

32 kiB 2 GiB 1 450 MiB 22.5%

As you can see, putting a 2 GB disk in a single partition is inefficient; typically
20% or more of the disk is going to be wasted, and you can cut that basically
in half just by going to a pair of partitions. You can cut it much further by
dividing the disk further. In fact, the best solution might seem to be just
going to 128 MiB partitions, which drops slack down to a very small number.
There's only one problem with this: you have to use 16 partitions! Do you
really want your files spread over 16 disk volumes, from C: to R:? Most
people don't. (I cringe at the very thought. :^))

With a larger disk and FAT32, the example is not that much different, but the
slack depends entirely on how many more files you put on that larger disk. If
you put the same number of files on the larger disk using FAT32, slack (as a
percentage of disk space) decreases dramatically; if you put many more files
on the larger partitions then you "give back" some of the slack savings,
though of course you are still ahead of where you would have been using
FAT16. Which of these is most appropriate depends on how you are using
your system. In many cases, the large hard disks available today are used to
hold big files, such as video and audio, that were rarely seen on older PCs. In
other applications, a bigger disk just means many more small files.

Let's look at an example where have, say, a mythical 64 GiB (68.7 GB) hard
disk and 96,000 files on it. Here, I am looking at a disk 32 times the size of
the previous example, but have only increased the number of files by a factor
of four. This means slack, as a percentage, will be lower even for partitions of
the same cluster size. Here's how this looks under FAT32, assuming the same
60% end cluster waste:

FAT32
Cluster
Size

Size of
Each
Partition

Number
of
Partitions

Typical Total
Slack (All
Partitions)

Typical
Total Slack
(% of Disk
Space)

4 kiB 8 GiB 8 225 MiB 0.35%

8 kiB 16 GiB 4 450 MB 0.7%

16 kiB 32 GiB 2 900 MB 1.4%

32 kiB 64 GiB 1 1,800 MB 2.8%

As you can see, the total amount of slack, in bytes, is higher, because we
have more files. However, the percentage of total disk space used up in slack
is much lower because the disk is so much bigger--that's the advantage of
FAT32. As before, when you increase the cluster size, you end up with bigger
partitions, and more slack. 32 kiB clusters means four times as much slack as
8 kiB clusters. However, with the total slack still so low--2.8%--and with the
huge size of the disk being contemplated (64 GB) the entire matter is of
arguable importance. On a 2 GB disk, 450 MB is a big deal; on a 64 GB disk,
1.8 GB really is not, at least to most people. While most people wouldn't put

mehedi hasan
mehedi@joinme.com

645

an entire 64 GB hard disk in one partition (there are other reasons to avoid
doing this, not just slack), it just isn't the big deal it used to be.

The examples above show that there is a tradeoff between saving slack and
causing your disk to be broken into a large number of small pieces. Which
option makes the most sense for you depends entirely on what you are doing
with your disk, and on your personal preferences. I cannot stand having my
disk chopped into little bits; on an older (FAT16) system I usually use 8 kiB or
16 kiB cluster-size partitions and sacrifice some more storage for the sake of
what I consider "order". Others prefer the use of more, smaller partitions. You
should also bear in mind the space tradeoff in using multiple partitions,
something the "partitioning fanatics" (my pet name for people that like to
chop a 1 GB disk into eight 128 MB partitions) often don't realize.

On a FAT32 system with a large hard disk, I usually go with partitions no
more than 16 GiB, sticking to 16 kiB clusters. The difference between 8 kiB
and 16 kiB clusters is not significant enough to warrant all the volumes
needed to divide a very large disk into 8 GiB units, in my estimation. On some
disks, such as backup volumes or ones where I will be storing large
multimedia files, I will use 32 kiB clusters and very large volumes. This is an
example of tailoring one's partition size and cluster size to the type of data
being stored on the partition. If the files being put on the volume are very
big, the cluster size becomes essentially irrelevant.

Next: Partition Size Tradeoff: Slack Waste and "End of Volume" Space
Waste

Partition Size Tradeoff: Slack Waste and "End of Volume" Space
Waste

One sensible way to combat the large amount of wasted slack space that
results from the use of large cluster sizes, is to split larger hard disks into
multiple smaller partitions. I discussed this in some detail here. Using
partitioning to reduce slack is pretty much a necessity if your operating
system does not support FAT32, and with very large hard disks it is also
commonly done even with FAT32, to keep cluster sizes to a reasonable level
and ensure reasonably efficient utilization of the hard disk.

Unfortunately, there are some people who don't understand the concept
called "too much of a good thing". They tend to go overboard and chop their
hard disks into ridiculous numbers of tiny partitions, thinking that they are
maximizing their use of disk space this way. The ironic thing is that, in
addition to making life confusing for themselves (was that file on F:? Or was it
I:?) they end up not saving nearly as much space as they thought they
would. The reason is that the smaller a disk volume is, the larger a
percentage of it has to be left empty in order to avoid the possibility of
running out of disk space. Running out of disk space can lead to data loss,
and letting a hard disk get close to the point where it is running out of space
can result in increased fragmentation and performance degradation if you are
doing a lot of work on the disk. I call space that is reserved to ensure that
volumes don't run out of space end of volume space.

mehedi hasan
mehedi@joinme.com

646

Generally speaking, most people have a "comfort zone" regarding how little
disk space they feel comfortable with having on a disk. If the amount of free
space gets below this amount, they will tend to want to find something to
delete, or if they are able to, get more storage. The problem is that if you
have oodles of tiny partitions, it is very easy to run out of space on one while
having another half empty. This situation is far more common when chopping
up partitions under FAT16, because if you have a hard disk that needs
partitioning for efficiency under FAT32, it's pretty large. But at the same time,
FAT32 systems tend to have much larger files overall too.

Let's suppose that our comfort factor for free space at the end of a volume is
20 MiB. (For me, this is way too low. I get nervous if a regular volume ever
gets below about 50 MiB, and now that I am using much bigger disks and files
I really like to have 500 MiB free if at all possible!) Now, let's re-examine the
same 2 GiB disk with 24,000 files that we looked at in the discussion of
partitioning, only this time also looking at the end of volume space, assuming
20 MiB per partition for this:

Cluster
Size

Size of
Each
Partition

Number
of
Partitions

Typical
Total
Slack (All
Partitions)

Total
End of
Volume
Space

Sum of Slack
and End of
Volume
Space

2 kiB 128 MiB 16 28 MiB 320 MiB 336 MiB

4 kiB 256 MiB 8 56 MiB 160 MiB 216 MiB

8 kiB 512 MiB 4 112 MiB 80 MiB 192 MiB

16 kiB 1 GiB 2 225 MiB 40 MiB 265 MiB

32 kiB 2 GiB 1 450 MiB 20 MiB 470 MiB

The answer to the question of efficiency isn't so clear-cut now, is it? I mean,
the 32 kiB cluster size option is still ridiculous, but really, so is the 2 kiB
cluster size option. Even if you use 8 partitions with 4 kiB clusters, you'll be
wasting a lot of space at the end of each volume. In a FAT32 system with a
large hard disk you have the same general issue, but it's less of a concern,
because each partition is so much larger. If you have a 64 GiB hard disk and
chop it into eight 8 GiB partitions then you will need to "save space" at the
end of each partition, but each partition is pretty big. Then again, if you are
using these partitions to store much larger files than you did under FAT16
(which often happens) then you are back in the same place again anyway.

The matter of "end of volume" space is one reason why I personally believe in
not using excessive numbers of partitions. The other is simply that I get tired
of always trying to figure out where my stuff is when I have to look through 8
or 10 partitions for it. I think fewer partitions keep the disk better organized
than more partitions do.

Next: Do More Partitions Keep the Disk "Organized"?

mehedi hasan
mehedi@joinme.com

647

Do More Partitions Keep the Disk "Organized"?

One argument that I commonly hear for over-partitioning is that using large
numbers of partitions helps to "keep the disk organized". For example, some
people say "I'd rather have eight different partitions so I can put my code on
one, applications on another, games on a third, and so on, and keep
everything separated". Seems to make sense, except it really doesn't, at least
in my opinion. :^)

The reason is simple: anything you can organize with separate partitions and
drive letters, you can better organize with top-level directory names. Contrast
the two schemes outlined in the table below:

File Type
Multiple Partition
Scheme

Single Partition
Scheme

System
Utilities

C: C:\UTIL

Office
Applications

D: C:\OFFICE

Games E: C:\GAMES

Customer
Data

F: C:\DATA

Images G: C:\IMAGES

Sound Files H: C:\SOUNDS

Anything you can do with separate letters, you can do just by using the
directory structure. In fact, isn't "C:\IMAGES" a lot more descriptive than
"G:", which has no inherently different meaning than "H:" or any other letter?
(Well, I guess "I:" would work for "images", but that doesn't help much for
your sound files.)

And the funny thing is, this isn't even the best reason to avoid using many
partitions. Neither is the reduced end-of-volume space, though that is a factor
too. The best reason is flexibility. If you have your 20 GB disk in eight 2.5 GB
partitions, each devoted to a specific purpose, what do you do when, say,
your games partition fills up? If you're like most people, you find the partition
that is the most empty, and put your "overflow" games into it, say your sound
files partition. Then say you start doing a lot of sound editing; you may then
put some sound files into the images partition. The end result of all of this is
that your tidy system is totally screwed up and you will have a hard time
finding anything, because you won't know which games are in which partition,
etc. I know that this happens because I've had it happen myself. :^) Sure,
you can alleviate this to some extent by resizing partitions. But since hyper-
partitioning isn't really buying you anything anyway, why bother in the first
place?

mehedi hasan
mehedi@joinme.com

648

So overall, from an organizational and flexibility standpoint, I think you are
generally better off with a single large partition, or at most two or three if the
hard disk is really large. I think the only reason to use multiple partitions at
all is for performance reasons, including some of the other issues I discuss on
the next page. This is why I generally use only a few partitions, even if I have
to give up a bit of slack space as a result.

Next: Special-Purpose Partitions and Other Partitioning Issues

Special-Purpose Partitions and Other Partitioning Issues

There are some circumstances in which you will want to set up partitions that
are smaller in size than usual, or where you might want to dedicate a
partition to a specific use, or ensure that it occupies a particular place on the
disk. Here are some of the issues you may want to take into account when
considering how to partition your disks, aside from the frequently-discussed
matter of slack:

• Partition Placement: Most hard disks use zoned bit recording, which
means they hold more data per track at the outermost edge of the
disk than they do at the innermost edge. As a result, the outer tracks
tend to deliver better performance than the inner tracks do. Since the
outer tracks are used first, this means that the first partition on a
physical disk volume will be slightly faster than subsequent ones. If
you have certain files that require higher performance than others,
placing them in a partition at the beginning of the disk is preferred.

• Dedicated Partitions: Notwithstanding my long argument against
splitting the disk into many partitions where each is for one type of
file, there are special situations where it may make sense to dedicate a
partition to one use. The most common case where a partition is
dedicated to a specific use is for the virtual memory swap file for a
multitasking operating system. This file is very important since it is
used often for certain types of heavy processing, and being able to
control the exact properties and location of the partition that it uses
can be advantageous. Then again, this is really an optimization, and of
less importance in newer systems than older ones.

• Cluster Sizes for Special-Purpose Partitions: Again, having
specific partitions for certain types of files can cost you flexibility, but
in some cases it can make sense. If you are doing a lot of work with
large multimedia files, you may want to intentionally bump up the
cluster size to a larger value, or at the very least, not worry about
making the partition small in order to avoid large cluster sizes. There
is less overhead when using larger clusters--doing a sequential read of
a 10 MB file on a volume that uses 32 kiB clusters means 319 "next
cluster" lookups in the FAT. Reading this entire file on a volume with 2
kiB clusters increases this to 5,119 lookups. Another issue is that since
every cluster is a contiguous block on the disk, having a larger cluster
size means a greater percentage of the file is in continuous blocks--
less fragmentation. This means better performance for long sequential
accesses. Frequent defragmentation of a disk with smaller clusters will
mitigate this effect, but using larger clusters is easier.

mehedi hasan
mehedi@joinme.com

649

• File System Utility Performance: With modern large hard disks,
enormous partitions are possible under FAT32. Partitions with tens of
gigabytes and hundreds of thousands of files can take a very long time
to process by disk scanning utilities, defragmenters and the like. Using
smaller partitions cuts down on the time required to perform these
tasks. If you have some data that changes frequently, and other data
that is mostly static, separating them onto different partitions may
make sense, since you can defragment the static files less frequently.

The points above mean that the ideal place in many cases for the swap file
under Windows, for example, is in a dedicated partition at the start of the
second disk in a two-disk system, and this is what I have set up myself in the
past. On one of my PCs, I had two disks of approximately the same size and
speed, and the swap file was arranged to take up the entire contents of the
first partition of my second hard disk, about 63 MiB. I used Partition Magic to
set this partition's cluster size to 32 kiB, even though a partition of this size
would normally only use 2 kiB clusters. See here for more on swap file
optimization.

Today, I don't generally bother with such minor optimizations. All PC
hardware is much faster than it was, and I don't really see much need to
optimize to this degree. On a system with a single hard disk and a modern
operating system, you may be better off to just leave the swap file on the C:
drive, especially if you defragment regularly. Modern defragmenters will
optimize the swap file in a special way, moving it to the start of the partition
where transfer performance is the best. Of course, you can still use a
dedicated swap file partition if you want to, and some people still like to do
this.

Next: Partition Type Conversion

Partition Type Conversion

Under certain circumstances, you may want--or even need--to change a
partition from one file system type to another. The most common type of
partition conversion is from FAT16 to FAT32, as PC users upgrade to newer
operating systems like Windows 98 or Windows ME. I discuss conversion
between FAT partitions here, on this page. In some situations you may also
need to convert from FAT to NTFS, which I cover in the NTFS section.
Conversions between FAT and other types of partitions are also possible, but
are usually handled using special utilities or tools within the operating system
used by the target file system.

There are two usual reasons for converting a partition from FAT16 to FAT32.
The first, and most common, is to take advantage of the slack reduction and
other features associated with FAT32. For example, converting a 2 GiB FAT16
partition to FAT32 will result in cluster size being reduced from 32 kiB to 4
kiB, and most of the slack on the partition being eliminated. The other reason
is to allow a partition to be expanded in size after upgrading to a newer hard
disk. If you have a 2 GB FAT16 and copy it to an 8 GB drive in a system that
supports FAT32, you can resize the partition to 8 GB using a partition

mehedi hasan
mehedi@joinme.com

650

management program, but the partition must be converted to FAT32 first,
since FAT16's maximum partition size is 2 GB.

To convert a partition from FAT16 to FAT32, you can either use a third-party
partition management utility (which also provides many other partition-
related features as described here) or the built-in facilities provided within
certain versions of Windows. The Windows partition utility is "free" (not really
free, but you don't pay extra for it) and accessed from the Start menu by
going to Programs, then selecting Accessories and then System Tools. You'll
see an entry for "Drive Converter". The process may take some time, and is
non-destructive, meaning that your data will not be lost in the process. (Be
sure to read the warning below, however!)

Note: The Drive Converter utility is not provided with Windows 95 OSR2,
even though that operating system supports FAT32. The stated reason is that
OEM SR2 is supposed to be only for OEMs and new hardware, and OSR2
wasn't intended for upgrading existing systems. Of course, millions of people
upgraded to OSR2 anyway. In that case, a partition management program
would be necessary to do the partition conversion.

The drawback to the Microsoft Drive Converter is that it has significant
limitations associated with it. First, it is a one-way road: you can convert from
FAT16 to FAT32, but not back again. Furthermore, doing this removes the
ability to "uninstall" Windows 98/ME if it was an upgrade install. Neither of
these are usually an issue for most users, but if you require the ability to go
from FAT32 to FAT16, you can again use one of the partition management
programs I just mentioned. If you are planning on any advanced partition
work, such as resizing or moving the partition after converting it, you'll need
one of these tools anyway.

Warning: All partition modification activities carry with them some risk of
data loss, especially if power is interrupted during the process. Always back
up your important data before doing a partition conversion. Avoid doing
conversions if you are experiencing power instabilities, or if violent weather is
in the vicinity. If at all possible, use an uninterruptible power supply when
undertaking this sort of task.

Next: Drive Letter Assignment and Choosing Primary vs. Logical
Partitions

Drive Letter Assignment and Choosing Primary vs. Logical Partitions

Most people know that disk volumes using the DOS or Windows operating
systems are accessed using drive letters, such as C:, D: and so on. However,
it can be a bit confusing trying to figure out how these letters are determined!
Of course, as you use more disks (and other devices) and more partitions,
this can get even more difficult to understand. A common confusion
encountered by someone upgrading a PC is adding a hard disk to it and
finding that suddenly some their files have moved from D:, say, to E:. This

mehedi hasan
mehedi@joinme.com

651

happens because the operating system assigns drive letters using a specific
sequence when the PC is booted. Drive letters are not permanently assigned
to the drive, so adding new hard disk volumes can interrupt the previous
order the next time the machine is started.

Drive letters A: and B: are reserved for floppy disks. The first disk, as
determined by the physical and/or BIOS configuration of the drives is A:, and
the second disk is B:. Even if there is only one floppy disk in the system, B: is
still reserved for use by floppies--some other removable drives may be able
to use it, but it cannot be assigned to hard disk volumes.

Hard disks are lettered starting from C:, with each partition getting a
separate letter. It is essential to realize that the system will first assign a
letter to all primary partitions on all hard disks in the system, before it will
assign any letters to any logical volumes (in extended partitions) on any hard
disk. This is the primary reason why adding a hard disk to an existing system
can cause drive letters to shift. (To understand the difference between
primary partitions and logical volumes, see here).

Let's take an example system that contains a single 1.2 GB hard disk broken
into three partitions. The first partition is the primary, and then an extended
partition is defined containing the other two partitions as logical volumes. The
primary partition will be C:, and the other two D: and E:. Now let's say we
add a second hard disk that has two partitions itself, one primary and the
other logical (extended). When the system is booted up with the new hard
disk in it, the first hard disk's primary partition will still be C:, but the primary
partition in the second hard disk will grab D:. Then the extended partitions
will be assigned letters. The result is that the logical partitions on the first
hard disk will have their letters shift:

Partition Before After

Hard Disk 1:
Primary
Partition

C: C:

Hard Disk 1:
Logical
Partitions

D:, E: E:, F:

Hard Disk 2:
Primary
Partition

-- D:

Hard Disk 2:
Logical
Partitions

-- G:

Having drive letters change is not only confusing, it can cause programs to
malfunction, because many applications record what disk and directory they
are in and expect that they will remain stationary (which stinks, but hey,
that's life.) The rise in importance of the Windows registry has made this

mehedi hasan
mehedi@joinme.com

652

situation even worse, since programs routinely record pointers to files,
including drive letters, in the registry.

There is one relatively simple way to avoid having this letter-shifting happen:
don't create a primary partition on any hard disks in the system other than
the first one. It is perfectly legal to only create an extended partition on a
hard disk, and put all of the partitions in it. The only place that a primary
partition is absolutely needed is on the first hard disk, because it is required
to boot the operating system. You cannot normally boot from an extended
partition volume anyway (although some motherboards may let you).

Note: One other minor consideration is that you lose a small amount of disk
space if you create only extended partitions on a disk. The extended partition
will begin using (logical) cylinder 1 of the disk, and therefore you lose the
space in cylinder 0. This will generally cost you a handful of megabytes of
storage, but is pretty much unavoidable if you want your partitions in a
sensible order.

In the example above, if our second hard disk had its two partitions both
defined as logicals, then they would have been assigned F: and G:, and the
partitions on the first disk would have been unchanged. This is in fact the way
you will normally want to partition second and third hard disks in a system.
What if you are adding a hard disk from another system that has already
been set up with a primary partition? Unless you don't care about the second
hard disk's primary partition being assigned D:, you have to delete the
primary partition (after copying any data from it of course!) and expand the
size of the extended partition to take its place. For a job of this sort, a utility
like Partition Magic is indispensable: it can convert a primary partition into a
logical volume. Otherwise you will basically have to wipe the second disk
clean and start over.

Once all of the hard disk partitions have been assigned drive letters, the
system will allocate letters for other devices that are operated using drivers.
Devices like CD-ROM drives, DVD units, Zip drives, etc. are operated through
software drivers that present the device to the operating system as if they
were a disk, and then they are assigned a drive letter so they can be
accessed. Normally, these devices are assigned a letter immediately after the
last one used by hard disks, but their assignments can be changed by using
different parameters for the driver software. For example, the drive letter for
a CD-ROM drive under Windows can be set in software using the Device
Manager. You cannot do this for hard disks under Windows 9x/ME.

Finally, some software programs can change drive letters. A very common
example is the use of disk compression agents such as DriveSpace. These will
often take a hard disk, say D:, change its letter to something out of the way
like R:, create a compressed volume on R:, and then map the compressed
volume back to D:. The net result is that the disk is compressed while
appearing to still be uncompressed.

Next: Disk Partitioning and Formatting Programs

mehedi hasan
mehedi@joinme.com

653

Disk Partitioning and Formatting Programs

Every operating system ships with a set of utilities for partitioning and
formatting all types of disks, including hard disks, floppy disks and removable
media as well. The basic tools used for operating systems that use the FAT
family of file systems have not changed much in the last decade. If you are
using DOS, Windows 3.x or Windows 9x/ME, you will be using pretty much
the same set of utilities. These programs allow you to set up partitions and
make them ready for use, though their capabilities are generally rather
limited.

Over the last several years, many third-party tools (meaning, applications not
part of DOS or Windows and not written by Microsoft) have appeared on the
market. These programs expand upon the restricted functionality in the
standard DOS/Windows and allow for powerful manipulation of hard disk
partitions. They are essential for those of us who frequently upgrade or
troubleshoot PCs. Once you have one, you'll wonder how you ever did without
it (though that is true of so many things in the PC world, isn't it? :^))

This section takes a look at both built-in "standard" utilities, and third-party
tools, which are related to partitioning and formatting hard disks and other
media. This includes a look at the FDISK, FORMAT and SYS commands built
into DOS/Windows, and a discussion of third party tools that create, delete,
rearrange and convert partitions, copy partitions, or create disk images for
copying or backup purposes.

Note: You may also want to refer to this procedure for step-by-step
instructions for partitioning and formatting an empty hard disk.

Warning: All hard disk partitioning and formatting utilities work with the disk
at an intimate level. There is always a chance of data loss when using these
programs. As always, performing a complete backup before changing your
system is prudent. If you are careful, in most cases you will have no
problems, but especially if you are attempting to change existing disk
structures that contain data, there is a slight risk of problems. In particular,
loss of power during sensitive disk operations can leave a disk volume in an
unusable state. Using a UPS is a very good idea; they are so cheap today that
any serious PC user should strongly consider running with a UPS all the time
anyway. If you don't have one, try to borrow one while doing partitioning
work (which is not something you're likely to do very often.). If you can't,
then at the very least, don't do the obviously silly (say, trying to resize all of
your hard disk's partitions during a big thunderstorm... :^))

Next: FDISK

mehedi hasan
mehedi@joinme.com

654

FDISK

Every operating system comes with an appropriate utility for partitioning hard
disks. The program used on most PCs is the one supplied with DOS and
consumer versions of Windows (Windows 9x/ME). It is called FDISK, which
stands for "fixed disk", an older term for hard disk. FDISK is used only for
partitioning FAT family file systems (FAT12/FAT16/VFAT/FAT32), and allows
you to perform the following functions:

• Create Partitions: FDISK allows you to create a primary partition or
logical volumes. To create a logical volume you must of course first
create an extended DOS partition, since the logicals are contained
within the extended partition.

• Set Active Partition: You can use FDISK to set the primary partition
on your boot disk active, so that it can boot. It's quite silly that FDISK
doesn't do this automatically when you create the boot primary
partition (since there can only be one enabled primary DOS partition
anyway), but in fact you must do this manually in many cases. (At
least FDISK warns you when no disk is set active, via a message at the
bottom of the screen.)

• Delete Partitions: FDISK will let you delete partitions as well. This is
the only way to change the size of a partition in FDISK: delete the old
one and create a new one with the new size. If you want to change the
size of the primary DOS partition using FDISK you must delete every
FAT partition on the disk and start over... This is one reason why third-
party partitioning programs have been so successful.

