

���������	

���
�

����
������

�������

Maria-Isabel Sánchez-Segura
Carlos III Technical University of Madrid, Spain

Hershey • London • Melbourne • Singapore

����� ������ �������� �

Acquisitions Editor: Mehdi Khosrow-Pour
Senior Managing Editor: Jan Travers
Managing Editor: Amanda Appicello
Development Editor: Michele Rossi
Copy Editor: Maria Boyer
Typesetter: Jennifer Wetzel
Cover Design: Lisa Tosheff
Printed at: Yurchak Printing Inc.

Published in the United States of America by
Idea Group Publishing (an imprint of Idea Group Inc.)
701 E. Chocolate Avenue, Suite 200
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@idea-group.com
Web site: http://www.idea-group.com

and in the United Kingdom by
Idea Group Publishing (an imprint of Idea Group Inc.)
3 Henrietta Street
Covent Garden
London WC2E 8LU
Tel: 44 20 7240 0856
Fax: 44 20 7379 3313
Web site: http://www.eurospan.co.uk

Copyright © 2005 by Idea Group Inc. All rights reserved. No part of this book may be repro-
duced in any form or by any means, electronic or mechanical, including photocopying, without
written permission from the publisher.

Library of Congress Cataloging-in-Publication Data

Developing future interactive systems / Maria Isabel Sanchez-Segura, editor.
 p. cm.

Includes bibliographical references and index.
ISBN 1-59140-411-8 (h/c) -- ISBN 1-59140-412-6 (s/c) -- ISBN 1-59140-413-4 (eisbn)

 1. Interactive computer systems. I. Sanchez-Segura, Maria Isabel, 1971-
QA76.9.I58D438 2004
006.7--dc22

2004016384

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in
this book are those of the authors, but not necessarily of the publisher.

���������	�
���
�

����
��������������

!�"����#�$�������

Preface .. v

Chapter I. Real Living with Virtual Worlds: The Challenge of
Creating Future Interactive Systems .. 1

Kirstie L. Bellman, Aerospace Integration Science Center,
 The Aerospace Corporation, USA

Chapter II. The Future Virtual Reality Melting Pot 40
Chadwick A. Wingrave, Virginia Tech, USA

SECTION I: WHOLE VIRTUAL ENVIRONMENTS DEVELOPMENT METHODS

Chapter III. A Methodology of Design for Virtual Environments 66
Clive Fencott, University of Teesside, UK

Chapter IV. SENDA: A Whole Process to Develop Virtual
Environments ..92

Maria-Isabel Sánchez-Segura, Carlos III Technical University
 of Madrid, Spain
Angélica de Antonio, Universidad Politécnica de Madrid, Spain
Antonio de Amescua, Carlos III Technical University of Madrid,
 Spain

SECTION II: DESIGNING VIRTUAL ENVIRONMENTS

Chapter V. Steps Toward a Design Theory for Virtual Worlds 116
Joseph A. Goguen, University of California at San Diego, USA

Chapter VI. Conceptual Modeling of Virtual Environments Using
Hypermedia Design Techniques ... 153

Paloma Díaz, Universidad Carlos III de Madrid, Spain
Susana Montero, Universidad Carlos III de Madrid, Spain
Ignacio Aedo, Universidad Carlos III de Madrid, Spain
Juan Manuel Dodero, Universidad Carlos III de Madrid, Spain

Chapter VII. Design of Believable Intelligent Virtual Agents 177
Pilar Herrero, Universidad Politécnica de Madrid, Spain
Ricardo Imbert, Universidad Politécnica de Madrid, Spain

Chapter VIII. An Agent-Based Architecture for Virtual
Environments for Training ... 212

Angélica de Antonio, Universidad Politécnica de Madrid, Spain
Jaime Ramírez, Universidad Politécnica de Madrid, Spain
Gonzalo Méndez, Universidad Politécnica de Madrid, Spain

SECTION III: COLLABORATIVE VIRTUAL ENVIRONMENTS AND MIXED REALITY

Chapter IX. Construction of Collaborative Virtual Environments ... 235
Anthony Steed, University College London, UK
Emmanuel Frécon, Swedish Institute of Computer Science, Sweden

Chapter X. Toward a User-Centred Method for Studying CVEs for
Learning .. 269

Daphne Economou, University of the Aegean, Greece
Steve Pettifer, University of Manchester, UK

Chapter XI. A Component-Oriented Approach for Mixed Reality
Applications .. 302

Michael Haller, Upper Austria University of Applied Sciences,
 Austria

Glossary ... 332

About the Authors ... 339

Index .. 345

�
�#���

v

“Cyberspace…a global artificial reality that can be visited
simultaneously by many people via networked computers.”
(Gibson, 1984)

One of the mass media communications with the most rapid growth in recent
years is the Internet (McKay, Matuskey, Testani, et al., 1998). This increased
importance had a major impact on society, as many people spend a lot of time
on the Internet because of work, entertainment, an so forth (Welch, 1996; Damer,
1996, 1997; Bruckman, 1997). At the beginning, the use of the Internet was
limited to chat, e-mail, file transfer, and so forth, but with time the Internet
started to be used as the way to link people who were geographically dis-
persed. This marked the beginning of the first kind of virtual environments
called MUDs—Multi-User Dungeons.

This book is intended to help in the understanding and use of virtual environ-
ments (VEs), starting with its beginnings and tracing their evolution, as well as
providing in-depth information to develop them formally in order to guarantee a
high degree of quality.

Motivation

The origin of MUDs can be traced back to 1978, thanks to the efforts of Roy
Trubshaw and Richard Bartle who developed the first MUD (Carton, 1995).
These kinds of applications were just textual and focused on entertainment.
When the goal of these MUDs took a different path towards a more social
focus, the term social-MUD was born (Dourish, 1998), and with it the first
social-MUD, called Tiny-Mud, was developed in 1989 by Jim Aspen (1989).

vi

MUDs continued to evolve and in parallel, taking advantage of technological
advances. Some branches in the development of MUDs endowed these sys-
tems with a graphic interface; this was the birth of VEs. The first VE, called
Habitat, was developed in 1985 by Lucas Film. The Habitat interface was based
on two-dimensional graphics, and it was the first time the graphical representa-
tion (called “Avatar”) of the user was included in the VE.

From this moment, a lot of VEs—some of which included three-dimensional
representation, sound, capability to create new objects during the execution of
the system, virtual reality devices, and agents—appeared (Sloman, 1999).

The term VE does not have a single and accepted definition (Damer, 1997;
Eastgate, D’Cruz, & Wilson, 1997; Brand, Fanzen, Klintskog, & Haridi, 1998;
Landauer & Bellman, 1998; Saraswat, 1997; Maher & Skow, 1999; Kulwinder,
1999). In general, we can affirm that VEs are software applications that can be
executed in the network and allow the collaboration, learning, training, and simu-
lation in environments such as medicine, culture, teaching, and architecture,
based on their development goal.

Taking into account the evolution of VEs and cataloging them in a general way
as interactive systems, we think the term future interactive systems seems to
be appropriate for this new age of multi-sensorial systems where perception
and interaction with the system are being developed widely, and open a lot of
new possibilities to “feel” the software.

Developing Virtual Environments

In the last few years, there have been a lot of VE developments, due to the
attraction and novelty of VEs. As a result of the speed in the evolution of these
systems and their strong relation with technological evolution, the development
of VEs was characterized by an absolute absence of rigor. This is not some-
thing strange, taking into account that these were developed for easy solutions
and not to reuse or analyze the system properly. It is impossible to develop VEs
from an engineering perspective without formalizing.

Next appears the list of areas where VE development efforts have been dedi-
cated in order to highlight the features they focus on:

• Some researchers have dedicated their efforts to improving “social inter-
action” in VEs (Mantovani, 1996; Cherny, 1995; Saraswat, 1997).

• Others (Fahlén, Grant-Brown, Stáhl, & Carlsson, 1993; Benford, Snowdon,
& Greenhalgh, 1995) have focused on “mutual awareness” or perception
of the VE elements.

vii

• The representation of the avatar in the VE as the way to involve the user
in the VE has been studied in HANIM (1998) and VRML (1997).

• Use of techniques and algorithms in the actual building in VE construc-
tions (Ingram, Bowers, & Benford, 1996; Bridges & Charitos, 1997).

• Definition of the hardware architecture to be designed to support a VE
(Brand et al., 1998; De Oliveira, Todesco, & Araujo, 1999; Maher & Skow,
1999; Gabbard, Hix, & Swan, 1999).

• Definition of recommendations or suggestions to be put into practice in
the development of a VE (Boyd, 1996; Saraswat, 1997).

• The importance that VEs have and will have in the future (Brown,
Encarnaçao, & Shniderman, 1999).

• Computer graphic techniques, visualization, communication protocols, and
execution time (Donath, 1997; Kulwinder, 1998; Gabbard et al., 1999; De
Oliveira et al., 1998).

• VEs’ usability improvement, focusing on interaction mechanisms, pres-
ence, and perception (Donath, 1997; Eastgate et al., 1997; Conkar, Noyes,
& Kimple, 1999; Kulwinder, 1999; Fencott, 1999).

• ü Development of software tools to support the implementation phase of
VEs (GVU, 2000; Bowman, Koller, & Hodges, 1998).

• User-centered design techniques that have been defined in the area of
Human Computer Interaction and should be useful in VEs (Conkar et al.,
1999; Gabbard et al., 1999).

• Usability engineering is emerging as a new wave in the development of
VEs (Gabbard et al., 1999).

As can be seen from the above, there are many areas in which VEs are used as
a test bed or a powerful tool to achieve experiments, and simulations. But in
spite of this interest, the way in which VEs are being developed is at a very
immature level and there are no specific techniques to be applied during the
development of these systems. So the quality of these systems cannot be en-
sured.

The problem with the development of VEs was so important that at the end of
1998 the National Science Foundation (NSF) and the European Union (EU), in
a joint meeting, decided that it was necessary to improve the way VEs were
being developed. They provided a set of recommendations on the points VEs
research should focus on (Brown et al., 1999):

1. The process of gathering the needs and requirements of the VE users
must be improved.

2. The parameters related to the design and evaluation of new technologies
must be researched in depth.

viii

3. The description of mechanisms and procedures to facilitate a
multidisciplinary development are necessary.

The use of software engineering techniques in the VE development process
should be very interesting to answer the first point proposed by the NSF and the
EU. Software engineering discipline solved the software crisis in the ’70s. This
problem was related to the fact that most of the software cost was related to
the maintenance of the existing software instead of new software develop-
ment. Maintenance was very expensive because software was being devel-
oped without any quality requirement.

The design of VEs is a complex process in which a lot of different variables are
involved (Eastgate et al., 1997). Nowadays, there is little knowledge of VE
design; neither are there guides on how to develop them (Kulwinder, 1999).
Also the development of VEs is especially critical because a lot of models from
different levels must be integrated (class models, 3D models, architecture mod-
els, behavior models, etc.) (Landauer & Bellman, 1998). In addition, a VE must
be endowed with enough credibility, something not taken into account in tradi-
tional software. Table 1 summarizes the main differences between traditional
software and VEs (Bricken, 1990).

Due to the difficulties in designing VEs and the potential improvements from
the formalization of their development process, this book provides an engineer-
ing vision of future interactive systems, as opposed to other texts based on VE
graphic design. In the chapters included in this book, some researchers and
developers show VEs as software systems developed by applying repeatable
techniques that allow the development of different features of the VEs, ensur-
ing quality at the same time.

Table 1. Table showing the differences between traditional software and
VEs

TRADITIONAL SOFTWARE VIRTUAL ENVIRONMENT
The interface offers functionality. The interface allows the user to be

included/involved in the VEs.
People learn to use computers through the
mechanisms of these.

VE technology adapts computers to the tasks
humans have to carry out.

Users use the software developed. Users are active agents within the application itself
since VEs are designed to increase and change with
users’ actions.

Usually, only visual. VEs can be multi-functional, that is, have 3D sound
and image, mechanisms to improve the sensation of
immersion, and so forth.

Metaphors are used to give users a clear mental
picture of what the application offers.

In VEs, participants interact directly with objects as
if they were real. Therefore, no metaphor is
necessary.

ix

Book Structure and Use

This book is structured as follows. There are two initial chapters dedicated to
the present and future of virtual environments in a general sense, Section I
(Chapters III and IV), Section II (Chapters IV through VIII), and Section III
(Chapters IX through XI).

• Chapter I. Based on the strengths and weaknesses of many current ap-
plications, this chapter discusses how to make virtual worlds (VWs) “real-
world capable.” With sufficiently realistic data and dynamic processing
capabilities within VWs, we could work on analysis, engineering, inven-
tion, and design. This will require creating systems with sophisticated inte-
gration and analysis capabilities in order to suitably and continually scale
up VWs with rich data sources, such as live data feeds and mobile sen-
sors, and better computational and mechanical capabilities, such as multi-
sensory interfaces and teleorobotics. Scaling VWs will require new strat-
egies and capabilities for the numerousness and variety of resources.

• Chapter II. In this chapter, we look at some of the virtual reality tech-
nologies and their current effect on VEs. From here, we identify human
technological drives and use this to highlight future technologies that will
meld. Lastly, we look at how some of these changes will impact society
and everyday life.

Section I focuses on the definition of two processes that improve the develop-
ment of virtual environments, covering the whole software development lifecycle.

• Chapter III. This chapter undertakes a methodological study of virtual
environments (VEs), a specific subset of such systems. It takes as a cen-
tral theme the tension between the engineering and aesthetic notions of
VE design. First of all, method is defined in terms of underlying model,
language, process model, and heuristics. The underlying model is charac-
terized as an integration of interaction machines and semiotics to make
the design tension work to the designer’s benefit rather than to eliminate
it. The language is then developed as a juxtaposition of UML and the
integration of a range of semiotics-based theories. This leads to a discus-
sion of a process model and the activities that comprise it. The intention
throughout is not to build a particular VE design method, but to investigate
the methodological concerns and constraints such a method should ad-
dress.

• Chapter IV. VEs can be seen as a special kind of information system, so
they must be analyzed, designed, and implemented in this respect. This
chapter presents a framework called SENDA, which defines a formal

x

process model to develop VEs from a software engineering point of view.
As SENDA is a framework that covers the whole VE development lifecycle,
this chapter defines processes and tasks for all the software phases. For
each task, a set of techniques is mentioned and pointed out in the different
chapters of the book where solutions for these techniques can be found,
as well as external pointers on the books where specific techniques can
be found.

Section II is dedicated to explaining in detail some design aspects of virtual
environments development.

• Chapter V. Virtual worlds, construed in a broad enough sense to include
text-based systems, as well as video games, new media, augmented real-
ity, and user interfaces of all kinds, are increasingly important in scientific
research, entertainment, communication, commerce, and art. However,
we lack scientific theories that can adequately support the design of such
virtual worlds, even in simple cases. Semiotics would seem a natural source
for such theories, but this field lacks the precision needed for engineering
applications, and also fails to addresses interaction and social issues, both
of which are crucial for applications to communication and collaboration.
This chapter suggests an approach called algebraic semiotics to help solve
these and related problems, by providing precise application-oriented ba-
sic concepts such as sign, representation, and representation quality, and a
calculus of representation that includes blending. This chapter also in-
cludes some theory for narrative and metaphor, and case studies on infor-
mation visualization, proof presentation, humor, and user interaction.

• Chapter VI. Traditionally, the development of virtual environments has
been tightly dependent on the programmer’s skills to manage the available
toolkits and authoring systems. In such a scenario, the discussion of dif-
ferent design alternatives, future changes and maintenance, interoperability,
and software reuse are all costly and quite difficult. In order to overcome
this unsystematic and technology-driven process, conceptual modeling has
to be included just before the implementation phase to provide a shared
representation language that facilitates the communication among the dif-
ferent team members, including stakeholders. Reuse and redesign for fu-
ture requirements also have to be included since conceptual models hide
implementation details and constraints, and are cheaper and easier to pro-
duce than prototypes. As a first attempt to attain these aims, this chapter
presents the basis of a constructional approach for the VEs conceptual
modeling through a set of complementary design views related to the VE
components and functions. Moreover, we explore how these design issues
might be addressed by hypermedia modeling techniques, given the simi-
larities between these two kinds of interactive systems and the maturity
reached in hypermedia development.

xi

• Chapter VII. Virtual environments (VEs) have a set of characteristics
that make them difficult to design and implement: distributed nature, high-
level graphical design, technology novelty, and so forth. Besides, because
of criticisms or the repetitiveness of some roles played in them, some of
the characters of the VEs usually have to be automated. The risk is to pay
too high a price, losing attractiveness, usability, or believability. The solu-
tion proposed in this chapter is to control the automated avatars associat-
ing them with software agents, becoming intelligent virtual agents (IVAs).
With this aim, an architecture to manage the perception and cognition of
the agent is described. On the one hand, the perceptual module of this
architecture consists of a human-like model, based on one of the most
successful awareness models in Computer Supported Cooperative Work
(CSCW), called the Spatial Model of Interaction (SMI). On the other hand,
the cognitive module proposes an easy-to-configure structure, providing it
with the precise mechanisms to exhibit reactive, deliberative, or even more
sophisticated social behaviors, incrementing the believability of the IVA in
the VE.

• Chapter VIII. This chapter proposes an architecture for the development
of Intelligent Virtual Environments for Training (IVETs), which is based
on a collection of cooperative software agents. The first level of the ar-
chitecture is defined as an extension of the classical Intelligent Tutoring
System architecture that adds a new World Module. Several software
agents are then identified within each module. They communicate among
themselves directly via messages and indirectly via a common data struc-
ture, and are used for the collaborative development of plans. Some de-
tails are provided for the most remarkable interactions that will be estab-
lished among agents during the system’s execution. The proposed archi-
tecture, and its realization in a platform of generic and configurable agents,
will facilitate the design and implementation of new IVETs, maximizing
the reuse of existing components and the extensibility of the system to add
new functionalities.

Section III is dedicated to specific developments of collaborative virtual envi-
ronments and mixed reality applications.

• Chapter IX. This chapter gives an overview of some of the issues that
face programmers and designers when building collaborative virtual envi-
ronments (CVEs). This is done by highlighting three aspects of CVE sys-
tem software: the environment model (data structures, behavior descrip-
tion) that the system provides, the data-sharing mechanism (how the model
is shared), and the implementation framework (the structure of a typical
client or platform in terms of the services it provides to the user). When a
CVE system is designed, choices have to be made for each of these as-
pects, and this then constrains how the designers and programmers go

xii

about constructing the CVE worlds themselves. The main body of the
overview presents examples that highlight many important differences
between CVE systems. The authors also relate their discussion to the
common topics of network topology and awareness management.

• Chapter X. This chapter addresses one of the challenges the collabora-
tive virtual environments (CVEs) research community faces, which is the
lack of a systematic approach to studying social interaction in CVEs, de-
termining requirements for CVE systems design, and informing the CVE
systems design. It does this by presenting a method for studying multi-
user systems in the educational context. The method has been developed
as part of the Senet project, which is investigating the use of virtual actors
in CVEs for learning. Groupware prototypes are studied in order to iden-
tify requirements and design factors for CVEs. The method adopts a rig-
orous approach for organizing experimental settings, collecting and ana-
lyzing data, and informing CVE systems design. The analysis part of the
method shares many of the interaction analysis foci and expands on it by
providing a grid-based method of transforming rich qualitative data in a
quantitative form. The outcome of this analysis is used for the derivation
of design guidelines that can inform the construction of CVEs for learn-
ing. The method is described in the third phase of the Senet project.

• Chapter XI. This chapter introduces a component-oriented approach for
developing “mixed reality” (MR) applications. After a short definition of
mixed reality, the authors present two possible solutions for a component-
oriented framework. Both solutions have been implemented in two differ-
ent MR projects (SAVE and AMIRE). The first project, SAVE, is a safety
training system for virtual environments, whereas the goal of the AMIRE
project is to develop different authoring tools for mixed reality applica-
tions. A component-oriented solution allows developers to implement bet-
ter-designed MR applications, and it fosters the reusability of existing MR
software solutions (often called MR gems). Finally, it supports the imple-
mentation of adequate visual authoring tools that help end users with no
programming skills to develop their own MR applications.

This book is intended to help readers with different interests in virtual environ-
ments. Readers should start with Chapters I and II for an introduction to these
systems and their uses. Chapters III and IV will be useful for those interested
in the development of these types of systems, which follow a definite and for-
mal process to guarantee quality. Within the development of a VE, the design
process involves the study of many details and elements to provide specific
design tools applicable to different elements of the VE under development.
Chapters V, VI, VII, and VIII provide this information. Chapters IX, X, and XI
have been included as specific cases of VEs relating to collaborative virtual
environments and mixed reality.

References

Aspen, J. (1989). TinyMUD. Retrieved from: ftp.tcp.com/ftp/pub/mud/
TunyMUD/tinymud-pc.1.0.tar.gz

Benford, S., Snowdon D., & Greenhalgh, C. (1995). VR-VIBE: A virtual envi-
ronment for cooperative information retrieval. Computer Graphics Fo-
rum, 14(3), 349-360.

Bowman, D., Koller, D., & Hodges, H. (1998). A methodology for the evalua-
tion of travel techniques for inmersive virtual environments. GVU. Geor-
gia Institute of Technology. Retrieved from: www.gvu.gatech.edu/gvu/
research

Boyd, S. (1996). The design of virtual environments with particular reference
to VRML. Center for Electronic Arts. Middlesex University. Retrieved
from: www.man.ac.uk/MVC/SIMA/vrml-design/design.html

Brand, P., Fanzen, N., Klintskog, E., & Haridi, S. (1998). A platform for con-
structing virtual spaces. Proceedings of the Virtual Worlds and Simula-
tion Conference (VMSIM’98) (pp. 97-106), Society for Computer Simu-
lation International, San Diego, California, USA.

Bricken, M. (1990). Virtual worlds: No interface to design. Technical Re-
port R-90-2, Human Interface Technology Center, University of Washing-
ton.

Bridges, A., & Charitos, D. (1997). On architectural design in virtual environ-
ments. Design Studies, 18(2), 143-154.

Brown, J., Encarnaçao, J., & Shniderman, B. (1999). Human-centered com-
puting, online communities, and virtual environments. IEEE Computer
Graphics and Applications, 19(6), 70-74.

Bruckman, A. (1997). MOOSE crossing: Construction community and learn-
ing in a networked virtual world for kids. PhD dissertation, The Media
Laboratory, Massachusetts Institute of Technology.

Capin, T., & Esmerado, J. (1998). EPFL-LIG’s MPEG-4 body animation page.
Retrieved December 1998 from: ligwww.epfl.ch/mpeg4/

Carton, S. (1995). Internet virtual worlds quick tour: MUDs, MOOs &
MUSHes: Interactive games, conferences & forums. Ventana Press.

Cherny, L. (1995). The MUD register: Conversational modes of action in a
text-based virtual reality. PhD dissertation, Stanford University.

Conkar, T., Noyes, J.M., & Kimple, C. (1999). CLIMATE: A framework for
developing holistic requirements analysis in virtual environments, 11, 387-
402.

Damer, B. (1996). Inhabited virtual worlds. ACM Interactions, (September-
October), 27-34.

xiii

Damer, B. (1997). Interacting and designing in virtual worlds on the Internet.
CHI 97. Electronic Publications: Tutorials. Retrieved from: www.acm.org/
sigchi/chi97/proceedings/tutorials/bfdt.htm

De Oliveira, M., Todesco, G., & Araujo, R. (1999). The limitations of interac-
tive multi-user 3D environments in the WWW. Proceedings of the Tenth
International Workshop on Database and Expert Systems Applica-
tions (pp. 279-283), IEEE Computer Society, Los Alamitos, California,
USA.

Donath, J.S. (1997). Inhabiting the virtual city: The design of social envi-
ronments for electronic communities. Doctoral thesis, Massachusetts
Institute of Technology.

Dourish, P. (1998) Introduction: The state of play. Computer Supported Coop-
erative Work. The Journal of Collaborative Computing, 7, 1-7.

Eastgate, R.M., D’Cruz, M.D., & Wilson, J.R. (1997). A strategy for the de-
velopment of virtual environments applications. Santa Clara, CA: Vir-
tual Reality Worldwide.

Fahlén, L., Grant-Brown, C., Stáhl, O., & Carlsson, C. (1993). A space-based
model for interaction in shared synthetic environments. INTERCHI’93
(pp. 43-48).

Fencott, C. (1999). Towards a design methodology for virtual environments.
Workshop on User Centered Design and Implementation of Virtual
Environments, University of York.

Gabbard, J. (1997). A taxonomy of usability characteristics in virtual envi-
ronments. Master thesis, Virginia Polytechnic Institute an Stage Univer-
sity.

Gabbard, J., Hix, D., & Swan, J. (1999). User-centered design and evaluation
of virtual environments. IEEE Computer Graphics and Applications,
19(6), 51-69.

Gibson, W. (1984). Neuromancer. Ace Books.

GVU: Graphics Visualization Center. (n.d.). Retrieved from: www.gvu.gatech.
edu/gvu/research

HANIM: Specification for a Standard VRML Humanoid. (1998). Retrieved
from: ece.uwaterloo.ca/h~anim

Ingram, R., Bowers, J., & Benford, S. (1996). Building virtual cities: Applying
urban planning principles to the design of virtual environments. Proceed-
ings of Symposium of Virtual Reality Software and Technology
(VRST’96), Hong Kong.

Kulwinder, K. (1998). Designing virtual environments for usability. Doc-
toral thesis, City University, London.

xiv

Kulwinder, K. (1999). Interacting with virtual environments: An evaluation of a
model of interaction. Interacting with Computers, 11, 403-426.

Landauer, C., & Bellman, K. (1998). What is cyberspace? Proceedings of the
Virtual Worlds and Simulation Conference (VMSIM’98) (pp. 16-21),
Society for Computer Simulation International, San Diego, California, USA.

Maher, M.L., & Skow, B. (1999). Designing the virtual campus. Design Stud-
ies, 20(4), 319-324.

Mantovani, G. (1996). Social context in HCI: A new framework for mental
models, cooperation, and communication. Cognitive Science, 20, 237-
269.

McKay, D.P., Matuskey, P., Testani, S., et al. (1998). An architecture for train-
ing virtual worlds environments. Proceedings of the Virtual Worlds and
Simulation Conference (VSIM’98) (p. 9). Society for Computer Simula-
tion, San Diego, California, USA.

Saraswat, V. (1997). Design requirements for network spaces. Proceedings
of the Virtual Worlds and Simulation Conference (VMSIM’98) (pp.
91-96). Society for Computer Simulation International, San Diego, Cali-
fornia, USA.

Sloman, A. (1999). Evolvable architectures for human-like minds. Proceed-
ings of the 13th Toyota Conference on Affective Minds, Nagoya, Ja-
pan.

VRML97 Specification. (1997). International Standard ISO/IEC 14772-
1:1997. Retrieved from: www.vrml.org/Specifications/VRML97

Welch, D.J. Jr. (1996). Software engineering of VE: Integration and intercon-
nection. Informe Técnico, CS-TR-3720, University of Maryland.

xv

��%��&��'	�����

xvi

The editor would like to acknowledge the help of all involved in the gathering
and review process of the book, without whose effort the project could not
have been completed. Special thanks to all the staff at Idea Group Inc. that
were always there to help in the production process. Special thanks to Jan
Travers, who continually prodded me via e-mail to keep the project on sched-
ule, and to Mehdi Khosrow-Pour, who motivated me to initially accept his invi-
tation to take on this project.

Most of the authors of chapters included in this book also served as referees
for chapters written by others. Thanks to them for providing constructive and
comprehensive reviews.

I wish to thank all of the authors for their insights and excellent contributions to
this book. Special thanks to Rose Sukhraj for her help, advice, and ideas. Fi-
nally, I want to thank my husband for his love and support throughout this project;
my daughter, Natalia, who kept my mind active and stimulated my imagination;
and, of course, my parents for giving me their valuable time and my brothers for
their understanding and love.

Maribel Sanchez-Segura, PhD

Real Living with Virtual Worlds 1

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter I

Real Living with
Virtual Worlds:

The Challenge of Creating
Future Interactive

Systems

Kirstie L. Bellman
Aerospace Integration Science Center,

The Aerospace Corporation, USA

Abstract

Based on the strengths and weaknesses of many current applications, this
chapter discusses how to make virtual worlds (VWs) “real-world capable.”
With sufficiently realistic data and dynamic processing capabilities within
VWs, we could do medical interventions, analysis, engineering, invention,
and design. This will require creating systems with sophisticated integration
and analysis capabilities in order to suitably and continually scale up VWs
with rich data sources, such as live data feeds and mobile sensors, and
better computational and mechanical capabilities, such as multi-sensory
interfaces and telerobotics. Scaling VWs will require new strategies and
capabilities for the numerousness and variety of resources.

2 Bellman

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Introduction

Virtual worlds technologies underlie more and more of our critical human
processes: how we entertain ourselves and socialize ourselves; how we teach
and train; how we conduct ourselves in business, how we design and build our
systems, how we deliver health care, how we negotiate and mediate with each
other, even how we vote and conduct governmental affairs. As Howard
Rheingold, an early commentator on virtual communities, wrote:

“In cyberspace, we chat and argue, engage in intellectual
intercourse, perform acts of commerce, exchange knowledge,
share emotional support, make plans, brainstorm, gossip, feud,
fall in love, find friends and lose them, play games and metagames,
flirt, create a little high art and a lot of idle talk. We do everything
people do when people get together, but we do it with words on
computer screens, leaving our bodies behind. Millions of us have
already built communities where our identities commingle and
interact electronically, independent of local time or location. The
way a few of us live now might be the way a larger population will
live, decades hence.” (Rheingold, 1992)

All our critical social processes are being altered by technology. Given this
growing reality, how do we help technology developers and technology users
make wise decisions on how they choose to incorporate technology into their
critical human processes? How do we design reasonable systems and reason-
able policies for those systems interlaced with new technology? How do we
study the impacts of technology on ourselves and on our culture? How do we
make both wise cultural and organizational decisions as well as wise technology
decisions? How do we build understandable systems that incorporate ourselves
as part of the system? The purpose of this chapter is to discuss how virtual worlds
(VWs) could serve as a critical strategy for addressing all of these questions
above. However, as discussed in the following sections, VWs can only do so by
rising above their current engaging, but limited, applications. Current VW
applications circumvent some of the limitations of time and space in the physical
world, and they provide a forum for real, if limited, social interactions. However,
real-world problems require not only real-world data, they require real ways of
impacting the world with actions. This means that our challenge, as a research
and development community, is to somehow keep the advantages of “virtuality,”
while intermixing VWs with realistic data, interfaces, and outputs as necessary
for different application areas. As we will discuss, much progress has been

Real Living with Virtual Worlds 3

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

made, but we have many formidable challenges to making VWs “real-world
capable.”

We start the chapter with a brief definition and history of virtual worlds, followed
by a discussion on some of the lessons learned from one of the most common
virtual worlds application areas, education and training applications. The lessons
learned from education applications form the basis for the discussion on the
necessary enhancements needed to create more capable VWs. Specifically, we
will comment on the need for integration and scalability at many different levels
of the VW. In order to have “real-world capable” applications, we need
sufficient details—both in data and in processes that act dynamically within the
virtual worlds. With sufficient richness of details, we can use VWs for medical
interventions, to do analysis and engineering, to invent, to design, and many other
opportunities. Richness involves the inputs, the models underlying the world, and
the outputs. Rich heterogeneous environments also require sophisticated inte-
gration at not only the physical levels (both hardware and network management),
but also at the semantic levels and the little understood emotional, psychological,
and social levels. In order to continually and incrementally build and understand
such rich systems, we need highly flexible, highly analyzable and traceable
testbeds that will allow us to develop, experiment with, and analyze the impacts
of a wide range of VW resources ranging from different language and data
structures to diverse sensors and telerobotics devices.

Background to Virtual Worlds

Virtual worlds (Landauer & Bellman, 1998c; Bellman, 1999), although drawing
strongly from virtual reality technologies, differ from virtual reality (VR) in three
ways. First, unlike most VR environments, virtual worlds are not necessarily
homogenous simulation environments; rather they often have a large diversity of
heterogeneous resources available through the environment. In some examples,
users can access all of their computing resources—models, editors, Web sites,
and so forth—from within the virtual world. Second, many of the “utilities” or
“services” in the environment are embodied as agents that move and interact
within the environment, communicate with users inside and outside the environ-
ment, and even modify the environment itself. Hence, in some of the VWs
developed under the Department of Defense CAETI program (described in the
next section) and in other VW applications (Gordon & Hall, 1998), agents in the
VW serve as tutors, librarians, gossips, spies, playmates, evaluation agents,
personal assistants helping students to manage and schedule their learning
activities, and several types of guides (some of which specialized the tours of the

4 Bellman

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

VW to the negotiated needs and interests of a given user). These agents will
often come in through the same client-server protocol as a human user, and easily
pass the Turing test in everyday conversation and activities.

Human and artificial agents are often represented by an avatar (a character
representation in text or graphics, depending upon the virtual world). Lastly, like
VR, virtual worlds are organized using a spatial metaphor: each of the separate
places is called a “room.” However, unlike most VR environments, these rooms
are not just a picture or a description, but instead have rulesets or dynamical
models determining the properties of the room or “setting,” and constraining the
behaviors of entities (objects, agents, and users) in that room. Hence, even in
rudimentary form, these settings begin to act like little “eco-systems,” with their
own local physics and niche dynamics. One of the most important qualities of this
for our discussion here is that these rooms are explicit models of the context
within which we want the environment and its contents to interact and produce
results, and within which evaluative processes present in the VWs can interpret
these behaviors and interactions.

Virtual worlds rose from three major lines of development and experience: (1)
role-playing, multi-user Internet games originally called MUDs (for Multi-User
Dungeons and Dragons games (Bartle, 1990)), and now more recently, “MUVEs”
(Multi-User Virtual Environments (Landauer & Bellman, 1996)); (2) virtual
reality environments and advanced distributed simulation, especially those used
in military training exercises; and (3) distributed computing environments,
including the World Wide Web and the Internet.

Virtual reality and distributed simulations gave us experience with distributed
simulation environments, especially for the applications in military training
(Macedonia, 2002). They also provided us with some good examples of
multimedia and multi-sensory worlds, with example worlds as diverse as military
operations training (see Zyda, 2002, and for reviews of their leading work for
these types of applications, Zyda et al. 2003; Zyda, 2002a, b, c; Schilling & Zyda,
2002); medical training; and NASA, Air Force, and Army flight simulators and
tank trainers. Researchers in VR also produced high-end graphical environ-
ments and Avatars (for example, “Jack” from the University of Pennsylvania,
Lewis Johnson’s pedagogical agents, or Perlin’s “dancers” (see Landauer &
Bellman, 1998c)). VR research also developed the idea that one could use a
spatial metaphor for working even in abstract spaces such as those useful for
data analysis. However, because the text-based MUVEs have some very
important properties for our discussions in this chapter and often are the least
familiar to most readers, we will take a moment to describe them in more depth.

The first multi-user servers were originally developed in 1979 to allow users to
play together an analog of Dungeons and Dragons, a role-playing game, (Bartle,
1990). Bartle, one of the original developers of MUVE technology, has recently

Real Living with Virtual Worlds 5

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

written a good book (Bartle, 2003) describing in depth the development of some
of the central technologies underlying MUVEs, from the early text-based MUDs
up through the current massive, multi-player role-playing game environments.

Imagine reading a story set in some time and place. If the story is well written,
it can feel like one is actually experiencing that situation or even becoming that
character, regardless of whether the story is fiction or nonfiction. Stories can
present information about a situation that is usually only learned through
experience; they are particularly good at descriptions of complex settings that
are very hard to construct (Dautenhahn, 1998, 1999a, b; Dautenhahn & Nehaniv,
1999; Raybourn, Kings, & Davies, 2003). If a multi-user virtual environment
(MUVE) is designed well, it is like a well-written story in its power to transport
the user to a different situation, but it has three other important features. First,
for already created stories (often called “quests”), it is interactive, which means
that the reader can affect the behavior and outcome of the story, so, in particular,
the reader can explore the story in many different ways. Based on the reader’s
experiences in that world so far, they will also be exposed to certain characters,
actions, and parts of the story. Second, it is also multi-user, so that the reader can
work with, play against, or interact with other readers. All users within the same
room can see each other’s actions, character descriptions, and conversation with
others (except when others “whisper,” which is a private point-to-point commu-
nication not broadcasted to the rest of the room). Third, and most important of
all, there is plenty of “room” (and much encouragement within this subculture)
for users to create their own “stories,” characters, and places. The act of
creating (authoring) new rooms, objects, characters, and quests is known in the
MUVE community as “building.” Building is a critical way in which many users
can contribute to an ongoing storyline, or in more serious applications, contribute
knowledge and capabilities to the environment. Both humans and computer
programs enter these worlds and act within them as distinct characters or objects
with names, descriptions, and behaviors.

These MUVE stories are stored as databases on servers (that may also provide
other services for managing the multi-user world) and accessed by the users
(both human and computer-based processes) with client programs. A simple
command language, provided by all the server programs for MUVEs, allows
users to move around, act, and interact within the virtual world. There is also a
simple construction language in many MUVEs that makes it easy for a player to
immediately become a builder (an author and programmer) in that world. A
MUVE implements a notion of places that we create, in which we interact with
each other, and where we use our computing tools, together, instead of having
all tool use and collaborative interactions mediated through tools used individu-
ally. Like other virtual reality environments, multi-user virtual environments
employ the underlying spatial metaphor to take advantage of our seemingly
innate ability to use spatial maps for many things. We are able to organize an

6 Bellman

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

enormous amount of data and information if we can place it in a spatial context.
MUVEs elicit a surprisingly powerful sense of space using only text. Characters
may gather in the same location for conversations and other group activities,
where their interactions are not restricted (or interpreted) by the servers, and
because the servers do not get in the way, it is as if they have become almost
transparent (Gordon & Hall, 1998).

The sense of “being there” can be quite strong, and in fact, the emotional
“reality” of human users comes across surprisingly well, and this in turn greatly
enhances the sense of being there, making MUVE experiences very compelling
(Schwartz, 1994; Turkle, 1995; Landauer & Polichar, 1998a). Although MUVEs
are VR programs, the human interactions are real; only the physical ones are not
(Riner & Clodius, 1995; Clodius, 1995). One reason for being interested in
MUVEs is because there may be hundreds of people in the MUVE at any given
time, moving around separately and independently, creating objects in real-time,
and interacting with each other. From just the standpoint of social science or
cultural studies, MUVEs are clearly an important new phenomenon (Lawley,
1994; Reid, 1994; Rheingold, 1993). There are now thousands of internationally
populated text-based MUVEs, some with as many as 10,000 active players; as
we will discuss in a moment, some graphical role-playing VWs now have several
million players. These players are not simply visitors as to a Web site, but rather
users who spend often several hours a day within that world building up that
world.

Because of the large number and diverse types of virtual communities, they have
come under increasing study (Hummel & Lechner, 2002; Rheingold, 1993).
Some of these virtual communities have now been in existence as long as 15
years. They have elected town officials in some places; the users walk around
their towns, have their own places that they build, and describe themselves as
“living” there. They have imbued these virtual places with meaning. They have
roles and functions that they play within those communities. As scientists, we
want to understand more about why some of these virtual communities flourish
over years and why others vanish within a month. Certainly for anyone interested
in collaborative technologies and the future of network and Web applications, we
need to know what they are doing right that they are able to live, work, and build
together in these virtual communities.

There has been a growing interest in trying to understand the phenomena that
occur in virtual communities and how they differ or not from physically co-
located communities.

Many researchers have started to characterize and study the impact of virtual
places on social processes (Gallager, 1993); some of the issues raised are
discussed further on in the context of the challenges to creating better and better
virtual worlds. Ironically, one of the strengths of the early text-based MUDs was

Real Living with Virtual Worlds 7

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

that despite their relatively primitive technology, they provided a surprisingly
effective basis for realistic social interactions (Rheingold, 1993; Riner & Clodius,
1995; Hughes, Walters, & Kort, 1994). The ability of humans to take the limited
text-based MUDs and the available graphical environments, with their increas-
ingly engaging but limited avatars, and form meaningful human relationships is
a credit to human social capabilities. It serves very well in terms of some types
of meetings, some types of community building and friendship. However, they
are still too limited for real-world applications such as a doctor assessing the
qualities of a gait to diagnose a brain tumor, or a psychotherapist gauging the
emotion on a patient’s face, or even apparently, a potential business partner
offering a firm handshake to close a multi-million dollar deal for e-commerce.
Much more realistic detail is required in the VWs both for realistic objects and
behavior, and for realistic social interactions. Hence, the appropriate detail in the
appearance and behavior of avatar movements, objects, and the VW settings is
critical to realistic and appropriate responses in such demanding applications as
crisis management, health care, psychotherapy, and military operations. How-
ever, supporting the social interactions necessary to such applications is as highly
demanding: The nuances of facial expression, body language, and tone are
critical to communication and critical to the responses of the humans involved in
the VW and their ability to carry out ‘real work’. Also, we believe that getting
the social reality correct is critical not only to being able to conduct more realistic
social transactions as needed for real-world capable applications, but also for
eventually creating new types of human and group, even inter-cultural collabo-
ration beyond anything we have imagined so far.

One of the most important qualities of MUVEs is that text-based MUVEs allow
people the freedom of and richness of word pictures, something that we cannot
imitate yet with any graphical environments. Text-based MUVEs have a much
richer and more dynamic visual imagery than, say, movies or games, because it
is within and customized to each player’s imagination. Even with the simplest of
construction languages, people experience a deep sense of being present within
these virtual environments, partly because they have built those environment
descriptions from their own imagination. This sense of real presence and real
interactions leads to real emotions and real social interactions, even though they
are mediated through text displayed on a computer screen.

Sometimes researchers in VR have assumed naively that the graphical VWs
somehow make less use of imagination than a text-based one; this is not
supportable from the viewpoint of cognitive science and psychology. The role of
interpretation, personal projection, and cognition matter as much in the impact of
perceiving and making use of a graphic representation as a text one. Certainly
there are differences, and we need deep cognitive studies to characterize the
differences not only between text and graphical images, but the increasingly rich
world of haptic, auditory, and other new types of interfaces. In all cases, we

8 Bellman

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

know very little still about how to somehow separate out the contribution of
imagination and personal projection from perception of what has been presented
within the VW…or how to make best use of the differences caused by different
representations and interfaces on the different types of tasks one wants to
accomplish within the virtual world. We will return to this issue in the next
section.

Multi-user virtual environments are also great equalizers: All people—not just
what we call “technocrats”—can become authors or builders in a short amount
of time. It is not the computer technology that makes MUVEs work (although
one of the things we seek in our research is to develop better technology for
supporting them). It is the writers and artists who create the world and the people
who live in it. The MUVEs with better poets seem to last longer than the ones
with better computer scientists. In fact, we’ve seen examples of eight- and nine-
year-old children, who were raised in inner cities and were nearly illiterate,
become, within a short amount of time, able to build up worlds (Hughes, 1995;
Landauer & Bellman, 1998c). Their teachers, in several different projects, have
reported the children’s enormous motivation to be part of these environments
which had a noticeable impact on their efforts to read and to write well. One little
girl reportedly built a 30-room mansion with gardens and pools. Another, an
equally shy little boy, showed the author his gardens, where, when you looked at
the flowers, they blossomed. This easy entrée to MUVEs extends across not
only age, as just discussed, but across disabilities and gender. One of the most
articulate people on one of the author’s favorite MUVEs is profoundly deaf; he
is much more comfortable speaking to people online (and vice versa, other people
are more comfortable speaking to him online). Some MUVEs have a near gender
balance; one of the largest MUVEs of all has an ongoing culture of role-playing,
and actually has a slight majority of female players (Leong, Web site).

Aside from being able to become authors, not just players, of the worlds, another
aspect of these environments is that they have very simple client-server
architectures, which means that people in these environments who only have
teletypes can still participate. Others have speech-generation boxes because
they cannot see. Lipner (1999), who speaks as a computer scientist and a blind
user, has pointed out that the text makes it easier for many people with disabilities
to use such interaction systems, because much of their current software was
developed to handle text only and cannot yet annotate correctly other multime-
dia. For such users, they are much more blind in a graphically rendered MUVE
or a CAVE than in a text-based MUVE. These environments are worldwide.
You do not need sophisticated equipment or programming experience to become
a player or participant. This low cost of entry to MUVEs has made these
environments popular with a wide range of non-technical people. Many other
researchers in both VW technology and other types of collaborative environ-
ments have been working on how to maintain a low cost of entry for participants,

Real Living with Virtual Worlds 9

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

mostly through the development of tools that can be widely and inexpensively
used. See There (www.there.com) for an example in the area of massive games,
Eikemeier and Lechner (2003) from Bremen, Germany, with their iKnow tool
based on Peer-to-Peer software for an example geared towards commerce, and
Das et al. (1997), based in Singapore, for an example geared towards both
entertainment and education with HistoryCity based on NetEffect (1997).

Different kinds of MUVEs use different construction languages. Usually, the
variant of the word MUVE reflects the choice of language available. These
different languages allow different classes of behaviors to be specified for the
objects created by the users. Some of these objects can be created and used in
real-time. Pedagogically, this can be very powerful. At one meeting of mathema-
ticians on a MUVE, some colleagues were joking with the author about an
“infinitely parallel quantum computer.” While the others joked, the author quickly
created an object labeled thus with a few simple attributes, and threw it across
the room to one of the others. Although this was done as a joke, think about the
ability to make—even at a primitive level—a new idea active and visible,
something that others can pick up, modify, duplicate, and walk out of the room
with. One of the colleagues present that day still has the “quantum machine” (in
his virtual pocket naturally).

Another important quality about these environments is that every object is a state
machine. Therefore, the objects that you are holding in your hand, the rooms you
have walked through, the things you’ve accomplished in that environment, can
all contribute to determining what you see, what objects do to you as you walk
through this environment, and sometimes even where you go when you walk
through a door or perform some action. These properties allow authors to set up
“quests” or interactive stories that have game or logical features that must be
accomplished to succeed. They are also easy ways of structuring learning
material. One of our colleagues, a good amateur Egyptologist, set up a quest that
requires one to learn some middle Egyptian, both vocabulary and grammar rules.
If you do not tell the boatman to take you across the river in proper Egyptian, you
cannot cross, nor can you talk to the idols that give you other clues for finding
the treasure and solving the puzzles. This particular quest is implemented in a
virtual world that uses one of the simplest of MUD servers of all, a TinyMUD.
For our purposes here, these properties also allow one to set up rules that define
an initial “ecology” or “physics” for each room. Although not as sophisticated as
the modeling provided in other virtual worlds, even the simple TinyMUD can help
one to start describing the contexts for and the constraints on the interactions
between avatars, agents, and objects.

Finally, the simple client-server architecture means that computer programs
called “robots” can also be users, coming into the environment with the same
interaction mechanisms that a human uses. They use the same commands that

10 Bellman

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

a human uses to move around the environment or construct new objects (see
Foner, 1997; Johnson, 1999). Foner (1997) was one of the first to discuss such
robots—Julia, a TinyMUD robot of the Maas-Neotek family—and to emphasize
the “sociology of such agents” and why it was important to consider sociology
for agent-oriented programming. In our experience, we could not tell one player
was a robot until it was in a group situation, where its responses became less
coherent, because its underlying pattern matcher could not keep track of multiple
parallel threads of conversation. These robots give us many interesting ideas
about the kinds of intelligent support that agents could do for people within virtual
environments. At present, there are prototype robots that take notes for people;
tell them stories about the area, room, objects, and people in the MUVE; and play
games with them. They can follow people around, help them find things, and do
errands for them. They can tutor them, help them find digital material, and give
them tailored presentations on the computer programs or other objects available
in the virtual world. Lastly, some robots helped us to monitor and evaluate the
behavior of others in the MUVE (Bellman, 1997). In the Computer-Aided
Education and Training Initiative (CAETI) project, a large educational technol-
ogy research program sponsored by the author at the U.S.’s Defense Advanced
Research Projects Agency (DARPA) from 1994 through 1998, these robots
were also used for computer-based tutors and other evaluation agents (see
Johnson, 1999, for an example). In the DARPA CAETI program, we added to
the basic MUVE capabilities in several ways: we developed more advanced
MUVE architectures, especially ones with the ability to keep a text, 2D, and 3D
version of the world in sync. This was important especially because it always
allowed users several ways of sharing in the world, even if at times in a limited
way. The advanced architectures also allowed us to distribute the functionality
underlying these worlds in more powerful ways. A good example of this was the
better-distributed database management. We also made it possible to have many
more types of heterogeneous tools available from within the environment. Some
of these tools were new types of embodied intelligent utilities and agents that
helped individual users (librarians, guides, and tutors) or conducted support
activities across the world (evaluation agents). Some of these new tools also
helped tailor resources to an individual user (Bellman, 2001). The key integration
issues addressed in CAETI were the integration of heterogeneous resources
(Bellman, 1994), interoperability of virtual objects among different worlds, and
distribution of VW servers and databases (Rowley, 1997).

Since CAETI, there has been useful exploration and development in scaling
VWs, experimenting with the underlying software and hardware architectures
and networking strategies for distributing VWs and agent capabilities (Mamei,
Zambonelli, & Leonardi, 2003; Cabri, Leonardi, & Zambonelli, 2000; Welch &
Purtillo, 1997), and exploring interoperability strategies (Soto & Allongue, 1997,
Greenhalgh & Benford, 1997). Some of the integration issues are explored in

Real Living with Virtual Worlds 11

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

depth in this volume and are crucial to the development of future robust VWs.
However in other sections of this paper, we will be describing some needs and
strategies for intersecting the necessary integration and scaling advancements
in the underlying software, hardware, and network architectures with the
integration and scaling that must be accomplished at what we are calling here the
necessary ‘psychological scalability’. VWs have many levels that must be
integrated and scaled up: the means by which information and diverse processes
are brought into the VW, the means by which information and action is
understood inside the VW (e.g., the needed traceability, analysis, and evaluation
capabilities), and then again the integration that allows the real result to be
effected from inside the VW. This has always been the challenge for virtual
worlds. They depend not only on computer science and engineering, but
increasingly on sensors and physiology for new interfaces, on cognitive science
and social science, on mathematics and modeling essential for reasoning about
the systems and evaluating the actions within the VW. In other words, to scale
to real-world-capable VWs, we must open up and integrate with the real world.
We must open up VWs and break with closed-system programming paradigm so
common in computer science and move to open systems that bustle with diverse
people, processes, sensors, and effectors.

One way to distinguish the different types of scaling issues is to compare the
advances in the online multi-player games to the earlier text-based MUDs.
Clearly, the graphical environments associated with online games have sur-
passed the number of people in text-based VWs, and with that triumph has come
many new developments in building an infrastructure that can support the sheer
numbers of players. Herz in her seminal work (1997) cites games with millions
of active players (although subdivided in duplicate servers). For example, she
reported that the Lineage online game has three million players in Korea (out of
a population of roughly 48 million), with even college scholarships offered for
outstanding players (Herz, 1997). Everquest now supports a real-world economy
on eBay selling objects acquired from playing for a worldwide group of players
numbering in the millions. Guilds within Everquest often have 5,000 participants,
with leaders, governing boards, and so forth.

Furthermore, little by little the graphical environments are catching up with the
text-based MUVEs in their social richness, their sense of commitment and social
communities, even the ability of a user to author or build meaningfully within the
worlds (see the Second Life Web site at secondlife.com and There at
www.there.com). We need research on how these new games compare to
different kinds of MUVEs—not only because of the differences in size, but
because of the different goals for participating in that community and the
structure of participation. We have much to learn from all the forms of virtual
worlds: from text, graphical VWs and caves; from forms where the behavior of
participants is highly scripted and limited (many games, many training uses of

12 Bellman

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

VWs), to the open and creative MUVEs composed of thousands of users. But
we will learn different things. In highly scripted games we can experiment on the
choices, reactions, and learning of populations within pre-determined scripts or
scenarios; in the non-games open VWs, we can learn more about the percep-
tions, potential behaviors, attitudes of populations in general (and in such a way
as to inform our future scenarios). Part of this difference is very much the
difference between psychological approaches to experiments, with its emphasis
on carefully controlled settings and alternatives in order to narrow down
contributing factors, and ethological approaches to experiments, with its empha-
sis on observation of minimally constrained individuals within their natural
habitat. Both are important and potentially complementary approaches. (For a
stimulating review, see the special issue of the Scandanavian Journal of
Information Sciences on the intersection of Ethnography and Intervention,
2002.)

It is apparent that we still need much more development in traditional computer
science, software engineering, and networking to meet the challenges of scaling
up to the sheer numbers: the millions of users on diverse platforms distributed
over thousands of servers with eventually billions of objects. Especially, we will
need much more work on integrating the new types of data and interfaces
necessary to the mobile, sensor-rich, real-world applications. Nonetheless, we
believe that eventually these environments will not be limited by the availability
of the environments or on the growing databases, but rather on the ability of the
future online analytic capabilities. That is, what is not currently available is the
“psychological scalability”—the analytic capabilities and other supporting capa-
bilities—that would make sense of and ensure the use of the rapidly growing
populations of users, databases, and tools based on massive VW games for real-
world functions.

Moving Out from Games to
Real-World Applications

VWs have moved out of being just game environments into many other
application areas. Just in the last few decades, they have moved out of the
“game” arena into educational and corporate environments for distance learning,
collaborative learning, literacy support (at all grade levels, including adult),
corporate meeting support, professional organizations, and even technical con-
ferences (Bellman, 1994, 1997; Landauer & Bellman, 1996, 1998a, b; Polichar,
1996, 1997). For example, one of the early uses of MUVEs were as meeting
places for small scientific groups. Pavel Curtis helped create two of the first

Real Living with Virtual Worlds 13

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

projects (at Xerox PARC) using MUVEs for scientific computing (Curtis, 1992;
Curtis & Nichols 1994): Astro-VR was geared towards the professional
astronomy community, and Jupiter was targeted for use by researchers within
Xerox. In these projects, Curtis and others attempted to keep the powerful world
metaphor while adding audio, video, and interactive windows.

Some of the work that is relevant to eventually using virtual worlds for e-
commerce relies heavily on current work on agents, because whether the user
is inside a virtual world or allowing an agent to buy for them, there are similar
issues of “providing support, trust, and legitimacy” in both cases. A good example
of recent work occurred at the University of Linz, where Gabriele Kotsis and her
group examined some of the issues in electronic commerce. They describe two
approaches for designing and modeling multi-agent systems as they act on behalf
of human organizations.

Medical applications are one of the most active domains for VW and agent
research and development. A recent paper by Swiss researchers Nadia and
Daniel Thalmann (TECFA Web site) gives an excellent overview of the different
types of medical applications potentially available with the use of VWs and
virtual humans, citing potential uses in a number of medical areas:

“For example, it is possible to simulate the effect of deficiencies
on tasks like walking and grasping. For plastic surgery and
facial deformations, we may simulate the effects on facial motion
including speech. In surgery, use of a graphics database of
organs and the impact of Virtual Reality may lead to surgical
interventions in a virtual world. Psychiatry research may also
find new important tools in the research in behavioral animation
and knowledge-based animation.” (TECFA Web site)

Although computers have played the roles of patients for psychiatric training
before, virtual worlds provide the opportunity to place the patient in a vivid
context. Hence Thalmann cites some earlier work in the use of virtual reality and
virtual humans in psychotherapies, “Using this new technique, it will be possible
to recreate situations in a virtual world, immersing the real patient into virtual
scenes. For example, it will be possible to re-unite the patient with a deceased
parent, or to simulate the patient as a child allowing him or her to re-live situations
with familiar surroundings and people” (p. 5). Thalmann and Thalmann empha-
size that the applications here are not just for the training and education of both
medical practitioners and patients, but rather provide opportunities for continual
active analysis on the part of the medical practitioner of the current patient, the
impact of interventions, and lead to new understanding on the part of the medical
personnel. Also, it has been emphasized by many that such devices as optical

14 Bellman

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

see-through displays (Feiner, 2002; Milgram et al., 1995; Drascic & Milgram,
1996; Azuma, 1997) and other devices will allow surgeons and others to perform
procedures on a real human while being visually supported by virtual displays
overlaid on the real scenes. For example, Henry Fuchs heads a leading group at
the University of North Carolina which seeks to:

“…develop and operate a system that allows a physician to see
directly inside a patient, using augmented reality (AR). AR
combines computer graphics with images of the real world. This
project uses ultrasound echography imaging, laparoscopic range
imaging, a video see-through head-mounted display (HMD), and
a high-performance graphics computer to create live images that
combine computer-generated imagery with the live video image of
a patient. An AR system displaying live ultrasound data or
laparoscopic range data in real time and properly registered to
the part of the patient that is being scanned could be a powerful
and intuitive tool that could be used to assist and to guide the
physician during various types of ultrasound-guided and
laparoscopic procedures.” (Bajura, Henry, & Ryutarou, 1992;
UNC Web site)

There are now numerous conferences and Web sites describing the explosion of
applications being developed. One Web site runs a monthly report for an
organization called Virtual Medical Worlds to keep the virtual medical commu-
nity informed. Part of the goal of Veersweyveld (1997) and many U.S. and
European researchers is to improve the overall level of medical practice, for
example, “there is the newly emerging structure of the medical world consisting
of specialized clinics, general hospitals, and local doctors which can collaborate
and facilitate a uniform level of medical practice.” This dream is that all doctors,
no matter how familiar with a particular procedure or with a particular condition,
will be able to administer the best possible health care because of the availability
of databases, VR support (showing the inside of the human, allowing one to
rehearse a procedure on the real patient being able to follow the best path
computer for one, etc.).

But it is not just to raise the standard of practice for doctors and medical staff.
It is also to allow a new level of medical knowledge available to patients and to
everyday people who could better help in an emergency. Hence, Silverman et al.
(2002) describe a computer-based training game called “Heart-sense” to help
individuals improve their recognition of heart attack symptoms and therefore
hopefully seek help earlier and thereby reduce myocardial infarction mortality.
They have created a virtual village in which:

Real Living with Virtual Worlds 15

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

“…users encounter and help convince synthetic personas to deal
appropriately with a variety of heart attack scenarios and delay
issues. Innovations made here are: (1) a design for a generic
simulator package for promoting health behavior shifts, and (2)
algorithms for animated pedagogical agents to reason about how
their emotional state ties to patient condition and user progress.
Initial results show that users of the game exhibit a significant
shift in intention to call 911 and avoid delay, that multimedia
versions of the game foster vividness and memory retention as
well as a better understanding of both symptoms and of the need
to manage time during a heart attack event.”

As we will discuss, the challenges of serving applications that need to have high
fidelity, validation, traceability, and performance lead to formidable challenges
for the current technologies. Before we tackle these challenges, it is worthwhile
to consider the lessons learned from one of the earliest uses of VWs for real-
world applications—education and training.

Summary and Critique of
Educational Applications

There has been a great deal of research on the use of technology for education
(Soloway, 1993; Forbus & Feltovich, 2001; Psotka, Massey, & Mutter, 1998);
the purpose here is to simply highlight some of the work on education in virtual
worlds in order to illustrate where virtual worlds must develop. The educational
tools community has always been interested in collaborative technology. As
Wolfgang Gerteis and Joachim Schaper state in a paper addressing issues in e-
learning, it is the “powerful combination of instructional design and collaborative
elements [that] offers new capabilities to build the bases for new content and
services” (Gerteis & Schaper, 2003). Most of the initial VW educational
applications were geared towards older elementary through high school students
and revolve around two uses: enhancing literacy skills (Viau, 1998a, 1998b,
1998c, 1998d) and analytic skills through simulation in the same environment
(Viau, 1998a; O’Day et al., 1998; see also Spohrer, EOE Web site). An early
example of educational MUDs was SolSys, the Solar System Simulation, which
originated at CONTACT VI in 1987 and was further developed as an intercol-
legiate curriculum by Reed Riner (Riner & Clodius, 1995) at Northern Arizona
University as an honors course in Anthropology and Engineering. Since 1990, it
has included student teams from many colleges and universities around the globe.

16 Bellman

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Solsys allows students in teams to build their own colonies in a simulated future
human community in space. Teams communicate via Web sites, Internet e-mail,
and a Multiple User Domain (a TinyMUD), under the direction of local faculty
advisors and a board of professional consultants in varying fields ranging from
the social to space sciences. By building the colonies in VWs, the students not
only must draw on all disciplines of knowledge, but also demonstrate this
knowledge to teachers and other visitors to their sites. There the visitors can chat
with the creators about the social, biological, artistic, and physical ideas
represented in the VW, tour their cities, and even “talk to Martians” (Solsys Web
site).

Barry Kort was another pioneer in the early use of MUVEs for education
(Hughes, Walters, & Kort, 1994). Kort created MuseNet; the Multi-User
Science Education Network, is a system of computers in the domain musenet.org
providing access to Educational MUSEs (multi-user simulated environ-
ments), such as MicroMUSE and MariMUSE. MicroMUSE is a multi-user
simulation environment developed in the 1990s at Bolt, Beranek, and Newman
(BBN). The system features explorations, adventures, and puzzles with an
engaging mix of social, cultural, recreational, and educational content. It won a
1996 NII Award for “Pioneering innovations in children’s education via the
Internet” (Kort Web site). In Kort’s words:

“MUSEs are multi-user text-based virtual communities accessible
via the Internet. They derive from popular text-based adventure
games such as Adventure and Zork. But MUSEs support real-time
interaction among many participants who collaborate to build
their own world. Thus they support the constructivist model of
learning, in the spirit of Dewey and Montessori. More than just
multi-user programming environments, MUSEs foster a strong
sense of community among participants.”

There are a large number of educational MUVEs with wide-ranging topics (see
TECFA Web site for a good starting point).

During 1993-1997, the author made the development of VW educational and
training applications one of the major thrusts for the very large government
program, DARPA Computer-Aided Education and Training Initiative (CAETI),
which involved more than 300 U.S. private companies, universities, and research
institutes. Some of the educational tools developed under CAETI (Bellman,
2001) that were of special interest to virtual worlds were new types of embodied
intelligent utilities and agents that helped individual users (librarians, guides, and
tutors) or conducted support activities across the world (evaluation agents).

Real Living with Virtual Worlds 17

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Some of these new tools also helped tailor resources to an individual user.
Saraswat (who contributed to CAETI while at Xerox PARC) points out a
number of educationally interesting MUVEs and features of them. One of the
author’s dreams for CAETI was that eventually learners will have wonderfully
rich places where they can have both the known advantages of one-on-one
tutoring (see also Bellman, 2001), via intelligent companion tutors, and the
benefits of the collaborative and social interactions within these places. In order
to realize this dream, we would have to develop tutors who could “co-experi-
ence” (Bellman, 1994) the VW with the learner, and dynamically adjust its
pedagogy and content to adjust to these experiences. This would mean that the
tutor, rather than being an oracle with all knowledge built in beforehand, would
instead have to have the sophisticated capability of knowing enough about its
type of knowledge and pedagogy so as to recognize new instances of it or to
generalize it to the circumstances at hand. It would also have to be able to
integrate such experience into its stores of pedagogical examples, content
matter, and so forth.

Although project-based and collaborative technologies were of deep interest to
the teachers in the CAETI K-12 testbeds, there was little curriculum material
developed to support it. Hence most of the educational MUVEs were used to
support literary skills. The original virtual world applications’ focus on literacy
and programming skills remain the most enduring ones and are still active today.
For a good example of this, see Viau’s “world building” courses (Viau, 1998a,
1998b, 1998c, 1998d, 1996.) Because building (which in the early VWs includes
both authoring and programming skills) can provide such a powerful incentive for
children to participate in constructivist, participatory, and collaborative educa-
tional strategies, it remains an excellent focus for educational applications.
However, hopefully with the development of more and more environments with
significant simulation capabilities, VW educational applications will continue to
broaden and VWs will become a learning space where children can not only
show their understanding in the descriptions of the worlds they create, but also
in the behaviors that occur within those worlds. Many of the CAETI VW projects
were geared towards enhancing VWs in that fashion.

Some of the projects for collaborative “learning spaces” included a team
(Intermetrics, Yale, University of Illinois at Chicago) developing a multimedia
math/science world called “Wyndhaven.” Another team (Xerox PARC, Phoenix
College) created several impressive virtual communities (including ones that
combined school children with senior citizens) and focused on inserting into these
environments better simulation, construction, experimentation, and reflection
capabilities for the learners. For example, in one of Xerox PARC’s projects,
(1998):

18 Bellman

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

“The context for discussion is Pueblo, a MOO-based, cross-
generation network learning community centered around a K-6
elementary school. The development of practice in Pueblo draws
upon teachers’ and students’ experience with semi-structured
classroom participation frameworks—informal structures of social
interaction which foster certain ways of thinking, doing, and
learning through guided activities and conversations. We have
translated several familiar frameworks into the Pueblo setting,
using the classroom versions as models to be adapted and
transformed as they are aligned with the affordances of the
MOO. We identify four design dimensions that have emerged as
particularly interesting and important in this process: audience,
asynchrony and synchrony, attention and awareness, and prompts
for reflection.”

In their paper, they further discussed “the relation between MOO affordances
and design choices and provide examples of successful and unsuccessful
alignment between them.” Particularly important has been Xerox PARC’s
emphasis on the role of self-reflection in a constructionist environment, for
example, it is not enough to get a child to do something; to learn best they need
to reflect on what they have understood.

The SUMMIT program at Stanford (headed by Parvati Dev) created a number
of distributed multimedia MUVEs geared towards both medical education and
support groups related to health. SUMMIT also had methods for authoring
multimedia content that passed one of the more difficult tests, for example, the
doctors actually used them to create materials for their courses. The ExploreNet
project (University of Central Florida) used older children to help create the
educational worlds for younger children, thereby benefiting both age groups.
Their projects emphasized both social science and literary curricula. GMU
taught programming courses in a C++ MUVE. The SAIC corporation and
University of California, San Diego worked on developing intelligent agents for
virtual worlds, including a “librarian” that interacts with students to help them find
information. During the course of the program, gradually more and more tutors
and agents were introduced into the MUVEs, one of the successful examples of
cross-program integration among CAETI projects (Suthers, 1998).

In CAETI, a number of educational simulations were developed, although many
of them were not yet available within the VWs. These efforts are particularly
important in deepening the level of content in educational technology in general
and in VWs specifically. Examples include GMU and Shodor that provided
several impressive simulations on a number of topics, including galaxy formation
and the mathematics of fractals, AMPHION, developed by the University of

Real Living with Virtual Worlds 19

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Wyoming and NASA-Ames to visualize space objects for collaborative use, and
“Function Machines,” a graphic programming language for math/science by
BBN. Similarly, several of the projects developed impressive multimedia content
with associated analysis tools. A good example of this is the Intelligent
Multimedia/Thinking Skills project (GMU) that built instructional modules for
social studies, with an online coach/tutor and tools that support higher-order
thinking skills and excellent source materials for a module on slavery in the U.S.
Other collaborative projects deserve, like all these projects, a chapter in
themselves. Hands on Universe (Lawrence Berkeley Laboratories) in collabo-
ration with the Lawrence Hall of Science, TERC Inc., Adler Planetarium, and
Yerkes Observatory, as well as an international network of educators and
astronomers, allowed high school students to conduct real science in an
apprentice role and to direct the use of large telescopes accessed over the
Internet. Other projects, such as UNC’s collaborative Web applications, and
Guzdial and Kolodner’s important work at Georgia Tech on learning through
design and complex problem solving, were developing both fundamental new
methods (including formal mathematical methods) for supporting collaboration
and new theory for understanding the collaboration of small groups of learners
(Bellman, 2001).

Strengths and Weaknesses of Educational VWs

We can summarize the advantages of VWs for education as follows: First and
foremost a VW can be an excellent constructivist learning environment (Papert,
1980). Part of what makes the MUVE better than other constructivist environ-
ments is that we potentially have better control over the learning context (how
it is situated), we can observe and record all behavior for further analysis by the
teacher and by the student on all constructions and learning exercises. We can
add community as Bruckman emphasizes with MOOSE Crossing, have persis-
tent learning environments available to the student over years, and provide not
only peers and interested adults, but also distant experts.

Second a VW can support collaborative learning and project-based paradigms,
including ones that persist over years intermingling older and younger students,
and bringing in community and professional participants. Further one can study
team building for children and adults. For example, at the Franklin Institute
(Testani, Wagner, & Wehden, 1999), a VW was developed and tested to provide
training in team building for small businesses in the wider Pennsylvanian area.
Team training and collaborative skills have been increasingly asked for and
emphasized by businesses and professional groups as necessary in the modern
work world where complex projects demand collaboration across groups,
companies and countries, and cultures.

20 Bellman

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Third, as hoped for with all educational technology, VWs potentially allow a large
number of students individual attention and support doing work geared towards
their individual interests and talents at a potentially reasonable (and supportable
cost for poor schools) and in a scalable fashion. In addition, as emphasized by the
military for many years, it also allows individuals to learn about and train on
systems that would be too costly, dangerous, or unwieldy in a school setting.

Fourth, VWs provide a computer-mediated environment that can be easily
instrumented to collect all behaviors and interactions in their context (e.g., at
what time, doing what with what reasons, and interacting with whom.) This new
source of comprehensive data can potentially be analyzed in order to evaluate
new practices; or the concept of operations (CONOPS)—how people really
work with different tools and policies—can be studied. It can be used to allow
new ways of evaluating learners who are engaged in a constructivist paradigm,
addressing a way of having an individual exhibit their own contributions while still
be in a collaborative context. It can lead to early publication and evaluation, a
chance for students to participate in apprenticeships with mentors and experts
in science and other professional areas.

Lastly, one can potentially be in an educational environment with an unlimited
ability to expand in knowledge—both in range, amount of content, and depth of
content. Unlike a textbook, a VW has no limit to its expansion. Not only can
formally validated course content be presented, but also peers and professionals
can contribute informally and formally to the knowledge available in the
environment. With the Web and mobile agents, it is easy to envision how VWs
in the future will dynamically create rooms and objects based on source
information found on the Web and other networked resources. As noted above,
these worlds would also be enriched with tutors who co-experience the world
with a learner and help them reason about and reflect on the content they are
exposed to.

As exciting as this potential for VWs is, the reality of the current applications
show how far we need to go. The depth of content and pedagogy remains largely
shallow and spottily available within a given class curriculum. This results in a
lack of integration into the curriculum over the school year, much less through
the student’s educational years. This means that although one may have
excitingly suggestive applications that demonstrate some of the potential for
educational VWs, one will not see as good or lasting educational benefits. One
of the reasons that the VWs are so limited within the curriculum is partly the lack
of authoring tools allowing content to be developed more quickly—by experts
and teachers and most importantly by students. Another reason is that there is
too little integration between the VWs and real-world devices, such as sensors
in chemical lab beakers and monitors on physical devices in a physics lab. Nor
is the virtual world integrated into the real-life classroom; it tends to be an after

Real Living with Virtual Worlds 21

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

school or separate student activity. This is partly due to the lack of computers,
but it also mirrors all the challenges we discuss in the next section for bridging
the gap between virtual worlds and real worlds. Again, there are several good
examples of computer-based support integrated with experimental apparatus
and real classroom practice, but it is largely spottily available when available at
all.

It therefore is no surprise that the psychological integration of the user’s actions
and experiences in the real world and the virtual world is poor. Basically it is up
to the learner, with support from mentors, teachers, and peers, to make the most
of the VW and deal with their real world at the same time. Part of the problem
is the lack of task analysis and clear functional definitions for the educational
VWs. We need to understand the educational goals of a VW when we design it
or when we bring it into the classroom. Lastly it is difficult to generate the
educational material for VWs. It is difficult to design and author the scenarios
that guide or constrain a learner in the VW, and to generate and to parameterize
qualitative aspects of both the scenarios and the environments. Along with this,
we need much better authoring capabilities for non-text environments and for
new multi-sensory interfaces and systems. Again there is a lack of scientific
research that would help inform what educational goals should be accomplished
with what types of visual, haptic, or auditory interfaces. Also, we have
experience and intuition, but not theory to inform how we distribute learning
capabilities and information in the VWs. This is a continuing issue for all
educational technologies, first pondered and addressed in intelligent tutors work.
We have learned how to write a book and organize the materials for a text, but
what are the best ways of organizing materials in an interactive system? This is
a question of pedagogy and epistemology as well as computer science.

To make the above weaknesses of current systems clear, let us look at some of
the lessons learned from the constructivist applications in educational VWs,
partly because some of these educational applications have had some evaluation
studies.

The creative building permitted in text-based MUVEs comes to the fore
educationally, feeding very much into participatory and constructive educational
paradigms. The early educational applications of VWs were characterized by an
enormous creativity and enthusiasm, typified by, for example Bruckman, then at
MIT (Bruckman & De Bonte, 1997), in her work on MOOSE Crossing:

“MOOSE Crossing is a text-based virtual reality environment (or
‘MUD’) designed to give children eight to thirteen years old a
meaningful context for learning reading, writing, and computer
programming. It is used from home, in after-school programs,
and increasingly as an in-school activity. To date, it has been

22 Bellman

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

used in five classrooms. This paper compares its use in three of
those classrooms, and analyzes factors that made use of MOOSE
Crossing more and less successful in each of these contexts.
Issues highlighted include access to computers, existence of peer
experts, free-form versus structured activity, and school
atmosphere.”

However, as many have noted:

“CSCL environments can help to foster and support collaborative
learning in schools. However, our observations indicate that a
computer-supported cooperative learning tool cannot on its own
cause a fundamental cultural shift. Factors that affect the success
of MOOSE Crossing in the classrooms we observed include the
accessibility of computers, school atmosphere, and teacher
attitudes towards collaborative learning.”

However, it has been difficult to develop the full potential of VWs for education
partly because the educational value of VWs still needs to be rigorously
evaluated. Bruckman, one of the early developers of educational VW applica-
tions, has been one of the few to consistently study how well her educational
applications of VWs met educational goals in the classroom.

Tuman (1992, pp. 41-43) makes a similar point, although what he discussed at
that time was the impact of hypertext on literacy; however, it is easy to generalize
the concerns he and others raise to VWs and games. In his story of Jane sitting
down to read Great Expectations on a hypertext system, he compellingly raises
the issue of how computer-based medium might impact a user’s search for depth
and ability to stick to long works, and so forth:

“Students in Jane’s situation, in much larger numbers than any
of us care to admit, have long turned to literary guides, simulacra
of the texts—the most visible being the boldly striped Cliff’s
Notes—to provide them an easier path through (and, at least as
often, around) complex and long literary texts. What Bolter does
not consider in his discussion of the experience of reading
Joyce’s ‘Afternoon’ is what happens when the story is not a self-
contained fictional universe, read by someone interested in
having a rich aesthetic experience, but only a tiny part of a vast
hypertext network. One where harried and information-driven
readers, instead of spending a few hours exploring Joyce’s

Real Living with Virtual Worlds 23

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

constantly shifting story, can find out the least they need to know
more readily by clicking on screens containing background
information about Joyce, interactive fiction, and the story itself.
The point at issue here is not whether the hypertext environment
can support the level of aesthetic reading associated with print
literacy, especially for those fully acculturated into the world of
print—but how different the experience of reading the most
aesthetically complex hypertext may be for ‘readers’ in the future
who will be fully acculturated into an electronic world, possibly
ordinary students of the next century who have no sustained
experience of print. Just how likely is it that people for whom
reading has become an act defined largely in terms of using the
computer either to access needed information on demand or to be
entertained by the slam-bang integration of 3D graphics and CD
sound will be willing—or able—to sit before a terminal patiently
selecting the paths in a single author-designed hypertext in order
to have something akin to a traditional literary experience?”

Clearly there will always be students who rise above any impediments to
intellectual development, nonetheless it is clear that the individual differences
must be understood and addressed. Hence in MOOSE experiments, some of the
community learned a great deal in programming skills and some not (Bruckman,
2003). The same sentiment has been learned in Pueblo and indeed every VW
application as well as every classroom. So the reader might ask why we are
holding the VW to a higher standard than the average classroom. The answer is
simply that we know what the problems (if not the solutions) are in real
classrooms and we do not know the implications in VWs.

Virtual worlds take advantage of human minds, and hence there are individual
differences and differences within an individual depending on their mood,
motivation, and so forth. Hence, Bruckman (2002) discusses AquaMOOSE 3D,
a graphical environment designed to support the exploration of 3D mathematical
concepts. In a classroom comparison study, they were disappointed with the
results between the use of AquaMOOSE and traditional curriculum:

“Despite this initial motivation to use AquaMOOSE, many students
in the experimental class were disappointed with the software.
After the study, students in the experimental class commented on
the lack of action in AquaMOOSE and the imperfect models and
environments that we used. One student, in response to a question
about polar coordinates, said, ‘I don’t remember anything but the
ugly little fish.’ By telling the students beforehand that they were

24 Bellman

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

going to be using software that was game-like in nature, we set
the AquaMOOSE software up to compete against commercial
video games. As can be seen by the intense competition present in
the commercial video game market, the students’ high expectations
are difficult to meet. For example, to create the massively
multiplayer online role-playing game Asheron’s Call, Turbine
Entertainment had a staff of over 30 people working for four
years (Ragaini, 2000). A research prototype made by a few
graduate and undergraduate students and one faculty member
clearly cannot compete.”

As can be seen from both of these articles, how to evaluate value is key problem
for educational applications and indeed for all application areas. The difference
is that in entertainment one can ask the user, “Did you enjoy this?” or watch them
vote with their feet, but in education, one needs to have the goals for using the
VW match their desired real-life behavior. In medicine and other applications,
it just gets increasingly serious.

All of these are general challenges not just for the educational use of VWs but
for all ‘real’ applications.

Challenges of “Getting Real”
in Virtual Worlds

The reason for this chapter is not to describe the challenges of producing
believable, attractive, and desirable social or gaming virtual worlds, although
some of the comments will impact such current and much emphasized uses of
VWs. There is a lot of active and good work describing how to do both state of
the practice and state of the art in VWs (see Vince & Earnshaw, 1998;
www.there.com) for the purposes of social worlds and role-playing games. For
example, Vince and Earnshaw (1998) offer a number of useful chapters
describing how the current technology is being used (on the use of VRML or
ATM networks for example), with other chapters describing research in such
areas as virtual reality interfaces. Similarly, Bartle (2003), one of the early
developers of MUDs, describes the design concepts behind a wide range of
games from the earliest MUDs to the current online multimedia role-playing
games. But again this comprehensive book is geared towards those interested in
designing games.

Real Living with Virtual Worlds 25

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Many have noted in the research and development community that creating real-
world applications in a virtual world is a matter of having sufficient detail. If there
was a VW of sufficient richness, then one could truly use it as an exploratory
scientific tool for many things:

1. Disease interventions and crisis interventions

2. Discovery and understanding

3. Analysis and engineering (building bridges, building new drugs)

4. Inventions (social and physical)

The hard question is what detail is needed and how to get the detail into the VW.
The answer to this hard question is answered differently depending on whether
one emphasizes the VW as a set of models, as a set of interfaces between the
human being and various data sources, or as a set of human and machine
processing capabilities and effectors. At first details may sound as if the problem
is data, but it is not. Rather, it is data and process and an analyzable setting that
allows critical events to be validated. It is also detail at all levels of a VW object,
actions that characters can do, and the settings or contexts within which these
objects and actions occur.

VWs as Models

VWs are in many ways models; they have representations for the human user
and other agents. They have both static to dynamical models of the environment
or the setting, they have both static and dynamical representations of any
resources or objects in the world, and to add to complexity they can contain
objects that are meant to be classical models or simulations of something in the
world (such as players playing a hockey match or a tank firing and so forth).
Darema (2002) calls them dynamical data-driven models because they have
humans and potentially other ways of incorporating live data feeds that con-
stantly change the “models” in the VW. Some of the greatest challenges to
becoming real-world-capable VWs are to, on one hand, gracefully integrate the
‘live’ and modeled parts of a virtual world and, on the other hand, carefully
distinguish—monitor, trace, and analyze the impacts—from what is ‘real’ input
or behavior and what is from models (and therefore dependent upon modeling
assumptions). For example, a surgeon who is about to cut into a patient in the
manner suggested by a projected three-dimensional rendering of the tumor is
very cognizant of the differences between the modeled tumor and the live patient
beneath her knife. In the best case the augmented reality system will support
careful analysis of the continual correctness of the projected image and tumor
model based on the feedback occurring during the surgery.

26 Bellman

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

VWs are like models: if they’re good enough they can serve many purposes.
When many people discuss scaling up VWs to real-world applications, they are
often considering the issue in terms of how realistic the virtual world models are.
For example, in a training exercise, it may be a matter of the realism of the terrain
model (Darken & Goerger, 1999). In many gaming environments, it is the realism
of the textures in the world or in the fabric available to avatars’ costumes or in
the bouncing of one object against another.

However, it soon becomes apparent that there are almost an infinite number of
details that can be included in a virtual world. This then requires not only modeling
skill, but modeling wisdom; it also requires new ways of integrating models since
there will be many, many models governing different objects, and their interac-
tions and their contexts or settings. It also has motivated many to move away
from just modeling to a combination of modeling and live data cannily projected
into the world. For example, many virtual museums no longer try to build models
of their layouts and objects; instead they use static pictures taken from many
angles, pasted into the virtual world and shown to the user based on where their
avatar is located in the VW.

VWs as a Set of Human and Computational Processes

There is an intimate relationship between the computational capabilities available
inside the VW and VW models, but it is worth bringing out some of issues
separately. The most formidable types of models needed in a VW are not the
ones used to give a realistic appearance to an object, but rather have the correct
dynamics and behavior from that object. This can lead to a combinatorial
nightmare of potential modeling interactions and side effects. Therefore, unless
we are trapped and limited into analyzing ahead of time every detail’s relationship
with all other details, we need much more profound “meta-models” that can
handle relationships among other models. Lastly, to handle the building of VWs,
this modeling cannot be done all at once. Hence the emphasis here is on
traceability and analysis to support an incremental process.

As in all models, some factors, features, and attributes will be as realistic as
possible, and others need only be dummy variables or placeholders. If VW
models never got beyond entertainment and some teaching and training apps, that
would be a valuable contribution enough. However, there are some very good
reasons for desiring more from VWs; the complexity of our modern era requires
integration places. We need places that are infused with analysis capabilities.
Due to the complexity they also need to be incrementally done and hence deeply
traceable. They must have explicit criteria for desired realism or behavior and
not just appearance of correctness.

Real Living with Virtual Worlds 27

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

That is, not just art, but rendering in the sense of the scientific side of art and
craft. Pictures (museum sites) only make realism in appearance and not in
behavior. To get realism in behavior, we need three things: more realistic input
(such as data-driven systems), more realistic models or better models for a given
function, and more realistic ways of driving output (not just text or pictures to a
user, but for example instruments on a screen). A VW must eventually be alive
with processes that go on regardless (Simcity like) and have dynamics, not just
responsive actions.

But processes are not just within models (such as simulations); rather they are
part of the challenge and the means of integrating the VW with the real world,
and as such they must be able to cross from real world into VW as processable
data streams and information flows, and from VWs to real world as electrical
signals that cause automated devices to move, focus, release chemicals, and
many other such actions. For example, how is the real live video on a fireman’s
hat to be fed into the virtual world that is being used to monitor and control the
force’s reaction to a fire? Or taking this same analogy, how does the VW’s
internal simulation of the fire and wind conditions result in changes in how the
sensors are focused or water is being dropped from UAVs?

VWs as Interfaces

However VWs are not just the models underlying the world, they are also the
means by which humans and other active processes interface with any of the
content or capabilities of the virtual world. Especially now VWs are no longer
just inside a box—they can include interfaces that run robots and factory floors,
respond to events within a smart room, or provide live data projected into the
behavior of virtual objects. Hence in the rest of this section, we will be discussing
several examples of research that emphasizes new interfaces—both enriching
the VW by the input into the world and the outputs from the world. To get real
requires not only content inside, but also the ability to interface with the real
world.

Real-World-Capable Challenges

Much of what we are going to discuss here are ways of filling the virtual world—
but it is not enough to say it needs real content and sources of content. Rather
it must be content placed in the virtual world in such a way that one can analyze
it, track its usage, and experiment with it. This latter property will change virtual
worlds from massive games with billions of homemade objects (even bought and

28 Bellman

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

sold) by users to a sufficiently realistic environment for medicine and other high-
fidelity uses.

Based on the discussion so far, we can now summarize the three major
challenges to real-world-capable VWs as realism, scalability, and analyzability
at all levels of the VW—from the management of the network byte streams and
sensors and effectors, to the processing capabilities and models inside the VW,
to the impact on the psychology and culture of the human users. Virtual World
users similarly demand increasing realism.

Realism

Howard Rheingold (1992) credits Sara Kiesler (1986) with noting “…that the
word ‘phony’ is an artifact of the early years of the telephone, when media-naive
people were conned by slick talkers in ways that wouldn’t deceive an eight-year
old with a cellular phone today.”

As Mike Macedonia points out, one of the drivers for realism in virtual worlds
has always been military training and planning needs (2002). He also points out
that VWs are just a continuation in a long tradition of innovations starting “in
1887, when McCarthy Little, a military strategist at the Naval War College in
Newport, R.I. devised a war game using miniature battleships on maps. Around
the same time, the German Army developed the board game Kriegspiel. Such
games soon spread to all the world’s major armies and became critical in military
education and planning. Greater realism came later. Virtual flight was the
brainchild of Edwin A. Link, who in 1929 invented the Blue Box, an instrumented
cockpit simulator that used pneumatic pumps to recreate an aircraft’s motion”
(p. 36). He goes on to discuss the sophistication of course added by computers:
“By the 1980’s Link’s idea had been wholly transformed into digital flight
simulators complete with 3D graphics to convincingly reproduce scenery, high-
resolution displays, and moving platforms with 6 degrees of freedom.” These
military environments were early innovators in how to bring in realistic details.
For example, Paul Debevec in the 1990s at UCB helped develop image-based
rendering, which generates images directly from photos rather than building them
graphically. Others worked diligently on how to bring in sound, vibration, motion,
and so forth (Macedonia, 2002). There has been a growing amount of work now
on how to have avatars display more realistic movements and expressions,
including emotion (Trappl, Petta, & Payr, 2003; Perlin, 1995; Perlin & Goldberg,
1999; Johnson, 1999). However, in the author’s experience in observing both
flight simulators and tank simulators, it is interesting to note that as much as the
sophistication of the interfaces has increased, there are still formidable chal-
lenges in providing the type of role that the human trainer plays in these
simulators. For example, in the author’s observation of the old flight simulators

Real Living with Virtual Worlds 29

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

used for Naval fliers in Beeville, Texas, it was fascinating to interview the human
trainer as he presented the student inside the cockpit trainer with poor weather
conditions or malfunctioning components. He was as busy as the student. When
the author asked one such trainer questions on why he presented turbulence at
one point, he replied that the student was doing so well, it was time to stress him
a little. Intuitively and carefully, the skilled trainers made the complex technology
an educationally meaningful experience for the student. Unfortunately, this
required a single trainer working in a very expensive simulator on the experience
of one student. The question before us is how to somehow make computational
and scale up this type of quality training and attention for numerous students—
for even a battlefield of such students (Macedonia, 2002; Wallace & Sollenberger,
2001).

Mixed Reality: Telerobotics and Augmented Reality

From the earliest examples of controlling a coffeepot through a networked
computer, it has been clear that the issue of VWs is not just a matter of how to
get information into the VW, but also how to get real effects out of the VW into
the real world. Paul Milgram’s group in Canada has been doing leading work for
many years in the area of augmented reality both from the perceptual issues to
the control of effectors in telerobotics (Milgram et al., 1995). “The fields of
artificial reality and conventional telerobotics share many common technological
challenges.” In their paper, they discuss “the concept of applying techniques of
virtual environment simulation to address some of the challenges of remote
manipulation of teleoperated systems in unstructured environments, with a focus
on remote excavation.”

Not Just Inside a Box

To do real work is going to require the ability of the virtual world not to be thought
of as just in a box, but rather as something that accompanies one into the surgical
ward (Parvati Dev, private communication), the classroom, and everywhere
else.

It is important to not only think of virtual worlds as inside boxes, but rather as
encompassing any highly computationally underwritten environment, for ex-
ample, caves, to highly connected people in partly RL/VL spaces.

There are many recent experiments on how to incorporate mobile devices into
e-learning (Berger, Rainer, Holger, & Klaus, 2003). In the Berger work, the tool
“is embedded in an e-learning and m-learning environment at the University of
Regensburg, which allows its functions to be accessed not only from a Web

30 Bellman

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

browser, but also from a personal digital assistant (PDA) or any phone that
supports the wireless application protocol (WAP). In their paper, they discuss
the advantages to learning groups and the “benefits gained by supporting them
in mobile scenarios.”

Obviously there needs to be many different kinds of collaborative support.
However, for the purposes discussed here, what is missing from this work is how
to gain a global perspective on what is being done and accomplished by the mobile
participants. Therefore it is important to take some of the collaborative research
on mobile devices and integrate it with virtual worlds, potentially in the helpful
strategy of Nessie.

Analyzability

Because models of what humans and cultures are will become the silent
underpinnings of our brave new world, we must develop the means by which
those assumptions and biases can become known and analyzable to us.

We have already discussed that one of the most important qualities of MUVEs
is that people are allowed the freedom and richness of word pictures. However,
the advantage of imagination creates the equally strong disadvantage of increas-
ing the challenges for analysis and experimentation in virtual worlds. That is,
much work seeks to increase the type of applications that require high fidelity,
analyzability, and traceability (e.g., what was responsible for what effect in the
environment). How then are we to analyze, understand, and control for certain
critical effects when the virtual world is to large extent “in the mind’s eye of the
beholder?” We need cognitive studies and experiments in VWs, and analysis at
least equivalent to the early days of educational technology.

The ability to create an analyzable base within the VWs is critical to its ability
to be developed and scalable for into real-world-capable VWs. Such an
analyzable base will allow developers to continually assess the value of new
capabilities or features of the world, and with that essential feedback refine the
world and continually engineer it. Such analyses are also critical to supporting
psychological scalability by helping the human user gain perspective over the
enormous complexity of such environments, and have the means to address
questions on how capabilities are being used, the impacts of these capabilities,
the causal and correlative effects of different world, agent, and object charac-
teristics. Lastly, the ability of this last point—to have the means by which humans
can understand the VW and understand its impacts means that we can provide
the crucial means for humans to take responsibility for what occurs in the virtual
worlds. Responsibility is the flip side of the ability to evaluate. We will determine
based on the evaluation.

Real Living with Virtual Worlds 31

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Need to Take Responsibility for the Content and
Capabilities in Virtual Worlds

Real-world-capable virtual worlds require many things, as we have discussed.
But one issue is rarely brought up both as a motivation for the challenges
described below, but also as a responsibility. Although it can be annoying or
harmful even if social MUDs are not well-run, as we approach these critical real-
world applications, it becomes increasingly critical that we build environments
that not only can support the functions we care about, but for which we as
developers can take responsibility. This will increasingly become a legal require-
ment; it already is an ethical one. This means that we must not only be able to
support the right things in a VW, we must be able to prove that we are able to
support the right things.

One of the things that has long been problematic in computer-based applications
is the hidden power of the programmer to determine what is the real use of
content within a system. As Tuman, who is not a cyberspace enthusiast, noted
quite a while ago (1992): “Truth is still above the masses, but it is now conceived,
not as something rarefied or spiritual, but as a trade secret at the top of a
corporate pyramid—what separates holders of ‘truth’ from the people below is
not knowledge but institutional greed and power.” Meanwhile, instead of
Faustian man, committed to an endless, solitary quest for knowledge, the new
age, Bolter speculates, is marked by the programmer, someone whose work at
every step makes him or her aware of the physical limits of electronic time and
space. The programmer, Bolter contends, does not make bold new discoveries
but instead subtly manipulates finite parts within a finite world: “He remains in
the confined logical universe of his machine, rearranging the elements of that
universe to suit the current problem” (Bolter, 1984, p. 223).

Again the point of bringing this type of discussion in is not to just give balance to
communities who do not agree or argue against the e-world, Internet communi-
cation, and of course virtual worlds; it is to raise several critical issues:

First, who will be responsible for the material in worlds (in social
MUDs it is both the owner of the database and often a user
group)—who and how to evaluate it in a multi-user multi-created
world?

Second, for some time now a number of us have been concerned about the hidden
power given programmers in too many domains for which they do not have the
knowledge. This is a problem very familiar to the modeling and simulation
community, where the programmer often makes decisions for the sake of

32 Bellman

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

programming ease or computational efficiencies that may have profound impacts
on the validity of the models involved. How in virtual worlds do we elevate this
authoring responsibility. Tuman’s remarks point to something that has been long
discussed in the modeling community, the problem of the programmer’s power—
in most programmed environments, whatever knowledge and actions exist end
up reflecting both for good and bad the perceptions, understandings, and
knowledge of the programmer about that domain. This is why we must in fact
create a very different paradigm in MUVEs.

Third, how do we bring depth and real content into an environment that
encourages rapid information retrieval, rapid movement to the right place, and
rapid discovery of interaction possibilities? In social MUDs, this is as simple as
the power to not have to walk through spaces but to go immediately there. We
want the advantage of the virtual worlds except where process—and the time
it takes, the space it travels—is a meaningful part of the process. Hence in a
surgical virtual world, we certainly do not want young surgeons practicing
procedures by skipping to the end!

The point here is that the challenges are not all computer software and hardware
technical. Rather the challenges include mathematics and social sciences, and
how to use these environments to create something fundamentally new—not just
a shareable space, but one that is profoundly analyzable; one that helps gather
the data that will be meaningful within it.

Clearly, developing the means by which we can evaluate virtual worlds is a
critical and urgent need. Luckily, aside from early pioneers such as Peg Syverson
and Amy Bruckman, there are increasingly more and more researchers doing so
(Bouthillier & Shearer, 2003; Lau, Adams, Dew, & Leigh, 2003).

Conclusions

Virtual worlds have enormous potential, not only in specific application domains,
but in changing the way that researchers and developers are able to develop,
integrate, monitor, analyze, and impact the complex system of humans and
artifacts. However, in order to develop such systems, we must scale up in three
very different ways: numerousness, variety, and what we are terming “psycho-
logical scalability.” To do so we believe that we must ‘open up the box’ and
integrate VWs into the real world via a variety of multi-sensory interfaces, live
data feeds, telerobotics, and other effectors for performing real work from the
virtual world. However, in order to scale up in these ways, we must develop VWs
that have much better ways of analyzing and evaluating what has occurred within
the virtual world, and much better ways of mapping the causative and co-

Real Living with Virtual Worlds 33

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

occurring relationships among the many complex attributes of agent, world, and
objects. To help develop testbeds for such VWs, we have been experimenting
on both the types of experiments one can conduct within a virtual world and the
necessary adaptive and flexible infrastructure for doing so. Eventually these
testbeds will lead the way to Virtual Worlds that help us do real things.

References

Azuma, R. (1997). A survey of augmented reality. Presence: Teleoperators
and Virtual Environments, 6(4), 355-385.

Bajura, M., Henry F., & Ryutarou O. (1992). Merging virtual objects with the
real world: Seeing ultrasound imagery within the patient. Proceedings of
SIGGRAPH ’92, Chicago, Illinois, July 26-31. Computer Graphics, 26(2),
203-210.

Bartle, R. (1990). Interactive multi-user computer games. MUSE, Ltd. Re-
trieved March 9, 2004 from: www.cpsr.org/cpsr/sociology/mud_moo/
mudreport.txt

Bartle, R. (2003). Designing virtual worlds. Prentice-Hall.

Bellman, K. (1994). Playing in the MUD: Turning virtual reality into real places.
In R.J. Seidel & P.R. Chatelier (Eds.), Proceedings of the NATO
Conference on Virtual Reality: Training for Tomorrow, Portsmouth,
England, February. NATO Defense Research Group #16 on Training and
Training Technology.

Bellman, K. (1997). Sharing work, experience, interpretation, and maybe even
meanings between natural and artificial agents. Proceedings of SMC’97:
The 1997 IEEE International Conference on Systems, Man, and
Cybernetics (pp. 4127-4132), Orlando, Florida, October 12-15.

Bellman, K. (1999). Emotions: Meaningful mappings between the individual and
its world. Paper presented at the Workshop on Emotions in Humans and
Artifacts, Austrian Research Institute for Artificial Intelligence (ÖFAI),
August 13-14.

Bellman, K. (2001). Building the right stuff: Some reflections on the CAETI
program and the challenges of educational technology. Chapter 12 in K.D.
Forbus & P.J. Feltovich (Eds.), Smart machines in education: The
coming revolution in educational technology (pp. 377-420). AAAI
Press.

Berger, S., Rainer M., Holger N., & Klaus J. (2003). Mobile collaboration tool
for university education. Proceedings of the 12th IEEE International

34 Bellman

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Workshops on Enabling Technologies: Infrastructure for Collabora-
tive Enterprises (WETICE’03), Linz, Austria.

Bouthillier, F., & Shearer, K. (2003). Assessing collaborative tools from an
information-processing perspective: Identification of value-added pro-
cesses. Proceedings of the 12th IEEE International Workshops on
Enabling Technologies: Infrastructure for Collaborative Enterprises
(WETICE’03), Linz, Austria.

Cabri, G., Leonardi, L., & Zambonelli, F. (2000). Mobile-agent coordination
models for Internet applications (pp. 82-89). Washington, DC: IEEE
Computer Society.

Clodius, J. (1995). Computer-mediated interactions: Human factors. Proceed-
ings of MUDshop II, San Diego, California, September. Retrieved March
20, 2001 from: www.dragonmud.org/people/jen/keynote.html

Curtis, P. (1992). Mudding: Social phenomena in text-based virtual realities.
Proceedings of DIAC’92: 1992 Conference on Directions and Impli-
cations of Advanced Computing, Berkeley, California.

Curtis, P., & Nichols, D. (1994). MUDs grow up: Social virtual reality in the real
world. COMPCON 1994 (pp. 193-200). Retrieved from citeseer.ist.psu.
edu/curtis93muds.html.

Darema. F. (2002). NSF, dynamic data applications systems technology for
crisis management. Proceedings of VWsim ’02.

Darken, R., & Goerger, S. (1999). The transfer of strategies from virtual to real
environments: An explanation for performance differences? Proceedings
of VWsim ’99: The 1999 Virtual Worlds and Simulation Conference.

Dautenhahn, K. (1998). The art of designing socially intelligent agents: Science,
fiction, and the human in the loop. Applied Artificial Intelligence, 1(7).

Dautenhahn, K. (1999a). Socially situated life-like agents. Proceedings
VWsim’99: The 1999 Virtual Worlds and Simulation Conference, part
of WMC’99: The 1999 SCS Western Multi-Conference (pp. 191-196).
San Francisco, California, January 18-20.

Dautenhahn, K. (Ed.). (1999b). Human cognition and social agent technol-
ogy. Benjamins.

Dautenhahn, K., & Nehaniv, C. (1999). Living with socially intelligent agents: A
cognitive technology view. In K. Dautenhahn (Ed.), Human cognition and
social agent technology (Chapter 16). Benjamins.

Drascic, D., & Milgram, P. (1996). Perceptual issues in augmented reality. In
M.T. Bolas, S.S. Fisher, & J.O. Merritt III (Eds.), SPIE Volume 2653:
Stereoscopic displays and virtual reality systems (pp. 123-134). San
Jose, CA.

Real Living with Virtual Worlds 35

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Feiner, S.K. (2002). Augmented reality: A new way of seeing. Scientific
American, 286(4), 48-55.

Foner, L.N. (1997) Entertaining agents: A sociological case study. In W.L.
Johnson (Ed.), Proceedings of AA’97: The First International Confer-
ence on Autonomous Agents (pp. 122-129), Marina del Rey, California,
February 5-8. See also: foner.www.media.mit.edu/people/foner/agents.
html

Forbus, K.D., & Feltovich, P.J. (eds.). (2001). Smart machines in education:
The coming revolution in educational technology. AAAI Press.

Gallagher, W. (1993). The power of place: How our surroundings shape our
thoughts, emotions, and actions. Harper Perennial.

Gerteis, W., & Schaper, J. (2003). Instructional design for collaborative e-
learning. Proceedings of the 12th IEEE International Workshops on
Enabling Technologies: Infrastructure for Collaborative Enterprises
(WETICE’03).

Gordon, A., & Hall, L.(1998). Collaboration with agents in a virtual world.
Proceedings of the Workshop on Current Trends and Artificial Intel-
ligence in Education, Fourth World Congress on Expert Systems (pp.
25-32), Mexico.

Greenhalgh, C., & Benford, S. (1997). Boundaries, awareness and interaction
in collaborative virtual environments. Proceedings of the 6th Workshop
on Enabling Technologies Infrastructure for Collaborative Enter-
prises (p.193), MIT, Cambridge, Massachusetts, June 18-20.

Herz, J. (1997). Joystick nation: How computer games ate our quarters, won
our hearts & rewired our minds. Little, Brown & Company.

Hughes, B. (1995). Educational MUDs: Issues and challenges. Invited keynote
presentation, MUDshop II, San Diego, California, September. Retrieved
March 20, 2001 from: www.pc.maricopa.edu/community/pueblo/writ-
ings/MudShopBillie.html

Hughes, B., Walters, J., & Kort, B. (1994). Virtual space learning: Creating text-
based learning environments. Proceedings of the 1994 ACM Symposium
on Applied Computing (pp. 578-582), Phoenix, Arizona.

Hummel, J., & Lechner, U. (2002). Social profiles of virtual communities.
HICSS 2002, 172.

Johnson, L. (1998).Pedagogical agents in virtual world training. In C. Landauer
& K. Bellman (Eds.), Proceedings of the Virtual Worlds and Simulation
Conference (VWSIM’98).

Kiesler, S. (1986). The hidden messages in computer networks. Harvard
Business Review, (January-February).

36 Bellman

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Landauer, C., & Bellman, K. (1996). Integration systems and interaction spaces.
Proceedings of the First International Workshop on Frontiers of
Combining Systems (pp. 161-178), Munich, German, March 26-29.

Landauer, C., & Bellman, K. (1998a). MUDs, integration spaces, and learning
environments. Proceedings of the 31st Hawaii Conference on System
Sciences, Kona, Hawaii, January 6-9.

Landauer, C., & Bellman, K. (1998b). Integration and modeling in MUVEs.
Proceedings of VWsim’98: Virtual Worlds and Simulation Conference,
1998 SCS Western MultiConference (pp. 187-192), San Diego, Califor-
nia, January 12-14.

Landauer, C., & Bellman, K. (Eds.). (1998c). Proceedings of VWsim’98:
Virtual Worlds and Simulation Conference, 1998 SCS Western
MultiConference, San Diego, California, January 12-14.

Landauer, C., & Polichar, V. (1998a). More than shared artifacts: Collaboration
via shared presence in MUDs. Proceedings of WETICE’98: Workshop
on Web-Based Infrastructures for Collaborative Enterprises (pp. 182-
189), Stanford University, Palo Alto, California, June 17-19.

Lau, L.M.S., Adams, C.A., Dew, P.M., & Leigh, C.M. (2003). Use of scenario
evaluation in preparation for deployment of a collaborative system for
knowledge transfer—the case of KiMERA. Proceedings of WETICE’03,
The 12th International Workshop on Enabling Technologies: Infra-
structure for Collaborative Enterprises, Linz, Austria, June 9-11.

Lawley, E. (1994). The sociology of culture in computer-mediated commu-
nication: An initial exploration. Submitted in partial fulfillment of the
requirements for LS695 Seminar.

Lipner, M. (1999). The Web was pretty neat until they started messing it up
with pictures. Invited address, Symposium on Virtual Communities, Ameri-
can Association for the Advancement of Science Annual Meeting, Ana-
heim, California, January 21-26.

Macedonia, M. (2002). Games soldiers play. IEEE Spectrum, (March), 32-37.

Maes, P. (1987). Concepts and experiments in computational reflection. Pro-
ceedings of OOPSLA’87 (pp. 147-155).

Mamei, M., Zambonelli, F., & Leonardi, L. (2003). Developing adaptive and
context-aware applications in dynamic networks. Proceedings of the 12th

International Workshop on Enabling Technologies: Infrastructure
for Collaborative Enterprises (p. 401), Linz, Austria, June 9-11.

Milgram, P., Drascic, D., Grodski, J., Restogi, A., Zhai, S., & Zhou, C. (1995).
Merging real and virtual worlds. Proceedings of IMAGINA’95, Monte
Carlo, February 1-3.

Real Living with Virtual Worlds 37

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

O’Day, V., Bobrow, D., Bobrow, K., Shirley, M., Hughes, B., & Walters, J.
(1998). Moving practice: From classrooms to MOO rooms. Computer
Supported Cooperative Work, Special Issue on Interaction and Col-
laboration in MUDs, 7(1-2), 9-45.

Papert, S. (1980). Mindstorms. New York: Basic Books.

Perlin, K. (1995). Real-time responsive animation with personality. IEEE
Transactions on Visualization and Computer Graphics, 1(1).

Perlin, K., & Goldberg, A. (1999). Improvisational animation. In C. Landauer &
K. Bellman (Eds.), Proceedings of the Virtual Worlds and Simulation
Conference (VWSIM’99).

Polichar, V. (1996). An office MUD for fun and profit? Or maybe just better
communication. Login Magazine.

Polichar, V. (1997). On the value of MUDs as instructional and research
tools. Open letter provided to Northern Arizona University.

Psotka, J., Massey, L.D., & Mutter, S.A. (Eds.). (1998). Intelligent tutoring
systems—lessons learned. Erlbaum, Hillsdale.

Raybourn, E., Kings, N., & Davies, J. (2003). Adding cultural signposts in
adaptive community-based virtual environments. Interacting with com-
puters, 15(1), 91-107.

Reid, E. (1994). Cultural formations in text-based virtual realities. Masters
Thesis, Department of History, University of Melbourne, Australia.

Rheingold, H. (1992). Retrieved from: gopher://gopher.well.sf.ca.us/00/Com-
munity/virtual_communities92

Riner, R., & Clodius, J. (1995). Simulating future histories. Anthropology and
Education Quarterly, 26(1), 95-104. Retrieved March 20, 2001:
www.dragonmud.org/people/jen/solsys.html

Rowley, M. (1997). Distributing MOO-based shared worlds. Proceedings of
the Sixth Workshop on Enabling Technologies Infrastructure for
Collaborative Enterprises (WETICE’97) (p. 155), MIT, Cambridge,
Massachusetts, June 18-20.

Shilling, R., & Zyda, M. (2002). introducing emotion into military simulation and
video game design. America’s Army: Operations and VIRTE. GAME-
ON 2002 23EE.

Silverman, B., Holmes, J., Kimmel, S., Branas, C., Ivins, D., & Weaver. R.
(2002). The use of virtual worlds and animated personas to improve
healthcare knowledge and self-care behavior: The case of the heart-sense
game. Intelligent agents and their applications (pp. 249-294). Heidel-
berg, Germany: Physica-Verlag.

38 Bellman

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Soloway, E. (1993). Technology in education (introduction). Communications
of the ACM, 36(5), 28-30.

Soto, M., & Allongue, S. (1997). A semantic approach of virtual worlds
interoperability. Proceedings of the 6th Workshop on Enabling Tech-
nologies Infrastructure for Collaborative Enterprises (WETICE’97),
(p. 173), MIT, Cambridge, Massachusetts, June 18-20.

Suthers, D. (1998). CAETI architecture report. Retrieved from: lilt.ics.hawaii.
edu/lilt/papers/1998/FINALREP.DOC

Testani, S., Wagner, E., & Wehden, K. (1999). CIMBLE: The CADETT
interactive multi-user business learning environment. Proceedings of
VWsim 1999, The 1999 Virtual Worlds and Simulation Conference.

Towell, J. (2004). MUDs in scientific conferencing. Retrieved March 9, 2004
from: www.hayseed.net/MOO/

Trappl, R., Petta, P., & Payr, S. (eds.). (2003). Emotions in humans and artifacts.
Boston, MA: MIT Press.

Turkle, S. (1995). Life on the screen. Simon and Schuster. underground.
musenet.org:8080/

Viau, E.A. (1996). Melding technology and pedagogy. Proceedings of AACE
1996.

Viau, E.A. (1998a). World building: A course of the future. Ed at a Distance
Magazine, (January).

Viau, E.A. (1998b). Color me a writer: Teaching students to think critically.
Learning and Leading with Technology, 25(5), 2-5.

Viau, E.A. (1998c). Shades of meaning. The Journal of Adolescent and Adult
Literacy.

Viau, E.A. (1998d). Building models, building worlds. Proceedings of the
National Educational Computing Conference, San Diego, California,
June.

Vince, J., & Earnshaw, R. (1998). Virtual worlds on the Internet. Wiley-IEEE
Computer Society Press.

Wallace, J., & Sollenberger, J. (2001). Improving the state of military modeling
and simulation: The joint synthetic battlespace. Modeling and Simulation
Magazine, 1(1).

Welch, D., & Purtilo, J. (1997). Domain-driven reconfiguration in collaborative
virtual environments. Proceedings of the 6th Workshop on Enabling
Technologies Infrastructure for Collaborative Enterprises
(WETICE’97) (p. 167), MIT, Cambridge, Massachusetts, June 18-20.

www.ibiblio.org/dbarberi/papers/mud/ (retrieved February 8, 2004).

Real Living with Virtual Worlds 39

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Zyda, M. (2002). Handling heterogeneity in networked virtual environ-
ments. VR 2002: 7-14 21EE.

Zyda, M., Hiles, J., Mayberry, A., Wardynski, C., Capps, M., Osborn, B.,
Shilling, R., Robaszewski, M., & Davis, M. (2003) Entertainment R&D for
defense. IEEE Computer Graphics and Applications, 23(1), 28-36.

Zyda, M., Mayberry, A., Wardynski, C., Shilling, R., & Davis, M. (2002a). The
MOVES Institute’s America’s army operations game. SI3D 2003: 219-
220 25EE.

Zyda, M., McGregor, D., Brutzma, D., & Kapolka, A. (2002c). Tutorial 5: A
hands-on introduction to networked virtual environments. VR 2002:
304 22EE.

40 Wingrave

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter II

The Future Virtual
Reality Melting Pot

Chadwick A. Wingrave

Virginia Tech, USA

Abstract

Virtual reality replaces or modifies human sensory input as do other
technologies but with different methods or goals. Currently and even more
so in the future, these technologies will work off the successes of each,
creating a virtual reality melting pot. In this chapter, we look at some of
these technologies and their current effect on virtual reality. From there,
we identify human technological drives and use this to highlight future
technologies that will meld into the melting pot. Lastly, we look at how some
of these changes will impact human society and human everyday life.

Introduction

Many fields today are working towards a virtual, information-accessible world.
Distance loses meaning, communication and information flows freely, and the
sensory inputs are the manipulated mediums that make it so. Virtual reality (VR)

The Future Virtual Reality Melting Pot 41

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

is at the forefront of this, having the goal of replacing or modifying a range of
sensory input of the user. The result of this goal is the study of how users behave
and react when their environment changes in non-realistic ways. Other fields
seek to modify the user’s world through different means such as augmenting the
user’s senses or blending technology into the background of a human’s life.
However, the technology of these younger fields has not advanced as far as VR
to make them practical for many studies involving users due to equipment and
toolkit fragility. VR however has explored beyond merely equipment advances
to create methodology and experiment with real users and their reaction to real
VR experiences. Other fields in the future will then be able to work off VR
research and literature, blending their advances with the inroads made by VR
into a larger body of knowledge, a VR melting pot of technology.

An apologyi is in order before we continue with the rest of this chapter. It
becomes difficult to say where the bounds are of certain research fields. For
instance, many fields seek the same goal of bettering the lives of humans through
technology; they just take on different methods or emphasis. In the exploration
of enabling VR technologies, it is likely that the statements of this chapter will
annoy researchers from other fields as they claim their technology will be the
dominant research that led to the change in our lives. The reality is that the future
is built of many parts, interacting in a complex, seemingly chaotic manner.
Judging importance and contribution will be left to the historians. Creating the
importance and contribution is the charge for those with the creativity to see the
connections and blur research lines, mixing the best of the various fields into
something of utility for the average human.

But first, a vision of the future of VR through a scenario of a human’s life:

As Brad exits his last required cycle of REM sleep, his blinds silently open
to let in the rays of sunlight from the morning sun. He had no need to set an
alarm as his room monitored his sleeping patterns and his virtual agent
managed any interruptions (if an emergency arose, the agent could wake
him). Still lying in bed, Brad asks his room what he missed through the night.
The ceiling switches from a star-filled night sky to show the night’s activity.
Gesturing with his hands he moves through his messages…nothing out-
standing. His news avatar clipped a few news stories, which he will look at
once he gets to the office; Dave, Brad’s friend, is having a dinner party in
a few weeks and it was added to Brad’s schedule; Brad’s brother left a joke
he had just heard about a man and an elephant; and, a few bits and pieces
of work information from the global offices on their accomplishments
through the night. Brad heads toward the shower to finish going over his
messages as music turns on in the background. He always likes Mozart in

42 Wingrave

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the morning, though every once in a while his room plays Beethoven, which
is a surprising but welcome change. After his shower, Brad starts to head
out the door when his virtual agent at the French office breaks in,
appearing in his vision, and asks for help with a problem they have been
stuck on. Normally, this activity would wait until work, but his French
coworkers wanted to go to a long lunch so Brad’s agent gets his attention
before he enters the morning commute. Brad tells his agent to take him there
and, though he is still standing in his living room, to his senses he appears
in the European office surrounded by a few familiar French coworkers.
They review diagrams of the building they have been developing and Brad
points out a few subtleties of the construction project they had overlooked.
He pulls a pencil from his pocket onto which the room overlays the
blueprints of the hallway they are discussing. He then uses the pencil to
point-out the location of doorways and how they connect to the main hall.
Afterwards, Brad even tells them his brother’s joke about the elephant.
They all laugh and Brad says good-bye, thankful that the computer
translated his joke into French properly, as humor has difficulties in auto-
translation. With his meeting over, Brad walks out his front door and starts
to review traffic patterns for his drive to work.

One might not recognize this as a scenario of future virtual reality, but more of
a scene from some science fiction novel. Today’s clunky VR systems with
expensive bulky trackers and large, low-resolution and small field-of-view
displays are hard to imagine as portable, ubiquitous, high-resolution systems
integrated into one’s individualistic lifestyle. But then again, so were laptop-sized
computers when a single mainframe filled a room. To draw parallels, just as
computing was once only the domain for calculating artillery trajectories and
business payrolls, so will VR grow out of its currently limited domain of expensive
or hazardous-environment applications. The question is then, how will it grow?

In this chapter, we shall use two methods to support the VR melting pot and
discuss how the changes will have social implications. The first method of
understanding how VR will change is to look at existing and related technologies
and extrapolate into the future. The conclusions that can be drawn are easily
supported with existing facts. We will look at these technologies in the next
section. The second method we will use to understand VR change is to
understand what drives people and identify technologies that support those
drives. This will be covered further on. Finally, we will look at some of the
impacts on society that the melding of VR with other fields will have, and how
people will adapt and blend technology into their everyday lives.

The Future Virtual Reality Melting Pot 43

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Currently Melding Technologies

VR will meld with other fields in the future including the currently mixing fields
of Augmented Reality (AR), Ubiquitous Computing (UbiComp), Machine Vision
(MV), Wearable Computing (WC), and Human Computer Interaction (HCI).
AR in many cases uses wearable computers to do its computation and Machine
Vision to track its users. UbiComp too uses Machine Vision to track users, along
with many of the same types of projection technology as used with VR and AR.
HCI methodology incorporates all of these fields into the everyday life of a user.
Technological advances in each field allow for new possibilities, blurring the lines
between them.

Augmented Reality

Augmented Reality focuses on the “enriching, rather than replacing” of reality.
AR “annotates reality to provide valuable information, such as descriptions of
important features or instructions for performing physical tasks” (Feiner,
MacIntyre, & Sellgmann, 1993). Its hallmark technologies are see-through
displays sometimes attached to wearable computers and tracking systems
ranging in scale from worldwide global positioning systems (GPS) to typical VR
room-scaled tracking systems.

In Augmented Reality, researchers study how to add information to the user’s
world in non-distracting, informative, and, not to be understated, safe ways. This
extra information can be for tasks such as displaying shopping lists, viewing
control panels, displaying safety information, and other work tasks.

Effect on VR

AR is perhaps the closest akin technology to VR, as demonstrated by the
taxonomy of AR and VR experiences on the Virtuality Continuum (Milgram,
Takamura, Utsumi, & Kishino, 1994), with advances in one field applicable to the
other. Accurate outdoor AR tracking systems can be used for VR experiences,
and interaction technologies are applicable to both as highlighted in Wingrave et
al. (2003). Even some display technologies can be shared between the fields.ii

VR and AR will coexist as the importance of augmenting our everyday lives with
graphical and textual information, mixed with the ability to switch to a completely
virtual scene, becomes understood. An example of such use can be seen in the
scenario with Brad appearing in France and working with his colleges while

44 Wingrave

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

actually standing in his own house. In this scenario, displays and tracking systems
are used that are familiar to both VR and AR.

Ubiquitous Computing

The guiding philosophy of Ubiquitous Computing was set forth years ago by
Weiser (1991) as technologies that “weave themselves into the fabric of
everyday life until they are indistinguishable from it.” To this end, Weiser
focused on displays scaled from palm-sized to wall-sized and the networking of
them together. Others since have looked at a plethora of embedded technologies
such as projected displays, networks such as wireless and Bluetooth, Machine
Vision for tracking and face recognition, RFID tags, and more. UbiComp has a
very large human emphasis in its research, with the technologies being created
to solve or in response to very real human issues. Additionally, UbiComp has also
been responsible for a very deep introspective look at how its technologies fit,
ethically and legally, into the everyday lifestyle of its intended users. This is
something that VR has not focused on, in large part due to VR being situated in
the laboratory and rarely placed in the world.

Weiser worked hard to separate UbiComp from virtual reality, calling VR the
“most diametrically opposed to our vision [of UbiComp]” (Weiser, 1991). He
stated that “virtual reality focuses an enormous apparatus on simulating the
world rather than on invisibly enhancing the world that already exists.” His
emphasis on the difference between the two is startling, considering the
similarities between them. His position might have only been to separate
UbiComp as a field unto itself as opposed to a subclass or type of VR. For
instance, many of the same interaction techniques and display principles of VR
can be applied to UbiComp. For example, the different methods of selection in
VR (Wingrave, Bowman, & Ramakrishnan, 2002) and UbiComp (Myers et al.,
2002) are quite similar and validated via similar research methodology. In fact,
it is not hard to place UbiComp on Milgram’s Virtuality Continuum and even use
VR to prototype UbiComp applications without having to deal with each
individual UbiComp technology. The only real difference is the placement of the
hardware ‘in the world’ for UbiComp as opposed to ‘on the user’ for VR and
some AR. The promise of both fields, the ability to work with information and
people more efficiently, is the same.

Effect on VR

UbiComp’s emphasis of embedding technology everywhere, invisibly into the
background, will create many opportunities for VR. VR can run across the

The Future Virtual Reality Melting Pot 45

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

networks UbiComp envisions, the displays and speakers it seeks to embed, and
more importantly, the philosophy of the effect of technology in daily life.
UbiComp should also be congratulated for its early focus on privacy (Langheinrich,
2001) and social issues (Jiang, Hong, & Landay, 2002). This focus will pave the
way for easier adoption of technologies that seem quite invasive and dangerous
to the normal operation of people’s private lives. Additionally, it gives guidance
to law and policy makers hopefully in advance of their needs to respond so that
the response will be well thought-out by those in the know and not result from
panicked decisions by those ill-informed.

In this scenario, Brad interacted seamlessly with computers that opened his
blinds, played his music, displayed images on his walls, monitored his sleep, and
remembered his preferences—all UbiComp technologies.

Machine Vision

Machine Vision has been used to track people and items. It has been used in
conjunction with AR and UbiComp to provide tracking information at coarse-
grained (user is in the kitchen) (Kidd et al., 1999) and fine-grained (sign-
language) (Starner, 1995) levels of detail. The recreation and improvement on
the human visual system can be considered a distant goal of such technology, but
it has had many successes in smaller tasks such as face recognition, eye tracking
and position, and orientation trackers via fiducials (Hoff, Nguyen & Lyon, 1996;
Neumann & Cho, 1996). Machine Vision has also been used in VR for tracking
on a surface such as the Perceptive Workbench (Leibe et al., 2000). Vision
tracking holds great promise because of its fast update rates, minimal environ-
mental distortion, and lack of need for attaching receivers and wires to the
user.

Effect on VR

The ease of using cameras as opposed to VR’s traditionally low-range and
encumbering trackers makes machine vision an enabling technology as it
becomes more accurate and easier to apply.

In this scenario, when Brad rested in bed after waking and existed virtually in
France, the room he physically existed in was able to watch his gestures so he
could interact without being harnessed by wires and trackers.

46 Wingrave

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Wearable Computing

Wearable Computing researches the impact of computation through light,
compact, and low power computers into our daily lives. The field is split between
finding uses for and increasing the computation. In addition to raw computational
power, other factors such as power consumption and heat are important to the
field. Much work has also gone into harvesting power and dissipating heat
through the human host. Possible sources of power are heat, breathing, blood
pressure, and limb motions (through multiple methods such as keyboards,
flywheels, and piezoelectric materials) (Starner, 1996).

Effect on VR

Wearable computers can be seen as a huge enabling technology of VR. Its focus
on smaller and more portable computing create the ability to take computers
everywhere to augment our lives and create the virtual worlds on the fly.
Additionally, the instrumenting of our selves will further increase our ability to
replace haptic, visual, and auditory senses when the VR melting pot requires it.

In this scenario, though not specifically mentioned, Brad was wearing some type
of computing device to drive his personal displays and review traffic patterns. In
the long run the wearable computer is an enabling technology for VR and,
inversely, VR is an application domain for wearable computers. Each field gives
emphasis to the other.

Human Computer Interaction

Human Computer Interaction looks at smoothing the boundaries where comput-
ers and humans meet and interact. Having its birth in psychology, it has grown
quite diverse through its successes and failures, eventually coming into its own
as a separate and complete field of study with the focus on the user and user
tasks. Early HCI focused on the user interacting with a single machine. This
branched with time to people using machines to do work and workflow, with
more recent studies focusing on interacting, working groups.

VR has to some extent adopted the methods of general HCI such as taxonomies
of interaction tasks (Bowman & Hodges, 1999; Gabbard & Hix, 1997) and
constraints (Bowman & Hodges, 1995), but this falls short of predictive models
and detailed instructions on how to build interfaces. Good design still comes from
experience, evaluation, and iteration on usually poor initial designs. There is even
debate in the general field of HCI over whether or not generalized models can
be created to inform design (Landauer, 1991).

The Future Virtual Reality Melting Pot 47

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

There are major differences between VR melting pot technologies and the
typical tasks approached by HCI. One underlying difference between typically
desktop HCI and the VR melting pot HCI is the large volume of I/O in a VR
melting pot between the user and the environment. For instance, whereas
desktop interface input typically comes from 2D pointing devices and keyboards,
VR can track multiple 6-D positions and hand joint angles (each hand alone can
even be considered 19-D inputs). Another difference is the amount of familiarity
a user of VR brings with them from the real world into a virtual world versus a
typical desktop environment such as the WIMP (Windows, Icons, Menus,
Pointers) metaphor. Users quickly realize that though the virtual world looks
similar to reality, it hardly interacts as reality, leading in many cases to
disappointing experiences. This is in contrast to desktop experiences that have
very limited realism but result in successful interaction experiences because
relatively low bandwidth devices make interpreting user intentions easier.
Because of these differences, many of the successful models of HCI for
improving the user experience in its typical domains, such as Fitts’ Law (Fitts,
1954) and the Law of Steering (Accot & Zhai, 1997) for predicting user time to
complete a task, are too simplistic to be usefully applied. Thus, VR remains a
difficult domain to interact with, despite the research underway.

Effect on VR

VR has gained much from the field of HCI. User studies, evaluation, and a focus
on the tasks of the user have started to make working, as opposed to just
watching, VR a reality (Hix et al., 1999). A recently defined field of Information
Rich Virtual Environments (IRVEs) (Bowman, North, Chen, Polys, & Pyla,
2003) is looking at ways to increase the utility of VR by supplementing the
environment with several types of abstract information. Despite the efforts over
the years to make VR usable, there is much work that needs to be done.

In the scenario, Brad worked effortlessly with the computers around him. He
worked on the tasks he needed to perform and did not spend time or cognitive
effort negotiating with the computing surrounding him.

Is This the Whole Story?

Futuristic extrapolations based on the technologies mentioned is easy but limited
in that it cannot predict sideswiping events. Who could have predicted the impact
that placing pictures into HTML documents for the Internet would have on
today’s economy. Or, who could have predicted that a simple spreadsheet
application, VisiCalc, could bring about a personal computer revolution. These

48 Wingrave

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

types of events sideswipe current projections and lines of thinking because the
type of thinking in this section fails to focus on what meets people’s wants, their
drives. The more correct question then becomes: What are human drives and
how does VR fit into them?

A Discussion of Drives

Recently, the author listened to a group of students discussing what made the
Apple iPodiii a success. They named its sleek design, large song storage
capacity, and simple and elegant interface. They viewed it as the sum of the
technologies it comprised. This is unsettling because this view only allows for
incremental improvements as the technologies comprising the iPod improve, for
example, larger hard drives or a smaller case. A more thorough understanding
of the iPod comes about in the realization of the task the iPod fills in people’s
lives; people want music in their lives. The sleek design minimizes the device’s
impact on the routines of people. The large storage space enables people to have
their full collection of music at all times and not have to make decisions between
songs they wish to carry and leave on their computer. The interface was made
simple so as to reduce the amount of time people had to spend dealing with the
device to access its functionality. People want more while giving less; less
money, fewer tradeoffs, less time, and less cognitive effort. In essence, people’s
drives are for cheaper, more robust, faster, and simpler technologies. These
drives are the spending capital of humans on technology and the method we wish
to use to identify the important VR-enabling technologies in the future.iv To
explore this concept, Table 1 lists the technologies discussed according to the
drives they address.

A technology is only as useful as the benefits received by the user minus the
hassle to afford, use, and maintain the technology. Augmented Reality addresses
all the drives of the VR melting pot applications through better toolkits, better

Table 1. The drives technologies seek to address

 Cheaper More Robust Faster Simpler
Augmented Reality X X X X
UbiComp X X
Machine Vision X
Wearable Computing X X
Human Computer
Interaction

X X X X

The Future Virtual Reality Melting Pot 49

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

design methodology, tracking accuracy, and so forth. UbiComp addresses the
drives by a more robust integration of devices in the environment and a better
understanding of the user. Machine Vision too assists in understanding the user.
Wearable Computers reduce the costs of the computers in the environment.
Applications are made cheaper by HCI design methods, more robust by a better
understanding of the user, faster by reducing the amount of work to achieve user
goals, and simpler by reducing the complexity and confusion of interfaces.

Validation of the VR melting pot can be seen in the successful existing
applications of VR. Military trainers, psychological therapy, prototyping applica-
tions, and architectural and visualization walkthroughs (Brooks, 1999) all use VR
because it is either cheaper, more robust (as per safety, transfer of knowledge,
etc.), faster (to construct, design, or visualize), or simpler (to learn, cognitively
use, etc.). As VR becomes more mature, as per the drives mentioned, the
problems that VR will be applied to will no longer be just a few, large applications,
but many smaller applications too. The results will be the blurring of the lines of
reality as the environment slowly becomes augmented, hardware fading into the
scene becoming ubiquitous, and VR no longer seen only as Fishtank VR, Head-
Mounted Displays, or projected displays, but existing in the world as a melting pot
of technologies. The following examples highlight everyday problems that can be
addressed:

Problem: Did I leave my pen on my desk?

Solution: Virtually travel to the desk using embedded cameras to view the desk
and the items on it.

Problem: Do I have access to the door in the building or is the door currently
unlocked?

Solution: Reference the door in the environment and view situated information
about the door. Just as Web pages have an Internet address, so too can
abstract information be linked to real-world locations and settings.

Problem: Do I have a ripe tomato in the refrigerator?

Solution: While standing in the store, virtually take a tour of the home refrigera-
tor. The user is not interested in just an inventory, but the properties of
objects in the inventory. What does the tomato look like?

Problem: Bob needs to give the OK to proceed, where is he?

Solution: If Bob wants to be found at the given time and by the given person
(social context of human-human interaction is important), then Bob will

50 Wingrave

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

let them know where he is or where to meet him if he does not feel they
need to know his current location.

So if these types of problems are exemplary of the drives people have and the
problems to be addressed, then the question is, what type of advancements can
address the drives we have identified? A partial listing of these advancements
is in Table 2. It is easy to imagine the impacts of several other advances such as
material science, nano technology, and wireless technologies too, but those are
beyond the scope of this chapter.

Agents, Interruption, and the Periphery

The information age ushered in a tidal wave of easily obtainable information
without any cognitive change in the ability of the human to manage. To deal with
the problem, research on agents acting on behalf of or with the human have
increased the volume of data with which the human can easily work. Addition-
ally, work on when to bring information to the attention of the human and how
to display information in a non-distracting manner has also increased the volume
of data that can be worked with (McCrickard, Czerwinski & Bartram, 2003).

Once information is in a useful form, it needs to be presented in an intuitive
manner. There has been research on how people respond to new media (Reeves
& Nass, 1996) and how to use animated agents to converse with users for certain
tasks (Cassell, Sullican, Prevost, & Churchill, 2000). Cassell has worked on
conversational agents to simulate human-human interaction by emulating verbal
and non-verbal communication. Affective computing (Picard, 1997), which deals
with human emotions and computing, is also relevant. The hope is that by

Table 2. Advancements that will meld with VR to fulfill the identified human
drives

 Cheaper More Robust Faster Simpler
Agents, Interruption,
and the Periphery

 X X

Computer Supported
Collaborative Work

 X X

Magic X X
Publication and
Propagation of
Information

X X X

Tangible Interfaces X X X

The Future Virtual Reality Melting Pot 51

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

simulating human-human interaction with computer agents, information can be
communicated in a more natural, easily understood manner.

Peripheral and notification displays and interfaces also seek to convey informa-
tion in a natural, non-distracting manner. Ideally as information is updated and
presented, the user should only be aware of it as needed without being constantly
reminded of its presence. Change blindness (Intille, 2002) and inattentional
blindness (Simons, 2000) give the ability to update displays without the user
perceiving a change.

Drives of the Technology

Agents, interruption, and periphery technologies address the human drives of
technology needing to be more robust and simple. These technologies have the
ability to work with the human as the human goes about his or her everyday tasks.
The technology will blend into the background and the agents will be more of a
filter through which information is passed from the outside world to the user. The
recreation of human-human protocols could potentially make the interfaces
simpler to learn and use.

Effect on the VR Melting Pot

The melting pot technologies have the ability to present information to the user,
but agent, interruption, and periphery technologies will guide how that informa-
tion is presented. In the example scenario, Brad interacted with a virtual agent
in the morning about activities that went on during the night. Additionally, Brad’s
agent was able to negotiate without any input from Brad a time to interact with
his French coworkers that was convenient for them, so they could go to lunch,
and for him, so as not to interrupt his time in the morning with his wife but before
he entered his commute.

Computer Supported Collaborative Work

Computer Supported Collaborative Work focuses on computer systems that
support collaborative human work, careful to support the subtle human-human
interactions. The applications of CSCW can generally be described along two
axes, the first being communicating synchronously (at the same time) or
asynchronously (at different times), and the second being interacting collocated
(existing in the same location) or remotely. Videoconferencing is a simple
example of a synchronous and remote CSCW application, since groups are in

52 Wingrave

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

different locations and the communication takes place at the same time for both
remote groups. There are major technical and non-technical challenges building
more complex systems (Grudin, 1990), with one major reason being the difficul-
ties in supporting the lack of formalism or explicitness of human interaction
(Shipman & Marshall, 1999). Despite these challenges, CSCW has had success
in such applications as collaborative calendars (Palen, 1999), collaborative
meeting rooms (Johanson, Fox, & Winograd, 2002; Stefik et al., 1987), MUDs
and online communities (Kollock, 1996; Carroll et al., 2000), and even simple
applications such as e-mail.

Drives of the Technology

CSCW focuses on making interactions between humans more robust and the
ability to collaborate on work faster.

Effect on the VR Melting Pot

CSCW stands to give the VR melting pot a methodology of how to electronically
support people doing work and a body of knowledge to guide collaboration in VR.
A subfield of VR already exists for dealing with collaborating VR users called
Collaborative Virtual Environments (CVEs), which has its own biennial confer-
ence started in 1996.

In the scenario, Brad worked collaboratively with a remote office in France.
Language and distance were removed as a barrier to the work being done.
Additionally, his friend Dave was able to access Brad’s personal calendar to add
appointments.

Magic, the Breakdown of Reality

The ability for VR to break reality’s limitations has long been touted as an
advantage, but it leads to the struggle between intuitiveness and efficiency.
Interacting magically is not as intuitive as naturalistic interaction because of the
lack of familiar affordances. These affordances tell the user how to behave and
react, just like a doorknob affords turning and a button affords pushing. Despite
its lack of affordance, magic in VR can be quite efficient, allowing users to
interact without regard to some fundamental assumptions of reality (Pierce &
Pausch, submitted) such as reaching beyond arm lengths, existing virtually in
multiple locations, lifting and manipulating objects without regard to size and
mass, just to name a few. Additionally, magic allows retraining the brain to

The Future Virtual Reality Melting Pot 53

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

respond to new stimuli by piping information down existing sensory channels
such as visually overlaying building support structures in walls (Feiner, Webster,
Krueger, MacIntyre, & Keller, 1995), billiard shot angles for the game of pool
(Jebara, Eyster, Weaver, Starner, & Pentland, 1997), and repair instructions for
a laser printer (Feiner et al., 1993); other potential applications include visualizing
radiation levels, heat, ultrasonic sounds, and other information. Visual overlays
are not the only methods, as sound overlays have been used to convey medical
information by moving a CAVE wand through a volume denoting density (Brady
et al., 1995). Danger or heat can be conveyed using psychophysically similar
sounds such as sizzling. One could even imagine other dimensions of sensory
information, for example: “Hmm, the data seems to extend quite far into the pine
tree scented dimension at this point here.”

Drives of the Technology

Though not a specific technology, magic interaction has the ability to make
interaction faster and, with experience, simpler as users learn new magical
metaphors of interaction.

Effect on the VR Melting Pot

By retraining the mind to interpret sensory information differently yet in
consistent ways, people’s reality becomes accepting of new information types
as they can perform actions not previously possible and deal with information not
previously available.

In the opening scenario, Brad’s nighttime environment was a star-filled sky, and
when he needed to travel to France to work with his officemates, his room was
transformed to their location and he existed virtual there.

Easy Publication and Propagation of Information

The ability to easily create, destroy, situate, and manage information for self and
others, locally and globally, will be a driving motivation behind the value in the
melting pot technologies. Again not a specific technology in itself, this is a
requirement of the protocols that need to allow the generation of information
quickly and effortlessly. In effect, information can be placed where people with
appropriate access will see the published information and hopefully respond with
the same amount of ease. This allows communities to develop simple messages
between people to build up knowledge in the world in which they interact. This

54 Wingrave

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

places content creation into the hands of common people, scientists, engineers,
and artists to assist their lives. These same people will not have this opportunity
if the manner of creating this content requires understanding of complicated
markup languages or experience in information tricks.v Ultimately, if the effort
required to post a note or object digitally is more than the effort to write a note
on paper and place it in the environment, the value of the content will suffer.
Examples of this concept in action are:

Context: Housemate to other housemates

Note: “I left the pizza in the fridge for you.” or “My pizza. I spit on it. Don’t
eat it.”

Effect: The note will always be seen when the user opens the refrigerator or
enters the kitchen area. Additionally, if dinner comes up in conversa-
tion or the housemate enters a restaurant forgetting they have left-
overs, this note becomes relevant and can notify the user. The note
then has a presence outside just the home.

Context: Restaurants to pedestrians

Note: Lunch menu and specials on the outside of a restaurant.

Effect: Easily done with signs now, but electronic publication enables people
to browse restaurants virtually through such scenarios as, “I have to
run an errand near midtown, let’s see what restaurants are there and
their specials.” This same scenario allows people to also post com-
ments about the restaurant’s quality and situate the comments next to
the restaurant. The legalities and consequences of such postings would
have to be determined.

Drives of the Technology

Better methods of publication and propagation of information will allow for
cheaper information creation, faster access to information, and simpler access
to the correct information at the correct time.

Effect on the VR Melting Pot

The VR melting pot technologies create ways to propagate information, but it
needs important content to propagate. In the scenario, Brad’s colleagues were
able to post information to Brad about notifying them before he left for work,

The Future Virtual Reality Melting Pot 55

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Brad’s brother was able to publish a joke to Brad, and Dave updated information
on Brad’s calendar. The incorporation of those information streams into the life
of Brad meant that people could rely on the information getting through and
would assume that the information was presented at an appropriate time.

Tangible Interfaces

Tangible Interfaces deal with interaction built into real-world objects that people
can intuitively manipulate in the foreground (graspable media) or observe an
unseen phenomenon in the background (ambient media). The ability for people
to work with real objects that they are familiar with, yet are now augmented,
enables faster understanding of applications and a more natural interaction
because of the haptic feedback and affordances provided.

A good review of tangible interfaces can be found in Ishi and Ullmer (1997).
Such applications include the ambientROOM, where grasping a model of a car
causes Web hits to a car Web site to be displayed audibly as raindrops or visually
on the ceiling with ripples in water caused by light projected through a water tank.
Another application, mediaBlocks, uses blocks of electronically tagged wood to
represent media that play when the wood blocks are inserted into media players,
creating an intuitive interface for media control. Live Wire was a system for the
ambient display of network traffic by having a cord hanging from the ceiling jostle
about as packets traveled through a network (Weiser & Brown, 1995). Toolkits
such as Phidgets support the creation of Tangible Interfaces through a collection
of physical widgets such as sensors, motors, and RFID tags and readers
(Greenberg & Fitchett, 2001).

Drives of the Technology

Tangible interfaces make hardware cheaper, as common items or simply
instrumented items can be used for new or grander purposes. Additionally, more
robust interfaces can be created due to the affordances of common, familiar
objects.

Effect on the VR Melting Pot

By instrumenting common devices, the VR melting pot can report and interact
with information and functionality in the tangible world. The tangible devices gain
better ways to distribute their information to the user through VR, and in turn the
VR melting pot gains more information about the environment the user is in.

56 Wingrave

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In the scenario, Brad holds a simple pencil in his hand that is representative of
a hallway they are discussing. Using the pencil as an augmented prop, he is able
to show extra information such as doorways.

Changes to Social Practice

The technological changes we have mentioned so far will lead to changes in the
social practice of people, just as all innovations do. Telephones caused people to
stay in better touch with distant friends. Radio, television, and more recently the
Internet have brought about the propagation of information and the unification of
disparate cultures. Portable music has brought about an interest in sharing music
collections, and so forth. It is most likely that advances in all the aforementioned
technologies will have an impact also.

Below are four instances of impacts to social practice and should be looked at
as examples of what will occur due to the VR melting pot. The first impact
discussed is the creation of socially awkward situations through new technolo-
gies. The second impact is on entertainment as new tools increase the ways for
entertainers to entertain and situations in which to entertain us. The impact of
personal preference and individuality and how it will shape our spaces with
different imagery follows. Lastly, we should remember that some parts of life
cannot be impacted as people are human, and despite technology’s ability to
manipulate the human experience, not all things are able to change.

Social Awkwardness and Protocols

As researchers, we should constantly be aware of how our technologies fit into
the human lifestyle—if for no other reason than just to avoid duplicating one of
technology’s greatest social flops: the inappropriate cell phone ring. Cell phones
have caused oddities in social behavior from badly timed cell rings to inappropri-
ate calling and answering times. We can only expect these oddities to increase
with advances to the technology. For instance, shrinking cell phones and
earpiece sizes have cause people to appear as if they are talking to themselves
in public, with some people facing walls to avoid such confusion. Even desktop
social conventions and problems exists. The lack of ability to express emotion in
pure text transmissions such as e-mail and chat was partially alleviated through
the use of emoticons (Rivera, Cooke, & Bauhs, 1996), defined as sideways
punctuation that looks like various emotion-containing faces. In the early Internet
days, many new users to the Internet broke the online text communication social

The Future Virtual Reality Melting Pot 57

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

convention by using all capital letters in newsgroups. Existing practice was for
capital letters to be saved to express emphasis which caused many experienced
users to feel like they were being yelled at.

Social protocols for the correct method of dealing with technological issues have
to be established by society. The author once overheard a conversation between
two women in a coffee shop discussing how they did not get along with a third
because the third did not apologize properly for accidentally sending an e-mail
virus. One could imagine a Seinfeld episode dealing with just such a situation with
hilarity ensuing. As reality becomes augmented as discussed earlier in this
chapter, we can expect awkward social settings to occur. People gesturing about
wildly, manipulating virtual objects or responding to periphery information
existing solely in their view, will be seen as scary or even insane until people
become familiar with such behavior. The implications are that as we create new
technology, it impacts more than just allowing us to do more things; it changes
how we go about our lives and work and live with others. Over time, social
conventions adapt to fit the technology, but we must try to help or predict this
adaptation. For example, Brad’s wife might not enjoy her husband working with
the French office during their private time in the morning when he and she have
a few moments to spend together before they both leave for work. This might
change as Brad and his wife adapt over time to their being able to work anywhere
at any time. This gives them the flexibility to spend more time at home with each
other (so much time that interruptions from the French office might be welcome
by Brad’s wife!).

Entertainment

The new medium of VR will likely spur new types of entertainment, as artists,
directors, and technologists utilize the new possibilities presented by VR and its
related technologies. Already, the movie industry has incorporated motion
capture technology to create realistically moving computer-generated anima-
tions and movies such as Final Fantasy.

New possibilities for entertainment, not just better methods of creating the old,
are possible however. DisneyQuest has been at the forefront of this, creating
games using VR technology, and making them robust and playable enough to
keep even Disney audiences entertained. Games played in people’s daily lives
with standard devices like a cell phone are gaining in popularity such as those
created by the It’s Alive (www.itsalive.com) company. It creates games such
as BotFighters, where players shoot it out with others close by using their cell
phones to attack with lasers and rockets, with thousands of users in multiple
countries. Still in the research domain, games such as “AR Quake” (Piekarski

58 Wingrave

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

& Thomas, 2002) superimpose the classic first-person shooter game “Quake”
into the real world, tracking the user as he or she moves and shoots at monsters.

It would be shortsighted to suggest that entertainment stops at work. Currently,
game playing at work is considered a major corporate inefficiency, as game
playing takes away from work time. Many games even come with a bosskeyvi

to facilitate playing at work but not getting caught. One group has created a game
that supports work as a game by putting part of a system administrator’s job, that
of process control, into a popular first-person shooter “Doom” (Chao, 2001). One
could imagine future scenarios of work where games, by virtually replacing and
adding information to our world, make tedious or boring work into a game.
Motivation from the business side would come from better methods of quantify-
ing worker production or efficiency by keeping track of employee scores. By
taking an employee motivation to be entertained and VR melting pot technolo-
gies, a new situation can emerge of entertained employees happily and efficiently
working while managers are better able to predict costs and production through
better information about their employees. “The employee of the month goes to
Angela who successfully completed level 8 for an office new high score.”

Personal Preferences and Individuality

Not all environments need to be experienced the same, as not all people are the
same. The phrase “Beauty is in the eye of the beholder” is functionally true and
can be supported through changing how the user sees walls, hears sounds, or
walks about during their day. The ability of the iPod to augment a person’s
everyday life with music has been discussed, but not the ability of VR and AR
to change the perception people have of buildings, light, and color. One could
imagine a theme that replaces all buildings with 16th century counterparts and
redraws people as of the same era complete with clothes, carts, and so forth.
More functional than themed reality, however, is the creation of interfaces that
react based upon the cognitive or motor factors of the immersed individual. For
instance, users with higher spatial abilities would prefer certain interfaces, and
people in better physical shape would not mind fatiguing interactions to the same
extent as, say, the stereotypical user (Wingrave, Tintner, Walker, Bowman, &
Hodges, 2004).

Recommender systems (Resnick & Varian, 1997) are currently being used to
predict music, book, and other items based upon shopping habits of the commu-
nity. In much the same way, it could be used to suggest certain preferences based
upon personal characteristics. For instance, when entering a new town, sugges-
tions for a Mexican restaurant that is highly rated could be brought to the user’s
attention. This is not to be confused with target marketing, which is directing

The Future Virtual Reality Melting Pot 59

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

advertising towards the user as opposed to the former, which gathers benevolent
information in the environment for the user. In the scenario, Brad’s room
suggested music for him to listen to in the shower, even music he normally did
not listen to but liked.

Distance Matters

Despite all the technological advances, there will be some things that will remain
the same. Olson and Olson (2000) discuss four different issues of distance that
will not disappear with technology: (1) common ground, context, and trust; (2)
time zones; (3) culture; and (4) interaction among factors and technology.

In common ground, they refer to the failure of the technology to place people in
a similar situation so as to gain trust and promote teamwork. They site a situation
in which a snow storm in Chicago made the Americans late for a videoconference
with their British counterparts and which left the British wondering where the
Americans were.

Time zones will never disappear and will lead to problems with people being
unable to communicate due to one or the other being asleep. In our example, Brad
was sleeping while his French counterparts were working and needed his help.
Technology will, however, increase the ability to be aware of people being asleep
and notified of possible times to remotely converse. Even new methods of
managing sleep, in some cases through drugs, are being developed to affect the
amount of sleep required by humans which could give people more control over
their rest periods (Fleming-Michael, 2003).

Culture will always be a problem for people misinterpreting actions, and this will
not change in the future, possibly becoming more of a problem as technology
allows decidedly different cultures to come into closer contact. People will have
to grow tolerant to deal with the closeness of those different than themselves in
the future. Additionally, the technology itself might alleviate parts of the
differences, such as style of dress or different speech turn-taking behavior, by
virtually modifying people’s attire or inserting and removing pauses in the audio
communication of the participants.

These issues will become larger in the future as the melting pot technologies
break down distance, physically and culturally. Technology can help solve some
of the resulting problems, but as always, the technology is only a tool that social
conventions will form around, and some social conventions cannot change. For
the workday, there are many scenarios of how people might adapt to globaliza-
tion. Effective but unlikely scenarios are the breakdown of the standard workday
for people working around the world so as to increase time where all offices can

60 Wingrave

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

be awake. Another would be the adoption of a world time to reduce the
difficulties in scheduling.

VR and its related technologies will be a long time coming before they can fully
simulate the human-human interaction of having a beer with a coworker or
playing a round of golf, typical relaxed settings of the western work experience
where people build trust and talk candidly. Someday however, it might be able
to simulate this or perform some other task that performs the same functionality
inside VR.

Conclusions

In this chapter, we have looked at two methods of understanding the technologies
that are going to be relevant to the future of VR and the social implications of that
future. The first method, that of looking at existing technologies, helps give an
understanding of what is currently happening and what we might expect in the
near future. The second method, that of understanding the drives of humans and
then deciding which advances will impact those drives, should help to explain the
long-term directions of the virtual reality melting pot; several technologies were
named and discussed. Lastly, the possible impacts on humans due to the
proposed changes were discussed.

References

Accot, J., & Zhai, S. (1997). Beyond Fitts’ Law: Models for trajectory-based
HCI tasks. Proceedings of ACM CHI (pp. 295-302).

Bowman, D., & Hodges, L. (1995). User interface constraints for immersive
virtual environment applications. Graphics, Visualization and Usability
Center Technical Report GIT-GVU-95-26.

Bowman, D., & Hodges, L. (1999). Formalizing the design, evaluation, and
application of interaction techniques for immersive virtual environments.
The Journal of Visual Languages and Computing, 10(1), 37-53.

Bowman, D.A., North, C., Chen, J., Polys, N.F., & Pyla, P.S. (2003). Informa-
tion-rich virtual environments: Theory, tools, and research agenda. Pro-
ceedings of the ACM Symposium on Virtual Reality Software and
Technology.

The Future Virtual Reality Melting Pot 61

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Brady, R., Pixton, J., Baxter, G., Moran, P., Potter, C.S., Carragher, B., &
Belmont, A. (1995). Crumbs: A virtual environment tracking tool for
biological imaging. Biomedical Visualization, 18.

Brooks, F.P. (1999). What’s real about virtual reality? IEEE Computer Graph-
ics and Applications, 19(6), 16-27.

Carroll, J.M., Rosson, M.B., Neale, D.C., Isenhour, P.L., Dunlap, D.R., Ganoe,
C.H., Van Metre, C.A., Seals, C., Fogarty, J., Schafer, W.A., Bussom, T.,
Bunn, K., Davie, P., Freeman, M., Goforth, A., Mauney, S.M., Rencsok,
F.C., Anderson, C., Hertel, M., & Svrcek, B. (2000). The LiNC Project:
Learning in networked communities. Learning Technology, 2(1).

Cassell, J., Sullivan, J., Prevost, S., & Churchill, E. (2000). Embodied conver-
sational agents. Boston, MA: MIT Press.

Chao, D. (2001). Doom as an interface for process management. Proceedings
of CHI (pp. 152-157).

Feiner, S., MacIntyre, B., & Sellgmann, D. (1993). Knowledge-based aug-
mented reality. Communications of the ACM, 36(7), 53-62.

Feiner, S., Webster, A., Krueger, T., MacIntyre, B., & Keller, E. (1995).
Architectural anatomy. Presence, 4(3), 318-325.

Fitts, P.M. (1954). The information capacity of the human motor system in
controlling the amplitude of movement. Journal of Experimental Psy-
chology, 47, 381-391.

Fleming-Michael, K. (2003). The sleep factor. Soldiers, (October), 38-41.

Gabbard, J., & Hix, D. (1997). A taxonomy of usability characteristics in
virtual environments. Deliverable to Office of Naval Research from
Department of Computer Science, Virginia Tech.

Greenberg, S., & Fitchett, C. (2001). Phidgets: Easy development of physical
interfaces through physical widgets. Proceedings of the UIST 2001 14th
Annual ACM Symposium on User Interface Software and Technology
(pp. 209-218), Orlando, Florida, November 11-14. New York: ACM.

Grudin, J. (1990). Groupware and cooperative work: Problems and prospects. In
B. Laurel (Ed.), The art of human-computer interface design (pp. 171-
185).

Hix, D., Swan II, J.E., Gabbard, J.L., McGee, M., Durbin, J., & King, T. (1999).
User-centered design and evaluation of a real-time battlefield visualization
virtual environment. IEEE Virtual Reality, 96-103.

Hoff, W., Nguyen, K., & Lyon, T. (1996). Computer vision-based registration
techniques for augmented reality. Proceedings of IRCV (SPIE 2904, pp.
538-548).

62 Wingrave

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Intille, S.S. (2002). Change blind information display for ubiquitous environ-
ments. In G. Borriello & L.E. Holmquist (Eds.), Proceedings of the
Fourth International Conference Ubiquitous Computing (LNCS 2498,
pp. 91-106), September. Berlin: Springer-Verlag.

Ishi, H., & Ullmer, B. (1997). Tangible bits: Towards seamless interfaces
between people, bits and atoms. Proceedings of the Conference on
Human Factors in Computing Systems (CHI) (pp. 234-241).

Jebara, T., Eyster, C., Weaver, J., Starner, T., & Pentland, A.. (1997).
Stochasticks: Augmenting the billiards experience with probabilistic vision
and wearable computers. Proceedings of the International Symposium
on Wearable Computers (pp. 138-145).

Jiang, X., Hong, J.I., & Landay, J.A. (2002). Approximate information flows:
Socially based modeling of privacy in ubiquitous computing. Proceedings
of UbiComp (LNCS 2498, pp. 176-193).

Johanson, B., Fox, A., & Winograd, T. (2002). The Interactive Workspaces
Project experiences with ubiquitous computing rooms. IEEE Pervasive
Computing Magazine, 1(2).

Kidd, C.D., Robert J.O., Abowd, G.D., Atkeson, C.G., Essa, I.A., MacIntyre,
B., Mynatt, E., Starner, T.E., & Newstetter, W. (1999). Proceedings of
the Second International Workshop on Cooperative Buildings-
CoBuild’99 (Position paper), October.

Kollock, P. (1996). Design principles for online communities. Harvard Confer-
ence on the Internet and Society.

Landauer, T.K. (1991). Let’s get real: A position paper on the role of cognitive
psychology in the design of humanly useful and usable systems. In J.M.
Carroll (Ed.), Designing interaction psychology at the human-com-
puter interface. New York: Cambridge University Press.

Langheinrich, M. (2001). Privacy by design—principles of privacy-aware
ubiquitous systems. Proceedings of UbiComp.

Leibe, B., Starner, T., Ribarsky, W., Wartell, Z., Krum, D., Weeks, J., Singletary,
B., & Hodges, L. (2000). Towards spontaneous and natural interacting in
semi-immersive virtual environments. IEEE Virtual Reality (pp. 13-20),
New Brunswick, New Jersey, March.

McCrickard, D.S., Czerwinski, M., & Bartram, L. (2003). Introduction: Design
and evaluation of notification user interfaces. International Journal of
Human-Computer Studies, 58, 509-514.

Milgram, P., Takemura, H., Utsumi, A., & Kishino, F. (1994). Augmented
reality: A class of displays on the reality virtuality continuum.
Telemanipulator and Telepresence Technologies. SPIE.

The Future Virtual Reality Melting Pot 63

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Myers, B.A., Bhatnagar, R., Nickols, J., Peck, C.H., Kong, D., Miller, R., &
Long, C. (2002). Interaction at a distance: Measuring the performance of
laser pointers and other devices. Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems: Changing our World,
Changing Ourselves (pp. 33-40).

Neumann, U., & Cho, Y. (1996). A self-tracking augmented reality system.
Proceedings of ACM VRST.

Olson, G.M., & Olson, J.S. (2000). Distance matters. Human Computer
Interaction, 15, 2-3, 139-178.

Palen, L. (1999). Social, individual and technological issues for groupware
calendar systems. Proceedings of CHI 1999 (pp. 17-24).

Picard, R.W., & Picard, R. (1997). Affective computing. Boston, MA: MIT
Press.

Piekarski, W., & Thomas, B. (2002). ARQuake: The outdoor augmented reality
gaming system. Communications of the ACM, 45(1), 36-38.

Pierce, J., & Pausch, R. (submitted). Creating 3D interaction techniques by
identifying and breaking assumptions. Submitted to PRESENCE.

Reeves, B., & Nass, C. (1996). The media equation: How people treat
computers, television and new media like real people and places. City:
Cambridge University Press.

Resnick, P., & Varian, H.R. (1997). CACM special issue on recommender
systems. Communications of the ACM, 40(3), 56-58.

Rivera, K., Cooke, N., & Bauhs, J. (1996). The effect of emotional icons on
remote communication. Conference on Human Factors in Computing
Systems (pp. 99-100).

Shipman III, F.M., & Marshall, C.C. (1999). Formality considered harmful:
Experiences, emerging themes and directions on the use of formal repre-
sentations in interactive systems. Computer Supported Cooperative
Work, 8(4), 333-352.

Simons, D.J. (2000). Attentional capture and inattentional blindness. Trends in
Cognitive Sciences, 4, 147-155.

Starner, T. (1995). Visual recognition of American Sign Language using
hidden Markov models. Thesis, Massachusetts Institute of Technology,
Boston, Massachusetts, USA.

Starner, T. (1996). Human powered wearable computing. IBM Systems Jour-
nal, 35(4).

Stefik, M.J., Foster, G., Bobrow, D.G., Kahn, K., Lanning, S., & Suchman, L.
(1987). Beyond the chalkboard: Computer support for collaboration and
problem solving in meetings. Communications of the ACM, 30(1), 32-47.

64 Wingrave

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Weiser, M. (1991). The computer for the 21st century. Scientific American,
265(3), 95-104.

Weiser, M., & Brown, J.S. (1995). Designing calm technology. Retrieved from
www.ubiq.com/hypertext/weiser/calmtech/calmtech.htm

Wingrave, C., Bowman, D.A., Feiner, S., Schmalstieg, D., Mine, M., & Swan,
E. (2003). Mixed reality interaction: The continuum from virtual to aug-
mented reality. Conference Panel, IEEE Virtual Reality.

Wingrave, C., Bowman, D., & Ramakrishnan, N. (2002). Towards preferences
in virtual environment interfaces. Proceedings of the Eurographics
Workshop on Virtual Environments (pp. 63-72).

Wingrave, C., Tintner, R., Walker, B., Bowman, D., & Hodges, L. (2004).
Exploring individual differences in Raybased selection: Strategies
and traits. Human Computer Interaction Consortium.

Endnotes

i As per the meaning of defense or justification, not an expression of regret
or asking for pardon.

i i Some AR displays operate by placing AR imagery into a video feed that is
then presented in an HMD, which is very much like a VR HMD.

ii i An iPod is a digital music player created by Apple Computer Inc.
i v Even this approach has its limitations, however, as new technologies can be

discovered that create drives that were not previously envisioned.
v An example comes from the early days of the Web, when search engines

were easily fooled by repeating keywords multiple times to increase the
likelihood of that page being associated with a concept.

v i A bosskey quickly pauses a game and reverts to a work screen to make it
look as if work is being done when the boss enters an office.

The Future Virtual Reality Melting Pot 65

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Section I

Whole Virtual Environments
Development Methods

66 Fencott

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter III

A Methodology of
Design for Virtual

Environments
Clive Fencott

University of Teesside, UK

Abstract

This chapter undertakes a methodological study of virtual environments
(VEs), a specific subset of interactive systems. It takes as a central theme the
tension between the engineering and aesthetic notions of VE design. First
of all method is defined in terms of underlying model, language, process
model, and heuristics. The underlying model is characterized as an
integration of Interaction Machines and Semiotics with the intention to
make the design tension work to the designer’s benefit rather than trying
to eliminate it. The language is then developed as a juxtaposition of UML
and the integration of a range of semiotics-based theories. This leads to a
discussion of a process model and the activities that comprise it. The
intention throughout is not to build a particular VE design method, but to
investigate the methodological concerns and constraints such a method
should address.

A Methodology of Design for Virtual Environments 67

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Introduction and Problem Statement

Interactive systems (ISs) are becoming ubiquitous to the extent that there is the
very real possibility of their disappearing altogether, at least in the sense of users’
perceptions of them as entities worthy of conscious identification. This very
ubiquity will largely be the result of effective design, which results in ISs
becoming so embedded in our everyday lives that we use them without conscious
thought. We can draw an analogy here with the electric motor, which pervades
almost all everyday technologies and yet is hardly ever noticed. In the early
twentieth century, it was possible to buy electric motors for the home along with
a variety of attachments for food preparation, hair drying, vacuum cleaning, and
so on. Today we buy specialized gadgets, many of which contain electric motors
that go largely unnoticed by us. Even the mobile phone contains an electric motor
that is weighted to spin off-centre in order to create the vibrations that can
silently signify an incoming call.

Will this ever be the case with ISs? Will they ever be so effectively designed that
they cease to attract conscious attention in their final ubiquity? Certainly, the
theory of design for ISs is still in its infancy; hence the need for the present
volume.

Before considering their design, we first need to make clear what we mean by
ISs. Many systems are interactive but outside the remit of this book. Motor cars,
power drills, electric kettles, and so on are all interactive systems that will not be
the subject of this chapter. By ISs we surely mean interactive digital systems
(IDSs) that make use of digital representations and operations on these in order
to effectively perform their allotted tasks. IDSs will therefore identify everything
from ATMs and remote controlled TV teletext systems to PC and game console
applications to onboard computers in cars and fly-by-wire aircraft.

An interesting subset of IDSs are interactive digital environments (IDEs) by
which we mean an IDS that creates a large-scale digital environment that takes
time and effort to explore and otherwise interact with. Examples of IDEs are
videogames and virtual environments (VEs) in general, computer-based learning
applications, and large-scale sites on the World Wide Web. These are interesting
because the scale and complexity of their content demands that their effective
design transcend established user interface techniques. Indeed, for VEs the very
term design is a problem because it has to be interpreted in two quite distinct
ways. First of all there is the notion of designing something to create the desired
perceptual and aesthetic responses: essential for computer games. Secondly,
there is the engineering notion of design as the creation of plans and models from
which to test and build the desired artefact and ensure its correct functioning.
Both forms of design are of equal importance to the design of effective VEs. It

68 Fencott

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

is the tension between these two notions of design and the resolution of this
‘design tension’ that is the central problem addressed in this chapter.

The need to resolve or at least alleviate this tension leads to a consideration of
methods for VE design. It is assumed by some that the design of effective VEs
will necessitate a development methodology akin to those used (or not) by
software engineers. This is not necessarily the case. A craft-based approach
based on the application of good practice—perhaps acquired through some form
of apprenticeship—might do equally well. The computer games industry seems
to prosper on just such an approach. The approach taken in this chapter is that
an appropriate form of development methodology for VEs is viable, but that that
methodology needs to accommodate—and certainly not stifle—the creative flair
that is at the heart of aesthetic design of such large and complex systems.

This chapter therefore concerns itself with the investigation of what form an
appropriate design methodology for VEs would take and the obstacles to
establishing such a methodology. It is thus primarily concerned with a method-
ology of design—in other words, the meta-study of VE design methods rather
than the outline of a particular method, although this is an obvious objective.

This chapter first undertakes an overview of the meaning of the various terms
involved in the discussion: method, methodology, model, and language, among
others. It then goes on to discuss the particular form an ‘underlying model’ for
a VE method would have to take. Following this the issue of the form a language
for expressing VE design decisions might take with regard to the underlying
model put forward in the third section is addressed. The chapter then goes on to
establish a process model for VE design and the ‘practice of methodology’ it to
a large extent determines. It finally attempts to address future trends in the field
and is followed by a short conclusion to the issues raised.

Terminology

A methodology of design for VEs concerns itself with the study of methods for
the design of VEs; in other words, the nature, definition, and application of such
methods. This notion of methodology, while being quite correct, is at variance
with a related but somewhat different notion that commonly views a methodol-
ogy as a configurable method. In this chapter we use the approach of the former
in order reach some conclusions with respect to achieving the latter.

If we are considering the study of methods for VE design, what do we mean by
method in the first place? In software engineering the concepts of method and

A Methodology of Design for Virtual Environments 69

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

model are commonly understood, although the formality with which they are
defined and applied varies considerably.

With respect to the question posed above, we will adopt the definition of Kronlof
(1993) who defined a method as consisting of the following:

• An underlying model

• A language

• A process model

• Heuristics

Fencott et al. (1994) discuss these terms in the context of investigating the
integration of structured and formal methods for software engineering. Methods
integration will also be at the heart of the investigations of this chapter. Before
using this characterization of method to address VE design, we will discuss the
concept of model in some detail as it appears twice above in seemingly different
contexts.

Models have been at the heart of much of human understanding and enquiry from
very ancient times. Cultures very often attempt to explain the world and human
beings’ place in it by means of complex mythologies. Such mythologies are
essentially abstractions—etiological fables (Carruthers, 1998)—that allow com-
plex and inexplicable phenomena to be understood in terms of a more accessible
set of characters and stories set around them. Very often the underlying
explanation of phenomena will map onto supernatural beings and phenomena
which thus replace unfathomable cause with commonly held narrative.

With time, more rigorous forms of modelling were invented. The ancient
Mesopotamians developed sophisticated mathematics as a technique for model-
ling trade involving large numbers of items and customers (Davis & Hersh,
1983). This early theory of mathematics was thus being used to build abstract
models of trade and stock control. The ancient Greeks and following them the
Arabic world continued to develop models—mathematical and otherwise—for
a variety of phenomena ranging from cosmology to music and poetry. Meter and
rhyming schemes for poetry, for example, are models that facilitate the construc-
tion of new poems within established forms. This leads us naturally to ask what
we mean by the term model, and how and why models are so generally useful?