• Display Partition Information: The last basic option that FDISK
gives is to display the partition information for the system. It will first
show the primary and extended partitions and then ask you if you
want to see the logical drives within the extended partition. In fact, if
you want to see this information, you can just do "FDISK /STATUS"
from a DOS command line or Windows DOS box. This will show you
the partition information without actually taking you into FDISK, and
therefore, you run no risk of accidentally doing something you'll wish
you hadn't.

Some important points that you should keep in mind when using FDISK:

• Be Careful: With just a few keystrokes, FDISK can wipe out part or all
of your hard disk. Generally speaking, don't use FDISK unless you
need to, and make sure you understand what you are doing before
you begin.

• Run It From DOS: Windows 9x allows you to run FDISK direct from
the graphical user interface, and even use it while other applications
are open and running. Since FDISK alters critical disk structures at a
very low level, running it while files are open and other applications
are using the disk is asking for trouble. To be safe, always exit to DOS
("Restart the computer in MS-DOS mode") before using FDISK (except
for using "FDISK /STATUS", will work safely from within a DOS box, as
mentioned above).

• FAT32 Support: The version of FDISK that comes with newer
versions of Windows supports the creation of partitions that use the

mehedi hasan
mehedi@joinme.com

655

FAT32 enhanced file system for larger volumes. Some genius at
Microsoft, however, decided not to call it FAT32 within this program.
Instead, when you run FDISK on a system that has FAT32 support,
and a hard disk over 512 MB (the minimum for using FAT32), you will
receive a message asking you if you want to "enable large disk
support". If you answer "Y" then any new partitions created in that
session will be FAT32 partitions. If you accidentally hit "N" or don't
understand the question, FAT32 will be disabled (which routinely
causes confusion on the part of many newer PC users...)

Tip: It is often useful to include FDISK as one of the programs on a bootable
floppy. This way you can use it when setting up new hard disks.

Introductory page to the Windows 9x FDISK program, displayed when FAT32
is supported. Be sure to change the "N" to "Y" before proceeding!

Considering how important it is, FDISK is a rather primitive program. It
works, but it's cryptic and hard to use. Anything you can do in FDISK you can
do more flexibly and easily using a third-party program like Partition Magic.
FDISK will not allow you to select or change cluster sizes, resize partitions,
move partitions, etc. FDISK's primary advantage is, of course, that it is free
(well, built-in anyway).

There is one other option for FDISK, which is undocumented--Microsoft
doesn't tell you about it, and it doesn't even show up if you type "FDISK /?".
This is the "/MBR" option. If you run "FDISK /MBR", FDISK will rewrite the
code in the master boot record (MBR), while leaving the partitions intact. This
can be useful for eliminating some types of viruses that infect the master boot
record. However (and there's always a however, isn't there?) it can also cause
problems in some situations. For example, some viruses encrypt certain disk
structures, and if you run FDISK /MBR you may have a more difficult time

mehedi hasan
mehedi@joinme.com

656

recovering from the infection. As always, backups are prudent (but don't
overwrite ones created prior to the virus in such an instance!)

Warning: Be careful before using the FDISK /MBR command. It is a good
idea to do this only if it is specifically recommended for fixing a particular
virus or other problem.

Finally, note that Windows NT and Windows 2000 don't use FDISK. They
make use of a program called Disk Administrator to handle disk setup tasks.
In essence, this is an enhanced version of FDISK that allows you not only to
manipulate partitions, but also access some of NT's unique disk management
features. For example, you can set up software RAID using the Disk
Administrator. See the section on NTFS for more details.

Next: FORMAT

FORMAT

The well-known FORMAT command is used, of course, to format hard disks
and floppy disks. Many people don't realize that this command functions quite
differently for hard disks and floppy disks. As described here, there are two
steps to formatting: low-level formatting and high-level formatting. For floppy
disks, FORMAT does both low-level formatting and high-level formatting. For
hard disks, it only does high-level formatting. The reason for this difference is
that for hard disks, partitioning must be done in between the two steps.
Modern hard disks are low-level formatted at the factory; they are then
partitioned and high-level formatted by the user (or system builder).

There are many different parameters that the FORMAT command can use;
these can be seen by typing "FORMAT /?" at a DOS command line. Most of
these commands are used for specifying different formatting options for
different types of floppy disks. An important parameter is the "/S" flag, which
tells FORMAT to make the volume it is formatting ready for booting. This is
done by creating the proper disk structures for booting, and copying the
operating system files to the root directory of the new volume. In most cases
today, you do not need to use any of the optional flags associated with the
FORMAT command; it will "figure out" what it needs to do by examining your
hardware. Even the "/S" flag is not needed for newer operating systems,
which take care of all the operating system file setup for you.

There's one FORMAT command parameter that bears special mention. This is
the undocumented "/Z" switch, which allows you to specify a particular cluster
size for a partition as you format it, overriding the defaults that are
established by the system based on the size of the partition (see here for a
table of standard cluster sizes for FAT16 based on partition size, and here for
FAT32.) For example, if you have a 12 GiB partition, the normal cluster size
would be 16 sectors, or 8 kiB. If you format such a partition with the
command "FORMAT /Z:8" then it will format it with eight-sector, 4 kiB
clusters instead. While this can be useful in some circumstances, be sure to

mehedi hasan
mehedi@joinme.com

657

read the warning below carefully before using this option: it is undocumented
for a reason.

Warning: While the "/Z" switch has become increasingly popular amongst
those that like to tweak their systems, I do not recommend the use of this
switch. In theory, it should allow you to create a large partition with small
cluster sizes, or a small partition with large clusters. The problem is that this
switch creates non-standard partitions that can cause problems with some
software that isn't expecting them. In the example given above, the file
allocation table would have twice as many entries as normal for a FAT32
partition. There have been problems reported with programs "breaking" when
attempting to use partitions that have been modified using the "/Z"
parameter to make small clusters, because the programs can't handle the
increased numbers of clusters in the partition. If you really care about getting
smaller cluster sizes that much, just break the disk into more partitions.
Using "/Z" to increase the cluster size should work, but again, it's a minor
performance tweak and should be approached with caution.

Next: SYS

SYS

The operating system files that allow a hard disk to be booted are normally
placed at the front of the disk at the time that the boot volume is high-level
formatted, using the FORMAT command with the /S parameter. It is also
possible, however, to "convert" an existing disk so that it is bootable, by
using the SYS command. SYS copies the operating system files from the
volume that the system was booted with (hard disk or floppy) to the target
volume. SYS is, essentially, the "/S" parameter of the FORMAT command,
without the rest of the FORMAT command itself--it only moves the system
files, and doesn't erase the target disk. Note that it only copies the very basic
startup files, either for DOS or the DOS that underlies Windows. It will not
copy an entire Windows installation, for example!

Today, SYS is rarely used for hard disks. Its most common use is to create
bootable floppy disks from non-bootable floppy disks. It is also sometimes
used to upgrade DOS versions on hard disks of older machines; you boot the
floppy of the new DOS version and then SYS the new operating system files
to the hard disk. Again, modern operating systems take care of this sort of
work internally, and don't require this sort of manual operation.

Tip: You can make a bootable floppy from within Windows as well, so you
don't really need SYS for this either. Just open the Control Panel, double-click
"Add/Remove Programs" and then click the "Startup Disk" tab for
instructions.

mehedi hasan
mehedi@joinme.com

658

Next: Partition Management Utilities (Partition Magic, etc.)

Partition Management Utilities (Partition Magic, etc.)

Microsoft provides basic utilities that let you partition and format hard disks
for use with their operating systems. These include FDISK, which creates and
deletes partitions, and FORMAT, which allows you to format a hard disk to
ready it for use. These programs are functional, but rather crude. They let a
"typical user" do the basics, but nothing else. If you are someone who tinkers
with hard disks a great deal, or works with many systems, you will quickly
discover that the tools built into DOS and Windows are inadequate for doing
many things you will need and want to do.

To fill this gap, several companies have created third-party partition
management utilities, which can do everything that FDISK and FORMAT can
do, and a lot more as well. The most famous of these is the Partition Magic
program, which is produced by PowerQuest. There are also other programs
that compete with Partition Magic, though PM is the leader in this segment of
the market. (Quarterdeck used to have a program called Partition-It that was
similar, but Quarterdeck was swallowed up by Symantec and the Partition-It
product seems to have disappeared.)

Main screen of Partition Magic 5.0, with a pull-down menu
open to show some of the operations that the program offers.

mehedi hasan
mehedi@joinme.com

659

In addition to the mundane--letting you see the partitions on each of your
hard disks, partitioning and formatting disk volumes, assigning labels and so
on--partition management utilities typically include the following features:

• Non-Destructive Partition Manipulation: You can shrink, expand or
move partitions without losing the data on them. This is the primary
claim of fame of Partition Magic and programs like it, because this
addresses a major weakness of Microsoft's FDISK: it does not allow
you to change partitions in any way.

• Partition Copying: You can copy a partition from one hard disk to
another. This is very useful for those upgrading systems.

• File System Conversion: If your system supports FAT32, you can
convert disks of the appropriate size from FAT16 to FAT32, or vice-
versa. You can also convert from FAT16 or FAT32 to NTFS, or vice-
versa, on newer versions. This conversion is also non-destructive.

• Cluster Resizing: You can change the cluster size of an existing
partition, again, non-destructively.

• Other: Depending on the software and its specific version, you can
also do things like setting up a boot manager for multiple operating
systems, creating rescue disks, and so on.

As you can see, this software provides you with a host of capabilities; you
probably knew just from reading that list if this type of program is right for
you. A typical PC user who buys a retail PC, uses it for a few years and buys a
new one, doesn't need this kind of software. For the hobbyist, homebuilder,
upgrader or system administrator, it's hard to do without...

Warning: An important caveat about partitioning utilities: some of their
operations can take a fair bit of time. This applies particularly to tasks such as
resizing partitions or changing cluster sizes. During the time that this work is
taking place, your hard disk is vulnerable to data loss in the event of a
hardware or power failure. It is highly recommended that you back up your
data before working on your partitions; when I am doing this sort of work, I
try to make sure the PC is plugged into a UPS, just in case. (This is also true
of using FDISK and in fact any software that works intimately with the hard
disk, but since FDISK is normally used when the disk is empty, there isn't the
same concern about data loss.)

Warning: Some companies that produce hard disk controllers, such as
Promise (the maker of the popular Promise Ultra series of IDE/ATA hard disk
controllers) have publicly made warnings that third-party partitioning and
formatting utilities should not be used on drives connected to their hardware.
Frankly, I have never seen a reasonable explanation for why this should be a
problem, and I know that many people do use Partition Magic and other
similar programs on such drives with no problems. I suspect that this
exclusion exists primarily to let Promise "cover themselves" in the event of
bugs in third-party software, or problems that arise due to software they have
not tested. So, I provide this warning so you know their position, and you can
decide for yourself what you want to do. Be aware that due to this statement,
they will probably not be of much help if you encounter problems with their

mehedi hasan
mehedi@joinme.com

660

hardware after using third-party software.

Next: Partition Copying Utilities (Drive Copy, etc.)

Partition Copying Utilities (Drive Copy, etc.)

One of the major weaknesses of the Microsoft operating systems is the lack of
a reliable, efficient mechanism for copying the entire contents of a hard disk
volume from one disk to another. This is an essential requirement for those
who are upgrading to a new hard disk, or perhaps replacing a disk that is in
the process of failing. Back in the "good old days" of DOS, it was possible to
just copy an entire disk volume file-by-file, using a simple utility. If you did
this correctly, there was every reason to expect that the new disk would
function properly. Today, however, with long file names, the use of swap files
and the Windows registry, it is no longer possible to safely copy a partition
from one disk to another file-by-file. I discuss the problems with this in my
article entitled Xcopy Xposed. You can copy data files one at a time, but to
properly move an entire operating system installation from one hard disk to
another, you must copy the entire partition sector by sector, at a low level.

One way to accomplish this task is to use a third-party partitioning program
such as Partition Magic. However, such a utility is rather expensive, and if you
are just doing a one-time hard disk upgrade, you don't really need all the
facilities it provides. Instead, you can purchase a partition copying utility,
such as the Drive Copy product by PowerQuest (the makers of Partition
Magic). This program is basically Partition Magic greatly stripped down in
capability. It will let you make a sector-by-sector copy of one or more hard
disk partitions from one hard disk to another. It also automatically resizes
partitions if the source and target hard disks are of different sizes. With the
reduced capabilities comes a reduced price, of course, which is how this
product can co-exist with its "big brother", Partition Magic, in the utility
software market.

These copying utilities are fairly simple, and pretty easy to use. Most of the
warnings that relate to partitioning utilities don't really apply to these
programs, as they don't generally change any existing data, just copy it to a
new location. The only caveat I would give about something like Drive Copy is
this: make sure you really need it before you make your purchase. Many hard
disk manufacturers now include a program with their hard disks that will do
what Drive Copy does--they include it as a courtesy to their customers. It
may be more limited, but it might just do the job for you and save you a few
dollars over buying another piece of software.

Note: You can also use drive imaging utilities to copy partitions, though this
is generally going to be less efficient due to it being a two-step process: you
must create the image on one disk, and then restore it on the other.

Next: Drive Imaging Utilities (Drive Image, Norton Ghost, etc.)

mehedi hasan
mehedi@joinme.com

661

Drive Imaging Utilities (Drive Image, Norton Ghost, etc.)

System builders and administrators--people who create and deploy many PCs,
typically in a business or corporate setting--often have a need for special
tools to do particular tasks related to hard disk setup. Imagine that you have
purchased 100 new PCs for your office, and licensed 100 copies of each of the
appropriate pieces of software to be installed on them. Normally, you would
have to install the operating system and each application individually onto
each machine. This is boring, repetitive work that would take hundreds of
hours to do manually.

A better approach is to do the following instead. Install the operating system
and applications on one PC, and thoroughly test the installation. When that
system is verified to be working, create an image of the partition on that PC.
Copy the partition to each of the other 99 systems, and then create a new
partition from the image on each local PC. This would still take many hours to
do, but would take only a fraction of the time required for 100 separate
manual system setups.

The power of this sort of automation is such that several different drive
imaging utilities have been created over the years to enable administrators to
do exactly what I described. The program lets you "capture" a partition and
save it as a simple file. The file can be moved to other PCs, using a removable
storage device, network, or even the Internet. On the other PC it can be
restored into a proper partition. Two of the most common imaging utilities are
Drive Image by PowerQuest, and Ghost, which was purchased from a smaller
developer by Symantec several years ago and included in the Norton line of
disk utilities.

As I mentioned in the page on disk copying utilities, programs such as Drive
Copy are basically "stripped down" versions of full-featured third-party
partitioning programs like Partition Magic. In a similar way, drive imaging
programs are "subsets" of full partitioning programs, but include the ability to
save the partition as an image file, which Partition Magic doesn't allow. These
utilities also usually include built-in compression, which allows the target
image file to be made smaller than the partition it contains, to save disk
space and transfer time when the file is copied.

While imaging programs were developed primarily for large-scale systems
deployment, they have also found a niche as a backup product. While most
conventional backup software concentrates on copying the files on a hard disk
one by one, disk imaging utilities can be used to backup an entire hard disk
partition, as a whole. I use Drive Image as part of my own backup strategy.
In addition to regularly backing up files that have changed, I periodically take
an image of my entire hard disk and store it on an external drive. The
advantage of this is that if I ever have a hard disk crash, I can replace the
disk and rebuild the partition from the stored image file. Everything will be
exactly as it was when I made the image. (In fact, I had an opportunity to
test this when I had a disk go south on my notebook in 2000.)

Note: You can use a drive imaging program to copy a partition from one disk
to another. Just create an image file on one disk and then restore it to the

mehedi hasan
mehedi@joinme.com

662

second. However, if you only require this copying ability, you may be better
off just using a disk copying utility. You may save some money as well, since
disk copying utilities are generally cheaper than imaging programs.

Next: Disk Compression

Disk Compression

There's nothing quite as alluring as the thought of getting something for
nothing. If you don't believe me, well, then tell me why lotteries are so
successful? :^) In the PC world overclocking has become all the rage of late,
promising to let folks run their PCs faster at little additional cost. In the
storage world, the enticement comes in the form of a technique that lets you
store up to twice as much data in the same amount of hard disk space. Sound
good? :^) Well, it does to many others as well, and this is why disk
compression has been a popular technology for many years.

There are actually many different types of disk compression. It is possible to
compress individual files or directories on a hard disk, or even compress an
entire disk volume. Today, hard disks are so cheap and so large that
compression has become much less of an issue than it once was--few people
need to bother compressing a disk volume when you can get a 40 GB hard
disk for so little money! However, we are still only a few years removed from
the time when PCs had hard disks one hundred times smaller than this. In the
1990s, many PC users needed disk compression just to allow them enough
room for the latest operating system, and for their applications and data files.
You may still encounter PCs with compressed volumes on them, especially if
you maintain a number of PCs in an environment that includes older
hardware.

Even though volume-based compression is not used much any more,
compression itself remains widely used. Compression not only saves disk
space, it can help you organize and archive older files that you don't use
regularly. It has also become a standard for allowing the easy downloading of
large numbers of files from the Internet. Compression allows them to be
packed into a single file that takes less time to transmit than if the files were
sent in their regular format.

In this section I talk about disk compression in detail. First, I discuss why disk
compression works, describing its fundamental concepts of operation. I then
talk about the different types of compressions that are commonly found in the
PC world. I then describe volume compression, how it works and what
products exist to implement. I then explain file-based compression. Several
pages follow that describe how to use compression to reduce slack on FAT16
partitions, how to adjust the compression level in volume compression
products, and memory and reliability issues associated with volume based
compression.

mehedi hasan
mehedi@joinme.com

663

Note: The NTFS file system includes compression as part of the operating
system. See here for a description of this NTFS feature.

Next: Why Disk Compression Works

Why Disk Compression Works

Disk compression takes advantage of (at least) two characteristics of most
files. First is the fact that most files have a large amount of redundant
information, with patterns that tend to repeat. By using "placeholders" that
are smaller than the pattern they represent, the size of the file can be
reduced.

For example, let's take the sentence "In fact, there are many theories to
explain the origin of man.". If you look closely, you will see that the string "
the" (space plus "the") appears in this sentence three times. Compression
software can replace this string with a token, for example "#", and store the
phrase as "In fact,#re are many#ories to explain# origin of man.". Then,
they reverse-translate the "#" back to " the" when the file is read back.
Further, they can replace the string " man" with "$" and reduce the sentence
to "In fact,#re are$y#ories to explain# origin of$.". Just replacing those two
patterns reduces the size of the sentence by 24%, and this is just a simple
example of what full compression algorithms can do, working with a large
number of patterns and rules.

The other characteristic of many files that disk compression makes use of is
the fact that while each character in a file takes up one byte, most characters
don't require the full byte to store them. Each byte can hold one of 256
different values, but if you have a text file, there will be very long sequences
containing only letters, numbers, and punctuation. Compression agents use
special formulas to pack information like text so that it makes full use of the
256 values that each byte can hold.

The combination of these two effects results in text files often being
compressed by a factor of 2 to 1 or even 3 to 1. Data files can often be
compressed even more: take a look at some spreadsheet or database files
and you will find long sequences of blanks and zeros, sometimes hundreds or
thousands in a row. These files can often be compressed 5 to 1, 10 to 1 or
even more.

Finally, compression is also useful in battling slack. If you have 1,000 files on
a hard disk that uses 16,384 byte clusters, and each of these files is 500
bytes in size, you are using 16 MB of disk space to store less than 500 KB of
data. The reason is that each file must be allocated a full cluster, and only
500 of the 16,384 bytes actually has any data--the rest is slack (97%!) If you
put all of those files into a compressed file like a ZIP file, not only will they
probably be reduced in size greatly, but the ZIP file will have a maximum of
16,383 bytes of slack by itself, resulting in a large amount of saved disk
space. The advanced features of DriveSpace 3 volume compression will in fact
reduce slack even if file compression isn't enabled.

mehedi hasan
mehedi@joinme.com

664

Next: Compression Types

mehedi hasan
mehedi@joinme.com

665

Compression Types

There are several different ways that files can be compressed on the hard
disk, in terms of the logical mechanisms for performing the compression and
decompression. (There are also many different compression algorithms that
can be used to perform the compression, but the details of how the
compression is actually done are hidden entirely from the user.) Which of
these methods you choose depends entirely on the nature of the system you
are using, and your compression needs of course.

The most common compression methods used on PCs are as follows:

• Utility-Based File Compression: A very popular form of disk
compression, used by virtually every PC user whether they realize it or
not, is file-by-file compression using a compression utility. With this
type of compression, a specific utility program is used to compress one
or more files into a compressed file (often called an archive), and is
also used to decompress the compressed file (in some cases two
complementary programs are used). The operating system knows
nothing about the compression; to it the compressed file is just
another file. In order to use the compressed file at all, it must be
decompressed. The most popular compression system of this sort is
the wildly popular PKZIP package, and its derivatives such as WinZip.
Virtually all software or large files that you download from the Internet
for example, use some form of this compression.

• Operating System File Compression: While not supported by the
FAT file system used by DOS and most versions of Windows, some
operating systems support the compression of files on an individual
basis within the operating system itself. For example, Windows NT and
Windows 2000 support this feature when you use the NTFS file
system. This is in many ways the best type of compression, because it
is both automatic (decompression is done by the operating system
when the file is needed by any program) and it allows full control over
which types of files are compressed. See here for more on NTFS
compression.

• Volume Compression: This option is distinctly different from
compressing individual files. Using the appropriate operating system, it
is also possible to create entire disk volumes that are compressed.
This has traditionally been done either through utilities provided with
the operating system, or through third-party packages. Volume
compression allows you to save disk space without having to
individually compress files to use them. Every file that is copied to the
compressed volume is automatically compressed, and each file is
automatically decompressed when any software program needs it.
Volume compression is transparent to the use and generally works well
on most PCs. As mentioned in the introduction to this section, it is not
used much on newer machines any more, because disks today are so
large and cheap.

Of these types of compression, utility-based file compression is the most
commonly used. It is relatively straight-forward; you use a program to create
a compressed file and another to look at it. From the operating system's

mehedi hasan
mehedi@joinme.com

666

perspective, the compressed files and the utilities that use it are just like any
other files and programs on the disk, no different than say, a word processor
and a word processing document file. Newer utilities and operating systems
can actually let you access the files contained within compressed files without
decompressing them! See this page for more on file-based compression
products.

Volume compression, on the other hand, is less commonly used today,
though it was once quite popular. It has more complicating factors involved in
its usage. In particular, there are performance considerations and safety and
compatibility issues that need to be carefully weighed before using volume
compression. Several other pages in this section also discuss various features
of volume compression.

Next: File Compression Products

File Compression Products

Over the last several years, volume compression has taken a nose-dive in
popularity. At the same time, however, file-based compression has increased
in popularity dramatically. The reason that these two technologies have
"passed in the night" is simple: the last five years have seen hard disks
dramatically drop in terms of price per megabyte, making volume
compression much less important. The same time period, however, has seen
the rise of file-sharing and distribution using both conventional media and the
Internet. File-based compression is an essential component in the easy
transmission of files over the Internet, because it allows blocks of files to be
both packaged into a single unit, and to be sent more quickly over relatively
slow networking technologies, like analog modem dial-up.

There are many different file compression technologies in existence, each of
which compresses files in a slightly different way. And for each of these
compression algorithms, there are many specific software products that can
be used to compress or decompress. I'm not going to even attempt to
delineate all the different products that exist, but will instead explain this
software in general terms, focusing on what is most commonly used in the PC
world.

The most popular family of compression products, by far, is the one based on
the ZIP format, first widely implemented in the PKZIP and PKUNZIP
shareware utilities created by PKWARE, Inc. If you have been using
computers since the dark days of DOS, you probably recall using these two
programs at one point or another. The ZIP format is, today, pretty much the
standard for distributing files over the Internet; programs using this format
usually have a ".ZIP" file extension.

With the rise of Windows, PKZIP and PKUNZIP have fallen out of favor, since
they use that scary old DOS command line interface. :^) (I still use them, but
then I like using old software. :^)) As Windows has become popular, many
Windows programs have entered the market that can let you zip or unzip files
using a graphical interface. The most popular of these is probably WinZip,

mehedi hasan
mehedi@joinme.com

667

though there are literally dozens of products that can access the contents of
ZIP files now. While ZIP files are the ones you will most often encounter, you
may occasionally run into other compressed files, using formats such as ARJ
or RAR. Other compression formats may require the use of a special utility
program, though many of the programs that can handle ZIP files can also
read these alternative formats.