The Concise Oxford dictionary variously describes a model as “a representation
of structure”; “a summary, epitome, or abstract”; and “something that accurately
resembles something else.” Formal logic uses the term model to mean the
system of rules by which meaning is mapped onto the syntactic constructions
expressed within a particular logic. It is thus possible for a model to be highly
formal—that is, expressed in mathematics—or highly informal, but not presum-

70 Fencott

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ably both. Scientific models may be more pragmatic in that they are related to
some aspect of reality by means of observational data, which in turn causes the
hypothesis upon which the model is constructed to be reformulated and so on. In
other words they are empirical rather than strictly formal and thus sit somewhere
between the extremes of the formal-informal axis.

As already mooted with respect to etiological fables, models may be quite
instrumental in the sense that the application of the model as an analysis
technique—and the results obtained therein—may be more important than the
degree to which the model accurately reflects reality; psychoanalysis is an
obvious example. Semiotics (Chandler, 2002) is perhaps another case in point
because it has never been ascertained whether or not signs as defined by
semioticians actually represent structures or functions within the human brain.
There is some evidence to support this (e.g., Damasio, 1994). Nonetheless,
semiotic analysis of communications artefacts—texts to semioticians—is a very
valuable and general technique for gaining insights into the way in which humans
communicate and make meaning using a whole range of media. Semiotics is very
important to this chapter.

With respect to Kronlof’s characterization of method, we can see that the term
model is used in two rather different ways:

1. An ‘underlying model’ is a semantic structure to which terms of the
language of the method are mapped in order to assign meaning to them.

2. A ‘process model’ is an abstract representation of the activities undertaken
as part of the model along an expression of their ordering.

The first use of the term model given above is a formal notion, while the second
is the more intuitive notion of an abstraction of some more complex system, both
discussed in our aside above. If we were to take the language and its underlying
model together, we would arrive at the second form of model which is essentially
a notation for simplifying and elucidating a more complex system. But what
language and underlying model are we to use for VE design? The role of the
former is to facilitate the creation and expression of design decisions. The role
of the latter is less obvious, but its nature has a direct bearing on the applicability
of the method in general. The two parts of this question are addressed in the
succeeding sections of this chapter.

The process model of a method is most often expressed as a simple diagram, a
graph where the nodes name particular activities and the arcs indicate the
relative ordering over time of these activities. The graph is thus a focused
simplification of a complex set of activities and the relationships between them
and their products. What process model might be suitable for VEs? Kaur (1998)

A Methodology of Design for Virtual Environments 71

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

put forward a tentative process model for VEs as an ordered list of activities.
These activities and their ordering were deduced from questionnaire data drawn
from a limited number of VE developers. Fencott (1999b) put forward a process
model that was more representative of the design tensions inherent to VEs. We
will return to the process model after the sections devoted to language and
underlying model.

Heuristics are essentially advice and guidelines on the successful application of
the model to real problems. In terms of VE design, we can observe that there are
a lot of such heuristics around in terms of standalone advice that is almost
invariably devoid of a methodological context with respect to VEs. There are
exceptions to this, the ‘SENDA’ method of Sanchez-Segura et al. (2003; also,
see Chapter 4) for example.

The ‘design tension’ identified above as the driving force in the methodology of
VE design has its antecedents. In the early 1990s there was a debate as to
whether formal methods or structured methods for software design were most
appropriate. The former use logic and set theory to build mathematical models
of software systems, while the latter use diagrams, pseudo code, and other ‘non-
formal’ notations to the similar ends. Integrated methods research attempted to
combine these approaches to maximize the strengths and minimize the weak-
nesses of both (Fencott et al., 1992, 1994). In this chapter we draw on the
experiences gained in the earlier research in order to address the design tension
directly.

In this section we have posed a number of questions with respect to a possible
VE design method:

1. What language and underlying model are we to use for VE design?

2. What process model is appropriate for VE design?

3. What sort of heuristics do we need and are any of those extant adaptable
to the model we hypothesize in 1 and 2 above?

In this chapter we specifically deal with Questions 1 and 2. Question 3 will be
for future consideration, as it depends on the answers to Questions 1 and 2.

The Underlying Model

The question of what an underlying model might be for a VE design methodology
might seem of purely theoretical interest, but attempting to answer it necessitates
a consideration of the design tension highlighted in the previous two sections. We

72 Fencott

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

have to find an underlying model that expresses the meaning of a VE design in
terms of both:

• Engineering: as a computer system composed of program and hardware,
understood largely by those trained in computer science and related
disciplines;

• Aesthetics: as an interactive communications medium, understood by those
trained in the creative arts.

We appear to have confounded the issue, as we now seem to need an underlying
model that not only addresses two different design issues, but that is understood
differently by two quite different groups of professionals. Is one underlying
model possible, and who on earth is going to understand it? In fact there have
been various attempts to reconcile the two with varying degrees of success, but
it’s useful for our purposes to consider them separately for the time being.

We can begin to suggest possible underlying models, bearing in the mind the
tension already identified. VEs and IDSs in general have interaction machines
(IMs) as their underlying model (Goldin et al., 2001) in terms of computational
functionality, but we also need a model that operates at the perceptual, meaning-
making level. Semiotics (Chandler, 2002) is highly appropriate for the latter.
Interaction Machines encompass a set of possible computational systems—
more expressive than Turing Machines—that allow for the persistence of state
and unlimited user inputs that characterize interactive media, IDSs in general and
VEs in particular. Semiotics is the study of sign systems and the way humans find
meaning in them. The two might not be so incompatible as a cursory glance might
seem to suggest. We will briefly consider each separately and then consider their
integration.

For much of the latter half of the twentieth century, it was the received wisdom
that Turing Machines captured the notion and limits of what is computable. In the
1990s a number of researchers began to develop models which showed that
Turing Machines were not expressive enough to model interactive computer
systems. In fact it was shown that the simplest interactive program:

P := input(x:Boolean); output(x); P

which recursively inputs a Boolean value for x and simply outputs that same
value, cannot be programmed using any Turing Machine. That this is so even for
a very simple datatype such as Boolean might be somewhat surprising. The
reason is that although each input and output is finite—a requirement for
conventional Turing Machine input—there might be an infinite number of them,

A Methodology of Design for Virtual Environments 73

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and it is impossible to represent such an infinite set of choices on a sequential,
yet infinite tape.

Goldin et al. (2001) have shown that Turing Machines can be extended to model
interaction by defining Persistent Turing Machines (PTMs), which employ
dynamic streams to model inputs and outputs, and a tape to remember the current
state ready for the commencement of a new computation. PTMs are an example
of the general class of IMs.

PTMs are certainly not the only possible characterization of IMs. We could, for
instance, have used an approach based on concurrent systems in the manner of
Milner (1989). In many respects this would be better as it not only captures the
notion of VEs as IMs, but also allows us to consider them as being the
composition of a number of embedded systems—autonomous agents and non-
playable characters, for instance. PTMs are, however, better suited as a brief
illustration of the concept for our present purposes.

Human beings ceaselessly work to find meaning in any situation they might find
themselves, in any communications media they might find themselves using, and
in even mundane situations such as walking down the street or sitting on a train
or bus. Semiotics is the study of this meaning-making process, and signs are the
basic unit of the theory (e.g., Eco, 1977; Barthes, 1987). The most common
characterization of signs consists of two components, a:

• Signifier: that which we can perceive in the world around us using any of
our senses;

• Signified: the meaning(s) we form in our minds as a response to perceiving
the signified.

Communications artefacts, texts to semioticians, are made up of signs and can
be anything we humans find meaningful, for instance: novels, films, body
language and facial expressions, and VEs.

Semiotics provides us with a means of understanding the output of a VE, the
digital displays, and the signs of intervention, as we shall call them, that the user
generates by means of the input technology. VEs are a particular form of IM that
attempt to restrict its users’ environments to the digital displays it generates in
response to user input. We thus have a partially closed system. Semiotics can
provide a means of analysing how a user might make meaning out of such a
system and thus make meaningful choices about how to interact with it. We can
thus refer to our underlying model as a Semiotically Closed Interaction Machine
(SCIM).

Figure 1 shows the relationship between semiotics and IMs. The two downward
pointing arrows represent inputs by the user, in1 and in2. The horizontal, black

74 Fencott

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

arrows represent computation steps that result in the generation of new outputs,
out2 and out3. The fuzzy, curved arrow represents the semiotic closure between
out2 and in2; in other words the cognitive process of finding meanings in out2 and
formulating a response to them as in2. On the one hand we have the human,
meaning-making process and on the other the non-semiotic act of using the signs
of intervention to create a new input to the IM and thus instigate a further macro-
computation step. Note that the diagram is a simplification, as in VEs in general
outputs may also be produced without direct input from the user.

In SCIMs such as VEs, the semiotic link is very strong, whereas in IDSs in
general, the link may be far weaker and intermittent. There is no semiotic link
between individual customer transactions at an ATM, for instance. There is also
no recognizable semiotic link between a customer inserting his or her debit card,
the PIN input, and the amount of money requested; ATMs are not SCIMs.

Both IMs and semiotics are appropriate as a choice of an integrated, underlying
model because they do not constrain us to particular programming languages or
computational platforms on the one hand, nor particular modes of communication
on the other. That will be the business of the next section when we consider the
nature of a language suitable for expressing VE design decisions.

An integrated underlying model is not the only approach. There is a field of
enquiry called computational semiotics that has as one of its concerns the
integration of semiotics and computer science; this can operate at the level of the
underlying model or at the level of language within a methodological context
while sometimes at both. For instance, Goguen (1999) defines ‘algebraic
semiotics’ as semiotics formalized using the algebraic specification language
OBJ. He has outlined the application of this formalism to user interface design
and VE design. As another example, Doben-Henisch (1999) has attempted to
integrate semiotics with Turing Machines. The problem with the latter is that
Turing Machines are not expressive enough to model VEs. The problem with the
former as an underlying model for VEs is that the formalism makes use of

Figure 1. Semiotically closed interaction machines

A Methodology of Design for Virtual Environments 75

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

difficult mathematical concepts, such as category theory, which obscure the
insights into the nature of VE that our integrated approach highlights—difficult,
that is, for those VE designers without a strong mathematical background.

The integrated underlying model we have adopted is a very practical one, as it
preserves the ‘design tension’ rather than allowing the engineering or the
aesthetic dimension to dominate.

The Language

We move now to the nature of languages for expressing VE design decisions. A
review of existing work on VE design (Fencott, 2003b) reveals that while there
is a quantity of research and commentary on the human factors affecting design,
for instance, there is very little that is directly relevant to VE content modelling,
which is at the heart of this chapter. There are examples of the construction and
application of methods or guidelines for realizing certain aspects of VE design;
some of these are:

1. Various work on usability for VEs (e.g., Workshop on Usability Evaluation
of Virtual Environments, 1998)

2. Structured methods for VEs (e.g., Workshop on Structured Design of
Virtual Environments, 2001)

3. Various commentaries from the computer games world (e.g., Gammasutra,
Rollings, & Adams, 2003)

4. Semiotics of games and new media (e.g., Lindley et al., 2001)

In light of the discussion in the previous section, we can make the following
observations: 1 and 2 are insufficient to express VE design decisions because
they do not address aesthetics adequately; 3 provides some very useful insights;
4 gives us a way to alleviate the inadequacies of 1 and 2.

If we continue with the integrated approach adopted for the underlying model in
the previous section, we need a language to express the programming (the
engineering) side of a VE and one to express its aesthetic dimension. The
standard for the former should, most likely, be some form of object-oriented
programming language and the standard methodology for such languages is the
Unified Modelling Language (UML). In fact, Goldin, Keil, and Wegner (2001)
document the suitability of UML as a language for expressing designs that have
IMs as their underlying model. UML would seem a good choice of language for
this aspect of VE design.

76 Fencott

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Aesthetics of VEs has been a constant theme of this chapter, and we now discuss
them in some detail. Church calls for a set of “formal, abstract, design tools”
(FADTs) that will not only guide the design of successful games, but which will
also enable designers to compare and contrast computer games from diverse
genres (Church, 1999). Church’s FADTs are perhaps better understood as an
aesthetic characterization of computer games and are:

• Intention: being able to establish goals and plan their achievement;

• Perceivable consequence: a clear reaction from the game world to the
action of the player;

• Story: the narrative thread, both designer-driven and user-driven, that
binds events together.

Other computer games designers talk in a similar vein: of players needing to feel
in control, of maintaining the emotional feel of a game and/or level, of providing
suitable and timely rewards for effort, and of a perceivable gross structure that
allows players to identify what is required of them at the beginning of a level, plan
to achieve this, and understand the significance of their achievement (Saltzman,
1999). Intentions and perceivable consequences are the building blocks for this.

Brenda Laurel introduced the term ‘narrative potential’ to capture the idea that
VEs can offer users the possibility of building their own stories out of virtual
experiences (Laurel, 1992). We will adopt narrative potential rather than ‘story’
as part of the aesthetics of VEs.

From the field of media studies, Murray (1996) identifies the following aesthetic
characterization of interactive media as:

• Immersion: the feeling of being completely absorbed (almost literally
immersed) in the content (we will use the term presence for reasons
detailed below);

• Agency: being able to affect change in the VE;

• Transformation: being able to become someone or something else.

Lombard and Ditton (1997) define presence as the perceptual illusion of non-
mediation. This characterizes presence as the state of mind of a visitor to a VE
as not noticing or choosing not to notice that that which they are experiencing and
interacting with is artificially generated. They document the evaluation of the
embodying interface of a VE in terms of presence seen largely as the degree of
fidelity of sensory immersion. Much of the research to date into presence is
particularly concerned with the embodying interface as well as researches into
the mental state of people who are present in VEs. Immersion is thus the degree

A Methodology of Design for Virtual Environments 77

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

to which the technology of the embodying interface mediates the stimuli to the
senses. Slater has shown that high degrees of sensory immersion heighten the
emotional involvement with a VE (Slater et al., 1999).

However, as presence is a mental state, it is therefore a direct result of
perception rather than sensation. In other words, the mental constructions that
people build from stimuli are more important than the stimuli themselves. It is the
patterns that we, as VE constructors, build into the various cues that make up the
available sensory bandwidth for a given VE that help or hinder perception and
thus presence. These patterns are the result of what is built into the VE and the
way the user behaves in response to them. The fidelity of the sensory input is
obviously a contributing factor, but by no means the most important. In the
context of the working VE builder, being able to identify and make effective use
of the causes of presence is more important than the nature of presence itself.
This means that it is the effective consideration of the perceptual consequences
of what we build into VEs that will give rise to the sense of presence that we are
looking for. In this sense it is the content of VEs that has the greatest effect on
the generation of presence. Thus, for our purposes, content is the object of
perception.

Agency is the fundamental aesthetic pleasure of VEs and IDSs in general and
the one from which all the others derive. Agency actually equates quite nicely
to Church’s intention and perceivable consequence; agency is in part the
interplay between intention and perceivable consequence.

Transformation is important to many communications media. One of the great
pleasures of novels is seeing the world through someone else’s eyes, to view the
world through the eyes of another creature, machine, or alien being. VEs in
particular are ideally suited to this, and much of the success of 3D computer
games is due to the player being able to be the hero or villain in some great and
dangerous adventure. In such games the player cannot only play an alien, but
through the real-time graphics actually see the world as the alien would see it.
It seems certain, for instance, that one of the reasons for the success of the
classic Hubble Space Telescope Virtual Training Environment (Loftin et al.,
1994) was that members of the ground-based flight team could actually become
astronauts for a while, and experience some of the drama and spectacle of a
space walk. To the author’s knowledge and despite the insightful research into
the effect and effectiveness of the Hubble, the question “Did you enjoy being an
astronaut for a change?” was never asked. Yet it seems highly likely that this
was a major experience for the subjects.

Finally, in this brief review of aesthetics for IDSs, we must include Turkle’s
(1995) observation that being present with others—sentient beings, robots,
creatures, and autonomous agents in general—is something that has drawn users
to IDSs since the earliest days of Eliza and MUDs.

78 Fencott

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Bringing these various aesthetic viewpoints together, we can characterize the
aesthetics of VEs as:

• Agency: which itself consists of:

• Intention: being able to set goals and work towards their attainment.

• Perceivable consequence: being rewarded for one’s mental and
virtual activity by sensing the VE change appropriately as a result of
the actions taken.

• Narrative potential: the sense that the VE is rich enough and consistent
enough to facilitate purposive experience that will allow the user to
construct her own narrative accounts of it.

• Co-presence: being present with others.

• Transformation: temporarily becoming someone or something else as a
result of interacting with the VE.

• Presence: the perceptual illusion of non-mediation (Lombard & Ditton,
1997).

In terms of underlying theory, aesthetics are signifieds of a particular type; they
are connotations that arise from interacting with VEs. Connotations, in semiotic
theory, are deeper levels of meaning that humans build up from the level of
denotation: the commonplace or everyday meanings of things.

On a more concrete level, Murray (1996) equates the structure of interactive
media with the notion of the labyrinth and asserts that this structure works best
when its complexity is somewhere between the ‘single path maze’ and the
‘rhizome’ or entangled Web. Aarseth (1999) has proposed the notion of
cybertext to capture the class of texts, not just digital, which require the visitor
to work to establish their own path(s) through the possibilities offered. He calls
this class of text ergodic from the Greek words meaning work and path. So we
have a notion of a labyrinth that requires effort to explore. Equating the structure
of VEs in general with the notion of a labyrinth of effort would seem useful, but
poses several questions. First of all, what are the actual components with which
VE designers build such experiential labyrinthine structure? Second, how do VE
designers structure a VE so that the visitor follows an appropriate path and,
moreover, accumulates an appropriate set of experiences so as to discover and
remember the intended purpose of the VE?

Fencott (1999a, 2003a, 2003b) draws on these various aesthetic views to define
a model of VE content, Perceptual Opportunities (POs), which focuses on the
aesthetic design of the perceptual experiences over time which users are
intended to accumulate.

A Methodology of Design for Virtual Environments 79

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 2 characterizes the breakdown of POs in terms of:

• Sureties: designed to deliver belief in a VE, equated with unconscious
experience (e.g., Spinney, 1998; Blackmore, 1999)

• Surprises: designed to deliver the essential purpose of the VE

• Shocks: perceptual bugs that undermine the first two

Surprises are further broken down into:

• Attractors: literally content that attracts attention

• Connectors: content that supports the achievement of goals

• Rewards: content that literally rewards users for effort

Attractors can be characterized in two ways: By the way they attract attention—
they might be mysterious, awesome, active, alien, complex—collections of
attractors—and so on. They can also be characterized by the basic emotions they
stimulate, typically fear and desire. Rewards can be information, access to new
areas of the VE, new activities enabled, and so on. Connectors can be as simple
as railings, footpaths, and street signs, but can also be dynamic maps, indicators
of health, wealth, and so on. Attractors are the means by which users are led to
form intentions. The perceivable consequences of a player attempting to realize
an intention leads to the identification of rewards which leads to the identification
of new attractors and so on. Thus agency and POs are very strongly associated.

POs can be organized into higher level structures, perceptual maps, which
characterize patterns of behaviour that users exhibit when interacting with a VE.

Figure 2. Perceptual opportunities

80 Fencott

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A perceptual map can be made up of:

• Choice points: basically the choice between intentions stimulated by one
or more attractors.

• Challenge points: intentions that have to be satisfied.

• Routes: linear sequences of attractors.

• Retainers: mini-missions or mini-games, tightly grouped attractor-reward
pairs, puzzles, and so forth.

The arrangement of such structures are thus a realization of Murray’s rhizome
and lead to the other aesthetic pleasures of narrative potential, co-presence,
transformation, and presence.

In a later publication, the same author asserts that POs, as well as the aesthetics
identified above, have semiotics as their underlying model (Fencott, 2003b).
Essentially, POs and in particular surprises are connotations that humans derive
through interacting with VEs. POs interface very closely with the aesthetic
pleasure of agency, but at a more abstract level of VE content. Figure 3
illustrates the relationships between POs, aesthetics, and semiotics at the level
of the language of a VE design method:

• The two arrows linking attractor and intention and perceivable conse-
quence and reward are semiotic acts, meaning making, on the part of people
interacting with a VE. Attractors and perceivable consequences are
signifiers, while intentions and rewards are signifieds.

• The arrow linking reward and attractor indicates cognition, though of
course cognition is a continuous process and not a segment of a cycle as this
diagram would seem to suggest.

• The arrow linking intention and perceivable consequence represents what
Tronstad (2001) calls non-semiotic acts that are essentially the site of the
IM, the computer-based system in the wider IDE. The term non-semiotic
is used because, while the user might draw some significations from
pressing interface buttons and so on, the computer responds algorithmically.

• The arrow that runs through the cyclic plane of the above relationships from
right to left represents the development over time of the other aesthetic
properties of narrative potential, co-presence, transformation, and pres-
ence.

On the level of aesthetics and POs, we see the following. Having formed an
intention, a user will provide input to the VE, which will trigger the execution of
one or more calculations, non-semiotic acts on the part of the computer. This will

A Methodology of Design for Virtual Environments 81

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

result in a change (perceivable consequence) in the various digital elements of
the VE’s display which provide signifiers (rewards) to start off the whole
semiotic and cognitive process once again through the identification of attractors.

Figure 3 shows quite clearly the dependant relationship between semiotic and
non-semiotic acts, which Tronstad (2001) sees as being fundamental to interac-
tive digital experience. If we compare Figure 3 with Figure 1, we see that what
has changed is that the arrow that represented the semiotic closure of the output
and input step in the latter has been dramatically expanded in the former; it is
almost as if it has been turned ‘inside out’. Figure 3 characterizes the ‘code of
interaction’. In semiotics, codes are the often innate rules that allow us to make
meaning of signifiers. Interaction is a complex process and the diagram reflects
this. So much so, in fact, that Fencott (2004) devotes a whole chapter to the ‘code
of interaction. In the context of our present discussions, the various components
and the relationships between them that make up the code constitute the general
aesthetic side of the language of our method.

Semiotics not only provide an underlying model for POs and aesthetics, they also
operate at the level of the language of a method as well. In interacting with VEs
we not only recognize the code of interaction—connotations specific to VEs and
IDSs in general—but we also find meanings that correspond to world of the ‘real’
outside the world of the VE. We recognize shops and cars and people and

Figure 3. The code of interaction

82 Fencott

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

furniture and so on and so on. It is semiotics itself that is used as ‘language’ in
this type of meaning-making.

Therefore, in addressing the second question concerning the nature of the
language of a VE design method, we now need to consider how POs, aesthetics,
and semiotics on the one hand and UML on the other might work together. In this
respect, the central issue that needs to be addressed concerns what we might call
the ‘object problem’. Objects or rather object-oriented design (OOD) might
seem a very promising candidate for our language for representing VEs at the
design phase. OOD applies at all stages in the VE production lifecycle, addresses
both coding and user-cantered issues, and has been applied directly to VE design
and implementation (McIntosh).

However, in the act of perception, people do not break the world down into nicely
programmable units. They group things together into perceivable units, complex
attractors, which focus their attention. A crowd of autonomous agents—non-
playable characters (NPCs) in computer games parlance—are perceivable as a
single entity, but are unlikely to be a single object in an OO model. Certainly a
crowd of NPCs in a busy shopping centre with all its shop fronts, street furniture,
paving, and so on is not going to be an object in an OO specification for a shopping
centre. However, each of the entities that makes up the perceivable unit that is
the crowded shopping centre will have to be identified in terms of its capacity
(or not) for interaction as a basis for its incorporation into a functioning scene
graph.

On the one hand, we have the Unified Modelling Language (UML), which
models structural, engineering aspects of a scene graph, and on the other hand,
we have POs and so on which model content at the level of perception, of
aesthetics (Fencott, 1999b, 2003b). There is in fact a bridge, a semiotic bridge,
which links the two, and this is Andersen’s Computer Based Signs (CBSs)
(Andersen, 1997), which model interactive aspects of individual signs (objects)
in IDSs in general and thus VEs. Fencott (2003a) discusses this relationship and
its relevance to VE design.

Andersen arrives at the following classification of signs in IDSs:

• Interactive: signs that can be controlled by the user and can affect other
signs; such signs are subject to the signs of intervention.

• Actor: signs that to a limited extent are autonomous and can affect other
signs.

• Controller: signs that constrain other signs but do not themselves change
nor can they be affected by other signs.

• Object: signs that can be affected but cannot affect others.

A Methodology of Design for Virtual Environments 83

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Ghost: a sign that affects others, but only becomes apparent by its effects
on others; a sign particular to IDSs. Essentially a controller that signifies its
presence solely through effect.

• Layout: non-interactive signs.

CBSs essentially constitute six distinct classes that will be used to instance all
objects in a VE implementation. The integration of the three elements of our
language of VE design can now be summarized thus:

• Each content item in the perceptual model is assigned to a CBS class.

• Other aesthetic attributes of content items carry over directly to UML, that
is, colour, form, and so on.

• General information in the perceptual model carries over to UML to
become the game engine, the visualiser.

• Other such information carries over directly to UML in terms of the
semiotic realization of the VE: mood, myths, and hyperrealities.

So the language of our VE design method is an amalgam of OO and POs and so
on—with some bridging by CBSs. It is, in fact, an integrated method, a process,
rather than a statically characterisable relationship. In this way we have carried
the design tension identified early in this chapter, and clarified through to the
language stage. It seems that we might be able to make this tension work for us
rather than it being a hindrance to try to do away with.

The Process Model

The process model captures the relationship over time between the constituent
activities of a method. In a sense it captures the essence of the ‘practice of
methodology’, the choosing of how to apply a method. As part of a study of VE
design practice, Kaur (1998) constructs the following outline VE design meth-
odology:

1. requirements specification;

2. gathering of reference material from real-world objects;

3. structuring the graphical model and, sometimes, dividing it between design-
ers;

4. building objects and positioning them in the VE;

84 Fencott

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

5. enhancing the environment with texture, lighting, sound, and interaction,
and optimising the environment.

She also notes that there might be a narrative design component missing here, but
this is probably because of the small scale of the VEs in the study. Certainly the
narrative aspects of 3D game design are considered as soon as the principle
subject and genre are established. Computer games are almost certainly the
major examples of VEs large enough to benefit from software engineering
practice.

With these arguments in mind, Fencott (1999b) offered a prototype design
methodology for VEs which attempts to resolve the two-sided design problem for
IDEs by juxtaposing structural and perceptual modelling, and attempting to
empathize with current practice. The methodology is also based on practical
experience gained in building a variety of desktop VEs, and in particular a virtual
tourism project, as well as teaching VE design to several hundred undergraduate
and master’s students over a number of years. Figure 4 characterizes this
suggested process model, and we now go on to revisit the original, tentative
discussions that were offered in the 1999 paper, in the light of the discussions
concerning the possible underlying model and language required for a design
method for VEs laid out above.

In terms of the design tension, the route down the left-hand side of the diagram
represents engineering design and the route down the right-hand side represents
aesthetic design. The horizontal arrows represent interactions that seek to
resolve the tension.

• Requirements modelling equates to Point 1 in Kaur’s methodology
above and parallels very closely the software engineering concept. One of
the chief requirements is that purpose should be clearly established here.
In terms of our integrated underlying model, we might here conduct as ‘use
case analysis’ in UML and commence the analysis of our intended VE in
terms of Barthe’s notion of myth—connotations so seemingly natural as to
be unquestioned (Barthe, 1987)—and perhaps Baudrillard’s notion of
hyperreality (Baudrillard, 1995). Both are concerned with the cultural basis
upon which a VE’s belief system will be grounded. At this stage we are thus
making direct use of the underlying model and the techniques associated
with it. The semiotic and software engineering viewpoints are left unre-
solved until the latter stages of structural and perceptual modelling.

• Conceptual modelling equates to Point 2 in Kaur’s methodology and is
effectively the background research activity common to many design
projects, but in particular those with an aesthetic component. It is the
gathering of materials, taking of photographs, sketches, sound and video

A Methodology of Design for Virtual Environments 85

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

recordings, and so forth. It might also include the construction of mood
boards as well as potential storyboards. This is where the VE builder or
builders get to know the world they have to build. Note that the world to be
built might have no real-world counterpart, which will of course impact on
the kinds of activities that might be undertaken here. The artists’ accounts
and the techniques employed by animators are sources of applicable
techniques (e.g., Moser, 1996). An important outcome of this stage will be
a choice of genre, to best achieve the purpose established at the require-
ments stage, with which to inform the nature of the meta-narrative
structure to be developed in the perceptual modelling phase.

The end of this phase is effectively concerned with the semiotic activity of
translating the decisions concerning myth and/or hyperreality—from the
requirements phase—into connotation, metaphor, and metonymy.

• Perceptual modelling is the act of building up a model of the nature of the
perceptual opportunities and their inter-relationships. It equates very
roughly to Point 5 in Kaur’s methodology. It is of course modelling the
intended users’ experience of the VE. In Fencott (2003a) perceptual maps,
for instance attractor graphs, are used to build up a meta-narrative
structure of POs, analogous to the comprehensible labyrinth of Murray
(1997), which are categorized according to the role they play in the planned
scheme of possible user activity. Perceptual opportunities deal not only with

Figure 4. A process model for VE design

86 Fencott

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

conscious experience—derived from the specifically designed infideli-
ties of Whitlock et al. (1996)—but also with unconscious experience,
sureties, which deliver belief in the VE—perceptual realism in Lombard
and Ditton (1997)—irrespective of any real-world counterpart. The exist-
ence and importance of unconscious experience is identified and modelled
by considering sureties.

• Structural modelling, Point 3 in Kaur’s methodology, covers a variety of
activities that relate to the underlying realization of the VE that the delivery
platform uses to construct the run-time sensory stimuli. Structural model-
ling would seem to commence alongside conceptual modelling and to run on
alongside perceptual modelling. It starts with decisions on scale, the
construction of plans, and diagrams. It draws on Andersen’s CBSs to
further decompose the perceptual map constructed in the perceptual
modelling phase in terms of the way in which particular objects implement
gross structure of attractors and rewards identified in perceptual modelling.

The conclusion of the structural modelling phase will result in a scene graph
diagram that lays out the code structure of the VE and its programmed
behavioural components. In terms of software engineering practice, UML
has already been identified as a candidate language here. In later stages,
object models would lay out the actual structure of nodes in the scene graph
as well as class diagrams for programmed components.

• Building here relates more closely to the software engineering coding
phase that should occur after all requirements, specification, and design
activities have been completed. Building refers to authoring using a WIMP-
based tool, direct coding of scene graph and program code itself, in VRML
and Java/Javascript for example, and using an API such as World Tool Kit.

We will now consider some of the flows (arrows) in this process model, first of
all the structural-conceptual flow. The conceptual modelling stage can deliver
important high-level plans for the layout of the VE as well as the principle entities
that will need to be present to reinforce the results of use-case-analysis, for
instance. The structural-perceptual flow delivers object denotations to do with
such attributes as appearance and sound. It will deliver object connotations
concerned with the way objects contribute to the overall purpose of the VE.
Importantly it will also—via CBSs—deliver attributes concerned with interac-
tive capabilities of objects.

Finally, we note that we do not address the question of heuristics in this chapter.
There are two reasons: first of all our method is too methodological at the moment
to be able to be supported by practical advice; secondly there is a wealth of help
and advice on VE design and games design in particular, and it will be necessary
to investigate how it might integrate with the method under consideration.

A Methodology of Design for Virtual Environments 87

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Future Design Methodology

It is the author’s suspicion that one of the foreseeable trends will be ever more
sophisticated VE authoring tools, which will mean that the explicit use of OO
techniques such as UML will be more and more hidden from the author. Much
of the time the scene graph, whether at the level of an OO specification or at the
level of OO coded implementation, will only be available to authors via specific
views rather than as a coherent whole. More and more it will be the perceptual
modelling and the interface between this and the structural views that will be
made explicit and malleable. The process model discussed above shows the
nature of this interface and provides clues as to how this might be supported by
authoring technology.

However, in terms of authoring tools, there is a serious problem that we have not
identified nor discussed so far. This is the problem of authoring agency, which
lags far behind the authoring possibilities on offer for 3D modelling, texture
mapping, shading, and rendering, to name but a few. Nothing approaching the
sophisticated tools on offer for these exists for authoring agency. Typical
examples of this are easy to find in a wide range of VE authoring tools for both
games and VR. In the excellent Unreal Editor for example, the only agencies we
can easily implement are such concerned with opening doors, travelling in lifts
(elevators), and shooting guns. Unreal is a first-person-shooter and it has in-
built agencies typical of its genre. If an author wants to implement additional
agency, then she has to program it in Unrealscript, a Java variant.

Yet a theoretical analysis of games genres has shown that agency is exactly what
characterizes games (Fencott, 2004). Any game design method should not only
incorporate the analysis and design of appropriate agency in its process model,
but should encourage authors to reconsider it throughout the lifecycle from early
requirements analysis through to later modelling stages. By focusing on agency
in terms of the aesthetic pleasures of intention and perceivable consequence, and
in terms of the POs of attractors and rewards, the process model does indeed ask
the designer to consider agency in a fundamental way that authoring tools do not
at present support.

In terms of underlying theory, two significant trends can be identified. The
growing interest in the investigation, formalization, and application of interaction
machine theory (e.g., Goldin et al., 2001) and the emergence of semiotics and
computational semiotics as a tool to analyse and design VEs and IDSs in
general—for example the COSIGN series of conferences (COSIGN). Of
particular interest will be the further investigation of the possible integration of
interaction machines and semiotics, which in effect amounts to the nature of the
interplay between empirical computer science and interactive media aesthetics.
As has already been pointed out, the tempting approach is to formalize semiotics

88 Fencott

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

as computation (e.g., Dogen-Henisch, 1999; Goguen, 1999), but this does not
capture or investigate the playfully surprising relationship people have with IDSs
and IDEs in particular.

Conclusions

A little tension can be a good thing; too much can be very destructive. We need
to keep the VE design tension apparent throughout the analysis, conceptual, and
perceptual design stages to be more or less resolved in the structural modelling
stage. It must not be allowed to tear the process apart. On the other hand an
imbalance biasing one pole of the tension or the other will result in an equally
unbalanced VE—either well engineered and boring, or fascinating but badly
made. The author believes that the design tension will manifest itself in a benign
way in a well-designed VE and that users will recognize and appreciate that
manifestation.

In effect VE design methodology is encouraging us to confront and meld a great
rift in contemporary Western culture, namely that between the arts and the
sciences. Of course, at present it is inviting us to do this in terms of two particular
forms of abstraction which represent the two sides of the divide. That we should
confront reality through virtual reality might come as a surprise, but the concept
has been around since the early days of virtual environments and was clearly
articulated by Lauria (1997) when she envisioned virtual reality as a ‘metaphysi-
cal testbed’.

On a less grandiose scale, it may well be that no design method for VEs ever
becomes a real practicality or if it does is ever widely adopted by the developer
community. Surely, however, the investigation of the methodology of VE design
will inform us far better than we are now as to the fundamental nature of VEs
and thus be of benefit to us when we come to design future interactive systems.

References

Aarseth, E.J. (1997). Cybertext: Perspectives on Ergodic literature. Balti-
more, MD: John Hopkins University Press.

Andersen, P.B. (1997). A theory of computer semiotics. Cambridge University
Press.

Barthes, R. (1987). Mythologies. New York: Hill and Wang.

A Methodology of Design for Virtual Environments 89

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Baudrillard, J. (1995). The Gulf War did not take place (trans Patton P.). Indiana
University Press.

Blackmore, S. (1999). The meme machine. Oxford University Press.

Carruthers, M. (1998). The craft of thought: Meditation, rhetoric, and the
making of images, 400-1200. Cambridge University Press.

Chandler, D. (2002). Semiotics: The basics. Routledge.

Church, D. (1999). Formal abstract design tools. Games Developer Magazine,
(August).

COSIGN. Retrieved from: www.cosignconference.org

Damasio, A.R. (1994). Descarte’s error: Emotion, reason and the human
brain. Papermac.

Davis, P.J., & Hersh, R. (1983). The mathematical experience. Pelican Books.

Doben-Henisch, G. (1999). Alan Mathew Turing, the Turing Machine, and the
concept of sign. Retrieved from: www.inm.de/kip/SEMIOTIC/DRESDEN_
FEBR99/CS_Turing_and_Sign_febr99.html

Eco, U. (1977). A theory of semiotics. Macmillan Press.

Fencott, C. (1999a). Content and creativity in virtual environment design.
Proceedings of Virtual Systems and Multimedia ’99, University of
Abertay Dundee, Scotland.

Fencott, C. (1999b). Towards a design methodology for virtual environments.
Proceedings of the International Workshop on User Friendly Design
of Virtual Environments, York, UK.

Fencott, C. (2003a). Virtual saltburn by the sea: Creative content design for
virtual environments. Creating and using virtual reality: A guide for the
arts and humanities. Oxbow Books, Arts and Humanities Data Service.

Fencott, C. (2003b). Perceptual opportunities: A content model for the
analysis and design of virtual environments. PhD thesis, University of
Teesside, UK.

Fencott, C. (2004). Game invaders: Computer game theories. In preparation.

Fencott, P.C., Fleming, C., & Gerrard, C. (1992). Practical formal methods for
process control engineers. Proceedings of SAFECOMP ’92, Zurich,
Switzerland, October. City: Pergamon Press.

Fencott, P.C., Galloway, A.J., Lockyer, M.A., O’Brien, S.J., & Pearson, S.
(1994). Formalizing the semantics of Ward/Mellor SA/RT essential model
using a process algebra. Proceedings of Formal Methods Europe ’94.
Lecture Notes in Computer Science, 873. Berlin: Springer-Verlag.

Gammasutra. Retrieved from: www.gamasutra.com

90 Fencott

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Goguen, J. (1999). An introduction to algebraic semiotics, with application to
user interface design. Computation for metaphor, analogy and agents.
Springer Lecture Notes in Artificial Intelligence, 1562, 242-291.

Goldin, D., Keil, D., & Wegner, P. (2001). An interactive viewpoint on the role
of UML. Unified Modelling Language: Systems analysis, design, and
development issues. Hershey, PA: Idea Group Publishing.

Goldin, D.Q., Smolka, S.A., Attie, P.C., & Wegner, P. (2001). Turing Machines,
transition systems, and interaction. Nordic Journal of Computing.

Kaur, K. (1998). Designing virtual environments for usability. PhD Thesis,
City University, London.

Kronlof, C. (1993). Methods integration: Concepts and case studies. New
York: John Wiley & Sons.

Laurel, B. (1992). Placeholder. Retrieved from: www.tauzero.com/Brenda_
Laurel/Placeholder/Placeholder.html

Lauria, R. (1997). Virtual reality as a metaphysical testbed. Journal of
Computer Mediated Communication, 3(2). Retrieved from: jcmc.huji.ac.
il/vol3/issue2/

Lindley, C., Knack, F., Clark, A., Mitchel, G., & Fencott, C. (2001). New media
semiotics—computation and aesthetic function. Proceedings of COSIGN
2001, Amsterdam. Retrieved from: www.kinonet.com/conferences/
cosign2001/

Loftin, R.B., & Kenney, P.J. (1994). The use of virtual environments for
training the Hubble Space Telescope flight team. Retrieved from:
www.vetl.uk/edu/Hubble/virtel.html

Lombard, M., & Ditton, initial. (1997). At the heart of it all: The concept of
telepresence. Journal of Computer Mediated Communication, 3(2).
Retrieved September 1997 from: jcmc.huji.ac.il/vol3/issue2/

McIntosh, P. Course notes on UML/VRML. Retrieved from: www.public.
asu.edu/~galatin/

Milner, R. (1989). Communication and concurrency. Englewood Cliffs, NJ:
Prentice-Hall.

Moser, M.A. (1996). Immersed in technology. Boston, MA: MIT Press.

Murray, M. (1997). Hamlet on the Holodeck: The future of narrative in
cyberspace. New York: The Free Press.

Rollings, A., & Adams E. (2003). Andrew Rollings and Ernest Adams on
games design. New Riders.

Ryan, T. (1999). Beginning level design. Retrieved from www.gamasutra.com

Saltzman, M. (ed.). (1999). Games design: Secrets of the sages. Macmillan.

A Methodology of Design for Virtual Environments 91

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Sánchez-Segura, M.I., Cuadrado, J.J., de Antonio, A., de Amescua, A., &
García L. (2003). Adapting traditional software processes to virtual
environments development. Software Practice and Experience, 33(11).
Retrieved from: www3.interscience.wiley.com/cgi-bin/jhome/1752

Slater, M. (1999). Co-presence as an amplifier of emotion. Proceedings of the
Second International Workshop on Presence, University of Essex, UK.
Retrieved from: www.essex.ac.uk/psychology/tapestries/

Spinney, L. (1998). I had a hunch…. New Scientist, (September 5).

Trondstad, R. (2001). Semiotic and nonsemiotic MUD performance. Proceed-
ings of COSIGN 2001, CWI, Amsterdam.

Turkle, S. (1995). Life on the screen: Identity in the age of the Internet.
Phoenix.

UML Version 1.1 Summary. Retrieved from: www.rational.com/uml/resources/
documentation/summary/

Whitelock, D., Brna, P., & Holland, S. (1996). What is the value of virtual
reality for conceptual learning? Towards a theoretical framework.
Retrieved from: www.cbl.leeds.ac.uk/~paul/papers/vrpaper96/
VRpaper.html

Workshop on Structured Design of Virtual Environments. (2001). Proceedings
of Web3D Conference, Paderborn, Germany. Retrieved from: www.c-
lab.de/web3d/VE-Workshop/index.html

Workshop on Usability Evaluation for Virtual Environments. (1998). De Montforte
University. Retrieved from: www.crg.cs.nott.ac.uk/research/technolo-
gies/evaluation/workshop/workshop.html

92 Sanchez-Segura, de Antonio & de Amescua

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter IV

SENDA:
A Whole Process to Develop

Virtual Environments

Maria-Isabel Sánchez-Segura

Carlos III Technical University of Madrid, Spain

Angélica de Antonio

Universidad Politécnica de Madrid, Spain

Antonio de Amescua

Carlos III Technical University of Madrid, Spain

Abstract

The use of virtual environments (VEs) is increasing rapidly, and people are
demanding easier and more credible ways to interact with these new sites.
We define VEs as a special kind of 3D virtual environment, inhabited by
avatars which represent humans in the VE, or even autonomous agents.
This kind of software was selected because of its increasing importance as
the new future trend in interactive software applications. From a software
engineering point of view, VEs can be seen as a special kind of information
system, so they must be analyzed, designed, and implemented in this respect.

SENDA 93

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Our aim is to improve software engineering’s traditional software processes
to achieve quality VEs. In this chapter, we present a framework called
SENDA, which defines a formal process model to develop VEs.

Introduction

With the increase of computer networks, and especially Internet, people have
felt attracted to applications like CHATs, MUDs (multi-user dungeons), and
social VEs (virtual environments). These are different generations of applica-
tions where the main idea is not only interacting with the system, but also
interacting with other users connected through these networks in different parts
of the world.

Today, virtual environments are being used in many fields: social, finance,
commerce, banking, information system sciences, communication, CSCWs
(computer supported collaborative worlds), education, entertainment and leisure,
medicine, architecture, and geography (CALT, 2000). This kind of application
also seems to be the future of interactive programming (Berenguer, 1997) and
can be used especially to demonstrate situations at risk.

We are going to focus on the most recent VEs based on 3D graphics and
inhabited by Avatars and autonomous agents. These types of applications are
called VEs, the acronym for virtual environments. They are also referred to
as multi-user virtual worlds (Damer, 1997), but in essence, they are the
same.

In the earlier VEs the following technological problems were solved:

• Multi-user communication

• Graphic representation

• Real-time communication

Much of the research done in the inhabited virtual environments field has
focused on computer graphics rendering technologies and communication pro-
tocols.

Nowadays, a large number of VEs’ technical problems have been solved.
Therefore, our next goal is to provide these VEs with enough support to develop
these environments. However, it is difficult to find reports on the process that
must be followed to develop VEs. This may be due to insufficient experience in
this field. We can say that VE development methods and processes are in their
infancy. At the moment, the development of VEs is not following a mature

94 Sanchez-Segura, de Antonio & de Amescua

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

process, so it is necessary to provide this development with Software Engineer-
ing Paradigms, Principles, and Procedures.

However, technology is not the most important issue in VEs. Even in the first VE
called Habitat, which was bi-dimensional, some interesting conclusions were
reached.

“The essential lesson that we have learnt from our experience
with Habitat, is that cyberspace is defined more by the interaction
among the players within it than by the technology with which it
is implemented.” (Morningstar & Farmer, 1990)

Nowadays, the implementation process of VEs is well known but informal. In
fact, good and useful results can sometimes be achieved with a modest outlay of
hardware and resources. The problem comes from the very expensive construc-
tions (Venus, 1999) derived from following the informal process.

Therefore, the need for a more formal process is evident. This chapter presents
the formal approach to VE development under the SENDA framework, devel-
oped to improve the quality of VE developments. In “Background” we present
the up-to-date approaches to VEs’ formal development, the weaknesses of the
traditional software engineering discipline to develop VEs, and how to improve
the existing deficiencies. The section “SENDA: Development Framework
Proposed,” describes SENDA framework, and the remainder of the chapter
describes conclusions and future lines of work respectively.

Background

Since the identification of the “Software Crisis” in the 1960s, many institutions
have dedicated their efforts to defining standards, process models, and so forth
formally for software development (Moore, 1998).

The Software Engineering Research Community is not the only one interested
in this area. The need to define new techniques inspired by the Software
Engineering discipline is widely known to scientific bodies related to HCI (human
computer interaction). (Brown, 1999). Outside the software engineering disci-
pline, some researchers like Fencott (1999) and Kaur (1998) from the HCI field
have already dealt with the problem of developing VEs from a usability of
software point of view.

Within the software engineering discipline, Larijani (1994) said that the object-
oriented paradigm was the one which best fit VEs development.

SENDA 95

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

From the study of the object-oriented methodologies used to develop VEs, we
can conclude that:

1. A great number of deficiencies are not strictly related to the object-oriented
(OO) methodologies. As methodologies are instances of process models,
these are deficiencies of process models and not of development method-
ologies.

2. The processes with deficiencies are: estimation, analysis, design, imple-
mentation, scheduling, and verification.

In order to correct the process model deficiencies, ISO 12207 (ISO, 1995) and
IEEE 1074 (IEEE, 1991) process models, pillars of Software Engineering, were
tailored to VE development. It must be noted that the modifications of these
processes are valid for both structured and OO paradigms. The undefined
activities of VE development were proposed and integrated in the OO method-
ologies.

Although all the processes can be used as they are defined in the process model,
we have chosen only those that required special treatment or new techniques to
build a VE system.

SENDA improves traditional software engineering process models by providing
new processes and techniques, improving existing processes and techniques, and
using techniques provided by different disciplines. SENDA is described in detail
in Sanchez-Segura (2001) and comprises 10 processes and 36 tasks as seen in
Figure 1. Each task is described through its input products, corresponding
outputs, techniques, and the participants.

SENDA:
Development Framework Proposed

Although the SENDA framework specifies processes and tasks that cover the
whole development lifecycle, in this chapter we focus on a short description of
the analysis, design, and implementation processes and all their tasks and
interrelationships. The traditional VE design process was divided into four
processes, namely, 3D design, multimedia elements design, components
internal architecture design, and system design, and the implementation
process into two: components support implementation and core implementa-
tion (see Figure 1). The reason for this splitting is the relationship among the
tasks located in each process. Management processes proposed in SENDA are

96 Sanchez-Segura, de Antonio & de Amescua

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 1. SENDA processes and tasks
�
�
�
�
�
�
�
�
�
�
	

�
�
�
�
�

�

�
�
��
��
��

�
��
�

�
��
�

�
�
�
��
�
��
��
��
��
��
�

�
��

�
�
�
��
�
��
��
��
��
��
�

�
�

�

�
��
��
��

�
��
��
��

��
��

�
��
��
��
��
��
�

�
�

�

��
��
�

�
�
!
��
��
"

�
��
�

�
��
�
��

�
�
!
��
��
"

�
�
�
	
�
�
�

�
�
�
�
�

�

������������
��!
����!�����
�#���

�#���
���

�#�����

�#���

�#�����$

�#�����$

�����������������
��%��&

�����������������'
�����

��!����"'���� ��
��!����"
��%��&

�������
��%���� ���
����"�'�����������������

��%��&

�%�����
��%��&

�%�����
����"�'�%�����
$ ��� ��������
��%��&

(�

�
��
�"
�

�
�
�
�
)
�
�
�
�
	

�
�
�
�
�

�

�������"

���*���
�������" ����

(
�
�
��
�

�
�

(
�

�
��
�"
�

(�
�
��
�

�
%�
��
��

(
�

�
��
�"
�

(
�
�
��

(�

�
+�
��
��
"

�
��
�"
�
�

��
��
��
�
�
�

(
�
�
��
�

(�

�
+�
��
��
"

�
��
�"
�
�

�
!
��
��
��
�
�

�
��
��

�!
��

�
��
�"
�

�
�
��
�

�
�
��
�
�!
��

�
��
�"
�

�
�
��

�
�
��
�
�!
��

�
+�
��
��
"

�
��
�"
�
�

��
��
��
�
�

�
�
��
�

�
�
��
�
�!
��

�
+�
��
��
"

�
��
�"
�
�

�
!
��
��
��
�
�

�
�

�
�
�
��
��

$
�
��
��
��

�
��
,
��
��
��
��

�
��
�"
�

�
$�
�
��
�

�
��
��
�
��
��
�

�
�
!
��
��
"

�
$�
�
��
�

�
$�
�
��
�
�

�
,
��
��
��

�
��
��
�
�

�
�
!
��
��
"

�
$�
�
��
�

�
��
��
��
�
�

�
�
!
��
��
"

�
&
��
��
��
�

�
�
!
��
��
"

�
��

�

�
+�
��
!
�!

��
��
�

�
�
!
��
��
"

�
��
�
�

�
+�
��
!
�!

�
��
�
��

�
�
!
��
��
"

�
��
�
�

��
��

�
��
,
��
��
��
��

�
��
�"
�

�
��
��
��
!

�
��
,
�
!
�

�
��
��
��
��
�
�

�
�

�
�

�
��
�
�

�
��
�

�
��
��
��
��
��

�
��
�"
�

�
�$
�

$�
��
��
��
�

�
��
�"
�

��
��

�
��
�"
�

D
es

ig
n

�
$�

�
$

�
��
��
��

�
��
���
�

�
��
&
��
�

�
�%
��
�

$
�
��

��
��
��
�
�

�
$�
�
�
$

�
��
��
�
��
��
�

�
�
!
��

$

�
��

��
��
��
�
�

�
$�
�
�
$

�
&
��
��
��
�

�
�
!
��

$

�
��

��
��
��
�
�

�
+�
��
��
"

(
�

�
�
!
��
�

�
!
��
��
��
�
�

�
%
��
��
�

$
�
��

��
��
��
�
�

�
$�
�
$

�
��
��
��

�
�
%�
��
�

��
��

$
�
��

��
��
��
�
�

�
$�
�
$

�
$�
�

�
$�
�
�

�
+�
��
��
"

(
�

�
�
!
��
�

��
��
��
�
�

�
+�
��
��
"

�
�
��
�
�!
��

�
��

��
��

�
!
��
��
��
�
�

�
$�
�
�
$

�
�
��
�
�!
��

�
��

��
��

$
�
��

��
��
��
�
�

�
$�
�
�

�
$�
�
�
�

�
+�
��
��
"

�
�
��
�
�!
��

�
��

��
��

��
��
��
�
�

��
�
�
��

�
�

�
�
�
��
��

$

�
��

��
��
��
�
�

�
�
��

$

�
��

��
��
��
�
�

�

�
��

�
��
��
��

�
�
%
��
�
�

��
�

$
�
��

��
��
��
�
�

�
$�
�
�
$

�
��
��
��

�
��
���
�

�
�%
��
��

�
��
&
��
�

$�
��
��
�
��
��
�
�

�
$�
�

$

�
$�
(�
�
$

(
�

�
�
!

�
�
��
�
�!
��

�
��

��
��

$
�
��
��
�
��
��
�
�

�
$�
�
$

�
$�
�
$

�
��
��
�
�

$
�
��

��
��
��
�
�

�
$�
�
�
$

�
��
��
�
��
��
�

��
!

�
&
��
��
��
�

�
��
&
� �
�

$�
��
��
�
��
��
�
�

�
��
&
�
�-

$
�
��
��
�
��
��
�
�

$
�
��

��
��
��
.
�

���� �����

���*���
���� ����� ����

��%���� ���
����"�'��%���� ���
$ ��� ��������

��%��&

A
ll

ta
sk

s
an

d
te

ch
ni

qu
es

 in
cl

ud
ed

 a
re

ne

w

S
om

e
of

 th
e

ta
sk

s
an

d
te

ch
ni

qu
es

in

cl
ud

ed
 a

re
 n

ew

T
ec

hn
iq

ue
s

an
d

ta
sk

s
pr

ov
id

ed
 f

ro
m

ot

he
r

di
sc

ip
li

ne
s

ha
s

be
en

 u
se

d

�
�
�
�
�
�
�
�
�
�
	

�
�
�
�
�

�

�
�
��
��
��

�
��
�

�
��
�

�
�
�
��
�
��
��
��
��
��
�

�
��

�
�
�
��
�
��
��
��
��
��
�

�
�

�

�
��
��
��

�
��
��
��

��
��

�
��
��
��
��
��
�

�
�

�

��
��
�

�
�
!
��
��
"

�
��
�

�
��
�
��

�
�
!
��
��
"

�
�
�
	
�
�
�

�
�
�
�
�

�

������������
��!
����!�����
�#���

�#���
���

�#�����

�#���

�#�����$

�#�����$

�����������������
��%��&

�����������������'
�����

��!����"'���� ��
��!����"
��%��&

�������
��%���� ���
����"�'�����������������

��%��&

�%�����
��%��&

�%�����
����"�'�%�����
$ ��� ��������
��%��&

(�

�
��
�"
�

�
�
�
�
)
�
�
�
�
	

�
�
�
�
�

�

�������"

���*���
�������" ����

(
�
�
��
�

�
�

(
�

�
��
�"
�

(�
�
��
�

�
%�
��
��

(
�

�
��
�"
�

(
�
�
��

(�

�
+�
��
��
"

�
��
�"
�
�

��
��
��
�
�
�

(
�
�
��
�

(�

�
+�
��
��
"

�
��
�"
�
�

�
!
��
��
��
�
�

�
��
��

�!
��

�
��
�"
�

�
�
��
�

�
�
��
�
�!
��

�
��
�"
�

�
�
��

�
�
��
�
�!
��

�
+�
��
��
"

�
��
�"
�
�

��
��
��
�
�

�
�
��
�

�
�
��
�
�!
��

�
+�
��
��
"

�
��
�"
�
�

�
!
��
��
��
�
�

�
�

�
�
�
��
��

$
�
��
��
��

�
��
,
��
��
��
��

�
��
�"
�

�
$�
�
��
�

�
��
��
�
��
��
�

�
�
!
��
��
"

�
$�
�
��
�

�
$�
�
��
�
�

�
,
��
��
��

�
��
��
�
�

�
�
!
��
��
"

�
$�
�
��
�

�
��
��
��
�
�

�
�
!
��
��
"

�
&
��
��
��
�

�
�
!
��
��
"

�
��

�

�
+�
��
!
�!

��
��
�

�
�
!
��
��
"

�
��
�
�

�
+�
��
!
�!

�
��
�
��

�
�
!
��
��
"

�
��
�
�

��
��

�
��
,
��
��
��
��

�
��
�"
�

�
��
��
��
!

�
��
,
�
!
�

�
��
��
��
��
�
�

�
�

�
�

�
��
�
�

�
��
�

�
��
��
��
��
��

�
��
�"
�

�
�$
�

$�
��
��
��
�

�
��
�"
�

��
��

�
��
�"
�

D
es

ig
n

�
$�

�
$

�
��
��
��

�
��
���
�

�
��
&
��
�

�
�%
��
�

$
�
��

��
��
��
�
�

�
$�
�
�
$

�
��
��
�
��
��
�

�
�
!
��

$

�
��

��
��
��
�
�

�
$�
�
�
$

�
&
��
��
��
�

�
�
!
��

$

�
��

��
��
��
�
�

�
+�
��
��
"

(
�

�
�
!
��
�

�
!
��
��
��
�
�

�
%
��
��
�

$
�
��

��
��
��
�
�

�
$�
�
$

�
��
��
��

�
�
%�
��
�

��
��

$
�
��

��
��
��
�
�

�
$�
�
$

�
$�
�

�
$�
�
�

�
+�
��
��
"

(
�

�
�
!
��
�

��
��
��
�
�

�
+�
��
��
"

�
�
��
�
�!
��

�
��

��
��

�
!
��
��
��
�
�

�
$�
�
�
$

�
�
��
�
�!
��

�
��

��
��

$
�
��

��
��
��
�
�

�
$�
�
�

�
$�
�
�
�

�
+�
��
��
"

�
�
��
�
�!
��

�
��

��
��

��
��
��
�
�

��
�
�
��

�
�

�
�
�
��
��

$

�
��

��
��
��
�
�

�
�
��

$

�
��

��
��
��
�
�

�

�
��

�
��
��
��

�
�
%
��
�
�

��
�

$
�
��

��
��
��
�
�

�
$�
�
�
$

�
��
��
��

�
��
���
�

�
�%
��
��

�
��
&
��
�

$�
��
��
�
��
��
�
�

�
$�
�

$

�
$�
(�
�
$

(
�

�
�
!

�
�
��
�
�!
��

�
��

��
��

$
�
��
��
�
��
��
�
�

�
$�
�
$

�
$�
�
$

�
��
��
�
�

$
�
��

��
��
��
�
�

�
$�
�
�
$

�
��
��
�
��
��
�

��
!

�
&
��
��
��
�

�
��
&
� �
�

$�
��
��
�
��
��
�
�

�
��
&
�
�-

$
�
��
��
�
��
��
�
�

$
�
��

��
��
��
.
�

���� �����

���*���
���� ����� ����

��%���� ���
����"�'��%���� ���
$ ��� ��������

��%��&

�
�
�
�
�
�
�
�
�
�
	

�
�
�
�
�

�

�
�
��
��
��

�
��
�

�
��
�

�
�
�
��
�
��
��
��
��
��
�

�
��

�
�
�
��
�
��
��
��
��
��
�

�
�

�

�
��
��
��

�
��
��
��

��
��

�
��
��
��
��
��
�

�
�

�

��
��
�

�
�
!
��
��
"

�
��
�

�
��
�
��

�
�
!
��
��
"

�
�
��
��
��

�
��
�

�
��
�

�
�
�
��
�
��
��
��
��
��
�

�
��

�
�
�
��
�
��
��
��
��
��
�

�
�

�

�
��
��
��

�
��
��
��

��
��

�
��
��
��
��
��
�

�
�

�

��
��
�

�
�
!
��
��
"

�
��
�

�
��
�
��

�
�
!
��
��
"

�
��
�

�
��
�

�
�
�
��
�
��
��
��
��
��
�

�
��

�
�
�
��
�
��
��
��
��
��
�

�
�

�

�
��
��
��

�
��
��
��

��
��

�
��
��
��
��
��
�

�
�

�

��
��
�

�
�
!
��
��
"

�
��
�

�
��
�
��

�
�
!
��
��
"

�
�
�
	
�
�
�

�
�
�
�
�

�

������������
��!
����!�����
�#���

�#���
���

�#�����

�#���

�#�����$

�#�����$

�����������������
��%��&

�����������������'
�����

��!����"'���� ��
��!����"
��%��&

�������
��%���� ���
����"�'�����������������

��%��&

�%�����
��%��&

�%�����
����"�'�%�����
$ ��� ��������
��%��&

(�

�
��
�"
�

�
�
�
�
)
�
�
�
�
	

�
�
�
�
�

�

�������"

���*���
�������" ����

�������"

���*���
�������" ����

(
�
�
��
�

�
�

(
�

�
��
�"
�

(�
�
��
�

�
%�
��
��

(
�

�
��
�"
�

(
�
�
��

(�

�
+�
��
��
"

�
��
�"
�
�

��
��
��
�
�
�

(
�
�
��
�

(�

�
+�
��
��
"

�
��
�"
�
�

�
!
��
��
��
�
�

(
�
�
��
�

�
�

(
�

�
��
�"
�

(�
�
��
�

�
%�
��
��

(
�

�
��
�"
�

(
�
�
��

(�

�
+�
��
��
"

�
��
�"
�
�

��
��
��
�
�
�

(
�
�
��
�

(�

�
+�
��
��
"

�
��
�"
�
�

�
!
��
��
��
�
�

�
��
��

�!
��

�
��
�"
�

�
�
��
�

�
�
��
�
�!
��

�
��
�"
�

�
�
��

�
�
��
�
�!
��

�
+�
��
��
"

�
��
�"
�
�

��
��
��
�
�

�
�
��
�

�
�
��
�
�!
��

�
+�
��
��
"

�
��
�"
�
�

�
!
��
��
��
�
�

�
��
��

�!
��

�
��
�"
�

�
�
��
�

�
�
��
�
�!
��

�
��
�"
�

�
�
��

�
�
��
�
�!
��

�
+�
��
��
"

�
��
�"
�
�

��
��
��
�
�

�
�
��
�

�
�
��
�
�!
��

�
+�
��
��
"

�
��
�"
�
�

�
!
��
��
��
�
�

�
�
��
�

�
�
��
�
�!
��

�
��
�"
�

�
�
��

�
�
��
�
�!
��

�
+�
��
��
"

�
��
�"
�
�

��
��
��
�
�

�
�
��
�

�
�
��
�
�!
��

�
+�
��
��
"

�
��
�"
�
�

�
!
��
��
��
�
�

�
�

�
�
�
��
��

$
�
��
��
��

�
��
,
��
��
��
��

�
��
�"
�

�
$�
�
��
�

�
��
��
�
��
��
�

�
�
!
��
��
"

�
$�
�
��
�

�
$�
�
��
�
�

�
,
��
��
��

�
��
��
�
�

�
�
!
��
��
"

�
$�
�
��
�

�
��
��
��
�
�

�
�
!
��
��
"

�
&
��
��
��
�

�
�
!
��
��
"

�
�

�
�
�
��
��

$
�
��
��
��

�
��
,
��
��
��
��

�
��
�"
�

�
$�
�
��
�

�
��
��
�
��
��
�

�
�
!
��
��
"

�
$�
�
��
�

�
$�
�
��
�
�

�
,
��
��
��

�
��
��
�
�

�
�
!
��
��
"

�
$�
�
��
�

�
��
��
��
�
�

�
�
!
��
��
"

�
&
��
��
��
�

�
�
!
��
��
"

�
$�
�
��
�

�
��
��
�
��
��
�

�
�
!
��
��
"

�
$�
�
��
�

�
$�
�
��
�
�

�
,
��
��
��

�
��
��
�
�

�
�
!
��
��
"

�
$�
�
��
�

�
��
��
��
�
�

�
�
!
��
��
"

�
&
��
��
��
�

�
�
!
��
��
"

�
��

�

�
+�
��
!
�!

��
��
�

�
�
!
��
��
"

�
��
�
�

�
+�
��
!
�!

�
��
�
��

�
�
!
��
��
"

�
��
�
�

��
��

�
��
,
��
��
��
��

�
��
�"
�

�
��
��
��
!

�
��
,
�
!
�

�
��
��
��
��
�
�

�
�

�
�

�
��
�
�

�
��
�

�
��
��
��
��
��

�
��
�"
�

�
�$
�

$�
��
��
��
�

�
��
�"
�

��
��

�
��
�"
�

�
��

�

�
+�
��
!
�!

��
��
�

�
�
!
��
��
"

�
��
�
�

�
+�
��
!
�!

�
��
�
��

�
�
!
��
��
"

�
��
�
�

��
��

�
��
,
��
��
��
��

�
��
�"
�

�
��
��
��
!

�
��
,
�
!
�

�
��
��
��
��
�
�

�
�

�
�

�
��
�
�

�
��
�

�
��
��
��
��
��

�
��
�"
�

�
�$
�

$�
��
��
��
�

�
��
�"
�

�
��

�

�
+�
��
!
�!

��
��
�

�
�
!
��
��
"

�
��
�
�

�
+�
��
!
�!

�
��
�
��

�
�
!
��
��
"

�
��
�
�

��
��

�
��
,
��
��
��
��

�
��
�"
�

�
��
��
��
!

�
��
,
�
!
�

�
��
��
��
��
�
�

�
�

�
�

�
��
�
�

�
��
�

�
��
��
��
��
��

�
��
�"
�

�
�$
�

$�
��
��
��
�

�
��
�"
�

��
��

�
��
�"
�

D
es

ig
n

�
$�

�
$

�
��
��
��

�
��
���
�

�
��
&
��
�

�
�%
��
�

$
�
��

��
��
��
�
�

�
$�
�
�
$

�
��
��
�
��
��
�

�
�
!
��

$

�
��

��
��
��
�
�

�
$�
�
�
$

�
&
��
��
��
�

�
�
!
��

$

�
��

��
��
��
�
�

�
+�
��
��
"

(
�

�
�
!
��
�

�
!
��
��
��
�
�

�
%
��
��
�

$
�
��

��
��
��
�
�

�
$�
�
$

�
��
��
��

�
�
%�
��
�

��
��

$
�
��

��
��
��
�
�

�
$�
�
$

�
$�
�

�
$�
�
�

�
+�
��
��
"

(
�

�
�
!
��
�

��
��
��
�
�

�
+�
��
��
"

�
�
��
�
�!
��

�
��

��
��

�
!
��
��
��
�
�

�
$�
�
�
$

�
�
��
�
�!
��

�
��

��
��

$
�
��

��
��
��
�
�

�
$�
�
�

�
$�
�
�
�

�
+�
��
��
"

�
�
��
�
�!
��

�
��

��
��

��
��
��
�
�

�
$�

�
$

�
��
��
��

�
��
���
�

�
��
&
��
�

�
�%
��
�

$
�
��

��
��
��
�
�

�
$�
�
�
$

�
��
��
�
��
��
�

�
�
!
��

$

�
��

��
��
��
�
�

�
$�
�
�
$

�
&
��
��
��
�

�
�
!
��

$

�
��

��
��
��
�
�

�
+�
��
��
"

(
�

�
�
!
��
�

�
!
��
��
��
�
�

�
%
��
��
�

$
�
��

��
��
��
�
�

�
$�
�
$

�
��
��
��

�
�
%�
��
�

��
��

$
�
��

��
��
��
�
�

�
$�
�
$

�
$�
�

�
$�
�
�

�
+�
��
��
"

(
�

�
�
!
��
�

��
��
��
�
�

�
+�
��
��
"

�
�
��
�
�!
��

�
��

��
��

�
!
��
��
��
�
�

�
$�
�
�
$

�
�
��
�
�!
��

�
��

��
��

$
�
��

��
��
��
�
�

�
$�
�
�

�
$�
�
�
�

�
+�
��
��
"

�
�
��
�
�!
��

�
��

��
��

��
��
��
�
�

�
+�
��
��
"

�
�
��
�
�!
��

�
��

��
��

�
!
��
��
��
�
�

�
$�
�
�
$

�
�
��
�
�!
��

�
��

��
��

$
�
��

��
��
��
�
�

�
$�
�
�

�
$�
�
�
�

�
+�
��
��
"

�
�
��
�
�!
��

�
��

��
��

��
��
��
�
�

��
�
�
��

�
�

�
�
�
��
��

$

�
��

��
��
��
�
�

�
�
��

$

�
��

��
��
��
�
�

�

�
��

�
��
��
��

�
�
%
��
�
�

��
�

$
�
��

��
��
��
�
�

�
$�
�
�
$

�
��
��
��

�
��
���
�

�
�%
��
��

�
��
&
��
�

$�
��
��
�
��
��
�
�

�
$�
�

$

�
$�
(�
�
$

(
�

�
�
!

�
�
��
�
�!
��

�
��

��
��

$
�
��
��
�
��
��
�
�

�
$�
�
$

�
$�
�
$

�
��
��
�
�

$
�
��

��
��
��
�
�

�
$�
�
�
$

�
��
��
�
��
��
�

��
!

�
&
��
��
��
�

�
��
&
� �
�

$�
��
��
�
��
��
�
�

�
��
&
�
�-

$
�
��
��
�
��
��
�
�

�

�
��

�
��
��
��

�
�
%
��
�
�

��
�

$
�
��

��
��
��
�
�

�
$�
�
�
$

�
��
��
��

�
��
���
�

�
�%
��
��

�
��
&
��
�

$�
��
��
�
��
��
�
�

�
$�
�

$

�
$�
(�
�
$

(
�

�
�
!

�
�
��
�
�!
��

�
��

��
��

$
�
��
��
�
��
��
�
�

�
$�
�
$

�
$�
�
$

�
��
��
�
�

$
�
��

��
��
��
�
�

�
$�
�
�
$

�
��
��
�
��
��
�

��
!

�
&
��
��
��
�

�
��
&
� �
�

$�
��
��
�
��
��
�
�

�
��
&
�
�-

$
�
��
��
�
��
��
�
�

$
�
��

��
��
��
.
�

���� �����

���*���
���� ����� ����

���� �����

���*���
���� ����� ����

��%���� ���
����"�'��%���� ���
$ ��� ��������

��%��&

A
ll

ta
sk

s
an

d
te

ch
ni

qu
es

 in
cl

ud
ed

 a
re

ne

w

S
om

e
of

 th
e

ta
sk

s
an

d
te

ch
ni

qu
es

in

cl
ud

ed
 a

re
 n

ew

T
ec

hn
iq

ue
s

an
d

ta
sk

s
pr

ov
id

ed
 f

ro
m

ot

he
r

di
sc

ip
li

ne
s

ha
s

be
en

 u
se

d

SENDA 97

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

not the focus of this chapter, but these processes are described in greater detail
in Sánchez-Segura (2004).

The symbol notation used to represent tasks and the relationship among them can
be found in Kruchten (1999) and “Process Acronym plus Task Acronym” has
been used to name tasks.

The acronyms of the processes we describe in this chapter are:

• A: Analysis Process

• 3DD: 3D Design Process

• MD: Multimedia Design Process

• SD: System Design Process

• CIAD: Components Internal Architecture Design Process

• SCI: Support Components Implementation Process

• CI: Core Implementation Process

Analysis Process

The analysis process is one of the traditional processes that has been improved,
providing some new tasks and techniques. A summary of the analysis process
appears in Table 1; proposed elements appear in italics.

Many researchers suggest that the analysis phase must take into account a
requirements specification task, which must gather only the system features and
not how the system performs (Davis, 1993). Like Sommerville (1997), we think
that although this idea is very attractive, it is not very useful in practice.

The first task to carry out in the analysis process is pre-conceptualization,
which allows the identification of the set of tasks to be developed. To achieve
this, Questionnaire 1 must be completed, as the answers in this questionnaire
allow the project manager to know the SENDA tasks to be developed.

Once the pre-conceptualization task is finished, the conceptualization task
must be developed in order to obtain the “conceptualization document” that
contains “use cases” and “use concepts.” Use cases are taken from the Unified
Modeling Language standard. We propose a new term, “use concept,” not yet
defined, as a tool to describe the system functionalities not triggered by an
external author. Each use concept is defined by a brief description of the
functionality, which will not be demanded directly by the user, and the following
three fields:

• Purpose: Use concept’s main goal.

98 Sanchez-Segura, de Antonio & de Amescua

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Working Mode: How the use concept is going to be used.

• Dynamic: The use frequency.

Table 2 illustrates use concept, which represents the functionality to prevent the
avatar from colliding with an obstacle in its path.

Table 1. Analysis process

����

���������������������

���

�����������������

��
�

�������
������� ����

������������

��
�
�����
��!����"

���� ���� ��
��!����"

(�����/
(�����/

(�����/
�����/

�����

����

���������������������

���

�����������������

��
�

�������
������� ����

������������

��
�
�����
��!����"

���� ���� ��
��!����"

(�����/
(�����/

(�����/
�����/

�����

TASK NAME TASK
ACRONYM TASK DESCRIPTION

Input Contract definition
Artifacts Output Selected tasks to be developed according to the kind of

VEs to be developed
Techniques Interviews with the clients

Pre-
Conceptualization

A-PC

Participants System analyst
Input Problem definition Artifacts
Output Specific requirements document

Techniques Alternatives study, interviews

Specific
Requirements
Specification

A-SR

Participants System analyst, client, user
Input Selected tasks to be developed, output of A-PC

Artifacts Output Problem definition, acronyms, abbreviations, initial list
of requirements, use cases and use concepts classified

Techniques Use cases, use concepts
Conceptualization A-C

Participants System analyst, client, user
Input Conceptualization document, outputs of 3D Design

tasks, outputs of multimedia design process
Artifacts

Output Classes model; amplified classification of use cases and
use concepts table

Techniques Structural diagram

Static Modeling A-SM

Participants System analyst
Input Conceptualization document, classes model Artifacts
Output Dynamic model

Techniques
UML sequence diagrams, scenarios, operational
contracts

Dynamic
Modeling A-DM

Participants System analyst

Table 2. Use concept example

Use concept name: The avatar must not
collide with the walls.

Use concept code: Concept(7)

Purpose: To prevent the avatar from going through
the walls so the environment is more credible.
Working mode: When an avatar arrives at a wall, it
is not allowed to go through the wall and the avatar
must stop.
Dynamic: Each time the avatar is near a wall.

SENDA 99

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Questionnaire 1. Pre-conceptualization questionnaire

Is VE only for guided tours
without any type of interaction?

Yes NoYes No

 If Yes, ignore the Internal Characteristics of the VE components in the Design

process; the ICS-IMCI and ICS-IMP tasks of the Implementation of Components and
Support process; and the IMP-IMCL task of the Principal Module Implementation
process.

Will VE be networked? Yes NoYes No

 If No, delete the IMP-ISRE task of the Implementation of the Principal Module

process.
Will VE use virtual reality
mechanisms?

Yes NoYes No

 If No, delete the ICS-SDRV task in the Implementation of Support Components

process and the IMP-ISRV task in the Implementation of the Principal Module
process.

Will VE be used for teaching? Yes NoYes No

 If Yes, a tutor module should be considered in the general architecture of VE.
Will VE be used to develop social
relations?

Yes NoYes No

 If No, the DAI-SMCI task should be deleted from the Internal Characteristics of

Components Design process of the VE. If Yes, the need to include a personality
module or a social module in the VE should be considered.

Will the VE have 3D elements? Yes NoYes No

 If No, the 3D Design and the ICS-S3D, ICS- AR3D, ICS-IA3D, ICS-IVE tasks of the

Implementation of Support Components, and the IMP-IO3D tasks can be deleted.
Remember that the part corresponding to loading the 3D elements of the VE should
not be executed.

Will the VE have multimedia
elements?

Yes NoYes No

 If No, the Multimedia Elements Design, and the ICS-SEM, ICS-AREM, ICS-IEM

tasks of the Implementation of Support Components can be eliminated. Remember
that the part corresponding to the insertion of multimedia elements of the IMP-IO3D
task should not be executed.

Will the VE have avatars guided
by agents?

Yes NoYes No

 If Yes, the avatars should be modeled to be controlled by agents, that is, they should

be automatically controlled by an interface within the system. Therefore, the
formalism of Use Concepts to define some of the requirements of the
Conceptualization task should be used.

Will the VE control the
personality model of the avatar
partially or totally?

Yes NoYes No

 If No, the DAI-SMCI task of the architecture of the Internal Components Design
process, and the ICS-IMCI task of the Implementation of Support Components
process can be deleted.

Will the VE partially or totally
control the reasoning model of
the avatar?

Yes NoYes No

 If No, the DAI-DMR task of the architecture of the Internal Components Design
process can be deleted.

Will the VE totally or partially
control the model perception of
the avatar?

Yes NoYes No

 If No, the DAI-IMP task of the architecture of the Internal Components Design
process architecture of the Internal Components Design process and the ICS-IMP task
of the Implementation of Support Components should be deleted.

100 Sanchez-Segura, de Antonio & de Amescua

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

As VEs are constantly evolving, the type of virtual reality mechanism, the
development software, the hardware, and so forth had to be chosen as soon as
possible in order to test the compatibility of these elements which influence the
rest of the development processes. We proposed the specific requirements task
to list the VEs’ specific decisions that were taken regarding virtual reality
devices, compatibility between software and devices, and so forth.

We propose a set of categories to classify use cases and use concepts according
to their special characteristics such as perception, reasoning, animation, and
visualization. So, each one of these categories could be dealt with in the
components internal architecture design process. These categories are: connec-
tion to the VE, virtual reality devices interface, animation, perception, VE
evolution, reasoning and decision, communication with other connected users,
and scene visualization. Using this classification, it is easy to trace the require-
ments into use concepts and use cases and, for instance, if a category is empty,
the analyst can ask the client to verify that the category is really empty, and if
the requirements were not properly extracted, to take this opportunity to define
them.

Static and dynamic modeling have been taken from object-oriented methodolo-
gies, relating them to the rest of SENDA tasks.

Design Processes

Due to the features of VEs developments, the traditionally known “Design
Process” has been subdivided into four processes: 3D design process, multime-
dia design process, components internal architecture design process, and design
process. In the following subsections these processes are presented in detail. In
design processes, two main kinds of roles are involved: system and graphic
designers.

• System Designer: Typically assigned to define “how” the application is.
By this, we mean the person who defines the control of the system following
the system analyst’s definition of “what.” In VEs, the system designer is
also the person who guides the graphic designer because of his or her
knowledge of the application to be developed. The system designer must
also have a basic knowledge of graphic design.

• Graphic Designer: His or her job in the design process is feedback, view
maps, environment modeling forms, and avatar modeling forms for the
system designer. After the feedback stage, graphic designers can begin the
implementation task.

SENDA 101

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

3D Design Process

There is a set of requirements associated with VEs which are not usually
described as they are not related to the functionality of the system. The 3D
design process, a new process SENDA proposes, takes these requirements into
account and is critical:

1. To describe VE aesthetic details.

2. To facilitate a common language which allows the system and model
designers to understand each other. In these cases, a natural language is
lacking due to the different backgrounds of the system designer (computer
expert) and the model designer (graphic arts expert). As a result, it is
necessary to translate the system requirements into comprehensible speci-
fications for the model designer. For example, performance in real time
means nothing to the model designer, but provides a lot of information for
the system designer.

3. To ease and minimize time consumed in the support components implemen-
tation process, one of the implementation processes.

This process is classified as design processes because the information extracted
from the proposed tasks describes in detail how the environment is and not what
the VE does. A summary of the 3D design process appears in Table 3.

For the 3D design process, SENDA proposes the following techniques:

• Two Forms: An environment form that describes the VE, and a special
components form that describes the components in more detail. These
forms have to be completed by the system designer and validated by the
model designer.

• View Maps to facilitate the spatial location of the VE components.

• The Hierarchical Structure of Avatars and VE Components. The
hierarchical structure allows the design of avatars or components in any
form, whereas standards (Roehl, 1998) only allow the avatars to be
described in human form.

• A Navigational Diagram represents the links between different logical
spaces within the VE.

For details and examples of these techniques (see Sánchez-Segura, 2003). We
describe briefly the goals of the tasks included in this process:

• 3D Existing Designs Selection: This task is defined for reuse in the
design process. 3D designs developed in previous projects can be reused.

102 Sanchez-Segura, de Antonio & de Amescua

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

For instance, if we design a child’s room with the 3D design process
proposed in this chapter, it is possible to reuse this design in other virtual
environments where this room must be designed.

• 3D Existing Designs Adaptation: 3D designs selected in the above task
must be analyzed to check if these designs have to be adapted to satisfy the
specifications identified for the current project. For instance, the above
room may need another door, so the 3D design for that room must be
adapted.

• VE 3D Design: This task includes the definition of a set of virtual spaces
and the objects to be included in them. We will focus on this task in detail.

Table 3. 3D design process

(�����

��
(�
����"�

(�����

�%�����
(�
����"�

���/
��
� (����

(� �+�����" ����"��

��������

(�����

(�
�+�����"
����"��
�!��������

���/
��
�
(�����

��
(�
����"�

(�����

�%�����
(�
����"�

���/
��
� (����

(� �+�����" ����"��

��������

(�����

(�
�+�����"
����"��
�!��������

���/
��
�

TASK
NAME

TASK
ACRONYM TASK DESCRIPTION

Input Conceptualization document, specific requirements document
from analysis; existing 3D designs Artifacts

Output Selected existing 3D designs
Techniques Evaluation of previous 3D designs

3D Existing
Designs
Selection

3DD-DS

Participants System designer
Input Conceptualization document, specific requirements document

from analysis; existing 3D designs; selected existing 3D
designs

Artifacts

Output Selected 3D designs
Techniques 3D design adaptation

3D Existing
Designs
Adaptation

3DD-DA

Participants System designer
Input All outputs from analysis that can give aesthetic VE details

Artifacts Output VE modeling forms, view maps, behavior tables, navigational
tables, elements structural hierarchies, table of elements
structural hierarchies, table of description of articulations

Techniques View maps, environment forms, navigational diagram

VE 3D
Design 3DD-ED

Participants Graphic designers, system designer, client (to provide VE
aesthetic details)

Input All outputs from analysis that can give aesthetic VE details
Artifacts

Output Hierarchical structure of avatars and VE components
Techniques Avatars and components hierarchy

Avatars 3D
Design

3DD-ED

Participants
Graphic designers, system designer, client (to provide avatars
aesthetic details)

SENDA 103

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Avatars 3D Design: This task includes the definition of a set of virtual
inhabitants, their appearance, and physical structure.

Multimedia Design Process

This process is classified as design process because the information extracted
through the proposed tasks describes in detail how the multimedia elements—
sound, images, animations—are and not what they do. A summary of the
multimedia design process appears in Table 4.

• Multimedia Existing Designs Selection: In this task, previous multime-
dia designs must be selected for the current project.

• Multimedia Existing Designs Adaptation: Selected multimedia de-
signs must be analyzed to identify necessary adaptations or modifications.

• Multimedia Design: This task includes the definition of a set of tools, such
as storyboards, to describe the multimedia elements. The techniques used

Table 4. Multimedia design process

�����

����� �!��
����"��

���/
��
�/
(�����/

(�����

����

����� �!��
�+�����"

����"��

��������

�����

����� �!�� �+�����"
����"��

�!��������

���/
��
�/
(�����/

(����� �����

����� �!��
����"��

���/
��
�/
(�����/

(�����

����

����� �!��
�+�����"

����"��

��������

�����

����� �!�� �+�����"
����"��

�!��������

�����

����� �!��
����"��

���/
��
�/
(�����/

(�����

����

����� �!��
�+�����"

����"��

��������

�����

����� �!�� �+�����"
����"��

�!��������

���/
��
�/
(�����/

(�����

TASK NAME TASK
ACRONYM

TASK DESCRIPTION

Input Conceptualization and specific requirements documents;
both are analysis process outputs; existing multimedia
designs; 3D environment elements specific forms;
avatars forms

Artifacts

Output Existing multimedia selected designs
Techniques Evaluation of existing multimedia designs

Multimedia
Existing Designs
Selection

MD-DS

Participants System designer
Input Selected multimedia existing designs; 3D environment

elements specific forms; avatars forms Artifacts
Output Updated existing multimedia designs

Techniques Adaptation of existing multimedia designs

Multimedia
Existing Designs
Adaptation

MD-DA

Participants System designer
Input Multimedia selected elements updated

Artifacts
Output Multimedia elements description

Techniques Storyboard or any other multimedia existing methods
Multimedia Design MD-MD

Participants System designer

104 Sanchez-Segura, de Antonio & de Amescua

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

in this task are not indicated in this chapter because they are well defined
in the multimedia field.

Components Internal Architecture Design Process

This is a new process SENDA proposes to deal with the categorization of use
cases and concepts in the analysis process. To be exact, the especially critical
categories are:

• Perception

• Internal characteristics: personality model, mood, social models, and so
forth

• Reasoning

• Reaction: this may imply a simple modification of a variable or the
representation of a very complex VE scene.

This process manages the above-mentioned categories that must be designed for
each class. For instance, detection does not have to be designed for a particular
class if there are no perception mechanisms.

A summary of the components internal architecture design process appears in
Table 5.

The aim of this process is to define the actions that can take place within the VE.
Many people are involved in this process: psychologists, sociologists, and so
forth, because a multi-disciplinary work is necessary to provide this kind of
application with sufficiently interesting interactive features to give credibility to
avatars and the rest of the VE elements.

It is very important to emphasize the relation between “components internal
architecture design” and “3D design” processes. They must be coherent.

“Conceptualization” task A-C specifies every action to be done by avatars and
the rest of the elements within the VE. These actions include the detection of the
events that occur in the environments, how avatars feel these events, and how
these feelings are shown through the physical representation of elements. These
are all defined by the set of tasks included in this process:

• Awareness Modeling: In this task the way avatars and agents can
perceive the rest of the inhabitants and objects in the VE is defined so that
they can react to the stimulus coming from their surroundings. Specific
techniques to achieve this task can be found in Chapter 7.

• Physical Actions Modeling: The activities that the avatars and agents
must be able to perform in the environment must be designed with respect

SENDA 105

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

to the avatar’s structure defined in the avatars modeling task. For
instance, Table 6 describes the action through which the visitor gets an
object.

• Personality Modeling: It is important to endow avatars and agents with
a personality and emotion model, and to relate the actions defined above
with the emotions. Specific techniques to achieve this task will be discussed
in Chapter 7.

Table 5. Components internal architecture design process

�$�����

�����������
��!����"

�$�����

�$������

�,������
�������
��!����"

�$�����

���������
��!����"

���/
��
�/

����

(�����/
(�����

�&�������
��!����"

��� �$�����

�����������
��!����"

�$�����

�$������

�,������
�������
��!����"

�$�����

���������
��!����"

���/
��
�/

����

(�����/
(�����

�&�������
��!����"

���

TASK NAME
TASK
ACRONYM

TASK DESCRIPTION

Input Conceptualization document from analysis process;
expanded use cases and concepts classification from
analysis process

Artifacts

Output Detection methods description
Techniques No specific technique is proposed

Awareness
Modeling

CIAD-AM

Participants System and graphic designer
Input Conceptualization document from analysis process;

outputs from CIAD-AM task
Artifacts

Output Description of internal features; internal model definition
if needed

Techniques No specific technique is proposed

Personality
Modeling

CIAD-PM

Participants System designer
Input Conceptualization document from analysis process;

expanded use cases and concepts classification from
analysis process; outputs from the VE 3D design process Artifacts

Output Elements position interpretation table; avatar position
interpretation table; animations table

Techniques

VE physical animations description:
� VE elements position interpretation table
� Avatar position interpretation table
� Animations table

Physical Actions
Modeling

CIAD-PAM

Participants System and graphic designer
Input Outputs from CIAD.AM, CIAD-PM, and CIAD-PAM

Artifacts
Output Decision and reasoning rules definition

Techniques Definition of the reasoning model
Reactions
Modeling

CIAD-RM

Participants System analyst and system designer

106 Sanchez-Segura, de Antonio & de Amescua

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Reactions Modeling: This task defines the way in which VE elements
are able to react to reason and make decisions. For instance, in Table 7
there are some rules related to the performance of a system in nuclear
plants to train people to use some elements in their daily work.

System Design Process

As we have mentioned before, the tasks included in this process are well defined
in most object-oriented methodologies. A summary of the system design process
appears in Table 8.

Expanded static modeling (SD-ESM) and expanded dynamic modeling (SD-
EDM) tasks take:

• Class diagram from “static modeling” (A-SM) and transition diagrams
and event traces from “dynamic modeling” (A-DM) task (both from the
analysis process).

• “Physical actions modeling” task (CIAD-PAM) to create new classes
and methods derived from the exact definition of movements, and so forth,
which is the output of CIAD-PAM.

Table 6. Example of action description

Element code: visitor
Animation Variant Involved

Elements
Position

Head Looking ahead
Shoulders Lift
Body Lift
Arms The left arm stays at the visitor’s side while

the right arm reaches out to be near the object
to be cached.

Get an
object

There are
no
variants

Legs Immobile

Table 7. Example of decisions rules design

Rule number Description

Rule 1
If the avatar has just entered the VE, then it must go to
the radiation protection counter, bring its target, and get
the dosimeter.

Rule 3
If the avatar is in the changing room with work clothes
on, then the avatar must go to the card reader and enter
though the turnstile.

SENDA 107

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Table 8. System design process

$��������
����"�

���
�
�+���!�!

�����

��!����"

�����

�+���!�!

���� ��
��!����"

�����

����

���,��������

����"�

�������!
���,�!�

�����������

��
��

�����

����
�����������

����"�

��$�

��
�

��
�
�$������

����

��
�
�$�����

��
�/
���/
(�����/
(�����/

(�����/
�����/
�����

$��������
����"�

���
�
�+���!�!

�����

��!����"

�����

�+���!�!

���� ��
��!����"

�����

����

���,��������

����"�

�������!
���,�!�

�����������

��
��

�����

����
�����������

����"�

��$�

��
�

��
�
�$������

����

��
�
�$�����

��
�/
���/
(�����/
(�����/

(�����/
�����/
�����

���
�
�+���!�!

�����

��!����"

�����

�+���!�!

���� ��
��!����"

�����

����

���,��������

����"�

�������!
���,�!�

�����������

��
��

�����

����
�����������

����"�

��$�

��
�

��
�
�$������

����

��
�
�$�����

��
�/
���/
(�����/
(�����/

(�����/
�����/
�����

TASK
NAME

TASK
ACRONYM TASK DESCRIPTION

Input Static modeling task outputs; physical actions modeling
task outputs; personality modeling task outputs; specific
requirements specification task outputs Artifacts

Output Design classes model
Techniques Entity-relationship model

Expanded
Static
Modeling

SD-ESM

Participants System designer
Input Dynamic modeling task outputs physical actions modeling

task outputs; personality modeling task outputs; specific
requirements specification task outputs Artifacts

Output Design dynamic models
Techniques Interaction diagrams, states diagrams

Expanded
Dynamic
Modeling

SD-EDM

Participants System designer
Input Physical actions modeling task outputs; expanded static

modeling task outputs Artifacts
Output Methods description in pseudo code

Techniques Pseudo-code

Detailed
Methods
Description

SD-DMD

Participants System designer
Input Specific requirements specification task outputs; expanded

static modeling task outputs Artifacts
Output Components, deployment, and packages models

Techniques Components, deployment, and packages models

System
Architecture
Design

SD-SAD

Participants System designer

Input Specific requirements specification task outputs; expanded
static modeling task outputs Artifacts

Output Database design
Techniques Entity-relationship model

Data
Persistence
Design

SD-DPD

Participants System designer
Input Conceptualization document Artifacts
Output Interface design

Techniques No specific technique is proposed
Interface
Design SD-ID

Participants System designer, client

The static model developed in the analysis process must be expanded in the
expanded static model task, and the dynamic model developed in the analysis
process must be expanded in the expanded dynamic model task.

108 Sanchez-Segura, de Antonio & de Amescua

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

System architecture design (SD-SAD) task and data persistence design (SD-
DPD) tasks take the “specific requirements document,” returned from A-SR,
where restrictions or details to be used in SD-SAD and SD-DPD are provided.
In the system architecture design task, the classes, from static model, are
packaged. Deployment and component diagrams, from UML, must also be
developed. In Chapter 8 some guidelines to define specific architectures for VEs
can be found. The data persistence design task defines the way VE information
is managed.

In the interface design task, a prototype of the user interface must be
developed.

The actions identified in the rest of design processes are detailed in pseudo-code
in detailed methods descriptions tasks. For instance, pseudo-code in Figure 2
corresponds to the action designed in Table 6. And pseudo-code in Figure 3
corresponds to Rules 1 and 3 designed in Table 7.

Implementation Processes

The traditional implementation process has been split into two processes: support
components implementation process (SCI) and core implementation process
(CI). The core implementation process proposes an incremental development of
the VE by first creating an empty VE and adding some functionalities to each
task. On the other hand, the tasks under the support components implementation

Figure 2. Pseudo-code corresponding to the catch action

Catch()
 ArmR=Instance from class ARM

ArmR.Move(Get)
 AVATAR.Get_element(PRVIR OBJECT)
 VE.Remove_element(PRVIR OBJECT)
END Cath

RULE 1
IF “Avatar has just arrived in the Virtual Environment” THEN
-Go to the radiation protection counter
-Get the dosimeter

RULE 3
IF “avatar is in the changing room with clothes to work on” THEN
go to the card reader and the enter though the turnstile

Figure 3. Pseudo-code corresponding to Rules 1 and 3

SENDA 109

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

process can be developed along with the rest of processes, at specific points. We
explain both of them.

Support Components Implementation Process

VEs have many modules or pieces. The support components implementation
process was proposed to build the VE modules independently. This is proposed
in the core implementation process, which is incremental, and allows the
progressive addition of small modules. Adjustments could thus be made to any
module of the system without having to modify others. Examples of modules are
the interface with the virtual reality device, 3D models, and multimedia elements.

Table 11. Core implementation process

Table 9. Support components implementation process (Part I)

�+�����"
(�
��!���
�!��������

�%�����

$ ��� ��������

�$��$

�������
��%���� ���

$ ��� ��������

�$��$

�$������

(�����/

(�����/

(�����

�$��

�$���

�+�����"
(�
��!���

��������

�+�����"
(�
��!���
�!��������

�%�����

$ ��� ��������

�$��$

�������
��%���� ���

$ ��� ��������

�$��$

�$������

(�����/

(�����/

(�����

�$��

�$���

�+�����"
(�
��!���

��������

TASK NAME
TASK
ACRONYM

TASK DESCRIPTION

Input 3D design tasks outputs; animations description
table, output from physical actions modeling task Artifacts

Output Existing selected 3D models
Techniques The ones preferred by the graphic designer

Existing 3D Models
Selection

SCI-MS

Participants Graphic designer
Input 3DD-DA task outputs; selected models in task SCI-

MS; avatars position interpretation table, output
from physical actions modeling task

Artifacts
Output Graphics files corresponding to the adapted

implementation of the 3D avatars, and VE; 3D
exported models table; 3D exported avatars table

Techniques The ones preferred by the graphic designer

Existing 3D Models
Adaptation

SCI-MA

Participants Graphic designer
Input 3DD-AD task outputs; selected models in task SCI-

MS; avatars position interpretation table, output
from CIAD-PAM task Artifacts

Output Graphics files corresponding to the implementation
of the 3D avatars; 3D avatar exported elements table

Techniques The ones preferred by the graphic designer

Avatars
Implementation

SCI-AI

Participants Graphic designer
Input Outputs from task 3DD-ED

Outputs from task CIAD-PAM
Artifacts

Output Graphics files corresponding to the implementation
of the 3D VE elements; 3D exported models table

Techniques The ones preferred by the graphic designer

Virtual Environments
Implementation

SCI-EI

Participants Graphic designer

110 Sanchez-Segura, de Antonio & de Amescua

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

As soon as these modules were completed , they were added to the real system
for the client to see the final VE and decide if the system met their expectations.

In this process, all the tasks related to implementation, but strongly dependent on
VE features, are included. As a result, all the models designed in the components

Table 10. Support components implementation process (Part II)

�$�
�$ �������
�������

���&���
��%���

$ ��� ��������

�$���$ �����������
��!��
$ ��� ��������

�$���$ �&�������
��!��
$ ��� ��������

��
�

�$�����

�$�����

�+�����"
����� �!��
��� ����

�!��������

�$���$
����� �!��
��� ����

$ ��� ��������

�$���

�$����

�+�����"
����� �!��

��� ����

��������

�����/

�����

�$�
�$ �������
�������

���&���
��%���

$ ��� ��������

�$���$ �����������
��!��
$ ��� ��������

�$���$ �&�������
��!��
$ ��� ��������

��
�

�$�����

�$�����

�$�
�$ �������
�������

���&���
��%���

$ ��� ��������

�$���$ �����������
��!��
$ ��� ��������

�$���$ �&�������
��!��
$ ��� ��������

��
�

�$�����

�$�����

�+�����"
����� �!��
��� ����

�!��������

�$���$
����� �!��
��� ����

$ ��� ��������

�$���

�$����

�+�����"
����� �!��

��� ����

��������

�����/

�����

�+�����"
����� �!��
��� ����

�!��������

�$���$
����� �!��
��� ����

$ ��� ��������

�$���

�$����

�+�����"
����� �!��

��� ����

��������

�����/

�����

TASK NAME
TASK
ACRONYM

TASK DESCRIPTION

Input All outputs from MD-MD task
Artifacts

Output Existing multimedia elements

Techniques
The ones selected by the multimedia
expert

Existing Multimedia
Elements Selection

SCI-MES

Participants Multimedia expert
Input All outputs from MD-MD task;

selected models in SCI-MES
Artifacts Output Sound, video, image, files

corresponding with the updated
multimedia files; multimedia files table

Techniques
The ones selected by the multimedia
expert

Existing Multimedia
Elements Adaptation

SCI-MEA

Participants Multimedia expert
Input All outputs from MD-MD task

Artifacts
Output Sound, video, image, files

corresponding with the updated
multimedia files; multimedia files
table

Techniques
The ones selected by the multimedia
expert

Multimedia
Elements
Implementation

SCI-MEI

Participants Multimedia expert
Input Specific requirements document from

A-SR task
Artifacts

Output Virtual reality device software with its
corresponding interface

Techniques Implementation techniques

Virtual Reality
Software Device
Implementation

SCI-SDI

Participants
Programmer/s; virtual reality device
provider

Input Output from CIAD-PM task
Artifacts

Output Personality traits software
Techniques Implementation techniques

Personality Model
Implementation

SCI-PMI

Participants Programmer/s
Input Output from CIAD-AM task

Artifacts
Output Awareness model software

Techniques Implementation techniques
Awareness Model
Implementation

SCI-AMI

Participants Programmer/s

SENDA 111

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

internal architecture design process must be developed here. A summary of
the support components implementation process appears in Tables 6 and 7.

Core Implementation Process

This process evolves from an empty to a completed VE and includes a different
kind of component in each step. A summary of the core implementation process
appears in Table 11.

The “3D and Multimedia Elements Incorporation” (CI-3DMI) task is not
always easy. For example, if the tool selected to develop the VE is based on
graphic libraries, for instance, WorldToolKit™ (Sense8), DirectX™ (Microsoft),
there are three main difficulties:

• All avatar mobile pieces must be loaded independently and then the full
avatar structure must be reconstructed. This reconstruction must follow
the avatar modeling form guidelines designed in the “Avatars 3D Design”
(3DD-AD) task. The same goes for any other element that must have
mobile pieces. This means that “VE 3D Design” (3DD-ED) task products
are needed.

• Avatars and the rest of the objects with actions associated in the SD-ESM,
SD-EDM2, and SD-DMD tasks must be endowed with their respective
methods.

• In general, all environment objects must be loaded several times because
the programmer cannot see the VE aspect until the VE is compiled and
executed (rendered).

To make the implementation process easier and to link up with the rest of
development processes, we have defined and developed a tool that can extract
the design data, composed of 3DD-ED and 3DD-AD products, stored in the “VE
design database.” This database stores the information described in 3D design
process forms and 3D design process view maps.

By following the design guidelines stored in the “VE design database,” this tool
will allow:

• The programmer to specify objects location. By this, we mean the (x,y,z)
position which is not always included in the design process.

• The reconstruction of the avatar’s hierarchy.

• The automatic generation of the program lines to load objects in the VE and
to render this one.

112 Sanchez-Segura, de Antonio & de Amescua

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Table 11. Core implementation process

� ���
�������
��%���� ����

$ ��� ��������
�$���$

�������
�������
��%����

���&���
$�������������$��
$

�$�(��$ (�
��!
����� �!��
��� ����
$������������

��
�

�$�
�$

�$���/

�$����/

�$��$/

�$���$/

�$��$

(�����/
(�����

�$��$

�$��$

�������
$ ��� ��������

�$���$

�$���$/

�$���$

��
�/
���

���
�/

��
��

�$�����

���
�/

�����/

�����

�$������

�����������
��!
�&�������

���&���

$������������

���&��-
$������������

� ���
�������
��%���� ����

$ ��� ��������
�$���$

�������
�������
��%����

���&���
$�������������$��
$

�$�(��$ (�
��!
����� �!��
��� ����
$������������

��
�

�$�
�$

�$���/

�$����/

�$��$/

�$���$/

�$��$

(�����/
(�����

�$��$

�$��$

�������
$ ��� ��������

�$���$

�$���$/

�$���$

��
�/
���

���
�/

��
��

�$�����

���
�/

�����/

�����

�$������

�����������
��!
�&�������

���&���

$������������

���&��-
$������������

�$��$

�$��$

�������
$ ��� ��������

�$���$

�$���$/

�$���$

��
�/
���

���
�/

��
��

�$�����

���
�/

�����/

�����

�$������

�����������
��!
�&�������

���&���

$������������

���&��-
$������������

TASK NAME TASK
ACRONYM TASK DESCRIPTION

Input Specific requirements document, output from A-SR
task Artifacts

Output Minimum code to represent an empty VE; this will be
Version 1

Techniques Implementation techniques

Empty Virtual
Environment
Implementation

CM-EEI

Participants Programmer/s
Input Output from SCI-SDI task

Artifacts Output VE Version 2—improves Version 1 by adding the
communication with the virtual reality device code
previously developed

Techniques Implementation techniques

Virtual Reality
Devices
Software
Incorporation

CM-DSI

Participants Programmer/s
Input VE Version 2—outputs of 3DD-ED and 3DD-AD

tasks; outputs of SCI-AI and SCI-EI tasks
Artifacts Output VE Version 3—improves Version 2 by adding the

necessary code to load and render all the elements of
the VE

Techniques Implementation techniques

3D and
Multimedia
Elements
Incorporation

CM-3DMI

Participants Programmer/s
Input VE Version 3—outputs from SD-DMD, SD-ESM,

and SD-EDM tasks; output from CIAD-PAM task
Artifacts Output VE Version 4—improves VE Version 3 by adding

the code corresponding to all the actions to be
performed by the VE elements

Techniques Implementation techniques

Actions
Implementation CM-AI

Participants Programmer/s
Input VE Version 4—outputs from SCI-PMI and SCI AMI

tasks
Artifacts Output VE Version 5—improves VE Version 4 by adding

the software of personality model awareness model
and reasoning model

Techniques Implementation techniques

Personality and
Awareness
Software
Incorporation

CM-PIA

Participants Programmer/s
Input VE Version 5—outputs from SD-SAD and SD-EDM

tasks; outputs from A-C and A-SR tasks Artifacts
Output VE Version 6—the final version except this version

must be validated with the client

Techniques Implementation techniques on Web as the ones
considered by the systems expert

Network
Incorporation CM-NI

Participants Programmer/s; system expert

• The generation of a “VE implementation database” with all the implemen-
tation details added to the “VE design database.”

SENDA 113

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

There are many tools that allow programmers to build VEs visually (Caligary
True Space, etc.), but our aim is to link all the development processes
through a set of connected tools; this is not possible with the above-
mentioned tools.

Conclusions

The whole SENDA framework has been used in some developments of VEs.
From the results obtained it must be noted that the processes and techniques
proposed are powerful and flexible enough to allow for the creation of different
VEs, respecting the constraints of the application (to run in real time, etc.). A
detailed explanation of the results obtained using SENDA in different projects
can be seen in Sanchez-Segura (2003).

Therefore, although these techniques guide the graphic designer, they do not
interfere with their artistic approach to the task. The techniques are independent
of the application implementation.

The proposed techniques have also proved useful to verify and validate the
graphic designer’s job after 3D models are implemented. Proposed tools and
mechanisms allow:

• communication between graphic and system designers;

• comparison between the designed and implemented 3D models;

• reuse of sub-VEs design, and even implementation between different
projects though the database designs.

References

Berenguer, X. (1997). Writing interactive programs. Magazine Formats.

Brown, J., Encarnaçao, J., & Schniderman, B. (1999). Human-centered com-
puting, online communities, and virtual environments. IEEE Computer
Graphics and Applications, 19(6), 70-74.

CALT: The Center for Advanced Learning Technologies. INSEAD–Bd de
Constance–F–77305 Fontainebleau Cedex, France. (2000). Retrieved
from: www.insead.fr/CALT/Encyclopedia/ComputerSciences/VR/vr.htm

Damer, B. (1997). Interacting and designing in virtual worlds on the Internet.
Tutorial for CHI97.

114 Sanchez-Segura, de Antonio & de Amescua

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Davis, A., & Hsia, P. (1993). Status report: Requirements engineering. IEEE
Software, 10(6), 75-79.

Fencott, C. (1999). Towards a design methodology for virtual environments.
Proceedings of the Workshop on User Centered Design and Imple-
mentation of Virtual Environments, University of York, UK.

IEEE Std. 1074-1991. (1991). IEEE standard for developing software life
cycle processes. New York: IEEE Computer Society.

ISO/IEC Standard 12207:1995. (1995). Software life cycle processes. Ginebra
(Suiza): International Organization for Standardization.

Kaur, K. (1998). Designing virtual environments for usability. PhD Thesis,
City University, London.

Kruchten, P. (1999). The rational unified process. An introduction. Addison-
Wesley (Object Technology Series).

Larijani, L.C. (1994). Realidad virtual. McGraw-Hill.

Moore, J. (1998). Software engineering standards: A user’s road map. Los
Alamitos, CA: IEEE Computer Society.

Morningstar & Farmer, F.R. (1990). The lessons of Lucasfilm’s habitat.
Proceedings of the First Annual International Conference on
Cyberspace. Cambridge, MA: MIT Press.

Roehl, B. (1998). Specification for a standard VRML humanoid. Retrieved from:
ece.uwaterloo.ca:80/~h-anim/newespec.html

Sánchez-Segura, M., Cuadrado, J., Moreno, A., Amescua, A., de Antonio, A.,
& Marbán, O. (2004). Virtual reality systems estimation vs. traditional
systems estimation, Journal of Systems and Software.

Sánchez-Segura, M.I. (2001). Aproximación metodológica al desarrollo de
entornos virtuales. PhD Thesis, Technical University of Madrid, Spain.

Sánchez-Segura, M.I., Cuadrado, J.J., de Antonio, A., de Amescua, A., &
García, L. (2003). Adapting traditional software processes to virtual
environments development. Software Practice and Experience, 33(11),
1050-1080. Retrieved from: www3.interscience.wiley.com/cgi-bin/jhome/
1752

Sommerville, I., & Sawyer, P. (1997). Requirements engineering: A good
practice guide. New York: John Wiley & Sons.

Venus: Virtual Environments for You. (1999). Retrieved from: leonardo.ucs.ed.
ac.uk/venus/foryou/foryou.html

SENDA 115

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Section II

Designing
Virtual Environments

116 Goguen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter V

Steps Toward a
Design Theory for

Virtual Worlds
Joseph A. Goguen

University of California at San Diego, USA

Abstract

Virtual worlds, construed in a broad enough sense to include text-based
systems, as well as video games, new media, augmented reality, and user
interfaces of all kinds, are increasingly important in scientific research,
entertainment, communication, commerce, and art. However, we lack
scientific theories that can adequately support the design of such virtual
worlds, even in simple cases. Semiotics would seem a natural source for
such theories, but this field lacks the precision needed for engineering
applications, and also fails to addresses interaction and social issues, both
of which are crucial for applications to communication and collaboration.
This chapter suggests an approach called algebraic semiotics to help solve
these and related problems, by providing precise application-oriented
basic concepts such as sign, representation, and representation quality,

Steps Toward a Design Theory for Virtual Worlds 117

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and a calculus of representation that includes blending. This chapter also
includes some theory for narrative and metaphor, and case studies on
information visualization, proof presentation, humor, and user interaction.

Introduction:
Motivation, Difficulties, and Approaches

The term “virtual world” is used in many ways, but perhaps virtual worlds can
be broadly characterized as the class of media experiences that provide some
sense of immersion and closure. By immersion, which is sometimes also called
virtuality, we mean a sense of being engaged with non-physically present
entities through material mediation in the immediate real world, but not with the
other aspects of the immediate real world, and by closure we mean that the
virtual world gives an appearance of relative completeness, although it may of
course be changing. A lecture, a conversation, a movie, a magazine, a formal
paper, a video game, a user interface, can all be virtual worlds in this sense. A
major factor in creating immersion and closure is the coherence of the world; of
course, there are many other factors, relating for example to the situation,
background, and interests of participants, but this chapter is focused on ways to
achieve coherent representations.

Given the enormous cultural and economic importance of current media for
communication, entertainment, and art, as well as the promise of new media,
there would be many uses for scientific theories that could provide guidance for
difficult tasks, such as the following:

• designing new media (e.g., virtual reality environments with haptics);

• creating new metaphors (e.g., beyond the desktop for PCs);

• making new hardware (such as wireless appliances) more usable;

• designing new genres (such as interactive poems); and

• supporting non-standard users (e.g., with disabilities).

Because virtual worlds are user interfaces in some broad sense, and because
user interface design is a well-developed area of computer science (which is also
known as human-computer interaction, or HCI, or sometimes CHI), this would
seem a good place to look for appropriate theory. But most HCI results are either
very precise but also highly specialized and therefore not very useful (e.g., Fitt’s
law), or else they are very general but of uncertain reliability and generality (e.g.,
protocol analysis, questionnaires, case studies, usability studies).

118 Goguen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Another plausible place to seek a theory of virtual world design would be
semiotics, a subject founded by Charles Sanders Peirce (1965) and Ferdinand de
Saussure (1976) in the late nineteenth century. Peirce was an American logician
concerned with problems of meaning and reference, who concluded that these
are relational rather than denotational, and who also made an influential
distinction among modes of reference as symbolic, indexical, or iconic. Saussure,
a Swiss linguist, wanted to understand how features of language relate to
meanings, and he emphasized binary features and denotational meaning. More
recent thinkers like the French literary theorist Roland Barthes (1968) combined
and extended these theories, creating a powerful language for cultural and media
studies, which in various versions has been called semiotics, semiology, structur-
alism, and finally post-structuralism. Unfortunately, this tradition:

1. Does not have the mathematical precision needed to integrate well with
engineering processes;

2. Does not consider representing signs in one system by signs in another, as
is needed for the study and design of interfaces;

3. Has not addressed dynamic signs, which are necessary for the study and
design of interaction;

4. Has not much considered social issues, such as arise in shared worlds;

5. Tends to ignore the situated, embodied aspects of sign use;

6. Tends towards a Platonistic view of signs, as actual existing abstract
entities; and

7. Often considers only single (complex) signs (e.g., a novel or a film), rather
than systems of signs.

Therefore semiotics needs to address some significant problems before it can
meet all our needs. This chapter sketches how algebraic semiotics attempts to
bridge this gap. The theory originated in an attempt to understand data from an
early experimental study of multimedia learning (Goguen & Linde, 1984), and
was later elaborated for applications to user interface design; more complete
expositions appear in Goguen (1999a, 2003), and Goguen and Harrell (2003),
though the theory is still evolving. Here we focus more on motivation and
applications.

There are at least two perspectives that one might take towards the study of signs
and representations: pragmatic and theoretical. The first is the perspective of a
designer, who has a job to get done, often within constraints that include cost,
time, and stylistic guidelines; we may also call this an engineering perspective,
and it will generally involve negotiating trade-offs among various values and
constraints. The second is the perspective of a scientist who seeks to understand

Steps Toward a Design Theory for Virtual Worlds 119

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

principles of design, and is thus engaged in a process of constructing and testing
theories. From the second perspective, it makes sense to describe semiotic
theories in a detailed formal way, and to test hypotheses by doing calculations and
experiments with users. But from the pragmatic perspective, it makes sense to
formalize only where this adds value to the design process, for example in
especially tricky cases, and even then, only to formalize to the minimum extent
that will get the job done. Our experience is that one can often get considerable
benefit from applying principles of algebraic semiotics, such as identifying and
preserving key features of the source theory, without doing a great deal of
formalization.

From either the pragmatic or theoretical perspective, one should seek to model
semiotic theories as simply as possible, since this will simplify later tasks,
whether they are engineering design or scientific theorizing and experimentation
(not forgetting that the conceptual simplicity of a theory does not necessarily
correspond to the simplicity of its expression in any particular language).
However, from a pragmatic perspective, good representations need not be the
simplest possible, for reasons that include engineering tradeoffs, the difficulty
(and inherent ambiguity) of measuring simplicity, and social and cultural factors,
for example relating to esthetics. Similar considerations apply, though to a
notably lesser extent, to the simplicity of semiotic theories, since creating such
theories is itself a design task, subject to various trade-offs. It may be reassuring
to be reminded that in general there is no unique best representation.

The next two sections develop some basic theory of algebraic semiotics. Two
main concepts are semiotic theory and semiotic morphism, which generalize the
conceptual spaces and conceptual mappings of Fauconnier and Turner (1998,
2002), by taking account of structure and dynamics. Some measures of quality
and design principles are given, including a trade-off between form and content.
Although similar principles can be found in many places, none seem to be either
as precise or as general as those described here. This section also discusses
metaphor and blending in natural language, and gives some basics of a calculus
of representation. A number of case studies, including information visualization,
proof presentations, humor, and user interaction, are then described, and a
discussion of narrative is also given, followed by some conclusions, future
research directions, and social implications for virtual worlds.

Before beginning, it may help to be clear about the philosophical orientation of
this work, because it is very common in Western culture for mathematical
formalisms to claim and be given a status beyond what is warranted. For
example, Euclid wrote, “The laws of nature are but the mathematical thoughts
of God.” Similarly, the “situations” in the situation semantics of Barwise and
Perry, which resemble conceptual spaces (but are more sophisticated—perhaps
too sophisticated) are considered to be actually existing, ideal Platonic entities

120 Goguen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

(Barwise & Perry, 1983). Somewhat less grandly, one might consider that
conceptual spaces are somehow directly instantiated in the brain. However, the
point of view of this chapter is that such formalisms are constructed in the course
of some task, with the heuristic purpose of facilitating consideration of certain
issues in that task, which might be scientific study or engineering design. Under
this non-Platonist view, all theories are situated social entities, mathematical
theories no less than others; of course, this by no means implies that they cannot
be useful.

Algebraic Semiotics

The basic notions of algebraic semantics are sign (or semiotic) system, semiotic
morphism, and representation quality; these are discussed in the following
subsections.

Signs and Sign Systems

The definition below of sign system incorporates the insight of Saussure (1976)
that individual signs should not be studied in isolation, but rather as elements of
systems of related signs; of Peirce (1965) that signs may have parts, subparts,
and so forth that play different roles; and of Goguen (1999a) that sign parts have
different saliencies, depending on the roles that they play.

The structure of a sign system can be described by an algebraic theory, since
they are in particular abstract data types, and it is well known that these can be
defined algebraically (Goguen & Malcolm, 1996). In addition, signs become what
they are by virtue of attributes that differ from those of other signs, as shown for
example by vowel systems (how the space of possible vowel sounds is divided
into specific vowels for a given dialect of a given language), as well as by traffic
signs, alphabets, and numerals. However, these attributes need not be binary, as
was supposed by Saussure and his followers in the French structuralist move-
ment including Levi-Strauss and early Barthes. Also, the same sign in a different
system can have a different meaning, as illustrated by the way similar characters
in different alphabets can take different meanings, for example, in the Roman
and Cyrillic alphabets, the token “P” denotes different sounds.

We formalize1 sign system as many sorted loose algebraic theories with data,
plus two additional items that are specifically semiotic:

Steps Toward a Design Theory for Virtual Worlds 121

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Definition 1: A sign system, or semiotic system or semiotic theory,
consists of:

1. A signature, which declares sorts, subsorts, and operations (including
constructors and selectors);

2. A subsignature of data sorts2 and data functions;

3. Axioms (e.g., equations) as constraints;

4. A level ordering on sorts, including a maximum element called top; and

5. A priority ordering on constructors at the same level.

The non-data sorts classify signs and their parts, just as in grammar the “parts
of speech” classify sentences and their parts. There are two kinds of operation:
constructors build new signs from old signs as parts, while selectors pull out
parts from compound signs. Data sorts classify a special kind of sign that
provides values serving as attributes of signs. Axioms act as constraints on what
count as allowable signs for this system. Levels indicate the whole/part hierarchy
of a sign, with the top sort being the level of the whole; priorities indicate the
relative significance of subsigns at a given level; social issues play a dominant
role in determining these. The above definition follows Goguen (1999a), where
the special treatment of data sorts follows Goguen and Malcolm (2000). The first
four items constitute what is called an algebraic theory when all axioms are
equations (e.g., Goguen & Malcolm, 1996; Goguen et al., 1978); it can be shown
that this special case is sufficient for our needs.

The approach of Definition 1 differs from the more traditional set-based
approaches of Gentner (1983) and Carroll (1982) in that it is axiomatic, that is,
it does not present signs as particular models, but rather, a particular theory
expressed in a formal language describes a space of possible signs, which are
models of the theory, in the sense of that term in logic, providing concrete
interpretations for the things in the theory: sorts are interpreted as sets; constant
symbols are interpreted as elements; constructors are interpreted as functions,
and so forth; that is, the theory is a language for talking about such models. This
approach allows both multiple models and open structure, both of which are
important for applications. The first point means, for example, that a semiotic
space of books should allow anything having the structure of a book as a model;
it also means that designers and implementers have the freedom to optimize
implementations so long as they respect the constraints of the given axioms. The
second point says that structure can be extended and combined without violating
the specifications, which is not necessarily the case for models. For example, we
might want to extend a basic sign system for books with some further structure
pertaining to a certain series of books from a particular publisher. In addition, it

122 Goguen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

is also more natural to treat levels and priorities in axiomatic theories than in set-
based models.

For an example of axioms, in formalizing indices of books, we might well want
to impose an axiom requiring that indexed items must be phrases of one, two, or
three words, but not more. In a sign system for books, the top level might be
occupied by the sort for books; the next level by author, title, publisher; and the
third level by the first and last names of authors, and by the name and location
of the publisher (see Figure 1). Here, last name has priority over first name, and
publisher name has priority over publisher location. This is similar to the nesting
structure used in XML documents.

The following are some further informal examples of sign systems: dates; times;
bibliographies (in one or more fixed format); tables of contents (e.g., for books,
again in fixed formats); newspapers (e.g., the New York Times); and a fixed
Web site such as the CNN homepage (in some particular instance of its gradually
evolving format). Note that each of these has a large space of possible instances,
but a single fixed structure.

There is a basic duality between theories and models. We have already discussed
one aspect: A semiotic theory determines the class of models that satisfy it,
which we call its semiotic space.3 The other aspect is more subtle: A class of
models has a unique (up to equivalence), most restrictive theory whose models
include it.4 This duality helps to justify our occasional use of the term “space”
when we really mean “theory”; this is mainly done for consistency of terminology
when discussing conceptual blending theory.

Fauconnier (1985) introduced mental spaces for studying meaning in natural
language from a cognitive point of view. The abstract mathematical structure of
a mental space is a set of atomic elements together with a set of relation
instances among those elements (Goguen, 1999a), and as such is a very special
case of a sign system. Any such representation necessarily omits the qualitative,

Figure 1. Levels for the book semiotic theory

Steps Toward a Design Theory for Virtual Worlds 123

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

experiential aspects of what is represented (these aspects are often called
“qualia”), since formal representations cannot capture meaning in any human
sense. Moreover, mental spaces are not powerful enough for designing virtual
worlds or other applications where structure and dynamics are important;
obvious examples include wikis, Web sites, and music.

The conceptual spaces of Fauconnier and Turner (1998, 2002) are mental
spaces, and hence share their limitations. For example, conceptual space theory
can help us understand concepts about music, but semiotic spaces and structural
blending are needed for an adequate treatment of the structure of music, for
example, how a melody can be combined with a sequence of chords. Conceptual
spaces are good for talking about concepts about (e.g., how we talk about) things,
but are awkward for talking about the structure of things. It is also interesting to
notice that greater cultural variation can be found in conceptual blending than in
structural blending, because the former deals with concepts about something,
whereas they latter deals with the structure of its instances and/or its represen-
tations. Mathematically, a conceptual space is a single model, consisting of items
and assertions that certain relations hold of certain of those items; it is not a
theory or a class of models.

Our suggested methods for determining semiotic spaces are grounded in ideas
from sociology, especially ethnomethodology, but this chapter is not the right
place to discuss such issues (see Goguen, 1997, 1994), beyond noting that
semiosis, which is the creation of meaning, is always situated and embodied, and
in particular always has a social context. Immersion arises in part through
embodiment (even if only metaphorical embodiment, e.g. in text-based virtual
worlds).

Representations

Mappings between structures became increasingly important in twentieth cen-
tury mathematics and its applications; examples include linear transformations
(and their representations as matrices), continuous maps of spaces, differen-
tiable and analytic functions, group homomorphisms, and much more. Mappings
between sign systems are only now appearing in semiotics, as uniform represen-
tations for signs in a source space by signs in a target space. Since we formalize
sign systems as algebraic theories with additional structure, we should formalize
semiotic morphisms as theory morphisms; however, these must be partial,
because in general, not all of the sorts, constructors, and so forth are preserved
in real-world examples. For example, the semiotic morphism that produces an
outline from a book omits the sorts and constructors for paragraphs and
sentences, while preserving those for chapters, sections, and so forth. In addition

124 Goguen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

to the formal structure of algebraic theories, semiotic morphisms should also
(partially) preserve the priorities and levels of the source space. The extent to
which a morphism preserves the various features of semiotic theories is
important in determining its quality, as the case studies to follow will show.

The design of virtual worlds, and more generally of user interfaces, is the art of
creating representations, for example representing the functionality of an
operating system using icons, menus, buttons, and so forth, or using haptics and
virtual reality. The basic insight is that a representation is a mapping M : S

1
 →

S
2
 of sign systems that preserves as much as is reasonable. The following

formalizes this insight:

Definition 2: A semiotic morphism M : S
1
 → S

2
 from a semiotic system S

1

to another S
2
 consists of the following partial mappings:

1. from sorts of S
2
 to sorts of S

2
, so as to preserve the subsort relations,

2. from operations of S
2
 to operations of S

2
, so as to preserve their source and

target sorts,

3. from levels of S
1
 sorts to levels of S

2
, so as to preserve the ordering relation,

and

4. from priorities of S
1
 constructors to priorities of S

2
 constructors, so as to

preserve their ordering relations, so as to strictly preserve all data elements
and their functions.

It is not always possible or even desirable for a semiotic morphism to preserve
everything. For example, sometimes we just want to summarize some dataset,
such as the table of contents of a book, in which case much of the structure and
information are intentionally deleted. Another important observation is that not
all representations are equally desirable. For example, one way to parse the
sentence “Time flies like an arrow” in the following “bracket” (or “bracket-with-
subscript”) notation, which is widely used in linguistics, is:

[[time]
N
[[flies]

V
[[like]

P
[[an]

Det
[arrow]

N
]

NP
]

PP
]

VP
]

S

However, this notation is not very satisfactory for humans, who would find it
easier to discern the syntactic structure by examining a parse tree, or using the
algebraic “constructor” notation given later. Some criteria for judging the quality
of representations are discussed next in the section, “Quality of Representation.”

The duality between theories and models means that there is an inherent
ambiguity about the direction of a semiotic morphism. For example, if B is a sign

Steps Toward a Design Theory for Virtual Worlds 125

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

system for books and T is one for tables of contents, then books (which are
models of B) are mapped to their tables of contents, which are models of T, but
this map on models is determined by, and is dual to, the theory inclusion T → B,
which expresses the fact that the structure of tables of contents is a substructure
of that of books. In informal discussions we will often take the direction to be that
of the models, which is perhaps more intuitive; however, in formal discussions,
it is much better to use the direction of the underlying theory morphism, which
is opposite to that of the models.

There are at least three “modes” in which one might consider representations:
analytic, synthetic, and conceptual. In the analytic mode, we are given one or
more signs from the representation (i.e., the target) space, and we seek to
reconstruct both the source space and the representation. In the synthetic
mode, we are given the source space and seek to construct a good representa-
tion for the signs in that space, using some given technology (such as command
line, or standard GUI widgets, or virtual reality) for the target space. In the
conceptual mode, we seek to analyze the metaphorical structure of the represen-
tation, in the style of cognitive linguistics (Turner, 1997; Fauconnier & Turner,
2002); for example, how is Windows XP like a desktop, or how is a scrollbar like
a scroll? A treatment in this mode will involve conceptual spaces, in the sense
of cognitive linguistics (see the section “Metaphor and Blending”). In each mode,
particular aspects of the cultures involved can be very significant.

Simple Examples

This subsection gives rather informal descriptions of some simple examples of
semiotic theories and semiotic morphisms to illustrate the concepts, rather than
to demonstrate their applicability to virtual world design, since these examples
could only be considered virtual worlds in a trivial sense. The following sign
systems are considered:

1. Lists of (potential) words with punctuation, denoted S
W

.

2. Parse trees for sentences of a formal grammar G, denoted S
T
.

3. A printed page format, denoted S
P
.

Then the following are some interesting morphisms:

1. Let P : S
W

 → S
T
 give parse trees for lists from S

W
 that are G-sentences.

2. Let H : S
T
 → S

P
 give bracket representations of parse trees.

3. Let F : S
W
 → S

P
 give bracket representations of lists from S

W
 that are G-

sentences.

126 Goguen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The morphism F is “composed” from P and H, by first doing P and then doing H;
we denote this by P;H, where “;” denotes the composition operation. Composing
morphisms correspond to composing representations, which is the essence of
iterative design, an important technique for any complex design task. By
Definition 2, a semiotic morphism M has four component mappings for sorts,
operations, levels, and priorities; let us denote these M

1
, M

2
, M

3
, and M

4
,

respectively. Then the composition M;M’ of morphisms M and M can be
defined by the formula (M;M’)

i
 = M

i
;M’

i
 for i=1,2,3,4.

The sign system S
W
 for punctuated lists of words can be described roughly as

follows: Its sorts are char, alpha, punc, puncword, alphaword, word, and
list, where the sorts alpha and punc are subsorts of char, the sorts alpha,
puncword and alphaword are subsorts of word, and the sort word is a subsort
of list. These subsort relationships are shown in Figure 2. The sorts char,
alpha, and punc are respectively for character, alphabetic character, and
punctuation character; the sorts puncword, alphaword, and word are respec-
tively for words consisting of alphabetic characters with a final punctuation sign,
words with all alphabetic characters, and the union of these two.

The sort list is Level 1, the “top” sort of this system; word is Level 2;
alphaword and puncword are Level 3; and char, alpha and punc are Level
4. The punctuation characters are comma and period (of course we could add
more). The following defines concatenation constructors for constructing a list
of alphabetic characters as a alphaword, a list alphaword followed by a
punctuation as a puncword, and a list of words as a list; a functional notation
is used:

_ _ : alpha alphaword → alphaword

_ _ : alphaword punc → puncword

_ _ : word list → list

Figure 2. Sorts and subsorts for S
T

Steps Toward a Design Theory for Virtual Worlds 127

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Here the two underbars give the syntactic form of the function, which is the
concatenatation of its two arguments, which respectively have the two types
given between the colon and the arrow; the result type then comes after the
arrow. These three operations also satisfy associativity equations, such as:

(� W L L’) (W L) L’ = W (L L’) .

The context-free grammar G given below allows some lists of punctuated words
to be recognized as legal sentences of that grammar; such sentences can be
parsed, which means dividing them into phrases, which are sublists, each with
its “part of speech” (or syntactic category) explicitly given. The grammar G will
become the signature of the sign system S

T
. The non-terminals of G are S, NP,

VP, N, Det, V, PP, and P, which stand for sentence, noun phrase, verb phrase,
noun, determiner, verb, prepositional phrase, and preposition, respectively. Then
the rules of a simple example G might be the following:

S → NP VP

NP → N

NP → Det N

VP → V

VP → V PP

PP → P NP

The non-terminals of this grammar (i.e., the “parts of speech” S, NP, VP, etc.)
are the sorts of the sign system S

T
, and the rules of the grammar will become its

constructors. For example, the first rule says that a sentence can be constructed
from an NP and a VP. There should also be some constants of the various sorts,
such as:

N → time

N → arrow

V → flies

Det → an

Det → the

P → like

128 Goguen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Then, for example, a parse tree for the sentence “Time flies like an arrow” is
shown in Figure 3.

By the way, if we add the productions below to the grammar G, then the sentence
gets another parse, a fact that the reader might enjoy checking.

NP → N N

V → like

There is a systematic way to convert context-free rules into constructor
operations in the signature of a sign system; for the above grammar G, it is as
follows, written in a functional notation:

sen : NP VP → S

nnp : N → NP

np : N Det → N

vvp : V → VP

vp : V PP → VP

pp : P NP → PP

time : → N

flies : → V

...

Figure 3. Parse tree for S
T

Steps Toward a Design Theory for Virtual Worlds 129

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In this context, it is more elegant to regard N as a subsort of NP, and V as a subsort
of VP, rather than to have monadic operations N → NP and V → VP. This sign
system gives what computer scientists call abstract syntax for sentences; it gives
an abstract algebraic representation for syntactic structure, in which the
operations above generate a free algebra of terms that describe parses. For
example, the term that represents the syntax of our example sentence is:

sen(time, vp(flies, pp(like, np(an, arrow)))).

Equations can be used in this algebraic setting to express constraints on
sentences, for example, that the number of the subject and of the verb agree (i.e.,
both are singular or else both are plural). Each of the concrete ways to realize
abstract syntax (trees, terms, bracket notation, and lists) can be considered to
give a model of the sign system S

T
 providing a set of signs for each sort, and

operations on those sets which build new signs from old ones.

The sign system S
P
 should have sorts for lines and pages, and could also have

different fonts and subscripts in order to display the bracket notation to display
parses. We omit the details, which are not very different from those above,
except for an equation to limit the length of lines, for example to 80 characters,
such as the following:

(� L: line) length(L) ≤ 80 .

The morphism P : S
W
 → S

T
 is very partial, since it is defined on a list l if l can

be parsed using G; thus the subset of lists on which it is defined is the set of
sentences generated by G, which is usually denoted L(G). If fr(t) denotes the
frontier, or list of leaf nodes, of a parse tree t, then fr(P(l)) = l for all l ∈ X, which
is a strong preservation property, although it only holds on a small subset of lists
of words. The morphism P also preserves all of the sort hierarchy in Figure 2.

We do not describe the morphism H : S
T
 → S

P
 in as much detail as we did the

morphism P : S
W
 → S

T
. The morphism H is essentially a pretty printer for parse

trees; it could use any of the representations we have been discussing, and it
could even just print the frontier of the parse tree, although this would preserve
much less structure (see the next subsection for more discussion of structure
preservation). As already mentioned, the morphism F : S

W
 → S

P
 is the compo-

sition P;H; it prints the parse trees of those lists of words that can be parsed
by G.

130 Goguen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Quality of Representation

It is easy to define sort preserving, constructor preserving, level preserving,
content preserving (where content refers to the values of selector operations,
such as size and color), and so forth. But this is not as useful as one might hope,
because in practice, these are often not preserved. Instead, we define the
comparative notions of more sort preserving, more level preserving, more
constructor preserving, and more content preserving (Goguen, 1999a). These
notions define orderings on morphisms, which can be logically combined to get
the right one for a given application (Goguen, 1999a). This is important because
given morphisms M,M', one may preserve more levels, while the other preserves
more content, and similarly for the other concepts. Empirical work has validated
the following general principles:

1. It is more important to preserve structure than content (this is called
Principle F/C).

2. It is more important to preserve level than priority.

3. Structure and content at lower levels should be sacrificed in favor of those
at higher levels.

4. Lower level constructors should be sacrificed in favor of higher level
constructors.

The first principle is perhaps the most important, and at first might seem counter-
intuitive, but many special cases can be found in the design literature (e.g., Tufte,
1983). It asserts that when a trade-off is necessary, form should be weighted
more heavily than content; in general, the right balance between form and
content can only be determined after knowing how a representation will actually
be used. Also, we are fortunate that it is easier to describe structure than content.

These principles do not explain everything; for example, they do not explain why
the tree representation of phrase structure is better than the bracket represen-
tation, since these two representations have exactly the same structure and
content, but display them differently. In fact, the advantage of the tree represen-
tation arises from human visuo-cognitive capabilities, which prefer a more
explicit diagrammatic representation of phrases and subphrase relations as
nodes and edges, over a linear symbolic representation that requires counting
brackets. Preservation of form and content can respectively be formalized as
preservation of constructors and selectors, in the sense of abstract data type
theory (Goguen et al., 1978; Goguen & Malcolm, 1996).

Steps Toward a Design Theory for Virtual Worlds 131

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Fragments of a
Calculus of Representation

The composition of semiotic morphisms has now been defined, and it was shown
that this can be important for applications. It is easy to prove that this
definition of composition obeys the following identity and associative laws, in
which A : R → S, B : S → T and C : T → U:

A ; 1
S
 = A

1
S
 ; B = B

A ; (B ; C) = (A ; B) ; C

where 1
S
 denotes the identity morphism on S. These three laws are perhaps the

most fundamental for a calculus of representation, since they imply that semiotic
theories and their morphisms form what is called a “category” in the relatively
new branch of mathematics called category theory (Mac Lane, 1998). The basic
ingredients of a category are objects, morphisms, and a composition operation
that satisfies the above three laws, and that is defined on two morphisms if and
only if they have matching source and target. Perhaps surprisingly, many
important mathematical concepts can be defined abstractly in the language of
category theory, without reference to how objects are represented, using only
morphisms and composition; moreover, many general laws can be proven about
such concepts, and these automatically apply to every category.

Three of the simplest categorical concepts are isomorphism, sum, and product.
A morphism A : R → S is an isomorphism if and only if there is another
morphism B : S → R such that A;B = 1

R
 and B;A = 1

S
 in which case B is called

the inverse of A and denoted A-1; it can be proved that the inverse of a morphism
is unique if it exists. The following laws can also be proved, assuming that
A : R → S and B : S → T are both isomorphisms (and no longer assuming that
B is the inverse of A).

1
R

-1 = 1
R

(A-1)-1 = A

(A ; B)-1 = B-1 ; A-1

Because sign systems and their morphisms form a category, these three laws
apply to representations. In the section “Some Laws”, we discuss sums of
semiotic morphisms as a special case of blends of semiotic morphisms (blends
are discussed in the next subsection), and we also give some laws for blends and

132 Goguen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

sums. The standard mathematical reference for category theory is by Mac Lane
(1999), but Pierce (1990) is one computer science-oriented introduction, among
several others.

Metaphor and Blending

Research in cognitive linguistics by George Lakoff and others under the banner
of “conceptual metaphor theory” (CMT) has greatly deepened our understand-
ing of metaphor (Lakoff & Johnson, 1980; Lakoff, 1987), showing that many
metaphors come in families, called image schemas, that share a common
pattern. One example is BETTER IS UP, as in “I’m feeling up today,” or “He’s
moving up into management,” or “His goals are higher than that.” Some image
schemas, including this one, are grounded in the human body5 and are called
basic image schemas; they tend to yield the most persuasive metaphors, as well
as to enhance the sense of immersion in virtual worlds.

Fauconnier and Turner (1998, 2002) study blending, or conceptual integra-
tion, claiming it is a basic human cognitive operation, invisible and effortless, but
nonetheless fundamental and pervasive, appearing in the construction and
understanding of metaphors, as well as in many other cognitive phenomena,
including grammar and reasoning. Many simple examples are blends of two
words, such as “houseboat,” “jazz piano,” “roadkill,” “artificial life,” “computer
virus,” “blend space,” and “conceptual space.” To explain such phenomena,
blending theory (BT) posits that concepts come in clusters, called conceptual
spaces, which consist of certain items and certain relations that hold among
them. Such spaces are relatively small constructs, selected on the fly from larger
domains, to meet an immediate need, such as understanding a particular phrase
or sentence.6 The abstract mathematical structure of a conceptual space
consists of a set of atomic elements together with a set of relation instances
among those elements (Fauconnier, 1985). Conceptual mappings are partial
functions from the item and relation instances of one conceptual space to those
of another, and conceptual integration networks are networks of conceptual
spaces and mappings that are to be blended together.

We now describe our generalization of blending from conceptual spaces to
semiotic theories. A simple example where this generality is needed is in the
integration of a window with its scrollbar, which is structural, not conceptual,
although conceptual aspects of this blend could also be studied; this example is
discussed in considerable detail in Goguen (2003). To indicate this added
generality, we will use the terms structural blending or structural integra-
tion for the blending of semiotic systems, which in general involves non-trivial
constructors; but for consistency with BT, we use the phrase “semiotic space”
instead of “semiotic theory” in this discussion. The simplest form of blend is as

Steps Toward a Design Theory for Virtual Worlds 133

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

shown in Figure 4, where I
1
 and I

2
 are called the input spaces, B the blend

space, and G the generic space, which contains conceptual structure that is
shared by the two input spaces.7 Let us call I

1
, I

2
, and G together with the two

morphisms G → I
1
 and G → I

2
 an input diagram. Then a blendoid over a given

input diagram is a space B together with morphisms I
1
 → B, I

2
 → B, and G →

B, called injections, such that the diagram of Figure 4 weakly commutes, in the
sense that both compositions G → I

1
 → B and G → I

2
 → B are weakly equal

to the morphism G → B, in the sense that each element in G gets mapped to the
same element in B under them, provided that both morphisms are defined on it.8

The special case where all four spaces are conceptual spaces gives conceptual
blends. This diagram is “upside down” from that used by Fauconnier and Turner,
in that our arrows go up, with the generic G on the bottom, and the blend B on
the top. Our convention is consistent with duality mentioned earlier, as well as
with the way that such diagrams are usually drawn in mathematics, and with the
image schema MORE IS UP (since B is “more”). Also, Fauconnier and Turner
do not include the map G → B. By definition, the maps G → I

1
 and G → I

2
 are

total, not partial, and if the input spaces were minimal, then the maps I
1
 → B, I

2

→ B, G → B would also be total.

Usually an input diagram has many blendoids, only a few of which are interesting.
Weak commutativity of the blend diagram, which is included in the definition, is
a good first step, but still leaves too many possibilities. Therefore additional
principles are needed for identifying the most interesting possibilities, so that we
can define a blend to be a blendoid that is optimal with respect to these
principles. Fauconnier and Turner suggest a number of “optimality principles”
that serve this purpose (see Chapter 16 of Fauconnier & Turner, 2002), but they
are too vague to be easily formalized. A tentative and difficult but precise
mathematical approach is given in Appendix B of Goguen and Malcolm (1996),
based on a modification of the category theoretic notion of “pushout” (Mac Lane,
1998); this modification takes advantage of an ordering relation on morphisms,
along the lines discussed above. The intuition is that nothing can be added to or
subtracted from such an optimal blendoid without violating consistency or
simplicity in some way. However, there can still be more than one blend in this

Figure 4. A blend diagram

134 Goguen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

sense, as an example discussed below will make very clear. It should also be
noted that this notion of blend easily generalizes to any number of semiotic
spaces, and even to arbitrary diagrams of semiotic spaces and morphisms, for
which there are many significant applications. Thus, the emphasis of Fauconnier
and Turner (2002) on blends having the form of Figure 4 seems inappropriate for
algebraic semiotics, because its major applications typically involve multiple
spaces and multiple morphisms among them.

It has perhaps not been sufficiently emphasized in the BT literature that blending
does not always give a unique result. For example, the following are four
different blends of conceptual spaces for “house” and “boat”:

1. houseboat;

2. boathouse;

3. amphibious RV; and

4. boat for moving houses.

The last may be a bit surprising, but I once saw such a boat in Oban, Scotland,
transporting prefabricated homes to a nearby island. There are also some other,
even less obvious blends (Goguen & Harrell, 2004).

In the UCSD Meaning and Computation Lab, Fox Harrell and I have been
experimenting with a blending algorithm, which has generated novel metaphors,
which in turn were used in generating poems (Goguen & Harrell, 2004) with
some success before a live audience. The algorithm uses dynamic programming
to generate blends in approximate order of optimality, and if requested, can
generate all possible blends, including even very bad ones. One surprise was that
there were so many blends, for example, 48 for the (small) house and boat
spaces.

The CMT view of metaphor associates aspects of one domain to another, and
describes this association using a mapping, of which the target domain concerns
what the metaphor is “about.” On the other hand, BT views metaphors as “cross-
space mappings” that arise from blending conceptual spaces extracted from the
domains involved. For example, the metaphor “my love is a rose” arises from
blending conceptual spaces for “my love” and “rose,” such that the identification
of the two items “love” and “rose” in the blend space gives rise to a correspon-
dence between certain items in the rose space and the target love space. Such
metaphoric blends are asymmetric, in that as much as possible of the target
space is imported into the blend space, whereas only key aspects from the source
space, associated with elements that have been identified with elements of the
target space, are imported, for example, sweet smell and attractive color;
moreover, names from the top space take precedence over those in the source
space, so that relations in the source space become “attributed” to items in the

Steps Toward a Design Theory for Virtual Worlds 135

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

target space. Our approach differs from orthodox BT not only in that we allow
many more kinds of structure in our spaces, but also in that we do not first
construct a minimal image in the blend space and then “project” that material
back to the target space, but instead we construct the entire picture in the blend
space. Thus it is not the case for us that, in forming the blend, elements are
preferentially omitted from the target space, only to be restored upon projection,
as described in Grady et al. (1999). Since CMT has been mainly concerned with
families of metaphors having a shared pattern, and BT has been more concerned
with how novel metaphors can be understood, the two theories are compatible and
can both play a role in understanding complex language. This and related issues are
discussed with many interesting details and examples in Grady et al. (1999).

Algebraic semiotics also goes beyond conceptual spaces in allowing entities that
have dynamic states; this is necessary for applications to the dynamic entities
that appear in user interface design and virtual worlds. Actually, two kinds of
dynamics are involved in blending: the process of blending itself, and entities with
internal states. Whereas cognitive linguistics has so far focused mainly on the
former, algebraic semiotics is more concerned with the latter. Another differ-
ence from BT is that relations like causality are represented as ordinary relations
rather than being given a special ad hoc status.

The conceptual spaces, mappings, and blending of cognitive linguistics seem well
adapted for treating many aspects of literature, as in Turner (1997), as well as
some recent trends in art, including (the very aptly named) conceptual art
movement, and with the conceptual aspects of works in many other styles, which
are often designed to provoke conceptual conflicts or to force unusual concep-
tual blends. One important application is the combination of music with lyrics, as
skillfully studied using cross-domain mappings by Zbikowski (2002). Unfortu-
nately, the framework of conceptual blending seems too restricted for studying
blending within music, for example, harmony, polyphony, polyrhythm, and so
forth, because musical structure is inherently hierarchical, and hence cannot be
adequately described using only atomic elements and relation instances among
them. Understanding how a particular melody, chord sequence, and rhythm can
work together requires attention to the component notes, phrases, chords, and
beats, as well as to their subcomponents. However, it seems that the added
generality of semiotic spaces and semiotic morphisms is adequate for such
purposes.

Some Laws

This subsection gives some further fragments of a calculus of representation
(see Goguen, 1999a, for more detail). Here a,b,c are semiotic morphisms, and

136 Goguen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

◊ denotes some choice of a blend that is maximal with respect to some optimality
criterion:

a ◊ b ≅ b ◊ a

a ◊ (b ◊ c) ≅ (b;a) ◊ c

(a ◊ b) ◊ c ≅ a ◊ (b;c)

In the following, A,B,C may be either semiotic morphisms or just semiotic
systems. Sums, denoted +, are the special case of blend where the base theory
is 1, which is the theory having exactly one constant, its top element, and nothing
else.

A + 1 ≅ A

1 + A ≅ A

A + B ≅ B + A

A + (B + C) ≅ (A + B) + C

It should be noted that products of models correspond to sums of theories, that
is, a model of a sum of theories is a product of models of the summand theories,
and vice versa, or even more formally, there is an isomorphism of categories of
models:

Mod(A+B) ≅ Mod(A) ×Mod(B) ,

where A, B and are semiotic theories (see Goguen, 1999a, for details).

Case Studies

This section surveys some case studies applying algebraic semiotics. Noting that
we have already discussed blending and metaphor, the following additional case
studies are considered:

1. Information visualization,

2. Proof presentation,

Steps Toward a Design Theory for Virtual Worlds 137

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

3. Humor, and

4. User interaction.

The first category in this list actually contains three small case studies, and the
second can also be considered a special case of it; proof visualization is our most
extensive case study, part of a large project to produce a Web-based system to
support theorem proving. The study of humor is somewhat of a digression, but
it is hoped that the reader will find it amusing. Proof navigation is used to illustrate
how interaction is treated in algebraic semiotics, although many details are left
out, because the formal theory of dynamic signs is technically rather complex.

Information Visualization

Visualizing complex data can help to discover, verify, and predict patterns, and
to quickly locate specific information; but it can be difficult to construct the
appropriate visualizations for these purposes. Because visualizations are repre-
sentations, our theory applies to them, and in particular, our quality measures
apply. The following subsections analyze three real visualization systems as
semiotic morphisms, and on that basis, suggest some improvements. We found
it convenient to use algebraic semiotics in a semi-formal style, letting the ideas
and results guide the re-design, and introducing formal details only to the degree
that they actually help with decisions. Many aspects of these discussions follow
(Goguen & Harrell, 2003).

Code Visualization

A visualization tool for code developed at ATT Bell Labs, and discussed in
Shneiderman (1997), displays the large grain structure of code by omitting details
(see Figure 5). This is an excellent illustration of Principle F/C: commands are
indistinguishable lines, but files and procedures are easily distinguished, and the
age of code is highlighted with color (though it shows up as shades of gray in this
figure), presumably because code age is so important for software maintenance,
which accounts for most of the cost of large software systems. Moreover, code
at the command level can be viewed in a separate window, which is activated
by “zooming in” from the main overview window. However, software engineers
often need to find other specific features of code, such as:

1. Occurrences of particular variables,

2. Certain uses procedure calls, and

3. Certain uses of pointers.

138 Goguen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Or consider what would be needed to work on the Y2K problem. To support this
kind of flexibility, the system should allow users to select and highlight a variety
of features to be displayed with color, not just code age; indeed, each feature
listed above could be highlighted with a different color, because these features
are binary (i.e., they either occur or do not occur, at any given point in the
program), rather than, like age, being measured on a (nearly) continuous scale.

A Film Visualizer

Figure 6 shows FilmFinder, a system to help consumers find films, designed in
Ben Shneiderman’s group at the University of Maryland, as described in
Shneiderman (1998). The vertical axis indicates popularity, the horizontal axis
indicates the release date, and the color9 indicates the genre; the area on the right
side of the display is for controlling the system. This complex sign is the image
under an appropriate semiotic morphism of a sign in a space of information about
films. From this, we infer that the designer of the system thought users would
consider the popularity, date, and genre to be the most important attributes of
films.

Instead of thinking of it as a consumer product, it is interesting to think of this
system as a scientific tool for displaying data about the movie industry. Using it
in this way, we can see that the density of films increases rapidly in the most
recent years displayed, except perhaps for those genres that are the least
popular; and we can also easily see some other facts, such as that there has

Figure 5. A code browser

Steps Toward a Design Theory for Virtual Worlds 139

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

always been a higher percentage of drama, and that there are increasing
percentages of action and horror.

However, this representation is less useful than it could be for this purpose. The
problem is again that too much content and not enough structure have been
preserved. For example, it would be better to aggregate all films having
approximately the same attributes of interest into one blob, and then display the
number of films in a blob using a distinct visual attribute, such as size or
brightness. Successive blobs of the same kind could then be connected by lines
having the same color as the blobs. Users could click on a blob to see what’s in
it, preferably displayed graphically in a new popup window. These revisions
would facilitate hypothesis formation, and would also make the tool more useful
for consumers, especially when (as in the most recent years that are not
represented in the figure) there are many more films.

A Later Version

Figure 7 shows a later version (SpotFire from ivee Development in Sweden) of
the FilmFinder tool in Figure 6; the main improvement is that users have more
control over what is displayed and how it is displayed. This particular display has
length and date as its axes, and again uses color for genre, although the genre
color coding scheme is not explicitly shown; prize winning films are highlighted
by having a larger size. It is interesting to observe a clustering at around 90
minutes length. But once again, the display is difficult to use because there are

Figure 6. FilmFinder display

140 Goguen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

too many dots, even though this display cuts off at 1990! If the user is seeking
a particular film or class of films, she will want to narrow the search focus by
imposing additional constraints, but from this single display, it is difficult to know
how easily that could be done. We are presumably supposed to assume that the
(possibly imaginary) user who created this display considered these particular
attributes the most interesting at a certain point during a sequence of displays,
constituting a search; but in fact, they do not seem especially useful for any
particular purpose.

We can also infer what the designer of this version thought would be most
important, by examining the controls on the right of the display; we can hope that
these were determined by polling an adequate pool of typical users. But the key
issue is how convenient these controls are for scenarios that typical users find
particularly important; most likely, those typical users are looking for a good
video to rent, rather than analyzing trends in the movie industry, and so the
controls should reflect the key actions involved in those searches, rather than just
the most important general attributes of films. It would take some experimental
work to determine these most relevant search attributes, but we can still criticize
the design of the control console, because of its exclusive focus on simple
attributes instead of structure. And we can also criticize the fine grain control
that it gives users over length and year, and suggest instead that soft constraints
would be more appropriate; it also seems doubtful that length is a highly
significant attribute for search. Moreover, we can criticize the design philosophy,
advocating instead a more social approach that relates the profile of one user to
the profiles of other users to select films that similar users have found interesting

Figure 7. SpotFire version of FilmFinder

Steps Toward a Design Theory for Virtual Worlds 141

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

(there are numerous variations on this, such as listing films that a user’s friends
have liked; Amazon has exploited similar strategies very successfully). Finally,
we can note that the design ideas proposed to improve the previous version of
this system also apply to the new version.

Proof Representation and Understanding

It is well known (perhaps too well known to many unhappy students) that
understanding mathematical proofs can be very difficult. But why is it difficult?
And how can this situation be improved? The UCSD Tatami project (Goguen
et al., 2000) aims to make proofs more interesting and even enjoyable to read,
by viewing them as representations of their underlying mathematics, so that we
can apply algebraic semiotics, including the theory of representation quality.

The Kumo system generates proof Web sites, based on user-provided sketches
in a language called Duck. The pages are in XML, displayed using XSL style
sheets, and can be viewed over the Web using any browser. The complex signs
that users actually see are called proofwebs, consisting of English phrases and
sentences, mathematical signs, navigation buttons, formal input and output for a
mechanical theorem prover, and so forth (Goguen et al., 2000; Goguen, 1999b).

Our view of what constitutes the underlying mathematics to be displayed is
unusual: we consider it to include not just the tree structure of proofs, decorated
with formal sentences and rules, as is common among computer scientists and
logicians, but also:

1. A dramatic structure, following Aristotle (see below);

2. A narrative structure (following ideas of Labov (1972) and Linde (1981),
as briefly described below);

3. Hyperlinks to related material, including tutorials for proof rules used, input
and output to a formal theorem prover (if available), and motivation and
explanation for proof strategies and steps; and

4. Image schemas (in the sense of Lakoff & Johnson, 1980; Lakoff, 1987). As
with any virtual world, image schemas can make the language more direct
and powerful, and hence easier to follow.

Aristotle (1997) said, “Drama is conflict,” which suggests providing conflict to
add drama to proofs. Finding a non-trivial proof usually requires exploring many
dead ends, errors, and misconceptions, some of which may be very subtle.
Therefore the process of proving can be full of disappointed hopes, unexpected
triumphs, repeated failures, and even fear and interpersonal conflict. All this is
typically left out when proofs are written up, leaving only the map of a path that

142 Goguen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

has been cleared through the jungle. But proofs can be made much more
interesting and understandable if some of the conflicts that motivated their
difficult steps are integrated into their structure; proof obstacles are exactly what
is needed for drama. Of course, this must be done with care, and it should not
be overdone, just as in a good novel or movie. Our Kumo theorem proving system
(Goguen et al., 2000) used these ideas to structure the Web sites that it generates
to display proofs. Aristotle also gave other useful suggestions, including unity of
time and place, and having a beginning, middle, and end to a drama (Aristotle,
1997).

Labov (1972) showed that oral narratives of personal experience have a precise
internal structure, which includes the following:

1. An optional orientation section, which provides basic orientation infor-
mation, such as the time and place of the story, and perhaps some major
characters;

2. A sequence of narrative clauses that describe the events of the story;

3. The narrative presupposition, which by default assumes that the order-
ing of the narrative clauses corresponds to the temporal ordering of the
events that they describe;

4. Evaluative material integrated with the narrative clauses, which “evalu-
ates” the events, in the sense of relating them to socially shared values; and
finally

5. An optional closing section, which may contain a “moral” or a summary for
the story.

The above follows Linde (1981, 1993), who describes developments subsequent
to the classic treatment of Labov (1972). Although this empirical research used
oral narratives of personal experience as data, its results apply much more
broadly (though in general less precisely), since the class of narratives is the core
around which many discourse types are built.

To aid our discussion of proofs as representations, we introduce terminology for
the source and target semiotic spaces: let us call their elements abstract
proofwebs and proof displays, respectively, and perhaps also use the term
display proofweb for target signs. In addition, the term unit refers to a block
of information of the same kind in a proof display. The display proofwebs
generated by Kumo adhere to the following style guidelines, called the tatami
conventions (Goguen et al., 2000). The first eight are justified mainly by
narratology:

1. Homepages are provided for every major proof part; homepages intro-
duce and motivate the problem to be solved and the approach taken to the

Steps Toward a Design Theory for Virtual Worlds 143

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

solution for that part, and correspond to the orientation sections of Labov’s
narrative structure; they may contain graphics, applets, and of course text.
Homepages appear in the same window as their tatami pages (see the next
item) because they are part of the same narrative flow (see Figure 8).

2. Tatami pages, also called proof pages, are the basic constituents of
display proofwebs; they are XML pages containing one or more proof units,
with its inference rule applications, interleaved with one or more explana-
tion units. This integration follows the interleaving of narrative and evalu-
ative material in Labov’s theory. Limiting the number of non-automatic
proof steps on tatami pages to approximately seven is justified by the classic
work of Miller (1956) on limitations of human cognitive capacity; this
limitation also makes it feasible to place both proof and explanation units on
the same proof page (see Figure 8).

3. The explanation units of tatami pages are prover-supplied informal
discussions of proof concepts, strategies, obstacles, and so forth. They
correspond to the evaluative material in Labov’s theory, and motivate
important proof steps by relating them to values shared in the appropriate
community of provers.

4. Tatami pages can be browsed in an order designed by the prover to be
helpful and interesting to the reader; if possible, they should tell a story
about how obstacles were overcome (or still remain). This narrative order
again comes from Labov’s theory, while including obstacles comes from
the work of Campbell (1973) and others on “heroic” narratives.

Figure 8. A typical tatami homepage and proof page

144 Goguen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

5. Major proof parts, including lemmas, have their own subsites, each with the
same structure as the main proof, including homepage and explanation
units. These appear in a separate dedicated persistent popup window.
Having separate hyperlinked Web sites for major proof parts is similar to
the way that flashbacks and other temporal dislocations occur in stories. It
is helpful to have them in a separate window in order to clarify their relation
to the main sequence of proof steps.

6. Tatami pages also have associated formal proof scores, which appear in
another separate popup window when summoned from a tatami page. The
separate window is convenient because users typically want to look at the
formal proof and its motivation at the same time as the proof score. Users
can also request proof score execution, and the result is displayed in the
same window as the score, so that one can easily alternate between them.
(The proof score is sent to an OBJ server and the result is returned for
display.) This hiding of routine details is similar to human proofs, which use
it to highlight the main ideas (Livingston, 1987).

7. Major proof parts can have an optional closing page, to sum up important
results and lessons, again following Labov’s theory. They appear in the
same window as proof pages, again because they are part of the same
narrative flow.

8. A menu of open subgoals appears on each homepage, and error messages
are placed on appropriate pages. Open subgoals are important to provers
when they read a proof, since proving new results is a major value within
this community.

Now we give further style guidelines, with justifications based on algebraic
semiotics:

1. Windows: The main contents of a display proofweb are its proof steps,
informal explanations, tutorials, and mechanical proof scores. These four
are also the main contents of abstract proofwebs, and their preservation has
much to do with the quality of their representation. These four basic sorts
of the abstract data type for proofwebs are reflected in our choice of
windows for displaying them. Because tatami pages are the main constitu-
ent of proofwebs, theirs is the master window, and because explanation
pages are so closely linked, they share that window; each unit is enclosed
is its own “box.” Tutorial and machine proof score pages each have a
separate window. All this preserves the hierarchical structure and priorities
of the underlying mathematics.

2. Backgrounds: Each major sort of unit has its own background color: proof
units have light beige, explanations have light yellow, tutorials have yellow

Steps Toward a Design Theory for Virtual Worlds 145

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

marble, and proof scores have light purple. Although the choice of colors
is somewhat arbitrary, and is easily changed by editing the XSL style file,
their distinctness reflects the importance of distinguishing these four units.

3. Navigation: Similar considerations hold for navigation. Each page has a
title, supplied by the user in the Duck script (or a simple default if no title
is supplied). Buttons are used to move to other pages of the same sort, and
to open widows that display information of other sorts. Each persistent
window has a somewhat different layout and navigation buttons, reflecting
its different typical uses. For example, the master tatami window has
buttons to step through the narrative ordering of tatami pages, both forward
and backward, and a button to return to the homepage.

4. Mathematical Formulae: gif files are used for mathematical symbols, in
a distinctive blue color, because mathematical signs come from a domain
that is quite distinct from that of natural language.

Some additional applications of semiotic morphisms to the user interface design
of the Tatami system are described in Goguen (1999b), in a more precise style
than here, although they are based on an older version of the system. For
example, Goguen (1999b) shows that certain early designs for the status window
were incorrect because the corresponding semiotic morphisms failed to preserve
certain key constructors.

Humor

We have studied a corpus of over 50 “humorous oxymorons” (phrases like
“military intelligence,” “good grief,” and “almost exactly”). Dictionaries say an
“oxymoron” is a phrase having contradictory (or incongruous) components. But
this is not what happens in a humorous oxymoron: instead, there are two distinct
meanings, one of which is conventional, and the other of which has some
contradictory components; that is, there are two different blends, one of which
has conflicts. When we are told that something is an oxymoron, we seek out that
second, conflictual blend, and we feel pleasure when we find it.

We also studied more than 40 newspaper cartoons and found that about 75%
have a similar pattern, but instead of two blends existing simultaneously, the
reader is first led to form one blend, and then led by new information to form a
completely different blend, usually in partial conflict with the first; that is, there
is a kind of dynamic reblending.

Thus in each case, it is not just the existence of more than one blend, but rather
the process of reblending that produces the humorous effect, and I conjecture

146 Goguen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

that reblending in fact characterizes humor. This is relevant to HCI and the
design of virtual worlds, because humor is sometimes used in computer system
interfaces, often very badly. For example, the paperclip in Microsoft Office
creates a poor impression in part because the sensation of reblending loses its
effect if it is repeated many times, and eventually becomes “stale” or even
unpleasant (see Goguen, 2004a, for additional details). These observations,
which go back to about 1999, seem to have potential for fascinating new
application areas.

Interaction

Classical semiotics is concerned with static signs; it does not allow for signs that
change in response to user input, or that move on their own. This section sketches
how algebraic semiotics handles dynamics, by extending its foundation from
classical algebra to hidden algebra. As a simple example, consider the problem
of designing that part of the Kumo interface that supports browsing proofs.
Kumo provides buttons to traverse in the proof author’s chosen narrative order,
labeled with iconic triangles to indicate forward and backward motion, as well
as buttons to return to the homepage, to view the specification, and so forth (see
Figure 8). Common practice would suggest constructing an automaton with a
state for each proof tree node, and a transition label for each traversal button.
But this does not allow for the fact that different proofs have different structures,
and thus different automata, nor does it account for the different displays that are
produced in each state, nor for the variety of possible implementations of
transition lookup, for example, using lists, arrays, or hash tables. An automaton
can describe how a single proof instance can be navigated, but it cannot describe
the general method that generates proof navigation support for any given proof,
nor the way that this method is implemented, nor the quality of the resulting
interface.

In fact, despite the formal character of the model itself, the construction and use
of transition diagrams (or the corresponding automata) in user interface design
is intuitive, and does not provide an adequate basis for a rigorous mathematical
analysis of possible designs. In order to address the display, implementation, and
quality questions raised above, the automaton model must be supplemented in
various ad hoc ways, whereas hidden algebra can handle all of these within a
single unified framework. Another example of dynamics in Kumo that would be
difficult to handle with traditional user interface modeling techniques is the
facility to execute the proof script for a proof part by downloading it to a BOBJ
proof server and then viewing the result on the local browser as it executes.

This is not the place for details (see Goguen, 2003, for that), but we can say that
hidden algebra provides a precise way to handle both the display and implemen-

Steps Toward a Design Theory for Virtual Worlds 147

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

tation aspects of examples like that described above, and the corresponding
extension of semiotic morphisms gives a precise basis for comparing the quality
of interface designs realizing the desired dynamics, without bias towards any
particular implementation. The dynamics of a window with a scrollbar is
discussed in considerable detail in Goguen (2003).

Summary, Future Research,
and Social Implications

This chapter has presented theory and case studies to support the claim that
algebraic semiotics is a promising foundation for virtual world design, in both
theory and practice. The case studies on information visualization, proof
presentation, metaphor, humor, and interaction are encouraging, and suggest that
design problems can be successfully confronted directly, without unreliable ad
hoc methods and assumptions, such as analyses based on prior systems that are
only remotely related, or expensive, time-consuming methods of experimental
psychology and usability testing. These studies also confirm our views that taking
account of key social and cognitive factors is crucial for success, and that formal
methods can play a very helpful role, if applied pragmatically rather than
dogmatically. However, much more work is still needed, such as:

• Combining Gibsonian affordances (Gibson, 1977) with algebraic semiotics,
to provide a socio-cognitive dimension for the interaction formalism.

• Studying immersion in virtual worlds, for example, how closure and
embodiment relate to representational coherence, image schemas,
affordances, choice of media, and so forth.

• More work on social foundations and the processes of semiosis.

• More work on narrative structure, including flashbacks and flashforwards.

• More work on how to choose quality orderings on representations that are
appropriate to their actual use.

• More case studies, done more thoroughly.

Only the second of these is specific to virtuality, though all are related. We hope
that readers of this chapter may find some benefit to the algebraic semiotic
approach, and will contribute to its further development.

148 Goguen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

I close this article with some words of warning, along lines perhaps most closely
associated with Jean Baudrillard (1994), who wrote:

“Simulation is no longer that of a territory, a referential being,
or a substance. It is the generation by models of a real without
origin or reality…. By crossing into a space…no longer that of the
real, nor that of truth, the era of simulation is inaugurated by a
liquidation of all referentials—worse: with their artificial
resurrection in the systems of signs, a material more malleable
than meaning, in that it lends itself to all systems of equivalences,
to all binary oppositions, to all combinatory algebra. It is no
longer a question of imitation, nor duplication, not even parody.
It is a question of substituting the signs of the real for the real,
that is to say of an operation of deterring every real process via
its operational double, a programmatic, metastable, perfectly
descriptive machine that offers all the signs of the real and short-
circuits all its vicissitudes. Never again will the real have the
chance to produce itself—such is the vital function of the model
in a system of death….”

If we translate this out of the stylistic conventions of recent French intellectu-
alism, the danger is that the virtual can replace the real in our affections, so that
we lose touch with our communities, our values, even the very living quality of
our lives. Baudrillard claims that exactly such alienation is already characteristic
of the contemporary world, and that it is growing like a cancer. He does not offer
any solution to this dilemma, but I would like to suggest that compassion (Goguen,
2004b) is one way out of an enervating absorption in virtuality. A sympathetic
feeling for the suffering of others, and action on their behalf, can generate
positive emotionality and re-engagement with real experience. And, contrary to
Baudrillard, it seems quite possible that technology, including virtual world
technology, can assist with such projects.

Acknowledgments

I thank Drs Kirstie Bellman and Christopher Landauer of Aerospace Corp. for
inviting me to the 2001 Virtual Worlds and Simulation Conference, and for their
valuable comments. I thank Fox Harrell for many valuable conversations and
insights on topics related to this chapter, and for the renderings of Figures 5, 6,

Steps Toward a Design Theory for Virtual Worlds 149

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and 7. I also thank students in my UCSD classes CSE 171 and 271 for their
feedback and patience.