One final class of file compression product bears special mention. Some
utilities are now on the market that integrate ZIP file support directly into the
operating system. When such a utility is installed and activated, ZIP files are
turned into special Windows folders, and the files within them can be
accessed directly without requiring explicit decompression. You can even save
files from an application to the interior of a ZIP file, or run a program from
within a ZIP file! I use a utility called ZipMagic (originally produced by Mijenix,
which was bought by OnTrack Data International a few years back) that gives
me this functionality, and I consider it a life saver. I have it set up so that
with a special keystroke I can change all my system's ZIP files into folders,
and I can turn it off when I want them to be seen as regular ".ZIP" files again.
You can also easily compress a regular folder (directory) by changing it into a
compressed "ZIP folder". Very useful stuff, and the closest thing to NTFS's file
compression that you can get under the consumer Windows versions.

By the end of the 1990s, ZIP file support was becoming pretty much a
necessity. One of the first things most people who set up new systems would
do is attempt to download an updated driver or other files, and find that they
were packed into ZIP files. So, one of the most common "first installs" in a
new PC was a program like WinZip. Recognizing this, Microsoft began to add
ZIP file support to Windows. First, it was placed into the "Plus!" add-on for
Windows 98. Later, it was incorporated directly into Windows ME. To enable
this support you must install or enable the "Compressed Folders" feature
within the operating system. Doing this will allow you to access the contents
of ZIP files in a format similar to how the Windows Explorer shows regular
files. I have not used this feature myself, but it appears to be similar to the
way that utilities like ZipMagic function.

Note: There seems to be some dispute as to how closely this integrated
product matches what ZipMagic does; some users have said that the
Microsoft feature does allow ZIP files to be used like regular folders in a way
that is the same as ZipMagic, while others have said that ZipMagic is more
full-featured than Microsoft's "Compressed Folders". For their part, OnTrack
maintains that ZipMagic provides several features that Microsoft never
implemented, and therefore that ZipMagic is still a useful purchase under
Windows ME. As usual, your mileage may vary; you should decide for yourself
if what ME includes is good enough, based on your needs and wants.
(Although it does seem clear that the advanced archive management facilities
built into ZipMagic were not implemented by Microsoft.)

Next: Volume Compression Products

Volume Compression Products

mehedi hasan
mehedi@joinme.com

668

Volume compression is no longer nearly as popular as it was in the 1990s.
Back then, there were two main products on the market that were frequently
used for volume compression in DOS and Windows. You may still run into
these if you are maintaining older systems. The first is DriveSpace (formerly
called DoubleSpace), which is a Microsoft product that comes in various
versions and with various versions of DOS and Windows. The second is
Stacker, which is (or was) a product of Stac Electronics, which is now called
Previo. I don't plan to get into a lengthy review of the two products because
that is really beyond the scope of what I am trying to do here. Both do a good
job of providing compressed volumes, and each has some advantages and
disadvantages compared to the other.

I personally prefer the use of Microsoft's DriveSpace 3 product, for Windows
95 or Windows 98, or the older DriveSpace 2 product for MS-DOS 6.22 (which
is what you use if you are running Windows 3.x). This is not to disparage
Stacker; in fact I have read in the past that Stacker was a very good product
and in many ways better than DriveSpace. I just feel more comfortable with
DriveSpace because I have used it more, and because due to the dangers of
using compression, I prefer having the compression software and operating
system vendor be the same. I felt, at the time that I made my selection, that
I would be able to rely on the compression being supported fully by the
operating system since they were made and tested by the same company.
(Well, that's the theory anyway. With Microsoft, you never know. ;^))

It should be noted that the older (DOS-based) DriveSpace 2 product is limited
in its functionality compared to DriveSpace 3 and the latest version of
Stacker. It only supports compressed volumes up to 512 MB, and that's the
compressed volume size. If you want to compress a 1 GB host drive you have
to split it into three or four compressed volumes. It also offers far fewer
options to let you tailor how the compression is managed on the drive, and
suffers from lower performance as well. DriveSpace 3 is a far superior
product, but is supported only for Windows 95 or Windows 98.

It's important to realize that volume compression really is out of favor today,
and this is reflected in the status of volume compression products here in the
21st century. Recognizing that their product was on its way to obsolescence,
Stac Electronics stopped producing and supporting Stacker a long time ago;
in fact, they aren't even Stac Electronics any more! As for Microsoft, they
have been doing their usual "steering" maneuver, where they try to
encourage people to stop using older technologies that they don't want to
deal with any more. They decided not to implement DriveSpace support for
FAT32 disk volumes, which all but eliminated it as a viable option for modern
large drives. (In their defense, it isn't really necessary if you have a big hard
disk anyway.) The "final straw" came when Microsoft removed support
entirely for compressed disk volumes under Windows ME. If you want to keep
using DriveSpace volumes on hard disks, you have to stick with Windows 95
or Windows 98.

Next: Volume Compression Operation

Volume Compression Operation

mehedi hasan
mehedi@joinme.com

669

Disk volume compression works by setting up a virtual volume on your hard
disk. In essence, a software-driven volume is created on the system and
special drivers used to make this volume appear to be a physical hard disk.
This isn't really that radical a concept, since many devices use software
drivers to allow them to appear to the system under a drive letter.

When you decide to create a compressed volume on your disk, here is what
the software that is creating it actually does, in approximate terms:

1. The software asks you which real disk partition you want to use to hold
the compressed volume. This is sometimes called the host volume or
host partition. It will also ask you whether you want to compress the
existing data on that volume (if any), or instead use the current empty
space on the volume to create a new compressed volume from.

2. The target disk volume is prepared for compression by scanning it for
logical file structure errors such as lost clusters and also for errors
reading the sectors on the disk. If the disk is highly fragmented, it
may need to be defragmented as well, since the compressed volume
must be in a contiguous block on the disk.

3. A special file on the hard disk is created, called a compressed volume
file or CVF. This file is what contains the compressed volume. If you
are creating a compressed volume from empty space, the CVF is
written directly onto the hard disk and prepared with the correct
internal structures for operation. If you are creating a compressed
volume from an existing disk with files on it, the software may not
have enough free space to create the full CVF. It will instead create a
smaller one, move some files into it from the disk being compressed,
and then use the space that these files were using to increase the size
of the CVF to hold more files. This continues until the full disk is
compressed. This operation can take a very long time because of all
the operations required. The more full the disk, the longer it will take,
of course. :^)

4. The CVF is hidden from view by the user, through the use of special
file attributes. Special drivers are installed that will make the CVF
appear as a new logical disk volume the next time the system is
rebooted. This is sometimes called "mounting" the CVF, in analogy to
the physical act of mounting a physical disk.

When you are using compression, then, what you see as a compressed
volume is really just a giant file on a real hard disk. In some cases, you will
be able to use both disks. For example, when I used to set up older systems
with, say, 340 MB hard disks, I would often split the disk by creating a
compressed drive called D: from say, 150 MB of space from C:. So then C:
would have 190 MB free and a 150 MB compressed volume file. The
compression drivers will create a logical D: volume from the 150 MB CVF. D:
would typically be able to hold somewhere between 200 MB and 300 MB
itself, depending on the compression ratio of the files.

Another option generally provided by the compression software is the ability
to "substitute" the compressed volume in place of the host volume it is made
from. This is normally done if you are creating a CVF that takes up an entire
disk partition. Let's suppose you have a 540 MB hard disk that is partitioned

mehedi hasan
mehedi@joinme.com

670

into a 300 MB C: and a 240 MB D:, and you want to compress the entire D:.
What the software will normally do after it creates the CVF taking up all of D:
is to "map" the host D: drive to a much higher-up letter like H:, and then
make the CVF appear as D: in its place. This allows the seamless compression
of a hard disk while retaining its previous letter address.

Warning: I don't recommend doing this with the C: boot partition, even
though Microsoft's DOS DriveSpace program sometimes recommends this by
default. In my opinion it is better to create a separate compressed volume
and leave the boot volume C: alone, so that the system can be booted more
easily in the event of a problem with the compression.

Warning: If you delete the compressed volume file from the host drive,
guess what happens to your compressed volume? Poof. Don't do it. :^)

Next: Free Space and the Estimated and Actual Compression Ratios

Free Space and the Estimated and Actual Compression Ratios

One source of confusion in the use of compressed disk volumes relates to the
amount of free space reported on the drive. This can--and will--change in
sometimes unexpected ways as the compressed disk fills up, based on how
compressible the files placed on the volume are. Consider that the amount of
free space on a real disk volume is easily determined by examining how many
clusters are free in the file allocation table, and multiplying by the cluster
size. In contrast, with a compressed volume, we don't know how much space
is free until we know what will be put on the volume, because some files can
be compressed a great deal, and some not at all.

In fact, when you see a report of disk space free on a compressed volume,
what you are seeing is an estimate. Every compressed volume has a number
associated with it called its estimated compression ratio, which is what tells
the compressed volume driver how well you think the files on this volume are
going to be compressed. This number can be set on a volume-by-volume
basis, and should be estimated, ideally, from the actual compression ratio
that the volume is using with its current files. Because it makes their tools
look impressive, many compression utilities default this estimate to
something like 2:1, even though the average disk volume in my experience
will not compress at a figure that high. Usually 1.6 to 1.8 is more typical
(depending on the settings and of course, to a great deal on what is stored on
the drive).

Using the estimated compression ratio, the system will determine an
estimated amount of free space by multiplying the uncompressed free space
by the estimated ratio. This is what you see as "free space on the drive". If
you change the estimated compression ratio, the report of free disk space
changes as well; in reality, of course, you have not changed at all the
capacity of the compressed volume. You have just changed the current guess.
:^) As soon as you copy files to the compressed disk, they are compressed at

mehedi hasan
mehedi@joinme.com

671

whatever rate the compression software can manage for the type of file. A
huge text file could be compressed at 3:1; a ZIP file--which is already
compressed internally--will not compress at all. The amount of space these
real files takes up will vary, and so the amount of free space will change,
depending on what the files are.

OK, time for an example. :^) Let's suppose we have an empty 500 MB hard
disk that we want to compress. We run DriveSpace 3, say, and it sets up a
500 MB CVF on the host disk, and creates a new compressed drive called F:
for example. When we look at F:, we see 1000 MB free. Why? Because the
default is a 2:1 estimated compression ratio. This can be changed, of course.
For now, let's leave it at 2:1. Here's what the disk looks like:

Storage Used Space Free Space Total

Uncompressed
Total (Inside the
CVF)

0 MB 500 MB 500 MB

Compression
Ratio

-- 2:1 2:1

Compressed Total 0 MB 1000 MB 1000 MB

So we have 500 MB of "true" space on the host disk, in the CVF, and 1000 MB
of space in the compressed disk, assuming our 2:1 ratio. Now suppose we
copy to this empty disk a 100 MB file that cannot be compressed very much;
let's suppose it can only be compressed at a ratio of 1.25 to 1. This means we
will use up not 50 MB of real CVF space as we would expect from a file
compressible at 2:1, but rather 80 MB (100 divided by 1.25). Here's what the
disk will look like now:

Storage Used Space Free Space Total

Uncompressed
Total (Inside the
CVF)

80 MB 420 MB 500 MB

Compression
Ratio

1.25:1 2:1 1.88:1

Compressed
Total

100 MB 840 MB 940 MB

As you can see, the 500 MB total for the CVF always remains the same
(unless you resize the volume). But we have "lost" 60 MB from the
compressed volume; it now has 840 MB free instead of the 900 MB we would
expect after copying a 100 MB file to it. In reality, all that happened is that
we weren't able to compress the file at the 2:1 ratio we expected, so we lost
some of the "estimated" free space the driver had anticipated earlier.

mehedi hasan
mehedi@joinme.com

672

Now let's copy another file to the compressed disk, let's say a 180 MB
database file that will compress at a ratio of 4 to 1. (This is quite common
with large database files, believe it or not.) This file will take only 45 MB of
storage in the CVF, instead of the 90 MB that is "par" for a 2:1 volume. Here's
what will happen:

Storage Used Space Free Space Total

Uncompressed
Total (Inside the
CVF)

125 MB 375 MB 500 MB

Compression
Ratio

2.24:1 2:1 2.06:1

Compressed
Total

280 MB 750 MB 1030 MB

After storing this file our totals have increased, because it used much less
space than we "expected". In fact, our compressed volume is now "larger"
than when we started! While this is an extreme example, this shows why the
free space on a compressed disk tends to move around. The most common
situation is when someone sets up a 1000 MB compressed disk and starts
copying huge JPG image files to it. That person will become confused when he
or she cannot fit 1000 MB of JPGs onto such a compressed disk. The reason?
JPG files are already compressed and cannot be compressed further. As soon
as you copy about 500 MB of JPG files to a compressed volume of that size, it
will be full. (Most of the time in the computer world, there is no free lunch.
With compression you do get a free lunch, but you only get to eat it once! ;^)
)

Next: Slack Reduction Using Volume Compression

Slack Reduction Using Volume Compression

Slack is the space wasted due to unused storage at the end of the last cluster
used to store the data in each file. When a great number of files are stored on
a disk with a large cluster size, a lot of the disk is wasted due to this
overhead. To eliminate this inefficiency, many people use partitioning, for
example, to reduce the cluster size of each partition. Another common way
that slack is reduced is through the use of FAT32, which allows much smaller
clusters on large partitions.

Compression can also be used to reduce slack, in a couple of different ways.
The easiest and simplest way to do this is to simply archive infrequently used
files. If you have 1,000 files sitting around that you think you may need at
some point, but don't access regularly, stick them into a ZIP file. This will
automatically reduce the slack taken up by these files by a factor of over
99%, because slack is proportional to the number of files. One file takes up
much less slack than 1,000. Of course, this is not a very practical solution for

mehedi hasan
mehedi@joinme.com

673

files you use frequently, though tools like ZipMagic can make infrequent
access more convenient.

Volume compression can also be helpful for reducing slack in older systems
that cannot use FAT32. Volume compression tools like DriveSpace 3 can in
fact save space even when set not to compress any files at all, simply due to
slack space reduction. Internally, DriveSpace 3 compressed drives allocate
files on a sector-by-sector basis. This means that they have an effective
cluster size of 512 bytes, because they use an internal format that lets them
store more than one file in what would be a cluster on a regular drive.

Some people set up DriveSpace 3 volumes just to get this advantage. It can
be configured so that no files are actually compressed (for performance
reasons, to save on the overhead of decompression) but you still get the slack
reduction because of the slack reduction feature. You still have some of the
risks associated with using a compressed volume however, and also the loss
of some memory for the compressed volume driver, which has to operate
even if you set it to no compression (slack reduction only).

Next: Compression Level and Performance Considerations

Compression Level and Performance Considerations

Most advanced compression software will give you some control over how
much compression you want to use on the volume, and even let you select
certain types of files (based on their extension) not to try to compress. In
general, the more you try to compress the volume, the more you can cram
onto the disk, but the more advanced compression algorithms can result in
performance degradation because they work harder to squeeze the files more
so they can compress that little bit more. The degree of degradation depends
on several factors, but is especially dependent on the speed of the system
you are using. A slower processor can cause compression to result in a
serious performance hit, while a faster processor can in some cases make
compression improve performance.

Improve performance through compression? How is that possible? Let's
consider two copies of an identical 100 MB file; one copy is uncompressed
and the other is compressed 2:1 on a volume on the same hard disk. Suppose
we need to scan every byte of each of these files. We can read the
uncompressed file at a faster rate per byte because we don't have the
overhead of decompression. However, we have to read twice as many bytes
from the disk, because the file is taking up more space on the disk. The
compressed file is using only 50 MB of physical disk sectors, instead of 100
MB.

As you probably know, hard disk access is much slower than the processor,
memory, chipset and other system components. For this reason, removing
the need to read 50 MB of data from the disk can save more time than the
time required for the overhead of decompression! If you have a fast processor
that is spending a great deal of time waiting for data from the slow hard disk

mehedi hasan
mehedi@joinme.com

674

then you actually get a performance boost with some types of files by using
compression.

The essential factor is how fast the system is relative to the hard disk. If the
processor is fast and the hard disk slow, you will see this effect. If the
processor is slow and the hard disk fast, compression will cause a noticeable
slowdown. This is why I don't recommend compression on 486-class
machines (unless hard disk space is a severe problem), while I use it myself
for two of my partitions on my older Pentium-class machine. I usually notice
no slowdown in using these volumes.

There is "middle ground" as well in terms of the compression level. You can
usually choose how much compression to use on the volume, ranging from
high compression to none at all. Sometimes volumes are used with no
compression just to get the benefits of slack reduction that compression can
provide.

Finally, there are some types of files that just don't belong on compressed
disks. If you have a bunch of large ZIP files, don't put them on a compressed
volume, since there is no benefit--they are already compressed and so
volume compression will not help them at all. The same thing applies to most
multimedia files such as JPEG or GIF images--they have already been
compressed internally. Storing these files on compressed volumes will also
throw off your free space estimates because they will take up much more
space than a compressible file of the same size would.

Next: Memory Issues with Compression Drivers

Memory Issues with Compression Drivers

Compressed volumes only work with a compression driver, which must be
loaded before the compressed disk can be used. This driver is responsible for
"mounting" the compressed volumes and making them appear like regular
disk volumes to the operating system and the applications that run on it. This
normally occurs automatically when a system with compressed volumes
loads. While these drivers generally work pretty well, there can be some
issues with them. One is simply the fact that they can be rather large, and
can exacerbate conventional memory problems.

Normally, DriveSpace 2 (or DoubleSpace) is used for older DOS versions, and
DriveSpace 3 is used for Windows 9x. Under DOS, the DriveSpace 2 driver
can be loaded into an upper memory block to reduce conventional memory
usage, and this driver is not excessively large. Under Windows 9x, the
DriveSpace 3 driver is large, but the system provides protected mode
compression drivers that run in extended memory, so there isn't a problem
with conventional memory being used by the driver.

The real problem occurs when Windows 9x drops down to MS-DOS mode;
here the real-mode DriveSpace driver must be loaded to conventional
memory, and it is quite large (over 100 kB). This problem is a valid one and
cannot be eliminated. Good conventional memory management can reduce

mehedi hasan
mehedi@joinme.com

675

the problem, but cannot remove it completely; see here for tips on
conventional memory management under Windows 95. Of course, many
people today no longer run much of anything at all under straight DOS. For
those that do use DOS, however, this is another reason to consider skipping
disk compression, unless there is a pressing need for it.

Next: Compatibility and Reliability Issues in Volume Compression

Compatibility and Reliability Issues in Volume Compression

There are several reasons why compression isn't nearly as popular now as it
was in the past. One is simply the lack of necessity; with fast hard disks now
less than $10 per gigabyte and prices falling fast, there is much less of a need
to "stretch" the hard disk using compression. Another reason is related to
concerns over performance. But probably the biggest one is concerns over the
reliability and safety of disk compression.

Some of these concerns are valid, but in my opinion most have been
overblown. Mark Twain said that a lie could make it half way around the world
while the truth was still putting on its shoes. Truly a wise man, he foresaw the
creation of USEnet by a full century :^). Replace "lie" with "bad news" and
"truth" with "good news" and you have the situation in a nutshell. Whoops, I
digress. Must have spent too much time writing this hard disk chapter. :^) At
any rate, there are some valid concerns regarding compression which are
worth looking at, if only to give them some perspective.

First, regarding compatibility, in my experience you will find very few
problems. In fact, the biggest problems with programs running on
compressed disks have to do either with conventional memory difficulties due
to the compression driver, or reduced performance due to decompression
overhead, which can affect some software that needs high performance.
Virtually all regular programs see a compressed volume as just another disk,
and all modern utilities (written in the last few years anyway) will handle
compressed volumes just fine. Most software that is not meant for running on
compressed disks will tell you this in their instructions, and these are few and
far between.

Some software will not work properly on a compressed volume because it
cannot tolerate the potential delay in decompressing the data. This delay can
vary depending on how the files are compressed and other factors. Some
programs need real-time data streaming from the hard disk without
interruption. A CD-R recording utility would be a good example. This sort of
application (well, its data anyway) should be placed on an uncompressed
volume.

There is a greater chance of a catastrophic data loss when using compressed
volumes than uncompressed volumes. The reason is that there is an extra

mehedi hasan
mehedi@joinme.com

676

layer of software interpretation, and an extra layer of disk structures that can
potentially become damaged. Your entire compressed volume is stored in a
single real file, the CVF, and if that file should become damaged or
accidentally deleted, you could lose some or all of the files on the compressed
volume. In practice, the use of compression today is quite safe. There were in
fact some problems with reliability associated with early implementations of
the technology, but these have been ironed out quite well for the most part.

I will state that I have used compression, from DoubleSpace to DriveSpace to
DriveSpace 3, on several of my PCs for many years, and I have set up or
maintained several dozen PCs that have used one version or another. In all of
that time, I have never had any problems relating to the use of compression.
That said, I recognize the increased possibility of data errors resulting from
compression, which is why I follow these general guidelines in how I use it:

• Never Compress the Boot Drive: I do not set up PCs that have the
C: drive compressed. All of the sensitive disk structures and the
operating system are on this drive, and I think it prudent to leave
these uncompressed. This also allows the system to be bootable
without the compression driver, if this ever becomes necessary, and
also makes it easier to deal with virus problems, should they arise.

• Compress Applications, Not Data: I generally use compression for
items that can be easily recreated in the event of loss, such as
installed programs and especially games. I don't generally compress
data partitions. One of my PCs at home has the games partition
compressed. (I use an uncompressed partition for games requiring
faster performance.)

• Scan For Problems Regularly: The same utilities that are used to
scan for trouble on regular hard disks can be used to great effect on
compressed drives, and should be run regularly to minimize long-term
problems.

• Back Up Regularly: I harp on this a lot, and with good reason. In my
opinion you have little to fear from compression overall. If you back up
your hard disk every week and keep your sensitive data off your
compressed partitions, you have basically nothing to fear from it.

I believe that if used intelligently, compression is safe and has value, under
the correct circumstances. Of course, with hard disk sizes getting into the
gargantuan range and prices continuing to drop, I expect that compression
will soon be a thing of the past (but may become more popular in older PCs
with small disks, as these strain with trying to upgrade to newer and larger
software).

Next: New Technology File System (NTFS)

New Technology File System (NTFS)

The FAT family of file systems, including FAT12, FAT16 and FAT32, have been
the file systems underlying Microsoft operating systems since the first IBM
PCs in the early 1980s. Virtually everyone who has ever used a PC is familiar
with at least the basics of this venerable file system. On the whole, it does an

mehedi hasan
mehedi@joinme.com

677

adequate job of managing the files on a typical PC, especially for machines
that are not subjected to demanding use. For home PC users, and for the
typical PC in a small business, FAT is generally "good enough". I use it myself
every day, and have few complaints about it as a whole.

However, while FAT is acceptable for most uses, it is also a very old, limited
and relatively simplistic file system. It has few of the security, capacity and
reliability features that are needed by high-end users, and especially, servers
and workstations in a corporate networking environment. Recognizing that
FAT was not a worthy basis upon which to build its new Windows NT
operating system, Microsoft created the New Technology File System, or
NTFS. The goals behind NTFS were to provide a flexible, adaptable, high-
security and high-reliability file system, to help position Windows NT as a
"serious" operating system for business and corporate users.

In this section, I provide a fairly comprehensive description of the key
characteristics of the NTFS file system. I begin with an overview and history
of the NTFS file system, and a discussion of the different versions of NTFS. I
then describe NTFS's architecture and major structures, and explain how
directories and files are organized in NTFS. I then move on to discuss NTFS's
security and permissions system, and then several reliability and
management features associated with the file system. I then describe some of
the "additional" features associated with certain versions of NTFS, and
conclude with a discussion of various NTFS implementation issues.

I should point out that the structure of the subsections in this section roughly
parallel the structure of the file systems section as a whole. You may want to
read the pages discussing the FAT file system before you read about NTFS,
because this will provide you with some useful background. However, it isn't
strictly necessary.