References

Aristotle. (1997). Poetics. Dover. Translation by S.H. Butcher; original from
approximately 330 B.C.

Barthes, R. (1968). Elements of semiology. Hill and Wang. Translation by A.
Lavers & C. Smith.

Barwise, J., & Perry, J. (1983). Situations and attitudes. Bradford: MIT.

Baudrillard, J. (1994). Simulacra and simulation. Michigan. Translated by S.F.
Glaser.

Campbell, J. (1973). The hero with a thousand faces. Princeton.

Carroll, J. (1982). Learning, using, and designing filenames and command
paradigms. Behavior and Information Technology, 1(4), 327-246.

Fauconnier, G. (1985). Mental spaces: Aspects of meaning construction in
natural language. Bradford: MIT.

Fauconnier, G., & Turner, M. (1998). Conceptual integration networks. Cogni-
tive Science, 22(2), 133-187.

Fauconnier, G., & Turner, M. (2002). The way we think. Basic Books.

Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy.
Cognitive Science, 7(2), 155-170.

Gibson, J. (1977). The theory of affordances. In R. Shaw & J. Bransford (Eds.),
Perceiving, acting and knowing: Toward an ecological psychology.
Lawrence Erlbaum.

Goguen, J. (1994). Requirements engineering as the reconciliation of social and
technical issues. In M. Jirotka & J. Goguen (Eds.), Requirements engi-
neering: Social and technical issues (pp. 165-200). Academic.

Goguen, J. (1997). Towards a social, ethical theory of information. In G.
Bowker, L. Star, W. Turner, & L. Gasser (Eds.), Social science, techni-
cal systems and cooperative work: Beyond the great divide (pp. 27-56).
Lawrence Erlbaum.

Goguen, J. (1999a). An introduction to algebraic semiotics, with applications to
user interface design. In C. Nehaniv (Ed.), Computation for metaphors,
analogy and agents (pp. 242-291). Springer. Lecture Notes in Artificial
Intelligence, 1562.

150 Goguen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Goguen, J. (1999b). Social and semiotic analyses for theorem prover user
interface design. Formal Aspects of Computing, 11(Special Issue on User
Interfaces for Theorem Provers), 272-301.

Goguen, J. (2003). Semiotic morphisms, representations, and blending for
interface design. Proceedings of the AMAST Workshop on Algebraic
Methods in Language Processing (pp. 1-15), Verona, Italy, August 25-
27. AMAST Press.

Goguen, J. (2004a). CSE 275 homepage: Social issues in science and technology.
Retrieved from: www.cs.ucsd.edu/users/goguen/courses/275/

Goguen, J. (2004b). Groundlessness, compassion and ethics in management and
design. In R. Boland & F. Callopy (Eds.), Managing as designing.
Stanford.

Goguen, J., & Harrell, F. (2003). Information visualization and semiotic morphisms.
In G. Malcolm (Ed.), Visual representations and interpretations. Pro-
ceedings of a workshop held in Liverpool, UK. Elsevier.

Goguen, J., & Harrell, F. (2004). Foundations for active multimedia narra-
tive: Semiotic spaces and structural blending. To appear in Interaction
Studies: Social Behaviour and Communication in Biological and Artificial
Systems.

Goguen, J., Lin, K., Rosu, G., Mori, A., & Warinschi, B. (2000). An overview of
the Tatami project. In K. Futatsugi, A. Nakagawa, & T. Tamai (Eds.),
Cafe: An industrial-strength algebraic formal method (pp. 61-78).
Elsevier.

Goguen, J., & Linde, C. (1984). Optimal structures for multi-media instruc-
tion. Technical report, SRI International. To Office of Naval Research,
Psychological Sciences Division.

Goguen, J., & Malcolm, G. (1996). Algebraic semantics of imperative pro-
grams. MIT.

Goguen, J., & Malcolm, G. (2000). A hidden agenda. Theoretical Computer
Science, 245(1), 55-101. Also UCSD Dept. Computer Science & Engi-
neering Technical Report CS97-538, May 1997.

Goguen, J., Thatcher, J., & Wagner, E. (1978). An initial algebra approach to the
specification, correctness and implementation of abstract data types. In R.
Yeh (Ed.), Current trends in programming methodology IV (pp. 80-
149). Englewood Cliffs, NJ: Prentice-Hall.

Grady, J., Oakley, T., & Coulson, S. (1999). Blending and metaphor. In R. Gibbs
& G. Steen (Eds.), Metaphor in cognitive linguistics. Benjamins.

Steps Toward a Design Theory for Virtual Worlds 151

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Labov, W. (1972). The transformation of experience in narrative syntax. In
Language in the inner city (pp. 354-396). Philadelphia: University of
Pennsylvania.

Lakoff, G. (1987). Women, fire and other dangerous things: What catego-
ries reveal about the mind. Chicago.

Lakoff, G., & Johnson, M. (1980). Metaphors we live by. Chicago.

Linde, C. (1981). The organization of discourse. In T. Shopen & J.M. Williams
(Eds.), Style and variables in English (pp. 84-114). Winthrop.

Linde, C. (1993). Life stories: The creation of coherence. Oxford.

Livingston, E. (1987). The ethnomethodology of mathematics. Routledge &
Kegan Paul.

Mac Lane, S. (1998). Categories for the working mathematician (2nd ed.).
Springer.

Miller, G.A. (1956). The magic number seven, plus or minus two: Some limits on
our capacity for processing information. Psychological Science, 63, 81-
97.

Peirce, C.S. (1965). Collected papers (in six volumes; see especially Volume
2: Elements of Logic). Harvard.

Pierce, B.C. (1990). Basic category theory for computer scientists. MIT.

Saussure, F. (1976). Course in general linguistics. Duckworth. Translated by
R. Harris.

Shneiderman, B. (1997). Designing the user interface (2nd ed.). Addison-
Wesley.

Shneiderman, B. (1998). Designing the user interface (3rd ed.). Addison-
Wesley.

Tufte, E. (1983). The visual display of quantitative information. Graphics
Press.

Turner, M. (1997). The literary mind. Oxford.

Zbikowski, L. (2002). Conceptualizing music. Oxford.

Endnotes

1 Due to the nature of this chapter, sign systems are not fully formalized, and
in particular, signatures are treated rather informally, because they are
sufficiently complex that a formal definition would distract from the flow of
ideas; see Goguen and Malcolm (1996) and Goguen et al. (1978) for the

152 Goguen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

formal definition of signature, and see Goguen (1999a) for the formal
definition of sign system.

2 These are for fixed data types like integers, Booleans, and colors, which are
always interpreted in a standard way.

3 This use of the word “space” conflicts with the conceptual spaces of
cognitive linguistics, which are discussed below.

4 This duality is a Galois connection between algebraic theories and their
models; it does not involve the levels or priorities.

5 The source UP is grounded in our experience of gravity, and the schema
itself is grounded in everyday experiences, such as that when there is more
beer in a glass or more peanuts in a pile, the level goes up, and this is a state
we often prefer; therefore the image schema MORE IS UP, discussed in
Lakoff (1987), is even more basic.

6 However, we do not assume that they are necessarily the minimal such
spaces needed to understand a given blend, since that can only be
determined after the blend has been understood. Moreover, different
blends may ignore different elements of the input spaces, and it may also
be necessary to recruit additional information from other spaces in order to
understand a blend.

7 The term “base space” is used in Goguen (1999a) because it is considered
to better describe how this theory is used in applications to user interface
design.

8 Strict commutativity, usually called just commutativity, means that the
compositions are strictly equal, that is, one morphism is defined on an
element if and only if the other is, and then they are equal.

9 But as before, gray tones appear in our rendition of the display.

Conceptual Modeling of Virtual Environments 153

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter VI

Conceptual Modeling of
Virtual Environments

Using Hypermedia
Design Techniques

Paloma Díaz

Universidad Carlos III de Madrid, Spain

Susana Montero

Universidad Carlos III de Madrid, Spain

Ignacio Aedo

Universidad Carlos III de Madrid, Spain

Juan Manuel Dodero

Universidad Carlos III de Madrid, Spain

Abstract

Traditionally, the development of virtual environments has been tightly
dependent on the programmer’s skills to manage the available toolkits and
authoring systems. In such a scenario, the discussion of different design
alternatives, future changes and maintenance, interoperability, and software
reuse are all of them costly and quite difficult. In order to overcome this

154 Díaz, Montero, Aedo & Dodero

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

unsystematic and technology-driven process, conceptual modeling has to
be included just before the implementation phase to provide a shared
representation language that facilitates the communication among the
different team members, including stakeholders, as well as the reuse and
redesign for future requirements since conceptual models hide
implementation details and constraints, and are cheaper and easier to
produce than prototypes. As a first attempt to attain these aims, this chapter
presents the basis of a constructional approach for the VE conceptual
modeling through a set of complementary design views related to the VE
components and functions. Moreover, we explore how these design issues
might be addressed by hypermedia modeling techniques, given the similarities
between these two kinds of interactive systems and the maturity reached in
hypermedia development.

Introduction

When facing the development of virtual environments (VEs), most developers
turn to toolkits or authoring tools like those reported in Kessler, Bowman, and
Hodges (2000) in which they pick different components out of a repository and
build their environment from scratch in an unsystematic fashion driven by
technology rather than by requirements. In such a scenario, abstraction is
absolutely despised. Instead of describing the VE using concepts and relation-
ships that describe the problem to be solved in terms of the universe of discourse
(such as rooms, collections, or paintings in a virtual museum) as it is done in
conceptual models (Hofstede & van der Weide, 1993), it is expressed using
technical terms and implementation units, such as cylinders, spheres, or textures.
But such a technology-driven development strategy brings a number of disad-
vantages. Firstly, development is boiled down to 3D modeling and programming,
so that the stakeholders can only take part in the evaluation, whether formative
or summative, of prototypes. Involving stakeholders in all the phases of the
development process, including design, is a basic requirement for any kind of
interactive systems, as they know which objects, facts, concepts, and relation-
ships are relevant in the domain of the application (Preece, Rogers, & Sharp,
2002). Secondly, the lack of a conceptual design process leads to little flexibility
for changes with a high cost in resources when the environment does not meet
the user requirements or when technological evolution suggests the addition of
new services. And finally, this implementation-driven approach makes mainte-
nance, interoperability, and software reuse difficult or nearly unfeasible. A
conceptual model, which is independent from the implementation units, provides
a picture of the system that can be understood by different people and that can

Conceptual Modeling of Virtual Environments 155

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

serve as an intermediate level among different technological options. Each
concept and relationship in the real world has a correspondence with an element
or more in the conceptual model, which in turn can be translated into different
implementation platforms.

The scarce use of conceptual models in VE development can be due to the fact
that there are no broadly accepted development methodologies and design
techniques that apply a software engineering perspective to this domain. A VE
software crisis, in the line of the phenomenon identified in the ’60s as the
software crisis (Gibbs, 1994) and in the ’90s as the hypermedia/Web software
crisis (Lowe & Hall, 1999), can be diagnosed just to try and raise concern for the
way most VE software is being produced.

Compared to traditional software systems, VEs make use of a richer variety of
complex types of objects, behaviors, interactions, and communications in order
to provide users with more and more realistic and useful environments and,
consequently, typical conceptual modeling tools, such as E-R diagrams (Chen,
1976) or UML models (Booch, Jacobson, & Rumbaugh, 1998), do not seem
appropriate enough to encompass all their requirements. On the other hand, VEs
share with hypermedia systems a number of features and problems. Conse-
quently, hypermedia modeling techniques that address the aforementioned
design issues and have reached a certain level of maturity may be considered in
the development of VEs as well.

In this chapter, the use of hypermedia design techniques for VEs will be
discussed in order to:

• Make evident the relationship between the ideas, concepts, and principles
underlying different modeling techniques in both disciplines, and

• Analyze how existing hypermedia techniques are suitable to deal with the
development process of VEs.

The approach assumed in this chapter has a number of advantages. Firstly, it
does not require all the members of the development team to be experts in
implementation technologies, insofar as the system is specified at a conceptual
level. Secondly, from the resulting conceptual design, rapid prototypes can be
generated using any toolkit or authoring tool, so that the system usability can be
assessed and modifications and improvements can be made directly on the
design and not diving into the final code. As a result, maintenance and reuse of
VEs will become easier. Finally, designers can benefit from the experience
underlying hypermedia techniques in such aspects as navigation tools definition,
interaction and dynamics modeling, or space and time-based relationships.

The remainder of the chapter is organized as follows. The next section discusses
VE conceptual modeling and introduces a constructional approach that proposes

156 Díaz, Montero, Aedo & Dodero

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

six complementary design views to deal with the VEs requirements: structure,
presentation, behavior, navigation, users, and access. We then analyze the
similarities between hypermedia and VEs to justify the application of hypermedia
techniques in this domain and describe how to use a specific development
method, called ADM, in the conceptual modeling of VEs, highlighting the main
benefits of this approach. Then, various related works are surveyed and
compared with our approach. Finally, a summary and some considerations for
future work are outlined.

Conceptual Modeling of VEs

Most VEs have been developed using both toolkits and authoring systems in
unsystematic fashion. Toolkits such as Vortex (cm-labs.com/products/index.php)
or MAVERIK (aig.cs.man.ac.uk/maverik/) provide an application programming
interface with which a skilled programmer can create VEs from scratch. In
authoring tools like SENSE8 (www.sense8.com/index.html) or DIVISION
Reality (www.ptc.com/products/), the access to programming libraries is done
through a graphical interface with support for user customization. Although they
help in the virtual environment construction, basically affording a rapid prototyping
process, the usability of the resulting system can be compromised since end-user
requirements are sacrificed to get the prototype working according to the
capabilities of the development environment. Even an unfortunate choice of a
tool can be a critical factor in the success or failure of the final system (Smith
& Duke, 2000). Concerning the development process itself, when all design
decisions are taken in the implementation phase and hidden into the code,
usability, maintainability, and reusability are compromised. There is not room for
the discussion of different design alternatives; any change or future maintenance
has to be made diving into the final code, and the success of the system depends
only on the skill of the developer to manage the toolkit. In order to provide a more
flexible development process, a high-level modeling phase, proposing a series of
mechanisms to express the system features in an abstract and complete way, can
be introduced just before the implementation phase, so that implementation
details are hidden in a first specification stage. This approach enriches the
technology-driven development method in several ways, including: VE develop-
ment is no more constrained by a particular toolkit; reuse and redesign for future
designs are cheaper and easier to afford; it can be verified if the VE meets the
requirements before implementing the system or prototype; and there is a shared
representation language (the conceptual model) that will facilitate the commu-
nication among the different team members, including stakeholders.

Conceptual Modeling of Virtual Environments 157

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

There still is little knowledge about how VEs are designed, what issues have to
be addressed, and, what is worse, little guidance about how design should be
carried out. Some works have been aimed at these issues, but in this chapter we
will focus on the ones that deal with a very specific question related to the goals
of our proposal: Which different design perspectives or products have to be
considered in the conceptual modeling of VEs?

Kim, Kang, Kim, and Lee (1998) state three different perspectives needed for
the VE modeling:

• Form determines the appearance of virtual objects and the scene structure
of the virtual world.

• Function encodes what virtual objects do, whether autonomously or in
response to external stimuli.

• Behavior determines how virtual objects react to events.

From the point of view of Smith and Duke (2000), five views make up VE design:

• Object component decomposition identifies the objects that are required
in a VE. The output is a tree structure showing the decomposition of virtual
object and any associated behavior.

• Object appearance determines the level of rendering for each of the
objects of an environment according to their realism.

• Object behavior defines the functions and triggers that cause the object
to react to events.

• Embodiment determines the virtual representation of the user and tasks
that she can carry out in the environment.

• Navigation identifies the possible paths of transitional or orientational
navigation for the user, including navigation aids.

Finally, Tanriverdi and Jacob (2001) present a methodology based on a design
model for developing reality interfaces. In the high-level design phase of the
methodology, they take into account the following design aspects:

• Graphics specify a high-level description of graphic requirements for
virtual objects.

• Behaviors identify object behaviors, classifying them into simple physical,
simple magical, or composite behavior categories.

• Interactions identify interaction requests to objects and behavioral changes
caused by these requests.

158 Díaz, Montero, Aedo & Dodero

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Internal communications specify control and coordination among the
components of objects.

• External communications specify control and coordination among ob-
jects.

In the following section we thoroughly discuss the inclusion of a conceptual
modeling phase into the traditional development process of VEs. We will
consider conceptual modeling in a broad sense as a mechanism to specify all the
features of the system, both static and dynamic, and not just as a data modeling
technique. In this sense, we will consider a set of complementary design views
that can help designers acquire a better understanding of the skills required to
develop VEs and the issues that need to be addressed in the development of this
kind of interactive systems.

Conceptual Modeling as a Software Developing
Technique

Conceptual modeling consists of applying a high level of abstraction to describe
the static and dynamics of software system, so that designers are compelled to
translate the application requirements into logical solutions not biased by
technical issues. This property, usually referred to as Conceptualization
Principle (Hofstede & van der Weide, 1993), puts the stress on the need to
produce platform-independent design entities, assuming the definition of design
entity given in IEEE (1990), that are used to gather the characteristics and
dynamics of the universe of discourse as well as the system requirements.

Abstraction is a key activity in software development and in computer science
in general, but it is also a quite typical problem. Technical details and constraints
often blur design solutions, making them difficult to understand for a
multidisciplinary audience and, what is worse, difficult to reuse and evaluate. In
the case of interactive systems and VEs, this situation worsens with the massive
use of rapid prototyping techniques that tend to shift the user’s attention from the
system structure and services to interface features. Moreover, the high cost of
developing VE prototypes often results in little flexibility to changes and poor
quality and usability. However, as usability is considered one of the most critical
quality criteria of any interactive system, the system success will heavily depend
on how the VE system components and tasks are represented (Stanney,
Mollaghasemi, Reeves, Breaux, & Graeber, 2003).

Conceptual modeling has been massively used in software design since it
provides a number of products readable enough to analyze the structure and

Conceptual Modeling of Virtual Environments 159

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

function of a system, even when the development team is made up of people with
different backgrounds, as happens in VEs. A conceptual model of a specific VE
will represent virtual spaces, objects, behaviors, and services using concepts that
are widely accepted from the users’ perspective and, at the same time, that are
independent from any implementation platform. Conceptual modeling is then a
powerful abstraction tool that helps in disregarding irrelevant structures by
building relationships between idealized concepts that focus on what is essential
to produce a specification of a system that describes how the system is and how
it should work. Thus, the conceptual model of a VE will concentrate on relevant
entities, relationships, and behaviors, and will not take into account the compu-
tational technology used to implement the virtual environment, such as hardware
(i.e., computer architectures), operating systems, input (i.e., HDMs or gloves),
and output devices (i.e., visual or tactile displays).

When the development of an interactive system is addressed, whether a VE or
any other kind of interactive system, two points of view can be adopted:
behavioral, taking upon the user perspective and the interaction with the
software application, and constructional, turning over the software developer
view and the software system design (Gabbard, Hix, & Swan, 1999). In the next
section, we present the basis of a constructional approach for the conceptual
design of VEs.

A Constructional Approach for VE Conceptual Modeling

A VE can be conceptualized in terms of the following components and functions
defined in Díaz and Fernández (2000): (1) a virtual space: most VEs are built
upon a spatial metaphor such as a building or a city; (2) inhabitants: objects are
populated within the virtual environment space; (3) user embodiments: users
have a body image representation as avatars or software agents; (4) mobility:
users and objects browse through virtual spaces; (5) behavior: users interact
with the virtual environment.

In order to specify all these static and dynamic features and requirements in a
progressive and integrated way, complementary design perspectives related to
the VE components and functionalities have to be managed in the conceptual
modeling process. In particular, in the constructional approach here introduced,
where HCI issues will be considered as a cornerstone, we propose six design
views: structural representation of the domain, virtual objects presentation,
virtual objects behavior, navigation through the VE, user modeling, and VE
access. These design views, their underlying requirements, and other relevant
issues concerning VE design are discussed in the next paragraphs.

160 Díaz, Montero, Aedo & Dodero

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Structural Representation of the Domain

A VE is the representation in a computer of a particular domain, whether real or
not, for instance, a virtual art museum where a user can browse its rooms and
watch its collections following different exploration styles. Such a domain has an
underlying structure that is expressed in terms of concepts or “things” (e.g., the
entities of an E-R model or the classes and meta-classes of an object-oriented
UML model) and structural relationships (e.g., the relationships among E-R
entities or the structural relations and associations in an UML model), producing
what are usually known as data models. Thus, the virtual art museum can be
conceptually structured as a collection of rooms that in turn are composed of a
number of artworks performed by authors who are often organized into schools
or periods. Moreover, things have properties or attributes (Wand, Storey, &
Weber, 1999), depending on whether they are concrete things or conceptual
ones, which have to be incorporated to their model. Properties can be intrinsic,
when they depend on just one thing (for example, a workart has a type—such as
painting, sculpture—and a date); or mutual/relational, when they depend on two
or more things (for example, the workart inclusion in a specific school depends
on the existence of both a workart and a school). In addition, properties and
attributes may have an explicit value (e.g., workart dating) or a calculated one
(e.g., workart number of visits).

Although VEs are traditionally designed just taking into account the spatial
structure of virtual spaces, this data modeling perspective can help to analyze and
acquire a deeper knowledge on the domain to be represented. Different data
modeling techniques have been proposed in the literature to capture the
structural features of software systems, such as E-R model, semantic modeling,
or object-oriented approaches, whose expressiveness chiefly depends on the
richness and semantics of their constructs. Indeed, the study of the kinds of
relationships among entities has given place to several works, such as Wand et
al. (1999), where conceptual models are analyzed from an ontological perspec-
tive, or Welty and Guarino (2001), who explore different ways of defining
taxonomies according to the actual mereological or parthood relationships.
Concerning VE structural modeling, some authors like Xiaoguang, Dongmu, and
Bingrong (1999) propose the use of an object-oriented approach for data
modeling, while De Troyer, Bille, Romero, and Stuer (2003) make use of
ontologies to describe the virtual world domain. Either one technique or another
is applied, the important thing is that all these approaches provide a high-level
description of the application domain using well-known terms that can be
understood by both domain experts and stakeholders, so that they can actively
collaborate with developers, from the very beginning taking part in a user-
centered process oriented towards enhancing usability.

Conceptual Modeling of Virtual Environments 161

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Virtual Objects Presentation

Virtual objects are placed in the structures to make up the virtual world. The
appearance of such virtual objects according to their geometric structures and
the rendering level determines the realism of a VE. This information may be too
concrete as to be specified during a conceptual design. However, the purpose of
conceptual modeling of the virtual objects presentation is to organize and
harmonize each virtual object and its different components in different dimen-
sions, such as the time and the two- or three-dimensional space, to produce a
high-level picture of the VE rendering features. The goal is not to produce a 3D
prototype, but a sketch representing the world or part of it that can be discussed
with users to improve design decisions before implementing the system. The
same as it is done in hypermedia presentation modeling (Díaz, Aedo, & Montero,
2001b), designers can perform the following activities maintaining a reasonable
level of abstraction: creating templates or interface mock-ups by placing abstract
objects into spaces; defining visual clues or human-computer interaction rules to
increase the system usability; and setting space and time-based relationships
among components to create aesthetic and dynamic multimedia compositions.
Thus, within a room of a museum, workarts can be placed as blackboxes into the
visualization and interaction space, to indicate a relative location and orientation
independent of users’ viewpoints.

Virtual Objects Behavior

Another important and critical issue in the conceptual modeling of virtual
environments is the specification of the interaction and behavior, insofar as these
systems are intrinsically interactive, and the high level of realism of their
appearance leads users to a high expectation about the system fidelity with
virtual object behavior. For example, a door that has been rendered with realistic
textures gives the feeling that it can be opened and closed.

Therefore behaviors, whether reactive, interactive, or proactive, should be
considered during conceptual modeling. In such behaviors, one or more agents
can be involved, assuming as agent any object or user that can initiate a dynamic
process, giving place to any kind of result affecting to the environment and/or
interacting with the user. Taking into account the involved agents, we can
identify two types of behaviors: intrinsic behaviors, depending only on one object
(for example, when the attribute “number of visits” of a workart is higher than
100, it is marked with a visual clue), and mutual behaviors, depending on two or
more agents (for example, whenever a user visits a workart, the attribute
“number of visits” of that workart is increased). The latter can be further divided

162 Díaz, Montero, Aedo & Dodero

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

into user-object behavior (as the example shown before) and object-object
behavior (for example, if two moving objects meet a “crash” object will be
shown).

Interaction modeling can be tackled from a conceptual point of view, creating
high-level descriptions of the system reactions and completing their specifica-
tions in a further detailed design. This design perspective makes it possible to
model complex behaviors, including interactive behaviors, reactions, proactive
actions, access to external applications (e.g., inference engines to support
adaptive interfaces, databases to create objects dynamically), or the inclusion of
virtual objects and structures that are created or modified at runtime (Díaz, Aedo,
& Panetsos, 2001a). The advantages of this approach are twofold. First,
complex behaviors can be broken down into more simple ones, providing a library
of behaviors that designers can reuse to create new behaviors. Second, this high-
level description enables designers to assess the level of detail required in
communicating the behavior specification to software developers being pro-
gramming language independent.

Some approaches to model interaction and behavior include the use of state
machines (Tanriverdi & Jacob, 2001) or DFDs and statecharts (Kim et al.,
1998).

Navigation Through the Virtual Environment

Unfamiliar and large-scale virtual environments are difficult to navigate. There
are two key aspects concerning the process of navigating or browsing the virtual
space. One is wayfinding, which consists of determining a path within the
environment which satisfies the user expectations and needs. The other one is
motion control, which is much more dependent on the user interface provided by
the virtual environment software (Volbracht & Domik, 2000). In this work, we
will focus on the first issue, since the second one is a technological and not
conceptual aspect.

An appropriate spatial structure design describing the relationships among virtual
spaces can help users to identify and locate objects. But navigation modeling has
to deal not only with the conventional navigation through a continuous 3D space,
but also with what is called discontinuous movements (or hyperlinks) that allow
a user to jump from one location to another one which is not related spatially, in
order to reduce the distance and the navigation time (Ruddle, Howes, Payne, &
Jones, 2000). For example, from a workart in the museum, we can move to pieces
of the same author, school, style, or theme, for which we will be offered different
links.

Conceptual Modeling of Virtual Environments 163

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The use of these associative hyperlinks can derive on disorientation problems as
it happens in most hypermedia systems where this kind of semantic movement
represents the basic information access paradigm. To try and avoid disorienta-
tion, VEs can benefit from the experience in hypermedia navigation modeling
(Nielsen, 1995). In fact, they can incorporate appropriate visual clues and
navigational aids, such as maps, indexes, footprints, search engines, and so on.
Moreover, they can facilitate users’ spatial awareness, permitting them to apply
their real-world navigational experience. For instance, Vinson (1999) presents
guidelines for the design and placement of landmarks in VEs.

User Modeling

There is a key feature that makes VEs different from any other software
application, that is the user embodiment, which will play an important role in the
realism and usefulness of the system. This issue involves different aspects such
as the degree of immersiveness that the user experiments with depending on its
physical representation by means of avatars, the availability and degree of
presence, the location, the identity, the activity, viewpoints and actionpoints,
gesture and facial expression, history of activity, representation across multiple
media, autonomous and distributed body parts, efficiency, manipulating one’s
view of other people, and truthfulness (Benford, Bowers, Fahlén, Greenhalgh, &
Snowdon, 1995). Most of these issues are technology-dependent so that they go
beyond the scope of conceptual modeling. However, we consider avatars as
virtual objects representing the participants in the virtual environment, and,
consequently, considerations about virtual objects’ presentations and behavior
should be taken into account.

Moreover, we will point out other issues such as access needs and preferences that
different kinds of users may have, involving both private objects and spaces. In VEs,
there is a need to model the user profile with all of her abilities such as to collect, to
move, or to own objects.

In addition, in cooperative or collaborative virtual environments (CVEs) such as
MASSIVE (Greenhalgh & Benford, 1995) or DIVE (Hagsand, 1996), there is a need
to model groups of users to assist them in communicating, in collaborating, and in
coordinating their activities.

Virtual Environment Access

Access is an essential requirement in most multi-user information systems
inasmuch as different users have different responsibilities, needs, and prefer-
ences that determine their ability to access information. Thus, stereotypes or

164 Díaz, Montero, Aedo & Dodero

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

user profiles are used to provide a kind of personalized access in large
information spaces, so that disorientation problem falls off as far as users face
up a reduced and supposedly familiar space.

Another issue that has to be considered is information security, taking for granted that
security is not only related to confidentiality or privacy, as commonly believed, but
also to integrity and availability (Aedo, Díaz, & Montero, 2003). For example, some
authors point out that in a CVE there is sensitive information that should be protected
(Pettifer & Marsh, 2001). For instance, for each shared object, control rights to
manage the object have to be authorized.

As a summary of this section, Figure 1 illustrates how the six design views tackle
with different but complementary aspects of a same system.

Using Hypermedia Techniques for the
Conceptual Modeling of VEs

Hypermedia provides mechanisms for structuring and navigating large quantities
of multimedia and highly interactive information. There are a number of

Figure 1. Design views in conceptual modeling of VEs

Conceptual Modeling of Virtual Environments 165

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

similarities between VEs and hypermedia systems that can be exploited to apply
hypermedia design methods into the virtual environments arena.

Hypermedia systems organize information as a net of interrelated nodes which hold
multimedia content. These nodes can be freely browsed by users selecting links and
making use of other advanced navigation tools, such as indexes or maps (Nielsen,
1995). In a similar way, VEs can be characterized by a net of interrelated “rooms”
or “virtual spaces,” which hold virtual objects, where users can move freely.
Moreover, VEs and hypermedia environments have to deal with interactive behav-
iors, such as responses to specific events that occur, as well as to include complex
multimedia compositions that have to be usable and aesthetic at the same time. For
readability shake, Table 1 includes the definitions of the different hypermedia
components that will be referred to in this chapter and which are based on the
Labyrinth hypermedia reference model (Díaz et al., 1997, 2001a).

With regard to typical problems, hypermedia users, the same as VE users, suffer
from the same well-known navigation problem: the users’ lack of knowledge about
their relative position, the disorientation into the system, and a general lack of
familiarity with the system operation (Conklin, 1987; Ruddle, Payne, & Jones,
1998).

Most differences between hypermedia systems and VEs concern technological
issues, since from a conceptual perspective we can identify equivalences among

Component Description
Simple node Abstract container of information
Composite node Node made up of other simple or composite nodes according to a

specific structural relationship
Multimedia content Information item

Composite content

Content made up of other simple or composite contents according
to a specific structural relationship

Structural relationship Relation settled upon a composite and its components
Location Position of a content into a node
Space-based constraint Relative spatial position of a content depending on the position of

other content
Time-based constraint Relative temporal position of a content depending on the position

of other content
Link Navigational connection defined between two sets of source and

target anchors
Anchor Reference to a part of a node, content, or contextual content (a

content presented in a node) used to set up links
Attribute Property that can be assigned to a user, node, content, or link to

add useful meta-data
Event Set of actions executed when a condition is fulfilled (e.g., the

mouse is over a content or a timeout expires); events are used to
model interactive behaviors (e.g., pop-up windows, simulations)
and to include procedural specifications of the hyperdocument
elements (e.g., adaptive links)

User Individual or group of users (profiles, stereotypes, or collaborative
group) who access the system under certain conditions

Table 1. Hypermedia components

166 Díaz, Montero, Aedo & Dodero

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

concepts and constructs in both domains. Table 2 summarizes the different
conceptual components in a domain and its interpretation in hypermedia and VE.

Any application domain has simple or composite classes or types of things (Wand
et al., 1999) which turn into simple/composite nodes in hypermedia and virtual spaces
or worlds into the VE. For example, a virtual museum is converted into a hypermedia
composite node, which will aggregate the different components of the system.

There are also things that appear in the domain (Wand et al., 1999), which are the
objects and the users’ embodiments of VEs and the hypermedia contents, whether
simple or composite according to their nature. For example, Albrecht Dürer’s “Self-
Portrait” or Velazquez’s painting “The Surrender of Breda” are things that appear
in the Prado Museum in Madrid. If we consider just the paintings, they will be treated
as simple objects, but if we add a description of the workart, this aggregation will be
a composite object.

Structural relationships among things (Wand et al., 1999) appear in both domains at
an abstract level. Mutual properties not related with navigation, which is considered
as a special case, are gathered in the spatial structure of the VE and in several
relationships in the hypermedia domain (location, spatial, and time-based con-
straints).

Conceptual Elements Hypermedia Elements Virtual Elements

Simple node Simple composite class or type

Composite node
Virtual spaces

Multimedia content
Virtual object

User embodiment

Simple composite thing

Composite content Virtual composite object

Structural relationship Structural relationship

Location

Space-based constraint

Relationship and mutual properties

Time-based constraint

Spatial structure

Intrinsic properties Attribute Attribute

Navigational relationship Link

Anchor

Link

Component part

Derived properties, things, and

relations

Interactive, reactive, and proactive

behaviors

Event Virtual object behavior

User and groups User and groups User and groups

Table 2. Conceptual components in hypermedia and virtual environments

Conceptual Modeling of Virtual Environments 167

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Navigation relationships are considered in hypermedia and VEs through links and
anchors, the latter referring to a virtual component or part of it in a virtual world.

Dynamics, in the form of derived or calculated components and all kinds of behaviors,
are represented by means of events in hypermedia which can be triggered by user-
dependent or system-dependent conditions. This powerful specification mechanism,
thoroughly discussed in Díaz et al. (2001a), can be translated to VEs to model the
virtual objects behavior.

Finally, the existence of users and groups has been considered in hypermedia
systems from the very beginning since they were envisaged as cooperation enabling
tools. Similarly, users have to be considered in VEs, not only for user embodiment,
which is a special case of multimedia object, but as an entity whose goals,
preferences, needs, or responsibilities have to be analyzed to determine the access
capabilities of each kind of user.

Given these similarities between these two kinds of interactive systems, we propose
to apply hypermedia tools to deal with VE conceptual modeling, since hypermedia
techniques are mature enough to contribute in the development process. In particular
in this chapter, we suggest the use of Ariadne Development Method (ADM; Díaz
et al., 2001b) to provide conceptual and methodological guidance to VE designers.

Overview of ADM

ADM proposes a systematic, integrative, and platform-independent process to
specify and produce hypermedia and Web applications. In order to cover the
modeling process of hypermedia and Web applications, three phases are
proposed—conceptual design, detailed design, and evaluation—as shown in
Figure 2.

Conceptual design is focused on identifying abstract types of components,
relationships, and functions; Detailed design is concerned with specifying the
system features, processes, and behaviors in a so detailed way that the application
might be semi-automatically generated; and, finally, Evaluation is concerned with
using prototypes and specifications to assess the system usability. Arrows in Figure
2 represent relationships among phases and do not represent any kind of sequence
among them. ADM does not impose a rigid process model, letting developers decide
the best way to face their work according to their needs. Moreover, the method
provides a number of validation and integrity rules, both at the intra and inter phase
level, to check completeness, consistency, and integrity among the various design
products. All of these features have as foundation the Labyrinth reference model
(Díaz et al., 1997, 2001a) that provides the core components of any hypermedia
application and are supported by a design toolkit called AriadneTool (Montero, Díaz,
& Aedo, 2003).

168 Díaz, Montero, Aedo & Dodero

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 2. The ADM process model

ADM fits the incremental, iterative, and user-centered nature of the VE develop-
ment process. Taking into account the scope of this chapter, we will only focus on
how the conceptual design phase of ADM can be accommodated in the design of
virtual spaces, the definition of objects, users and their functionality and privileges,
understanding the need for specific mechanisms that deal with their detailed design
(e.g., 3D visual space, a multi-modal interface, and an immersive environment), and
evaluation (e.g., usability criteria (Hix & Gabbard, 2001).

Modeling VEs Using ADM Conceptual Design Phase

ADM conceptual design approaches development from a high level of abstrac-
tion where solutions are expressed in terms of expected types of elements. The
activities performed in this phase, as well as the design products generated, are
summarized in Figure 3.

Figure 3. The ADM conceptual design phase

Conceptual Modeling of Virtual Environments 169

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Definition of the Logical Structure

VEs represent a particular domain, whether real or not, such as a virtual museum
where a user can explore its rooms and watch its collections from different
styles. These structural relationships that appear in the domain of the application
can be represented by means of composite nodes that are connected to their
components (simple or composite nodes) by means of two possible structural
relationships: aggregation, which is a composition relation used as a mechanism
to refer to a set of nodes as a whole; and generalization, that represents an
inclusion relation involving inheritance mechanisms. For example, Figure 4
shows a possible structural diagram created during this activity for a virtual
museum using aggregations and generalizations to represent a complex struc-
ture. Thus, the museum aggregates a shop, an information desk, and the
collection. In turn the collection is made up of a number of rooms, each of which
holds a description, an area where workarts are shown, and information on the
corresponding authors and schools. The school can be specialized into particular
cases such as the French or the Flamish Schools. As can be seen in Figure 4, this
schematic representation is understandable enough to be assessed with stake-
holders, and it gathers the environment structure. Objects populating the world
will be defined in the “Specification of Entities” activity (below), so that a
progressive level of detail is supported.

Figure 4. ADM structural diagram for a virtual museum

170 Díaz, Montero, Aedo & Dodero

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Study of the System Function

This activity is oriented towards describing the different functions offered to the
users. Inside the VE, users can browse through different rooms, which can be
connected by gates and interact with objects. Moreover, users of virtual
environments, like hypermedia ones, have to maintain knowledge of their location
and orientation; thus, navigation aids are needed. Therefore, two different kinds
of functions are specified: the navigation options offered to the users are
represented in a navigation diagram, including both links and other navigation aids
(for instance, the navigation structure in the virtual museum is made up of each
path connecting two rooms that can be followed by users); and information
concerning other services, such as searching for a specific painting or chatting
with other users, is documented in the functional specifications.

Figure 5 shows an example of navigation modeling for the virtual museum. The use
of hypermedia techniques makes it possible to deal with special kinds of useful links,
including: n-ary links (see the connection among the search engine and the possible
destinations), bi-directional links (see links “Gate,” “Includes,” “Belong to,” or “Did”
in the figure), or reflexive links (see links “Gate” or “Next/Previous”), improving the
browsing capabilities of the system.

Figure 5. Part of the ADM navigation diagram of a virtual museum

Conceptual Modeling of Virtual Environments 171

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Specification of Entities

In this activity nodes are specified including their contents (virtual objects),
semantics (attributes or properties), and behavior (event-based specifications).
Thus, the different spaces identified in the structural diagram are now composed
of a number of objects (the components of the virtual world) using the internal
diagrams. For example, the internal diagram of the node “Workart” in Figure 4
will contain a number of generic workarts organized in the presentation and
visualization space in a specific way. The use of ADM makes it possible to place
objects not only in the space but also in a timeline. For instance, we can decide
to place a textual explanation in the hole assigned to a workart and a period of
time after displaying the painting itself. Moreover, not only absolute positions can
be defined as in Usaka, Yura, Fujimori, Mori, and Sakamuram (1998), but also
space and time-based constraints can be expressed. For example, we can
establish that two paintings on a wall are aligned by their tops by means of an
alignment (Díaz et al., 2001a) instead of calculating their (x,y,z) position.
Similarly, we could define that when entering a room, a video describing the
contents is shown and as soon as it finishes the virtual workarts scene is
displayed.

A special case of objects are user embodiments. Each avatar will have an internal
diagram that will be associated to a specific kind of user (see next activity) so that
this object will be placed at runtime according to the position of the corresponding
user.

Moreover, attributes or properties that will increase the node, and contents semantics
and events that will model its behavior are defined in the attributes and events
catalogue respectively. For example, all the objects representing an avatar will be
associated with the same event that puts that object into the right position according
to the user’s location in the world. Thus, the same event can be reused to model the
same behavior. An event can be specified using any process modeling technique,
including statecharts, DFDs, and UML activity and sequence diagrams.

User Modeling

This activity is devoted to identifying the expected types of users of the system.
In VEs, there is a need to model the user profile with all of her abilities such as
to collect, to move, or to own objects. Moreover, in CVEs there is a need to model
groups of users to assist them in communicating, in collaborating, and in
coordinating their activities. To model the user structure, an RBAC model is
assumed (Aedo et al., 2003), which means that roles (stereotypes or responsi-
bilities) and teams (group of roles) are identified in the user diagram.

172 Díaz, Montero, Aedo & Dodero

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

As an example, Figure 6 shows an ADM user diagram for a virtual museum. The set
of users is represented as a team made up of two kinds of people: visitors and staff.
In turn, visitors are specialized into other roles to offer more services to registered
users. This product makes it possible to analyze the different kinds of users of the
system to achieve a deeper understanding of their needs and abilities to access the
virtual environment and its components.

Definition of the Access Policy

This step is intended for defining which actions are permitted for each subject,
that is, for each role and team defined in the user diagram. With this purpose an
RBAC model for hypermedia is assumed (Aedo et al., 2003). According to this
model, access rights are assigned in terms of hypermedia objects (nodes and
contents) and subjects (teams and roles). Access rights include the ability to see,
personalize, and edit.

In the case of a virtual museum, this activity can be used to describe adaptative virtual
environments or security rules. For example, using the structural diagram of Figure
4 and the user diagram of Figure 6, it can be established that when a frequent user
accesses the system, she will be presented with her list of favorites. An access rule
can establish that staff members can modify the workarts included in a room or that
frequent users can add their own paths into the virtual world.

Figure 6. ADM user diagram for a virtual museum

Conceptual Modeling of Virtual Environments 173

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Conclusions and Future Trends

This chapter has proposed and described a set of integrated design views to set
up the basis of a constructional approach for the VE conceptual modeling, and
how hypermedia modeling techniques can help to provide mechanisms for
structuring and navigating large quantities of multimedia and highly interactive
information in the VE arena. Therefore, stakeholders, together with designers
and developers, can describe the main specifications of the system using a high-
level description, so that immediately afterward specified elements might be
semi-automatically generated in a straightforward way to produce prototypes.
Moreover, these prototypes can be used to enhance the system usability in terms
of a number of well-defined criteria (Hix & Gabbard, 2001) as a way of
improving the design, whether conceptual or detailed.

Concerning the design views, a key difference between our approach and other
works (Kim et al., 1998; Smith & Duke, 2000; Tanriverdi & Jacob, 2001) is that they
primarily focus on behavior and interaction issues, whereas our scope is much wider.
Firstly, structural representation and navigation are issues that should be considered
to produce useful environments since they are concerned with how the application
domain is organized and how that domain is explored, respectively. Secondly, we
have not considered the division between interaction and behavior since both issues
can be modeled using the same conceptual mechanisms. And thirdly, as virtual
environments can be collaborative or simply stereotypes, or user profiles can be
required, the need for establishing access rules is a relevant issue addressed in ADM.

That is not to say that only hypermedia modeling techniques should be used for the
VE conceptual modeling, but designers should take advantage of the experience
gained in years of research in the design of interactive systems, the same as
hypermedia engineering made with software engineering (Lowe & Hall, 1999).

Moreover, many research and development issues are still open:

• Develop conceptual models whose components describe the problem
domain in terms of virtual components.

• Specify a number of stages and products that make it possible to guide the
development process in a systematic and integrated way. As a result,
systems will have better quality, usability, maintainability, and reusability.

• Merge the conceptual design of VEs with current toolkits in order to generate
the code automatically, as well as documentation about the system develop-
ment.

• Enhance the design process with the use of design patterns for virtual
environments (Díaz & Fernández, 2000). Design patterns capture knowledge
of how and when to apply the solution to a recurring problem, besides providing

174 Díaz, Montero, Aedo & Dodero

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

a shared vocabulary for expressing and communicating such a knowledge. This
kind of pattern could help to match design models with implementations.

Acknowledgment

The work presented here is part of the Ariadne project (TIC2000-0402) funded
by MyCT (Spain).

References

Aedo, I. , Díaz, P., & Montero, S. (2003). A methodological approach for
hypermedia security modeling. Information and Software Technology,
45(5), 229-239.

Benford, S., Bowers, J., Fahlén, L.E., Greenhalgh, C., & Snowdon, D. (1995).
User embodiment in collaborative virtual environments. Proceedings of
CHI 95: Human Factors in Computing Systems (pp, 242-249). ACM
Press.

Booch, G., Jacobson, I., & Rumbaugh, J. (1998). The Unified Modeling
Language. Addison-Wesley.

Chen, P. (1976). The entity-relationship model—toward a unified view of data.
ACM Transactions on Database Systems, 1(1), 9-36.

Conklin, J. (1987). Hypertext: An introduction and survey. IEEE Computer,
20(9), 17-41.

De Troyer, O., Bille, W., Romero, R., & Stuer, P. (2003). On generating virtual
worlds from domain ontologies. Proceedings of the 9th International
Conference on Multi-Media Modeling (pp. 279-294).

Díaz, P., Aedo, I., & Panetsos, F. (1997). Labyrinth, an abstract model for
hypermedia applications. Description of its static components. Informa-
tion Systems, 22(8), 447-464.

Díaz, P., Aedo, I., & Panetsos, F. (2001a). Modeling the dynamic behavior of
hypermedia applications. IEEE Transactions on Software Engineering,
27(6), 550-572.

Díaz, P., Aedo, I., & Montero, S. (2001b). Ariadne: A development method for
hypermedia. Proceedings of Dexa 2001. Berlin: Springer Verlag (LNCS
2113, 764-774).

Conceptual Modeling of Virtual Environments 175

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Díaz, A., & Fernández, A. (2000). A pattern language for virtual environments.
Journal of Network and Computer Applications, 23(3), 291-309.

Gabbard, J.L., Hix, D., & Swan, J.E. (1999). User-centered design and
evaluation of virtual environment. IEEE Journal of Computer Graphics
& Applications, 19(6), 51-59.

Gibbs, W.W. (1994). Software’s chronic crisis. Scientific American, 72-81.

Greenhalgh, C., & Benford, S. (1995). MASSIVE: A collaborative virtual
environment for teleconferencing. ACM Transactions on Computer-
Human Interaction, 2(3), 239-261.

Hagsand, O. (1996). Interactive multiuser VEs in the DIVE system. IEEE
Multimedia, 3(1), 30-39.

Hix, D., & Gabbard, J.L. (2001). Usability engineering of virtual environments.
Chapter 39 in K. Stanney (Ed.), Handbook of virtual environments:
Design, implementation, and applications. Publisher.

Hofstede, A.H.M., & van der Weide, Th.P. (1993). Expressiveness in concep-
tual data modeling. Data and Knowledge Engineering, 10, 65-100.

IEEE Standard Glossary of Software Engineering Terminology. IEEE Std
610.12-1990.

Kessler, G., Bowman, D., & Hodges, L. (2000). The simple virtual environment
library: An extensible framework for building VE applications. Presence:
Teleoperators and Virtual Environments, 9(2), 187-208.

Kim, G.J., Kang, K.C., Kim, H., & Lee, J. (1998). Software engineering of
virtual worlds. Proceedings of the ACM Symposium on Virtual Reality
Software and Technology (pp. 131-138).

Lowe, D., & Hall, W. (1999). Hypermedia and the Web: An engineering
approach. New York: John Wiley & Sons.

Montero, S., Díaz, P., & Aedo, I. (2003). A design toolkit for hypermedia
applications. Proceedings of Web Engineering (ICWE 2003). Berlin:
Springer Verlag (LNCS 2722, 214-217).

Pettifer, S., & Marsh, J. (2001). Collaborative access model for shared virtual
environments. Proceedings of International 10th IEEE International
Workshops on Enabling Technologies: Infrastructure for Collabora-
tive Enterprises (WET ICE 2001) (pp. 257-262).

Preece, J., Rogers, Y., & Sharp, H. (2002). Interaction design: Beyond human
computer interaction. New York: John Wiley & Sons.

Rolland, C., & Prakash, N. (2000). From conceptual modeling to requirements
engineering. Annals of Software Engineering, 10, 151-176.

176 Díaz, Montero, Aedo & Dodero

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Ruddle, R., Payne, S., & Jones, D. (1998). Navigating large-scale “desk-top”
virtual buildings. Presence, 7(2), 179-192.

Ruddle, R.A., Howes, A., Payne, S. J., & Jones, D. (2000). The effects of
hyperlinks on navigation in virtual environments. International Journal of
Human-Computer Studies, 53(4), 551-581.

Smith, S.P., & Duke, D.J. (2000). Binding virtual environments to toolkit
capabilities. In M. Gross & F.R.A. Hopgood (Eds.), Computer Graphics
Forum, 19(3), C81-C89. Blackwell Publishers.

Stanney, K.M., Mollaghasemi, M., Reeves, L., Breaux, R., & Graeber, D.A.
(2003). Usability engineering of virtual environments (VEs): Identifying
multiple criteria that drive effective VE system design. International
Journal of Human-Computer Studies, 58(4), 447-481.

Tanriverdi, V., & Jacob, R.J.K. (2001). VRID: A design model and methodology
for developing virtual reality interfaces. Proceedings of the ACM Sympo-
sium on Virtual Reality Software and Technology (pp. 175-182).

Usaka, T., Yura, S., Fujimori, K., Mori, H., & Sakamuram, K. (1998). A
multimedia MUD system for the digital museum. Proceedings of the 3rd
Asia Pacific Computer Human Interaction (pp. 32-37). IEEE CS Press.

Vinson, N.G. (1999). Design guidelines for landmarks to support navigation in
virtual environments. Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems (pp. 278-285).

Volbracht, S., & Domik, G. (2000). A model for developing effective navigation
techniques in virtual 3D environments. Guiding Users Through Interac-
tive Experiences: Usability Centred Design and Evaluation of Virtual
3D Environments, Workshop in Paderborn, Germany.

Wand, Y., Storey, V.C, & Weber, R. (1999). An ontological analysis of the
relationship construct in conceptual modeling. ACM Transactions on
Database Systems, 24(4), 494-528.

Welty, C., & Guarino, N. (2001). Supporting ontological analysis of taxonomic
relationships. Data & Knowledge Engineering, 39, 51-74.

Xiaoguang, Z., Dongmu, W., & Bingrong, H. (1999). An object-oriented data
framework for virtual environments with hierarchical modeling. ACM
SIGSOFT Software Engineering Notes, 24(1), 65-68.

Design of Believable Intelligent Virtual Agents 177

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter VII

Design of
Believable Intelligent

Virtual Agents
Pilar Herrero

Universidad Politécnica de Madrid, Spain

Ricardo Imbert

Universidad Politécnica de Madrid, Spain

Abstract

Virtual environments (VEs) have a set of characteristics that make them
hard to be designed and implemented: distributed nature, high-level
graphical design, technology novelty, and so forth. Because of the criticism
or the repetitiveness of some roles played in them, some of the characters
of the VEs usually must be automated. The risk is to pay a too high price,
losing attractiveness, usability, or believability. The solution proposed in
this chapter is to control the automated avatars by associating them with
software agents, becoming intelligent virtual agents (IVAs). With this aim,
an architecture to manage the perception and cognition of the agent is
described. On one hand, the perceptual module of this architecture
consists of a human-like model, based on one of the most successful
awareness models in computer-supported cooperative work (CSCW), called

178 Herrero & Imbert

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the Spatial Model of Interaction (SMI). On the other hand, the cognitive
module proposes an easy-to-configure structure, providing it with the
precise mechanisms to exhibit reactive, deliberative or, even, more
sophisticated social behaviors, incrementing the believability of the IVA in
the VE.

Introduction: The Problem of
Usability with Immersive Systems

To face up properly to the development of virtual environments (VEs) from a
designer point of view, it should be first perceived from the perspective of their
users’ expectations. This principle, which in fact could be extended to the design
of any other kind of system, gathers special importance to VEs, as far as their
users are actual participants in the system, beyond their classical external role.

On their interaction with VEs, users test the sensation not only by actively
perceiving the environment, but also by being perceived by other peers. This
kind of interaction could be considered, therefore, closer to human experience
than the one of traditional software. Obviously, this human experience is not
simply restricted to pure physical and realistic interactions, but rather to
believable expectations of behavior—although that behavior is not achievable in
real life.

Thus, VEs imply a major breakthrough in the realm that has been called presence
of the user in the virtuality. Presence is the feeling of being inside and a part
of the system, even identifying himself/herself with the virtual character that
represents him/her in the VE, generically known as avatar. That presence,
nevertheless, is more related to the interactions among the actors within the VE
than to the technology with which it is implemented (Morningstar & Farmer,
1990).

As systems complexity is increased, two new challenges emerge for presence.
The first one is related to the appearance in these environments of some roles
that should not be performed by a human user, either due to their repetitive and
monotonous nature or because of the specific skills they require. This leads to
the incorporation of automatic synthetic characters able to develop those
tasks.

The second one deals with the believability of the user-controlled character
behaviors. On one hand, the user must experience the presence in the VE
perceiving in other users and, even more, in his/her own avatar, the behaviors that
he/she expects to be appropriate in that situation. That implies the management

Design of Believable Intelligent Virtual Agents 179

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

of all the details of every one of those behaviors, with the risk of overloading the
user interface.

On the other hand, when the user has decided to use the system, he/she is looking
for some goal or functionality, and that aim must not be put down by the
management of a complex user interface. Again, some kind of personalized
automation must be provided to release the user of everything he/she is not
willing to manage.

Paradoxically, to date, most of the proposals and methodologies for the designing
of VEs are mainly focused on issues related to the structure, functionalities, and
appearance of the virtual world. Even more, if the designing of the virtual
inhabitants is considered, it is made from an external and aesthetical point of
view, being unaware of their potential complexity.

The Agency Meets the Virtual Environments

The problem stated suggests the joining of autonomous or semi-autonomous
characters to the VEs. Those individuals should be provided with some kind of
perceptual mechanism to acquire all the necessary information to manage their
behavior; they should be able to be personalized according to the requirements
of their role in the VE or the willingness of their user; they should be able to react
to changes or events in their surroundings, as well as acting autonomously every
time they consider it appropriate; autonomous characters should be able to
interact with other characters, synthetic or user directed.

Those requirements are pretty close to the essential characteristics that some of
the most commonly accepted definitions of agent attribute to them: autono-
mous acting to reach some set of goals or to accomplish some kind of tasks
(Maes, 1995; Wooldridge & Jennings, 1994); temporal continuity, throughout
a cycle in which the agent perceives, fulfills some kind of cognitive procedure
(reactive or deliberative), and determines the actions to be carried out (Bratman,
Israel, & Pollack, 1988; Hayes-Roth, 1995; Wooldridge, 2000); sometimes the
specialization of the agent is highlighted to solve a problem or an specific aspect
of a problem (Sycara, 1998); also sometimes stressed as a unquestionable
feature of agents is their ability to interact with other peers, systems, or human
users (Genesereth & Ketchpel, 1994); and always uses to be situated in a
dynamic, complex environment, over which it acts (Jennings, Sycara, &
Wooldridge, 1998; Maes, 1994).

Therefore, the agency seems to be a promising technology to hide from the user
the complexity of the interaction procedures without reducing their believability.
Even more, the classical internal structure of agents decomposing their operation

180 Herrero & Imbert

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

in three consecutive processes—perceptual, cognitive, and effective—fits quite
well into the kind of procedures required above.

Thus, thinking in an absolutely automated agent, it would consist of a perceptual
module able to perceive the state of the environment (Wooldridge, 2002), and
restricted by the specific perceptual limitations assigned to that agent in that VE;
a cognitive module, which deals with the selection of the appropriate actions to
be executed depending on the environment perceived, the goals of the agent, and
the nature of the agent itself; and finally, a set of effectors that execute the
selected actions exhibiting the behaviors that could make the agent believable
(see Figure 1).

For a semi-autonomous agent, this structure is very convenient, given that the
automation could be identified in a subset of the three modules, leaving to the user
management the rest of them.

Chapter Structure

Obviously, every one of the three previous main modules plays an important role
in the consecution of an intelligent believable behavior. However, while the
importance of the effectors focuses on the accuracy of the output—in a VE
mostly work of the graphical designers—the other two modules must have in
mind a wide variety of different concepts and considerations, which makes them
more attractive and intricate from the design point of view. This is the reason why
the rest of the chapter concentrates on these two modules.

Since most of the agent architectures developed to date do not cover both
modules in depth, the following sections will describe a generic architecture for
designing intelligent virtual agents (IVAs) with such characteristics. Although it
is out of this chapter scope, some practical results of the application of the

Figure 1. Internal structure of an agent

Design of Believable Intelligent Virtual Agents 181

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

proposed model can be found in Herrero (2003) and Imbert, de Antonio, and
Segovia (2001).

In the following section, the perceptual module design is detailed. The reader
is first provided with an overview of the studies related to visual perception in
IVAs. Subsequently, we describe how the model of perception has been
designed: analyzing the factors that make the perceptual model more human-like;
re-defining and reinterpreting the set of key concepts introduced by the Spatial
Model of Interaction (SMI); and introducing a set of mathematical functions to
describe the agent’s clarity of perception.

The next section deals with the design of a cognitive module for achieving
believable intelligent behaviors. That comprises tasks from pure reflex re-
sponses to events, to deliberation processes to elaborate, more long-term plans,
always having in mind the social nature of agents, which allow them to look for
alternatives of solution throughout cooperation or negotiation.

The final section of the chapter summarizes the main conclusions highlighted and
states some of the main lines of ongoing work.

Perceptual Module

While some years ago the aim of an agent’s perception was just seeking
information from the environment, requirements have changed and, currently, a
wide range of applications require a relatively high-fidelity model of percep-
tion.

This trustworthiness is especially important in order to simulate realistic situa-
tions such as military training, where soldiers must be trained for living and
surviving risky situations. A useful training would involve endowing soldier
agents with a human-like perceptual model, so that they would react to the same
stimuli as a human soldier. Agents lacking this perceptual model could react in
a non-realistic way, hearing or seeing things that are too far away or hidden
behind an object. A different situation could happen, for example, in a museum
where, if an agent is too close to a painting, it cannot get a clear impression of
the image that is on the painting. The perceptual model we propose in this
dissertation introduces these limitations inside the agent’s perceptual model with
the aim of reflecting a human-like perception.

In this chapter we will concentrate on visual perception, but we have also
designed, developed, and implemented a similar model for simulating human-like
hearing perception in IVAs (Herrero, 2003; Herrero & de Antonio, 2003a).

182 Herrero & Imbert

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Visual Perception in IVAs

Many approaches have been employed to implement the visual process of
perception in IVAs, oriented to different kind of applications, such as artificial
creatures (Blumberg, 1997; Terzopoulos & Rabie, 1995) or virtual humans
(Chopra-Khullar & Badler, 2001; Hill, Han, & van Lent, 2002; Noser, 1997;
Thalmann, 2001).

Perception in those agents has been modeled in diverse ways, depending on what
they were designed for. Most of the perceptual models to date have focused on
providing methods and techniques for modeling the cognitive process of percep-
tion, such as the Cognitive Vision Systems (CogVis).

The CogVis is a project sponsored by the European Union IST-2000-29375. The
objective of this project is to provide the methods and techniques that enable
construction of vision systems that can perform task-oriented categorization, and
recognition of objects and events in the context of an embodied agent. Cognitive
vision systems include facilities for understanding, knowing, and learning.
Understanding implies an ability to generate an explicit description of the
perceived world in terms of objects, structures, events, their relations and
dynamics that can be used for action generation or communication. Knowing
implicitly specifies a need to consider memory as a common basis for represen-
tation and maintenance of information, including methods for associate access.
Learning implies an ability to generate open-ended models and representations
of the world. That is, the model of the system and its use cannot be based on a
closed-world assumption, but rather on a model that allows automatic generation
of new representations and models. Cognitive vision only makes sense in the
context of a system where there is a user that provides task information and
which uses the information generated by the system. In addition a fundamental
assumption is that such systems are embodied so that they interact with the world
and have the potential for interaction with the world using active vision,
manipulation, or similar facilities.

As humans “see” the places they visit with some precision, the cognitive mapping
techniques have focused on providing us with a description of each local space
visited. While cognitive mapping has been examined in the context of mobile
robotics, very little work has been done to enable virtual humans to build and use
cognitive maps. An example of this work is the cognitive mapping technique
implemented by Hill et al. (2002). Their implementation is based on a computa-
tional framework that represents a local environment as a structure called an
Absolute Space Representation (ASR). Building an ASR involves perceiving the
environment, which is the area immediately surrounding the viewer, building up
a mental model of the space, and computing the boundaries—which prohibit
movement through the space—and exits—which are gaps in the boundaries that

Design of Believable Intelligent Virtual Agents 183

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

permit the agents to leave this space. The cognitive mapping algorithms used are
an extension of those presented by Yeap and Jefferies (1999). Hill has applied
this theoretical computational framework of cognitive mapping to a training
application that includes virtual humans in a virtual environment.

Cognitive mapping is not limited to places that have been physically explored.
Virtual humans map the environment by continuously perceiving a scene,
constructing a sketch of the surfaces, and building a local map. This local map
is connected with other local maps that have been constructed while exploring
the virtual town. Instead of focusing on only the immediate surroundings, virtual
humans gather information about other regions perceived through the exits in the
local environment and, therefore, virtual humans build cognitive maps in antici-
pation of the next space they will enter. To do this, agents perceive through the
exits in the local environment and construct the new ASRs before the areas are
visited.

Several models of visual attention for virtual humans have been proposed by
Chopra-Khullar and Badler (2001) and Hill et al. (2002). Chopra’s work, based
on human psychological research, specifies the types of visual attention required
for a variety of basic tasks (e.g., locomotion, object manipulation, and visual
search), as well as the mechanisms for dividing attention among multiple such
tasks. In the Soar Virtual Pilot, Hill also focuses on providing a model of
perceptual attention for virtual humans in a synthetic battlefield.

Even though cognitive perception plays a very important role in each and every
perceptual model, the agent’s perception would not be complete without taking
the sensorial part of the process of perception.

Most of the research carried out on modeling sensory inputs has been focused
on using cameras, sensors, and so forth, and different techniques of computa-
tional vision, gathering information about the dynamic environment without
taking into account human factors (Terzopoulos & Rabie, 1995; Thalmann,
2001). A classification of current approaches can be found in Herrero (2003).

Since the current studies on the agent’s perception do not consider the most
useful and representative human perceptual factors such as sensorial acuity, the
following sections will describe a generic architecture for designing a perceptual
model for IVAs with these perceptual factors. Some practical results of the
application of the proposed model can be found in Herrero and de Antonio (2002,
2003b) and Herrero (2003).

An Architecture for the Agent’s Perception

As previously mentioned, our architecture has three main blocks (Figure 1),
representing the agent’s perceptual module, the agent’s cognitive module, and

184 Herrero & Imbert

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the agent’s effectors. The perceptual module, or perceptual engine, operates
concurrently with the cognitive module, and some of the interpretations of the
perceived data or some of the parameters of the agent’s internal model can in
turn modify the perceptual process. The perceptual engine will manage the
interaction with the environment, and it will be composed of the following three
sub-modules (Figure 2): sensitive perception, attenuation, and internal filter-
ing (Herrero, 2003).

Although in the following sections we concentrate on describing the sensitive
perception module of this perceptual engine, we also have to bear in mind that
perceptual sensations are subjectively attenuated with time. The attenuation
module will introduce a reduction experienced by the signal coming from the
sensitive perception. On the other hand, the internal filtering module will make
the selection of the most relevant objects within the focus of perception.

Designing the Visual Model of Perception

One of the most important characteristics of IVAs is the ability to be aware of
current situations in the environment where they reside and operate. Following
Endsely studies on “situational awareness,” physical perception can be under-
stood as the first level of an awareness model (Endsley, 1998, 1993; Shively,
Brickner, & Silbiger, 1997).

Awareness is very broad concept with different meanings in different areas of
application. In this way, the Spatial Model of Interaction (Benford & Fahlen,
1993) is an awareness model designed for CSCW (computer-supported collabo-
rative work) applications which uses the properties of the space to get knowl-
edge of the environment.

Figure 2. Agent’s perceptual module

Sensitive
Perception

Attenuation

Internal
Filtering

Perceptual
Module

Design of Believable Intelligent Virtual Agents 185

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The SMI was based on a set of key awareness concepts, which could be
extended to introduce some human-like factors, and it had been tested with
successful results in CSCW multi-user environments; this model has been
selected because it has the essential qualifications for our purposes.

The aim of our research is not just to extend the SMI to mIVAs, but also to make
it more realistic, introducing some concepts typical in human-like perception. In
order to get that, a reinterpretation of the meaning of “awareness” has to be
made—quite different from the definition used in CSCW literature (Dourish &
Bellotti, 1992)—as well as a reinterpretation of the key concepts of the SMI to
introduce them as key concepts of a perceptual model, applying this model to
IVAs.

The proposed perceptual model seeks to introduce more coherence between
IVAs’ perception and human being perception. In this way, the psychological
“coherence” between the real life and the virtual environment experience will be
incremented. Although this section describes a visual model of perception, an
auditory model of perception has also been developed following the same
structure (Herrero & de Antonio, 2003a).

Key Concepts in the SMI

As mentioned in previous sections, the key concepts in the visual model of
perception are based on the main concepts of SMI. The spatial model, as its name
suggests, uses the properties of space as the basis for mediating interaction. It
was proposed as a way to control the flow of information of the environment in
CVEs (collaborative virtual environments). It allows objects in a virtual world to
govern their interaction through some key concepts: medium, aura, awareness,
focus, nimbus, adapters, and boundaries.

Aura is the sub-space that effectively bounds the presence of an object within
a given medium and acts as an enabler of potential interaction. In each particular
medium, it is possible to delimit the observing object’s interest. This area is called
focus: “the more an object is within your focus, the more aware you are of it.”
The focus concept has been implemented in the SMI as an “ideal” triangle limited
by the object’s aura.

In the same way, it is possible to represent the observed object’s projection in a
particular medium. This area is called nimbus: “the more an object is within your
nimbus, the more aware it is of you.” The nimbus concept, as defined in the SMI,
has always been implemented as a circumference in a visual medium. The radio
of this circumference has an “ideal” infinite value, although in practice it is limited
by the object’s aura.

186 Herrero & Imbert

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The implementations of these concepts—focus and nimbus—in the SMI did not
have in mind human aspects, thus reducing the level of coherence between the
real and the virtual agent behavior.

The main concept involved in controlling interaction between objects is aware-
ness. One object’s awareness of another object quantifies the subjective
importance or relevance of that object. The awareness relationship between
every pair of objects is achieved on the basis of quantifiable levels of awareness
between them, and is unidirectional and specific to each medium. Awareness
between objects in a given medium is manipulated via focus and nimbus.
Moreover, an object’s aura, focus, nimbus, and hence, awareness can be
modified through boundaries and some artifacts called adapters.

Making the Visual Perceptual Model More Human-Like

There are many factors that contribute to our ability as humans to perceive an
object, some of which are directly working on the mental processes, being not
easily modeled or reproduced in a virtual world. Some key concepts of human
perception have been analyzed before determining which one of them could be
introduced in our visual agent’s perceptual model. These concepts, selected for
being the more representative of human visual perception, are (Herrero & de
Antonio, 2002, 2003b; Herrero, de Antonio, Benford, & Greenhalgh, 2002;
Herrero, 2003):

• Visual Acuity: Representing the general “sense acuity” in a visual medium,
the visual acuity is a measure of the eye’s ability to resolve fine detail and
is dependent upon the person itself, the accommodative state of the eye, the
illumination level, and the contrast between target and background (Howarth
& Costello, 1997).Virtual agents that exhibit this property would be able, for
instance, to perceive a message written on a notice board, only if the
distance from the agent to that notice board is within the visual range of
perception.

• Lateral Vision: Representing the general “sense transition region” (STR),
the lateral vision corresponds to the visual perception towards the extremes
of the visual focus. Virtual agents should exhibit this characteristic to avoid
anomalous behaviors, for example, those that will happen if an agent is not
aware of and cannot interact with another agent who is inside the lateral
vision area, but out of the visual focus.

• Visual Filters: These allow the selection from all the objects in an extensive
focus of only those that the agent is especially interested in.

Design of Believable Intelligent Virtual Agents 187

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

From these three factors, this section concentrates on the two first concepts
(visual acuity and lateral vision) without eluding the third one (visual filters) when
the perceptual model has been developed and implemented for IVAs.

Reinterpreting the SMI’s Key Concepts

Neither the SMI nor its implementations are considered aspects of human
perception. Thus, if the SMI were applied just as it was defined by Benford, the
level of coherence between real and virtual agent behavior would be minimum.
Some factors concerning human-like perception have been identified, providing
a more believable perception.

In this section we describe the human factors considered and how the key
concepts defining the SMI have been modified to introduce these factors.

Visual Focus—Benford introduced the focus concept in 1993 as: “The more an
object is within your focus, the more aware you are of it” (Benford & Fahlen,
1993). This concept meant that the observing object’s interest for each particular
medium could be delimited. According to this definition, the focus notion is the
area within which the agent perceives the environment. In previous sections, the
work of sensitive perception in human beings has been analyzed, and from this
analysis, some physical factors—which should have an effect on the physical
area delimiting the observing object’s interest—have been selected. These
factors are sense acuity and the sense transition region.

Starting from the focus concept in the spatial model, and bearing in mind previous
implementations, for example by Greenhalgh (1997), where focus was imple-
mented as a cone, sense acuity and sense transition regions have been intro-
duced. We will define a new mathematical function to represent the human-like
focus concept. This mathematical function (Equation 1) will be described by the
following set of variables and parameters, and is represented in Figure 3:

• (µ
x
, µ

y
, µ

z
) Represents the agent’s eye position in a 3D system of reference.

• Dm Represents the agent’s visual resolution acuity distance.

• (x,y,z) Represents any point inside the focus.

• θ’ Represents the angle delimiting human foveal vision.

• θ Represents the angle delimiting human vision: foveal and peripheral
vision.

• s Represents the object’s size.

In the implementation of the model, we have separated global focus, which has
infinite length, from specific focus, associated with each agent. The length of

188 Herrero & Imbert

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

global focus is limited by the aura, while the length of specific focus is limited by
each agent’s physical factors.

When the agent perceives an object in the environment, perception will be
different depending on the area in which the object is located. Both the object’s
orientation (Figure 4) and the area in which it is located (Figure 5) play an
important role in determining the perception of the object.

As Figure 3 shows, two different cones can be distinguished, the internal cone
(with angle θ’) represents the agent’s field of vision without lateral vision, and
the external cone (with angle θ) represents the agent’s field of vision with lateral
vision (STR). Both cones have been implemented as functions delimiting the
agent’s visual perception area. Starting from some experiments run for “The Old
Man” (Herrero, 2003), the origin of the cones will be placed at an eighth part of
the object’s height (above the nose and in between the agent’s two eyes).

In Figure 5, the Area of Perception (AP) indicates whether an object is within
the focus, and, in this case, within which area it is located. For our purposes, we
have implemented a function that checks whether an object is inside the agent’s

Equation 1.

Figure 3. Physical focus with lateral vision

() () ()

() () ()

)(ang

2)yµy(*2)θ'tang(2µz2
xµx

2)yµy(*2)θtang(2µz2
xµx

 yµyµ

MARt
s

mD

Z

Z

mDy

≤

−≤−+−

−≤−+−

+≤≤

x

Y
forward
direction

z

(µx, µy, µz)

(0, 0, 0)

θ

θ’

Foreground region

Transition region

Backgroung Region

r0

r1

Background region

Design of Believable Intelligent Virtual Agents 189

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

focus, and if it is, then this function will indicate the area within which the object
is located (foreground or transition region). This function will allow us to
determine whether the agent can detect an object because it is inside its field of
vision. If the agent’s objective is not just to detect the object, but also to perceive
some details of the object, we will also be interested in the clarity of the
perception that the agent has of the object.

Considering medium homogeneity, it has been found that, while in a homoge-
neous medium, the focus shape is uniform and corresponds to a cone, whereas
in a heterogeneous medium, it could have discontinuous transitions between
regions with different densities. We are not going to deal with heterogeneous
media in our model.

Our initial equation considers that the cone orientation is parallel to the y-axis.
Otherwise, this approach will be a valid subject to the previous rotation of the
axes according to Euler’s Rotation Theorem.

Figure 4. Agent’s eye orientation and object’s position

Figure 5. Physical focus with lateral vision (distance component)

orientation

r

AP

Transition
region Backgroung

Region

r 0 r 1

Foreground
region

r

190 Herrero & Imbert

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Visual Nimbus: Benford introduced the nimbus concept in 1993 as: “The
more an object is within your nimbus, the more aware it is of you”
(Benford & Fahlen, 1993). This concept meant that the observed object’s
projection for each particular medium could be delimited.

The nimbus concept, as defined in the Spatial Model of Interaction, has always
been implemented as a circumference in both visual and hearing media. The
radius of this circumference has an “ideal” infinite value, although in practice it
is limited by the object’s aura. Just as with the above-mentioned focus concept,
the nimbus concept in the SMI does not consider any human factors, thus
hypothetically reducing the level of coherence between real and virtual agent
behavior. We are going to represent the nimbus of an object as an ellipsoid
(Equation 2, Figure 7) or a sphere (Equation 3), depending on the conic by which
it is circumscribed (Figure 6), centered on the object’s geometrical center. The
way of determining which conic has to be associated with each object in the
environment is to look for the bounding box that has been associated to this object
in the environment. If the bounding box is a rectangle, the nimbus has been
approximated as an ellipsoid; if the bounding box is a circle, then the nimbus will
be approximated as a sphere.

The nimbus radius, or its eccentricity if it is an ellipsoid, will depend on two
factors: the object’s shape and the furthest distance at which a human being
would be able to distinguish the object. This distance is determined by visual
acuity, which depends on the object’s size; thus, indirectly, the nimbus conic will
depend on the object’s size as well.

Where (m
x
, m

y
, m

z
) represents the object’s geometrical center, (a,b,c) represents

the ellipsoid parameters and R represents the sphere radius (when a=b=c=R).

Figure 6. Nimbus representations for geometric objects

Approximation

Nimbus

Design of Believable Intelligent Virtual Agents 191

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Visual Clarity of Perception

This section concentrates on the sensitive perception block introduced previ-
ously. The sensitive perception module simulates the typical process by which
organisms receive sensations from the environment. Sensation usually refers to
the immediate, relatively unprocessed result of stimulation of sensory receptors
in the eyes, ears, nose, tongue, or skin. Sensitive perception depends on some
relevant sensorial concepts (Figure 8): human factors such as visual acuity,
lateral vision, and visual filters; physical factors such as the distance between
the object and the position of the agent’s eye (deye-object); object’s factors;
and adaptors (Herrero & de Antonio, 2002, 2003b). The deye-object distance
and clarity of perception, in general, should be considered key concepts in an
agent’s perception because it introduces more realism, believability, and effi-
ciency. For example, it will be necessary to check its value to know if an agent
can read a notice board at a fixed distance. Moreover, making awareness
dependent on this factor is totally new; no other model had it in mind before.

Figure 7. Physical nimbus representation

X

y

z

a
b

c

(µx, µy, µz)

(0, 0, 0)

22 2

1yx z
yx z

a b c

µµ µ − − −    + + ≤          

() () () 2222 Rzyx zyx ≤−+−+− µµµ

Equation 2.

Equation 3.

192 Herrero & Imbert

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Clarity of perception is a measurement of the ability to perceive an object inside
the agent’s visual focus, as well as the clearness of this perception. Once an
object’s nimbus intersects with the agent’s focus, the sensitive perception
module will calculate the clarity of perception for this object.

The process of human visual perception is continuous, and the size of the image
on the retina will continuously depend on the distance between the eye and the
object to be perceived. Therefore, from the sensorial point of view, if clarity of
perception is the ability to distinguish what kind of object is being perceived, then
it should depend on the object image that human beings have on the retina.
Moreover, as the retinal image decreases continuously with the eye-object
distance, then the clarity of perception will decrease continuously with this
distance as well. But the size constancy phenomenon has also been taking into
account, by means of which the object’s size tends to appear constant in spite
of it changing with distance. This factor will imply that the clarity of perception
will fall still more smoothly. Following the research conducted by Levi, Klein, and
Hariharan (2001a), a Gaussian has been proposed as the function to describe the
variation in the clarity of perception with the eye-object distance (Figure 9,
Equation 4) for a fixed object’s size in the foreground region, where d1
represents the minimum distance necessary to have a clear perception of an
object and d2 represents the maximum distance necessary to have a clear
perception of an object. In Figure 9 it is possible to appreciate that the level of
detail starts decreasing (between d2 and d

3
), and starting from d4 the eye cannot

perceive almost any detail from any object. More details are given in Herrero and
de Antonio (2002, 1003b) and Herrero (2003).

The clarity of perception function in the transition region has to take into account
the presence of peripheral vision. Peripheral vision, as mentioned above, is
paying attention to what is happening at the periphery of your field of vision. In

Figure 8. Sensitive perception

Design of Believable Intelligent Virtual Agents 193

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

d ’2

C P L m ax

CP

d ’4d ’3
0 d ’1

d
d ista nc e e ye - o b jec t

this area you may become aware of movement, but you are less aware of color
and contrast distinctions. Following the research by Levi et al. (2002b), another
Gaussian has been proposed as a function to describe the variation that the clarity
of perception has with the distance eye-object (Figure 10, Equation 5) in the
lateral region. More details are given in Herrero and de Antonio (2002, 2003b)
and Herrero (2003).

Figure 9. Clarity of perception relative to distance inside the focus
foreground region

d 2

CP max
C P

d 4 d 3 0 d 1 d
d istance eye - o bject

1

1 2 max

2
2

2 2

0.0 ()

()

()1
() *exp

2** 2*

d d CP d d

d d d CP d CP

d d
d d CP d

λ

σσ π

≤ ≤ =
≤ ≤ =

 −≥ = − 
 

Equation 4.

Figure 10. Clarity of perception relative to distance inside the focus
transition region

Lmax max

1 1 2 2 3 3 4 4

0.0 CP CP

 d' d' d' d'd d d d

< <
> < > ≈

Equation 5.

194 Herrero & Imbert

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Cognitive Module

Gaining Believability Through Cognition

Perhaps, the OZ project (Bates, Loyall, & Bates, 1994) may have been the first
real project on believable agents in interactive environments. Bates introduces
the concept of believable agents, meaning that a viewer or a user can suspend
his or her disbelief (Loyall & Bates, 1997).

The Oz project simulates a small world whose inhabitants, spherical avatars
named Woggles, are built through a goal-directed, behavior-based architecture
for action. This architecture is coupled to a distinct component for generating,
representing, and expressing emotion, based on Ortony’s Cognitive Theory of
Emotions (Ortony, Clore, & Collins, 1988). By and large, they claim that
personality and emotions are the most important aspects of believability to add
to social behaviors (Reilly & Bates, 1995; Reilly, 1997). This project intends to
make it easy to build characters with specific personalities, using the minimal
representation for them.

In this framework, individuals are assumed to behave differently in the same
emotional state or the same interpersonal relationship, or may feel different
emotions in similar situations because of current behavioral features.

One of the issues that they have faced is that many emotions of various intensities
often exist simultaneously (Bates, 1994), and they have had to find ways to
combine these to get one or two primary overall emotions of adequate clarity to
express a coherent internal state.

On the other hand, The CyberCafe (Rousseau & Hayes-Roth, 1997) introduces
the concept of synthetic actors. A synthetic actor may be autonomous or a
user’s avatar. An autonomous actor receives directions from the scenario and
other actors, and decides on its own behavior on the virtual stage with respect
to those directions (Hayes-Roth, Brownston, & Sincoff, 1995). An avatar is
largely directed by a user who selects actions to perform, although it also
receives directions from the scenario and from the other actors. In fact, the user
chooses the actions to be developed by the avatar, but the way to be carried out
is chosen by the avatar, depending on the character personality traits. These
actors are able to improvise their behavior in an interactive environment, and they
own a repertoire of actions that are automatically planned to achieve each
activity. They even reflect aspects of personality traits and mood.

The ALIVE project (Maes, 1995) points out that how fancy graphics are may
be less important than how meaningful the interactions in which the user engages
can be. However, although one of the aims of ALIVE project is to visualize the

Design of Believable Intelligent Virtual Agents 195

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

motivational and emotional state of an agent in the external features of the agent,
no serious personality model has been developed (it uses ethological mechanisms
to maximize the actor’s ability to reorganize its own personality, based on its own
perception and accumulated experience). In fact, personality is not the main
interest of this project.

Another interesting system, Bodychat (Vilhálmsson, 1997), also tries to auto-
mate the communicative behavior in avatars. Here, the concept of intention for
this context is introduced. Intentions are described as a “set of control
parameters that are sent from the user’s Client to all Clients, where they are
used to produce the appropriate behaviour in the user’s Shadow avatars.”

Bodychat proposes an avatar as a partially autonomous entity, providing an
automated facial expression and gaze that depends on the user’s current
intentions, the current state and location of other avatars, its own previous state,
and some random tuning to create diversity.

Improv (Perlin & Goldberg, 1996) offers an environment where an avatar can
generate motions in real time; however, the conversation between avatars is not
addressed. Improv provides tools to create actors that respond to users and to
each other in real time, with personalities and moods consistent with the author’s
goals and intentions.

Improv is more than a simple tool for designing virtual actors. It allows actors to
have certain information about it and his relationship to his environment stored
in an actor’s properties. With these properties, one may describe an actor’s
personality, current mood, attitudes, and his relationship to other actors or
objects. The system uses decision rules to generate weighted decisions.

The Cognition and Affect Project proposes a much elaborated model for
describing human emotionality. Sloman and Logan (1998) conjecture that human
mental concepts (e.g., belief, desire, intention, experience, mood, emotion, etc.)
are grounded in implicit assumptions about an underlying information processing
architecture. They claim that the normal adult human architecture involves three
main layers, each supporting different sorts of mental concepts: the first layer
is also the oldest in evolutionary terms, and is entirely reactive; the second layer
is deliberative; the third—perhaps the more original and distinctive feature of this
architecture—is a reflective layer.