Note: The NTFS file system is, in many ways, tied inextricably to the
Windows NT and Windows 2000 operating systems. It is hard to "draw the
line" between what exactly is a discussion of the file system specifically, and
what is the operating system as a whole. However, to the degree possible, I
have tried to do exactly that, as attempting to explain those operating
systems in detail is a task beyond the scope of this site. :^)

Next: Overview and History of NTFS

NTFS Versions

Like most file systems, NTFS has gone through some evolutions. Over time,
Microsoft has made changes to it, for many different reasons. These include
correcting problems with the file system, adding support for newer hardware,
and enabling new operating system features. The biggest change to NTFS
came with the introduction to the market of Windows 2000. NTFS changes
enable some of the most important features of that operating system.

mehedi hasan
mehedi@joinme.com

678

In this section I describe the two versions of NTFS that are commonly used on
PCs. I first talk about NTFS 1.1, which is also called NTFS 4.0 (since it is most
commonly used with Windows NT version 4.0). I then discuss the newest
NTFS version, NTFS 5.0, which is an integral part of Windows 2000. I
conclude with a brief discussion of compatibility between NTFS versions.

Note: The NTFS versions discussed here are used by almost all Windows NT
and Windows 2000 installations. Apparently, there was also an earlier version
of NTFS, called NTFS 1.0 or NTFS 3.1 (or so I believe), which was used on the
first version of Windows NT: Windows NT 3.1. I have been unable to find any
information about this version and how it differs from NTFS 1.1 / 4.0. Since
Windows NT 3.1 is not really widely used, I am limiting my coverage of that
older NTFS version to this note. :^) Still, if you know anything about this first
version of NTFS, and are willing to share that knowledge with me, I'd
appreciate it!

Next: NTFS 1.1 / 4.0

NTFS 1.1 / 4.0

The most widely-implemented version of the NTFS file system has two
different names. It is "officially" called NTFS version 1.1. However, it is also
commonly called NTFS 4.0, in reference to its use by the most popular
version of the operating system, Windows NT 4.0. NTFS 1.1 is also used
natively by the prior version of Windows NT, Windows NT 3.51. It is also
supported by several other operating systems, for compatibility purposes,
though generally only in "read only" mode. (See this comparison table for
more information.)

All of the fundametal characteristics and features explained in the other
sections in our coverage of NTFS are supported by NTFS 1.1. When people
talk about NTFS, they typically consider NTFS 1.1 to be the "default" version
of the file system. Reflecting this, I have not specifically identified each NTFS
feature as being supported by NTFS 1.1. Instead, I have labeled the few
features particular to NTFS 5.0 appropriately, so you can watch for these
notes if you want to be sure to identify where the differences in NTFS versions
are. Of course, the following page on NTFS 5.0 also lists the main changes
made in NTFS 5.0 as well.

Windows 2000 is designed specifically to use NTFS version 5.0. Because of
this requirement, and because Windows 2000 (and its successors) will likely
replace Windows NT over time, it seems likely that NTFS 1.1 will eventually
be relegated to a "background" role. However, the vast popularity of Windows
NT, and its millions of current installtions, mean that NTFS 1.1 partitions will
be around for a long time to come.

Next: NTFS 5.0

NTFS 5.0

mehedi hasan
mehedi@joinme.com

679

When Microsoft finally shipped its long-awaited new Windows NT operating
system, they surprised a few people by naming it not Windows NT 5.0, as had
been expected, but Windows 2000. However, the version of NTFS that
shipped with Windows 2000 provided a hint at the original name of the
operating system: NTFS 5.0. The fact that Microsoft created a new version of
the file system to go along with its new operating system demonstrates just
how important the NTFS file system is to Windows NT and Windows 2000.
Several of the new features in Windows 2000 actually depend on features
built into NTFS 5.0, such as the Active Directory service.

The following are the most important of the new features and capabilities that
were added to NTFS with version 5.0. Each has been linked to the page where
you can read about it in more detail:

• Reparse Points: Files and directories within the file system can have
actions associated with them, so that when the file system object is
accessed in a particular way, the action is carried out.

• Improved Security and Permissions: The mechanisms for
managing file system security and assigning permissions were
improved.

• Change Journals: Disk volumes can be set to keep track of all
operations performed on the files and directories they contain.

• Encryption: NTFS 5.0 allows you to encrypt files and automatically
decrypt them as they are read.

• Disk Quotas: Administrators can track how much disk space is being
used by users or groups of users, and even limit disk space use if
necessary.

• Sparse File Support: To save space on the disk, support was added
for the more efficient storage of sparse files, which are large files that
are mostly empty.

• Disk Defragmenter: Windows 2000 includes a disk defragmentation
program, where Windows NT did not. (Arguably, this is an operating
system feature of Windows 2000, and not a file system enhancement,
but I thought I'd mention it anyway, since it is obviously file system
related.)

Of course, this list isn't comprehensive; there were also some other, minor
improvements made in a variety of areas within the file system. This includes
fixing some bugs that existed in the older version of the file system, though
the new features undoubtedly mean that new ones were included as well. :^)
Even the items above represent a rather substantial set of enhancements to
what was already a very powerful file system. Of course, NTFS 5.0 also
supports all of the features included in older versions of the file system.

As I mentioned above, NTFS 5.0 is required by Windows 2000. In fact, if you
install Windows 2000 on top of Windows NT, Windows 2000 will convert any
older NTFS partitions to NTFS 5.0. For more on compatibility issues between
NTFS 5.0 and older versions of the file system, see the next page.

Next: NTFS Version Compatibility

mehedi hasan
mehedi@joinme.com

680

NTFS Version Compatibility

Microsoft's decision to greatly enhance the NTFS file system under Windows
2000 resulted in a number of new features that most users consider
advantageous. However, in creating the new 5.0 version of NTFS,
compatibility issues became a concern under some circumstances. In
particular, file system compatibility becomes an issue when mixing disk
volumes between systems that have different versions of Windows installed.
Multiple operating system PCs that have both Windows NT and Windows 2000
installed also may run into difficulties.

There are in fact several different compatibility issues here, which are related.
In no particular order:

• Windows 2000 Automatic Conversion: Windows 2000 will
automatically convert to NTFS 5.0 any NTFS 1.1 file systems it sees
when it boots. Even well after the operating system has been installed,
if you add an NTFS 1.1 partiton to a Windows 2000 system, it will be
converted to NTFS 5.0. This can cause problems, as mentioned above,
on systems that boot to both Windows NT and Windows 2000. In some
circumstances it may be better to avoid using NTFS under Windows
2000 to avoid this situation.

• Automatic Conversion of Removable Disks: Apparently, the
behavior above also applies to removable media that has been
formatted using the older versions of NTFS! This means that those
who move files between Windows NT and Windows 2000 machines
may need to pay attention to how they use their media. :^)

• Windows NT Compatibility with NTFS 5.0: In order for Windows
NT to be able to read or write NTFS 5.0 partitions, Service Pack #4
(SP4) or higher must be installed on the system. This patch contains a
new version of the NTFS.SYS driver file. However, even though this
gives Windows NT access to NTFS 5.0 partitions, the operating system
components needed to enable the new features in NTFS 5.0 are not
installed. This means that the new features described here do not
function under Windows NT, even with SP4 installed.

• Non-Microsoft Operating System Compatibility: As shown on this
cross-reference chart, certain non-Microsoft operating systems can
access both NTFS 1.1 and NTFS 5.0 partitions, in read-only fashion.
Being newer, NTFS 5.0 support generally requires a newer version or
build number than NTFS 1.1 support.

The PC Guide is not a site that focuses specifically on operating systems, so I
do not come even close to discussing all the nuances of Windows NT or
Windows 2000 installations. If you are going to be working extensively with
these operating systems, I would recommend that you consult more
comprehensive documentation on the operating systems, and in particular,
issues involved with file system installation and support. This applies even
more to those who will be setting up complex systems, such as those that
boot more than one operating system.

Next: NTFS Architecture and Structures

mehedi hasan
mehedi@joinme.com

681

NTFS Architecture and Structures

In order to achieve the many goals that Microsoft had for its new file system,
it was necessary to be very diligent in the way that NTFS was designed,
starting with the fundamentals. The term architecture is often used to refer to
the basic structures and concepts used to organize a complex system, be it a
file system, operating system, microprocessor or what have you. To ensure
that NTFS meets the needs of its many demanding users, it incorporates a
very specific set of structures and techniques.

In this section, I provide a description of the architecture of NTFS volumes,
and the key structures that make up an NTFS partition. This includes an
overview of NTFS architecture and an explanation of how NTFS uses certain
key file system structures to store information. I also discuss NTFS partition
size and cluster size considerations, and contrast these to the way FAT
partitions work.

Next: NTFS Architecture Overview

NTFS Architecture Overview

Most of the weaknesses of the FAT file system result directly from the rather
simplistic and outdated architecture it uses. No provisions were made in the
internal structures of FAT partitions to allow for security and reliability
features, making it very difficult to add such capabilities later on. In contrast,
NTFS has a special architecture that not only allows for these advanced
abilities, but also uses a simple conceptual scheme that makes it easier for
more features to be added in the future with a minimum of changes. (In fact,
this characteristic was employed when NTFS 5.0 came out with several new
options.)

The elegance of the NTFS architecture can be seen in how information is
stored in an NTFS partition. Virtually every structure in NTFS is a file,
including the structures used to manage the partition and maintain statistics
and control information about the partition itself. The control information is
stored in a set of special files that are created when an NTFS partition is first
created; these are called metadata files and include such items as lists of files
on the partition, volume information, cluster allocations, and so forth. One
exception to the "everything is a file" rule is the partition boot sector, which
precedes the metadata files on an NTFS partition and controls the most basic
of NTFS operations, such as loading the operating system.

The same simple conceptual model used for files and control structures is
extended to the internal level of files as well. Every file in an NTFS partition is
a collection of attributes; this even includes the data that the file contains,
which is just considered one of many attributes. Other attributes include

mehedi hasan
mehedi@joinme.com

682

items such as the file's name and size. This arrangement really a database-
like setup--the operating system view files as being objects with various
characteristics, and manages them accordingly. This makes it easy to manage
files and add attributes if needed in the future.

Internally, NTFS stores all files (including metadata files) using a cluster
system--each file is broken into clusters, each of which contain a binary
number of 512-byte sectors. On the surface, this is somewhat similar to how
FAT stores data, but the implementation of clusters in NTFS is somewhat
different. You can read more about clusters under NTFS here.

Next: NTFS Volume Boot Sector

NTFS Volume Boot Sector

When an NTFS partition is first created, the first block of information created
on the partition is the volume boot sector. This fundamental structure, which
is part of a very small block of NTFS management information that is not
stored within the master file table on an NTFS volume, is very much the
analog of the volume boot sector under the FAT file system. Like volume boot
sectors in FAT, the NTFS volume boot sector is sometimes called the partition
boot sector, volume boot record or other similar names.

Note: Despite the use of the word "sector" in the name of this structure, the
volume boot sector can in fact be up to 16 sectors (8 kiB) in length.

The NTFS volume boot sector begins in the first sector of the partition, and
consists of two different primary structures. Again, these are similar to the
structures in a FAT volume boot sector:

• BIOS Parameter Block: This is a block of data that contains
fundamental information about the volume itself. This block identifies
the volume as an NTFS partition, and includes such information as the
volume label and its size. In addition, NTFS provides for an extended
BIOS parameter block, which contains additional information about the
volume such as the location of the key metadata files.

• Volume Boot Code: This is a small block of program code that
instructs the system on how to load the operating system. With an
NTFS volume, this code will be specific to Windows NT or 2000,
whichever is installed on the system. It will generally load NTLDR, the
NT loader program, and then transfer control to it to load the rest of
the operating system. Note that this code is also present in the
partition as a system (metadata) file.

The volume boot code on a FAT file system partition is a favorite target of
virus writers, as changing this code can allow a virus to automatically load
whenever the system has started. The higher-security design of Windows NT
and 2000, however, makes it more difficult for viruses in the boot sector code

mehedi hasan
mehedi@joinme.com

683

to spread, due to the fact that the operating system maintains tighter control
over disk access routines once it has loaded. (Viruses are still possible on
Windows NT/2000 systems, of course.)

Next: NTFS System (Metadata) Files

mehedi hasan
mehedi@joinme.com

684

NTFS System (Metadata) Files

As I mentioned in the architectural overview, the NTFS file system stores
virtually all data, both user data and internal management data, in the form
of files. The most important of these are a set of special system files, which
are also called metadata files. The prefix "meta-" generally refers to
something "transcendent" or "beyond"--or merely self-referring. So
"metadata files" are files that contain data about data. And that's exactly
what these files do. They contain internal information (data) about the "real"
data stored on the NTFS volume.

These metadata files are created automatically by the system when an NTFS
volume is formatted, and are placed at the beginning of the partition. Now,
explaining how these files work is a bit complicated. :^) Understanding their
location in an NTFS volume requires that I mention another key structure, the
NTFS Master File Table (MFT). The MFT is actually one of these metadata files,
but it also contains descriptions of the other metadata files, and in some
cases entire other metadata files. Yes, it's a bit confusing. :^) Reading the
page on the MFT will help you understand how it works, but in a nutshell,
here's what happens: the MFT contains a record describing every file and
directory in an NTFS volume, and if the file is small enough, its actual
contents may be stored in the MFT itself. Since the metadata files are just
"files" to NTFS (albeit special ones), they too have records in the MFT. In fact,
the first 16 records of the MFT are reserved for metadata files.

Phew, sorry about that, but hey, I didn't design this thing. :^) Actually, the
system is hard to explain, but it is logically consistent, and does work well.
The table below provides the important information about the metadata files,
including their English names, file names, MFT record numbers and a brief
description of what each does:

Metadata
File Name

File
Name

MFT
Record

Description

Master
File Table
(MFT)

$MFT 0

This is the MFT itself. This seems to be a
bit of a chicken-and-egg problem--how can
a record in the MFT contain the MFT? :^) It
doesn't. This first MFT record contains
descriptive information about the MFT. This
is consistent with how NTFS works--since
the MFT itself is just "a file", so it also
needs a record in the MFT!

Master
File Table
2 (MFT2)
or Master
File Table
Mirror

$MFTMirr 1

This is a mirror of the first 16 records of
the real Master File Table. It is stored
either in the middle of the partition (for
Windows NT 3.5 and earlier) or the end of
the partition (for Windows NT 4.0 and
later). The mirror is a "backup" that is used
to ensure that the first few records of the
MFT, which of course describe the

mehedi hasan
mehedi@joinme.com

685

metadata files themselves, can be
accessed in case of a disk error on the
original MFT.

Log File $LogFile 2
The transaction logging file for the volume.
This is part of NTFS's file system
recoverability feature.

Volume
Descriptor

$Volume 3

Contains key information about the volume
(partition) itself, such as its name, NTFS
version, creation time, and so on. See the
complete list of NTFS file attributes for
more information.

Attribute
Definition
Table

$AttrDef 4

This table contains the names and
descriptions of the various types of NTFS
file attributes used on the volume. (It
doesn't contain the attributes themselves,
but rather descriptions of what the
attributes mean. Remember--metadata.)

Root
Directory
/ Folder

"."
(single
period)

5
This is a pointer to the root directory or
folder of the volume.

Cluster
Allocation
Bitmap

$Bitmap 6
Contains a "map" showing which clusters
on the volume are used and which are
available for use.

Volume
Boot Code

$Boot 7

This record contains a copy of the volume
boot code (or a pointer to it). The volume
boot code is also found in the volume boot
sector.

Bad
Cluster
File

$BadClus 8

A list of all clusters on the volume that
have been marked as "bad" (meaning, an
error was detected on the volume
somewhere in those clusters, so the file
system wants to be sure not to use them
again.)

Quota
Table

$Quota 9
Table containing quota information, if disk
quotas are being used on the volume. Only
used for NTFS 5.0 or later.

Upper
Case
Table

$UpCase 10

Table containing information for converting
file names to the Unicode (16-bit) file
naming system for international
compatibility.

mehedi hasan
mehedi@joinme.com

686

Note: Records 11 through 15 in the MFT (the 12th through 16th records,
since MFT records are numbered starting from zero) are reserved for future
metadata files.

The elegance of the metadata system is that by storing internal information in
files, it is possible to expand on the capabilities of the file system--changing
"dedicated" internal structures is more complicated. Also, these files do not
need to be stored in a specific location on the hard disk, so if a specific area
of the hard disk is damaged, they can be moved.

Next: Master File Table (MFT)

Master File Table (MFT)

Probably the most important of the key system (metadata) files that define
an NTFS volume, the Master File Table or MFT is the place where information
about every file and directory on an NTFS volume is stored. The MFT is in
essence a relational database table, containing various attributes about
different files. It acts as the "starting point" and central management feature
of an NTFS volume--sort of a "table of contents" for the volume, if you will. It
is somewhat analog to the file allocation table in a FAT partition, but is much
more than just a list of used and available clusters.

When any file or directory is created on the NTFS volume, a record is created
for it within the MFT. The size of each record in the MFT seems to be a matter
of some controversy; the best that I can tell is that each record is equal to
the cluster size of the volume, but with a minimum of 1,024 bytes and a
maximum of 4,096. (Meaning that even if 512 byte clusters are used, each
MFT record is still 1,024 bytes, and even if clusters greater than 4,096 bytes
are used, each MFT record is limited to 4,096 bytes.) However, some sources
say that the size of each MFT record is fixed at either 1,024 or 2,048 bytes.

The system uses these MFT records to store information about the file or
directory; this information takes the form of attributes. Since the size of each
MFT record is limited, there are different ways that NTFS can store a file's
attributes: as either resident attributes that are stored within the MFT record,
or non-resident attributes, stored either in additional MFT records or in
extents that lie outside the MFT. See the discussion of file attributes for more
details.

Remember that under NTFS, there is no special distinction between the data
in a file and the attributes that describe the file--the data itself is just the
contents of the "data attribute". This has an interesting implication for small
files. If the amount of space required for all of the attributes of a file,
including the data it contains, is smaller than the size of the MFT record, the
data attribute will be stored resident--within the MFT record itself. Thus, such
files require no additional storage space on the volume, and also do not

mehedi hasan
mehedi@joinme.com

687

require separate accesses to the disk to check the MFT and then read the file,
which improves performance.

Larger files get more complicated. As additional attributes are added to a file-
-either standard attributes defined by the system or new ones created by the
user--and as the existing attributes are expanded in size, they may no longer
fit into the MFT record for the file. If this occurs, the attributes will be moved
out of the MFT and be made non-resident by the file system. Large files will
have their data stored as external attributes, and very large files may even
get so large that the attributes containing pointers to the file data become
external attributes themselves! I discuss this nested structuring of files on the
page describing NTFS files and data storage.

As more files and directories are added to the file system, it becomes
necessary for NTFS to add more records to the MFT. Since keeping the MFT
contiguous on the disk improves performance, when an NTFS volume is first
set up, the operating system reserves about 12.5% of the disk space
immediately following the MFT; this is sometimes called the "MFT Zone". This
is a substantial chunk of real estate to reserve, but bear in mind that it is still
usable. Regular files and directories will not use this space until and unless
the rest of the disk volume space is consumed, but if that occurs, the "MFT
Zone" will be used. Eventually, if there are enough entries placed in the MFT,
as it expands it will use up the "MFT Zone". When this happens, the operating
system will automatically allocate more space elsewhere on the disk for the
MFT. This allows the MFT to grow to a size limited only by the size of the
volume, but this fragmentation of the MFT may reduce performance by
increasing the number of reads required for some files, and the MFT cannot
generally be defragmented.

Note: The first sixteen records in the MFT are always reserved for the
volume's metadata files.

Next: NTFS Partitions and Partition Sizes

NTFS Partitions and Partition Sizes

NTFS partitions are very different from FAT file system partitions on the
inside--in terms of their structures and how they function. However,
externally, they conform to the general rules that apply to all partitions. This
is necessary to ensure that the PC boot process can handle an NTFS partition
in pretty much the same way that it does a FAT partition. Therefore, like FAT
partitions, you can have primary or logical NTFS partitions, and logical NTFS
partitions fit within an extended partition. You can find more information
about these terms and the rules for partitions on this page.

Since NTFS was designed from the start to be a file system suitable for use in
corporate and business environments, it is no surprise that the file system
allows very large partitions to be created. Recall that at the time Windows NT
was released, the only versions of FAT that existed were FAT12 and FAT16--
FAT32 had not yet been created. The maximum partition size of FAT16 under

mehedi hasan
mehedi@joinme.com

688

Windows NT is 2 GiB using 32 kiB clusters, or 4 GiB using the non-standard
64 kiB clusters that other versions of Windows do not support. Considering
the large storage needs of businesses, and also considering that many
businesses servers use RAID to create even larger volumes, such small size
limits would have been completely unacceptable in NTFS, even a decade ago
when NTFS was being developed.

Under NTFS, the maximum size of a partition (volume) is in fact 2 to the 64th
power. This is equal to 16 binary exabytes, or 18,446,744,073,709,551,616
bytes. Does that seem large enough for your needs? :^) Well, many problems
with PC hard disks occurred when unintentional size limits were imposed by
engineers who figured that, for example, "2 gigabytes ought to be enough".
However, with 18 billion gigabytes it would seem that you should be safe for a
while in NTFS. :^)

Then again, it always pays to be careful when looking at such huge numbers.
For example, I pointed out elsewhere that FAT32 claims to be able to support
up to 2 TiB partitions, but does so at the cost of tremendous slack waste and
an enormous file allocation table. NTFS is a completely different file system,
but since it was designed at a time when hard disk sizes were measured in
single gigabytes, there's no real way to know how well it will scale to disk
volumes that are thousands or even millions of gigabytes in size. I suppose
we will get there in due time, but as the paragraph below explains, there are
already provisos on these large volume limits.

Under Windows NT there are significant restrictions imposed on the size of the
boot partition--the first partition on the drive. During installation, Windows NT
always first creates a FAT16 partition. Even if you tell NT that you want to
install to an NTFS partition, it first creates a FAT16 partition and then
converts it to NTFS. Since the maximum size of a Windows NT FAT16 partition
is 4 GiB, this limits the size of your boot partition as well. Even if you use a
third-party tool to increase the size of the partition, you run into another
limitation: Windows NT can't boot from a partition larger than 7.88 GiB
period, regardless of how you create it (this is associated with Windows NT's
older design, which predates the implementation of the Int 13h Extensions
required for large hard disk access).

Due to these limitations, many NT setups use at least two partitions--a
smaller one for the operating system and a larger one for applications and
data. Many people find this a good way to set up the disk anyway, as it keeps
operating system files separate from others. These boot size limit problems
have been eliminated in Windows 2000. You can format and use an entire
large hard disk in a single partition under Windows 2000.

Tip: I have a full page on partitioning strategies under NTFS in the section on
implementation.

Note: BIOS issues associated with IDE/ATA hard disks can impose partition
size limits irrespective of the operating system or file system. In particular,
support for IDE/ATA hard disks over 7.88 GiB requires a BIOS with support

mehedi hasan
mehedi@joinme.com

689

for Int 13h Extensions. See here for more details.

Next: NTFS Clusters and Cluster Sizes

NTFS Clusters and Cluster Sizes

One of the ways that NTFS is similar to the FAT file system is that it does not
manage individual 512-byte sectors on the hard disk volume independently.
Instead, it groups them into blocks that are called clusters, or sometimes,
allocation units. The main reason for doing this is performance: if individual
sectors were used for data storage on a very large disk, many resources
would be required to keep track of what was in each one, and fragmentation
of the disk would be much more of a problem. For a more thorough discussion
of clusters and how they work, see this discussion of clusters in the FAT file
system section.

While both FAT and NTFS use clusters, they use them in a very different way,
of course. This is due to the differences in the internal structures of the two
file systems. Some of the performance issues associated with very large FAT
file system partitions are due to the fact that the file allocation tables grow to
a very large size, and FAT was never created with extremely large volumes in
mind. In contrast, NTFS is designed to be able to better handle the large
internal structures (such as the MFT) that occur with large partitions.

Like FAT, NTFS chooses a default cluster size based on the size of the
partition. However, it uses a different method for selecting the cluster size for
a partition than the default cluster assignment system for FAT16 and the one
for FAT32. The table below shows the default cluster sizes that NTFS chooses
for various partition sizes:

Partition Size
Range (GiB)

Default Number of
Sectors Per Cluster

Default Cluster Size
(kiB)

<= 0.5 1 0.5

> 0.5 to 1.0 2 1

> 1.0 to 2.0 4 2

> 2.0 to 4.0 8 4

> 4.0 to 8.0 16 8

> 8.0 to 16.0 32 16

> 16.0 to 32.0 64 32

> 32.0 128 64

Now, I am sure you noticed rather quickly that there are some colors in this
chart that you normally don't see on the pages of this site. :^) This was done

mehedi hasan
mehedi@joinme.com

690

to distinguish the two halves of the chart, because NTFS uses two different
assignment systems, depending on the version of the operating system:

• Windows NT 3.5 and Earlier: The first versions of the file system
use the entire table above. So if you are running Windows NT 3.5 and
create a single 6 GB partition, it will use 16 sectors per cluster (8 kiB).

• Windows NT 3.51 and Later (Including Windows 2000): Only the
first four entries in the table are used. The maximum cluster size is 4
kiB for all partitions over 2.0 GiB, regardless of their size.

The reason for the difference between operating systems is perhaps a bit
surprising: it has to do with NTFS's built-in file-based compression.
Compression is not supported on file systems with cluster sizes over 4 kiB.
Since most people like this feature, the setup and formatting programs in
newer Windows operating systems will not choose a cluster size over 4 kiB in
size. Windows NT 3.5 and earlier do not support file-based compression, so
they don't have to worry about this, and they use the full table. (In practice,
it's atypical to find a hard disk much bigger than 4 GB running such an old
version of Windows NT anyway...)

The size of the clusters in a partition has an important impact on the
performance of the system. While the table above shows the default cluster
size for NTFS partitions, the default can be overridden by using the "/A"
parameter of the FORMAT command. For example, "FORMAT D: /A:8192" will
format the D: drive with 8,192-byte clusters. However, you should be careful
before overriding the defaults and choosing a larger cluster size for a
partition. You will lose the ability to use NTFS file compression, and the
amount of slack will increase as well. Slack refers to wasted space due to files
of variable size being placed into clusters of fixed size. The bigger the
clusters, the more space that is wasted; while typically considered a FAT file
system issue, this becomes relevant to NTFS as well if you use larger clusters.
See this FAT file system page for a full explanation of slack. I also have
written a more comprehensive discussion of NTFS partition size and cluster
size selection issues. The default of 4 kiB for modern hard disk volumes is
generally considered a decent overall compromise.

Note: One final issue has an impact on the cluster size of NTFS partitions, if
you are using Windows NT (any version, including 4.0.) Windows NT only
uses the cluster table above if you are creating a new NTFS partition. If you
are converting a partition from FAT to NTFS, Windows NT will always make
the NTFS volume use the smallest clusters: 512 bytes. In fact, this even
applies if you initially install Windows NT to an NTFS partition, because during
installation NT always first creates a FAT partition and then converts it to
NTFS! See here for more on NTFS conversion. Windows 2000 does not have
this limitation.

Next: NTFS Directories and Files

NTFS Directories and Files

mehedi hasan
mehedi@joinme.com

691

Yes, NTFS volumes have directories and files. Isn't that good to know? :^)
Well, you probably want to learn a bit more about them than that, I am sure,
and in this part of the NTFS guide I will endeavor to do just that. If you are
experienced with the FAT file system used in other versions of Windows, then
as a user of NTFS partitions, you will find much that is familiar in the way
directories and files are used. However, internally, NTFS stores and manages
directories and files in a rather different way than FAT does.

In this section I will explore the fundamentals of NTFS directories and files. I
will begin with a look at directories and how they are stored on NTFS
volumes. I will then discuss user data files in some detail, including a look at
how files are stored and named, and what their maximum size can be. I will
then describe some of the more common standard attributes associated with
files. Finally, I will discuss reparse points, a special enhanced feature present
in NTFS 5.0 under Windows 2000.

Next: NTFS Directories (Folders)

NTFS Directories (Folders)

From an external, structural perspective, NTFS generally employs the same
methods for organizing files and directories as the FAT file system (and most
other modern file systems as well). This is usually called the hierarchical or
directory tree model. The "base" of the directory structure is the root
directory, which is actually one of the key system metadata files on an NTFS
volume. Within this root directory, references are stored to files, or to other
directories. Each directory can in turn store any combination of files or more
sub-directories, allowing you to create an arbitrary tree structure. I describe
these general concepts in more detail on this page discussing the FAT file
system.

Note: Directories are also often called folders.

While NTFS is similar to FAT in its hierarchical structuring of directories, it is
very different in how they are managed internally. One of the key differences
is that in FAT volumes, directories are responsible for storing most of the key
information about files; the files themselves contain only data. In NTFS, files
are collections of attributes, so they contain their own descriptive information,
as well as their own data. An NTFS directory pretty much stores only
information about the directory itself, not about the files within the directory.

Everything within NTFS is considered a file, and that applies to directories as
well. Each directory has an entry in the Master File Table, which serves as the
main repository of information for the directory. The MFT record for the
directory contains the following information and NTFS attributes:

• Header (H): This is a set of low-level management data used by
NTFS to manage the directory. It includes sequence numbers used
internally by NTFS and pointers to the directory's attributes and free

mehedi hasan
mehedi@joinme.com

692

space within the record. (Note that the header is part of the MFT
record but not an attribute.)

• Standard Information Attribute (SI): This attribute contains
"standard" information stored for all files and directories. This includes
fundamental properties such as date/time-stamps for when the
directory was created, modified and accessed. It also contains the
"standard" attributes usually associated with a file (such as whether
the file is read-only, hidden, and so on.)

• File Name Attribute (FN): This attribute stores the name associated
with the directory. Note that a directory can have multiple file name
attributes, to allow the storage of the "regular" name of the file, along
with an MS-DOS short filename alias and also POSIX-like hard links
from multiple directories. See here for more on NTFS file naming.

• Index Root Attribute: This attribute contains the actual index of files
contained within the directory, or part of the index if it is large. If the
directory is small, the entire index will fit within this attribute in the
MFT; if it is too large, some of the information is here and the rest is
stored in external index buffer attributes, as described below.

• Index Allocation Attribute: If a directory index is too large to fit in
the index root attribute, the MFT record for the directory will contain
an index allocation attribute, which contains pointers to index buffer
entries containing the rest of the directory's index information.

• Security Descriptor (SD) Attribute: This attribute contains security
information that controls access to the directory and its contents. The
directory's Access Control Lists (ACLs) and related data are stored
here.

So in a nutshell, small directories are stored entirely within their MFT entries,
just like small files are. Larger ones have their information broken into
multiple data records that are referenced from the root entry for the directory
in the MFT. NTFS uses a special way of storing these index entries however,
compared to traditional PC file systems. The FAT file system uses a simple
linked-list arrangement for storing large directories: the first few files are
listed in the first cluster of the directory, and then the next files go into the
next cluster, which is linked to the first, and so on. This is simple to
implement, but means that every time you look at the directory you must
scan it from start to end and then sort it for presentation to the user. It also
makes it time-consuming to locate individual files in the index, especially with
very large directories.

To improve performance, NTFS directories use a special data management
structure called a B-tree. This is a concept taken from relational database
design. In brief terms, a B-tree is a balanced storage structure that takes the
form of trees, where data is balanced between branches of the tree. It's kind
of hard to explain what B-trees are without getting far afield, so if you want
to learn more about them, try this page. (Note that the "B-tree" concept here
refers to a tree of storage units that hold the contents of an individual
directory; it is a different concept entirely from that of the "directory tree", a
logical tree of directories themselves.)

From a practical standpoint, the use of B-trees means that the directories are
essentially "self-sorting". There is a bit more overhead involved when adding

mehedi hasan
mehedi@joinme.com

693

files to an NTFS directory, because they must be placed in this special
structure. However, the payoff occurs when the directories are used. The time
required to find a particular file under NTFS is dramatically reduced compared
to an unsorted linked-list structure--especially for very large directories.

Next: NTFS Files and Data Storage

NTFS Files and Data Storage

As with most file systems, the fundamental unit of storage in NTFS from the
user's perspective is the file. A file is just a collection of any sort of data, and
can contain anything: programs, text files, audio clips, database records--and
thousands of other kinds of information. The operating system doesn't
distinguish between types of files. The use of a particular file depends on how
it is interpreted by applications that use it.

Within NTFS, all files are stored in pretty much the same way: as a collection
of attributes. This includes the data in the file itself, which is just another
attribute: the "data attribute", technically. Note that to understand how NTFS
stores files, one must first understand the basics of NTFS architecture, and in
particular, it's good to comprehend what the Master File Table is and how it
works. You may also wish to review the discussion of NTFS attributes,
because understanding the difference between resident and non-resident
attributes is important to making any sense at all of the rest of this page. ;^)

The way that data is stored in files in NTFS depends on the size of the file.
The core structure of each file is based on the following information and
attributes that are stored for each file:

• Header (H): The header in the MFT is a set of low-level management
data used by NTFS to manage the directory. It includes sequence
numbers used internally by NTFS and pointers to the file's other
attributes and free space within the record. (Note that the header is
part of the MFT record but not an attribute.)

• Standard Information Attribute (SI): This attribute contains
"standard" information stored for all files and directories. This includes
fundamental properties such as date/time-stamps for when the file
was created, modified and accessed. It also contains the "standard"
FAT-like attributes usually associated with a file (such as whether the
file is read-only, hidden, and so on.)

• File Name Attribute (FN): This attribute stores the name associated
with the file. Note that a file can have multiple file name attributes, to
allow the storage of the "regular" name of the file, along with an MS-

mehedi hasan
mehedi@joinme.com

694

DOS short filename alias and also POSIX-like hard links from multiple
directories. See here for more on NTFS file naming.

• Data (Data) Attribute: This attribute stores the actual contents of
the file.

• Security Descriptor (SD) Attribute: This attribute contains security
information that controls access to the file. The file's Access Control
Lists (ACLs) and related data are stored here.

These are the basic attributes; others may also be associated with a file (see
this full discussion of attributes for details). If a file is small enough that all of
its attributes can fit within the MFT record for the file, it is stored entirely
within the MFT. Whether this happens or not depends largely on the size of
the MFT records used on the volume. If the file is too large for all of the
attributes to fit in the MFT, NTFS begins a series of "expansions" that move
attributes out of the MFT and and make them non-resident. The sequence of
steps taken is something like this:

1. First, NTFS will attempt to store the entire file in the MFT entry, if
possible. This will generally happen only for rather small files.

2. If the file is too large to fit in the MFT record, the data attribute is
made non-resident. The entry for the data attribute in the MFT
contains pointers to data runs (also called extents) which are blocks of
data stored in contiguous sections of the volume, outside the MFT.

3. The file may become so large that there isn't even room in the MFT
record for the list of pointers in the data attribute. If this happens, the
list of data attribute pointers is itself made non-resident. Such a file
will have no data attribute in its main MFT record; instead, a pointer is
placed in the main MFT record to a second MFT record that contains
the data attribute's list of pointers to data runs.

4. NTFS will continue to extend this flexible structure if very large files
are created. It can create multiple non-resident MFT records if needed
to store a great number of pointers to different data runs. Obviously,
the larger the file, the more complex the file storage structure
becomes.

The data runs (extents) are where most file data in an NTFS volume is stored.
These runs consist of blocks of contiguous clusters on the disk. The pointers
in the data attribute(s) for the file contain a reference to the start of the run,
and also the number of clusters in the run. The start of each run is identified
using a virtual cluster number or VCN. The use of a "pointer+length" scheme
means that under NTFS, it is not necessary to read each cluster of the file in
order to determine where the next one in the file is located. This method also
reduces fragmentation of files compared to the FAT setup.

Next: NTFS File Size

NTFS File Size

mehedi hasan
mehedi@joinme.com

695

One of the most important limiting issues for using serious business
applications--especially databases--under consumer Windows operating
systems and the FAT file system, is the relatively small maximum file size. In
some situations the maximum file size is 4 GiB, and for others it is 2 GiB.
While this seems at first glance to be fairly large, in fact, neither is even close
to being adequate for the needs of today's business environment computing.
Even on my own home PC I occasionally run up against this limit when doing
backups to hard disk files.

In the page describing how data is stored in NTFS files, I explained the way
that NTFS first attempts to store files entirely within the MFT record for the
file. If the file is too big, it extends the file's data using structures such as
external attributes and data runs. This flexible system allows files to be
extended in size virtually indefinitely. In fact, under NTFS, there is no
maximum file size. A single file can be made to take up the entire contents of
a volume (less the space used for the MFT itself and other internal structures
and overhead.)

NTFS also includes some features that can be used to more efficiently store
very large files. One is file-based compression, which can be used to let large
files take up significantly less space. Another is support for sparse files, which
is especially well-suited for certain applications that use large files that have
non-zero data in only a few locations.

Next: NTFS File Naming

mehedi hasan
mehedi@joinme.com

696

NTFS File Naming

Microsoft's early operating systems were very inflexible when it came to
naming files. The DOS convention of eight characters for the file name and
three characters for the file extension--the so-called "8.3 standard"--was very
restrictive. Compared to the naming abilities of competitors such as UNIX and
the Apple Macintosh, 8.3 naming was simply unacceptable. To solve this
problem, when NTFS was created, Microsoft gave it greatly expanded the file
naming capabilities.

The following are the characteristics of regular file names (and directory
names as well) in the NTFS file system:

• Length: Regular file names can be up to 255 characters in NTFS.
• Case: Mixed case is allowed in NTFS file names, and NTFS will

preserve the mixed case, but references to file names are case-
insensitive. An example will make this much more clear. :^) Suppose
you name a file "4Q Results.doc" on an NTFS volume. When you list
the directory containing this file, you will see "4Q Results.doc".
However, you can refer to that file by both the name you gave, as well
as "4q results.doc", "4q ReSulTS.dOc", and so on.

• Characters: Names can contain any characters, including spaces,
except the following (which are reserved because they are generally
used as file name or operating system delimiters or operators): ? " /
\ < > * | :

• Unicode Storage: All NTFS file names are stored in a format called
Unicode. Recall that conventional storage for characters in computers
is based on the ASCII character set, which uses one byte (actually, 7
bits) to represent the hundred or so "regular" characters used in
Western languages. However, a single byte can only hold a couple of
hundred different values, which is insufficient for the needs of many
languages, especially Asian ones. Unicode is an international, 16-bit
character representation format that allow for thousands of different
characters to be stored. Unicode is supported throughout NTFS.

Tip: For more information about Unicode, see this web site.

You may recall that when Windows 95's VFAT file system introduced long file
names to Microsoft's consumer operating systems, it provided for an aliasing
feature. The file system automatically creates a short file name ("8.3") alias
of all long file names, for use by older software written before long file names
were introduced. NTFS does something very similar. It also creates a short
file name alias for all long file names, for compatibility with older software. (If
the file name given to the file or directory is short enough to fit within the
"8.3", no alias is created, since it is not needed). It's important to realize,
however, that the similarities between VFAT and NTFS long file names are
mostly superficial. Unlike the VFAT file system's implementation of long file
names, NTFS's implementation is not a kludge added after the fact. NTFS was
designed from the ground up to allow for long file names.

mehedi hasan
mehedi@joinme.com

697

File names are stored in the file name attribute for every file (or directory), in
the Master File Table. (No big surprise there!) In fact, NTFS supports the
existence of multiple file name attributes within each file's MFT record. One of
these is used for the regular name of the file, and if a short MS-DOS alias file
name is created, it goes in a second file name attribute. Further, NTFS
supports the creation of hard links as part of its POSIX compliance. Hard links
represent multiple names for a single file, in different directories. These links
are each stored in separate file name attributes. (This is a limited
implementation of the very flexible naming system used in UNIX file
systems.)

Next: NTFS File Attributes

NTFS File Attributes

As I mention in many places in this discussion of NTFS, almost everything in
NTFS is a file, and files are implemented as collections of attributes.
Attributes are just chunks of information of various sorts--the meaning of the
information in an attribute depends on how software interprets and uses the
bits it contains. Directories are stored in the same general way as files; they
just have different attributes that are used in a different manner by the file
system.

All file (and directory) attributes are stored in one of two different ways,
depending on the characteristics of the attribute--especially, its size. The
following are the methods that NTFS will use to store attributes:

• Resident Attributes: Attributes that require a relatively small
amount of storage space are stored directly within the file's primary
MFT record itself. These are called resident attributes. Many of the
simplest and most common file attributes are stored resident in the
MFT file. In fact, some are required by NTFS to be resident in the MFT
record for proper operation. For example, the name of the file, and its
creation, modification and access date/time-stamps are resident for
every file.

• Non-Resident Attributes: If an attribute requires more space than is
available within the MFT record, it is not stored in that record,
obviously. Instead, the attribute is placed in a separate location. A
pointer is placed within the MFT that leads to the location of the
attribute. This is called non-resident attribute storage.

In practice, only the smallest attributes can fit into MFT records, since the
records are rather small. Many other attributes will be stored non-resident,
especially the data of the file, which is also an attribute. Non-resident storage
can itself take two forms. If the attribute doesn't fit in the MFT but pointers to
the data do fit, then the data is placed in a data run, also called an extent,
outside the MFT, and a pointer to the run is placed in the file's MFT record. In
fact, an attribute can be stored in many different runs, each with a separate
pointer. If the file has so many extents that even the pointers to them won't

mehedi hasan
mehedi@joinme.com

698

fit, the entire data attribute may be moved to an external attribute in a
separate MFT record entry, or even multiple external attributes. See the
discussion of file storage for more details on this expansion mechanism.

NTFS comes with a number of predefined attributes, sometimes called system
defined attributes. Some are associated with only one type of structure, while
others are associated with more than one. Here's a list, in alphabetical order,
of the most common NTFS system defined attributes:

• Attribute List: This is a "meta-attribute": an attribute that describes
other attributes. If it is necessary for an attribute to be made non-
resident, this attribute is placed in the original MFT record to act as a
pointer to the non-resident attribute.

• Bitmap: Contains the cluster allocation bitmap. Used by the $Bitmap
metadata file.

• Data: Contains file data. By default, all the data in a file is stored in a
single data attribute--even if that attribute is broken into many pieces
due to size, it is still one attribute--but there can be multiple data
attributes for special applications.

• Extended Attribute (EA) and Extended Attribute Information:
These are special attributes that are implemented for compatibility
with OS/2 use of NTFS partitions. They are not used by Windows
NT/2000 to my knowledge.

• File Name (FN): This attribute stores a name associated with a file or
directory. Note that a file or directory can have multiple file name
attributes, to allow the storage of the "regular" name of the file, along
with an MS-DOS short filename alias and also POSIX-like hard links
from multiple directories. See here for more on NTFS file naming.

• Index Root Attribute: This attribute contains the actual index of files
contained within a directory, or part of the index if it is large. If the
directory is small, the entire index will fit within this attribute in the
MFT; if it is too large, some of the information is here and the rest is
stored in external index buffer attributes.

• Index Allocation Attribute: If a directory index is too large to fit in
the index root attribute, the MFT record for the directory will contain
an index allocation attribute, which contains pointers to index buffer
entries containing the rest of the directory's index information.

• Security Descriptor (SD): This attribute contains security
information that controls access to a file or directory. Access Control
Lists (ACLs) and related data are stored in this attribute. File
ownership and auditing information is also stored here.

• Standard Information (SI): Contains "standard information" for all
files and directories. This includes fundamental properties such as
date/time-stamps for when the file was created, modified and
accessed. It also contains the "standard" FAT-like attributes usually
associated with a file (such as whether the file is read-only, hidden,
and so on.)

• Volume Name, Volume Information, and Volume Version: These
three attributes store key name, version and other information about
the NTFS volume. Used by the $Volume metadata file.

mehedi hasan
mehedi@joinme.com

699

Note: For more detail on how the attributes associated with files work, see
the page on file storage; for directories, the page on directories.

In addition to these system defined attributes, NTFS also supports the
creation of "user-defined" attributes. This name is a bit misleading, however,
since the term "user" is really given from Microsoft's perspective! A "user" in
this context means an application developer--programs can create their own
file attributes, but actual NTFS users generally cannot.

Next: NTFS Reparse Points

NTFS Reparse Points

One of the most interesting new capabilities added to NTFS version 5 with the
release of Windows 2000 was the ability to create special file system functions
and associate them with files or directories. This enables the functionality of
the NTFS file system to be enhanced and extended dynamically. The feature
is implemented using objects that are called reparse points.

The use of reparse points begins with applications. An application that wants
to use the feature stores data specific to the application--which can be any
sort of data at all--into a reparse point. The reparse point is tagged with an
identifier specific to the application and stored with the file or directory. A
special application-specific filter (a driver of sorts) is also associated with the
reparse point tag type and made known to the file system. More than one
application can store a reparse point with the same file or directory, each
using a different tag. Microsoft themselves reserved several different tags for
their own use.

Now, let's suppose that the user decides to access a file that has been tagged
with a reparse point. When the file system goes to open the file, it notices the
reparse point associated with the file. It then "reparses" the original request
for the file, by finding the appropriate filter associated with the application
that stored the reparse point, and passing the reparse point data to that filter.
The filter can then use the data in the reparse point to do whatever is
appropriate based on the reparse point functionality intended by the
application. It is a very flexible system; how exactly the reparse point works
is left up to the application. The really nice thing about reparse points is that
they operate transparently to the user. You simply access the reparse point
and the instructions are carried out automatically. This creates seamless
extensions to file system functionality.

In addition to allowing reparse points to implement many types of custom
capabilities, Microsoft itself uses them to implement several features within
Windows 2000 itself, including the following:

• Symbolic Links: Symbolic linking allows you to create a pointer from
one area of the directory structure to the actual location of the file

mehedi hasan
mehedi@joinme.com

700

elsewhere in the structure. NTFS does not implement "true" symbolic
file linking as exists within UNIX file systems, but the functionality can
be simulated by using reparse points. In essence, a symbolic link is a
reparse point that redirect access from one file to another file.

• Junction Points: A junction point is similar to a symbolic link, but
instead of redirecting access from one file to another, it redirects
access from one directory to another.

• Volume Mount Points: A volume mount point is like a symbolic link
or junction point, but taken to the next level: it is used to create
dynamic access to entire disk volumes. For example, you can create
volume mount points for removable hard disks or other storage media,
or even use this feature to allow several different partitions (C:, D:, E:
and so on) to appear to the user as if they were all in one logical
volume. Windows 2000 can use this capability to break the traditional
limit of 26 drive letters--using volume mount points, you can access
volumes without the need for a drive letter for the volume. This is
useful for large CD-ROM servers that would otherwise require a
separate letter for each disk (and would also require the user to keep
track of all these drive letters!)

• Remote Storage Server (RSS): This feature of Windows 2000 uses
a set of rules to determine when to move infrequently used files on an
NTFS volume to archive storage (such as CD-RW or tape). When it
moves a file to "offline" or "near offline" storage in this manner, RSS
leaves behind reparse points that contain the instructions necessary to
access the archived files, if they are needed in the future.

These are just a few examples of how reparse points can be used. As you can
see, the functionality is very flexible. Reparse points are a nice addition to
NTFS: they allow the capabilities of the file system to be enhanced without
requiring any changes to the file system itself.

Next: NTFS Security and Permissions

NTFS Security and Permissions

One of the most important advantages that you gain when choosing the NTFS
file system over older file systems such as FAT, is much greater control over
who can perform what sorts of operations on various data within the file
system. FAT was designed in the era of single-user PCs, and contains virtually
no built-in security or access management features. This makes it quite
poorly-suited to multi-user business environments--can you imagine running
a business where any user in the company was free to roam through the file
system and open any documents he or she found? This is not a wise way to
run a server! In contrast to FAT, NTFS offers a secure environment and
flexible control over what can be accessed by which users, to allow for many
different users and groups of users to be networked together, with each able
to access only the appropriate data.

mehedi hasan
mehedi@joinme.com

701

In this section I take a detailed look at NTFS's security features and how they
operate. I begin with a general discussion of NTFS security concepts. I then
describe the various NTFS permissions and permission groups that can be
assigned to various file system objects. I talk about ownership and how
permissions are assigned, and also explain how the inheritance of permissions
works, and how NTFS handles resolving multiple permission settings for the
same object. Since Windows NT and Windows 2000 handle permissions
differently I distinguish between their security models where appropriate.