The Byrne system is another interesting related work (Binsted, 1999). It
presents an animated talking head for generating appropriate affective speech
and facial expressions, while retransmitting soccer matches, based on the
character’s personality, emotional state, and the state of the play.

The system does not make a great effort to make the emotion component of our
system cognitively plausible. The goal of Byrne is not to develop a psychologi-
cally realistic personality, but to generate a consistent character. Therefore,
Byrne is more folk psychology than modern cognitive science.

196 Herrero & Imbert

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Inside the character architecture, an emotion generation module can be found,
containing rules that generate simple emotional structures. These structures
consist of a type (a mood), an intensity (scored from 1 to 10), a target (only when
the emotion is directed at some person or object), a cause (what caused the
emotion in the virtual world), and a decay function (sharing Elliott’s opinion that
moods naturally return to default values over time (Elliott, 1997)).

Still, the authors consider moods as independent concepts, and face the issue of
having simultaneously contradictory, inconsistent values for opposite concepts
(e.g., high simultaneous values for both happiness and sadness).

Finally, the way of generating an output emotion is choosing that mood with the
highest intensity, in order to eliminate the possible inconsistencies. The problem
lies in the discarding of the rest of the not-so-high value moods. To stand up to
this situation, the authors propose to mix consistent emotional expressions, but
that is not always possible.

In summary, most of the above-mentioned models achieve a high degree of
expressiveness and believability at the expense of the user: when he/she has few
parameters to manage, his/her avatar loses in both expressiveness and believ-
ability; when he/she has an awful lot of them, it becomes impossible to properly
control all of them, even having a powerful model.

An Archetypal Architecture for the Cognitive Module

In order to identify an architecture for this module, the first issue to be taken into
account is the kind of behavior control desired for the whole agent. Initial trends,
mainly influenced by systems such as Newell and Simon’s (1963) GPS, gave rise
to deliberative architectures. These architectures are based on the following
premise: “a system able to manipulate a symbolic representation of its environ-
ment, describing the goals and means to satisfy them, could be able to exhibit an
intelligent behaviour.”

This kind of “reasoning” yielded excellent results in small simulations or very
specific contexts, but showed some scalability limitations in more realistic
scenarios. The main reason lies in the necessary assumption of the calculative
rationality property (Russell, Subramanian, & Parr, 1993). Grosso modo, this
property states that, from an observation of the environment carried out in a
moment t, an action decided as a result of a deliberative process would be
optimum always, since it was executed in that moment t. That is, during the
process of deliberation, the environment should not change to maintain the action
optimality.

These limitations make this kind of architecture somewhat suitable for time-
demanding applications, such as most VEs. For this reason, in the early 1980s

Design of Believable Intelligent Virtual Agents 197

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

arose the first trends questioning the viability of symbolic reasoning-based
approaches to obtain “intelligent” behaviors.

Brooks (1991) assesses that problem solving through the use of symbolic
abstractions of the universe provides simplistic representations of it, only valid
for toy prototypes and impossible to scale. Thus—always according to Brooks—
representation is a wrong abstraction unit to build the core of intelligent systems.
The VE itself would be a better model instead of a representation of it. This led
him to the proposal of reactive architectures, based on a model of stimulus-
response.

However, despite the fact that this approach has provided excellent results in
empirical applications, it is not free of important disadvantages, which make it not
appropriate for a number of contexts (Jennings, Sycara, & Wooldridge, 1998).

Viewing the lack of both alternatives, at the beginning of the 1990s appeared the
trend of using hybrid architectures, the most common alternative hitherto in
VEs. This kind of approach combines reactive skills—so to provide fast critic
responses—and deliberative processes—to elaborate complex, less time-de-
manding plans.

Hybrid architectures commonly present an internal layered structure. The
number and design of these layers is very much dependent on the context of the
system, but it is usual to find three layered architectures, generally horizontally
arranged, with a distribution similar to the one proposed in the following (also see
Figure 11):

• Reactive Layer, which provides with dynamic responses according to the
changes perceived in the VE.

• Deliberative Layer, to analyze the current situation, taking into account
the agent goals and interests, and its personal skills to structure plan-shaped
solutions.

• Social Layer, to cope with the current situation, taking into account the
potential interactions with other agents in the system, to structure also plan-
shaped solutions.

According to how one accesses the input information and to the output
generation, the layer distribution of the proposed architecture could be classified
as horizontal, given that all of them are able to simultaneously perceive the input
data from the perceptual model and, also, all of them produce concurrently their
action proposals towards the effectors.

As a matter of fact, that action proposals communication is not directly
performed to the effectors, as shown in the Figure 11. From our point of view,
it is more convenient to carry it out through an intermediate element, noted as
scheduler, shared by the three mentioned layers, and whose responsibility is to

198 Herrero & Imbert

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

sort and sequence the actions towards the effectors. Maybe this scheduler could
have been part of the effectors, but the dimension of the decisions to be made
in it makes it more convenient to include it inside the cognitive module.

Regarding the interaction among every architecture block, grosso modo—
detailed later—we could identify the following basic communication flows:

• The three layers—reactive, deliberative, and social—access the following
from the perceptual module notifications: state changes, events, and
information.

• The social and deliberative layers process the input and, according to
certain factors analyzed later, produce new goals and propose potential
plans to satisfy them, each from their own particular perspective.

• In turn, according to the established goals, indicate to the reactive layer the
general guidelines of it behavior to be coherent to those goals.

• This reactive layer, mainly from the perceived input by the perceptual
module and from the behavior guidelines received, also can propose to the
scheduler the actions considered appropriate.

• The scheduler collects the plans and actions proposed and structures them
to avoid conflicts among them, trying to maximize the agent behavior.

• From the agenda generated, the scheduler is able to provide the effectors
with the selected actions in the convenient order.

One of the main features of the architecture, as will be seen further on, is that
it is valid for any kind of IVA, avatar, semi-autonomous and autonomous. In fact,
the autonomy of the agent depends on the number of actions it is able perform
on its own in the VE, from none—avatar—to all its possible actions—pure

Figure 11. General architecture of the agent, centered in the cognitive
module

Design of Believable Intelligent Virtual Agents 199

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

autonomous agent. The semi-autonomy is possible since explicit mechanisms of
agent behavior characterization are provided, to perform user-delegated
functionalities, whereas the user’s activity can be processed as a high priority
input.

Therefore, the coherence of the agent behaviors will be based on three
fundamental pillars: (1) the agent knowledge/beliefs maintenance, to support
and justify its behavior; (2) the automated update of the values of those
information structures throughout the precise correlations among them, de-
signed ad hoc; and (3) the management of the agent needs and beliefs jointly,
in order to originate the appropriate actions in every one of the layers.

Reactive Layer

The aim of the reactive layer is to respond quickly to changes in the state
perceived by the agent. These changes are normally produced by internal or
external events and/or the acquisition of new information. Its importance arises
from the existence of some situations in which an immediate response is
required. The time available for such a reaction is so limited that it will be
insufficient to run a planning process. In fact, at this level, neither the elaboration
of new plans nor the explicit evaluation of alternative behaviors is considered at
all.

Inside of the reactive layer, two kind of different reactive processes could be
distinguished, depending on the voluntary nature implicit in the responses:

• Reflex Processing: Under certain changes in the environment, from the
current beliefs and concerns of the agent, this one is able to produce
appropriate responses with a very low level of voluntariness. This is the
kind of pre-attention reactions that Allen (1999) considers just enough for
an agent to survive in environments in which these generic solutions often
do not fail. However, by definition, the environment in which the agent is
situated and acts may not be deterministic, and its knowledge about it may
be local (Rao & Georgeff, 1995), and even could be incomplete or wrong.
Therefore, the execution of a certain action in a given moment will not
necessarily lead to the situation (the environment state) hoped/desired by
the agent.

• Conscious Reactions Processing: The agent is also able to react against
situations not directly triggered by outcomes or arrivals of information, but
rather owed to the existent beliefs about the current state (beliefs) and
about past states (history), always according to their specific concerns.
Thus, this kind of behavior implies a slightly upper degree of reaction

200 Herrero & Imbert

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

consciousness. It could also mean the proposal of one or more actions to be
executed, sometimes as preconceived reactive mini-plans.

The schema of the specific architecture corresponding to the reactive layer
proposed is depicted in Figure 12. Besides the two main processes described
before, the rest of its components and interfaces are analyzed below.

Beliefs

Conceptually, these kinds of beliefs are quite similar to those of the BDI (Belief-
Desire-Intention) architectures (Georgeff, Pell, Pollack, Tambe, & Wooldridge,
1999). They represent the agent information about the more likely state of the
world. They are essential because of the world dynamism and the local
perspective of the environment—many events out of the agent perception sphere
must also be taken into account and remembered.

It is preferable to deal with beliefs instead of managing knowledge, because it
is assumed that an agent’s beliefs could be wrong or incomplete, whereas
knowledge should be correct. Besides, agents in the past perceived a limited
view of the environment: they are neither prescient nor omniscient.

Taking into account its situation in a VE, the kinds of beliefs that a IVA should
manage include not only information—both the essential and the transitory one—
about objects, places, individuals, and the current situation of the IVA itself, but
also emotional or emphatic information itself and others, such as personality
traits, moods, physical states, attitudes, and so forth (Imbert & de Antonio, 2000).

Figure 12. Agent’s reactive layer architecture

Design of Believable Intelligent Virtual Agents 201

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The reactive layer is provided by the perceptual module with pertinent informa-
tion, mainly changes of the perceived environment. These changes are
appropriately stored as beliefs, becoming the input source for both reflex and
conscious reaction processing. Of course, given the assumption of the incom-
plete nature of beliefs, some parameters concerning the data confidence degree
and temporal validity could be associated with the information saved.

History

History refers to all the knowledge managed by the agent dealing with circum-
stances that took place in the past. Considering the history of the agent as a
directed graph, linear from the present point towards the past, and branched from
the present towards the future (Wooldridge, 2002), history is indispensable to
maintain coherence in its behaviors with regard to past events. Thus, it is a
cornerstone to obtain believability in the agent behavior (incoherence in the agent
behaviors during the time is a major cause of unbelievability, quantitatively worse
than not having fancy avatars or scenarios).

History is maintained by the events perceived and filtered in the perceptual
module, stored in the appropriate format to allow reasoning from them. This
information, at this level, is only relevant for the conscious reaction processing,
as far as reflex processing involves exclusively immediate, instinctive reactions.

Concerns

Concerns deal with the behavior interests of the agent. Concerns are not goals:
a goal is an aim for the agent, something that the agent intends to achieve;
concerns, however, describe behavior guidelines. Their essence is similar to the
concerns in MINDER1 (Wright, 1997), but here they are considered more
process-independent (in fact, the agent could work even if no concern is defined,
whereas for Wright the existence of concerns is unavoidable).

Due to their structure, concerns allow the control of the rest of the agent layers
over the reactive one. In the reactive layer, concerns are only consulted, never
modified. Hence, depending on the active agent concerns, introduced at design
time, or by other layers at run time, the reactive layer is able to exhibit believable
behaviors according to their deliberative and social strategies.

Thus, for instance, a logical reflex reaction against an arm prick would be to take
away the arm just to avoid the pain; however, when the goal is to be vaccinated,
the concern of “suffering some pain” may be warranted. In other words, the new
goal could raise the associated threshold of pain. These thresholds could be

202 Herrero & Imbert

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

determined by default through the values of the personal characteristics—
personality traits—that determine the guidelines of the specific behavior of the
agent (stored among the beliefs).

Therefore, at the reactive layer, the concerns will transmit the desires of the
agent designer to its behavior and adjust the reactive behaviors—reflexes and
conscious—according to the deliberative and social strategies.

Deliberative Layer

Given that having an agent with only a reactive layer is not always enough to
exhibit a believable complex behavior in most situations, it is usual to incorporate
a deliberative layer to respond to long-term goals and deal with elaborated
plans. That means that the deliberative layer works with goals without extreme
time limitations—that is, assuming the calculative rationality property.

In the agent deliberative layer, the scope of the planning is to achieve some goals
from the personal skills of the agent, that is, without taking into account the
capabilities of other avatars to solve its own aims.

Two main processes work sequentially inside this layer, as shown in Figure 13:

• Deliberative Goals Generator: This opportunistic process takes into
account possible changes in the environment, local beliefs—mainly regard-
ing its personal sphere information—past history, active goals, and current
concerns to propose new goals to lead the future agent behavior. In
addition, at the same time that new goals are generated, new concerns
could be produced or the values of existing concerns could be modified to
enable the achievement of the goal. Thus, in the previous example, when

Figure 13. Agent’s deliberative layer architecture

Design of Believable Intelligent Virtual Agents 203

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the new goal of “being vaccinated” is incorporated into the agent’s goals,
the threshold of the concern “pain resistance” could be raised a bit. This
process is also able to perceive whether an existing goal is still interesting
for the agent or not, and to maintain or suppress it according to its
considerations.

• Deliberative Planner: Once a set of goals is available, the second
process inside the deliberative layer begins its operation. The deliberative
planner builds a complete plan to achieve every goal using as fact base its
beliefs, information about past history, and concerns. Whenever new
intermediate goals emerge during the planning process and the deliberative
planner is unable to build plans to achieve them, this planner will include
them in the goals base to allow other layers to look for a plan for them. This
process also supervises the set of available goals to eliminate non-executed
plans from the plans base whenever their original corresponding goals
have been removed from the goals base.

This deliberative layer, like the reactive one, manages the information contained
in the beliefs, history, and concerns. Regarding the concerns, this layer is, unlike
the previous one, able to add and modify them. But also two new structures
appear at this level.

Goals

Goals represent a desired final state of the agent, that is, the motivation of the
agent. Obviously, goals may be added during the execution of the agent and,
therefore, dynamism in its motivation is considered. Technically speaking,
consistence among goals is presupposed, given that dealing with inconsistence
is a hard issue, avoidable if the aim is just to achieve believable behaviors.

This base of goals contains goals with diverse scope of resolution. It is the
planner at every layer (in this case, the deliberative planner) who will decide for
which goals a plan may be built. It will trust other layers to manage the remaining
goals. Thus, the goals managed at this level could be achieved by using only the
agent’s own information and skills.

Plans

Every time the deliberative planner builds a plan or subplan for one of the goals
of the goals base, it is incorporated to the plans base. As far as different layers
are building plans from the same set of goals, alternative plans could co-exist
inside this set of plans.

204 Herrero & Imbert

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

It is important to note that plans are conceived taking into account the agent
beliefs, history, and concerns. So, personal characteristics of the agent are
considered in that process, and the kinds of plans resulting will show coherent
behaviors, increasing believability.

These plans will be collected by the scheduler, which will sort them to compose
the agent’s agenda.

Social Layer

The upper layer of the proposed architecture for the cognitive module deals with
the fact that VEs are usually crowded with avatars, and that those avatars once
interacted among them. That is, this layer exploits the coincidence of the social
nature of both agents and avatars in VEs.

From its general definition, an agent is able to solve a specific kind of problem
autonomously. However, a social behavior—interactions, negotiations, coopera-
tions—is considered a way of increasing the agent performance. It is also one
alternative to achieving higher goals, out of the scope of every single agent.

Therefore, the first main difference of this layer regarding the deliberative one
is its social nature, visible in the existence of components to generate goals and
plans from a social point of view:

• Social Goals Generator: This goal generator has a similar functionality to
its peer in the deliberative layer, but taking as input beliefs upon the other
ones—their perceived personality traits, moods, physical state—and the
attitude of the avatar towards them, along with memories about past
interactions (history), other active goals, and current concerns. Thus, the
goals generated—goals with an evident social nature—will be “personal-
ized” for the agent and, therefore, closer to the goals expected for that
agent by a human user. Naturally, the social goals generator possesses the
same attributes as its deliberative peer with regards to proposal or
modification of concerns and existing goals management.

• Social Planner: The aim of the social planner is to generate plans for every
goal present in the goals base—note that, at the end, all goals, regardless
of their origin, are maintained in a common goal base, allowing the different
planners to propose alternative plans from their particular perspective, but
always according to the agent’s social skills. The plans built will be
maintained in the same structure as the deliberative ones, as long as the
scheduler is indifferent against the origin or nature of the plan.

Design of Believable Intelligent Virtual Agents 205

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The proposed architecture for the social layer is outlined in Figure 14. There are
obvious similarities between the general structure of this layer and the delibera-
tive one, as far as their main differences lie in the data managed and the
processes’ internal working.

Conclusions

The design and implementation VEs is an intricate task. To the usual—and not
trivial—difficulties of any big system, many particular characteristics of this kind
of software (distributed nature, complex graphics design and handling, technol-
ogy novelty) are added. To top it all, the need of increasing the system usability
by automating some of its roles forces the inclusion of some sort of synthetic
characters ruled by agents provided with an autonomous behavior.

This decision entails two additional difficulties: (1) the agent should verbatim
substitute a human user, and all or a part—depending on the agent’s degree of
autonomy—of his/her perceptual, cognitive, and behavioral skills should be
replicated or, at least, simulated; and (2) any human user inside the VE should
feel everything perceived is believable, even those agent-ruled avatars, in order
to improve his/her presence in the virtuality, one of the reasons of using this kind
of system.

Therefore, the design of these IVAs should be supported by a believability-
oriented solid architecture. The believability in an IVA must be strengthened in

Figure 14. Agent’s social layer architecture

206 Herrero & Imbert

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the design of all of its modules—perceptual module, cognitive module, and
effectors—but the main charge lies in the first two.

Hence, the architecture proposed develops a human-like perceptual model for
IVAs based on one of the most successful awareness models in computer-
supported cooperative work (CSCW), called the Spatial Model of Interaction
(SMI) (Benford & Fahlen, 1993). This perceptual model extends the key
concepts of the SMI, introducing some factors typical from human being
perception such as sense acuity, sense transition region, and filters, as well as
reinterpretating the key concepts with the aim of using them as the key concepts
of an IVA’s human-like perceptual model.

This perceptual model also introduces a new concept, which has been called
clarity of perception (CP), as a way of having a measurement of the ability to
perceive an object inside the agent’s area of perception, as well as the clearness
of this perception that it is possible to get from it.

Unlike other perceptual proposals, limited to 2D environments and/or not facing
up to some relevant human perceptual factors, the proposed perceptual model
allows an IVA to perceive its 3D environment and surrounding objects in real-
time with a human-like clarity of perception, giving it the chance to react to stimuli
in its environment, as well as to respond to interactions with the real world,
making it more believable.

With regards to the cognitive process, a three-layered horizontal architecture
has been proposed, based on the most usual model of hybrid architectures for
agents and extended with indispensable characteristics for IVAs. The architec-
ture allows personalized behaviors in three layers of abstraction, from instinctive
reactive behaviors to interactive social behaviors, also giving a chance to several
kinds of planning processes.

For these purposes, the cognitive module makes use of diverse sources of
information, each of them with its particular degree of trustworthiness. Thus,
some concepts like beliefs, past history, goals, and plans are adapted to this kind
of software. Also, the concept of concern is introduced as a key feature to
personalize the behaviors and to allow an easy-to-use coordination mechanism
between layers.

Still, most of the cognitive architectures proposed to date are focused on the
understanding of the human reasoning processes, forgetting the significant
influence of emotion and affection on human behavior. The proposed cognitive
model allows one to take the input information filtered and processed by the
perceptual module, and structure it to act reactive or proactively, exhibiting
personalized and believable behaviors not affordable by pure rational processes.

Design of Believable Intelligent Virtual Agents 207

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

References

Allen, S. (1999). Control states and motivated agency. In E. André (Ed.),
Behavior planning for life-like characters and avatars (pp. 43-61).
Spain: Sitges.

Bates, J. (1994). The role of emotion in believable agents. Communications of
the ACM, 37(7), 122-125.

Bates, J., Loyall, A.B., & Reilly, W.S. (1994). An architecture for action,
emotion, and social behavior (Volume 830). Berlin: Springer-Verlag.

Benford, S., & Fahlen, L.E. (1993). A spatial model of interaction in large virtual
environments. Proceedings of the Third European Conference on
Computer Supported Cooperative Work (ECSCW) (pp. 109-124). Milan,
Italy: Kluwer Academic Publishers.

Binsted, K. (1999). Character design for soccer commentary. In M. Asada &
H. Kitano (Eds.), Lecture Notes on Artificial Intelligence, 1604, 23-35.
Berlin: Springer-Verlag.

Blumberg, B. (1997). Go with the flow: Synthetic vision for autonomous
animated creatures. In W.L. Johnson & B. Hayes-Roth (Eds.), Proceed-
ings of the First International Conference on Autonomous Agents
(Agents’97) (pp. 538-539). New York: ACM Press.

Bratman, M.E., Israel, D., & Pollack, M. (1988). Plans and resource-bounded
practical reasoning. Computational Intelligence, 4(4), 349-355.

Brooks, R.A. (1991). Intelligence without representation. Artificial Intelli-
gence, 47, 139-159.

Chopra-Khullar, S., & Badler, N. I. (2001). Where to look? Automating some
visual attending behaviors of human characters. Publication, 4(1/2), 9-23.

Cohn, A., Magee, D., Galata, A., Hogg, D., & Hazarika, S. (2003) Towards an
architecture for cognitive vision using qualitative spatio-temporal represen-
tations and abduction. In C. Freksa, W. Brauer, C. Habel, & K.F. Wender
(Eds.), Spatial Cognition III, 2685, 232-248.

Dourish, P., & Bellotti, V. (1992). Awareness and coordination in shared
workspaces. Proceedings of the ACM Conference on Computer Sup-
ported Cooperative Work (CSCW’92) (pp. 107-114). Toronto, Ontario:
ACM Press.

Elliott, C. (1997). I picked up catapia and other stories: A multimodal approach
to expressivity for “emotionally intelligent” agents. In W.L. Johnson &
B. Hayes-Roth (Eds.), Proceedings of the First International Confer-
ence on Autonomous Agents (Agents’97) (pp. 451-457). New York:
ACM Press.

208 Herrero & Imbert

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Endsley, M. (1988). Design and evaluation for situation awareness enhance-
ment. Proceedings of Human Factors Society 32nd Annual Meeting
(pp. 97-101), Anaheim, California.

Endsley, M. (1993). Towards a theory of situation awareness (Tech. Rep.).
Texas Technical University. Department of Industrial Engineering.

Genesereth, M.R., & Ketchpel, S.P. (1994). Software agents. Communications
of the ACM, 37(7).

Georgeff, M., Pell, B., Pollack, M., Tambe, M., & Wooldridge, M. (1999). The
belief-desire-intention model of agency. In J. Müller, M. P. Singh, & A.S.
Rao (Eds.), Proceedings of the 5th International Workshop on Intelli-
gent Agents: Agent theories, architectures, and languages (ATAL-98),
1555, 1-10. Heidelberg, Germany: Springer-Verlag.

Greenhalgh, C. (1997). Large scale collaborative virtual environments.
Unpublished doctoral dissertation, University of Nottingham, UK.

Hayes-Roth, B. (1995). An architecture for adaptive intelligent systems. Arti-
ficial Intelligence: Special Issue on Agents and Interactivity, 72, 329-
365.

Hayes-Roth, B., Brownston, L., & Sincoff, E. (1995). Directed improvisation
by computer characters. Technical Report No. KSL-95-04, Knowledge
Systems Laboratory, Stanford University, Stanford, California, USA.

Herrero, P. (2003). A human-like perceptual model for intelligent virtual
agents. Unpublished doctoral dissertation, Universidad Politécnica de
Madrid, Spain.

Herrero, P., & de Antonio, A. (2002). A human=based perception model for
cooperative intelligent virtual agents. Proceedings of the Tenth Interna-
tional Conference on Cooperative Information Systems (CoopIS’02).
Confederated International Conferences DOA/CoopIS/ODBASE 2002,
2519, 195-212. Irvine, California: Springer-Verlag.

Herrero, P., & de Antonio, A. (2003a). A hearing perceptual model for intelligent
virtual agents. Proceedings of the Second International Joint Confer-
ence on Autonomous Agents and Multiagent Systems (pp. 733-740).
Melbourne, Australia: ACM Press.

Herrero, P., & de Antonio, A. (2003b). Keeping watch: Intelligent virtual agents
reflecting human-like perception in cooperative information systems. Pro-
ceedings of the Eleventh International Conference on Cooperative
Information Systems (CoopIS’03). Confederated International Con-
ferences DOA/CoopIS/ODBASE 2003. Catania, Sicily, Italy: Springer-
Verlag.

Herrero, P., de Antonio, A., Benford, S., & Greenhalgh, C. (2002). Increasing
the coherence between human beings and virtual agents. Proceedings of

Design of Believable Intelligent Virtual Agents 209

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the First International Joint Conference on Autonomous Agents and
Multiagent Systems (pp. 354-355). Bologna, Italy: ACM Press.

Hill, R., Han, C., & van Lent, M. (2002). Perceptually driven cognitive mapping
of urban environments. Proceedings of the First International Joint
Conference on Autonomous Agents and Multiagent Systems. Bologna,
Italy: ACM Press.

Howarth, P.A., & Costello, P.J. (1997). Contemporary ergonomics (pp. 109-
116).

Imbert, R., & de Antonio, A. (2000). The bunny dilemma: Stepping between
agents and avatars. In A. Nijholt, D. Heylen, & K. Jokinen (Eds.), TWLT
17-CEvoLE 1 learning to behave. Proceedings of the 17th Workshop
on Language Technology (pp. 145-159), Enschede, Holland.

Imbert, R., de Antonio, A., & Segovia, J. (2001). Improving communication in
3D virtual environments by means of task delegation in agents. Proceed-
ings of the Fifth International Workshop on Cooperative Information
Agents, Modena, Italy.

Jennings, N.R., Sycara, K., & Wooldridge, M. (1998). A roadmap of agent
research and development. Journal of Autonomous Agents and Multi-
Agent Systems, 1(1), 7-38.

Levi, D., Klein, S., & Hariharan, S. (2002a). Suppressive and facilitatory
spatial interactions in foveal vision: Foveal crowding is simple con-
trast masking (pp. 140-166).

Levi, D., Klein, S., & Hariharan, S. (2002b). Suppressive and facilitatory
spatial interactions in peripheral vision: Peripheral crowding is
neither size invariant nor simple contrast masking (pp. 167-177).

Loyall, A.B., & Bates, J. (1997). Personality-rich believable agents that use
language. In W.L. Johnson & B. Hayes-Roth (Eds.), Proceedings of the
First International Conference on Autonomous Agents (Agents’97)
(pp. 106-113). Marina del Rey, CA: ACM Press.

Maes, P. (1994). Modeling adaptive autonomous agents. Artificial Life I,
1&2(9), 135-162.

Maes, P. (1995). Artificial life meets entertainment: Lifelike autonomous
agents. Communications of the ACM, 38(11), 108-114.

Morningstar, C., & Farmer, F.R. (1990). The lessons of Lucasfilm’s habitat. In
M. Benedikt (Ed.), Cyberspace: First steps (pp. 273–301). Cambridge,
MA: MIT Press.

Newell, A., & Simon, H.A. (1963). GPS: A program that simulates human
thought. In E.A. Feigenbaum & J. Feldman (Eds.), Computers and
thought (pp. 279-293). New York: McGraw-Hill.

210 Herrero & Imbert

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Noser, H. (1997). A behavioral animation system based on l-systems and
synthetic sensors for actors. Unpublished doctoral dissertation, École
Polytechnique Fédérale de Lausanne, France.

Ortony, A., Clore, G., & Collins, A. (1988). The cognitive structure of
emotions. Cambridge, UK: Cambridge University Press.

Perlin, K., & Goldberg, A. (1996). Improv: A system for scripting interactive
actors in virtual worlds. Computer Graphics, 30(Annual Conference
Series), 205-216.

Rao, A.S., & Georgeff, M.P. (1995). BDI agents: From theory to practice. In
V. Lesser (Ed.), Proceedings of the First International Conference on
Multi-Agent Systems (ICMAS-95) (pp. 312-319). San Francisco: MIT
Press.

Reilly, W.S. (1997). A methodology for building believable social agents. In
W.L. Johnson & B. Hayes-Roth (Eds.), Proceedings of the First Inter-
national Conference on Autonomous Agents (Agents’97) (pp. 114-121).
Marina del Rey, CA: ACM Press.

Reilly, W.S., & Bates, J. (1995). Natural negotiation for believable agents.
Technical Report No. CMU-CS-95-164, School of Computer Science,
Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.

Rousseau, D., & Hayes-Roth, B. (1997). Improvisational synthetic actors
with flexible personalities. Technical Report No. KSL 97-10, Knowledge
Systems Laboratory, Computer Science Department, Stanford University,
Stanford, California, USA.

Russell, S.J., Subramanian, D., & Parr, R. (1993). Provably bounded optimal
agents. In R. Bajcsy (Ed.), Proceedings of the Thirteenth International
Joint Conference on Artificial Intelligence (IJCAI-93) (pp. 338-344),
Chambéry, France. San Mateo, CA: Morgan Kaufmann.

Shively, R.J., Brickner, M., & Silbiger, J. (1997). A computational model of
situational awareness instantiated in MIDAS. Technical Report.

Sloman, A., & Logan, B. (1998). Cognition and affect: Architectures and tools.
In K.P. Sycara & M. Wooldridge (Eds.), Proceedings of the 2nd Inter-
national Conference on Autonomous Agents (Agents’98) (pp. 471-472).
New York: ACM Press.

Sycara, K. (1998). Multiagent systems. AI Magazine, 19(2), 79-92.

Terzopoulos, D., & Rabie, T. (1995). Animat vision: Active vision in artificial
animals (pp. 801-808).

Thalmann, D. (2001). The foundations to build a virtual human society. Proceed-
ings of the 3rd International Workshop on Intelligent Virtual Agents,
2190, 1-14, Madrid, Spain.

Design of Believable Intelligent Virtual Agents 211

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Vilhjálmsson, H.H. (1997). Autonomous communicative behaviors in ava-
tars. Unpublished master’s thesis, MIT, Cambridge, Massachusetts, USA.

Wooldridge, M. (2000). Reasoning about rational agents. Cambridge, Mas-
sachusetts: MIT Press.

Wooldridge, M. (2002). An introduction to multi-agent systems. Chichester,
UK: John Wiley & Sons.

Wooldridge, M., & Jennings, N. (1994). Agent theories, architectures, and
languages: A survey. In M. Wooldridge & N.R. Jennings (Eds.), Intelli-
gent agents—theories, architectures, and languages. Proceedings of
ECAI’94 Workshop on Agent Theories, Architectures & Languages,
890, 1-32. Amsterdam: Springer-Verlag Lecture Notes in Artificial Intel-
ligence.

Wright, I.P. (1997). Emotional agents. Unpublished doctoral dissertation,
University of Birmingham, Birmingham, UK.

Yeap, W.K., & Jefferies M.E. (1999) Computing a representation of the local
environment. Artificial Intelligence, 107(2), 265-301.

212 de Antonio, Ramírez & Méndez

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter VIII

An Agent-Based
Architecture for

Virtual Environments
for Training

Angélica de Antonio

Universidad Politécnica de Madrid, Spain

Jaime Ramírez

Universidad Politécnica de Madrid, Spain

Gonzalo Méndez

Universidad Politécnica de Madrid, Spain

Abstract

This chapter proposes an architecture for the development of intelligent
virtual environments for training (IVETs) which is based on a collection of
cooperative software agents. The first level of the architecture is defined
as an extension of the classical intelligent tutoring system architecture that
adds a new world module. Several software agents are then identified
within each module. They communicate among them directly via messages

An Agent-Based Architecture for IVETs 213

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and indirectly via a common data structure that is used for the collaborative
development of plans. Some details are provided about the most remarkable
interactions that will be established among agents during the system’s
execution. The proposed architecture, and its realization in a platform of
generic and configurable agents, will facilitate the design and
implementation of new IVETs, maximizing the reuse of existing components
and the extensibility of the system to add new functionalities.

Introduction

Computer-based training is a promising application area of three-dimensional
virtual environments (VEs). These environments allow the students to navigate
through and interact with a virtual representation of a real environment in which
they have to learn to carry out a certain task. They are especially useful in
situations where the real environment is not available for training, or it is very
costly or risky. A good example is training of nuclear power plant operators. A
multi-user virtual environment also allows for team training. An intelligent virtual
environment for training (IVET) results from the combination of a virtual
environment and an intelligent tutoring system (ITS). IVETs are able to
supervise the actions of the students and provide tutoring feedback. The
intelligent tutoring component of an IVET usually adopts a virtual representation
(a pedagogical virtual agent) that inhabits the environment together with the
virtual representations of the students (avatars).

The development of three-dimensional virtual environments has a quite short
history, dating from the beginning of the ’90s. The youth of the field, together with
the complexity and variety of the technologies involved, have led to a situation
in which neither the software architectures nor the development processes have
been standardized yet. Therefore, almost every new system is developed from
scratch, in an ad-hoc way, with very particular solutions and monolithic architec-
tures, and in many cases forgetting the principles and techniques of the software
engineering discipline (Munro, Surmon, Johnson, Pizzini, & Walker, 1999). Some
of the proposed architectures deal only partially with the problem, since they are
centered on a specific aspect like the visualization of the VE (Alpdemir & Zobel,
1998; Demyunck, Broeckhove, & Arickx, 1999) or the interaction devices and
hardware (Darken, Tonessen, Passarella, & Jones, 1995).

As a result, current VEs lack many of the desirable quality attributes of any
software system, such as flexibility, reusability, maintainability, or interoperability.

The size and complexity of VEs will continue to increase in the future, making
this situation even worse. Many researchers and developers of VEs are starting

214 de Antonio, Ramírez & Méndez

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

to recognize the need of a software engineering approach to the development of
VEs (Brown, Encarnaçao, & Schneiderman, 1999; Fencott, 1999; Sánchez,
2001).

In particular, there is a need to define “standard” architectures in order to
facilitate the development of individual components by different teams or
organizations that may have different skills and knowledge. The development of
a new VE will then consist of the selection and adaptation of existing compo-
nents, and their assembly and integration. In this way, components will be
reusable, the system will be flexible to be extended with new components, and
the interfaces among components will be clearly defined to facilitate interoperability
of possibly very heterogeneous components.

Unfortunately, we are still very far from this ideal state. Given the broad variety
and diversity of VEs and their applications, and taking into account that they may
require different architectures, we have decided to restrict the scope of our
research to a certain type of VEs, namely virtual environments for training
(VETs).

The goal of this kind of VEs is to train one or more students in the execution of
a certain task. They are especially useful in those situations in which training in
the real environment is either impossible or undesirable because it is costly or
dangerous. Let’s consider as an example training the operators of a nuclear
power plant in the execution of maintenance interventions. In the real environ-
ment the trainees would be subject to radiation, which is of course unacceptable
for their health, and additionally it would be impossible to reproduce some
maintenance interventions without interfering with the normal operation of the
plant.

In VETs, the supervision of the learning process can be performed by human
tutors or by intelligent software tutors, also known as pedagogical agents (in this
case we will call it an IVET). Those pedagogical agents, in turn, can be embodied
and inhabit the virtual environment together with the students or they can be just
a piece of software that interacts with the student via voice, text, or a graphical
user interface. Some pedagogical agents have been developed to date, in some
cases with quite advanced tutoring capabilities. One of the best known is Steve,
developed in the Center for Advanced Research in Technology for Education
(CARTE) of the Intelligent Systems Division of the University of Southern
California (USC) (Rickel & Johnson, 1999, 2000).

Recently, we conducted an experiment (Méndez, Rickel, & de Antonio, 2003) in
reusing Steve, in a new virtual world, HeSPI, which was developed indepen-
dently. Steve was carefully designed to be easy to be applied to new domains and
virtual worlds. It was originally applied to equipment operation and maintenance
training on board a virtual ship. Subsequently, it was significantly extended and
applied to leadership training in virtual Bosnia. However, the leadership training

An Agent-Based Architecture for IVETs 215

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

application was designed with Steve in mind. In contrast, HeSPI (de Antonio,
Ferre, & Ramirez, 2003) was developed independently as a tool for planning
maintenance interventions in nuclear power plants. HeSPI’s virtual avatars
were developed using Jack, a human simulation tool distributed by EDS.
HeSPI’s design was also carefully thought out so that different user interfaces
could be easily connected to the system. Two user interfaces were developed,
one of them using voice recognition and conventional mouse, keyboard, and
monitor, and another one using a 3D mouse and shutter glasses. Thus,
HeSPI+Steve looked like a good test bed for evaluating the degree in which
nowadays VEs and pedagogical agents can be easily ported and made them
interoperate.

All through the integration, we encountered several problems. For example,
there were undesired behaviors due to the fact that both Steve and HeSPI
performed redundant actions. There were control and synchronization problems.
Steve required some information that HeSPI could not provide and vice versa.
Many of these difficulties stemmed from the fact that their underlying architec-
tures and their external interfaces were not totally compatible. Our conclusion
from this experiment was that there is effectively a need for standard architec-
tures designed to facilitate reusability, extensibility, and interoperability among
components.

Component-based standard architectures in the field of educational software are
not new. In the last few years, we have witnessed the activity of several
standardization organizations all around the world, like the IEEE Learning
Technology Standards Committee (LTSC) (www.ltsc.ieee.org), which pro-
posed the Learning Objects Meta-data (LOM) Specification; the IMS Global
Learning Consortium Inc. (www.imsglobal.org), creators of the Learning Re-
source Meta-Data Information Model; ARIADNE (Alliance of Remote Instruc-
tional Authoring and Distribution Networks for Europe (www. ariadne-eu.org);
or the AICC (Aviation Industry Computer-Based Training Committee,
www.aicc.org), authors of the Computer Managed Instruction (CMI) Specifica-
tions, Course Structure Format, and CMI Data Model. These standards and
specifications were further integrated by the ADL (Advance Distributed
Learning) co-Laboratory, created by a U.S. initiative, to give birth to SCORM
(Sharable Content Object Reference Model, www.adlnet.org), which is increas-
ingly being recognized as an international standard for e-learning applications.

However, these standards have never taken into account the special character-
istics and needs of educational software based on VEs. They are oriented
towards Web-based e-learning courses in which the interactivity with the student
is restricted to navigating through the materials (Web pages) and answering
tests.

The work that we present in this chapter is a first step towards the goal of
defining standard architectures for IVETs.

216 de Antonio, Ramírez & Méndez

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

An Architecture for VETs Based
on the Architecture of

Intelligent Tutoring Systems

Our approach to the definition of an architecture for VETs is based on the agent
paradigm, as opposed to the SCORM and other standards approach that is based
on the object-oriented paradigm. The rationale behind this choice is our belief
that the design of highly interactive VETs populated by intelligent and autono-
mous or semi-autonomous entities, in addition to one or more avatars controlled
by users, requires higher level software abstractions. Objects and components
(CORBA or COM-like components) are passive software entities that are not
able to exhibit the kind of pro-activity and reactivity that is required in highly
interactive environments. Agents, moreover, are less dependent on other
components than objects. An agent that provides a given service can be replaced
by any other agent providing the same service, or they can even co-exist, without
having to recompile or even to reinitiate the system. New agents can be added
dynamically providing new functionalities. Extensibility is one of the most
powerful features of agent technology. The way in which agents are designed
makes them easier to be reused than objects.

Our work draws from the results obtained in the MAPI project (“Modelo Basado
en Agentes Cooperativos para Sistemas Inteligentes de Tutoría con Planificación
Instructiva,” funded by CICYT from 1996 to 1999) and is currently being funded
by the Spanish Ministry of Science and Technology through project MAEVIF
(TIC00-1346). In MAPI we designed an architecture based on cooperative
agents for the tutoring component of intelligent tutoring systems in which

Figure 1. Architecture of an ITS

���������	�
���
���	�

����
�����	�

���������������	�

��������

An Agent-Based Architecture for IVETs 217

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

communication among agents took place through a shared blackboard structure.
Starting from the idea that a VET can be seen as an ITS (an IVET), and the
pedagogical agent in an IVET can be seen as an embodiment of the tutoring
module of an ITS, our first approach towards extending the MAPI architecture
for IVETs was to define an agent for each of the four modules of the generic
architecture of an ITS (see Figure 1).

The ITS architecture, however, does not fit well with the requirements of IVETs
in several aspects:

• IVETs are usually populated by more than one student, and they are
frequently used for team training. An ITS is intended to adapt the teaching
and learning process to the needs of every individual student, but they
interact with the system one at a time. However, in a multi-student IVET,
the systems would have to adapt both to the characteristics of each
individual student and to the characteristics of the team.

• The student module should model the knowledge of each individual student
but also the collective knowledge of the team.

• The student is not really out of the limits of the ITS, but immersed in it. The
student interacts with the IVET by manipulating an avatar within the IVET,
possibly using very complex virtual reality devices such as HMDs (head
mounted displays), data gloves, or motion tracking systems. Furthermore,
each student has a different view of the VE depending on their location
within it.

• The communication module in an ITS is usually realized by means of a GUI
or a natural language interface that allows the student to communicate with
the system. It would be quite intuitive to consider that the 3D graphics
model is the communication module of an IVET. However there is a
fundamental difference among them. In an IVET some of the learning goals
may be directly related to the manipulation and interaction with the 3D
environment, while the communication module of a classical ITS is just a
means, not an end. For instance, a nuclear power plant operator in an IVET
may have to learn that in order to open a valve, he has to walk to the control
panel, which is located in the control room, and press a certain button.
Therefore, the ITS needs to have explicit knowledge about the 3D VE, its
state, and the possibilities of interaction with it.

As a first step we decided to modify and extend the ITS architecture by
considering some additional modules (see Figure 2).

First of all, we split the communication module into a set of different views for
all the students, plus a particular communication thread for each student and a

218 de Antonio, Ramírez & Méndez

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

centralized communication module to integrate the different communication
threads. Then we added a world module, which contains geometrical and
semantical information about the 3D graphical representation of the VE and its
inhabitants, as well as information about the interaction possibilities. The tutoring
module is unique to be able to make decisions that affect all the students as well
as tutoring decisions specific to a certain student. The expert module will contain
all the necessary data and inference rules to maintain a simulation of the behavior
of the system that is represented through the VE (for example, the behavior of
a nuclear power plant). The student module, finally, will contain an individual
model for each student as well as a model of the team.

Figure 2. Extended ITS architecture for IVETs

���������	�

���
���	�

����
�����	�

���������������	�

����
�������

��������

����
��������

���
�������
����� �

�������� �

����
�������

��������

����
��������

���
�������
�����!�

��������!�

Student 1
Student N Team

"�
����	�

World

Inhabitants

��������������
��
����!�

��������������
��
���� �

Simulation

Interactions

An Agent-Based Architecture for IVETs 219

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

An Agent-Based Architecture for IVETs

Taking the extended architecture of the previous section as a reference, the next
step was to decide which software agents would be necessary to transform this
component-oriented architecture into an agent-oriented architecture. In an
agent-oriented architecture, each agent is capable of performing a certain set of
tasks, and is capable of communicating with other agents to cooperate with them
in the execution of those tasks.

Our agent-based architecture has five principal agents corresponding to the five
key modules of the extended ITS architecture:

• A Communication Agent

• A Student Modeling Agent

• A World Agent

• An Expert Agent

• A Tutoring Agent

Each of these principal agents may relate to, communicate with, and delegate
some tasks to other subordinate agents, giving rise to a multi-level agent
architecture.

In this way, the communication agent will delegate on a set of individual
communication agents dedicated to each student. The students can choose
among several interface devices for the interaction with the environment,
ranging from the simple monitor + mouse + keyboard combination to the most
complex and immersive virtual reality combination: head mounted display +
motion tracking + data glove + voice recognition. There is a set of device agents
to manage the different devices that can be used to interact with the environment
and make the system independent of any specific combination of interaction
devices. There is also a connection manager agent that is responsible for
coordinating the connections of the students.

The student modeling agent is assisted by a:

• Historic Agent, responsible for registering the history of interactions
among the students and the system.

• Psychological Agent, responsible for building a psychological profile of
each student, including their learning style, attentiveness, and other person-
ality traits, moods, and emotions that may be interesting for adapting the
teaching process.

220 de Antonio, Ramírez & Méndez

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Knowledge Modeling Agent, responsible for building a model of the
student’s current knowledge and its evolution.

• Cognitive Diagnostic Agent, responsible for trying to determine the
causes of the student’s mistakes.

The world agent is related to the:

• Objects and Inhabitants Information Agent, which has geometrical and
semantical knowledge about the objects and the inhabitants of the world.
This agent, for instance, will be able to answer questions about the location
of the objects or their utility.

• Interaction Agent, which has knowledge about the possible interactions
with the environment and the effects of those interactions. For instance, it
will be able to answer questions like, “What will it happen if I push this
button?”

• Path Planning Agent, which is capable of finding paths to move along the
environment without colliding with objects or walls.

The expert agent, in turn, is related to other agents that are specialists in solving
problems related to the subject matter that is being taught to the students. This
is one of most variable components in an IVET. Underlying the virtual environ-
ment, one or more simulation agents are in charge of simulating the behavior of
the system that is represented through the virtual environment (for example, the
behavior of the nuclear power plant). In many IVETs the goal of the system is
to train students in the execution of procedures. In our prototype for nuclear
power plants, for instance, the goal is to teach a team of operators to execute
some maintenance procedures. In this case, the expert agent should be able to
find the best procedure to solve a given malfunctioning situation, and this is
achieved by a planning agent that is able to apply intelligent planning techniques
like STRIPS. If the IVET was to be used for teaching Chemistry, for instance,
the expert agent should have knowledge about the chemical elements and should
be able to plan and simulate reactions.

The tutoring agent, finally, will be assisted by a:

• Curriculum Agent, which has knowledge of the curricular structure of the
subject matter.

• Several Tutoring Strategy Agents, which implement different tutoring
strategies.

An Agent-Based Architecture for IVETs 221

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 3 shows how the extended ITS architecture is transformed from a
modular point of view to an agent-based architecture.

In the next sections we discuss in more detail some of the more important aspects
and functionalities that have to be considered in the design of an IVET, and how
we have dealt with them in our agent-based architecture. Throughout these
sections more details will be provided about the role played by some of the agents
and the interactions that will be established among different agents.

Figure 3. Agent-based architecture for IVETs

������������������
#�����

���
��#�����

����
����#�����

����
���

��������������#�����

����
�������
��������

����
��������

���
�������

����� �

�������� �

����
�������
��������

����
��������

���
�������

�����!�

��������!�

"�
���#�����

��������������������������

#�����!�

��������������������������

#����� �

$����
���#�����

%�&�����������

#�����

����������

����������#�����

'���������

���������#����� �����������#�����

%��������#�����

��

�������#�����

����
������
����&�
#����� �

����
������
����&�
#�������

()*���������

����)������
��+�
�������#�����

����
�������#�����

%���,���������#�����

�����������������
�

#�����

�������#����� �

�������#�����'�

222 de Antonio, Ramírez & Méndez

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Management of Multiple Views

The fact that multiple users will be simultaneously connected to the system poses
interesting challenges to the system architecture. As we mentioned before, each
student will be provided with a particular view of the VE. We assume that each
student will be represented in the environment by a graphical avatar, and his/her
point of view will be located on the avatar’s eyes. The interaction of the student
with the environment will be performed mainly with his/her hands (pushing
buttons, picking up objects, etc.). In our prototypes we have decided that one
student will only see the hand/s of his/her avatar, while he/she will see the full
body of the other students’ avatars.

In order to build and update a given 3D graphical environment view, we need
several essential pieces of information:

• The position and orientation of the student within the VE

• The direction of the student’s gaze

• The position and gesture of the student’s hand/s

• The position of other students

• The actions performed by other students

One possibility for dealing with these information requirements in the system
architecture is to have a centralized component that collects this information
from every student, builds a common representation of the environment, and then
sends to each student’s view the updates. This task could be performed by the
central communication agent in the architecture of Figure 3. The problem is that
the centralized component becomes a bottleneck and has to deal with synchro-
nization and consistency problems. Another possibility is to have all the students’
views communicate directly among them. Whenever an important event occurs
in one of the views, the relevant information is broadcast to the other views. This
option is illustrated by the link among the 3D graphical environment views in
Figures 2 and 3, and it is the one that we have chosen to optimize the performance
of the system.

Individuality vs. Collectiveness

Having multiple simultaneous users raises a new question that needs to be
addressed in the design of an IVET: the degree of individuality versus collectiveness
that will be allowed in the tutoring component. In the most general case, we can

An Agent-Based Architecture for IVETs 223

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

find a system that can be used both and simultaneously by individual students and
by teams. In our prototype for nuclear power plant operators, for instance, there
must be a first phase in the training in which each individual student uses the
system to acquire or confirm general knowledge about radiation and radioprotec-
tion. Then, several activities can be posed that require the intervention of a team
of operators. Two issues have to be taken into account in this kind of situation:

• First, how to coordinate the different students that conform a team, so
that one team activity can be initiated. Different students may be located
on different places, they may connect to the IVET at different times, and
their learning process may be on different stages. On the other hand,
different students may have different profiles and learning goals. For
instance, one operator may be learning to operate a crane while another
operator may be learning to measure radiation.

• Second, how the tutoring component is going to supervise the activity
of individual students and teams. Are all of them going to share a tutor
or is it going to be only one tutor for all the students? And what is the effect
of this decision on the architecture of the system?

In order to solve the first question, the curriculum agent must know, for each
collective activity, the number of students involved and the role to be performed
by each of them. In turn, the knowledge modeling agent must have knowledge
about the learning profiles or roles of each student. Then, when a new student
tries to connect to the IVET, the connection manager agent asks for the name
or identification of the student and informs the tutoring agent. If the tutoring agent
decides that some students are ready to learn a certain activity, it asks the
curriculum agent for the number and roles of the participants involved in the
activity. Each student must choose one participant with one of his/her roles. Then
we can have two possibilities:

• wait for the required number of students with the proper roles to be
connected to the system,

• substitute any missing student with a student role agent that is able to play
that role.

In the first case, the connection manager agent is endowed with the goal of
registering newly connected students for the pending activity, after checking
with the tutoring agent if they are ready to learn that activity, and informing the
tutoring agent as soon as the required number of students with the proper roles
is connected.

224 de Antonio, Ramírez & Méndez

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

This solution has the disadvantage of having to adapt the learning speed of one
student to the others’, but the advantage of promoting real team learning and
social exchange among the students.

The second option may be advisable if the learning speed of the students is very
different or if there is a role in one activity for which there is not any student
enrolled in the course.

Regarding the issue of having only one or many tutors, we believe that having
many embodied tutors moving around the environment, one for each student, may
be very disturbing. On the other hand, each student should receive individualized
advice. Having only one embodied tutor that has to supervise and talk to many
students may imply that the tutor is all the time running from one student to
another. We have chosen an intermediate solution. Since each student has a
particularized view of the system, it is possible to show something only in one
student’s view but not in the others’. Then, each student will only see one tutor
dedicated to him/her. The tutor will follow the student along the VE, it will
observe the student’s actions, and it will talk to him. For one student it will look
as if the other students were not being supervised.

Problem Solving within
the Environment

The main kind of learning activity in an IVET consists of the tutoring agent
describing an initial state of the system to the team of learners and asking them
to find a way to reach a desired goal. For instance, the tutoring agent may ask
the team to stop the reactor, or to change a contaminated filter. Solving the
problem will require each of the team members to execute a certain set of actions
in an appropriate order. As an example, changing the filter requires a cleaning
operator to enter the controlled area and clean the surroundings, a radioprotec-
tion operator to measure the radiation level close to the filter at certain points
during the change procedure, a couple of mechanical operators to disassemble
the filter cartridge and extract the filter, and so on.

A straightforward solution for the expert agent is to have a predefined plan or
sequence of actions for each possible problem. The tutoring agent will then have
to check whether the students’ actions adjust to the plan or not. However, this
solution restricts the number of possible problems that the tutoring agent can pose
to the student to the ones that have predefined solution plans. A more critical
drawback of this solution is that many times different plans may be valid to reach
the desired goal (even if they are not equally optimum in terms of time spent or

An Agent-Based Architecture for IVETs 225

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

radiation exposure, for instance). Whenever a student executes an action that
was not in the predefined solution plan, the system should be able to determine
whether it is possible to reach the desired goal from the resulting state or not. The
kind of tutoring action to be taken greatly depends on this. The only way to make
the system flexible enough to deal with a possibly unlimited number of problems
and with unpredicted student actions is to provide the expert agent with the
capability of finding the solution for any problem in real time. The expert in
solving planning problems will be the planning agent (a planning problem can be
defined as finding an optimal sequence of actions to reach a desired goal state
from a given initial state).

Initially, the tutoring agent is interested in finding out a plan to reach a certain final
state in the VE from the current state. The plan consists of a sequence of actions
that the student can perform in the VE. Three kinds of agents will be involved
in the planning process: the tutoring agent, the planning agent, and what we call
action agents. Each action agent is specialized in a certain set of goals, so that
it knows one or more actions that can satisfy each one of goals belonging to this
set. As a working hypothesis, we assume there is not more than one action agent
that can satisfy a goal (Hypothesis 1). In our system, we have three action
agents: the simulation agent, the path-planning agent, and the interaction agent.
The interaction among these agents will be carried out by means of a shared
blackboard and asynchronous message passing. During the planning process, the
planning agent will coordinate action agents.

The path-planning agent can determine whether the avatar that models the
student in the VE can walk from a position of the VE to another position of the
VE. Hence, this agent will be in charge of satisfying goals of the type
Is_In_Position(X, Y), and for that it will use the action Move_To((X

i
, Y

i
),

(X
f
, Y

f
)). Although the VE is a 3D virtual world, the displacements of the avatar

will always be done over a floor or plane. For that reason, we will only use two
coordinates to specify the position of the avatar. Besides, as we assume it is
always possible to move the mannequin from a position to any one in the VE, the
preconditions of the operator Move_To((X

i
, Y

i
), (X

f
, Y

f
)) are true.

In addition, the actions of the interaction agent are the basic actions that the
avatar can do in the VE except for moving from one position to another, for
instance, press a button, pick up an object, insert a card in a card reader, etc. In
order to make hierarchical planning possible, some basic actions can be grouped
into tasks or higher-level actions. The simulation agent will use the latter type of
actions. Let’s see an example to clarify the difference between basic actions and
tasks. We suppose it is necessary to raise the temperature of a reactor in a
nuclear power plant, and to carry out that, an operator must go to the control room
and press a certain button. We consider raise the temperature of the reactor
to be a task, and go to the control room and press button X to be basic actions.

226 de Antonio, Ramírez & Méndez

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The planning process is inspired in the STRIPS algorithm (Fikes & Nilsson,
1971). However, our planner accomplishes a breadth search in the state space
instead of a depth search; the reason for this is that we are not interested in
obtaining any plan, but the best plan. To implement the breadth search, the
planning process will maintain a search tree in which each node will include a
stack of goals and actions in STRIPS style, a state, and the plan to reach this state
(see Figure 4). In some domains, the computational cost of building such a search
tree may be too high; therefore we will work with domains in which the size of
the state space is manageable. In order to allow the agents to carry out
concurrent operations over the search tree, the tree is encapsulated in a
blackboard.

The planning process will begin when the tutoring agent introduces in the
blackboard an empty parent node, and a child node for each different order of
the goals that describe the desired final state and are not in the initial state. In
addition, each child node will contain the description of the initial state and an
empty plan. Then, the tutoring agent asks the planning agent to begin the planning
process. Next, the planning agent notifies the action agents that there are new
goals in the blackboard (the tops of the stacks in the leaf nodes of the tree). We
call these goals active goals. Now, the action agents read all the active goals,
and check whether they can satisfy any of them by using one of the actions that
they know. It is noteworthy to mention that these read operations can be
executed concurrently. If an action agent can satisfy an active goal by means of
an action, this agent will carry out the following steps:

1. Add child nodes to the node that comprises the active goal; a different child
node will be created for each possible different order of the preconditions
of the action. If any child node is already present in the search tree, it must
not be added to the tree.

2. For each child node:

2.1. The ground action, the ground conjunction of the action preconditions
and a different order of the ground preconditions are pushed in its
stack.

2.2. Check whether the goal in the top of the stack holds in the state
included in the node. If it does, the goal is deleted, and Step 2 is
repeated if the top of the stack is a goal. Otherwise, if the goal does
not hold, Step 3 is executed.

2.3. If the top of the stack is a conjunction, check whether the conjunction
holds in the state included in the node. If it does, the conjunction is
deleted. Otherwise, a fail node notification is sent to the planning
agent, and this operation ends.

An Agent-Based Architecture for IVETs 227

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

2.4. If the top of the stack is a ground action, the action is removed from
the stack, it is introduced in the plan of the node, and it is applied to the
state of the node; next, go to Step 2.2.

3. Notify the planning agent of this operation (satisfied goal notification).

In Step 2.4 we must distinguish a particular case related to the action Move_To((X
i
,

Y
i
), (X

f
, Y

f
)). This action will not be completely grounded in the stack, but only

the latter two arguments will be constants. This is due to the fact that this action
is used to satisfy a goal with the scheme Is_In_Position(A, B), so X

f
/A and Y

f
/

B. In order to bind the free variables of the action before introducing it in the plan,
the plan will be examined to find the last bound action Move_To included in the
plan. From this bound action, the latter two arguments (constants) will be
extracted, and they will be used to bind the free variables. Otherwise, if there is
not a bound action Move_To in the plan, the initial position of the avatar will be
used to bind the free variables.

Thanks to Hypothesis 1, several agents may execute these steps over the
blackboard concurrently because different leaf nodes are involved. On the other
hand, if an action agent cannot satisfy a certain active goal, the agent will report
it to the planning agent. In this way, the planning agent will be able to find out
about whether there is a node in the tree whose active goal cannot be satisfied
by any agent (fail node). In this case, the planning agent will delete the fail node,
performing the backtracking; if the deleted node is the last not-empty node, the
planning agent will detect the initial problem has no solution. When the planning
agent receives a satisfied goal notification, it will tell action agents that the set
of active goals has been modified. Then, as soon as possible, the action agents
must read the new set of active goals. It could happen that an action agent is using
an obsolete set of active goals. However, it is not difficult to see this situation will
not be problematic due to Hypothesis 1. Moreover, the planning agent must be
able to notice the search tree has been completed. In that situation, the set of
active goals is empty; hence, when the action agents try to obtain this set, after
receiving a satisfied goal notification, they will obtain an empty set. Then, they
have to notify the planning agent of this event, so that this agent will be able to
determine the best plan for the initial problem. Finally, the planning agent will
report the best plan to the tutoring agent.

According to the explanation presented above, the blackboard must support four
operations:

• Initialize the blackboard.

• Obtain the active goals that were not examined by a certain agent yet.

• Satisfy some active goals: for each goal, a ground action must be provided.

• Obtain the best plan.

228 de Antonio, Ramírez & Méndez

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Path Planning

After obtaining the plan, the tutoring agent will have the sequence of actions that
each student has to carry out in the VE to solve a problem. However, the tutoring
agent will also need to know the best trajectory for each displacement that the
avatar must carry out in the VE. In this way, the tutoring agent will be able to
check whether the trajectory followed by the student in the VE is acceptable, that
is, whether it is close enough to the best trajectory for each movement. The
agents in charge of generating the trajectories will be the path-planning agent and
the objects and inhabitants information agent.

The objects and inhabitants information agent contains a geometrical model of
the VE expressed by means of several graphs. These graphs will have been
obtained prior to the planning process from geometrical information related to the
VE.

We assume the VE to be divided into several rooms (sub-environments) joined
by doors. Then, we use a graph to model the accessibility among the rooms
(environment graph). Furthermore, we use a different graph for each room to
model the accessibility of the different positions (room graph). In order to obtain

Figure 4. Planning agents and blackboard

Blackboard

Planner

Path
Planner

Simulator

Interaction Node Structure

Stack
State

Plan

Active Goal

An Agent-Based Architecture for IVETs 229

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the room graphs, we model each room as a 2D grid in which each free square
corresponds to a node of the graph. We decide whether a square is free by using
the projection over the floor of all the objects existing in the room. In this way,
if a part of the projection of an object is inside a square of the grid, this square
will not be free. Besides, an edge between two nodes A and B is added to the
graph if the two squares associated to the nodes share a side in the grid. The size
of the squares must be adjusted correctly. Otherwise, if the squares are too big,
some feasible trajectories may be considered wrong; or if the squares are too
small, the computational cost of the search process that will be explained later
will increase unnecessarily. In addition, the process to obtain the graphs from the
3D information of the VE can be complete automatically.

The trajectory for each 2D movement included in the plan will be determined
after working out the whole plan. Before starting to generate the trajectory for
a certain 2D movement, it will be necessary to update the graphs according to
the actions to be executed prior to the 2D movement in the plan. For example,
if the position of a table is changed, the previous position of the table may be
traversed by a trajectory afterwards. As the planning agent does not know the
semantics of the actions, it will tell the interaction agent to decide if it is necessary
to update the graphs according to each bound action. In turn, the interaction agent
will notify the objects and inhabitants information agent of the changes in the
position of the objects in the 3D world, so that the objects and inhabitants
information agent can modify the graphs.

After the update of the graphs, the path-planning agent must find out whether the
movement traverses more than one room. If it does, the path-planning agent will
use the environment graph to obtain, if it exists, the sequence of rooms that the
avatar must traverse from his initial position to his final position. Next, the
trajectory across each room must be obtained. For this, the room graphs will be
used. If the movement traverses just one room, the unique graph to use will be
the graph associated to this room. In order to work out the path between two
nodes in the graphs, the A* algorithm (Hart, Nilsson, & Raphael, 1968) is applied
under the assumption that all the edges’ weights are one, and using as heuristic
function the Euclidean distance. Each time the path-planning agent needs to
know the nodes directly connected to a node in a graph, it will ask it to the objects
and inhabitants information agent.

The A* algorithm outputs a sequence of nodes that the path-planning agent will
translate into a sequence of points or trajectory in the VE with the help of the
objects and inhabitants information agent. This trajectory will be saved into an
XML file, so that the tutoring agent can employ this information to supervise the
movements of the students later on.

230 de Antonio, Ramírez & Méndez

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Coordination Among Agents
During the Supervision Stage

Once the expert solution for a given activity has been calculated, the IVET enters
the supervision stage, in which:

• The individual communication agents will observe the behavior of the
different team members and will inform the tutoring agent about it through
the central communication agent.

• The tutoring agent will compare the real behavior to the expected behavior
provided by the expert agent, and it will evaluate the adequacy of each
student’s behavior.

• The historic agent will register the actions performed by each student.

• The knowledge modeling agent will infer and model the state of knowledge
of each student, with the help of the cognitive diagnostic agent in case of
errors.

• The psychological agent will use the behavior of the student to infer
psychological characteristics.

• The tutoring strategy agent will decide on the next step to be taken,
considering the last actions of the student (provided by the historic agent),
his/her state of knowledge (provided by the knowledge modeling agent),
his/her psychological state (provided by the psychological agent), and the
learning objectives and structure of the subject matter (provided by the
curriculum agent). The decision might be to wait for new actions of the
student, to use the embodied tutor to give a hint, to congratulate the student,
to explain why something was wrong, and so forth.

Development of a New IVET

One of the advantages of the proposed architecture is that it has allowed us to
build a basic infrastructure of agents that work as a runtime engine. In order to
develop a new IVET, it will be the author’s responsibility: to select the desired
agents among the available ones (for instance selecting the tutoring strategy
agent that implements the desired tutoring strategy); to configure the parameters
that govern the behavior of those agents (for instance the duration of the session,
the number of mistakes that will be allowed before the tutoring agent tells the

An Agent-Based Architecture for IVETs 231

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

student the correct answer, etc.); to provide the data specific to the new IVET
and subject matter (the geometrical model of the VE, the curriculum, the actions
that are possible in the new VE and their effects on the simulation, etc.); and in
the worst case to create new agents and register them in the platform.

The requirements for the new IVET under development should be driven by real-
world studies (Economou, Mitchell, Pettifer, Cook, & Marsh, 2001), and these
requirements will drive, in turn, the design decisions regarding the configuration
and adaptation of agents.

As a prototype application of our tool, we have developed a training system for
nuclear power plant operators. We had previously developed this system from
scratch in 1999, during a one-year period. The re-development using our
infrastructure has taken just a few weeks, and the achieved functionality is
superior. For instance, the previous implementation was for only one user, the
tutor was not embodied, and the communication tutor-student was restricted to
correction feedback. The decrease in development time and the increase in
functionality suggest that we have successfully achieved our aim. A thorough
experimental evaluation of the effectiveness of the solution is out of the scope
of this chapter.

Practical Realization

The agent-based architecture for VETs that was described in the previous
sections has been implemented with a combination of quite heterogeneous
technologies. The agents have been implemented in Java, and the direct
communication among them has been realized using the Jade platform with FIPA
ACL messages. The 3D VE and avatars have been modeled with 3D Studio Max
and imported into OpenGL format with a specific tool developed for that purpose.
The visualization of the 3D models, animations, and interactions are managed by
a program in C++, making use of the OpenGL graphical library. Microsoft’s
DirectPlay library has been used for direct communication among the different
3D graphical environment views in order to take into account the movements and
actions of the other students for real-time update of each view. Microsoft’s
DirectInput has been used to manage some interaction devices, namely the
mouse, keyboard, and joystick. The head-mounted display and data glove inputs
and outputs are managed by specific libraries. Communication among the C++
VE and the Java agents is performed by using a middleware of CORBA
objects.

232 de Antonio, Ramírez & Méndez

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Conclusions

An agent-based architecture is proposed in this chapter for the design of
intelligent virtual environments for training. The roots of this architecture are in
the generic architecture of an intelligent tutoring system that has been first
extended to be applicable to IVETs, and has then been transformed into an agent-
based architecture by the identification of the set of generic agents that would
be necessary to accomplish the tasks of each module. Some details are provided
about the most remarkable interactions that will be established among agents
during the system’s execution, namely the collaborative planning to find expert
solutions to the situations and goals posed to the students, the determination of
trajectories for the movements across the VE, and the supervision of the
student’s behavior. Some peculiar aspects are also discussed, such as the way
to manage multiple views in a multi-user environment or the way to balance the
individual versus the collective aspects in the system’s functioning.

The proposed architecture, and its realization in a platform of generic and
configurable agents, will facilitate the design and implementation of new IVETs,
maximizing the reuse of existing components and the extensibility of the system
to add new functionalities.

References

Alpdemir, M.N., & Zobel, R.N. (1998). A component-based animation frame-
work for DEVS-based simulation environments. Simulation: Past, Present
and Future. Proceedings of the Twelfth European Simulation
Multiconference (ESM’98) (pp. 79-83), Manchester, UK.

de Antonio, A., Ferre, X., & Ramirez, J. (2003). Combining virtual reality with
an easy to use and learn interface in a tool for planning and simulating
interventions in radiologically controlled areas. Proceedings of the 10th
International Conference on Human-Computer Interaction (HCI 2003),
Crete, Greece.

Brown, J., Encarnaçao, J., & Schneiderman, B. (1999). Human-centered
computing, online communities, and virtual environments. IEEE Computer
Graphics and Applications, 19(6), 70-74.

Darken, R., Tonessen, C., Passarella, & Jones K. (1995). The bridge between
developers and virtual environments: A robust virtual environment system
architecture. Proceedings of SPIE–The International Society for Opti-
cal Engineering, 2409, 234-240.

An Agent-Based Architecture for IVETs 233

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Demyunck, K., Broeckhove, J., & Arickx, F. (1999). Real-time visualization of
complex simulations using VE platform software. Simulation in Indus-
try’99. Proceedings of the 11th European Simulation Symposium
(ESS’99) (pp. 329-333).

Economou, D., Mitchell, W.L., Pettifer, S.R., Cook, J., & Marsh, J. (2001) User
centred virtual actor technology. Proceedings of Virtual Reality, Ar-
chaeology and Cultural Heritage (VAST’2001), Athens, Greece, Euro-
pean Association for Computer Graphics.

Fencott, C. (1999). Towards a design methodology for virtual environments.
Proceedings of the Workshop on User Centered Design and Imple-
mentation of Virtual Environments, University of York, UK.

Fikes, R., & Nilsson, N. (1971). STRIPS: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence, 2.

Hart, P.E., Nilsson, N.J., & Raphael, B. (1968). A formal basis for the heuristic
determination of miniman costs paths. IEEE Transactions Systems Sci-
ence and Cybernetics, 4(2).

Méndez, G., Rickel, J., & de Antonio, A. (2003). Steve meets Jack: The
integration of an intelligent tutor and a virtual environment with planning
capabilities. Proceedings of the 4th International Workshop on Intel-
ligent Virtual Agents (IVA’03).

Munro, A., Surmon, D.S., Johnson, M.C., Pizzini, Q.A., & Walker, J.P. (1999).
An open architecture for simulation-centered tutors. Open Learning
Environments: New Computational Technologies to Support Learn-
ing, Exploration and Collaboration. Proceedings of AIED99: Ninth
Conference on Artificial Intelligence in Education (pp. 360-367), Le
Mans, France.

Rickel, J., & Johnson, W.L. (1999). Animated agents for procedural training in
virtual reality: Perception, cognition and motor control. Applied Artificial
Intelligence, 13, 343-382.

Rickel, J., & Johnson, W.L. (2000). Task oriented collaboration with embod-
ied agents in virtual worlds. MIT Press.

Sánchez, M.I. (2001). Una aproximación metodológica al desarrollo de
entornos virtuales. PhD Dissertation, Universidad Politécnica de Madrid,
Spain.

234 de Antonio, Ramírez & Méndez

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Section III

Collaborative
Virtual Environments

and Mixed Reality

Construction of Collaborative Virtual Environments 235

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter IX

Construction of
Collaborative

Virtual Environments1

Anthony Steed

University College London, UK

Emmanuel Frécon

Swedish Institute of Computer Science, Sweden

Abstract

In this chapter, we give an overview of some of the issues that face
programmers and designers when building collaborative virtual
environments (CVEs). We do this by highlighting three aspects of CVE
system software: the environment model (data structures, behaviour
description) that the system provides, the data-sharing mechanism (how the
environment model is shared), and the implementation framework (the
structure of a typical client or platform in terms of the services it provides
to the user). When a CVE system is designed, choices have to be made for
each of these aspects, and this then constrains how the designers and
programmers go about constructing the CVE worlds themselves. We present

236 Steed & Frécon

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the main body of the overview by using examples that highlight many of the
important differences between CVE systems. We will also relate our
discussion to the common topics of network topology and awareness
management.

Introduction

A collaborative virtual environment (CVE) is a computer generated, three-
dimensional space within which a geographically distributed set of users can
interact in real-time. Many different types of CVEs can be found in use today,
from online computer games to military simulations. The content and behaviour
of different CVEs are very wide-ranging because of the different demands of
the application. The primary requirement of an online computer game might be
rapid response so that the game is fluid and enjoyable. The primary requirement
of a military simulation might be verifiability and consistency so that the
simulation can be studied for tactical purposes. These different applications thus
require very different systems to support the CVE and they use quite different
types of programming model and description languages.

In this chapter we look at the structure of CVE systems and how the structure
constrains and informs the role of the designers and programmers of CVEs. A
CVE system is a software suite upon which a number of different CVEs can be
built. A particular CVE system, such as a military simulation built around the DIS
system (see p. 251), is best suited to support one particular class of CVE. Thus
although games can, and have, been built on DIS, it is not the most common CVE
system for such applications.

Building a CVE system presents many interesting challenges. A CVE system
needs to present audio, video, and potentially haptic data to participants. A CVE
system needs to support interactive and reactive capabilities so that the CVE can
respond to the participant and present an interesting world. And whilst doing both
input and output in real-time, the CVE system also needs to distribute all the data
to multiple users at different sites so that they can collaborate.

The types of data involved in describing a CVE and the requirement to be both
real-time and distributed means that CVE systems are a field of study in their
own right, and they are somewhat distinct from other types of distributed system.
For example, CVE systems typically generate high volumes of small data
packets that need to be delivered at very low latency with a mixture of reliability
requirements. Faced with potentially overwhelming amounts of data to maintain,
CVE systems focus on only managing data concerning the local surroundings of
each participant. In practice this means reducing the complexity of data within

Construction of Collaborative Virtual Environments 237

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the system, and taking advantage of the limitation of display systems and human
perceptual capabilities so that only important, perceivable data are generated.

In this chapter we will look at how typical CVE systems are built. We emphasise
commonalities and differences between different CVE systems, and how these
impact upon the role of the designers and programmers of the actual CVEs. We
will describe the differences between CVE systems by focusing on three aspects
of the design of a CVE system: the environment model for describing the CVE,
the data-sharing mechanism to support distribution of CVEs described in that
model, and the implementation framework of the CVE system. We introduce
each of these aspects in turn in the following section. We then give an
introduction to some of the main real-world issues to consider when developing
a CVE system. The following three sections then discuss environment model,
data-sharing mechanism, and implementation framework in more detail. Each of
these sections will present two contrasting systems that illustrate some of the
main issues. Each section also presents the authors’ view of some of the main
research challenges in that area. We then devote a section to discussion of
scalability, the current challenge for CVEs, and finish by discussing some
requirements and prospects for the next generation of CVE systems.

Structure of a CVE System

In this section we elaborate on what we mean by the three aspects of a CVE
system: environment model, data-sharing mechanism, and implementation frame-
work. These three aspects can be summarised from a programmer/designer’s
point of view as: What data structures and programs do I need to write to build
my CVE? How does data get shared between the users and what do I need to
do to maintain the CVE? What application services are there within the system
and how do I use them? Identifying these three aspects will allow us to contrast
various CVE systems and isolate conventions that are used, but which may not
always be explicit when the systems are described.

Environment Model

By environment model we mean the structures and properties by which the
programmers and designers will describe the CVE. This involves a combination
of data elements such as visual appearance and behavioural elements such as
the social interactions of a simulated human or a mechanical part’s operation. It
does not include any of the mechanisms by which the model is shared. It also does

238 Steed & Frécon

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

not include any specifics of implementation framework of the system. However,
as we will see, the distinction between environment model and implementation
framework is often not explicit and varies from system to system.

Typically programmers and designers make a distinction between media assets
such as geometry, texture maps, and audio samples; properties, which are non-
renderable data that convey higher-level semantics such as weight or tempera-
ture; and behaviours, which describe changes to media assets and properties
such as the change in location of a set of birds in a flocking simulation.

The environment model thus allows a programmer and/or designer to author a
specific virtual space. As a simple example, the model will usually allow a set of
media assets to be identified and located within a 3D space, and it will allow for
the procedural programming code to describe behaviours that indicate how these
media assets can vary over time, by, for example, moving and changing volume.
An asset is thus usually a static item, generated by a modelling package (such
as 3D Studio MAX), and the behaviours, usually written in a language like C++,
Java, or Python give those media assets life depending on semantics given by
the properties. Ideally the programming code associated with the behaviour of
the environment will be largely independent of both the data-sharing mechanism
and the implementation framework.

This distinction between asset, property, and behaviour is a gross one, but it is
a common one that is made in CVE systems. Thus the construction of a CVE is
usually perceived to contain three tasks that require different skill sets. This in
turn means that constructing a CVE involves several iterations between model-
ling, programming, and labelling with semantics. Throughout this chapter we will
refer to the people who develop the CVEs as programmers or designers to reflect
the spectrum of skills and tasks required.

Data-Sharing Mechanism

Although several users can be supported off a single system, for example in a
split screen situation, this does not fit with typical use of CVEs where the users
are distributed and each user has significant local computing resources. This
requires the environment to be distributed and maintained between different
sites. As users alter the environment by interacting with it, those changes are
communicated to the other users machines so that every one experiences a
consistent environment.

There are two main classes of reason why this is difficult to achieve. The first
class deals with communication speed. Network latency means that the different
copies of the environment are never exactly the same, and indeed it takes work
to stop them diverging. One of the big distinctions between CVE systems is how

Construction of Collaborative Virtual Environments 239

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

they deal with resolving ambiguity due to network latency, and how they then
force the models to become consistent. The second class is that it simply may not
be possible to enforce consistency of the environment with multiple parties. An
example is constraint-based interaction between two users. If two users pick up
a rigid virtual object at different points and pull in different directions, some part
of the environment has to break because the users cannot be physically
restrained. For example, either the object has to stretch, or one user has to be
forced to drop the object. Even if it is possible to avoid a model violation by
enforcing a rule from the behaviours of the world, users might be surprised by
the results. A more difficult problem is that the model might not be computable
since processing is limited. Collision detection is a good example since the
computation required can be quadratic in the number of objects.

We will return to examples and issues in data sharing in the section on data
sharing on page 250. At this stage it is worth pointing out that the main difference
between systems is in how many of the behaviours of the system can be assumed
when writing the data-sharing system. One obvious and common implementation
is simply to explicitly share all the data structures that form the environment
model. However this can be hard to make consistent since two users might
operate on the same object, resulting in two machines attempting to apply the
behavioural rules in parallel. In contrast, if you can assume that everyone knows
the behavioural rules of the environment, you can use higher-level events and
allow everyone to re-interpret a single high-level event as a series of changes to
a model. A very simple example might be “Door 18 opens” being communicated
and translated by all receivers into “DoorGeometry18 rotates 120o about the Y
axis and DoorSound2 plays for 2 seconds,” with the implicit follow up due to the
game behaviours “Zombies178-185 are triggered and start lurching towards the
player.” High-level events are used because they save network bandwidth and
encapsulate a series of events that should not be separated. However they
introduce inflexibility into the system.

Implementation Framework

The final aspect of the CVE system that we will explore is in the implementation
framework of the CVE system. By implementation framework we mean the
typical process or collection of processes that supports a particular user. Of
course, the implementation framework will depend heavily on the model and
data-sharing approaches, but even then implementation frameworks vary very
widely, and the terminology to describe them varies enormously (toolkit, plat-
form, component frameworks, etc.). The critical issue for us will be to isolate
where the locus of implementation of the environment’s behaviour lies. When
discussing the modelling of environments, we stressed the separation of behaviour

240 Steed & Frécon

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

in the model. Implementation frameworks tend to vary on where environment
behaviour is described: it could be embedded in the world description and or it
could be hard-coded in the system itself. Typically behaviour is actually split:
some of the behaviours are fixed for most environments and others are described
alongside the environment. The implementation framework can facilitate both
types of description. An example of something that is relatively fixed is the
mapping from tracking information to location of body parts of an avatar. As a
gross characterisation, this would usually be specified by a configuration file that
the implementation framework would read when it was started. The code for
mapping tracking to position of body parts would likely be written in C or C++
because it would need to be executed in real time at a frequency of around 60Hz.
An example of something that changes from world to world is behaviour of
autonomous characters. Because it encompasses a lot more wide-ranging
behaviour and is perhaps adaptive, this might be written in an interpreted
scripting language.

These two examples hint at a core problem. Frequently executed code needs to
be highly optimised because CVE systems are real time. However there is a very
wide range of potential behaviours, and we might want to dynamically change the
behaviour at run-time. Interpreted scripts are useful for dynamically changing
behaviour, and with some care they are easy to compose with other scripts.
Scripts can be changed whilst the system is running to allow rapid prototyping.
Interpreted scripts may not be so efficient as native code, so any scripting relies
on a set of services that express static computational facilities that can be called
upon during execution.

Of course this is, again, a gross characterisation. Application code, that is code
that changes from environment to environment, is actually most commonly
written in C or C++ and simply linked into the main system. This creates
monolithic applications that, although efficient, are difficult to maintain. This is
mainly because all of the clients of the CVE will probably need to have exactly
the same revision of the code. In the experience of the authors, synchronising
such clients is an onerous task. We note that scripting is one way to solve this,
because the scripts can be shared just as other parts of the environment model.

If application code changes from environment to environment, what is the
implementation framework responsible for? The implementation framework can
be considered to be a set of services that do specific jobs. A service that is
commonly separated out is visual rendering. This is because you would probably
want to run this in parallel on a separate processor whenever possible because
it is the main bottleneck with today’s implementation frameworks. However
many other such services can be split off. Each service represents a logically
independent set of functionality that has its own requirements on performance
and update rate. The dVS architecture was an early CVE architecture that

Construction of Collaborative Virtual Environments 241

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

illustrates this (Grimsdale, 1991; Division Ltd., 1996). In dVS the system was
made up of a set of actors (processes), each responsible for a specific set of
functionality:

• Visual actor renders graphical views of the object database.

• Audio actor renders auditory views of the object database.

• 3D tracking actor manages tracking devices and processes their raw
data.

• Collision actor processes object movements and generates collide events.

• Body actor generates an object that represents the user within the
environment.

• Application actor contains the application-specific behaviour of the
environment.

• Physics actor simulates dynamic entities.

Each of these actors accesses a shared database of entities that represent the
media assets and properties of the application. These include visual geometry,
sounds, physics properties and collision properties. When setting up a multi-user
session, some of these actors need to be instantiated more than once, and others
are singletons. Figure 1 shows an example configuration of a multi-user CVE
session. In the distributed setting, either with multiple machines supporting one
user or multiple machines supporting multiple users, special agent actors handle
communication. Agent actors only communicate necessary information for the
actors on the machine that they handle communication for.

Figure 1. Example actor configuration for a multi-user CVE session

Application

Collision

Database Audio

Video2

Video1
Tracking

Agent Agent Database Audio

Video1

Tracking

242 Steed & Frécon

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The architecture of dVS shows how an implementation framework can be
constructed from a set of orthogonal services, with the environment-specific
behaviour isolated from the majority of the services. For most CVEs built on
dVS, all of the actors except the application actor would remain the same.

Unfortunately most implementation frameworks are not designed with this level
of separation between the CVE system, which is general and stable, and the
particular CVE, which is very specific and changing rapidly.

Real-World Issues

Before describing CVE systems in more detail, it is worth considering some of
the real-world issues that affect the design and implementation choices. It has
been observed that the design of a CVE is a trade-off between complexity and
real-time performance. CVE users and CVE programmers and designers push
the complexity of models, but often their expectations cannot be met and the
CVE looks artificial or limited. To investigate this trade-off, and to better
understand the nature of CVE systems, we consider three real-world issues.
Firstly we consider user expectations, that is, the type and quality of the
experience that users expect from a CVE. Secondly we turn these user
expectations into modelling requirements: the detail and quality of models that
have to be supported. Finally we discuss platform limitations: those aspects of
modern computing platforms that most seriously impinge on the ability to
generate very high-detail and very high-quality CVEs.