Note: NTFS security and permission issues are to some degree inextricably
linked to features and aspects of the operating system, and also touches upon
issues related to Windows NT/2000 networking. A full discussion of Windows
NT or Windows 2000 domains, directory services, groups, login procedures
and so on is far beyond the scope of our coverage of NTFS. Therefore, I am
attempting to limit myself to a description of how security works within NTFS
itself--even in this attempt I have probably gone far too much into operating
system details. I will not describe Windows NT/2000 security in general; you
may wish to consult a broader NT/2000 reference if you need more detail on
the operating system's security, account management and access control
features than I provide here. In fact, even NTFS permissions themselves can
get very complicated, especially under Windows 2000 with its greater and
more complex security settings. If you want to know all the ins and outs of
controlling permissions you will want to consult a Windows NT or Windows
2000 operating system reference.

Next: General NTFS Security Concepts

General NTFS Security Concepts

NTFS security is really only one part of a much bigger picture: security under
Windows NT and 2000 in general. It's no exaggeration to say that security is
one of the most important aspects of these operating systems--period.
Security, including controlling access to the system and its various resources,
is a subject that gets a lot of attention in any NT or 2000 system. Managing
security issues such as user accounts and groups is a big part of the job of
any Windows NT or 2000 system administrator.

Security in NTFS, like security in the Windows NT or 2000 operating systems
themselves, is oriented around the key concept of assigning rights to specific
users or groups of users. Consider a network consisting of a Windows NT or
Windows 2000 server, to which are connected various client machines in a
network. Any user who sits down at one of these client machines can connect
to the server computer, but he or she must log in to the server in order to
access any of its resources, including NTFS volumes it contains. In fact, the
same applies to someone who uses the server machine directly, again,
assuming it has been correctly configured.

The manager of the server sets up user accounts for everyone who will use
the network. He or she also sets up group accounts, to which are added lists
of individual users. These groups are used to allow rights to be given to

mehedi hasan
mehedi@joinme.com

702

multiple users who share something in common; for example, they may all be
in the same department or logical sub-unit in the organization. Someone who
does not have a user account on the network may be allowed to use a guest
account, but the rights assigned to such an account are generally quite
minimal, for obvious reasons. If someone does not have even the guest
account password, that person will quickly discover that they can do nothing
on the server!

The access rights for files and directories on NTFS volumes are assigned
based on these same user or group accounts. When a user logs in to a
Windows NT or 2000 network, the account that is used becomes the key to
what that person can access, including NTFS objects. By looking at the name
of the account used to log in to the network, the system determines who the
person is and also what groups the person is a member of, and assigns rights
accordingly. A user can be a member of a number of different groups
simultaneously (just like in "real life"). Several predefined groups are also set
up in the system by default, which have specific access rights. One of these is
the Administrators group, members of which have access to pretty much
everything. Other groups that are set up depend on the specific role played
by the computer: whether it is a domain controller for example. (Here we
start to drift away from NTFS into NT/2000 generalities and networking, so I
am going to stop. ;^))

For example, consider a small company of 20 people, with a server that
contains a variety of data. There may be a folder on the D: drive on this
server called "D:\Budget", which contains budgeting information for the
company. This is sensitive data, which is only supposed to be accessible to
the President and Vice-President of the company, and their Administrative
Assistant. Under NTFS, this is easy to set up by assigning specific permissions
to that folder for only those persons' accounts. In fact, it is also easy to
arrange the folder's permissions so that, say, the President and Vice-
President can read or modify files in the folder, but the Assistant can only
read the files. All others in the company can be easily blocked from the folder
entirely. A full discussion of how permissions work is provided on the pages
describing NTFS permissions and standard permission groups.

There are three other important overall concepts in NTFS security: object
ownership, permission inheritance and auditing. Ownership is a special
property right for NTFS objects that gives file owners the capability of
granting permissions to others. NTFS is also designed to propagate
permissions down the hierarchy of the directory structure, under the control
of the user. This permission inheritance feature allows permissions to be
assigned to groups of objects automatically. It also allows permissions to be
automatically applied to new files that are created within an existing directory
structure. NTFS 5.0 extended the control that administrators and users have
in dealing with permission inheritance. Finally, auditing allows administrators
to monitor changes to files or directories.

Next: Access Control Lists (ACLs) and Access Control Entries (ACEs)

Access Control Lists (ACLs) and Access Control Entries (ACEs)

mehedi hasan
mehedi@joinme.com

703

Management of security and access to NTFS objects begins in the same place
where everything else begins in NTFS: in the Master File Table (MFT). The
MFT record for every file and directory on an NTFS volume contains a security
descriptor (SD) attribute. The name of this attribute makes rather clear what
it contains: information related to security and permissions for the
corresponding object.

One of the most important elements within the security descriptor for any
object is the set of lists within it, which dictate which users may access the
object, and in what manner. These are called access control lists or ACLs.
Every object in an NTFS partition has two different types of access control
lists:

• System Access Control List (SACL): This ACL is managed by the
system (thus the name) and is used to control auditing of attempts to
access the object.

• Discretionary Access Control List (DACL): This is the "real" ACL.
:^) Well, it is the one that most people are primarily concerned with,
because it is where permissions are stored that control what users and
groups of users are allowed what type of access to the object. If you
hear someone refer to an object's ACL in the singular, this is the one
they mean.

Each entry in an ACL is called an access control entry or ACE. Each ACE
contains an ID code that identifies the user or group to which the ACE applies,
and then information about the specific permission settings that are to be
applied to that user or group. Many different ACEs can be placed into a list,
allowing the access of various types to be granted or denied for a variety of
different users and groups. Some groups have special meaning, such as the
self-evidently named group "Everyone".

The ACL for every object is a combination of various access control settings
contained in different ACEs. A typical object may have different sets of
permissions assigned for various users or groups of users. In fact, some sets
of permissions may conflict with each other, since users can be members of
more than one group, and groups may have differing permissions. When an
object is accessed, a process of permission resolution takes place, which
determines which permissions take precedence and therefore, whether any
given attempted access should be allowed or disallowed.

ACLs are also greatly affected by the particular inheritance model being used
by the operating system. Windows NT uses a static inheritance model, which
defaults the ACL for a new object from the ACL of its parent folder. Windows
2000 uses a more advanced dynamic inheritance scheme that provides better
control over how the ACLs for an object work, lets subfolders and files have
their ACLs change automatically when their parent folder's ACL changes, and
allows finer control over inheritance in general. This more advanced
functionality can also be applied to Windows NT 4.0 installs using Service
Pack 4 and the Security Configuration Manager (SCM).

Next: NTFS Permissions

mehedi hasan
mehedi@joinme.com

704

NTFS Permissions

Access control lists (ACLs) are used to manage which users and groups of
users are allowed to access different files and folders (objects) within NTFS
volumes. These ACLs contains entries that specify what rights each user or
group has for the object in question. These access rights are called
permissions.

When Windows NT was built, six different permission types were created for
NTFS objects. The NT user interface was designed to allow these permissions
to be associated with objects. Each permission type controls a different kind
of access to an object, and each has an abbreviation letter. These permission
types are sometimes called special permissions, to differentiate them from
standard permission groups that are applied at a higher level.

In some cases, the meaning of a permission is the same for both files and
directories (folders); in others, the meaning is different, depending on if the
permission is applied to a folder or a file. This table shows the different NT
permissions and how they apply to folders and files:

Permission
Type

Abbreviation
Letter

Permission
Granted For Files

Permission
Granted For
Folders

Read R Read file contents
Read folder
contents

Write W
Change file
contents

Change folder
contents (create
new files or
subfolders)

Execute X
Execute (run) a
program file

Traverse subfolder
structures of folder

Delete D Delete file Delete directory

Change
Permissions

P
Change file's
permission settings

Change folder's
permission settings

Take
Ownership

O Take file ownership
Take folder
ownership

Note: There is also one other fundamental permission type: Delete
Subfolders and Files. This permission, when applied to a parent folder, allows
a user to delete files and subfolders within it, even if they do not have delete
permission on those files and subfolders. Under Windows NT this permission
type cannot be individually applied to folders. It is only available as part of
the "Full Control" standard permission group.

mehedi hasan
mehedi@joinme.com

705

Until Windows 2000 was released, these six basic permissions were the
lowest level that an NTFS user could access. When Windows 2000 was
introduced, the six permission types above were "broken down" into 13
different permission components, to allow for more "fine-tuned" control over
different kinds of access. While some people believe this "breaking down" was
part of Windows 2000, in fact, these 13 components have always been
present in NTFS! Under Windows NT, they were just hidden under the six
permission types above. The table below lists the different permission
components and shows how they correlate to the six Windows NT permission
types:

Permission Types (Windows NT) Permission
Components
(Windows
2000 and
Windows
NT 4.0 SCM)

Read
(R)

Write
(W)

Execute
(X)

Delete
(D)

Change
Permissions
(P)

Take
Ownership
(O)

Traverse
Folder /
Execute File

List Folder /
Read Data

Read
Attributes

Read
Extended
Attributes

Create Files
/
Write Data

Create
Folders /
Append
Data

Write
Attributes

Write
Extended
Attributes

Delete
Subfolders
and Files

Delete

mehedi hasan
mehedi@joinme.com

706

Read
Permissions

Change
Permissions

Take
Ownership

A few notes about this table:

• Some of the permission components are "combination" permissions;
they are illustrated by having two different names, such as "Create
Files / Write Data". For these, the first term explains how the
permission works when it is applied to a folder, and the second
describes its application to a file. As the first table on this page shows,
this sort of "double meaning" has been present since the start, but the
new names just make it more explicit.

• Delete Subfolders and Files can now be applied as an individual
permission to folders.

• There is actually a 14th permission component, called Synchronize.
This permission is used to control synchronization of access to file or
folder handles for multithreaded applications. It is sort of a "different
bird" from the other permissions, which is why I mostly ignore it. :^)

As you can see, Windows 2000 gives you much more "granularity" of control
over individual permissions. The Read, Write and Execute permissions have
been broken down into several components. Of course, it's pretty unusual for
someone to really need control this fine over most objects. (For example, how
often do you think you would want to give permission to someone to write
data but not append data to a file? Not frequently.) In fact, even the six
Windows NT "special permissions" are often more detail than is really
necessary. For convenience, Windows provides several pre-defined standard
permission groups to allow commonly-desired sets of permissions to be
applied to files and folders quickly.

Tip: The finer permissions granularity introduced with Windows 2000 are also
available to Windows NT 4.0 users who have installed Service Pack 4 or later,
through the Security Configuration Manager (SCM).

Next: Standard Permission Groups

mehedi hasan
mehedi@joinme.com

707

Standard Permission Groups

Windows NT provides a set of six individual permissions for controlling access
to files and folders. Windows 2000 refines these individual permissions even
further, into a set of over a dozen different permission components. These
NTFS permissions allow for fine control of the access rights of users and
groups to NTFS objects, but in many cases they are "overkill". To force
administrators to always deal with these fine-grained permissions would be a
time-consuming chore.

To avoid the necessity of always setting low-level permissions, Windows
defines standard permission groups. These are simply collections of the low-
level permissions that are given names and can be applied to objects. When
you use a permission group, all the components contained in the group are
applied to the object automatically.

First, let's look at the standard permission groups for Windows NT:

Permission Types Granted
(Applies Only To Appropriate Object Types) Standard

Permission
Group

Object
Types
Affected Read

(R)
Write
(W)

Execute
(X)

Delete
(D)

Change
Permissions
(P)

Take
Ownership
(O)

Description

No Access
Folders
or Files

Denies all
access to
the file or
folder. The
user can see
the name of
the object,
but cannot
do anything
with it.

List
Folders
Only

Users can
see the list
of files in
the folder
and traverse
subfolders,
but cannot
view or
execute
files.

Read
Folders
or Files

Users can
read files
and folders,
execute files
and traverse

mehedi hasan
mehedi@joinme.com

708

folders, but
cannot
change
anything.

Add
Folders
Only

Users can
add files or
subfolders
to the
folder, and
can traverse
subfolders,
but cannot
read or
execute
files.

Add &
Read

Folders
Only

Users can
add files or
subfolders
to the
folder, and
can read
and execute
files in the
folder as
well.

Change
Folders
or Files

The user
can read,
write,
execute or
delete the
file, or if
applied to a
folder, the
files and
subfolders
within the
folder. Note
that this
does not
grant access
to delete the
folder itself.
The user
also cannot
change
permissions
on the file
or folder, or
take
ownership

mehedi hasan
mehedi@joinme.com

709

of it.

Full
Control

Folders
or Files

All
permissions
are granted.
This also
includes the
special
permission
"Delete
Subfolders
and Files",
which can
only be
given
through the
"Full
Control"
group under
Windows
NT.

Well, that table is probably a bit overwhelming at first glance, but it's not all
that confusing if you consider it carefully. Under Windows NT, applying the
permission group gives the users the permission types indicated by the
checkmarks. Note that the checkmarks apply only to the object type
specified. Of particular note, "Add & Read" grants the write permission to the
folder, but not to the files contained within the folder. Also, the "No Access"
group is a "trump card" of sorts; it will override other permission settings.
See the discussions of permission settings and inheritance for more on how
permission conflicts are addressed.

Under the more advanced Windows 2000 scheme, there are 13 different
permission components, which are collected into six different standard
groups, as the table below illustrates:

Standard Permission Groups (Windows 2000 and
Windows NT 4.0 SCM)

Permission
Components
(Windows
2000 and
Windows NT
4.0 SCM)

Read Write
List
Folder
Contents

Read
and
Execute

Modify
Full
Control

Traverse Folder
/
Execute File

mehedi hasan
mehedi@joinme.com

710

List Folder /
Read Data

Read Attributes

Read Extended
Attributes

Create Files /
Write Data

Create Folders
/
Append Data

Write
Attributes

Write Extended
Attributes

Delete
Subfolders and
Files

Delete

Read
Permissions

Change
Permissions

Take
Ownership

Notes: "List Folder Contents" and "Read and Execute" have the same
permission components, which is a bit confusing. The differences between
them have to do with how NTFS handles inheritance of these permissions.
"List Folder Contents" is only used for folders and is not inherited by files
within the folder. "Read and Execute" applies to folders and files and is
inherited by both. Also, the oddball, 14th permission component,
"Synchronize", is a member of all of the groups above.

You may notice, in looking at this table, that the "No Access" group is missing
under the Windows 2000 scheme. In Windows NT, all permission groups
except "No Access" provide "positive access"--saying, in effect, "you are

mehedi hasan
mehedi@joinme.com

711

allowed" to do something. "No Access" is the only one that says "you are not
allowed" to do something. Unfortunately, it is very broad; it really says "you
cannot do anything". This inflexibility was corrected under Windows 2000 by
giving users the ability to allow or disallow any permission group or individual
permission. Under this setup, "No Access" simply isn't required. See the
discussion of permission assignment for more information on this.

Next: Ownership and Permission Assignment

Ownership and Permission Assignment

Permissions and permission groups control access to files and folders on NTFS
volumes, but what controls who can assign permissions? Would you really be
surprised if I told you that it was, in fact, other permissions? :^) Yes, that is
indeed the case. These special permissions work in combination with another
key NTFS security concept: ownership.

Every object within the NTFS volume has an owner, which is a user identified
by the object as being the one who controls it. By default, the user who
creates a file or folder becomes its owner. The significance of ownership is
that the owner of a file or folder always has the ability to assign permissions
for that object. The owner can decide what permissions should be applied to
the object, controlling others' access to the file or folder.

The two special permissions that are associated with ownership and
permission assignment are "Change Permissions" (P) and "Take Ownership"
(O). If a user is granted the "Change Permissions" permission, the user can
change the permission settings for the object even if he or she does not own
it. If a user has "Take Ownership" permission, the user has the ability to take
over ownership of the resource, and of course, once it is owned the user can
do anything he or she wants with the permissions. Both of these special
permissions are most commonly granted through the standard permission
group "Full Control". Note that ownership of an object cannot be assigned or
given away. The owner of the object can only give the right to others to take
ownership. There's an important but subtle distinction there. :^)

Deciding how to assign permissions to various files and folders is an
important system administration task. Very careful thought needs to go into
how user groups are created and permissions assigned to various objects.
One common mistake that many administrators make is misusing the "No
Access" permission group under Windows NT. If used incorrectly, this can lock
everyone out of large areas of an NTFS volume. Problems can also occur if
different users take ownership of files or change permissions when they
should not--this is in fact the reason for the distinction between the "Full
Control" permission group, and the slightly more restricted groups "Change"
or "Modify". One should be very careful when granting "Full Control"
permission. Note that by default, members of the "Administrators" user group
can always take ownership of, or change permissions on, any file or folder.
This allows administrators to fix permission problems if they occur.

mehedi hasan
mehedi@joinme.com

712

The mechanics of assigning permission are rather straight-forward. The most
common method is to right-click an object in the Windows Explorer, select
Properties, and then click the "Security" tab to access the permissions
settings for the object. The exact way that permissions are assigned depends
on whether you are using Windows NT or Windows 2000. Since I have already
probably gone into far too much detail on permissions, I am not going to
delve into the details on exactly how permissions are set. However, I do think
it's important to highlight that the NT and 2000 permissions models work
differently in one fundamental respect.

Under Windows NT, there is really only one kind of permission assignment
possible. Generally speaking, you can only "allow" users to do things. For
example, you can allow someone read permission on a folder. By not granting
the write permission as well, the system infers that the person may not write
the folder. However, there is no way to explicit say "no write permission on
this folder for this user". The difference is important, because it has
implications in multiple-level hierarchies of folders. The only way to disallow
access to something in the Windows NT NTFS security model is to use the "No
Access" permission group. This group will over-ride any "allow" permissions
also defined for the object, and cut off access to the item for the user or
group who is tagged with "No Access". Unfortunately, this is a sledgehammer:
it takes away all permissions. There is no way to explicitly select a folder and
say "regardless of other permission settings and groups that User X may be
in, X may not write any files in this folder".

Windows 2000 greatly improved the control you have in assigning NTFS
permissions by creating two explicit settings for each permission and
permission group: allow and deny. Using these setting types, it is easy to
specifically allow read access and deny write access to a file or folder,
enabling the example I just mentioned above to be implemented. This
improved control is also the reason why the "No Access" group does not exist
in Windows 2000: it isn't needed. Windows 2000 has specific rules for dealing
with the various access and deny permission settings that may be set on
objects or inherited by them, especially when they may conflict. See the
discussion of advanced inheritance for more information on this.

Tip: Windows NT 4.0 users can gain the advantages of the Windows 2000
permission assignment method by installing Service Pack 4 or later and using
the Security Configuration Manager (SCM).

Next: Static Permission Inheritance

Static Permission Inheritance

A typical NTFS volume will have thousands of folders and files on it--if not
tens of thousands or hundreds of thousands. Can you imagine using such a
volume, and being forced to assign permissions to all of those objects?
Worse, can you imagine being the administrator of such a system? Well, I
can, and it's not a pretty sight. :^) Fortunately, the folks at Microsoft made
NTFS so that you don't have to worry about this sort of nightmare.

mehedi hasan
mehedi@joinme.com

713

When you are using Windows NT and create a new subfolder or file within a
folder, the new object is given a default set of permissions by copying the
current set of permissions associated with the object's parent folder. This is
called permission inheritance, or sometimes, propagation. Under NT's
inheritance model, this only happens once, at the time the object is created.
For this reason, conventional inheritance under NT is also called static
permission inheritance, to distinguish it from the dynamic inheritance used by
Windows 2000.

While static inheritance is certainly much better than no inheritance, it creates
serious difficulties for administrators who need to manage large directory
structures. Imagine a large tree structure of folders. Under static inheritance,
after any subfolder is created, its permissions are no longer linked to those of
the parent object. This makes it easy for any grouping or "branch" of the tree
to have its permissions changed after the face. The administrators have no
easy way to keep track of these changes or, in some cases, to even tell that
they have occurred. Problems are particularly likely to occur if the "Full
Control" permission group has been used, as this means users are free to
play around with the permissions on parts of the directory structure. Also, the
static inheritance makes it very difficult to add new permissions to an existing
structure. Suppose you create a new user group and want to give everyone in
that group access to an existing set of directories: how do you do it?

To address these concerns, Windows NT provides a special feature when
permissions are being assigned. If you select the "Replace Permissions on
Subdirectories" and "Replace Permissions on Existing Files" options when
changing the permissions of a folder, NT will reset the permissions of all child
objects to match those of the parent. So if you add a new user group and
want to give it access to the existing structure, you can use these options to
force NT to propagate the new permissions down the directory tree, giving
the new user group access to every folder and file.

However, this solution has one very big problem with it: whenever you
propagate permissions in this manner, you wipe out any custom permissions
that may have been set on child objects. This makes it a very inelegant tool--
a "permissions sledgehammer", if you will. Now, if your aim is to address the
deeds of adventurous users who have been playing with permissions, erasing
permissions from subfolders and files may be exactly what you want.
However, in many instances, resetting permissions in this way can lead to a
disaster. You could have a document storage directory called "C:\Documents"
on a server, with a tree containing dozens of subfolders belonging to different
people, and permissions set to ensure only the appropriate users and groups
can access the files they need. If you need to add a new user group and use
the "Replace..." feature just once on "C:\Documents", you will destroy all the
customization on these child subfolders and files, an reduce them all to
homogeneity.

Unfortunately, there's no real way around this with Windows NT's
conventional inheritance scheme. In practice, it means that changes to the
directory structure that require using the "Replace..." features must be done
many more times, deeper within the directory structure, to avoid unwanted
changes. The limitations of this system led to Microsoft's creating the more

mehedi hasan
mehedi@joinme.com

714

advanced dynamic inheritance system in Windows 2000 (which is also
available to Windows NT 4.0 users who install Service Pack 4.)

Next: Dynamic Permission Inheritance and Advanced Inheritance
Control

Dynamic Permission Inheritance and Advanced Inheritance Control

The static permission inheritance method used by Windows NT on NTFS
volumes addresses some of the concerns involved in managing large directory
structures, but also has some very serious weaknesses. It does not allow an
administrator to easily customize the permissions of branches of a directory
tree while also allowing the administrator to assign new permissions to an
entire existing structure. To correct some of the problems with the static
permission inheritance system, Microsoft replaced it with a dynamic
permission inheritance system in Windows 2000.

The word "dynamic" in the name of this feature tells you much of what you
need to know about it. When you create a subfolder or file in a Windows 2000
folder, the child object inherits the parent's permissions, but remains linked to
the parent. Furthermore, the parent's permissions are stored separately from
any permissions that are manually set on the child object. This dynamic
linking method solves the two biggest problems with the static inheritance
model. First, any changes to the parent folder are automatically inherited by
the child objects. Second, any changes that were made to the child object are
not destroyed by this automatic propagation. You get the best of both worlds.

Under dynamic inheritance, an administrator or user is able to manage a
hierarchical tree of permissions that matches the hierarchical tree of
directories. Since each child inherits permissions from its parent, when you
set up a hierarchy of three or more levels of folders, the objects deep within
the structure will inherit permissions from their parent, "grandparent", "great
grand-parent" and so on. This is called recursion.

As an example, consider the document folder "C:\Documents". Generic
permissions can be applied to this folder that will be automatically inherited
by subfolders. At the next level down, say a sensitive folder for executive-
level documents called "C:\Documents\Exec", more specific permissions can
be applied. And below that one, say in "C:\Documents\Exec\Payroll-
Projections", an even more restrictive set of permissions. The lowest level will
have explicit permissions that were applied directly to the "Payroll-
Projections" folder, plus some permissions that were inherited from "Exec"
and some from "Documents". If changes are later made to the highest-level
folder, they will be passed down to "C:\Documents\Exec" automatically, and
to "C:\Documents\Exec\Payroll-Projections" as well. However, the explicitly-
set lower-level permissions will be retained.

In addition to this powerful dynamic inheritance feature, Windows 2000 offers
several advanced inheritance control features that give the administrator
more power over how inheritance works:

mehedi hasan
mehedi@joinme.com

715

• Child Protection: The main security properties dialog box for each
object contains a check box labeled "Allow inheritable permissions
from parent to propagate to this object". If the check in this box is
cleared, this breaks the normal inheritance link between this child and
its parent (and higher-level ancestors as well). When this is done, the
child will no longer dynamically inherit permissions from higher up in
the directory tree. Such a child object is said to be protected from
inheritance changes.

• Object Selection Control: When changing permissions on a folder,
you can choose if the permissions will be applied to any combination of
the folder itself, files within it, or subfolders within it.