User Expectations

The typical user of a CVE will probably be using a non-immersive virtual
environment (NIVE), perhaps a games console or a desktop PC. Rarer are users
of immersive virtual environments (IVE) using head-mounted displays (HMD)
or spatially immersive displays (SIDs, commonly referred to as a CAVEsTM).
However a lot of the research and development work in CVE systems is driven
by the needs of IVE users since CVE systems that support IVEs are often very
capable in terms of rendering and network bandwidth.

With both NIVEs and IVEs, the user’s first expectation is that the displays
(audio, video, etc.) represent a 3D environment within which they can interact.
This requires the displays to represent 3D as best they can (through lighting,
shading, stereo, occlusion, audio loudness, etc.), but moreover to be consistent
in how they do this over time and to present multi-modal cues synchronously. Just
as in 2D human-computer interaction, the user of a CVE is going to have to learn

Construction of Collaborative Virtual Environments 243

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

some of the rules of the environment in order to interact with it. With an NIVE
for example, the user has to learn how the controls (mouse, joypad, etc.) control
the display. For example, does the joystick move the user through the world or
the world around the user? There are then rules that have to be learnt about the
environment itself. For example, what is the layout of the building and what
objects are potentially dangerous?

Our second expectation concerns representation. We do not advocate photo-
realistic or hyper-realistic representations that mimic the real world. Primarily
this is because this is still impossible, but even if it were possible, it would not be
desirable in all situations. The behaviour of objects is perhaps more complex to
describe than visual appearance, and if the objects look real, the users will
interpret the affordances of the object as they would in the real world (see
Tromp, Steed, & Wilson, 2003, for a discussion of how this can impact CVE
design). Of course this is a trade-off; the purpose of a CVE might be to convince
the user that something is really reacting to them. In University College London’s
social phobia work (Freeman et al., 2003), avatars with very simple representa-
tions, but complex behaviours, will cause stress for users who have discomfort
with speaking in public (see Figure 2).

Modelling Requirements

The visual quality of real-time graphics has improved vastly over the last decade.
Three-dimensional environments are now almost ubiquitous in video games, and

Figure 2. Simulation of a library environment. Users have very strong
reactions to the avatars despite the fact that the avatars have very simple
appearance and behaviours. Some users will attribute intelligence and
deep motives to the avatars.

244 Steed & Frécon

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the detail within them means that most of the effort of building a game now goes
on modelling, not programming. The detail in modelling is still a limitation,
especially if the world takes on a realistic style. A case in point is the Sony
Computer Entertainment Europe game, The Getaway, which involved more than
20 person-years of effort just in modelling the cityscape—110 kilometres of
roads in 50 square kilometres of central London (Coates, 2001).

The detail of geometry and appearance are thus one of our biggest limitations
when modelling. Scanning geometry from physical models and remote sensing
help in some areas, but even these need a lot of input from a modeller. Similarly,
realism of behaviour is also difficult. Behaviours are difficult to describe since
they must appear consistent with the scene. As an example, consider modelling
a human (commonly known as an avatar). The geometry and appearance may
be scanned and static shots of virtual characters can easily fool a viewer.
However, when such models move the illusion break down or if the user can
interact with them, they will quickly see that the avatar has a limited range of
expression.

So in both modelling geometry and programming behaviours, we have limits
based on the detail required. However as we have alluded to in the previous
section, users are quite forgiving of representation of objects and can operate
with low detail models as long as they are consistent and understandable. We can
also exploit the fact that users have limited perceptual capabilities, so we can
reduce detail in the distance or for objects that are not visible.

Finally, we have not touched on modelling of properties of objects. This is mainly
because the requirements of platforms vary greatly on their need for properties.
Often properties are essential to label objects for the purposes of assigning
behaviour to them or having behaviour refer to them. For example even a
behaviour as simple as “make the avatar look towards the nearest window”
needs some mechanism that labels which piece of geometry are windows. This
would usually be done by adding a suitable property to window objects so that
behaviours can search for them.

Platform Limitations

In our discussion of issues so far, we have steered away from thorny issues of
the power of the machines implementing the CVEs. This is where most
programmers and designers spend their time: optimising a particular environment
for a particular piece of equipment, being it a Nintendo Gamecube or an SGI
Onyx. However the boundaries here are always expanding: more polygons, more
sound sources, and better behaviours. As machines get faster the users expect
consistency and behaviours from the environments the machine supports, and
the models get more complex.

Construction of Collaborative Virtual Environments 245

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

There are some rules of thumb though. It has long been expected that the
platform will generate a reasonable frame-rate. These days there is little reason
not to aim for 50-60Hz or higher as consumer graphics cards have reached the
order of 108 polygons per second. Thus today the platform limitations are in the
size of the model that can usefully be held in memory and displayed, loading and
maintaining these models from disk or from the network, and in the CVE
situation, maintaining and animating many hundreds of moving entities. At the
time of writing, network and disk bandwidth are probably larger limitations than
rendering capability.

Choices for Environment Model

In making a CVE we need to decide what the content of the CVE is, that is, what
we are going to have to specify in order to describe the environment. The visual
appearance is the first of these. An associated sound might be the second. These
are basic constituents of an environment model or scene description language.
However when it comes to describing a particular scene, we may want to label
or associate meta-data to particular objects to indicate other properties. A very
common example is the solidity of an object. An object’s visual geometry may
be very complex with thousands of polygons. However this geometry may be no
use for collision detection because it would be too complex to intersect it with
other scene geometry in real time. Thus a “proxy” would be given that is an
approximation to the shape object, but of much reduced complexity. This proxy
is used for intersection tests on the basis that the user would not be able to tell
the difference in the collision response. For example DIVE (see p. 255) allows the
user to specify that any geometry is collidable, but it also allows any geometry
to be invisible and thus geometry can be used for collision only. Other common
practices that a model may allow are declaring types of objects so that they can
be aggregated or iterated through. For example this is useful to support
behaviours such as “sit in closest chair,” where chair is not a first-class type of
object in the system, but is a user-defined type that is useful for the particular
application.

Hand-in-hand with the choice of the model is the choice of the modelling
package. And fundamental to both of these choices is picking a style of model
or a convention that will facilitate the particular application or class of applica-
tions that the programmer or designer wants to build. The choice boils down to
picking a standard modelling language such as the Virtual Reality Modelling
Language (VRML, see following section) that is generic and widely supported,
or picking a highly customised format that is designed specifically for your
application. Many modelling packages support a large subset of VRML at least

246 Steed & Frécon

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

as a target for exporting models. A highly customised format might facilitate
faster modelling for that purpose, but is more difficult to apply to other contexts.
Game engines are often of the latter form, and we will use Quake II as an
example.

VRML97

The Virtual Reality Modelling Language (VRML, 1997) is a standard that
specifies a file format for the description of 3D scenes. It includes geometry and
appearance of objects and additional functionality for behaviours through
animation, interaction, and simulation. We give a short overview of the structure
of VRML as it illustrates several common features of environment models.

A VRML file contains a set of nodes that describe the scene. Each node is
defined by several fields. For example, VRML has a Cone node that allows the
programmer or designer to describe a cone with four fields, bottomRadius,
height, side, and bottom. For each field, there is a type. In this case bottomRadius
and height are SFFloat (floating point numbers), and side and bottom are SFBool
(binary values). Together these fields indicate the size of the cone and whether
or not the bottom is drawn and/or if the side is drawn. In the VRML file itself,
you would see ASCII text such as the following:

Cone {

height 5.0

bottom FALSE

}

Every field has a default value, and it is legal and preferred not to specify fields
if their value is the default. In this case, the default bottomRadius is 1.0 and the
default side is TRUE, so this node will appear in the scene as an open cone. There
are such nodes for different shapes, and nodes that specify material and textures
of objects. There are nodes for specifying groups and rigid transformations of
objects, and nodes for other visual scene properties such as fog and a back-
ground. All CVE systems have mostly equivalent functionality for describing
geometry and appearance. VRML97 also specifies sound properties which is
less common in such scene description languages.

VRML97 also allows behaviours to be specified. It does this through a data flow
scheme. A graph structure that links fields in different nodes together is defined
using ROUTE statement. Data flowing through the graph specifies new values
for fields, and these new values are calculated in every frame to animate the

Construction of Collaborative Virtual Environments 247

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

scene. There are nodes that specify time generators, and there are nodes that
take time values and generate animations of other types of values. The following
example should illustrate how this allows behaviours to be described.

In Figure 3, we see an example of a very simple behaviour that specifies a
rotation. The node Transform wraps a piece of geometry, in this case a box. All
transform nodes have a field called set_rotation, to which new values can be
passed in order to set the rotation component of the transform. The
OrientationInterpolator node takes a time value between 0 and 1, and
generates an orientation. It does this by using the fields key and keyValue, which
indicate how time (key) maps to orientation (keyValue). If the time is between
the keys, then the orientation is calculated as an interpolation between the two
closest keyValues. For example if the time is 0.25, the orientation is halfway
between (0 1 0 0) and (0 1 0 3.141) which is (0 1 0 1.5705). Orientations are
specified in axis-angle format. That is, the first three values specify the axis and
the fourth the angle rotation about that axis. The effect of this
OrientationInterpolator is thus to rotate once when the time varies between 0 and
1. The OrientationInterpolator is driven by a TimeSensor node that generates
time values in the range 0-2. Every frame the TimeSensor takes the current time
and finds that value module 2. The TimeSensor generates a value in the range
0-2 in each frame. The OrientationInterpolator does not know about time values
above 1, so it simply uses the closest value. The complete effect then is a box
that rotates around in one second, waits one second, then repeats. If more
complex effects are required, a data-processing script can be written in Java or
JavaScript and placed into the data-flow graph.

Figure 3. Animating a rotating box using VRML animation nodes

DEF TRANS Transform {
 children [USE ONE_BOX]
}
DEF TIMER TimeSensor {
 loop TRUE
 cycleInterval 2.0
}
DEF ROTATOR OrientationInterpolator {
 key [0, 0.5, 1]
 keyValue [0 1 0 1, 0 1 0 3.141, 0 1 0 6.281]
}
ROUTE TIME.fraction_changed TO
 ROTATOR.set_fraction
ROUTE ROTATOR.value_changed TO
 TRANS.rotation

fraction_changed

TimeSensor
output

value_changed

OrientationInterpolator

output

set_rotation

Transform
input

set_fraction
input

248 Steed & Frécon

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

VRML97 itself is a description of a single scene; it is not designed to support
CVEs. However there have been many extensions of VRML97 that support
networked environments. Living Worlds was an effort to standardise multi-user
extensions to VRML97 (LivingWorlds, 1998). LivingSpace (Wray & Hawkes,
1998) was an implementation of this based on three layers. The lowest level is
a generic notification system. Above this notification system, generic support for
state sharing is provided by an event interface. Finally, the top layer consists of
the support for zones, a region of the space according to the Living Worlds
proposal. We will explore some of these concepts in later sections.

Quake

The Quake series of games from Id Software is notable because the series
changed the public perception of what was possible with 3D and online games.
It is also notable because it was easy to modify the games and a large community
of “mod” developers grew up around the series.

We will use Quake II as an exemplar of a typical game engine because the
complete source code for the game has been released under the GNU Public
Licence and the interested reader can compare it to the other systems in this
chapter. Game engines have been widely discussed in the CVE community
because they are very successful at generating relatively complex worlds
(Capps, McDowell, & Zyda, 2001). Under the hood there is not much to
distinguish game engines from other CVEs. Typically game engines are more
constrained in their behaviour, but more effort is expended on generating models
(c.f. the example of SCEE’s The Getaway earlier). Indeed because the game
data is often a very large component of the effort, the game engine and the
production pipeline for the environment are built in parallel. Thus game engines
often dictate specific tools or their own tools for model building. The models are
thus highly customised for the engine that will run them, and a particular
combination of production pipeline and game engine might be extremely inflex-
ible and not lend themselves well to other types of game.

The full Quake II environment models would be very long, but we will note some
features that make a contrast with VRML97. Firstly there is a clear distinction
between behaviours and media assets. The game behaviours are described in a
dynamically loadable library compiled from C code. The media assets are very
highly customised, and indeed they are generated by very specific tools. Id
Software wrote their own production tools when producing the game. After the
game was released, they made these tools publicly available. These tools seeded
the mod community, which has since extended these tools. The bulk of the
geometry in a Quake II world comprises architectural models. These are

Construction of Collaborative Virtual Environments 249

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

described in a format that revolves around a binary-space partition (BSP) tree
(Fuchs, Kedem, & Naylor, 1980). The leaves of the BSP tree contain pointers
to clusters of faces that define the actual surfaces of the world. The BSP tree
does two main jobs beyond being a geometry representation: it provides a basis
for pre-computed visibility sets (Airey, Rohlf, & Brooks, 1990; Teller & Sequin,
1991), and it provides an efficient data structure for collision detection. Genera-
tion of BSP trees is time consuming and error prone, and this is one of the reasons
why the game requires its own tools. The tools for modelling the worlds are very
limited compared to other, more general modelling tools, and they impose a
number of constraints so that BSP trees can be generated successfully. An
example constraint is that the vertices of the model can only lie on integer values
in a range of –8000 to +8000 in each direction. Some properties are written into
the BSP file to enable game behaviours. Some objects will be labelled as starting
points, lifts, and so on.

The second type of asset involves the models of the players’ characters. These
are described in a separate data structure. A character is made up of a sequence
of 3D meshes. Each mesh represents a pose, and typically there are fewer than
200 poses. When a character is animated, its representation is limited to being
an interpolation between two such poses.

Overall then, Quake II, although very successful as a game, is difficult to re-
purpose as a general system because it has highly customised data structures.

Research Issues

Environment models and the scene description languages that go with them are
still a matter for research. VRML’s role will be superseded in the near future by
X3D (X3D Working Group, 2003), but X3D is not a fundamental change from
VRML97 in the way scenes are modelled. Several extensions have been
proposed that facilitate a particular class of modelling problem. For example,
GeoVRML is an extension to VRML97 that makes it easier to model very large
terrains (Reddy & Iverson, 2002). Game engines continue to evolve to match
user expectations and the increasing power of platforms, but a big challenge for
games developers is trying to support a range of platforms, especially now that
mobile games are starting to generate more significant sales. The research
issues today are thus in generating canonical environment models that can be
compiled or simplified to run-times that satisfy a variety of different computing
platforms.

Another current challenge is supporting physical dynamics simulation as a
service in the implementation framework. This is done in limited demonstrations
today, but the work of companies such as Havok has shown how a variety of

250 Steed & Frécon

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

dynamics models can be integrated into environments. There is also useful work
to be done on the related problem of taking visual models for geometry and
deriving useful collision surfaces. Indeed, currently there may be two completely
different representations of the same world, including a polygonal geometric
model for the renderer and a BSP model solely for the collision detection (Shaw,
2003).

Many scene description languages have limited facilities for describing novel
types of content, or properties, beyond that which they were originally designed
for. It is difficult to add novel data to Quake II models because the environment
model was highly customised to support the types of assets the game required
when it shipped. VRML does allow novel data to be described using a mechanism
know as prototyping. However even then novel data is difficult to support
throughout a production pipeline because modelling tools obviously cannot edit
content for which they do not know the semantics. Thus a modelling tool either
needs to be aware of the types of novel content even if it can’t support the
content or it must try to preserve content that it detects is novel. Unfortunately
the latter is hard to do and is not commonly done in modellers, so we are back
in the realm of customised production pipelines for specific models. This is one
reason why modelling tends to be a pipeline process and not an integrated
process.

Finally we note that in certain fields there are more specialised environment
models that are either native to one package but widely supported by other
packages for the purposes of inter-operability, or are industry-defined standards.
An example package-native environment model is CATIA, which is customised
for product design and thus focuses on descriptions of shapes such as curves,
surfaces, and solids, rather than polygons (Dassault Systemes, 2003). An
example industry standard is IFC2x Edition 2, which is customised for describing
architectural building components (IAI-International, 2003).

Choices for Data-Sharing Mechanism

Earlier in this chapter we made the distinction between data-sharing mechanisms
that assume there are shared structures and data-sharing mechanisms that
assume that high-level events can be used to synchronise clients. Now, we can
better characterise the distinction because we have covered environment
models and how particular applications can be described in those models. If an
application is well defined and more closed in nature, it will tend to use events
that describe a high-level state of the environment. Earlier we used the example
of a game that used a high-level event of a door opening that triggered several

Construction of Collaborative Virtual Environments 251

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

consequences. High-level events are useful because maintenance of state
between several machines is easier because a smaller number of events are
required. Indeed if the events are standardised, then several different CVE
systems with completely different implementation frameworks might interact.
We will describe DIS, which is an example of such a mechanism.

In contrast, if a CVE system is more open in nature, it may not be possible to
define a set of such high-level events, and a more general data-sharing
mechanism will be required. The simplest type of general shared data is
distributed shared memory. In this approach the programmer simply declares
data structures for their model in shared memory, and this is transparently
synchronised between hosts. This approach is used by the DIVERSE system
(Kelso et al., 2003). However, CVE systems usually have a well-defined
environment model, and it is more common for the model to be shared between
hosts without directly copying the actual in-memory data structures. As an
example of this type of system, we will describe DIV, Distributed Inventor,
which is based on Open Inventor.

DIS

For over two decades, the defence community, led by the U.S. Department of
Defence (DoD), have invested in a number of research programmes on
distributed simulation. Many of defence simulations rely on the DIS (Distributed
Interactive Simulation) standard (IEEE, 1993) that emerged as a result of these
efforts. The core of DIS is a suite of network protocols that allows inter-
connection between heterogeneous collections of simulators. Unlike many
systems, DIS places no constraints on the software architecture of the simulator.
DIS-compliant simulators are very diverse, ranging from immersive virtual
reality systems through to intelligent agent systems.

A simulation is comprised of a number of objects. Each simulator node introduces
objects into the environment and is subsequently responsible for those objects.
Other simulator nodes maintain local copies of those objects. Each simulator
node broadcasts regular events for each object it is responsible for. These events
must completely describe any changes in state. Simulators receiving these
events must themselves decide how to apply the state change to their local copy.
Because there is no constraint of the representation of an object on a simulator,
it is very important that the events that specify change in state follow the standard
packet format provided by the PDU (Protocal Data Unit).

All PDUs incorporate an identifier for the entity concerned, the responsible for
the entity, an application identifier, the type of the entity and the type of the PDU.
The remainder of the PDU depends on the type. For example, PDUs describing

252 Steed & Frécon

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

vehicles will contain information such as velocity and orientation, whereas PDUs
concerning humans will contain information such as stance or gait. There are a
large number of different PDU types because they have to encompass all state
changes for the variety of different entities that might be encountered in a
military simulation.

If a client can interpret PDUs, they can participate in a DIS simulation. However,
for general simulations DIS has some drawbacks. Network messages are sent
using UDP. Consequently, they can get lost or be received in the wrong order.
This is not necessarily a problem for entities such as airborne vehicles that move
continuously. In this case the expectation is that a missing or mis-ordered event
will soon be superseded by a more recent event. However, if an object changes
state only infrequently, there is a possibly of an inconsistency. Inconsistencies
might also arise because there is no centralised time-management thus concur-
rent events with side effects on overlapping entities might be resolved differently
at different simulators. The event-based natured of DIS also means that it is
cumbersome to introduce large amounts of state, such as weather conditions, in
to a simulation.

A further set of problems revolves around the fact that simulators just broadcast
events. This means that every other simulator receives these events and must
handle them. With only moderate numbers of objects and a fixed update rate, this
would quickly lead to congestion. To combat this DIS relies heavily on a
technique called dead reckoning. Many objects have state that can be extrapo-
lated into the future. For vehicles this might include velocity and acceleration.
Every simulator can run perform this extrapolation. The simulator responsible for
an object keeps a copy of the object state when it last sent an event, and
extrapolates this to estimate the state that the other simulators maintain. When
the actual state diverges significantly from the extrapolated state, the responsible
simulator sends another event. This significantly reduces the number of events
that need to be sent.

As a distributed system, DIS concentrates on the sending of minimal state
changes to maintain a common state among heterogeneous simulators. DIS itself
is low level, that is, it is close to the network. It has no notion of a shared database
or event ordering, so there is no guarantee of consistency between simulators.
Building a CVE around DIS requires significant software infrastructure. How-
ever the main principle of DIS, determining a small number of events that
efficiently describe change in state, is a key principle that underlies most CVE
toolkits.

Construction of Collaborative Virtual Environments 253

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

DIV

Distributed inventor (DIV) will be our example of the shared-scene graph
approach (Hesina, Schmalstieg, Fuhrmann, & Purgathofer, 1999). Scene graphs
are a common abstraction for graphics. Open Inventor (Strauss & Carey, 1992)
is one such abstraction and is particularly suited to describing interactive 3D
scenes. It is strongly related to VRML, in that VRML1.0, the precursor to
VRML97, was derived from the file format for serialising scene graphs built in
Open Inventor. Open Inventor supports loading of scene graphs from a file,
construction of scene graphs within code, or a combination of both. Like most
scene graphs, nodes in the graphs represented geometric primitives, appear-
ances, transforms, and interactive elements.

What DIV does is to share this graph between multiple clients. When a node in
one instance of a Open Inventor graph is changed, it generates a local callback
with an event that encapsulates the change made, be it a structural change in the
scene graph or a local change in the properties of the node such as a change in
a colour or a vertex location. These events are then distributed amongst all sites
using message passing. Table 1 shows the events that are used to maintain a
scene graph. These are typical of all shared-scene graph toolkits as they reflect
the general types of edits that can be done on graphs.

One limitation of this approach is that packaging up certain behaviours can take
a lot of callbacks. Imagine a flock animation where the position of every bird has
to change each frame and the shape of the wings has to change on most frames.
Although the behaviour is quite simple, many dozens of small changes need to be
communicated across the network every frame. This is exactly the type of
situation in which a higher-level event might be more useful. For example, it might
not matter for the application that the position of the wings of each bird be
synchronised between each site. If it didn’t matter, then the wings could be

Table 1. Events used to share DIV scene graphs (adapted from Hesina et al.,
1999)

Message Parameters

Update field node ID, field ID, value

Create node node type, parent node name, child index

Delete node node name

Create sub-graph file name or URL, parent node name, child index

Set node name path to node, new node name

254 Steed & Frécon

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

animated separately at each user’s machine, independent of other users. The
whole flock could be controlled by a single message per frame which controlled
all of the positions of the birds.

DIV is a very flexible system. Many different CVEs can be built on it because
it uses a very general data structure. The trade-off is that many events can be
generated because the system cannot aggregate a set of small changes into a
higher-level event.

Research Issues

In this section we have discussed data-sharing mechanisms for CVEs systems.
It is worth stressing that we have covered just a couple of mechanisms that
characterise dozens of systems. Data sharing is the core topic of networked
virtual environments; more examples can be found in Singhal and Zyda (1999).
One issue we have not addressed is how consistency between multiple sites is
maintained when each site has the ability to apply the behaviours inside the
environment. A variety of methods exist, many involving nominating or negoti-
ating ownership of objects so that at most one user has control over a particular
object at any one time.

The speed of updates and volume of data distinguish CVEs from other types of
distributed application. The volume of data issue can be tackled by exploiting the
user expectations as discussed in the section on real-world issues on page 241
and moving to a partially shared model approach. This approach is very simple:
It observes that we only really need to replicate the data or receive events for
objects that are close to us or applicable to our current task.

Finally another shortcoming for most types of current data-sharing mechanisms
is that they can be difficult to extend to cope with types of data. In DIS, if a new
type of entity is required, it either has to be shoehorned into an existing PDU, or
a new PDU has to be defined. In shared scene graph approaches, new data types
have to fit into the pre-defined data structures. EQUIP is a recent system that
attempts to overcome this by allowing dynamic type extension of the running
system through dynamic loading of implementations (Greenhalgh, 2002). EQUIP
embeds a lot of the experience of the MASSIVE series of systems that are well
known for their approach to scalability (see section on awareness management,
page 262).

Construction of Collaborative Virtual Environments 255

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Choices for Implementation Framework

The implementation framework is where there is the most variety amongst CVE
systems. The environment model and data-sharing mechanism place constraints
on the implementation framework, but even then there are a lot of options. A
critical option is the programming languages supported. As we mentioned in the
section on environment models, an implementation framework might support an
interpreted scripting language for rapid prototyping and behaviour description.
Interpreted scripts can be written and stored with or in the scene description.
This is in contrast to an implementation framework where applications are
written as standalone executables. We will describe DIVE and CAVElib to
exemplify the difference here.

DIVE

DIVE is a long-established system for CVE research prototyping (Carlsson &
Hagsand, 1993; Frécon & Stenius, 1998; Frécon, Smith, Steed, Stenius, & Stahl,
2001). DIVE defines an environment model that uses a scene graph. Its data-
sharing mechanism uses replication of that scene graph.

An overview of the structure of the system is given in Figure 4. At the conceptual
and programming level, DIVE is based on a hierarchical database of objects,
termed entities. Applications operate solely on the scene-graph abstraction and

Figure 4. The different modules that compose the DIVE system, together with
their interfaces

SRM Mechanisms

Input Devices

Audio and Video i/o

Tcl Scripting

Database

Event System 3D i/o

MIME

Rendering User
Interface

Output Devices

Distribution

User

Network

256 Steed & Frécon

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

do not communicate directly with one another. This technique allows a clean
separation between application and network interfaces. Thus, programming will
not differ when writing single-user applications or multi-user applications running
over the Internet. This model has proven to be successful; DIVE has changed its
inter-process communication package three times since the first version in 1991,
and existing applications did not require any redesign.

While the hierarchical database model is inherited from traditional scene graphs,
as used in the computer graphics community, the DIVE database is semantically
richer. For example, it contains structures for storing information about other
users, or non-geometric data specific to a particular application. In DIVE, the
database is partially replicated at all participating nodes using a top-down
approach, i.e., mechanisms are offered to control the replication of sub-branches
of a given entity. It is worth noting that the conceptual model is very similar to
that of the Spline system (Waters et al., 1997), even though both systems have
emerged from distinct efforts and have developed separately.

In DIVE, an event system realizes the operations and modifications that occur
within the database. Consequently, all operations on entities such as material
modifications or transformations will generate events to which applications can
react. Additionally, there are spontaneous and user-driven events such as
collision between objects or user interaction with input devices. An interesting
feature of the event system is its support of high-level application-specific
events, enabling applications to define their content and utilization. This enables
several processes composing of the same application (or a set of applications)
to exchange any kind of information using their own protocol.

Most events occurring within the system will generate network updates that
completely describe them. Other connected peers that hold a replica of the
concerned entities will be able to apply the described modification unambigu-
ously. Network messages are propagated using the multicast mechanisms that
are built in the system. DIVE uses a variation of SRM (scalable reliable multicast
(Floyd, 1997)) to control the transmission of updates and ensure the consistency
of the database at all connected peers. The SRM approach requires the transport
layer to be able to ask the application (in this case DIVE as a whole) to regenerate
updates if necessary. Update regeneration is necessary when gaps are discov-
ered in the sequence numbers that are associated with every entity in the
database. Gaps imply that network messages must have been lost along the path
from a sender to one of its receivers. In addition it is possible to access any
document using more common network protocols (HTTP and FTP), and to
integrate these documents within the environment by recognizing their media
types (such as VRML, HTML, etc.).

In any application, the content of the database must be initialized. DIVE uses a
module that manages several three-dimensional formats and translates them into

Construction of Collaborative Virtual Environments 257

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the internal data structures that best represent their content. Usually only one
peer will load and parse a particular file, and the resulting entity hierarchy will
be distributed to other connected peers through a series of (multicast) updates
that describe the resulting entities.

DIVE has an embedded scripting language, Tcl, which provides an interface to
most of the services of the system. Scripts register an interest in, and are
triggered by, events that occur within the system. They will usually react by
modifying the state of the shared database. Moreover, these modifications can
lead to other events, which will possibly trigger additional scripts. A series of
commands allow the logic of the scripts to gather information from the database
and decide on the correct sequence of actions.

The primary display module is the graphical renderer. Traditionally, the rendering
module traverses the database hierarchy and draws the scene from the view-
point of the user. DIVE also has integrated audio and video facilities. Audio and
video streams between participants are distributed using unreliable multicast
communication. Audio streams are spatialised so as to build a soundscape,
where the perceived output of an audio source is a function of the distance to the
source, the inter-aural distance, and the direction of the source. The audio
module supports mono-, stereo-, or quadri-phony audio rendering through
speakers or headphones connected to the workstation. Input can be taken from
microphones or from audio sample files referenced by a URL. Similarly, the
video module takes its input from cameras connected to the workstations or video
files referenced by URLs. Video streams can either be presented to remote
users in separate windows or onto textures within the rendered environment.

The services described previously are independent of any DIVE application.
Many different DIVE applications exist that use these services directly. The DIVE

run-time environment consists of a set of communicating processes, running on
nodes distributed within both local and wide-area networks. The processes,
representing either human users or autonomous applications, have access to a
number of databases, which they update concurrently. As described earlier,
each database contains a number of abstract descriptions of graphical objects
that, together, constitute a virtual world. A typical DIVE application will, upon
connection to a virtual world, introduce a set of objects to the environment that
will serve as its user-interface, and start listening to events and react accord-
ingly. One essential application of the system is the 3D browser, Vishnu, which
is a standard application that gives its user a presence within the environment.
It introduces a new entity called an actor to the shared environment, which is the
virtual representation of the real user. Vishnu renders a visual and aural space,
and provides users with an interface that allows them to explore and interact with
this space. Vishnu is a default high-level user client.

258 Steed & Frécon

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Users may also be presented with a two-dimensional interface that offers access
to rendering, collaboration, and editing facilities. The interface itself is written
using the same scripting language as offered by the world database. Conse-
quently, CVE applications can dynamically query and modify the appearance of
the 2D interface. For example, the London Traveler application (Steed, Frécon,
Avatare Nöu, Pemberton, & Smith, 1999) exploits this feature by adding an
application-specific menu to the regular interface of the DIVE browser.

Finally, a MIME (Multimedia Internet Mail Extensions) module is provided to
better integrate with external resources. It automatically interprets external
URLs. For example, an audio stream will be forwarded onto the audio module
where it will be mixed into the final soundscape.

DIVE thus specifies a range of different services at different levels. Programmers
can use the core libraries that provide core services and extended modules that
provide user services. However, what tends to distinguish DIVE from other
systems is that there is a default application, Vishnu, which integrates many of
these services. Vishnu can load a world description file that, because it allows
embedded Tcl scripts, is powerful enough to describe a very wide range of
environments. Vishnu, the application itself, changes rarely, so there is a high
degree of interoperability between instantiations at different users’ sites.

CAVElibTM

The CAVETM library (CAVElibTM) is designed to support spatially immersive
display systems such as the CAVETM. As an implementation framework it mostly
deals with display configuration and input devices, though it provides a well-
defined structure for applications and some networking support. It does not
impose an environment model, though it does provide an interface to OpenGL
Performer, which can be used to store a scene-graph for rendering and
interaction. The programmers thus define their own data structures. The data-
sharing mechanism is very low level; we will discuss this later.

The core of the CAVElib is a set of services that isolate users from having to
know the precise devices and displays connected to the system. For example, the
user does not deal with actual tracking input devices, but abstract devices
labelled by a logical name such as head. This and other abstractions, such as
button labelling, are configured in an external file. CAVElib also isolates
programmers from the display configuration. The programmers need to make a
choice of OpenGL or SGI Performer-based graphics API. With the OpenGL
library, the programmer needs to synchronise all data across the multiple
rendering threads. With SGI Performer, Performer itself takes care of the
multiple rendering processes. In both situations the programmer’s application is
a separate process that runs in lock step with the renderers.

Construction of Collaborative Virtual Environments 259

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

CAVElib includes some basic CVE networking support. If configured to do so,
an instance of a CAVElib application will multicast its interaction device data on
the local network at a periodic rate. CAVElib automatically listens for such
messages from other applications and builds a data structure that represents the
other users. From this, the application can build a CVE by drawing avatars,
enabling shared interaction, and so on. This is enough for very basic CVEs, but
for more complex behaviour, it is necessary to be able to communicate more
application data to the other clients. CAVElib provides a mechanism to do this:
Any client can send data to the network, which will generate a callback at the
other sites. This callback will be presented with a binary data stream and will be
expected to unpack this and interpret this. This leaves the CVE programmer with
a lot of work to do: deciding the data formats, standardising this amongst
application, and then maintaining all the clients to the same code revision.

CAVElib networking thus provides low-level aspects of both shared memory and
event-based data sharing. To the programmer, the array of the position and
inputs of the other user can be considered to be a shared data structure. The data
callbacks have to be considered to be event based, because the events them-
selves are transitory and do not explicitly represent shared data. This networking
approach assumes that all the clients can interpret the data received from the
network. This implies trusting the senders, and assuming that the data can
reliably be matched and can be unpacked into a known type. Any type of system
can be built on top of this mechanism, which is very close to low-level networking
libraries.

Although CAVElib is quite powerful, it must described as a thin library in
comparison to DIVE, in that it provides very little support for user services.
CAVElib has flexibility, but at the cost of application programmers having to do
a lot of work. The only way to share code between CVEs is to share C++ classes.
Thus environments behaviour is embedded into the application and is immutable
at run-time.

Research Issues

The developers of DIVE have made strenuous efforts to standardise a single
application binary, and move semantics and behaviours into the world descrip-
tion. This enables a number of interesting run-time properties: A DIVE user can
join an online session without having the same version of the client, and having
none of the environment description. The former is enabled because of the
abstraction of using a distributed scene graph. The latter is enabled by making
all of the environment description available within the database through the use
of interpreted scripts and meta-data properties. DIVE’s environment model is thus
quite sophisticated in comparison to many other systems.

260 Steed & Frécon

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Although we have contrasted DIVE and CAVElib, they are not really in
competition. With DIVE the focus has been on the high-level user services,
whereas with CAVElib the focus has been on broad support for device support,
rendering, operating system abstraction, and display re-configuration. Indeed
versions of DIVE that support immersive displays have been built on top of
CAVElib, though they haven’t used the network services (Steed, Frécon, &
Mortensen, 2001).

This is the trend in CVE research at the moment: building higher-level user
services to set up collaborative sessions, improving interpersonal communica-
tion, and interfacing to other awareness and group collaboration tools. It is
unlikely that an abstract architecture for CVE services will emerge soon, unless
a single implementation framework proves itself to be much more capable than
all the others.

Scalability

In our discussion so far, we have ignored the two questions that occupy most of
the research literature in the field: network topology and awareness manage-
ment. We have avoided these questions because their resolution shouldn’t really
impinge on the user, programmer, or designer experience. In an ideal world, the
programmer and developer would be concerned with the implementation frame-
work, data-sharing mechanism, and environment model, and be isolated from
issues of scalability. However, this is far from being the case. Because of
platform limitations, the programmer or designer will often have to address
scalability issues head on, and sometimes the user will have to reduce their
expectations because of these limitations.

Network topology is important because it trades off latency and bandwidth for
simple mechanisms for consistency. Awareness management is important
because in any reasonably sized CVE, it is impossible for a single user’s machine
to maintain the complete, up-to-date state of the CVE.

Network Topology

Client-server systems make one process, the server, responsible for maintain-
ing the environment model. In this type of system, clients send object updates to
the server, and the server relays these updates to the other clients. This is a
common approach that is used in the three systems we mentioned already:
LivingWorlds, Quake II, and EQUIP. The advantage of this type of system is that

Construction of Collaborative Virtual Environments 261

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

it gracefully solves the problems of consistency by letting the server decide upon
the sequence of actions. Another advantage of a server solution is the possible
gain in bandwidth at the client side. The server is able to take a number of
decisions upon which object updates should be communicated, at which pace,
within which vicinity. All these decisions can be made in concert with the clients
and their known available bandwidth access. Consequently, client-server solu-
tions are often used for community-oriented systems, which target consumer
computers with modem connections.

The client-server approach has a number of drawbacks. The main one is the
introduction of additional communication delays. Indeed, before any decision has
to be taken at the client side, the client has to ensure that it will be allowed to
perform the action. Furthermore, the server is responsible for dispatching object
updates to all interested participants. Therefore, network packets will travel
twice: once from the source client to the server, and a second time from the
server to the destination clients. On a congested Internet, this travel time can be
measured in hundreds of milliseconds, if not in seconds. Server architectures also
face the problem of scale. As the number of clients grows, the server’s
processing and network capability will become a bottleneck. A solution, as
employed in a number of systems, is the multiplication of servers in various ways
(for example, by virtual geographical position, by actual geographical position,
etc.). This solution has a financial cost that might not be sustainable within all
contexts.

Finally, through the introduction of a central point, a server-centric solution
introduces possible long-lived failures. As soon as one or several servers stop
working, either for hardware or software reasons, part of the virtual environment
will also stop working and stop living.

In the peer-to-peer model, all participants’ processes will communicate directly
with a restricted and well-chosen set of other participants. Examples of systems
using this model are MASSIVE-1 (Greenhalgh & Benford, 1995) and DIVE.

As opposed to the client-server model above, this model has the advantage of
reducing network delays by removal of the need to relay updates via a server.
Since real-time interaction is one of the key facilities of CVEs, peer-to-peer
systems are generally preferred for systems tuned for highly interactive environ-
ments. This solution has the advantage of not putting the burden of scale on any
specific central point within the network. Instead, used in conjunction with
partitioning techniques, each client will only have to communicate with a
restricted set of its peers. As consumer hardware is gaining in both communica-
tion and processing power, peer-to-peer systems are gaining importance.

However, there are a number of drawbacks to the peer-to-peer approach. For
example, maintaining consistency of behaviour becomes a more complex
problem—it involves arbitration between peers.

262 Steed & Frécon

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Additionally, filtering facilities such as those offered by a central server are
harder to achieve. One solution would be for each pair of clients to actually
negotiate how this communication should occur, but such a solution requires
some additional processing power at the sending client, which is not always
compatible with the number of other tasks that must be performed in real time.
Finally, a pure peer-to-peer approach is the one that actually puts the greatest
burden on the network since packets have to be duplicated as many times as
there are destination peers. To relieve this situation, multicast has been proposed
and is in use in a large number of systems (see p. 263).

Awareness Management

Awareness management schemes exploit human perceptual and cognitive
limitations by only transporting the data that is likely to be relevant to the user.
Generally they focus on either ignoring data that is out of sight or out of earshot,
or on reducing the fidelity of data that is far away. For example, audio packets
from distant participants can be discarded since audio spatialisation will render
them inaudible or position updates from an entity behind a door can be discarded
under the condition that door is closed and blocks the view. As participants move
around the world, their interest, and thus the relevance of different objects will
change. Thus awareness management schemes need to be flexible and dynamic.
The best exemplars of awareness management schemes are NPSNET, SPLINE
and MASSIVE-2.

• NPSNET (Macedonia, Zyda, Pratt, Barham, & Zeswitz, 1994) divides the
environment into a regular array of hexagonal cells. Each participant sends
position updates to the single cell they are contained within and receives
updates from all cells within a fixed radius. This scheme works well if the
participants in the simulation are relatively uniformly distributed, such as in
the battle simulations for which NPSNET was designed. However, if the
participants are clustered and are all mutually aware of each other, they
might still be over-whelmed with data.

• SPLINE (Sterns & Yerazunis, 1997) in order to avoid the problem of
regularly-sized cells, SPLINE divides the environment into locales of
variable size and shape. Each locale contains portals that express its
adjacency to other cells. Each participant sends position updates to the
locale they are currently in and receives information from their current
locale and its neighbours. The locale mechanism allows very flexible worlds
to be described, but the configuration is still static, so congregations of
participants in a single locale may still cause overload.

Construction of Collaborative Virtual Environments 263

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• MASSIVE-2 (Benford & Greenhalgh, 1997) extends the locale mechanism
by dividing the environment into regions whose boundaries can provide
different degrees of permeability for different media. For example, a wall
between two regions may block all visual information but only attenuate
audio information. Furthermore regions can also provide aggregate repre-
sentations of their contents and regions can also be mobile. One example
that Benford & Greenhalgh use is of a region that surrounds a crowd of
participants and moves with them. From a distance, the crowd-region
presents a simplified representation of the participants with it, with less
frequent position updates and pre-spatialised audio.

All of these systems use distance or occlusion to tackle the issues of scale and
to reduce the effects of movement and interaction. They work by partitioning the
world into distinct regions and allocating separate sets of system and network
resources to each region. Consequently, only a reduced number of participants
will share each set of resources.

Other Approaches

In virtual environments, packets sent by participants have to reach a number of
destinations. These destinations will be those participants that the system
decides are interested in the packets. Partitioning techniques of all sorts are used
to avoid simply broadcasting all events. There is, however, an alternative choice,
which is the one of multicast (Macedonia, Zyda, Pratt, Brutzman, & Barham,
1995). Multicast is a networking facility that allows an IP address to indicate a
group of receivers. Each packet sent to a multicast IP address will be received
by all members of the group. The sender sends exactly one packet and the
network itself deals with duplication of the packets as required so that each
member of the group receives the packet as if it had been sent directly.
Duplication will usually happen within the routers themselves, allowing for
hardware acceleration and a faster delivery of the packet. This is in contrast to
the peer-to-peer approach where each client sends each packet multiple times,
each with a different address.

However, multicast has a number of drawbacks. Until the début of IPv6, the
number of available multicast groups was restricted. Therefore, schemes where
each active object would be associated with a separate multicast group and
where remote participants would join these groups as needed have been
impractical. Such schemes are also impaired by the fact that joining and leaving
operations require of network and computing resources both at the client side and
within the routers in the Internet. This problem applies to all multicast solutions.

264 Steed & Frécon

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Furthermore, the spreading of multicast on the Internet has been slow: Network
operators are reluctant to offer multicast to their customers, computer hardware
only supports a handful of multicast groups in network cards, and operating
systems have been slow to incorporate multicast capabilities. Finally, multicast
packet delivery is based on UDP and is, thus, unreliable.

Multicast has a number of advantages over standard unicast communications.
For example, in unicast communications based on the client-server model,
packets have to travel all the way from the network hardware, through the
operating system up to the application server before a decision can be made
whether they should be forwarded to another participant or not. For the
forwarding to happen, packets have to travel all the way back from the
application, through the operating system, down to the network hardware. These
travel times under stressed situations can account for a large part of the delays
introduced. These travel times are also of importance in pure peer-to-peer
unicast approaches where packets are already duplicated at the clients. This is
especially true since such clients have to perform a number of other computing-
intensive operations such as the rendering of the graphical 3D scene or the
mixing of audio packets coming from the remote participants. On the other hand,
uninteresting multicast packets can already be discarded at the hardware level
or at the low-level software level.

To alleviate the slow spreading of multicast and its difficulty to reach consumers,
a number of systems rely on mixed architectures. An example is the Spline
system (Sterns & Yerazunis, 1997). In Spline, servers are placed on a trusted
network to glue together true clients and other multicast-capable peers. Packets
coming from the clients will be multiplexed at the application level to all
necessary clients of the servers and also sent to the multicast groups. Symmetri-
cally, multicast packets incoming at the server will be forwarded as necessary
to the clients. Additional computing is performed at the servers in order to
minimise the bandwidth used.

Future CVEs

User expectations of CVEs have expanded rapidly in the last few years. In our
opinion the main challenges are now in modelling detailed environments and
scaling up to large numbers of users without sacrificing flexibility. The success
of multi-player online games is showing that it is possible to make persistent
online environments, but currently these environments are limited in their scope.
This scope is being pushed by current games such Second Life (http://
secondlife.com/) and There (http://www.there.com/), which offer distributed

Construction of Collaborative Virtual Environments 265

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

environments amongst moderate numbers of players with a wide range of user
customisation and user authoring.

In the near future the main tension in the design of CVE systems will be between
control of content, which is facilitated by central servers with relatively fixed
game behaviours, and open systems that users use to build their own environ-
ments. If a truly open system is built, then games authors will no longer be writing
the system, but will be focussing instead on describing the behaviours and content
of the world and relying on a standard and widely used set of services.

This open system is probably far from being specified, and there are still
significant challenges to be met. We still do not have mature modelling tools for
describing CVEs. A particular CVE system tends to use only one data-sharing
mechanism, which limits scalability and flexibility. And finally, implementation
frameworks are wide ranging, and there is no universal agreement what
behaviours should be provided by services within the system and what behaviours
should be embedded into the description of the specific CVE that is being built.

References

Airey, E.J.M., Rohlf, J.H., & Brooks Jr., F.P. (1990). Towards image realism
with interactive update rates in complex virtual building environments.
Computer Graphics, Proceedings of ACM Symposium on Interactive
3D Graphics, 24(2), 41-50.

Benford, S., & Greenhalgh, C. (1997). Introducing third party objects into the
spatial model of interaction. In J.A. Hughes, W. Prinz, T. Rodden, & K.
Schmidt (Eds.), Proceedings of the Fifth European Conference on
Computer Supported Cooperative Work (ECSCW’97) (pp. 189-204).
Kluwer Academic Publishers.

Capps, M., McDowell, P., & Zyda, M. (2001). A future for entertainment-
defense research collaboration. IEEE Computer Graphics & Applica-
tions, (January/February), 37-43.

Carlsson, C., & Hagsand, O. (1993). DIVE—a platform for multi-user virtual
environments. Computers & Graphics, 17(6), 663-669.

Coates, S. (2001). London wasn’t built in a day: Content acquisition for levels in
The Getaway. Retrieved December 17, 2003 from: www.gamasutra.com/
features/20010321/coates_01.htm

Dassault Systemes. (2003). CATIA. Retrieved December 17, 2003, from
www.3ds.com/en/brands/catia_ipf.asp

266 Steed & Frécon

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Division Ltd. (1996). dVS for UNIX workstations. Developer Guide, Revision
3.0.

Floyd, S., Jacobson, V., Liu, C., McCanne, S., & Zhang, L. (1997). A reliable
multicast framework for light-weight sessions and application level fram-
ing. IEEE/ACM Transactions on Networking, 5(6), 784-803.

Frécon, E., Smith, G., Steed, A., Stenius, M., & Stahl, O. (2001). An overview
of the COVEN platform. Presence: Teleoperators and Virtual Environ-
ments, 10(1), 109-127.

Frécon, E., & Stenius, M. (1998). DIVE: A scalable network architecture for
distributed virtual environments. Distributed Systems Engineering Jour-
nal, 5(3), 91-100.

Freeman, D., Slater, M., Bebbington, P., Garety, P.A., Kuipers, E., Fowler, D.,
Met, A., Read, C., Jordan, J., & Vinayagamoorthy, V. (2003). Can virtual
reality be used to investigate persecutory ideation? The Journal of
Nervous and Mental Disease.

Fuchs, H., Kedem, Z.M., & Naylor, B.F. (1980). On visible surface generation
by a priori tree structures. Computer Graphics, Proceedings of ACM
SIGGRAPH 80, 14(3), 124-133.

Greenhalgh, C. (2002). EQUIP: A software platform for distributed interactive
systems. Retrieved December 17, 2003, from www.crg.cs.nott.ac.uk/
~cmg/Equator/Downloads/docs/equip-tech.pdf

Greenhalgh, C.M., & Benford, S.D. (1995). MASSIVE: A virtual reality system
for tele-conferencing. Transactions on Computer Human Interfaces
(TOCHI), 2(3), 239-261.

Grimsdale, G. (1991). dVS—distributed virtual environment system. Proceed-
ings of Computer Graphics 1991 Conference, London.

Hesina, G., Schmalstieg, D., Fuhrmann, A., & Purgathofer. W. (1999). Distrib-
uted open inventor: A practical approach to distributed 3D graphics. In D.
Brutzman, H. Ko, & M. Slater (Eds.), Proceedings of the ACM Sympo-
sium on Virtual Reality Software and Technology (pp. 74-81).

IAI-International. (2003). International Alliance for Interoperability, Industry
Foundation Classes, IFC2x Edition 2, May. Retrieved December 17, 2003
from: www.iai-international.org/iai_international/
Technical_Documents/iai_documents.html

IEEE. (1993). IEEE standard for information technology—protocols for distrib-
uted simulation applications: Entity information and interaction. IEEE
Standard 1278-1993. New York: IEEE Computer Society.

Kelso, J., Steven G., Satterfield, L.E. Arsenault, P., Ketchan, M., & Kriz, R.D.
(2003). DIVERSE: A framework for building extensible and reconfigurable

Construction of Collaborative Virtual Environments 267

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

device-independent virtual environments and distributed asynchronous
simulations. Presence: Teleoperators and Virtual Environments, 12(1),
19-36.

LivingWorlds. (1998). LivingWorlds: Making VRML 97 applications interper-
sonal and interoperable. Retrieved December 17, 2003 from:
www.web3d.org/WorkingGroups/living-worlds/

Macedonia, M.R., Zyda, M.J., Pratt, D.R., Barham, P.T., & Zeswitz, S. (1994).
NPSNET: A network software architecture for large scale virtual environ-
ments. Presence: Teleoperators and Virtual Environments, 3(4), 265-
287.

Macedonia, M.R., Zyda, M.J., Pratt, D.R., Brutzman, D.P., & Barham, P.T.
(1995). Exploiting reality with multicast groups: A network architecture for
large scale virtual environments. Proceedings of the 1995 IEEE Virtual
Reality Annual Symposium (pp. 2-10).

Reddy, M., & Iverson, L. (2002). GeoVRML 1.1 Specification. Retrieved
December 17, 2003 from: www.geovrml.org/1.1/doc/

Shaw, I. (2003). Personal communication, September.

Singhal, S., & Zyda, M. (1999). Networked virtual environments: Design and
implementation. Addison-Wesley.

Steed, A., Frécon, E., Avatare Nöu, A., Pemberton, D., & Smith, G. (1999). The
London travel demonstrator. Proceedings of the ACM Symposium on
Virtual Reality Software and Technology 1999 (pp. 50-57), University
College, London, December 20-22. ACM Press.

Steed, A., Mortensen, J., & Frécon E. (2001). Spelunking: Experiences using the
DIVE system on CAVE-like platforms. In B. Frohlicj, J. Deisinger, & H.J.
Bullinger (Eds.), Immersive Projection Technologies and Virtual Envi-
ronments 2001 (pp. 153-164). Vienna: Springer-Verlag.

Strauss, P., & Carey, R. (1992). An object-oriented 3D graphics toolkit.
Proceedings of SIGGRAPH’92 (pp. 341-349).

Teller, S.J., & Sequin, C.H. (1991). Visibility preprocessing for interactive
walkthroughs. Computer Graphics, Proceedings of SIGGRAPH 91,
25(4), 61-90.

Tromp, J., Steed, A., & Wilson, J. (2003). Systematic usability evaluation and
design issues for collaborative virtual environments. Presence:
Teleoperators and Virtual Environments, 10(3), 241-267.

Waters, R.C., Anderson, D.B., Barrus, J.W., Brogan, D.C., Casey, M.S.,
McKeown S.G., Nitta, T., Sterns, I.B., & Yerazunis, W.S. (1997). Dia-
mond Park and Spline: Social virtual reality with 3D animation, spoken

268 Steed & Frécon

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

interaction and runtime extendability. Presence: Teleoperators and Vir-
tual Environments, 6(4), 461-481.

Wray, M.J., & Hawkes, R. (1998). LivingSpace: Distributed virtual environ-
ments and VRML: An event-based architecture. Computer Networks and
ISDN Systems, 30, 43-51.

X3D Working Group. (2003). Extensible 3D (X3D™ graphics, X3D Working
Group. Retrieved December 17, 2003 from: www.web3d.org/x3d.html

Endnotes

1 CAVE is a registered trademark of the University of Illinois’ Board of
Trustees. CAVELib is a registered trademark of the University of Illinois’
Board of Trustees.

Toward a User-Centred Method for Studying CVEs for Learning 269

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter X

Toward a User-Centred
Method for Studying
CVEs for Learning

Daphne Economou

University of the Aegean, Greece

Steve Pettifer

University of Manchester, UK

Abstract

This chapter addresses one of the challenges the collaborative virtual
environments (CVEs) research community faces which is the lack of a
systematic approach to study social interaction in CVEs, determine
requirements for CVE systems design, and inform the CVE systems design.
It does this by presenting a method for studying multi-user systems in an
educational context. The method has been developed as part of the Senet
project, which is investigating the use of virtual actors in CVEs for
learning. Groupware prototypes are studied in order to identify requirements
and design factors for CVEs. The method adopts a rigorous approach for

270 Economou & Pettifer

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

organizing experimental settings, collecting and analysing data, and
informing CVE systems design. The analysis part of the method shares many
of the Interaction Analysis foci and expands on it by providing a grid-based
method of transforming rich qualitative data in a quantitative form. The
outcome of this analysis is used for the derivation of design guidelines that
can inform the construction of CVEs for learning. The method is described
by a third phase of work in the Senet project.

Introduction

Collaborative virtual environments (CVEs) aim to provide effective means of
using computers as tools for distributed communication and may be used for
diverse tasks such as people working together, communication, education, or
entertainment. Real-world collaborative work involves a considerable and
complex information exchange (Hutchins, 1990; Heath & Luff, 1991, 1996;
Hutchins & Klausen, 1996; Suchman, 1996; Bellotti & Rogers, 1997; Harper,
1997), and all such systems rely on the provision of functionalities and metaphors
that emulate human-human interaction in order to facilitate computer-mediated
communication, and support interaction and collaboration.

Informing the design of CVEs demands an understanding of the social interaction
these types of environments afford. However, an immense problem faced by the
CVE research community is the lack of a systematic user-centred methodology
for studying social interaction in CVEs to inform the design of CVE systems
(Durlach & Mavors, 1994; Steed & Tromp, 1998; D2.9, 1999; Kaur Deol, Steed,
Hand, Istance, & Tromp, 2000a, 200b; Benford, Greenhalgh, Rodden, & Pycock,
2001). CVEs systems’ development so far has been driven by the challenge of
providing novel solutions to technological concerns. There is an existing body of
work looking at user needs, but this is primarily from the perspective of usability
(Kaur, 1998; Stanney, Mourant, & Kennedy, 1988). What is needed is to broaden
that perspective to recognise the situated and social nature of the processes in
collaboration.

This chapter describes a systematic method that aims to identify the design
factors involved in the construction of CVEs for learning, to understand the
respective properties that these are formed from, and to inform CVE systems
design. The method has been developed as part of the Senet project, which
studies the role of virtual actors in CVEs for learning (Economou, Mitchell, &
Boyle, 2000). An exploratory phased approach is adopted where robust proto-
types are constructed and studied in order to determine requirements and design
factors for CVEs. The study is based on a real-world situation to determine real

Toward a User-Centred Method for Studying CVEs for Learning 271

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

requirements for CVE technology. Despite the exploratory nature of the work,
a rigorous method is adopted for organizing experimental settings, collecting and
analysing data, and informing CVE systems design. Data collection occurs by
video-recording the users and user activities in the CVE, keeping record of
textual communication, and note taking. The analysis part of the method is partly
based on Interaction Analysis, and results in a mixture of quantitative and
qualitative findings. The method deals with transforming rich qualitative data in
a quantitative form that is used to draw design guidelines for CVEs for learning.
Design guidelines help build up a substantial body of knowledge in a particular
context (Newman & Lamming, 1995) and provide a means of communicating
system requirements to clear advice for implementations to software engineers.
The application of the method involves the use of the Deva CVE system (Pettifer
& West, 1999) to create a multi-user board game for use in museum education.

Background and Motivation

“Although it is important not to try to simply replicate what we
think of as ‘reality’, when designing systems to support
collaborative work we can learn a great deal from observations
of people working and collaborating together in conventional
settings.” (Snowdon, Churchill, & Munro, 2001, p. 8)

The above statement is supported by a number of researchers (Moran &
Anderson, 1990; Heath & Luff, 1991; Engeström & Middleton, 1996; Bowers &
Martin, 1999). The rationale underpinning the development of rich collaborative
CVEs is the desire to develop an arena where the interactive experience can be
supported satisfactorily. However, several problems in terms of studying and
analysing social interaction in CVEs have been identified:

• the vast amount of factors involved in the construction of CVEs and virtual
actors,

• the current immaturity of the technology,

• the prototypical nature of current applications, and

• lack of rigorous research methodologies for studying and informing CVE
design.

Kaur (1997) has identified 46 design properties to be considered when designing
VEs for usability. This number of factors increases dramatically when consid-

272 Economou & Pettifer

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ering CVEs that require the consideration of: interaction, communication,
collaboration between users and the CVE, users and objects contained in the
CVE, and population. This complicates the isolation of the design decisions
responsible for the overall effectiveness of the environment and the inter-play
between various factors.

The current immaturity of the technology does not allow the full potential of the
CVEs to be exploited. This means that many of the applications developed so far
have been of a prototypical nature. There are two issues in respect to the
prototypical nature of applications: (1) it is often not feasible to create different
conditions for experiments within the time and effort available, thus the process
of studying specific phenomena is constrained; and (2) defects in the prototypical
functionality of the application might cause difficulties in conducting studies with
real users (Steed & Tromp, 1998). The technology is not mature enough to afford
the activities that such complicated environments require.

Due to the ‘newness’ of VR and CVE technologies, currently there is no
systematic research approach for studying and informing VR (Durlach &
Mavors, 1994; Kaur Deol et al., 2000a, 2000b) and CVE (Steed & Tromp, 1998;
Tromp, 1999) system design. It will be some time before VR systems are built
using systematic methodologies to model and verify the system design (Mills &
Noyes, 1999). Insights to VR and CVE systems are coming mainly from the
fields of human-computer interaction (HCI) and computer-supported coopera-
tive work (CSCW). However, there is a call for a systematic method for studying
human interaction, managing a large amount of disparate data, and producing
results that directly inform the CVE system design. The outcome of a workshop
on usability evaluation for VEs emphasised the need for extracting generalisable
and re-usable results from user studies (Kaur Deol et al., 2000b). This is a
challenge, as one of the problems in CVE research is the lack of a formal method
for studying and evaluating CVEs.

Towards a Methodology for
Studying CVES for Learning

The overall research methodology followed in this project has been presented
elsewhere (Economou et al., 2000). The two following sections briefly discuss
some important points concerning the methodology addressing the above problems.

Three novel aspects characterise this methodology:

• It uses a ‘real-world’ application to determine requirements for
CVEs.

Toward a User-Centred Method for Studying CVEs for Learning 273

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• It follows an exploratory iterative approach of breaking the problem into a
series of manageable phases of increased sophistication, which provides
the means of managing the complexity, allows the results of each phase to
inform subsequent phases, and allows requirements to be progressively
identified and evaluated.

• It follows rigorous steps to study social aspects of CVEs, organise
experimental settings, collect and analyse the data, produce design guide-
lines for the use of virtual actors in CVEs for learning, and inform the
development of underlying virtual actor technology.

Real-World Application

Problems arising in a real-world situation can determine the success or the failure
of the system (Gunton, 1993). In order to study an authentic learning activity, the
research was based around the work of Manchester Museum’s Education
Service (Mitchell, 1999).

This service caters for school visits to the museum aimed at Key Stage Level 2
(9-11 years old). It provides access to a wide range of museum artefacts relevant
to subjects in the National Curriculum for education. One particular strength of
the museum, with a major part in the Education Service’s teaching, is its
collection of everyday life ancient Egyptian artefacts from the town of Kahun.
The artefact chosen as the basis of the learning activity in this research is
Senet—a board game for two players. Players take turns to throw a die. The
object of the game is to “bear off” your 10 pieces first. Through the activity and
a collaborative process, the children get familiar with the artefact and learn by
using it how it was played.

Developing a CVE based on Senet provides a good testbed for various CVE
properties. It allows object manipulation (the board, die, and pieces), individual
operations, as well as operations in pairs or as larger groups. In terms of
collaboration it allows cooperation (to learn the game) as well as competition (to
win the game). The game situation allows a range of teaching styles from
traditional instructional methods (e.g., explaining the rules in advance) to
constructivist methods (learning by playing). Current educational thought
recognises the need for sociocultural methods that emphasise the social roles of
teachers and learners (Soloway et al., 1996). A more practical impetus for
collaborative learning has come from two main sources in the UK. The National
Curriculum for education places great emphasis on such learning. In addition, the
UK Government has proposed a National Grid for Learning (NGfL) (DfEE97,
1997; DfEE98, 1998).

274 Economou & Pettifer

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The game supports the needs of experimentation in various ways. It is a fairly
well- structured task (the players have to follow certain steps to learn the rules
and play the game). The length of the required time to play matches well *** the
length of time the children could take part in a task before becoming restless (30-
45 minutes). Players’ knowledge assessment can occur in a fairly unobtrusive
manner (e.g., by observing if they follow the rules).

A Phased Approach

The research approach is of an exploratory nature. The studies being carried out
are not evaluations, but observations of what is going on. There is a great need
for more exploratory study of novel learning applications. Roussos et al. (1999)
call for the building of novel learning applications and carrying out informal
evaluations of them in use.

In the Senet project a ‘low-tech prototyping’ approach was adopted. The project
was divided into three phases. In the first two phases of the project, more mature
technologies (single display groupware and conventional groupware) were used.
This was in order to study social interaction factors in isolation, and construct
robust prototype collaborative learning applications. These prototypes were then
observed in use in order to identify the types of interactivity and social
communication that would need to be supported in a complete CVE.

In the first phase, a prototype application was developed that took the form of
a single display groupware (Stewart, Bederson, & Druin, 1999; Bullock et al.,
2001). Users see the Senet board and pieces, and can also access the rules of
the game (Figure 1). Users sit next to each other and view the application on a
single, shared display. The interactions between them were external to the
computer. The prototype was constructed using 2D multimedia tools. This
helped to simplify issues surrounding the navigation and object manipulation. The
purpose of this phase was to gather what goes on in such a ‘real-world’ game
playing situation:

• the types of interactions that occur between the users and the game
environment,

• the communication between users (content and modes),

• the roles that the users adopt in a game playing situation, and

• controls over the communication and the game playing activity.

The study also aimed to identify usability issues surrounding the prototype in
order to inform the design of environments developed in subsequent phases.

Toward a User-Centred Method for Studying CVEs for Learning 275

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The second-phase prototypes developed took the form of conventional groupware
systems. Participants were remotely located so interactions between them were
internal to the computer. The prototypes were developed using 2D multimedia
tools coupled with groupware technology typical of that used in education
(NetMeeting). The prototypes introduced the concept of population to the CVE
as the users were represented with virtual actors. The purpose of this phase was
to explore issues surrounding the interaction being internal to the environment
and the effects on the behaviour of participants:

• Appearance: The users’ representation via their virtual actors.

• Awareness: What the virtual actor can perceive about the VE and the
situation.

• Interaction: With objects in the environment and the environment itself.

• Turn-Taking: To communicate, to interact with objects or other users.

• Communication Content: The actual communicative exchanges.

• Communication Modes: The ways in which the virtual actor’s communi-
cation can be presented (e.g., text, speech).

• Pedagogy: The roles and tactics users adopt for delivering various topics.

Three prototypes were developed to satisfy the purpose of this phase. In the first
prototype, a child was playing with an expert (a researcher who adopted the role
of the teacher). The rules of the game where provided in the Senet environment

Figure 1. Single display groupware

276 Economou & Pettifer

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

(as part of the decoration on the wall). The users could see each other via the
same virtual actor. The communication was text based, via the tools NetMeeting
provided (see Figure 2(a)). The second prototype followed the same scenario,
with the difference being that the source of the rules was the expert, and the
users were represented with their own virtual actor. The third prototype was
similar to the second one, with the difference being that two children were
playing with each other and the expert took the role of the mediator. In the last
two prototypes, the users communicated by typing text in chat boxes associated
with their own actor or using a hand for pointing (see Figure 2(b)).

Figure 2(a). Conventional groupware prototype—dialogue external to the
game environment

Figure 2(b). Conventional groupware—dialogue internal to the game
environment

Toward a User-Centred Method for Studying CVEs for Learning 277

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In the third phase, an application has been constructed using the Deva 3D CVE
technology according to preliminary design guidelines identified in previous
phases (see Figure 3). The study was evaluative as well as exploratory. All the
interactions were internal to the CVE. Two children were playing against each
other and the expert took the role of the mediator. The users were represented
with their own virtual actor, which could: (1) walk, indicating the user’s position
in the space; (2) point (in which case there is a “laser pointer” from their hand);
and (3) select and move objects (by positioning the actor’s hand to touch the
object, or by pointing in case the object is not within the actor’s reach).
Communication was 2D text (‘text bubble’) above the ‘speaking’ actor’s head,
or a ‘transcript’ window outside the game environment, which kept a history of
the dialogue. When an actor who was out of viewpoint spoke, warning text
appeared at the left or right edges of the screen depending on the speaker’s
location relative to the listener, indicating who was talking (e.g., “the user’s
name is talking”). The user’s dialogue appeared in a transcript window when the
return key was pressed.

The phased approach provides several benefits such as managing complexity by
dealing with a manageable set of factors in each phase (e.g., 2D/3D and
population) and allowing the results of each phase to inform subsequent phases.
Thus, requirements can be progressively identified. The use of more robust
technologies allows the essential features of the situation (interactivity and social

Figure 3. Senet prototype in Deva

278 Economou & Pettifer

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

communication) to be studied with real users in a way not possible with more
immature and inaccessible CVE technology.

The studies in the first two phases aimed at deriving a rich set of qualitative
information. From this, a set of requirements has been identified and then used
to inform the design of the third-phase application. The work in the first two
phases has been seen to be of a more exploratory nature, more like formative
evaluation in contrast to the work in the third phase, which involved evaluation
of a more summative nature.

A Rigorous Method for Studying Social Interaction in
CVEs

Despite the exploratory nature of the work, the primary purpose of the method
to be adopted is a form of requirements gathering that follows rigorous steps to
enable the identification of design factors in a way that can directly inform CVE
systems design. Candidate methods such as conversation analysis (Atkinson
& Heritage, 1984; Boden & Zimmerman, 1991; Silverman, 1997) and discourse
analysis (Coulthard, Montgomery, & Brazil, 1981) are narrowly focussed on
issues surrounding the dialogue itself. Intimate and subjective study of human
activities and interaction requires a permanent record of naturally occurring
events (e.g., field notes, video, audio) (Luff, Hindmarch, & Heath, 2000).
Ethnographic approaches contribute to understanding the production of social
actions and activities, and recognise the activities of others. However, coupled
with video, it results in a vast amount of rich qualitative data. The complexity of
dealing with video data has been recognised by a growing number of researchers
(including Silverman, 2000). It is not only unmanageable, but the moment-to-
moment detailed analysis is notoriously time consuming (Allen, 1989; Neal,
1989). The information is interrelated, and it is difficult to be separated and
rationalised. Viller and Sommerville (1999) argue that it is difficult to draw design
principles and other abstract lessons from a technique that is concerned with
detail of a particular situation. Thus, it is difficult to make generalisations about
design factors related to CVEs. The analysis needs to be practised by a group
of analysts to overcome subjectivity.

One method for which video technology is essential is ‘Interaction Analysis’
(Jordan & Henderson, 1995). This method has its roots in the social sciences, and
sees knowledge and action as fundamentally social in origin, organisation, and
use. It studies human activities such as talk, non-verbal interaction, and the use
of artefacts and technologies. It is primarily defined by its ‘analytic foci’ or ways
into a videotape. Such foci include: structure of events, temporal organisation of

Toward a User-Centred Method for Studying CVEs for Learning 279

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

activity, turn-taking, trouble and repair, and spatial organisation of activity.
Important to Interaction Analysis is the data analysis by a group of analysts
which goes some way to countering subjectivity of analysis. However, group-
based analysis is not always possible (as in the case of the Senet project)
because of resource limitations.

The proposed solution that addresses these problems is the creation of an
analytic grid that can be used to generate numerical values from the qualitative
data (this is discussed in detail below). For example, if the factor to be studied
is physical activities that the virtual actors should be eligible of to improve
communication and interaction issues, then the quantitative information sub-
tracted out of the qualitative data should indicate in which circumstances and for
what purpose certain physical activities have been used. In this form the data is
much more manageable and can be linked forward more reliably to the design
factors that are developed.

The analytic foci and orientation adopted in the method used to study the Senet
project, outlined next, is based and adds on the Interaction Analysis foci. The
method follows rigorous steps for organizing experimental settings, collecting
and analysing data, and provides the means of managing large amounts of
disparate data (videotapes, field notes, text files). It consists of seven main steps,
which are carried out sequentially:

• data collection

• transcription

• chunking of the transcription

• creation of a grid

• application of the grid

• analysis at the session level

• derivation of design guidelines

The seven-step method has been applied to the second phase of the study and
derived preliminary set of design guidelines (Economou, Mitchell, Pettifer, Cook,
& Marsh, 2001) that directed the development of the third phase prototype CVE.
The method has subsequently been applied to the third phase of the project to
evaluate the effectiveness of the implemented preliminary design guidelines and
to investigate new factors arising in a 3D CVEs for learning. The method can be
repeated according to the analytic categories to be studied.

The section below outlines the processes involved in each step of the seven-step
method in the third phase of the Senet project.

280 Economou & Pettifer

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The Method Applied

Data Collection

The third phase of the study was conducted in the laboratories of the Advanced
Interfaces Group at the University of Manchester. Twelve (six pairs) of 12-year-
old children participated in the studies. Three rooms were used: One contained
a researcher playing the role of the ‘expert’ (E), and the other two rooms each
contained a ‘child’ actively participating in the activity (AC), accompanied by a
second researcher, a ‘helper’ (H) providing technical support (Figure 4). The
third-phase prototype (Deva prototype) has been used. The children were
introduced to the use of the Deva tools (e.g., the mouse controls and communi-
cation tools), and afterwards they were asked to carry out various tasks such as:
read the rules and set up the board, learn how to play the game, and play the
game.

The children were videotaped individually. The video cameras were set to
capture the users’ interactions with the artefacts and other users in the CVE.
Screenshots of one of the child’s screens, providing a detailed record of
interactions between users, were also videotaped. A transcription of the users’
textual communication saved in a file provided a permanent record of the user’s
dialogue. The transcription provided a record of the sequential organisation of the
user’s turns to talk and the exact time of the exchange. For capturing the expert’s
activities, the ‘think-aloud’ method was used (Monk, Wright, Haber, & Daven-

Figure 4. The physical set up for the third-phase study

Toward a User-Centred Method for Studying CVEs for Learning 281

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

port, 1993) and tape recorded. It is one of the few methods of getting a record
of the user’s mental activity. The way it works is that the users think aloud about
their activities in terms of mental reasoning (e.g., the expert described aloud her
actions, decision making, and observations while playing with the children). This
allowed the close study of problems such as the expert’s lack of awareness of
the child’s exact situation. Questionnaires filled out by the children before the
session obtained background information about the children.

Each session lasted approximately 45 minutes. Each session was followed up by
an interview with the children about their experiences, which lasted approxi-
mately 10 minutes and was tape-recorded.

Transcription

The transcription step involves creating one account of a session by combining
data that captures interactions taking place internally (e.g., users’ dialogue in the

Table 1. An illustration of a part of an example session transcription

The helper approached the AC.
“H”: “Have a sit. These machines are connected up and we are going

to learn how to play this game. 1* Someone is going to help
you 2* . Not me 3* .It will be someone else on the other
machine.”
1* The H pointed the screen
2* The H pointed the room next door
3* The H pointed himself and smiled looking at the AC.
The AC nodded positively. The H was smiling at her.

“H”: “Type a greeting in that box and press return.”
The H showed the Deva message box that AC had to use to
type messages.
The AC came closer to the screen.

“H”: “Have you used computers before?”
The H was looking the AC.

“AC”: “Yes”
The AC started typing.
The H was looking the screen while the AC was typing the
message.

"02/03/99 11:27:07","AC:","hello"
“H”: “All right.”

The H moved away.
“H”: “Wait they will come back to you.”

Pause the AC was waiting for the E’s response.
“H”: “So are you and Cathy from the same class?”
“AC”: “Yes”

The AC turned and looked the H, then turned back to her
machine.

"02/03/99 11:30:18","E":,"hello, what’s your
name?"

“H”: “She is coming back to you.”
The H talked to the AC from distance.

“AC”: “Aha!”

The AC was surprised, she took the mouse and tried to reply

Communication internal
to the system

Simultaneous external
interactions

Communication external
to the system, between the
H and the AC

AC = child actively participating in the activity; E = expert—a knowledgeable user playing the role
of a teacher; H = helper providing technical support

282 Economou & Pettifer

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

CVE, transcription of screen activities) and externally to the prototype (e.g.,
dialogues between people in the real world—the child and the helper; nonverbal
interaction). The videotapes in the current study were synchronised, based on
noticeable events on all videotapes. Transcriptions provide a more manageable
way of handling the data (see Table 1).

Chunking of the Transcription

Dividing the transcription into a series of ethnographic chunks provides a more
manageable set of units for analysis. According to Interaction Analysis, one such
chunk is the event, which is a stretch of interaction that coheres in some manner
that is meaningful to the participants. Events can be named and constitute
recognisable, culturally significant tokens in social communication. Jordan and
Henderson (1995) refer to tutoring sessions, bedtime stories, as examples of
recognisable events. Events in turn can be sub-divided into a set of segments
(e.g., in a meal event segments such as ‘setting up the table’ or ‘serving the
coffee’ can be identified).

To identify ethnographic chunks it is necessary to draw on cultural knowledge
or local experts. For this particular study four ethnographic chunks were
identified:

• session

• stage

• segment

• turn

The session is equivalent to a game-playing event. A session consists of a series
of stages. The stages characterise the changes in topic (e.g., introduction of the
system tools, explanation of the game, playing the game). The structure of a
session depends on the prototype used for the study and the teaching strategy
adopted based on how the situation unfolds. For example, Table 2 shows a typical
session structure that consisted of seven stages.

Table 2. An example session stage structure

AC = child actively participating in the activity; E = expert—a knowledgeable user playing the role
of a teacher; H = helper providing technical support.

1-2. H explained the system tools to the AC
3. E directed the AC to go and read the rules and gather around the board when they were ready to start
4. AC dealt with the first part of the rules first, decided who plays first with which pieces and set up the

board
5. AC dealt with the second part of the rules that deals with the way pieces can be moved
6. AC play the game
7. the session closed

Toward a User-Centred Method for Studying CVEs for Learning 283

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Stages are sub-divided into segments. Segments are differentiated by a change
in the pedagogical tactics employed. The current study recognises pedagogical
tactics as the methods that a teacher employs for delivering a topic. These are
elements of learning theories the teachers use during the tutoring process (e.g.,
the teachers use the blackboard, they play a video, or involve children in hands-
on activities), which when they coalesce form a pedagogical approach (e.g.,
instructional learning, cognitive apprenticeship). A pedagogical tactic is defined
by a sequence of actions, which in the current system of transcription form a
segment. For example, in the first stage of the above example (where the helper
explains the system tools to the child), two segments can be identified (Table 3).
In the first segment the helper explains to the child how communication takes
place with the expert, located close to the child. In the second segment the helper
intervenes to cover the delay.

The last ethnographic chunk unit is the turn. The boundary of a turn is marked
by the other participant taking control. There are two kinds of turns: internal (a
turn using one of the prototype’s tools, e.g., typing in a chat box or moving an

Table 3. Two segments of the first stage of the example session

Stage Segments Turns Transcriptions
1ex The helper approached the AC.

“H”: “Have a sit. These machines are connected up and we are going to learn

how to play this game. 1* Someone is going to help you 2* . Not me 3*
.It will be someone else on the other machine.”

1* The H pointed the screen
2* The H pointed the room next door
3* The H pointed himself and smiled looking at the AC.

2ex The AC nodded positively. The H was smiling at her.
3ex “H”: “Type a greeting in that box and press return.”

The H showed the Deva message box that AC had to use to type
messages.
The AC came closer to the screen.

 “H”: “Have you used computers before?”
 The H was looking the AC.

4ex “AC”: “Yes”

The AC started typing.
The H was looking the screen while the AC was typing the message.

1in "02/03/99 11:27:07","AC:","hello"

5ex “H”: “All right.”

a

 The H moved away.
1ex “H”: “Wait they will come back to you.”

 Pause the AC was waiting for the E’s response.
 “H”: “So are you and Cathy from the same class?”

2ex “AC”: “Yes”
 The AC turned and looked the H, then turned back to her machine.

1in "02/03/99 11:30:18","E":,"hello, what’s your name?"

3ex “H”: “She is coming back to you.”
 The H talked to the AC from distance.

4ex “AC”: “Aha!”

1

b

 The AC was surprised, she took the mouse and tried to reply

H = provides technical support; AC = child actively participating in the activity

284 Economou & Pettifer

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

object) and external (between participants external to the prototype). In the
above example of two segments, two internal and nine external turns can be
identified (explained in detail in Table 3).

Depending on the analytic category (factor) the sessions are analysed for, it can
be decided which ethnographic chunk to consider (the formation of analytic
categories are discussed in the section, “Creation of a Grid”). For example, if the
focus of the study is to examine what marked the users turn, then the sessions
are studied down to a turn level. When broader issues are under study, like
pedagogical methods adopted in different sessions, analysing the sessions in units
as small, as turns would be unreasonable. This is because a pedagogical method
can be identified, considering a set of actions that involve many exchanges of turn
between active participants. In such cases, whole segments and even stages are
studied.

To aid referring to an ethnographic chunk a coding system that captures the
stage, the segment and the turn has been developed. This works from left to right.
For example, 1_a_1in or simply 1a1in stands for: the 1, for first stage, the a, for
the first segment, and the 1in, for the first internal turn. External turns are coded
as ex.

Creation of a Grid

The moment-to-moment detailed analysis of each ethnographic chunk leads to
a vast amount of rich qualitative data, which comes into an unmanageable form.
Repetitions of actions are difficult to associate with certain events and follow
throughout a whole session. This makes generalisations about design factors
difficult. In addition, the interpretation of users’ behaviours is subjective and
depends on individual analysts’ experience.

To address these problems, the development of a ‘grid’ is proposed which aims
to generate countable values out of the rich qualitative data. The grid is formed
of analytic categories (Table 4). To identify the analytic categories to appear in
a grid, it is necessary to have a clear idea about the factors to be studied. This
requires a hypothesis at the beginning of the study. When the study has an
exploratory nature, like the current research, having a hypothesis at the beginning
of the study is unadvised (Glaser & Strauss, 1967). The impetus for the analytic
categories to form the grid is provided by:

• a framework of design factors based on literature (Benford, Bowers,
Fahèn, Greenhalgh, & Snowdon, 1995; Capin, Pandizc, Chauvineau,
Thalmann, & Thalmann, 1996);

• findings from an exploratory study that aimed to gather the key interactional
affordances of a situation that a CVE system design should support—this

Toward a User-Centred Method for Studying CVEs for Learning 285

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

is the role of the first and second phase of the method outlined earlier in
section, “A Phased Approach.”

The analytic categories identified to study in the third phase of this research using
the Deva prototype were:

• turn taking

• physical activity

• communication activity

• external intervention

• pedagogy

Each analytic category is formed of different analytic themes. The analytic
themes change according to the situations to be studied, which might be different
along different phases of a long-scale study. For example, the themes studied in
physical activity analytic category in the second phase of the study were: head
movement—where the participants are looking, nodding, facial expressions;
position of the body; movement of the rest of the body excluding the head—
walking, pointing, moving objects, gesturing. Physical activity in the third phase
of the study studied virtual actors’ head movement—direction of gaze identified
by the users’ viewpoints; position of the virtual actors’ body; movement of the
virtual actors’ body excluding the head—walking, pointing, moving objects.

Four columns are common to all the analytic categories:

• Turn Index, which identifies an exact part of a transcription down to a turn
level (e.g., 1b5in).

• Location, which indicates the relative actions internal versus external to
the prototype.

• Description, which provides a summary of the turn content.

• Participants, which indicates responsible users for a certain activity
described in the grid.

Table 4. A basic form of the grid

 Analytic category 1 Analytic category 2
Turn
index

Type
1

Type
2

Type
…n

Type
1

Type
2

Type
…n

Location Description Participants

Internal

interaction
External

interaction

286 Economou & Pettifer

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Application of the Grid

To illustrate the use of the grid, the same example session transcription is
analysed (one of the third-phase sessions using the prototype CVE based on the
Deva system; see Figure 3) for each of the analytic categories. The example
setting was explained earlier.

Turn Taking

The turn taking analytic category examines the sessions down to a turn level to
find what marked users’ turns including:

• textual boundaries (e.g., text appearing in text bubbles, or the transcript
window);

• internal visual cues the system provided (e.g., virtual actors’ features,
prompt that somebody is talking).

Using the example session transcription, 180 out of the 402 users’ turns have
been marked by textual turn boundaries, and 222 by visual ones. Of the 180
textual boundaries: 168 were based on text bubbles, indicating the users’
activity status, talking or finishing their utterance, and thus awaiting a reply; and
11 on the transcript window. Of the 222 visual boundaries: 47 were virtual
actors walking in the CVE; 46, the virtual actors’ position in the CVE and virtual
actors’ viewpoint; 82, the virtual actors interacting with objects and pointing; and
47, the virtual actors talking (text appearing in text bubbles).

The descriptive part of the grid contributes to a better understanding of the type
of internal visual boundaries that marked users’ turns, and showed that the above
actions indicated: the users’ on-going activities and the user responsible for
certain actions; the users’ focus of attention; the users’ process of activity
(the beginning and completion of actions); the users’ intention of action and
offering of a turn; as well as users encountering difficulties.

Physical Activity

The physical activity analytic category examines the sessions down to a turn
level and is concerned with:

• virtual actors’ head movement, where looking was captured via the
monitors displaying the users’ viewpoints (see Figure 4), and the direction
the virtual actors were facing (see Figure 5);

Toward a User-Centred Method for Studying CVEs for Learning 287

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• position of the virtual actors’ bodies;

• movement of the virtual actors’ bodies, excluding the head: virtual actors
walking, pointing, and moving objects in the CVE.

In the session being examined, 270 occurrences of physical movements were
recorded: 75 were head movements: virtual actors’ orientation; virtual actors’
direction of gaze (identifying where the participants were looking based on their
viewpoint); 89 of the 270 occurrences of physical movements were the virtual
actors’ position of the body in the CVE, while 106 were related to the movement
of the rest of their body excluding the head of which: 43 were virtual actors
walking; 5, virtual actors pointing; and 58, virtual actors moving objects.