• Recursion Control: An option exists in the dialog box where
individual permissions are assigned called "Apply these permissions to
objects and/or containers within this container only". The name of this
option is horribly confusing. What it means is that, if selected,
permissions you choose are applied only to the folder's immediate
children, but not lower-level objects. So if this were chosen as we
selected a permission for the "C:\Documents" folder in the example
above, changes would propagate to "C:\Documents\Exec" but not
"C:\Documents\Exec\Payroll-Projections", the item two levels down.

• Forced Propagation: An option called "Reset permissions on all child
objects and enable propagation of inheritable permissions" is provided.
This works the same way as the "Replace Permissions on
Subdirectories" and "Replace Permissions on Existing Files" options
from the older Windows NT static permission model. When selected,
NTFS will force propagation down to all child objects and remove any
permissions that were directly assigned to those child objects. This
allows administrators to easily "fix" permission problems in large
directory structures.

The downsides to dynamic inheritance and these advanced inheritance control
features are few. One is increased complexity: the static permission model is
much simpler to understand and apply conceptually, while the added
functionality I have described above is more complicated. Another
disadvantage of the new system is performance: dynamic inheritance requires
more processing resources to deal with changes to files and folders, and to
determine which permissions take precedence each time access to an object
is attempted.. In fact, this extra overhead is likely one of the reasons that
Microsoft chose static inheritance for Windows NT in the first place.

The complexity of the dynamic inheritance system also has an impact on how
the system determines whether a given user is allowed a particular type of
access to an object. Since child objects can have both explicitly-set and
inherited permissions that may conflict, special rules had to be developed to
resolve these permissions and determine which have priority.

Next: Permission Resolution

Permission Resolution

mehedi hasan
mehedi@joinme.com

716

Every time a user attempts a particular type of access to an object on NTFS,
the system must determine if the access should be allowed. In theory, this is
a simple matter of looking at the access control lists for the object, seeing
what the permission settings are for the user, and determining if the desired
access is allowed. Unfortunately, in reality, it's not this simple. :^) Since
every object can have many different permission settings, it is possible that
several different permission settings might apply to a particular object and
access method. Furthermore, it is possible that these permission settings
might conflict. When this occurs, the system must engage in a process of
resolving the various permissions to determine which ones should govern the
access.

Under the Windows NT permissions scheme, inheritance is static, so there is
no issue with multiple inherited permission settings. Conflicts can still occur,
however, because a particular user can have a permission associated with his
user account and also a group of which he or she is a member--or, he or she
could be a member of more than one user group. For example, user John may
have permissions allowing him read permission on a particular file called
"Struct01.acd". However, he may also be a member of the "Engineering"
group, and that group may have both read and write access to that same file.
There are two rules that are used for resolving permissions in the Windows
NT scheme:

1. With the exception of the "No Access" permission group, Windows NT
permissions are all "positive"--meaning, they grant permissions, rather
than taking them away. Therefore, the more "inclusive" of the
permission settings takes precedence. In the example above, John
would be allowed read and write access on "Struct01.acd" because the
permission he gains as a member of the "Engineering" group is more
inclusive than the one he was granted personally.

2. The "No Access" permission group is the only one that has "negative"
permissions--it denies access instead of giving it. As such, it is given
special status: it trumps rule #1. If someone has "No Access"
permission to an object, they are denied all access to the object
regardless of any other permissions. So in the example above, if John
was also a member of the "Accounting" group, and that group had "No
Access" permissions for the file "Struct01.acd", John would be totally
out of luck, regardless of his other rights settings. This is the reason
why "No Access" must be used very carefully!

Windows 2000 offers much better control over how permissions are assigned,
as well as the benefits of dynamic inheritance and advanced inheritance
control. However, these extra features make permission resolution much
more complicated. In addition to the potential conflicts caused by users being
in more than one user group, as above, you can have conflicts between
permissions that were set for the object directly and those that were inherited
from any of the object's predecessors: its parent, grandparent and so on.
Furthermore, the existence of both "allow" and "deny" permissions
complicates matters further. To deal with these complexities, Windows 2000
uses an algorithm that follows these general rules:

1. "Deny" permissions take precedence over "allow" permissions.

mehedi hasan
mehedi@joinme.com

717

2. Permissions applied directly to an object take precedence over
permissions inherited from a parent object.

3. Permissions inherited from near relatives take precedence over
permissions inherited from distant predecessors. So permissions
inherited from the object's parent folder take precedence over
permissions inherited from the object's "grandparent" folder, and so
on.

4. Permissions from different user groups that are at the same level (in
terms of being directly-set or inherited, and in terms of being "deny"
or "allow") are cumulative. So if a user is a member of two groups,
one of which has an "allow" permission of "Read" and the other has an
"allow" of "Write", the user will have both read and write permission--
depending on the other rules above, of course. :^)

The system combines these rules into a process that it uses to resolve various
permission settings. Since directly-applied permissions take precedence over
inherited ones, and "deny" permissions take precedence over "allow"
permissions, it first looks for directly-set "deny" permissions, combining them
all together for all groups the user is a member off. If it finds sufficient deny
permission to refuse access, it is done--the access is refused. Otherwise, it
looks at directly-set "allow" permissions. If it finds sufficient permission to
allow access, the access is allowed. If not, it continues on; the sequence is as
follows:

1. All directly-set "deny" permissions.
2. All directly-set "allow" permissions.
3. All "deny" permissions inherited from the parent.
4. All "allow" permissions inherited from the parent.
5. All "deny" permissions inherited from the grandparent.
6. All "allow" permissions inherited from the grandparent.
7. etc...

Well, this is certainly quite a bit more involved to explain than the NT
permission resolution process--but that's the price you pay for the much more
capable system implemented in Windows 2000. It's also not that difficult to
understand once you get used to it. ;^) Here's an example that may help you
to understand what's going on. Note that I am going to use only non-
overlapping user groups to try to keep things somewhat manageable and not
confuse you further. :^) Let's suppose we have the following permissions set
on a structure:

• For folder "C:\Documents", group "Everyone" has an "allow"
permission of "Read".

• For folder "C:\Documents\Exec", group "Employees" has a "deny"
permission of "Modify", groups "Exec" and "Top Exec" have "allow"
permission of "Modify" and group "Assistants" has "allow" permission
of "Write".

• For folder "C:\Documents\Exec\Payroll-Projections", group "Assistants"
has "deny" permission of "Modify" and group "Exec" has "deny"
permission of "Write".

mehedi hasan
mehedi@joinme.com

718

Every member of the company is a member of "Everyone". All department
managers and higher executives are members of group "Exec", and their
assistants are members of "Assistants". All lower-level managers and workers
are members of "Employees". The president and vice-president are members
of groups "Exec" and "Top Exec". Now, consider the following access
attempts:

• Randy, who is a member of "Employees", tries to read a document in
the "C:\Documents\Exec\Payroll-Projections" folder. There are no
directly-set permissions that apply to him, but that folder inherits a
"deny" on "Employees" from its parent. Randy will fail in his attempt.

• Jane, who is the director of Marketing and a member of "Exec", tries to
write a document in the "C:\Documents\Exec" folder. She will succeed
because "Exec" has an "allow" permission of "Modify".

• Jane tries to modify a payroll projection in the
"C:\Documents\Exec\Payroll-Projections" folder. She will fail because
"Exec" is denied permission to write in that folder. The directly-set
deny takes precedence over the "allow" at the parent level.

• Lisa, who is the vice-president, attempts to modify a payroll projection
in the "C:\Documents\Exec\Payroll-Projections" folder. She will
succeed because "Top Exec" has not been denied at that folder level; it
will inherit the "Top Exec" "allow" permission of "Modify" from the
parent.

That probably isn't the best of examples, but this page has already taken way
too long to write, so it will have to do. :^) At any rate, it gives you an idea of
the power you have with the Windows 2000 NTFS permissions system--and
how much extra work the system has to do when it needs to figure out
whether someone is allowed to do something with a particular file or folder.

Next: Auditing

Auditing

The biggest part of NTFS file system security revolves around controlling
access to different types of objects. Obviously, it is quite important to deal
with security in the present: managing what users are doing and ensuring
that access is correct for various files and folders. However, there's another
important aspect to security that also deserves attention: keeping records of
the past. There are many situations where it is essential for system
administrators to be able to not only manage what security happenings are
occurring immediately, but what they have been in recent days as well. To
allow administrators and managers this capability, NTFS includes a feature
called auditing.

When auditing is enabled, the system can be set to keep track of certain
events. When any of these events occur, the system will make an entry in a
special auditing log file that can be read by administrators or others with the
appropriate permission level. Each entry will indicate the type of event, the
date and time that it occurred, which user triggered the event, and other
relevant information.

mehedi hasan
mehedi@joinme.com

719

Auditing within NTFS is really just a small part of the various auditing features
offered by the Windows NT and Windows 2000 operating systems. These tools
allow administrators to keep track of everything from logins, to the use of
printers, to system errors. Within NTFS, auditable events are generally
accesses of various types, roughly corresponding to the different types of
permissions. Auditing can be selected for files and for folders, and can be
selected for individual objects or hierarchies of folders, just like permissions
can.

Next: NTFS Reliability Features and System Management

NTFS Reliability Features and System Management

One of the biggest problems with the FAT file system is that it includes
virtually no built-in reliability features. Anyone who has used FAT has likely
experienced file system problems that have occurred as a result of the system
crashing, or even operating system or application errors. While these
problems can be corrected, they often result in a loss of data. In a business or
high-performance computing environment, having the file system become
corrupted on a regular basis is simply not acceptable. One of the most
important design goals of NTFS was to make the file system more reliable.
While reliability features may not be very exciting, they are of paramount
importance to many NTFS users.

In this section I take a fairly comprehensive look at NTFS's key reliability and
system management characteristics. I begin with a discussion of NTFS's
recoverable file system features, including how its transaction-based system
operates, and how it uses transaction logging to recover the file system if that
becomes necessary. I then describe the change journal feature of NTFS. From
there, I move on to talk about error correction and fault tolerance features,
and finally, I talk a bit about fragmentation and defragmentation under NTFS.

Next: Transactional Operation

mehedi hasan
mehedi@joinme.com

720

Transactional Operation

Whenever you are using your PC, the operating system (and hence the file
system) are constantly reading files and writing files. Each operation that you
do on the system usually involves changes to a number of different files and
disk structures. In many cases, these changes are related, meaning that it is
important that they all be executed at the same time. In a traditional file
system such as FAT, if something happens to interrupt these operations,
there is the possibility that only some of these related structure changes will
have been performed. This can leave the file system in an inconsistent state,
producing file system errors, such as when clusters are allocated but never
linked to a file.

To avoid these problems, NTFS was designed as a transaction-based or
transactional file system, using a concept very similar to that used in many
database applications. Take as an example, transferring $100 from your
checking account to your savings account. Simplistically, this transaction
involves reducing your checking account balance by $100, and increasing
your savings account balance by the same amount. However, it is essential
that both changes occur--or neither. If only one occurs then either you or the
bank are out $100. To ensure that this cannot happen, the database systems
used at banks are designed to treat such transactions as atomic units--either
all the changes in the transaction occur, or none of them do.

NTFS works in a very similar way. Every operation that results in a change to
anything on the operating system is considered a transaction. Each
transaction is made of several different components, each of which results in
a change to part of the file system, such as a file's data or other attributes, or
the volume's metadata files. A special activity log is maintained by the system
(in fact, it is one of NTFS's metadata files). Every time a change is made to
any part of the volume, the system records the change in the activity log.
These changes include the creation, deletion, or modification of files or
directories.

As a particular transaction progresses, NTFS records each of the changes it
makes to any part of the volume. Once all of the changes are complete, the
transaction is also complete, and a marking is placed in the activity log to
indicate that the transaction was successful. This is called committing the
transaction. However, suppose a problem occurs before all portions of the
transaction are complete--for example, a power failure. In this case, the
activity log will be left with some of the components of the transaction having
been marked as completed, but the transaction not having been committed.
This tells the file system that the transaction was interrupted. It can then use
the information in the activity log to "undo" the partially-completed
transaction (or in some cases, to "redo" changes that need to be reapplied
after a system problem). This is called rolling back the transaction, so that
the file system appears as it did prior to the start of the transaction. This is all
part of the NTFS recovery procedure.

Note: It's important to realize that the transactional operation system only

mehedi hasan
mehedi@joinme.com

721

guarantees that transactions will be completed in their entirety if they are
completed. If a transaction isn't completed, it will be rolled back, which may
result in the loss of some data. NTFS does not guarantee that data will never
be lost, only that files won't be left in an inconsistent state.

Of course, there is a bit of a downside to this transactional system, as there
usually is. The necessity of writing information to the transaction log and
managing it during the course of every disk operation results in a slight
degradation of file system performance. The impact isn't generally considered
major, and for most users, the slight reduction in performance is well worth
the reliability improvements. NTFS makes this tradeoff in implementing many
of its different features.

Next: Transaction Recovery

Transaction Recovery

NTFS is a transaction-based file system. The use of activity logging and
transaction management of file system changes allows the file system to
maintain its internal integrity by preventing incomplete transactions from
being implemented. One key to the operation of the transaction system is the
process that is employed to check for and undo transactions that were not
properly completed. This is sometimes called transaction recovery. Recovery
is performed on NTFS volumes each time they are mounted on the system.
Most commonly, this occurs when the system is booted or rebooted.

I mentioned in the discussion of NTFS's transactional operation that the
overhead from this system reduces performance somewhat. To partially
mitigate this impact, NTFS uses caching of some of the logging operations--in
particular, it uses a system called "lazy commit" when transactions are
completed. This means that the "commit" information associated with a
completed operation is not written directly to the disk for each completed
transaction, but rather cached and only written to the log as a background
process. This reduces the performance hit but has the potential to complicate
recovery somewhat, since a commit may not get recorded when a crash
occurs. To improve the recovery process, NTFS adds a checkpoint
functionality. Every eight seconds, the system writes a checkpoint to the log.
These checkpoints represent "milestones" so that recovery does not require
scanning back through the entire activity log.

When recovery is performed, the file system examines the NTFS volume,
looking at the contents of the activity log. It scans all log entries back to the
last checkpoint, and performs a three-pass recovery procedure:

• Analysis Pass: The system analyzes the contents of the log to
determine what parts of the volume need to be examined and/or
corrected.

mehedi hasan
mehedi@joinme.com

722

• Redo Pass: The system "redoes" all completed transactions that were
recorded since the last checkpoint.

• Undo Pass: The system "undoes" (or rolls back) all incomplete
transactions to ensure file integrity.

Once again, I think it's important to point out that the transaction logging and
recovery features of NTFS do not guarantee that no user data will ever be lost
on an NTFS volume. If an update of an NTFS file is interrupted, the partially-
completed update may be rolled back, so it would need to be repeated. The
recovery process ensures that files are not left in an inconsistent state, but
not that all transactions will always be completed.

Next: Change (USN) Journals

Change (USN) Journals

When Windows 2000 was released, Microsoft created NTFS version 5.0, which
included several new features and improvements over older versions of the
file system. One of these was a new system management feature that is very
useful for certain types of applications. Under Windows 2000, NTFS 5.0
partitions can be set to keep track of changes to files and directories on the
volume, providing a record of what was done to the various objects and
when. When enabled, the system records all changes made to the volume in
the Change Journal, which is the name also used to describe the feature
itself.

Change Journals work in a fairly simple manner. One journal is maintained for
each NTFS volume, and it begins as an empty file. Whenever a change is
made to the volume, a record is added to the file. Each record is identified by
a 64-bit Update Sequence Number or USN. (In fact, Change Journals are
sometimes called USN Journals.) Each record in the Change Journal contains
the USN, the name of the file, and information about what the change was.

It's important to point out what the Change Journal does not contain, as
much as what it does. The Change Journal describes the changes that took
place, but does not include all the data or details associated with the change.
So for example, if you write data to a particular file, the Change Journal will
contain an entry that indicates that the data was written, but not the contents
of the data itself. For this reason, the Change Journal cannot be used to
"undo" operations on file system objects within NTFS. (It's frightening to think
about just how much overhead the file system would consume if it tried to
keep "undo" data for every file operation!)

The applications that could potentially make use of the Change Journal are
many. For starters, it could be very useful for system-level utilities. For
example, anti-virus programs could make use of change journals to detect
unauthorized changes to files. Backup programs could also make use of the
facility to determine which files had changed since the last time a backup was

mehedi hasan
mehedi@joinme.com

723

performed. Programs that perform system management tasks such as
archival or replication could also make good use of this feature.

Next: Error Correction and Fault Tolerance

Error Correction and Fault Tolerance

In order to increase the reliability of the file system, and hence the operating
system as a whole, NTFS includes several fault tolerance features. As the
name suggests, these are capabilities that improve the ability of the file
system to deal with error conditions that may arise when the system is in
use. Fault tolerance is very important for business applications where a
primary goal is to keep systems running smoothly with a minimum of
downtime.

In no particular order, here are some of the fault tolerance and error-handling
features that NTFS includes. Note that some of these capabilities are
implemented through the use of the NTFS fault-tolerant disk driver, called
"FTDISK":

• Transactional Operation: The way that NTFS handles transactions
as atomic units, and allows transaction recovery, are key fault
tolerance features that I have described elsewhere in this section.
Recovery is performed automatically whenever the system is started.

• Software RAID Support: NTFS partitions can be set up to use
software RAID if the appropriate version of Windows NT or 2000 is
used. For more information, see the full discussion of RAID.

• Dynamic Bad Cluster Remapping: When the fault-tolerant disk
driver is used, the file system has the ability to automatically detect
when bad clusters have been encountered during read or write
operations. When a bad cluster is found, the file system will
automatically relocate the data from the bad location and mark the
cluster bad so it will not be used in the future. Now, the FAT file
system includes the ScanDisk utility that can do this as well, but you
must run it manually--with NTFS this can be done automatically.
Furthermore, ScanDisk can only identify clusters that have already
gone bad, at which point, data may be lost. The FTDISK driver will
actually read back data as it is written (sometimes called a "verify"
operation) ensuring that data is unlikely to be lost due to a bad cluster
at the time of a write. (Bear in mind, however, that it is possible for an
area of the disk to "go bad" between the time that the data is written
and the time that it is read back.)

These features all help to make NTFS a reliable file system. Of course, they
only protect against certain types of problems, and only in certain ways.
These capabilities should certainly not be considered replacements for proper
backups and other system maintenance!

mehedi hasan
mehedi@joinme.com

724

Next: Fragmentation and Defragmentation

Fragmentation and Defragmentation

Under ideal conditions, file system read and write transfer performance is
maximized when files are contiguous on the disk. This means that all of the
data in each file would be located in consecutive clusters or blocks within the
volume. Contiguous storage improves performance by reducing unnecessary
seek motions that are required when data is located in many different places.
When files are broken into many pieces they are said to be fragmented.
Fragmentation is a common occurrence in the FAT file system; if you are
unfamiliar with the concept, you may wish to review this full discussion of
fragmentation and defragmentation.

The NTFS file system handles the storage of files and directories in a very
different way than the FAT file system does. FAT is a very simple, and
relatively "unintelligent" file system, that pays little attention to how much
fragmentation will result from how it operates. In contrast, NTFS is smarter
about how it manages the storage of data. For example, NTFS reserves space
for the expansion of the Master File Table, reducing fragmentation of its
structures. Overall, fragmentation is less of a concern in NTFS than it is under
FAT.

The superior disk management capabilities of NTFS mean that fragmentation
is reduced compared to FAT. Unfortunately, this led to a popular myth--that
NTFS volumes have no fragmentation, and therefore never need
defragmentation. Microsoft unwittingly exacerbated this problem by not
providing any utility to defragment NTFS partitions in Windows NT, implying
that defragmentation was unnecessary. But this is simply not the case: NTFS
partitions definitely are subject to fragmentation. Many users of NTFS have
never defragmented their partitions at all, leading to avoidable performance
slowdowns over time.

In fact, due to their complexity, NTFS volumes suffer from a variety of
different types of fragmentation. Unlike FAT, where a simple cluster allocation
system is used, NTFS uses the Master File Table and a combination of
resident and non-resident attributes to store files. Due to the flexible way that
data is stored, and that additional data storage areas are added as needed,
the result can be pieces of data spread out over the volume, particularly when
small files grow into large ones. Remember that while NTFS has a much
better design than FAT, at its core it does still store data in clusters. The
addition and removal of data storage extents causes much of the
fragmentation of files and directories. As the MFT grows, it itself can become
fragmented, reducing performance further.

The solution to the problem of fragmentation under NTFS is the same as it is
under FAT: use a defragmenter. :^) For Windows NT, you will need to use a
third-party program, one of the most popular being the Diskeeper program by

mehedi hasan
mehedi@joinme.com

725

Executive Software. In its wisdom, Microsoft decided to license the Diskeeper
defragmenter technology and include it in Windows 2000, so the operating
system now includes a built-in defragmenter, though it is likely either less
capable or slower than the full Diskeeper program sold by Executive Software.
(As an interesting aside, Microsoft found themselves in the hot-seat as a
result of this licensing decision. The German government took issue with the
defragmenter because the CEO of Executive Software is a member of the
Church of Scientology, and a big hoo-ha resulted. How bizarre. As the old
expression says, "I am not going there", but you can read about this strange
episode here.)

Next: Other NTFS Features and Advantages

Other NTFS Features and Advantages

"But wait! There's more!"
 -- TV infomercial pitchmen

Most of the advantages of NTFS compared to simpler, older file systems such
as FAT relate to its fundamental characteristics. NTFS offers a superior
architecture, support for larger files, security features such as access control
and logging, enhanced reliability, and more. Basically, these are all the
features and characteristics of the file system that I have been describing in
the other sections on NTFS. However, in addition to those key attributes of
NTFS, Microsoft has also added some other little goodies. They don't
necessarily fit all that well into the other categories so I put them in this
convenient "miscellaneous" area.

In this section I discuss some of the "extra" features that help make NTFS an
efficient, useful and secure file system. I begin by discussing NTFS's
convenient file-based compression feature. I then talk about NTFS POSIX
support and attempt to explain what exactly that means. :^) I then talk
about how NTFS encryption works, describe NTFS disk quotas, and also
explain NTFS's sparse file support.

Note: Several of the features described in this section are found only in the
newer NTFS 5.0 version of the file system found in Windows 2000.

Next: Compression

Compression

Disk compression is a technique that exploits a known characteristic of most
types of data: they have repeating patterns. By using software that
implements special compression and decompression algorithms, it is possible
to store most files in a way that they take up less space on the disk than they

mehedi hasan
mehedi@joinme.com

726

normally would. Compression became very popular in the late 1980s and
early 1990s, when software and data began to grow in size much faster than
hard disks were. Products were created to allow for the compression of entire
FAT volumes, and also files or groups of files. I discuss disk compression in
general terms, including how it works and how it is implemented, in this
section of the site.

One of the most useful features that is built into NTFS is file-based
compression that can be used to compress individual files or folders on almost
any NTFS partition, under Windows NT 3.51 or later. While Microsoft's
consumer operating systems such as Windows 3.1 and Windows 9x support
compression of entire disk volumes (under some circumstances), they do not
let you easily decide to compress a portion of a volume. Doing that has
required resorting to the use of a third-party file compression utility. Under
NTFS, you can easily compress one or more files or folders by opening their
properties and telling the operating system to compress them. The
compression is handled by the operating system during writes, and
decompression is automatic whenever an application needs to read the file.

As is the case for FAT volume compression, the performance impact of NTFS
compression is a complex question. Performance when working with
compressed files can be degraded compared to regular files, as a result of the
overhead required to compress and decompress the file on a regular basis--it
takes CPU time. On the other hand, compressing a file means that it takes up
less space on the disk, which reduces the amount of time required to write to
the volume or read from it, potentially counteracting the compression
overhead. In general, since hard disks today are quite large, most people use
NTFS compression only on infrequently-used files. For example, if you have
large numbers of old database files that you aren't using, you can save a lot
of space by compressing them. Of course, you might be better off archiving
them, to CD-RW or other storage media. Still, most NTFS users consider
compression a useful feature of the file system.

Note: NTFS compression is not supported on NTFS volumes that use a cluster
size greater than 4 kiB. This is a primary reason why the default cluster size
for NTFS volumes is never made larger than 4 kiB under Windows NT 3.51 or
later.