The grid provided a numerical record of actions and allowed different types of
analytic categories to be studied comparatively. This process allows association
between certain types of analytic categories to emerge. Association between
virtual actors’ looking, orientation, and walking activities indicated the users’
focus of attention on the speaker, or a user performing an action (see Figure 5).
It also indicated the users’ process of activity and intention to perform a
certain action or claim a turn. Virtual actors’ walking and looking towards a
particular direction or object indicated the users’ process of reaching their target

Figure 5. The users’ position, orientation, and distance from other objects
and virtual actors in the CVE indicates the users’ focus of attention (In this
figure the expert (the adult figure) observes the children (the child figure)
moving a piece. The differently shaded area approximates the expert’s
viewpoint.)

288 Economou & Pettifer

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 6. (a) Shows that the girl child was in the process of going to read
the rules, (b) shows the girl child on the way back to the board, and (c)
shows that the girl child reached the board where she was intended to make
a move playing the game

(a)

(b)

(c)

Toward a User-Centred Method for Studying CVEs for Learning 289

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

(see Figure 6) and their intention to perform an action using that object (e.g.,
children were approaching the board to make a move, or the wall to read the
rules). In after-session discussion, children characteristically mentioned, “We
could tell what the other users were about to do by the position of their
actor.” Virtual actors standing across from one another, to see and be visible to
others, was a way of attracting attention to claim a turn. However, such visual
cues were not explicit as children mentioned, “She was getting around the
board, so I wasn’t sure if she wanted to make a move.” Also the virtual actors’
action of turning and looking at other virtual actors after the completion of their
turn indicated their anticipation of response (offering a turn), as well as
offering the user to continue. Meanwhile, virtual actors bumping into obstacles
in the CVE indicated users encountering difficulties with navigation.

Although pointing was a frequent action external to the system communication,
it was restricted to limited cases in the CVE. After-session discussion with the
children revealed that this was due to lack of reactive visual clues related to their
action. One child commented, “If at least I could see my hand or something…it
would be easier.” Instead children used moving objects to demonstrate
something, so there was a spontaneous visual clue to their action (e.g., a piece
being moved). In the limited cases pointing has been observed, it has been used
mainly as a means of response (e.g., “How did you move?… like that”), or to
direct other users to do something (e.g., “Correct your move by moving your
piece there…”).

Figure 6(a) shows that the girl child was in the process of going to read the rules,
Figure 6(b) shows the girl child on the way back to the board, and Figure 6(c)
shows that the girl child reached the board where she was expected to make a
move playing the game.

Moving objects involved actions such as rolling the dice, moving pieces to play
the game, complementing an explanation with a demonstration, and correcting a
move (e.g., the expert moved pieces on children’s behalf to correct and support
them; in extreme cases the expert even had to reset the board and restart the
game). Apart from common cases where the players were moving their own
pieces, there were cases where players moved pieces on behalf of their co-
player to help them, corrected their move, and in some cases to cheat. The
system did not provide any tools to prevent this from happening.

The virtual actors’ action moving objects indicated:

• the user in control, by the laser from the virtual actor’s hand to the object
being moved;

• the process of activity, user’s action moving pieces indicated his or her
involvement in a certain activity like setting up the board, taking turn to play,
demonstrating something, or correcting others;

290 Economou & Pettifer

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• the offering of a turn, the completion of a move indicated the completion
of the user’s turn and thus indicated availability for turn taking; and

• user comprehension, the efficiency of children’s moves were clear
indicators of their understanding of the rules.

Communication Activity

Communicative activity analytic category examined the sessions down to a turn
level and evaluated the efficiency of the communication tools supported by the
third-phase prototype, such as: textual communication, text bubbles, and the
transcript window; and multi-modal acts such as pointing, demonstrations, and
user actions as a means of response.

The application of the grid to the example session for the communicative activity
analytic category showed that multi-modal communication was very important.
Thirty-nine out of 107 communication activities occurrences were textual
based; 68 were multi-modal acts, of which 9 were pointing, 5 were demonstra-
tions, and 54 were user actions as a means of response.

Presenting the user’s communication as a text bubble above their virtual actor
was beneficial in terms of: focusing the users’ viewpoint, as a user had to turn
to see someone else’s text bubble, and thus follow the speaker’s action; and
making the speaker explicit, by relating the bubble to the speaking virtual actor.

The users relied on the transcript window to follow earlier communication, and
in cases they could not see the speaking virtual actor. Text appearing in text
bubbles and visual cues as small as text appearing in the transcript window
played an important role in marking turn boundaries (this has already been
demonstrated above).

One of the problems regarding the text bubbles was when the virtual actors were
positioned close to each other, one bubble box obscured another. In such cases
the users resorted to using the transcript window. Another problem was that the
text remained in the text bubble until the next time the user typed something,
which was confusing because it appeared as if the speaker was currently
referring to something that was referred to earlier. This indicated the need of a
means of making the bubble box disappear after a period of time.

The rules on the wall provided an important educational resource, as well as an
important means of communicating information in the CVE. Based on informa-
tion analysing this exemplar session for physical activity, 8 times children walked
towards the wall to read the rules either after being directed by the expert or on
their own initiative.

Toward a User-Centred Method for Studying CVEs for Learning 291

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

External Intervention

The external intervention analytic category is examined at the session or
segment level and is concerned with issues that may cause a complete break-
down in a session. It investigated why the expert’s support wasn’t sufficient and
additional external help (by the helper) was required to recover from or prevent
an activity breakdown. The grid-based analysis helped in studying the cues that
signified external intervention, the reason for the intervention, who adopted the
role of the intervener, and what was the intervener’s action (e.g., to recover from
breakdown or prevent serious breakdown).

Twenty-six cases of external intervention were recorded in the example
session. Eight were to recover and 18 to prevent activity breakdown. External
interventions in the third phase have been minimised compared to the second
phase (14% external interventions in the third phase versus 33% in the second
phase). This means that the Deva Senet prototype system satisfactorily sup-
ported most of the user requirements.

The main cues that signified the necessity for external interventions were
children encountering difficulties, missing ongoing activities being involved in an
activity of less importance, interrupting each other (e.g., to prevent a child
monopolising the activity and not allowing the other child to take a turn),
requesting support, and requiring encouragement.

Pedagogy

The last analytic category of the grid is pedagogy. It studies simultaneously:

• who adopted the teacher’s role: expert, co-player, helper;

• topic being covered;

• pedagogical tactics employed;

• change in tactic; and

• reason for the tactic being adopted.

A pedagogic style can only be followed across an entire segment, stage, or even
session level. This is due to the fact that a pedagogical tactic can only be
identified throughout several turns. The focus of the analysis was to evaluate the
efficiency of the educational resources and the tools for practical management
provided by the Deva prototype. This was achieved by identifying the pedagogi-
cal styles the system tools supported according to the contextual information to
be delivered and the competence of the participants.

292 Economou & Pettifer

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Following the expert’s activity throughout a whole session, it appears that initially
the expert provided a model for the children to follow (e.g., providing demonstra-
tions, or moving on behalf of the children). Then the expert coached the children
by involving them in the game playing activity, or asking them to comment on their
co-player’s move. As the children became familiar with the game, the expert
gradually removed support. The children’s teacher (who observed the activ-
ity) emphasised that the tactic the expert adopted in questioning the children was
essential for encouraging the children’s engagement and aid to the problem-
solving nature of the activity. One of the most frequent tactics the expert used
to correct the children was demonstrating possible moves they could have done,
then asking them to correct their move. This tactic encouraged articulation and
reflection, as the children started developing their own strategies in playing the
game.

Analysis at the Session Level

This step is about investigating what the numerical values that derive from the
grid at the turn or segment level reveal for the way activities develop throughout
a whole session. The analyst needs to examine how and why the participant’s
behaviour changes over the whole session. The study of the flow of the segments
in the whole session is based on the timeline (the turn index) provided by the grid.
The numerical values and the grid descriptions provide a concise narrative of the
session and allow the examination of its overall structure. This also allows
different analytic categories to be compared. For example, comparing the
physical activity and communication activity analytic categories might reveal
cases in which pointing has been used to complement speech (also see the
section, “Physical Activity,” above).

The final stage is to compare different sessions’ findings against each other in
order to identify patterns of activities. This process derives key points, which are
then translated to design guidelines. For example, a key point that derived by
studying physical activity was ‘the need of control over the session and
individual users’. This was based on the observation that the Deva prototype
did not provide any controls to prevent users from rolling the dice more than once
at a time, moving more than a piece at a time, or moving their co-players’ pieces,
highlighting the expert’s inability to monitor and manage individuals and the
situation. It also highlighted the need to provide users with certain roles with
various controls over object manipulation, the situation, and other users.

The analysis at a session level might identify problems with the grid itself, in terms
of the analytic categories the grid deals with, or ones that need to be added to the
grid and investigated further.

Toward a User-Centred Method for Studying CVEs for Learning 293

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Derivation of Design Guidelines

The final stage of the method translates key points deriving for each analytic
category of the grid into design guidelines. The findings from all sessions and for
all the analytic categories of the grid are considered.

Design guidelines need to be precise. Providing guidelines with extra information
and examples reduces the chances of the guideline being too vague or conflicting
(Reisner, 1987). The method follows a model of reporting design guidelines for
usability in CVEs which is determined by four parts:

• Design Guideline (DG), which reports the DG that needs to be incorpo-
rated.

• Motivation, which argues the importance of the DG based on the phases’
results.

• Benefit, which discusses how the application of a DG addresses the issues
that drew the creation of the DG itself (depending on context, it is possible
that some DGs may have a negative force in the CVE; this can be
addressed with the evaluation of the DGs, which may address the need for
the derivation of other DGs to overcome such problems).

• Examples, one or two of the practical implementation of the DG.

This method is based on Kaur’s method of reporting design guidelines for
usability in VEs (Kaur, 1998).

Forty DGs were derived from the application of the grid based analysis to the
third phase of this study. These are outlined in the Table 5. The context of their
use is learning environments. They are related to the following aspects of CVEs
for learning:

• Environment, which address issues related to general tools CVEs for
learning should provide.

• Objects, which address issues regarding the objects’ features contained in
CVEs for learning.

• Virtual Actors, which address issues regarding the virtual actors’ features
in CVEs for learning.

• Virtual Actor Behaviour, which address issues related to the behaviours
virtual actors with different roles in CVEs for learning should incorporate.

294 Economou & Pettifer

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Table 5. List of design guidelines based on the third-phase user studies

Design guidelines (DG)
Environment
DG1: users need to have simultaneous control over certain types of activities but not on others

DG2: a history of the communication activity needs to be recorded

DG3: a history of the physical activity needs to be recorded and replayable

DG4: a permanent information resource related to the educational activity should be available in the CVE and
should always be visible to all the users

DG5: the permanent information resource should incorporate multimedia display techniques

DG6: audio communication should be supported

Objects

DG7: key objects in the CVE should incorporate intelligence

Virtual actors
DG8: the virtual actors should be aesthetically pleasing

DG9: the virtual actor should provide the user with a unique representation

DG10: a virtual actor should convey the user’s role in the CVE (e.g. child, expert)

DG11: a virtual actor should convey the user’s viewpoint

DG12: a virtual actor should reveal the user’s actionpoint

DG13: a tool should be provided for users to lock onto the active virtual actor and follow it automatically

DG14: users need to be provided with real-time cues about their own actions

DG15: a virtual actor should be easily associated with its communication

DG16: text bubbles should not overlap

DG17: a text bubble should remain for a short period of time after the end of an utterance

DG18: a virtual actor should convey the user’s communication as it is being composed

DG19: a virtual actor should reveal the sequence of the dialogue exchange

DG20: a virtual actor should convey explicitly the user’s process of activity and state-of-mind

DG21: a virtual actor should convey the user’s intention to take a turn

DG22: a virtual actor should convey the user’s offering of a turn

DG23: an active participant needs to be identified even when their virtual actor is out of other users’ viewpoints

DG24: users’ viewpoints should be easily directed to see an active participant even when they are out of other users’
viewpoints

DG25: the speaker needs to be identified even when their virtual actor is out of other users’ viewpoints

DG26: a user’s viewpoint should be easily directed to see the speaker even when the speaker is out of other users’
viewpoints

DG27: a virtual actor should convey the user’s intention to take a turn even when not being in other users’
viewpoints

DG28: the virtual actor should convey the user’s offering of a turn even when being out of other users’ viewpoints

DG29: private communication should be supported

DG30: private channels of interaction should be supported

DG31: a virtual actor should show when the user is involved in private communication and whether or not others
could join in

DG32: a virtual actor should show when the user is involved in private interaction and whether or not others could
join in

Virtual actors’ behaviour
Student virtual actor
DG33: a student virtual actor should have a basic customisable behaviour

Teacher virtual actors
DG34: the teacher should be in control of the children’s behaviour

DG35: the teacher should have control over an individual user’s viewpoint

DG36: the teacher should be able to take control of objects in the CVE

DG37: the teacher should be in control of the communication tools

DG38: the teacher should be aware of and have control over private communication between children

DG39: the teacher should be aware of and have control over private interactions between children

DG40: the teacher should have an episodic memory of children’s mistakes

Toward a User-Centred Method for Studying CVEs for Learning 295

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Virtual actor behaviour includes behaviours for two categories of users:

• The Student, the naïve users, who did not know the rules of the game and
were new to the experience of participating in a CVE application.

• The Teacher, the knowledgeable users in the CVE, who did not play, but
knew the rules of the game, was aware of the process to be followed, and
whose duty was to assist the children and provide guidance and support.

Future Trends

There are various directions for further work that span the following areas:

• growth and generalisation of the design guidelines

• development of tools for designers

• automation of the seven-step grid-based method

Growth and Generalisation of the Design Guidelines

A natural direction of the research would be the further development of the
currently developed design guidelines by increasing the CVE population. An-
other direction is the generalisation of the design guidelines to a wider area of
applications. This could be achieved by applying the design guidelines to
application domains outside education and evaluating their usefulness based on
user studies. This process could also aid the further growth of the current list of
design guidelines.

Develop Tools for Designers

Another natural step for further development is:

• the provision of a tool for presenting design guidelines to CVE designers in
an easily accessible and comprehensive way; and

• the development of a system that provides tools that facilitate implementa-
tion of the proposed design guidelines.

The use of hypertext or multimedia technology could be used for the development
of a design guidelines presentation tool for CVE designers. The use of a

296 Economou & Pettifer

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

hypertext tool for providing guidance to VE designers (Kaur, 1998) received a
good usability score from the VE designers and had a positive impact on the
design process.

Achieving the second requires the development of CVE systems that provide the
underlying technology that allows the implementation of the recommended
design guidelines. They should also provide an interface easy to use by CVE
designers or artists—people who do not necessarily need to have engineering
knowledge to easily implement the recommended design guidelines.

Automation of the Seven-Step Grid-Based Method

Another important extension of the research reported in this chapter is the
automation of the seven-step grid-based method for conducting video analysis
and automatically generating task models, behavioural patterns, and statistical
information from rich qualitative data.

This could be achieved by providing analysts with a non-linear tool that
allows:

• the representation of a list of analytic categories and analytic themes
(events, tasks, and actions) involved in each analytic category and a display
of their relationships—this work could be an extension of the work of
Luckin et al. (1998), who developed a tool for tracking interactivity in
multimedia environments;

• direct annotation of the videotape (this skips the tedious and time-consum-
ing transcription process and allows direct chunking of the session) and
creation of link between the observed actions and analytic categories or
tasks; and/or

• graphical representation of actions against a timeline and their association
with appropriate tasks.

Conclusions

This chapter proposed a method that provides rigour in the study of social
interaction in CVEs, to determine requirements for CVE systems design and
inform the CVE systems design. The method provides a means of managing a
large amount of disparate data (two videotapes, audio, notes, text files). The
proposed grid-based analysis provides a means of obtaining a more concise and

Toward a User-Centred Method for Studying CVEs for Learning 297

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

objective measure of the moment-to-moment details occurring in a session. The
chunking, indexing, and use of the timeline provides means of looking at the
overall structure and flows within a session. The outcome of this analysis is a set
of design guidelines that can inform the construction of CVEs.

There are some drawbacks with the method. Firstly, it is not as exhaustive or
does not generate as much rich, qualitative informative as, for example,
ethnographic techniques. However, the primary purpose of the method is to
gather requirements within certain restrictions of time and resources. Secondly,
the grid is more suitable for analysing at the turn level rather than for broader
issues such as pedagogy, where a whole segment needs to be analysed to reflect
the use of different pedagogic tactics in a stage. Further development is needed
to the method to address this issue. Thirdly, the factors to be studied must be
reasonably clear in order to derive analytic categories for the grid. This means
that in the early stages of research, some exploratory studies are needed (as was
the case in the first-phase studies in the Senet project).

The method developed shares many of the analytic foci, which defines Interac-
tion Analysis. It builds on this, by means of the grid, to provide a more efficient
and rigorous requirements gathering technique. Its application to the third phase
of the work showed how the method can be repeated and extended to form an
evaluation method for CVEs.

Acknowledgments

Thanks to the State Scholarships Foundation of Greece for funding Daphne
Economou’s PhD, the MMU Manchester Multimedia Centre for use of their
facilities, and Claremont Road Primary School and Knutsford High School for
their cooperation.

References

Allen, C. (1989). The use of video in organizational studies. ACM SIHCHI
Bulletin: Special Edition on Video as a Research and Design Tool,
21(2), 115-117.

Atkinson, J.M., & Heritage, J. (eds.). (1984). Structures of social action:
Studies in conversation analysis. Cambridge: University Press.

298 Economou & Pettifer

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Bellotti, V., & Rogers, Y. (1997). From Web press to Web pressure: Multimedia
representations and multimedia publishing. Proceedings of the ACM
Conference on Human Factors in Computing (CHI’97) (pp. 279-286).
New York: ACM.

Benford, S., Bowers, J., Fahèn, L., Greenhalgh, C., & Snowdon, D. (1995). User
embodiment in collaborative virtual environments. Proceedings of the
ACM CHI’95 Conference on Human Factors in Computing Systems
(pp. 242-249). New York: ACM.

Benford, S., Greenhalgh, C., Rodden, T., & Pycock, J. (2001) Collaborative
virtual environments. Communications of the ACM, 44(7), 79-85.

Boden, D., & Zimmerman, D.H. (1991). Talk and social structure: Studies in
ethnomethodology and conversation analysis. Cambridge: Polity.

Bowers, J., & Martin, D. (1999). Informing collaborative information visualisation
through an ethnography of ambulance control. Proceedings of the 6th

European Conference on Computer Supported Cooperative Work
(ECSCW’99) (pp. 311-330). Kluwer Academic Publishers.

Bullock, A., Simsarian, K.T., Stenius, M., Hansoon, P., Wallberg, A., Åkesson,
K., Frécon, A., Ståhl, O., Nord, B., & Fahlén, L.E. (2001). Designing
interactive collaborative environments. In E.F. Churchill, D.N. Snowdon,
& A.J. Munro (Eds.), Collaborative virtual environments, digital places
and spaces for interaction (pp. 179-201). Springer-Verlag.

Capin, T.K., Pandizc, I.S., Chauvineau, E., Thalmann, N.M., & Thalmann, D.
(1996). Modeling and animation of virtual humans. Public Report
Number D4.1, AC040-GEN-MIR-DS-P-041.b0.

Coulthard, M., Montgomery. M., & Brazil, D. (1981). Developing a description
of spoken discourse. In M. Coulthard & M. Montgomery (Eds.), Studies
in discourse analysis (pp. 1-50). London: Routledge.

DfEE. (1997). Connecting the learning society: The government’s consul-
tation paper on the national grid for learning. UK: Department of
Education and Employment.

DfEE. (1998). Open for learning, open for business: The government’s
national grid for learning challenge. UK: Department of Education and
Employment.

Durlach, N., & Mavors, A.S. (1994). Virtual reality: Scientific and techno-
logical challenges. Washington, DC: National Academy Press.

Economou, D., Mitchell, W.L., & Boyle, T. (2000). Requirements elicitation for
virtual actors in collaborative learning environments. Computers & Edu-
cation, 34(3-4), 225-239.

Toward a User-Centred Method for Studying CVEs for Learning 299

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Economou, D., Mitchell, W.L., Pettifer, S.R., Cook, J., & Marsh, J. (2001).
User-centred virtual actor technology. Proceedings of Virtual Reality,
Archaeology and Cultural Heritage (VAST’2001) (pp. 323-332). New
York: ACM.

Engeström, Y., & Middleton, D. (eds.). (1996). Cognition and communication
at work. Cambridge, UK: CUP.

Glaser, B.G., & Strauss, A. (1967). The discovery of grounded theory:
Strategies for qualitative research. Chicago: Aldine.

Gunton, T. (Ed.). (1993) Information systems practice: The complete guide.
Manchester: NCC Blackwell.

Harper, R. (1997). Gatherers of information: The mission process at the
International Monetary Fund. Proceedings of the 5th European Confer-
ence on Computer-Supported Cooperative Work (ECSCW’97) (pp.
361-376). Kluwer Academic Publishers.

Heath, C., & Luff, P. (1991). Collaborative activity and technological design:
Task coordination in London Underground control room. Proceedings of
the 2nd European Conference on Computer Supported Cooperative
Work (ECSCW’91) (pp. 65-80). Kluwer Academic Publishers.

Heath, C. & Luff, P. (1996). Convergent Activities: line control and passenger
information on the London Underground. In Y. Engeström & D. Middleton
(Eds.), Cognition and communication at work (pp. 96-129). New York:
Cambridge University Press.

Hutchins, E.L. (1990). The technology of team navigation. In R.E. Kraut, J.
Galegher, & C. Egido (Eds.), Intellectual teamwork: The social and
technological foundation of cooperative work (pp. 191-221). Hillsdale,
NJ: Lawrence Erlbaum.

Hutchins, E., & Klausen, T. (1996). Distributed cognition in an airline cockpit.
In D. Middleton & Y. Engeström (Eds.), Communication and cognition
at work (pp. 15-34). Cambridge: Cambridge University Press.

Jordan, B., & Henderson, A. (1995). Interaction Analysis: Foundations and
practice. The Journal of Learning Sciences, 4(1), 39-103.

Kaur, K. (1997). Designing virtual environments for usability. Proceedings of
the Human-Computer Interaction (INTERACT’97) (pp. 636-639). UK:
Chapman & Hall.

Kaur, K. (1998). Designing virtual environments for usability. PhD thesis,
Centre for HCI Design, City University, London.

Kaur Deol, K.K., Steed, A., Hand, C., Istance, H., & Tromp, J. (2000a).
Usability evaluation for virtual environments: Methods, results and future
directions (part 1). Interfaces, 43, 4-8.

300 Economou & Pettifer

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Kaur Deol, K.K., Steed, A., Hand, C., Istance, H., & Tromp, J. (2000b)
.Usability evaluation for virtual environments: Methods, results and future
directions (part 2). Interfaces, 44, 4-7.

Luckin, R., Plowman, L., Gjedde, L., Laurillard, D., Stratfold, M., & Taylor, J.
(1998) An evaluator’s toolkit for tracking interactivity and learning. In M.
Oliver (Ed.), Innovation in the evaluation of learning technology (pp.
42-64). London: University of North London.

Luff, P., Hindmarch, J., & Heath, C. (eds.). (2000). Workplace studies,
recovering work practice and informing system design. Cambridge
Press.

Mills, S., & Noyes, J. (1999) Virtual reality: An overview of user-related design
issues. Interacting with Computers, 11(4), 375-386.

Mitchell W.L. (1999) Moving the museum onto the Internet: The use of virtual
environments in education about ancient Egypt. In J.A. Vince & R.A.
Earnshaw (Eds.), Virtual worlds on the Internet (pp. 263-278). IEEE
Computer Society Press.

Monk, A., Wright, P., Haber, J., & Davenport, L. (1993). Improving your
human computer interface: A practical approach. Hemel Hempstead:
Prentice-Hall International.

Moran, T.P., & Anderson, R.J. (1990). The workaday world as a paradigm for
CSCW design. Proceedings of the ACM Conference on Computer-
Supported Cooperative Work CSCW’90 (pp. 381-393). New York:
ACM Press.

Neal, L. (1989). The use of video in empirical research. ACM SIGCHI Bulletin:
Special Edition on Video as a Research and Design Tool, 21(2), 100-
101.

Newman, W.M., & Lamming, M.G. (1995). Interactive system design. Addison-
Wesley.

Pettifer, S., & West, A. (1999). Deva: An operating environment for future
large-scale virtual reality. Department of Computer Science, University
of Manchester, UK.

Reisner, P. (1987). Discussion: HCI, what is it and what research is needed? In
J.M. Carroll (Ed.), Interfacing thought: Cognitive aspects of human-
computer interaction (pp. 337-352). Cambridge, MA: MIT Press.

Roussos, M., Johnson, A., Moher, T., Leigh, J., Vasilakis, C., & Barnes, C.
(1999). Learning and building together in an immersive virtual world.
Presence: Teleoperators and Virtual Environments, 8(3), 247-263.

Silverman, D. (Ed.). (1997). Qualitative research: Theory, method and
practice. London: Sage.

Toward a User-Centred Method for Studying CVEs for Learning 301

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Silverman, D. (Ed.). (2000). Doing qualitative research: A practical hand-
book. London: Sage.

Snowdon, D., Churchill, E.F., & Munro, A.J. (2001). Collaborative virtual
environments: Digital spaces and places for CSCW: An introduction. In
E.F. Churchill, D.N. Snowdon, & A.J. Munro (Eds.), Collaborative
virtual environments, digital places and spaces for interaction (pp. 3-
17). Springer-Verlag.

Soloway, E., Jackson, S.L., Klein, J., Quintana, C., Reed, J., Spitulnik, J.,
Stratford, S.J., Studer, S., Eng, J., & Scala, N. (1996). Learning theory in
practice: Case studies of learner-centered design. Proceedings of the
ACM Conference on Human Factors in Computing Systems (CHI’96)
(pp. 189-196). New York: ACM.

Stanney, K.M., Mourant, R.R., & Kennedy, R.S. (1998). Human factors issues
in virtual environments: A review of the literature. Presence, Teleoperators
and Virtual Environments, 7(3), 327-351.

Steed, A., & Tromp, J. (1998). Experiences with the evaluation of CVE
applications. Proceedings of CVE’98 (pp. 123-130).

Stewart, J., Bederson, B.B., & Druin, A. (1999). Single display groupware: A
model for cooperative collaboration. Proceedings of the ACM Confer-
ence on Human Factors in Computing Systems: The CHI is the Limit
(CHI’99) (pp. 286-293). New York: ACM.

Suchman, L. (1996). Constituting shared workspaces. In Y. Engeström, & D.
Middleton (Eds.), Cognition and communication at work (pp. 35-60).
Cambridge: Cambridge University Press.

Tromp, J. (Ed.). (1999). Usability design for CVEs. Public Report Number
D2.9, A040-NOT-CRG-DS-P-029-02.

Viller, S., & Sommerville, I. (1999) Social analysis in the requirements engineer-
ing process: From ethnography to method. Proceedings of the Interna-
tional Symposium on Requirements Engineering (RE’99) (pp. 6-13).
IEEE Computer Society Press.

302 Haller

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter XI

A Component-Oriented
Approach for Mixed
Reality Applications

Michael Haller

Upper Austria University of Applied Sciences, Austria

Abstract

This chapter introduces a component-oriented approach for developing
mixed reality (MR) applications. After a short definition of mixed reality, we
present two possible solutions for a component-oriented framework. Both
solutions have been implemented in two different MR projects (SAVE and
AMIRE). The first project, SAVE, is a safety training system for virtual
environments, whereas the goal of the AMIRE project is to develop
different authoring tools for mixed reality applications. A component-
oriented solution allows developers to implement better designed MR
applications, and it fosters the reusability of existing MR software solutions
(often called MR gems). Finally, it supports the implementation of adequate
visual authoring tools that help end users to develop their own MR
applications with no programming skills.

A Component-Oriented Approach for Mixed Reality Applications 303

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Introduction

The often underestimated complexity of mixed reality (MR) applications neces-
sitates efficient application design. Rapid prototyping of mixed reality applica-
tions is mostly impossible, because of two reasons: Firstly, most of the existing
frameworks are in many cases too complex to be extended, and secondly, it
needs a lot of software development skills and interface programming know-
ledge to develop well-designed MR software. In this chapter we want to present
a component-oriented approach for developing MR applications. The goal of this
approach is to support developers during their development of new MR applica-
tions. Having a component-oriented framework makes the programming life
easy, because the developers do not have to reinvent everything from scratch.
Based on this approach corresponding authoring tools will support end users to
develop their own MR applications without having programming skills. After a
short overview in the taxonomy of mixed reality and virtual environments, we
present the requirements for such applications. We then describe related work
in this field and present a general component-oriented approach, followed by
description of two showcases, where our approach has successfully been
implemented. Both applications are based on the component-oriented approach
and result in a generic and flexible system. Finally, we describe future trends,
including the implementation of nice MR authoring tools for end users with no
programming skills. We conclude this chapter with a short summary.

Background

In the following section we will give a short overview of mixed reality describing
the requirements for the setup of a MR application and presenting the related
work in this field.

From the Virtual Environment to the Real Environment

Mixed reality (MR) is a particular superset of augmented reality (AR) technol-
ogy that involves the merging of real and virtual worlds somewhere along the
reality-virtuality continuum, which connects completely real to completely virtual
environments. The terminology was first introduced by Milgram and Kishino
(1994) and is depicted in Figure 1. MR technology has been exploited in the

304 Haller

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

medical, military, and entertainment fields (Azuma, 1997); more and more new
fields such as industry and training are becoming interested in its possibilities.
The use of mixed reality enhances users’ perceptions and the interaction with the
real world (Azuma et al., 2001). Virtual objects display information that the users
cannot directly detect with their senses. In addition, this information conveyed
by the virtual objects helps a user perform real-world tasks.

Virtual environments and virtual reality-based applications can become very
complex. Even more complex than present VR systems are the VR tools for
modeling these environments (Bimber, Fröhlich, Schmalstieg, & Encarnação,
2001). Often, VR applications and the corresponding authoring tools are not
easily extendible, and the authors of VR environments require a lot of program-
ming knowledge for realizing the desired virtual scene (Milgram & Kishino,
1994). On the one hand, developers should have programming skills; on the other
hand, they should have an exact technical knowledge about the composition of
the scene. Due to the different hardware devices (input and output devices), the
framework has to be extendable, open for new devices, and finally it should be
easy to use for programmers. Figure 2 depicts the most important components
of a virtual environment: The user is the central part of the system, followed by
the input and output devices that present the environment to the user and finally
the simulation itself that renders the virtual environment.

Normally, virtual reality systems work on powerful graphics machines
(Figure 3). The visual representation is mostly displayed to the user through an
HMD device that allows an immersive feeling, combined with a positional
tracking device that reports the user’s head and body position to the system. With
this input, the simulation can generate a first-person view. Especially in VR
simulation, external trainers often supervise the training session. In this case, an
external application often communicates with the simulation (e.g., via TCP/IP or
UDP).

Figure 1. From the real environment to the virtual environment

���������	�
�

���	�

�
����
��

�����

���

���	�
�
���
��	

�
����
��

�����

���

���
��	�
�

���	�
�����
��	�
����

�
���

A Component-Oriented Approach for Mixed Reality Applications 305

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 2. The most important components of a virtual environment application

��
��
�������

�
��
�������

���	���
��

����

���������	�

����
���

������
������

���

�����������	��

	��
���

��������	��

Figure 3. A typical topology of a virtual reality application

���������	���

����

�
����
�

��	�

�����

	
������

�����

	
������

�
��������
���	�

�����

�����

��	�
�����������	���

�����	���

306 Haller

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Requirements for a Mixed Reality Component
Architecture

The component-oriented approach for the implementation of mixed reality
applications is characterized mainly by the following facts:

• It should allow third-party development.

• The framework should hide programming code.

• Components can be implemented by using other components.

• In most cases, the component-oriented approach offers authoring tools that
allow for an easy development of new components.

As mentioned in Dachselt (2001), we have to distinguish between technical and
authoring requirements. From the technical point of view, the component-
oriented approach should provide:

• Portability: Independently from an underlying renderer, each component
should be removable, and by doing so, it should not influence the system in
a negative way.

• Distribution: Components should not only work on one system. A
distributed application should also be supported.

• Adaptation: Each component can be modified by the user’s preferences.
This should be possible with minimal effort.

• Performance: It is one of the key factors for a mixed reality application
to work in real time. Long delays between user inputs and the system output
cause discomfort or simulator sickness, and it negatively affects the user’s
feeling of presence.

From the authoring point of view, there are the following additional requirements:

• A clear interface for the components—This includes the data and the
component definition.

• Well-written documentation and description of the components.

• Support of adequate authoring tools that allow a rapid prototyping for
authoring users who do not have programming backgrounds.

• Easy configuration of the properties for a component.

• Persistence of components.

A Component-Oriented Approach for Mixed Reality Applications 307

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Loading of additional components without a modification of the under-
lying framework.

Dörner and Grimm (2001) define the following component features:

• Customization: Each component needs to be able to be modified by an
author. Not only programmers should be able to customize components, but
also authors and experts by using authoring tools.

• Persistence: Components and their state should be stored in a way that
they can be reloaded. This should even include the distribution of compo-
nents over a network.

• Reflection: Functionality that allows information to be retrieved from a
component, such as the events that are sent to another component.

• Event-based communication: Components have to communicate with
others—in most cases, this is an event-driven communication in which e-
messages are sent from a so-called event source to all entities that are
registered to listen to the particular events. The communication messages
are mostly forwarded by so-called slots, or pins.

Related Mixed Reality Frameworks

Many European projects mainly focus on the development of MR applications
for a special domain (e.g., technical maintenance), such as ARVIKA (Friedrich,
2000), Studierstube (Schmalstieg, Fuhrmann, Szalavari, & Gervautz, 1996), and
DWARF (Bauer et al., 2001). Unfortunately, only MR experts are able to
develop MR/AR applications. Prototyping of MR-based applications becomes a
very difficult task, because most research institutes have to develop these
applications starting from scratch.

With the use of the ARToolKit library (Kato, Billinghurst, Blanding, & May,
1999), the development of MR/AR applications became easier and more
popular. Figure 4 shows an AR example based on ARToolKit, in which the users
can place 3D sound sources into the real world (Haller, Dobler, & Stampfl, 2002;
Dobler, Haller, & Stampfl, 2002). The ARToolKit library is free for non-
commercial projects and easy to integrate into an OpenGL environment. In
addition, it offers the possibility to recognize objects without the usage of high-
end tracking systems. Most current MR applications are isolated, and each
institute implements its own framework. The situation is similar to the first steps
in game development, where everyone was programming his/her own game-
engine. The development of mixed reality software is like game development: In

308 Haller

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

general it needs to be very flexible, because things change and new requirements
and features need to be added to stay competitive. A source that can easily be
adapted to change is a must and worthy goal.

Most current AR/MR applications are based on a self-made framework or/and
at least on a scene graph library (e.g., Open Inventor, OpenGL Performer, Open
Scene graph, or OpenSG). Of course, most of the AR/MR frameworks like
Studierstube (Schmalstieg et al., 1996), DWARF (Bauer et al., 2001), and
Tinmith-evo5 (Piekarski & Thomas, 2003) are object-oriented frameworks, but
not all of them have a component-oriented approach or there is a lack of
corresponding visual authoring tools (e.g., www.studierstube.org or
www.augmentedreality.de). Scripting support (see www.studierstube.org/april/
and http://www.cc.gatech.edu/projects/ael/projects/dart.html) would help ex-
perienced end users, but it seems to be too complex for end users with absolutely
no programming skills.

Figure 4. In the ASR (augmented sound reality), the user is able to place
virtual 3D sound sources into the real world

A Component-Oriented Approach for Mixed Reality Applications 309

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Component-Oriented Design: Overview

The following section presents a component-oriented design for developing MR
applications, describing the main features of the design approach. Moreover, it
depicts the component-oriented design workflow, including a short overview of
the different rules.

The Component-Oriented Design for an MR Application

Geiger, Reimann, and Rosenbach (2000) define a component as a separated
entity with a specific size. It is characterized by dependencies, and the
framework permits a dynamic loading of components. Components can be either
large or small, but they have to be of a clear structure. In our sense, a component-
oriented MR system should be comparable to a set of different small LEGOTM

components, which can be connected. In our view, a visible component has its
geometry and a property. Moreover, it is characterized by a behavior. Compo-
nents can be very simple, but they can also be composed of other simple
components. They are often called composed components or compound
components. Components hide their internal operations, and programmers do
not need to understand the internal complexity.

Each component is composed of in- and out-slots, which can either send data to
another component or receive data from the previous component. Consequently,
out-slots can be connected to in-slots. This concept is illustrated in Figure 5. We

Figure 5. Components can be connected with in-slots and out-slots (These
slots have to be of the same type.)

����������	

��������

��	
����

����������

��������

��	
����

�����������

��������

��	
����

310 Haller

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

use typing for these slots to specify the receiver and the emitter data. By
comparing the type of in- and out-slots, we can decide which slots are compatible
for connection. Using slots for inter-object communication is not new in a
component-oriented approach. Our communication concept is based on proto-
types for components. This means the component developer registers the
component via a component manager.

By routing events from out-slots to in-slots of another node, customized functions
and dependencies can be implemented, e.g., if a switch has been switched on,
a lamp shines, and so forth. In the SAVE-system, all the components are
described by prototype nodes based on VRML 97 with their in-slots, out-slots,
and parameters, which allow for a closer description of the object (Haller, 2001;
Haller et al., 2002).

Of course, components can be composed of simpler components with fewer
properties. In Figure 6 we have an example in which not all slots of the
components A, B, and C are routed to the outside of the composed component—
the composed component has fewer slots. Once a component has generated an
event, the event is propagated from the out-slot along any route to other nodes.
Event notifications are propagated from sources to listeners by the correspond-
ing method invocations on the target listener objects. Data enters via the first
component, passes along to the second component, and so on. The architecture

Figure 6. Different components can be grouped into composed components
(This approach is important for authoring components. Otherwise, the
visualization can be too disorganized and unmanageable.)

����������	

��������

��	
����

����������

��������

��	
����

�����������

��������

��	
����

���������
���������

��������

��	
����

A Component-Oriented Approach for Mixed Reality Applications 311

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

has an event-driven design, and components only start information processing
after receiving an event. After processing, the components can generate new
events, and the processing can be done in parallel. The system is based on the
producer/consumer concept. No component (consumer) starts sending mes-
sages and processing information without having received a message from other
nodes (producer). The only components that generate messages are called
active components (e.g., timer, clock). They are triggered by system calls, but
they do not start sending messages themselves.

There is no doubt that appropriate authoring tools would greatly assist users.
Therefore, visual-based authoring tools are closely connected to the component-
oriented approach. Normally, end users get an authoring tool with a set of pre-
defined small components. These components can be modified and end users can
tweak their properties. If the authors are more experienced, they can build their
own components by modifying the WRL/XML files; indeed, programmers can
add more features by programming new components. The structure of the
component is described in a WRL/XML file that allows end users with no
programming skills to tweak their components according to their requirements.

The Component-Oriented Workflow

The component-oriented workflow is depicted in Figure 7, which shows the three
different categories of persons.

The programmers are responsible for the creation, implementation, and defini-
tion of components. In this case the programmers are using a conventional
programming environment. The component interface can be described in an
XML-form. In SAVE we used so-called PROTO for the interface description.
In fact, these PROTOs have been based on the VRML prototypes
(www.web3d.org/x3d/spec/vrml/vrml97/). XML has become more popular as
of late because of two reasons: Firstly, there are a number of open-source XML
parsers that help developers to parse the XML files. Secondly, the XML
structure is flexible, extendable, and easy to use.

The authors are using so-called authoring tools for the implementation of the
application. The underlying framework is responsible for the creation of compo-
nents and the connection between them. Normally, authors are not programming
experts—they are experts in their field and normally they know what the end
users want to have. But in the normal case, they don’t know how to implement
due to their lack of programming skills. The results of the author are the
scenarios. They include the graphical elements, the objects of a mixed reality
scenario, the property settings, the behavior of the components, and finally the
logical connection between the components.

312 Haller

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Finally, the end users are the persons that are involved in the virtual environ-
ment. They are not concerned with programming, modeling, and authoring.

Component-Oriented Design:
Two Showcases

The following two showcases (SAVE and AMIRE) are based on the component-
oriented framework. First, we present the SAVE system, followed by a closer

Figure 7. The component-oriented workflow

��������	
����

����

���������	
����

����

�����������	�����

�
�
�

��������

���������
����

�
����

�
�
��
�
�
�

��������
������
��

�
�
��
�
�
�

����������

�	
���

�
��	���

�
�
��
�
�
�

������

�����������
�
�
��
�
�
�

�
�
��
�
�
�

����������

�	
��	��������

��
�
��	
�����

��
���

��
�
�����

A Component-Oriented Approach for Mixed Reality Applications 313

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

description of its component-oriented architecture. Second, we demonstrate the
AMIRE project, including a presentation of the component-oriented approach.

SAVE (Safety Virtual Environment)

In 1997, we started implementing a VR-based training simulation for an oil
refinery. The first prototypes of SAVE were quite simple and showed only a
small part of the refinery (www.faw.uni-linz.ac.at/save). In 1999, we had to add
new training scenarios and new features and functionality (cf., Figures 8 and 9).
What we wanted to have was a framework in which anyone could develop a VR-
based application with a high degree of complexity. Moreover, we wanted to
have an application design with high reusability, for which parts could be reused
in different VR training scenarios. We knew that effective reuse requires more
than just reusable code and libraries. Our vision was a transition from library-
based reuse to kit-based reuse, and we wanted to move away from the traditional
development of VR environments, for which the users require programming
skills. The component-oriented approach with the included authoring tools show
how modeling rather than programming can be used to realize virtual environ-
ments.

Figure 8. SAVE is a VR-based training program for oil refinery employees

314 Haller

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The Component-Oriented Design of SAVE

In SAVE, we wanted to have a component-oriented design that is not compa-
rable to the commercial component models such as JavaBeans or COM. Our
system is comparable to a set of different small LEGOTM components, which can
be connected. In our view, a visible component has its geometry and its
properties. Moreover, it is characterized by a behavior. Our goal was to offer a
repository with different simple and even complex objects. All the components
are described by prototype nodes based on VRML 97, describing their in-slots,
out-slots, and parameters, which provide a more detailed description of the
component (cf., Figure 10).

Figure 11 depicts two components, A and B, and the interface described in
VRML 97. Notice that the figure only describes the interface.

Figure 9. A typical scenario that has to be built-in for the virtual plant
simulation (In fact, the dependencies between the components and the
animation of the components itself are not so complex.)

A Component-Oriented Approach for Mixed Reality Applications 315

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The concrete components with the corresponding data have to be described
separately (cf., Figure 12).

The programmer’s view is depicted in Figure 13, where the two components that
are connected via slots are implemented. In our example, a Boolean value will
be sent through the communication network. The message-mechanism is
implemented in the base class of A and B, namely VRNode, in which the base
methods for the communication are implemented. The main()-function creates
two components. Next, the components aComp and bComp and their slots (in
this case the Boolean slot) are connected together by calling the AddListener()

Figure 10. An example of a simple component interface described in VRML
97

Figure 11. The interface of two components with a Boolean slot

PROTO VRExample [

eventIn SFBool inputValue

eventOut SFBool outputValue

field MFNode children[]

] {}

PROTO A [

 field ...

 eventIn SFBool outSlot

] {}

PROTO B [

 field ...

 eventOut SFBool inSlot

] {}

316 Haller

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

method. In our example, the program calls the Set() method of the component
aComp that results a change of the corresponding Boolean value of the out-slot.
Next, all listeners are notified by calling the NotifiyListener() method. Conse-
quently, component bComp gets the corresponding Boolean value in the
ValueChanged() method, and finally it prints the value on screen.

To be independent of the component aComp, an underlying graphic library, we
encapsulate direct calls to the actual graphics library in certain graphical classes.
Instead of creating the scene graph using library specific calls, often a so-called
meta scene graph will be built.

Figure 14 shows the three graphs of a simple example. In this case, a
clickableButton consists of two separate geometries: one of the up-state (not
pushed) and one for the down-state (pushed). If the user clicks the button, it
remains in down-state until the user clicks it again.

The leftmost graph structure presents the VRML 97 data structure generated by
the SAVE parser. Note the thick black lines connecting the nodes. These lines
represent parent-children relationships. The graph structure in the middle of
Figure 14 constitutes the meta scene graph. Again, the thick black lines represent

Figure 12. Two components with the routing statement

DEF a A {

 field ...

 }

DEF b B {

 field ...

 }

ROUTE a.outSlot TO b.inSlot

A Component-Oriented Approach for Mixed Reality Applications 317

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the parent-children relationships. This structure is derived from the VRML 97
scene graph. The right data structure is the scene graph of the graphics library
which contains group-, transformation- and geometry-nodes. Note that the
component communication network is not part of this scene graph.

Figure 13. The programmer’s view of the SAVE component-oriented
approach

/* The base class VRNode implements all methods for the

 * registration and removal of the slots

 */

class A : public VRNode {

 public:

 int outSlotIdx;

 A() {

 outSlotIdx = AddOutput(&typeid(VRBool),"outSlot");

 }

 void Set(bool b) {

 SetBoolOutputValue(outSlotIdx, b); // Create 'VRValue'

 NotifyListeners(outSlotIdx); // Notify listeners about

 } // new value

};

class B : public VRNode {

 public:

 int inSlotIdx;

 B() {

 inSlotIdx = AddInput(&typeid(VRBool), "inSlot");

 }

318 Haller

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Building the meta scene graph does not require any knowledge of the underlying
graphics library. The graphical classes can easily be replaced by classes that
encapsulate calls to an alternative graphics library, and no further changes in the
source are required to add new graphical objects in the virtual environment. The
mapping of the VRML source to the actual scene graph is performed in two

// ValueChanged is called whenever the out-slot emits a value to

 // the in-slot.

 void ValueChanged(int in,

 int inSlotHandle,

 const VRValue* value) {

 // Which slot?

 if (inSlot == in) {

 VRBool* v = (VRBool*)value; // Get the Boolean value

 cout << v->GetBoolValue() << "\n";

 }

 }

};

int main(int argc, char** argv) {

 A* aComp = new A();

 B* bComp = new B();

 // Connect component aComp with component bComp

 aComp->AddListener("outSlot", bComp, "inSlot");

 // Change the value of aComp. Consequently change the value of

 // component bComp

 aComp->Set(false);

 return 0;

}

Figure 13. The programmer’s view of the SAVE component-oriented
approach (continued)

A Component-Oriented Approach for Mixed Reality Applications 319

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

steps. First, our parser identifies all VRML nodes and creates a corresponding
VRML node representation. Second, the VRML node is traversed recursively
and each node is converted to its corresponding meta scene graph node
representation. The result, in fact, is a meta scene graph. Finally, after a second
traversal, the component communication network is established.

Figure 15 depicts an example of components that are connected together. The
user holds a joystick with an integrated tracking receiver, which tracks both the

Figure 15. The user interacts with the virtual valve that changes its state
and forwards its state-changed messages to the sound and a particle system
component

�����

���	

���
��������
��

���������	�
�������������

Figure 14. From the description to the scene graph

b

V R C lickab le

V R S w itch

V R G eom etry

V R In tC ast

V R G eom etry

V R C lickab le

V R S w itch

V R G eom etry
switchGeom etry1.wrl

V R G eom etry
switchGeom etry2.wrl

V R In tC ast pfGroup

pfSw itc h

pfGe ode pfGe ode

c lic k ed

ou tV a lue

c lic k ab leB u t ton

in tC as t

R O U T E c l ic ka b le B u tto n .c l ic ke d T O in tC a s t. inS ta te

R O U T E in tC a s t.o u tV a lue T O bu tto nS w itch .se tC h o ice

bu ttonS w itc h

320 Haller

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

position and the orientation of the user’s hand. Accordingly, the virtual hand can
be moved. While focusing the valve and after clicking to the interaction button
of the joystick, the message will be propagated through the communication
network (Figure 15). In our example the valve sends its message to a sound
component that plays a sound file; the other listener is a particle system that
simulates the outcoming water.

AMIRE (Authoring Mixed Reality)

In the AMIRE project the main goal is to provide mixed reality to other
professionals than programmers and to facilitate efficient creation and modifi-
cation of mixed reality applications (www.amire.net). With the mixed reality
authoring tool, people with lesser programming skills should be able to develop
MR applications cost effectively with fewer resources and in reduced time. The
AMIRE project is an EU-funded project. The AMIRE authoring tool is based on
two main principles: the use of user-centered design approach and open source
code. Different authors have been involved all along the development process,

Figure 16. The main goal of AMIRE is an authoring tool based on a
component-oriented approach to achieve MR-based applications (One of
these applications is a refinery training program, where employees get
more detailed information using a Tablet-PC.)

A Component-Oriented Approach for Mixed Reality Applications 321

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and they have affected the requirements as well as the user interface design. The
tool is developed as open source and offered to all mixed reality developers. The
project aims at more widespread use of mixed reality in different applications
domains. The AMIRE team wants to promote the use of mixed reality in new
application fields by more heterogeneous developers. With the high reuse of the
MR content and easily maintainable, structured component libraries, the devel-
opment times decrease and rapid prototyping of MR applications is possible.

The Component-Oriented Design of AMIRE

AMIRE wants to adopt existing solutions and provide efficient means to
encapsulate different solutions (called gems) in a uniform way (called compo-
nents). Similar to existing gem collections (e.g., game programming gems),
AMIRE offers an MR gem collection containing efficient solutions to individual
mixed reality problems. A gem could be an object recognition library, a library
for the graphical user interface, a tracking library, or simply a 3D model loader.
The gem collection is integrated into the AMIRE framework. Typically, MR
gems can be reused in many different applications. For example, a “work path
animation” gem that visualizes the workflow of a special machine in an oil
refinery can be reused to explain painting techniques of a famous painting in a
museum.

The MR gems in turn can be used to build application-specific MR components
(e.g., a navigation component for the museum application), as well as an MR
framework that defines how MR components can communicate with each other
and can be integrated into an application. The MR framework provides the
required infrastructure. MR components represent solutions for particular
domain-specific problems (e.g., MR-based museum application), and they
typically combine and extend MR gems towards advanced high-level features of
an MR application. MR components feature a unified interface that allows easy
configuration.

Figure 17 shows the different layers of AMIRE starting from the gem layer
including the libraries and C++ solutions. The second layer is the component
layer that defines the structure and the interface of the components that are used
in the application. The MR framework is the glue of the AMIRE project, because
it integrates both the MR gems and the MR components. A detailed description
of the AMIRE framework can be found in Haller, Zauner, Hartmann, and
Luckeneder (2003) and Zauner, Haller, Brandl, and Hartmann (2003). Some of
the most important features are:

322 Haller

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• A generic configuration mechanism of components by so-called properties.

• The communication between components is based on in- and out-slots.

• The framework provides base conventions for 2D and 3D components.
Only with these conventions is it possible to build a generic authoring tool
that uses MR for the authoring process.

• A prototype-oriented approach is based on two kinds of component
prototypes—basic components and composed components.

• The authoring tool supports the dynamic loading of C++ and XML-based
libraries at runtime.

• An MR application can be saved and reloaded. The file format is XML.

• The integration of an object recognition unit (cf., ARToolKit).

Figure 18 depicts the two-process approach of AMIRE, starting from the
authoring tool to the run-time application. Both applications are based on the
same AMIRE framework and on the same component repository. Of course, the
authoring tool includes more components that do not necessarily have to be
integrated into the run-time application. Due to the abstraction via components,
an exchange of the underlying gems can be guaranteed: whenever the technol-
ogy changes, programmers only have to include the new DLL, but the code for
the run-time application doesn’t have to be changed again. This is, of course, a
great advantage, especially in a field in which new hardware and new base
technologies come out every year.

Figure 17. The different layers of AMIRE

����������	

��
����������	

������������

A Component-Oriented Approach for Mixed Reality Applications 323

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In contrast to SAVE, AMIRE uses XML for the description of the components
interface and for the description of a scenario. A prototype-oriented approach
is used to create new component instances. This means that AMIRE has
prototypes of specific components and an interface to make clones of each
prototype. Two kinds of component prototypes are available. The first one is a
native kind, completely written in C++ and packed into dynamic libraries such as
the DLL format of Microsoft Windows systems or the shared object format of
UNIX systems. The second kind is based on the existing set of prototypes and
is called a composed component prototype. It consists of a component network,
an export list of slots, and a configuration export for the components in the
network. A composed component prototype is handled like a native prototype.
Hence the author does not see any difference between using instances of a
native and a composed component prototype. Authoring an application without
generating and compiling additional C++ sources requires the dynamic loading of
libraries. The AMIRE framework provides an interface to load and to replace
a library at runtime. Currently, two kinds of libraries are supported, namely C++-
based libraries and XML-based libraries of composed components. As men-
tioned before, the persistence of an application is supported by an XML-based
file format. Such an XML file contains a list of library dependencies, the
component instances, and the connections between them. Furthermore, an XML
format for libraries of composed component prototypes is defined.

Figure 18. From the authoring tool to the run-time application

��������	
����

����������	

��������

��	
����

����������

��������

��	
����

�����������

��������

��	
����

����������	

��������

��	
����

�����������

��������

��	
����

��
��

��
��

�
�

�������
�����������

����������	

��������

��	
����

�����������

��������

��	
����

324 Haller

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 19. Some snapshots of the FaiMR program, which is based on the
AMIRE framework: Figure (a) shows a general overview of the application.
Figures (b), (c), and (d) show the view of the furniture expert who can
assemble the furniture. The assembly scenario file is stored in an XML file.
The end user has the view as depicted in (e) and (f), where he/she has a new
furniture part. The arrow and the animation show how the furniture has to
be assembled.

(a) (b)

(c) (d)

(e) (f)

A Component-Oriented Approach for Mixed Reality Applications 325

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In addition to the refinery training application, we developed another application,
a furniture assembly instructor program (called FaiMR) that is based on the
AMIRE framework: printed instruction manuals for furniture assembly often
have one disadvantage in common—it takes a lot of time to make sense of their
meaning since they show several steps of assembly together in a few pictures.
Furthermore, it is hard to find the connections between the instructions printed
in 2D and the real parts. The idea of this work is to connect the instruction directly
to the parts of a piece of furniture. To do this, mixed reality is used, which
combines reality (recorded by a Web cam) with additional information using
common computer graphics in 2D and 3D which are overlaid. A closer
description of this application can be found in Brandl (2003) and Zauner (2003).

Future Trends

Even if the field of mixed reality is rather new and even if there are a lot of
unresolved problems, such as in tracking and hardware devices, fast develop-
ment for prototyping of MR is becoming more and more important. Newcom-
ers—even non-programmers—should be involved in this fascinating world;
because of their artistic and usability knowledge, their constructive input for new
ideas would be very fruitful for new MR applications. But actually, especially
these persons are hesitant to get involved, because of the lack of adequate
authoring tools. Performance is of course a very important factor in a real-time
application like MR applications.

The component-oriented design itself should be based on different, well-
established solutions (libraries)—this was, for example, the main goal of
AMIRE. In the optimal case, there are already good solutions for different
problems; the Virtual Reality Peripheral Network (VRPN) is a good example for
tracking (www.cs.unc.edu/Research/vrpn). It is a well-designed library that
supports a lot of different trackers. The same trend can be found in the game
industry: Ten years ago, every game company implemented its own game engine,
because the projects were smaller and the teams consisted of fewer than 12
people. But now, projects are becoming more and more complex, and not
everything can be implemented starting from scratch.

Combined with a component-oriented approach is the use of adequate authoring
tools for end users who should be able to develop their own MR applications with
lesser or no programming skills. In the rare cases end users have programming
skills, they often lack scripting or 3D modeling skills. But they are specialists in
their field and they know what they would like to have, but they cannot
experiment with the new media. Therefore, the usability and the graphical user
interface of these tools have to be as simple as possible.

326 Haller

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The Need for More Authoring Tools

Nowadays, in the computer game industry, every big game is implemented by
using corresponding authoring tools (cf., GTk-Radian depicted in Figure 20).
There are already different, well-defined roles in the production process of a
game—from the programmers who develop the engine, through the game
developers to the game designers and level designers. And the game developers
would never touch the engine—they are concerned with the game itself, and they
build the application with the corresponding authoring tools that are offered
together with the game engine. The quality of these tools is so good that even
teenagers are able to develop great new levels for their own games.

What we need is more effort in the development of good authoring tools for the
creation of VR/AR/MR applications. Currently, the assortment of such tools is
not very large. Figures 21 and 22 depict two commercial authoring tools designed
for VR/MR applications. Both tools are designed for designers and expert users
in the sense that they should know about the basics of 3D. Especially Virtools
(www.virtools.com) offers a large number of components that can be connected
together to build powerful applications that are used in different VR hardware
devices (also for CAVE applications).

Figure 20. GTk-Radiant is one of the most-used level design tools for
Quake

A Component-Oriented Approach for Mixed Reality Applications 327

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 21. The authoring tool Virtools is frequently used for VR applications
(www.virtools.com)

An authoring tool for developing an MR application can be divided into the
following sub-authoring tools:

• Placement tool: This tool allows the user to place the virtual objects into
the virtual world.

• Configuration tool: The properties of components are always different
from each other and should have to be modified accordingly. A simple user
interface with the possibility of a flexible change of these properties should
be a key issue of this tool.

• Connection tool: Finally, components have to be connected together.
With our slot paradigm, the optimal graphical user interface is to drag and
drop the slots and a visual line should show the connections. One of the
biggest problems in this tool is the visualization method of the connections.
In our opinion, all components should be visualized. This means that the
graphical user interface can become very, very complex—but it does not
hide information from the user. Different abstraction layers would help a
lot, because not everyone is interested in all the possibilities.

328 Haller

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Currently, in the field of AR, we have no commercial tool available and only
prototypes developed in research projects (e.g., in ARVIKA, DART, STAR,
AMIRE). The DART project is built as a collection of extensions to the
Macromedia Director multimedia-programming environment, and therefore
primarily developed for designers who want to develop their own AR application
(MacIntyre, 2003). Another approach is postulated by the AMIRE project, in
which the authoring tools are based on a component-oriented approach, but not
on an existing multimedia authoring tool like Director. The AMIRE goal is to take
the real environment and to place the objects there. Figure 23 depicts how the
authoring in an MR environment could look—especially the placement of the
virtual objects into the world could be realized in a very intuitive way using the

Figure 22. EON Studio uses a component-oriented approach that allows
experts to implement their VR applications in a rapid way
(www.eonreality.com)

A Component-Oriented Approach for Mixed Reality Applications 329

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

real environment. The setting of the properties for the component and the routing
of the components is done in 2D.

We expect more input in this area in the coming years, because current solutions
are not the best in regards to usability and GUI interfaces.

Conclusions

The implementation of mixed reality applications is a very difficult task, because
it includes a lot of different skills (e.g., sound programming, real-time graphics,
different hardware in- and output devices, possibly AI techniques, etc.).
Therefore, we need a good architecture. We described a component-oriented
approach for developing mixed reality applications. The benefits of this develop-
ment approach are a fast implementation that allows an easy integration of
corresponding authoring tools.

We achieve the following benefits if we use a component-oriented approach:

• Flexibility: Each component can be connected to another if it corresponds
to the right interface.

• Reusability: Components can naturally be reused in the framework.

• Extensibility: Different components have to be added to the framework
afterwards. A redesign of the framework has to be avoided by adding new
components.

• Easy communication: The component communication has to be as simple
as possible and as fast as possible.

Figure 23. AR-based placement tool of AMIRE

330 Haller

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The main advantage of the component-oriented approach is the high degree of
flexibility and extensibility: Even if the underlying technology is different, we can
change the tracking system quite simply, but the system runs just as well.

References

Azuma, R. (1997). A survey of augmented reality. Presence: Teleoperators
and Virtual Environments, 6(4), 355-385.

Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., & MacIntyre, B.
(2001). Recent advances in augmented reality. IEEE Computer Graphics
and Applications, 21(6), 34-47.

Bauer, M. et al. (2001), Design of a component-based augmented reality
framework. Proceedings of the International Symposium on Aug-
mented Reality (ISAR 2001), New York.

Bimber, O., Fröhlich, B., Schmalstieg, D., & Encarnação, L.M. (2001). The
virtual showcase. IEEE Computer Graphics & Applications, 21(6), 48-
55.

Brandl, A. (2003). Entwicklung einer interaktiven Möbelanleitung auf
Mixed Reality Basis. Master’s Thesis, Upper Austria University of
Applied Sciences, Media Technology and Design, July 2003, Hagenberg,
Austria.

Dachselt, R. (2001). Contigra—towards a document-based approach to 3D
components. Proceedings of Structured Design of Virtual Environ-
ments and 3D-Components, a workshop at the Web3D Workshop,
Shaker Verlag, Aachen.

Dobler, D., Haller, M., & Stampfl P. (2002). ASR—augmented sound reality.
Proceedings of the ACM SIGGRAPH 2002 Conference Abstracts and
Applications (p. 148), San Antonio, Texas.

Dörner, R., & Grimm, P. (2001). Building 3D applications with 3D components
and 3D frameworks. Proceedings of Structured Design of Virtual
Environments and 3D-Components, a workshop at the Web3D Work-
shop, Shaker Verlag, Aachen.

Friedrich, W. (2000). ARVIKA—Augmented reality for development, produc-
tion, and service. Tagungsband des Informationsforum Virtuelle
Produktentstehung (IVIP).

Geiger, C., Reimann, C., & Rosenbach, W. (2000). Design of reusable compo-
nents for interactive 3D environments. Proceedings of the Workshop on
Guiding Users Through Interactive Experiences: Usability-Centred

A Component-Oriented Approach for Mixed Reality Applications 331

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Design and Evaluation of Virtual 3D Environments, Paderborn, Ger-
many.

Haller, M. (2001). A component-oriented design for a VR-based application.
Proceedings of the International Workshop on Structured Design of
Virtual Environments and 3D-Components at the Web3D 2001 Con-
ference, Paderborn, Germany.

Haller, M., Dobler, D., & Stampfl, P. (2002). Augmenting the reality with 3D
sound sources. Proceedings of the ACM SIGGRAPH 2002 Conference
Abstracts and Applications (p. 65), San Antonio, Texas.

Haller, M., Holm, R., Priglinger, M., Volkert, J., & Wagner, R. (2000).
Components for a virtual environment. Proceedings of the Workshop on
Guiding Users Through Interactive Experiences: Usability-Centred
Design and Evaluation of Virtual 3D Environments, Paderborn, Ger-
many.

Haller, M., Zauner, J., Hartmann, W., & Luckeneder, T. (2003). A generic
framework for a training application based on mixed reality. Technical
Report, Upper Austria University of Applied Sciences, Media Technology
and Design.

Kato, H., Billinghurst, M., Blanding, B., & May, R. (1999). ARToolKit. Techni-
cal Report, Hiroshima City University, Japan.

MacIntyre, B., Gandy, M., Bolter, J.D., Dow, S., & Hannigan, B. (2003). DART:
The designer’s augmented reality toolkit. Proceedings of the Second
International Symposium on Mixed and Augmented Reality (pp. 329-
330), IEEE, Tokyo.

Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual displays.
IEICE Transactions on Information Systems, E77-D(12).

Piekarski, W., & Thomas, B.H. (2003). An object-oriented software architec-
ture for 3D mixed reality application. Proceedings of the Second Inter-
national Symposium on Mixed and Augmented Reality (pp. 247-256),
IEEE, Tokyo.

Schmalstieg, D., Fuhrmann, A., Szalavari, Z., & Gervautz, M. (1996).
Studierstube—an environment for collaboration in augmented reality.
Extended Abstract, Proceedings of Collaborative Virtual Environ-
ments ’96, Nottingham, UK.

Zauner, J., Haller, M., Brandl, A., & Hartmann, W. (2003). Authoring of a mixed
reality assembly instructor for hierarchical structures, Proceedings of the
Second International Symposium on Mixed and Augmented Reality
(pp. 237-246), IEEE, Tokyo.

332 Glossary

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Glossary

A

Access model: Model that specifies the different roles or stereotypes of a
specific software system as well as the access capabilities for each kind of
user.

Aesthetics: The study of the particular pleasures offered by communications
media of all forms.

Agent’s cognitive module: The bulk of the agent, according to the classical
definition of agent as a continuous perception-cognition-action cycle. In
this module, perceptions are analyzed and decisions about actions are
made.

Agent’s perceptual module: A solution to modeling the agent’s perception by
focusing on its perceptual sensors.

Agent-based architecture: A software architecture in which the basic
building block is a software agent. In an agent-based architecture, each
agent is capable of performing a certain set of tasks, and is capable of
communicating with other agents to cooperate with them in the execution
of those tasks.

Algebraic semiotics: The study of optimal representation via mappings of
systems of signs, using methods from algebra and sociology.

Authoring tool: End users can use authoring tools to develop their own VE
applications without having programming skills.

Avatar: Comes from Sanskrit and means reincarnation.

Glossary 333

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

B

Believability: (As opposed to realism) Sensation felt by a human user of a
virtual environment that catches his/her attention, not exactly because of its
fancy graphics, but because of the richness of its avatars’ behaviors.

Blackboard: A common data structure that will be used concurrently by several
agents to build plans collaboratively. Each agent can observe the contents
of the blackboard and decide proactively when it is appropriate to
modify it.

Blend: A combination of two (or more) sign systems into a single sign system.

C

Clarity of perception: A measurement of the ability to distinguish what kind of
object is being perceived by the agent.

Collaborative task planning: In an IVET, the students will be posed with
problems consisting of determining how to reach a certain final state in the
virtual environment from the current state. The system should also have the
capability of building solution plans. A plan consists of a sequence of tasks
that the students should perform in the VE. The construction of the plan will
be performed collaboratively among different agents contributing with
different types of knowledge.

Collaborative virtual environments (CVEs): Software programs that sup-
port users in managing communication across multiple media across the
network. They are populated by objects and user representations, and
provide a means of communicating, socializing, and exchanging ideas, as in
real-life social systems.

Component: Component as a separated entity with a specific size. It is
characterized by dependencies and the framework permits a dynamic
loading of components. Components can be either large or small, but they
have to be of a clear structure. A visible component has its geometry, a
property, and finally it is characterized by a behavior.

Composed component: Components can be very simple, but they can also be
composed of other simple components. They are often called composed
components or compound components.

Conceptual model: Abstract representation of a system that describes its
static components, relationships, and dynamics in terms of elements of the

334 Glossary

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

universe of discourse instead of using technical terms and implementation
units.

Content model: An abstract characterization of the perceptual content of
interactive media.

Conventional groupware: A system that allows remotely located participants
taking part in a collaborative activity (shared activity) to view the context
and interact through it.

D

Data-sharing mechanism: The mechanism by which a particular virtual
environment is shared between different processes implementation.

Deliberation: Conscious, attentive process that uses general purpose re-
sources to focus and address the primary concerns and goals of the agent.

Design guidelines: Design guidelines provide a way of encapsulating a
research’s results and providing application designers with direct advice
and design solutions.

Design methodology: The study of the method of design.

E

Environment model: The methods and structures by which the system allows
description of collaborative virtual environments.

F

Framework: The structure of a typical client or platform in terms of the services
it provides to the user.

G

Gem: Similar to existing gems collections (game programming gems, graphic
gems), there exists the terminology MR gem. A gem represents an efficient
solution (e.g., software code, library) to a specific MR problem.

Glossary 335

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

H

Hypermedia: Associative structure of multimedia nodes that can be freely
browsed.

Hypermedia design: Systematic process oriented towards producing usable
and useful hypermedia systems.

I

Information rich virtual environments: Virtual environments augmented
with abstract information such as text, numbers, and graphs.

Information visualization: The representation of information using graphical
media; a special class of semiotic morphism.

In-slot: Each component is composed of in-slots, which can receive data from
the previous component.

Intelligent tutoring system (ITS): A tutoring system intended to adapt the
teaching and learning process to the needs of every individual student. To
that aim, the system should have knowledge and competence in four distinct
areas that give rise to the four classical components in the architecture of
an ITS: expert module (knowledge about the subject matter); tutoring
module (competence about teaching and learning); student module (knowl-
edge about the student); and communication module (competence about
communicating with the student).

Intelligent virtual agent (IVA): An autonomous embodied agent usually in a
3D interactive graphical environment or virtual environment (VE), which
draws on artificial intelligence (AI) and artificial life (Alife) technology so
as to interact/communicate intelligently with its environment and with
human users/IVAs.

Intelligent virtual environment for training (IVET): Results from the
combination of a virtual environment (a 3D graphical model) and an
intelligent tutoring system (ITS). The goal of this kind of system is to train
one or more students in the execution of a certain task. IVETs are able to
supervise the actions of the students and provide tutoring feedback.

Interaction Analysis (IA): Has its roots in the social sciences, and perceives
knowledge and action as fundamentally social in origin, organization, and
use. It studies human activities, such as talk, non-verbal interaction, and the
use of artifacts and technologies. It is primarily defined by its ‘analytic foci’
or ways into a videotape. Such foci include: structure of events; temporal

336 Glossary

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

organization of activity; turn-taking; trouble and repair; and spatial organi-
zation of activity. Important to Interaction Analysis is the data analysis by
a group of analysts.

Interaction machine: A model of computation that incorporates interaction
with the environment in which the machine exists; inherently more powerful
than Turing machines.

Internal-external interaction: Whether in a collaborative activity the users’
interactions take place face-to-face in the real world, or via the computer
using the tools the system provides. Face-to-face user interaction in the real
world is referred to as being ‘external’ to the system. User interactions and
communication via the tools that the system provides is referred to as
‘internal’ to the system (e.g., between virtual actors within the environ-
ment).

M

Magic interfaces: Interfaces that are not inspired by natural interaction and
thus less intuitive but potentially more effective.

Mixed reality (MR): Involves the merging of real and virtual worlds some-
where along the reality-virtuality continuum, which connects completely
real to completely virtual environments.

N

Network topology: The way in which a set of clients are networked together.
Typically this is client-server (everyone connects to a central server
forming a “star”) or peer-to-peer (everyone connects to everyone).

O

Out-slot: Each component is composed of out-slots, which can send data to
another component.

Glossary 337

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

P

Path planning: For many tasks to be carried out in a virtual environment, it is
necessary to navigate along the space avoiding collisions with objects and
possibly minimizing distance. A path planning agent will calculate the best
trajectory for each displacement that an avatar must do in the VE, from
geometrical information related to the VE.

Pedagogical agent: A software agent that is in charge of the supervision of the
learning process in an IVET. Pedagogical agents can be embodied and
inhabit the virtual environment together with the students, or they can be
just a piece of software that interacts with the student via voice, text, or a
graphical user interface.

Presentation design: Design of the appearance and organization of the user
interface.

Process model: Both an ordering of the activities that comprise a design
method and a characterization of the linkages between them.

R

Reaction: Automated, pre-attentive process triggered by the agent in response
to any change in the environment state or in the agent internal state.

S

Scalability: The ability of a collaborative virtual environment system to support
large numbers of users and large virtual environments.

Scene graph: Provides a high level of abstraction in computer graphics and
stores the whole scene in the form of a graph of connected objects (often
called nodes).

Semiotic morphism: A representation of meaning and/or functionality, given
as a mapping from one sign system to another.

Semiotics: The study of signs and systems of signs.

Semiotics: The study of the way humans find meaning in the world around them.

338 Glossary

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Single display groupware: A system that allows the participants taking part in
a collaborative activity (shared activity) to view the context of interaction
through a single, shared display.

Space-based relationship: Relation among two or more information items
which establishes the position in a 2D or 3D space of an item, taking into
account the position of another item.

T

Time-based relationship: Relation among two or more information items
which establishes when an information item starts, ends, or how long it
takes, taking into account when another item starts, ends, or how long it
takes.

V

Virtual actors: Graphical forms that represent the collaborative virtual environ-
ments’ inhabitants. They provide an appropriate body image to the users
who participate in the collaborative activity to represent them to others, as
well as to themselves.

Virtual environment (VE): A computer-synthesized, three-dimensional envi-
ronment in which a plurality of human participants, appropriately inter-
faced, may engage and manipulate simulated physical elements in the
environment, and in some forms may engage and interact with representa-
tions of other humans—past, present, or fictional—or with invented crea-
tures.

Virtual environment modeling: Specification of a VE using concepts and
relationships of a conceptual model.

Virtual reality melting pot: A theory that many related technologies are
melding together through mutual advances in hardware, software, theories,
and methodology into a larger technology for manipulating human senses in
virtual, augmented, and real spaces.

Virtual world: The class of media experiences that provide a sense of
immersion and closure.

Virtuality: A sense of being engaged with non-physically present entities
through material mediation in the immediate real world.

About the Authors 339

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

About the Authors

Maria-Isabel (Maribel) Sánchez-Segura has been faculty member of the
Computer Science Department at the Carlos III Technical University of Madrid
since 1998. Her research interests include software engineering, interactive
systems, and usability in interactive systems. She holds a BS in Computer
Science (1997), an MS in Software Engineering (1999), and a PhD in Computer
Science (2001) from the Technical University of Madrid. Dr. Sanchez-Segura
is author of several papers related to the improvement of virtual environments
development from the software engineering point of view, published recently in
journals such as Software Practice and Experience, Interacting with Com-
puters, and Journal of Systems and Software. She is also the author of more
than 20 papers presented at several virtual environments and software engineer-
ing conferences, and is one of the instructors (joint Carnegie Mellon and
Technical University of Madrid researchers) in both tutorials held at the ACM
CHI conference in Vienna in April 2004 and the IEEE ICSE conference in
Edinburgh in May 2004.

* * * *

Ignacio Aedo, who holds an undergraduate degree and a PhD in Computer
Science from Polytechnic University of Madrid, has been actively involved in the
domain of interactive systems research since 1990. In this period, he has
participated in several national and international projects related to interactive
systems. He is the author of several books about interactive systems, as well as

340 About the Authors

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

papers published in journals and conferences. His main research interests
include human-computer interaction issues, Web engineering, control access
models, and technology in education. He is also a member of the scientific
committees of several publications and conferences related to his interest areas.

Antonio de Amescua holds a PhD in Computer Science and is a full professor
in the Computer Science Department of the Carlos III University of Madrid. He
also has 21 years of experience working at the Polytechnic University of Madrid
and for the Iberia Airlines company. He has edited books and international
research papers in the areas of software engineering methodologies and
software process improvement. He was the research project leader for the
development of the Information System Development Methodology for the
Spanish Administration and has participated in projects sponsored by the
European Union.

Angélica de Antonio has been faculty member since 1990 in the Languages,
Systems and Software Engineering Department (of which she is currently Sub-
Director) at the Technical University of Madrid (UPM), where she also
coordinates the doctoral program since 2000. She is Director of the “Decoroso
Crespo Laboratory” of the UPM since 1995, where she has led several R&D
projects in the areas of intelligent tutoring systems, e-learning, virtual environ-
ments, and intelligent agents. Professor de Antonio was a Resident Affiliate at
the SEI (Carnegie Mellon University) during 1995. From 1991 to 1995 she was
researcher at the Artificial Intelligence Laboratory (UPM), and Assistant
Director of the SETIAM section of CETTICO (Center of Technology Transfer
in Computer Engineering), specialized in the transfer of computer technologies
to assist the disabled.

Kirstie L. Bellman started the Aerospace Integration Sciences Center (AISC),
which focuses on advancing system and model integration methods, new analytic
techniques, and evaluation tools for assessing the impacts of new technologies.
She has 35 years of experience in both laboratory research and the development
of models and information architectures for large government programs. Her
published research spans a wide range of topics in cognitive science, neuro-
science, and computer science. While at the U.S. Defense Advanced Research
Projects Agency, she extended virtual worlds to education, business, and
research environments. With academic partners, Dr. Bellman is developing new
mathematical approaches to the analysis of virtual worlds. She received an
award from the Office of the U.S. Secretary of Defense for excellence in her
DARPA programs. She was also honored as a Fellow, in 2000, by the American

About the Authors 341

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Association for the Advancement of Science, for work in complex systems and
virtual worlds.

Paloma Díaz earned her undergraduate degree and PhD in Computer Science
from the Polytechnic University of Madrid. She is full professor at the University
Carlos III of Madrid, where she is the head of the DEI Laboratory
(dei.inf.uc3m.es). Her research interests mainly concern topics such as hypermedia
and Web engineering, software development methodologies, and formal models
for representing, reusing, and interchanging information and the application of
information and communication technologies in education.

Juan Manuel Dodero works as a Lecturer in the Computer Science Depart-
ment at the University Carlos III of Madrid (Spain) since 1999. He received his
undergraduate degree in Computer Science and MSc in Knowledge Engineering,
both from the Polytechnic University of Madrid, and his PhD in Computer
Science from the University Carlos III. He has prior experience as an object
technology consultant and a R&D engineer for several Spanish companies. His
research interests include technologies to support education and learning,
knowledge management, computer-supported cooperative work, and multi-
agent systems.

Daphne Economou is a Lecturer in the Department of Cultural Technology and
Communication at the University of the Aegean. She received a PhD on the topic
of Virtual Actors in Collaborative Virtual Environments for Learning in 2001.
She has working experience at Sony Broadcast & Professional Research Labs
(BPRL) as a Human Factors Engineer, leading the research effort on a number
of key research projects. In 2002 she returned to academia and has been leading
the MSc Interactive Multimedia program at the University of Westminster. Her
research interests include user-centered and ethnographic approaches to system
design, and the use of virtual reality technologies in education.

Clive Fencott, BA, MSc, DIC, PhD, lectures and researches on the theory and
design of virtual environments in general, and computer games in particular. He
is particularly interested in predictive content modeling and its experimental
verification via a range of techniques including eye-tracker technology. He uses
his research findings extensively in teaching the Computer Games Design
degree and on master’s modules at the University of Teesside. He has some 40
publications to his name and is currently writing a book on the theory of computer
games. He is also currently supervising five PhD students in this field.

342 About the Authors

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Emmanuel Frécon was born in France and has been living in Sweden for more
than 10 years. He received his MSc from the National Institute of Applied
Science, Lyon, France (May 1993). He spent his last year of studies as an
ERASMUS student at the Royal Institute of Technology, Stockholm, Sweden,
where he presented his thesis on the integration of teleconferencing facilities in
a virtual environment. He has been working at SICS, the Swedish Institute of
Computer Science, since august 1994. His main research interest is the design
and implementation of collaborative virtual environments systems, with a focus
on distribution issues and application support. He is one of the main architects of
the DIVE system. His recent work is published in several international journals
such as Presence: Teleoperators and Virtual Environments, IEEE Computer
Graphics, and Applications and IEEE Communications Magazine, and a
number of IEEE and ACM conferences. He is co-editor of the book, Inhabited
Information Spaces—Living with your Data.

Joseph A. Goguen is Professor and Director of the Meaning and Computation
Lab at the University of California, San Diego. He was a Professor at Oxford,
Senior Scientist at SRI, Senior Member of CSLI at Stanford, and a Professor at
UCLA. He has given distinguished lectures and invited or keynote addresses at
conferences on requirements engineering, semiotics, formal methods, metaphor
theory, software re-use, sociology of science, and consciousness. He is author
or co-author of more than 240 publications, including two books, (co-)editor of
five others, and is known for his founding role in algebraic methods in computer
science and in fuzzy logic.

Michael Haller is a Professor at the Upper Austria University of Applied
Sciences, Department of Media Technology and Design, Austria, where he
directs the EU-funded project AMIRE (Authoring Mixed Reality). He received
his Master’s of Science (1997) and his PhD (2000) from the Johannes Kepler
University of Linz (Austria), where he worked on a component-oriented
approach for virtual environments. Currently, he is performing research in real-
time computer graphics, augmented reality and virtual reality, and human-
computer interaction. He is author and co-author of more than 30 reviewed
scientific publications.

Pilar Herrero is an Assistant Professor in the Department of Languages,
Systems and Software Engineering in the School of Computer Science at the
Universidad Politécnica de Madrid. Dr. Herrero received her European PhD in
Computer Science from the Universidad Politécnica de Madrid in 2003 for her
work on designing a human-like perceptual model for intelligent virtual agents.

About the Authors 343

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

She is a member of Decoroso Crespo Laboratory, a laboratory for the application
of information technologies and communications to education. She is also a
member of the Mixed Reality Laboratory (MRL) and the Communications
Research Group (CRG) at the University of Nottingham in the UK.

Ricardo Imbert is an Assistant Professor in the Department of Languages,
Systems and Software Engineering in the School of Computer Science at the
Universidad Politécnica de Madrid. He is currently finishing his PhD on
Cognitive Architectures for agents with behaviors influenced by personality and
emotion, at the Universidad Politécnica de Madrid. Professor Imbert has been
a member and Project Leader at the Decoroso Crespo Laboratory of the same
university since 1996; the lab houses a research group of computer scientists
blending technologies, such as virtual reality, software agents, and intelligent
tutoring systems to create innovative computer learning environments.

Gonzalo Méndez is a graduate student at the Computer Science School of the
Technical University of Madrid. He started working on educational software in
1997 and on virtual environments in 1998. His first work combining both fields
was in the PRVIR project, an Intelligent Virtual Environment for Training in
Nuclear Power Plants, in 1999. Since then, he has taken part in several projects
that involve intelligent tutoring and virtual reality, such as MAEVIF. He has
worked with Dr. Jeff Rickel on the integration of HeSPI, a virtual environment
for planning maintenance tasks in nuclear power plants, and STEVE, an
intelligent tutor for procedural training. His research interests at the moment
include intelligent virtual environments for training and object-oriented software
engineering.

Susana Montero earned a degree in Computer Science from the Universidad
Carlos III de Madrid. Starting in 1999, she is a Lecturer in the Department of
Computer Science at the same university. Her research interests include
hypermedia development methodologies, CASE, knowledge representation, and
their applications to hypermedia development process.

Steve Pettifer is a Lecturer in the Department of Computer Science at the
University of Manchester. After working with ICL (now Fujitsu) on distributed
database technology, he returned to academia and received his PhD on the topic
of