Next: POSIX Support

POSIX Support

One of the "miscellaneous" features that was designed into the NTFS file
system was support for the Portable Operating System Interface standard,
abbreviated POSIX. POSIX is a set of standards that was created to enhance
the portability of applications between computer systems. As the name
implies, POSIX is based somewht on the UNIX operating system and its

mehedi hasan
mehedi@joinme.com

727

constructs. The POSIX standards are administered by the IEEE.

There are actually a number of different POSIX standards. NTFS specifically
supports the POSIX.1 standard, which is the standard for application program
interfaces based on the "C" programming language. In practical terms, POSIX
support is manifested most obviously in NTFS's support for special file naming
provisions. For example, NTFS allows for file names to be case-sensitive, and
also allows for hard links to be established, enabling multiple names for the
same file within the file system. The "last accessed" date/time stamp for files
is also part of POSIX support.

You may be wondering--what does POSIX support do for me? In general, the
answer is "not much". :^) The purpose behind NTFS's POSIX support is to
facilitate the migration of software to the Windows NT environment. Unless
you are a programmer, you probably will never need to know anything more
about POSIX support under NTFS than what I am telling you here. Based on
my research, it appears that even if you are a programmer, NT POSIX
support may be much more about sizzle than steak. The POSIX support as
implemented is considered very rudimentary, meaning that the portability of
programs is also limited. Some more cynical observers believe that the POSIX
support in NTFS was included solely to enable Microsoft to satisfy a
requirement for sales to United States federal government agencies.

Next: Encryption

Encryption

One of NTFS's design goals was to allow for proper access control and
security, something that was sorely lacking under the FAT file system. In fact,
a rather complex security and permissions system is used by NTFS to ensure
that only authorized system users can gain access to, or control of, various
system objects. This system works well in most cases, but it has a very
serious shortcoming: it only works when users "play within the system". As
long as Windows NT/2000 is booted normally, the protections offered by the
NTFS security mechanisms work well. Unfortunately, it has always been
possible for a malicious user to try to access an NTFS partition using a low-
level disk utility, bypassing the NTFS security methods entirely. Since NTFS
structures were not encrypted, security could be compromised without a lot of
trouble--the average person would not have any way of making sense of an
NTFS partition when looking at raw bits and bytes, but knowledgeable people
certainly could.

To correct this deficiency, Microsoft introduced an encryption capability in
NTFS 5.0, as part of Windows 2000. This feature is called the Encrypting File
System or EFS. Using EFS, it is possible to encrypt important data before
storing it on the NTFS partition. Without the proper decryption key, the data
cannot be accessed. This makes it impossible for anyone to easily access data
stored on NTFS volumes by booting the PC with a floppy disk and using a disk

mehedi hasan
mehedi@joinme.com

728

sector editor, for example. It also offers some peace of mind to those who
carry critically sensitive information around on notebook PCs, which are
frequently lost--or "liberated", if you know what I mean...

Not surprisingly, the details of how EFS works are fairly complicated--there's
no way to make a capable and secure encryption system without it being
fairly complex. The system uses a public key and private key algorithm, with
128-bit security domestically (in North America) and 40-bit keys
internationally. The "public key / private key" mechanism is a common one,
also used for example in the PGP ("Pretty Good Privacy") encryption system.
Trying to explain the encryption system would lead me down a long tangential
path I would like to avoid. :^) In a nutshell, it works this way. Each user has
a public and a private key; the public key can be known to others, while the
private key is, of course, private. When a file is encrypted, this is done using
the public key. In order to decrypt the file, the private key must be known.
EFS carefully guards these private keys in order to ensure that only the
person who encrypted the file can decrypt it. The two-key system means that
you can encrypt a file using the public key, but you cannot decrypt the file
using it!

Fortunately, the internal details aren't necessary in order to use the feature.
Enablying encryption is generally as simple as "turning on" encryption for one
or more files or folders, much the way NTFS compression works--using the
object's properties settings. Encrypting a folder means that any files added to
that folder in the future will be automatically encrypted as well.

Tip: If you are interested in learning more about the details of how EFS
works, try reading this article.

Technically, EFS is not considered a "built-in" part of NTFS. EFS runs as a
system service under Windows 2000, and interacts very closely with the
internal services and drivers that operate the NTFS file system, but they are
really not the same thing. When a file needs to be encrypted or decrypted,
the file system works with the EFS service to handle the translation
operations for the file. Again, these implementation details are hidden from
the user--the operation of EFS is essentially "seamless" and for all intents and
purposes can be considered part of NTFS, which is why I described it here.
:^)

Next: Disk Quotas

Disk Quotas

In the discussion of the new encryption system added to NTFS 5.0, I
mentioned how the lack of encryption in early versions of NTFS was a
significant weakness in the NTFS security model. Another weakness of NTFS--
this one more of a little, nagging annoyance--is that it did not allow for easy
management of disk space usage. While competing products like Novell
NetWare offered the ability to control how much of the volume was taken by
users, this was not possible under NTFS. Under Windows NT, it is possible for

mehedi hasan
mehedi@joinme.com

729

any user to use as much of the disk space on a volume as he or she can grab.
This can be a serious administrative problem for systems in some
organizations that are shared by many users. In theory, a single user could
consume all of the available disk space on a server volume--either
intentionally or unintentionally.

To correct this situation, Microsoft introduced quota management as a new
feature in NTFS 5.0 under Windows 2000. Microsoft had apparently been
planning on this feature for some time, since the metadata file required to
implement quotas has been present since Windows NT version 3.5, but it only
started to be used in NTFS 5.0. As the name suggests, quota management
allows administrators to keep track of how much disk space is consumed by
each user, and limit space consumption as well.

The quota system implemented in NTFS 5.0 is quite flexible and includes
many capabilities: You have the ability to do the following:

• Set quotas on a per-user or per-volume basis. This lets you limit space
used on particular disks, or overall total space use for a person.

• Set a "limit" level and a "warning" level, or both. The user is blocked
from using any disk space above the "limit" level. He or she may use
space beyond the "warning" level, but a warning will be generated.

• Monitor and log events that cause a user to go over the "limit" or
"warning" levels.

Of course, disk quotas are an optional feature; it is not mandatory for
administrators to use them. Speaking as someone who has used UNIX
systems with quotas before, I can state with authority that they are best
thought of as a "necessary evil", and used carefully. :^) It can be annoying to
have users fail at what they are doing because they have run out of disk
space. It is a good idea to institute quotas only if they are really and truly
needed. If you do use them, be sure not to make them too restrictive--if you
do, not only will your users be inconvenienced, so will you when they call
asking to have their quotas increased. :^) Using the "warning" mode may be
a good compromise in some circumstances.

Next: Sparse File Support

Sparse File Support

One of the more interesting features added to NTFS version 5.0 under
Windows 2000 is special support for sparse files. As the name suggests, these
are files that are primarily empty. Now, it is an inherent characteristic of most
files that they contain areas of "empty space"--long stretches of zeroes.
These zeroes are stored along with the "real data" in the file, and take up
space the same way. If files are not too large, storing these zeroes does not
represent much of a problem. Sure, some space is expended on these
"empty" areas, but this is expected and manageable.

However, there are certain applications that may employ very large files that
contain extremely large areas of empty space. A common example is a large

mehedi hasan
mehedi@joinme.com

730

database file, which may contain strings of millions of zeroes, representing
either deleted data, or a "space-holder" for future data storage--such as
unused database fields. There are also scientific applications that make use of
very large files where small pieces of data must be spread throughout the file,
but much of the file is empty. If such a file is stored in the conventional way,
a great deal of disk space is wasted on these repeated "blanks".

You may be wondering--why bother with support for a special feature to
address these files when NTFS already includes built-in compression, which
could be used to save the space used by the long strings of zeros in sparse
files? It's a good question. :^) The most likely reason is that compression
introduces overhead that may not be acceptable for critical applications. Much
as database systems are likely to have sparse files, they are also often
heavily-used applications where compression might introduce unacceptable
performance degradation.

To improve the efficiency of storing sparse files without necessitating the use
of compression, a special feature was incorporated into NTFS under Windows
2000. A file that is likely to contain many zeroes can be tagged as a sparse
file. When this is done, a special attribute is associated with the file, and it is
stored in a different way from regular files. The actual data in the files is
stored on the disk, and NTFS keeps track of where in the file each chunk of
data belongs. The rest of the file's bytes--the zeroes--are not stored on disk.
NTFS seamlessly manages sparse files so that they appear to applications like
regular files. So, for example, when an application asks to read a particular
sequence of bytes from a sparse file, NTFS will return both regular data and
zeroes, as appropriate, just as it would for a regular file. The application can't
tell that NTFS is playing "storage games" on the disk.

Note: Tagging a file as sparse is a "one-way trip"--you cannot change the file
back into a normal file again.

Next: NTFS Implementation Considerations

NTFS Implementation Considerations

If you've already read the other sections in the site's coverage of NTFS, you
have by now probably received a very thorough understanding of what NTFS
is all about. Its many features and options make NTFS the choice of a growing
number of PC users. However, all of the advanced capabilities of NTFS do not
come without a cost. Along with its enhanced operation, NTFS brings
considerable complexity. There are a number of specific issues and potential
difficulties that can arise when employing the NTFS file system in the "real
world".

In this section, I take a look at several important issues related to
implementing NTFS volumes. I begin with a discussion of NTFS compatibility
with various hardware and operating systems. I then describe some of the
issues related to converting between NTFS partitions and those of other file
systems. I then discuss some of the performance and overhead concerns

mehedi hasan
mehedi@joinme.com

731

associated with implementing the advanced features that make NTFS so
capable. I proceed from there to discuss NTFS partitioning strategies--how to
decide how to split up a disk when using NTFS. I conclude by explaining how
NTFS compares to other file systems, and in particular, I tackle the common
question of how to choose between NTFS and FAT.

Next: NTFS Hardware and Operating System Compatibility

NTFS Hardware and Operating System Compatibility

NTFS is a file system, and a file system is essentially a set of logical
constructs that dictate how the space on a disk volume is to be used. This
means that a file system is in many ways more software than hardware.
Since it is primarily logical and not physical in nature, this means that NTFS
can be used with pretty much any hardware. You won't encounter problems
with using NTFS on different types of hard disks for example, and the type of
controller or interface is not likely to be an issue either. As long as Windows
NT or 2000 can recognize the hard disk, you can use NTFS on it.

The concerns with NTFS hardware compatibility start to show up more when
you move out of the realm of hard disks. NTFS is a complex file system that
Microsoft designed when the only writeable random access media commonly
used were hard disks and floppy disks. Microsoft made a decision early on to
not support NTFS on floppy disks. The reason for this is fairly obvious: the
special NTFS metadata files represent significant overhead that would
consume much of the small storage capacity of a floppy, and writing them
would likely increase formatting time considerably. Even in the mid-1990s,
floppies had been relegated to chores such as short-term backup or transfer
between machines--why would anyone want to bother putting NTFS on a
floppy anyway? Since that time, third-party software writers have been busy,
and Sysinternals actually has a freeware utility that will format an NTFS
floppy. However, as even they admit, the utility shows that "NTFS on floppies,
while possible, is not a great idea". :^)

Removable media such as Iomega Zip or Jaz drives, or the Castlewood Orb
drive, fall in between the universal compatibility of hard disks, and the
general incompatibility of floppies. You need to check with the maker of the
drive to find out if they support NTFS. For example, Iomega officially does not
support NTFS on Jaz or Zip drives, while I believe that Castlewood does
support NTFS. It's important to note that in some cases, the lack of support
for NTFS is more of a business decision than a technical one--saying "we don't
support X" cuts down on technical support calls and potential complaints, so
many companies do this today. Often, even if NTFS is officially unsupported,
it will work just fine on the drives. Obviously, you are "on your own" if you
proceed to format a drive with NTFS when the drive's manufacturer refuses to
support NTFS.

In terms of operating systems, it will come as no surprise to you that
Windows NT and Windows 2000 are the primary operating systems using the
NTFS file system. In order to exploit the advantages of NTFS version 5.0, you
need to use Windows 2000. Consumer versions of Microsoft's Windows

mehedi hasan
mehedi@joinme.com

732

operating system provide no native support for NTFS, though it may be
possible to add this with a third-party driver. Non-Microsoft operating systems
now offer some access to NTFS partitions as well, depending on the version--
also, this is often just read-only access, not full access. For more information,
see this overview of PC file systems, or refer to this operating system and file
system cross-reference.

Next: NTFS Partition Conversion

NTFS Partition Conversion

One way of getting an NTFS partition on a system that supports the file
system is to create one from scratch, of course. :^) This is pretty easy to do.
However, there are also situations where you may wish to transform an
existing partition from another file system into NTFS. To do this requires that
the partition be converted. Conversion causes the operating system to change
the structures of the partition to match the NTFS file system, while retaining
all of the directories and files that the volume contains. Most commonly, FAT
file system partitions are converted to NTFS.

Microsoft provides a tool as part of the Windows NT and Windows 2000
operating systems that allows you to convert a FAT partition into NTFS.
Unsurprisingly, it is called "CONVERT.EXE". :^) You run it from the command
line using an invocation such as "convert c: /fs:ntfs", which tells Windows to
convert the "C:" volume into the NTFS file system. The conversion is fairly
straight-forward, but there are some caveats you should keep in mind when
performing a conversion:

• Conversion is a "one-way trip". The CONVERT utility does not allow
you to convert from NTFS back into FAT (though third-party utilities
may; see below.)

• The conversion process requires several megabytes of free space on
the volume, to allow for the creation of disk structures and other
overhead. Don't try to convert a partition that is completely full or the
process may fail.

• NTFS partitions that are converted from FAT partitions under Windows
NT are assigned a cluster size of 512 bytes, which may reduce
performance compared to larger cluster sizes that are the default for
new NTFS partitions. Windows 2000 has corrected this problem. See
this page for more discussion of this issue.

Tip: For more information on using the CONVERT program, see this page in
the Microsoft Knowledge Base. For more general information on the NTFS
partition conversion process, try this one.

Another option is to make use of third-party partitioning utilities such as
Partition Magic. Most of these programs include the ability to convert a
partition from NTFS to FAT or vice-versa, and some will also convert to other
file system formats as well. Of course, the disadvantage with a third-party
program is fairly obvious: you have to pay to buy the software!

mehedi hasan
mehedi@joinme.com

733

Warning: As with any extensive, low-level disk modification, conversion runs
the (small) risk of data loss, especially if the process is somehow interrupted.
It is advisable that you back up the entire contents of the partition before
starting the conversion. It's also a good idea to use a UPS during the process,
and avoid such operations during times when the electrical service is unstable
(such as during a thunderstorm.)

Next: NTFS Performance and Overhead Considerations

NTFS Performance and Overhead Considerations

One of my favorite expressions is from a Heinlein novel: TANSTAAFL, which
stands for "there ain't no such thing as a free lunch". What it means is simply
that you usually don't get something for nothing. Life is full of tradeoffs, and
certain costs that go with certain benefits. This is true of most things in life; it
is true in the computer world in general, and it is also true of NTFS.

When it comes to NTFS, the tradeoff is generally between functionality and
performance. NTFS has a lot of interesting and useful features and
capabilities. However, most of these abilities come at the cost of overhead.
The more options you add to a file system, the more disk space and
processing is required to implement and manage them. This is simple
common sense, but it is important to point out to those considering the use of
NTFS. You can't expect to have a file system that allows flexible access
control, compression, auditing, advanced reliability and other useful qualities
without requiring the system to make some investments in allowing these
features to work.

The performance implications of NTFS features mean that using NTFS may
result in a slight decrease in performance compared to the use of a simpler
file system such as FAT. Here are a few tips and issues to keep in mind when
considering how to implement NTFS partitions, which may partially mitigate
this performance impact:

• Use Only What You Need: Some of the fancier features in NTFS can
impose more significant overhead penalties on the system than others,
both in terms of processing power and the use of disk space. If you
need those features, then in most cases they are worth the cost.
However, it makes sense to avoid using features that you don't need.
For example, don't compress frequently used files if you have lots of
disk space; don't enable lots of audit logging unless you really require
it, and so on.

• Use Adequate Hardware: Trying to implement a complex system on
a low-powered system with a small, slow hard disk is probably asking
for trouble. The overhead associated with NTFS becomes less and less
noticeable on newer hardware (which is part of what is allowing
Microsoft to add even more new features to the file system.)

• Watch The Cluster Size: While most people think of cluster size as
being strictly a FAT file system issue, NTFS also uses clusters, and its
performance is impacted by the choice of cluster size. Cluster size is in

mehedi hasan
mehedi@joinme.com

734

turn affected by the choice of partition size. In addition, under
Windows NT the cluster size is different if the partition was converted
from FAT. See here for a more thorough discussion of these issues.

• Fragmentation and Defragmentation: Contrary to a popular myth,
NTFS partitions do become fragmented and performance can benefit
from regular defragmenting. Windows 2000 comes with a
defragmenter built into it; for Windows NT you will need to use a third-
party tool.

It is wise to keep these performance issues in mind, both when using NTFS,
and even in considering if you even want to use it. At the same time, you
should not let these concerns "scare you off" from using NTFS. If you manage
your system well and use reasonably modern hardware, the difference in
performance between using NTFS and FAT partitions should not be a
significant one. For a business, NTFS is pretty much indispensable, and if a bit
more hardware needs to be thrown at the system to compensate for a small
amount of overhead, it's usually an easy decision.

Note: For a more thorough, general discussion of hard disk performance, see
this section.

Next: NTFS Partitioning Strategies

NTFS Partitioning Strategies

When setting up a new system using the NTFS file system, one decision that
you need to make is how you are going to set up your NTFS partitions.
Modern hard disks are very large; in many situations, it makes sense to not
put all of the space in a hard disk into a single partition. NTFS is often used
for server machines, which may make use of RAID technology to allow the
creation of very large logical disks. If you have a 500 GB RAID array, it is
certainly conceivable that you might not want all of that space put in a single
volume!

I discuss partitioning issues, including the various tradeoffs in choosing
numbers and sizes of partitions, in this comprehensive discussion of
partitioning. While that discussion is oriented around the FAT file system,
many of the same points apply to NTFS. A key one is that NTFS is like FAT in
that the cluster size of the partition affects its performance, and the default
cluster size depends on the size of the partition selected. Other general
"common sense" issues are also relevant to NTFS as well as FAT; for
example, not splitting up your disk into too many partitions to "organize it".

In addition to that section, here are a few specific points that you may want
to keep in mind when partitioning a system with NTFS:

• Limit the Number of Partitions: NTFS is designed to be able to
gracefully handle much larger partitions than FAT can. As a result, you
should avoid the temptation to "go overboard" and segment large
disks or RAID arrays into many little volumes. Doing this makes the

mehedi hasan
mehedi@joinme.com

735

system more difficult to manage in most cases and results in not much
improvement in performance.

• Consider A Dedicated Operating System Partition: Many people
who set up NTFS systems use two partitions. The "C:" (boot) volume is
made smaller (a few gigabytes) and dedicated to the operating system
and the installation of low-level utilities and administration tools. The
other volume (normally "D:") is used for applications and data. This
split may make administration easier and avoid problems associated
with using too large a boot partition size with Windows NT.

• Adjust Cluster Sizes If Needed: The default cluster size on an NTFS
partition can be overridden, as described here. You may wish to use
larger or smaller clusters than the system would normally select,
depending on your needs. For example, you may want a larger cluster
size for a partition that will be holding large multimedia files. Do be
aware that there can be consequences to going away from the default
values. For example, NTFS compression will not work on a volume that
uses clusters greater than 4 kiB in size.

• Beware of Converting Partitions to NTFS Under Windows NT:
Converting a partition from FAT to NTFS under Windows NT results in
the NTFS partition being assigned the smallest possible cluster size,
512 bytes. This may cause a degradation in performance.

• Multiple Operating System Compatibility: Some systems use
multiple operating systems, some of which cannot natively read and
write NTFS partitions. For example, Windows 9x/ME cannot read and
write NTFS partitions. On these machines, some people create one FAT
partition, in addition to any NTFS partitions, for compatibility and file
transfer purposes. Note that this is not required for accessing files on
an NTFS partition over a network; files on an NTFS partition can be
shared across a network even if the network client's operating system
cannot use NTFS locally. See this page for more information.

These suggestions should help guide you as you set up an NTFS system and
determine how to partition it. Once again, I would encourage you not to worry
too much about fine-tuning your partition selection strategy. Most of the
other system setup and administration decisions you make in setting up the
PC will have more of an impact on overall performance.

Next: NTFS and Other File Systems

NTFS and Other File Systems

Many systems that are set up to use the NTFS file system use it exclusively. If
you consider the reasons why NTFS is often used, this makes a lot of sense.
For example, consider a centralized server implemented in a small
manufacturing company. The security features of NTFS would be employed to
manage and control access to important company information. It wouldn't
make a lot of sense to have some of the data stored in this secure
environment and some of it also stored in a more mundane FAT partition
where anyone could access it.

mehedi hasan
mehedi@joinme.com

736

However, there are situations where you may wish to set up a PC that has
both an NTFS partition and another file system partition, such as FAT16 or
FAT32. This is commonly done on systems that use multiple operating
systems--so called "dual boot" PCs. There is one particular situation that is
worth mentioning. In the 1990s, many dual-boot PCs were set up that used
Windows 95 OEM Service Release 2 (OSR2) or Windows 98, and also Windows
NT. If you do this and set up Windows 9x on a FAT32 partition and Windows
NT on an NTFS partition, you will quickly discover that you have a little
problem: neither operating system can read the other one's partition. This
means that there is no way to share files between the two operating systems!
There are several workarounds for this problem: you can upgrade the
Windows NT install to Windows 2000 (which supports FAT32) or you can use
FAT16 instead of FAT32. Another common solution is to create an additional,
small FAT16 partition that serves as "common ground" between the two
operating systems (since both Windows NT and Windows 9x can read and
write FAT16 volumes.)

Generally speaking, setting up both NTFS and other file system partitions on
the same machine does not cause problems. A computer running an operating
system that supports NTFS and another file system like FAT can be set up
with one or more of each type of partition. The two will not conflict with each
other. Of course, you will only get the benefits and features of NTFS when
you are using the NTFS volume.

Next: NTFS vs. FAT

NTFS vs. FAT

FAT and NTFS are the two most commonly used file systems in the PC world.
Since many PC users are now starting to discover the benefits of Windows NT
and Windows 2000 (when compared to their consumer grade counterparts
such as Windows 9x or ME) they are learning that they have an important file
system choice to make. They must decide whether to keep using FAT, as
many have done for years in other Microsoft operating systems, or to "take
the plunge" and go for NTFS. In fact, this may well be the most commonly-
asked question associated with NTFS: "should I use FAT or NTFS?"

As with many commonly-asked questions, there are no simple answers. :^)
As with other popular "X or Y" questions such as IDE vs. SCSI, the reason
that the question exists is that both alternatives fit certain niches and needs.
I can't give you a definitive answer regarding which file system you should
choose, because I don't know the particulars of your situation. That's the
honest answer. Many people aren't satisfied with this, of course... they want
me to tell them which is "better". This is a bit like asking which is "better": a
mid-sized family sedan or a pick-up truck? A Ferrari or a motorcycle?

Most frequently, the question of NTFS vs. FAT is answered by looking at the
advantages and disadvantages of NTFS, and comparing it to the simpler FAT
file system. This can be made easier by assessing three general questions:

mehedi hasan
mehedi@joinme.com

737

1. Do you need the added features and capabilities that NTFS provides
but FAT does not?

2. Are you willing to accept the additional hardware requirements
necessary to use NTFS, and to deal with its drawabcks and limitations?

3. Can you invest the additional time and resources for proper
administration of an NTFS system?

Again, I cannot answer those questions for you, nor will I endeavor to do so. I
would encourage you to read the various pages that describe the various
benefits and drawbacks of NTFS, and decide for yourself. The questions above
will help you.

The only other rule of thumb that I would use is this one: the larger the
organization, or the greater the number of people that will be using a PC, the
more likely it is that you will want to use NTFS on it. Even leaving aside the
other features of NTFS, the security provisions of that file system make it
pretty much a necessity if you are going to set up a server with files shared
by many different users and groups. For very small organizations, access
control is something that may be dispensable, but for a company of say, 20
or more people, it becomes quite important. Of course, in some medium-sized
organizations security may not be required, but those are pretty atypical. For
individual PC users, NTFS may well be overkill, depending on how the PC is
being used.

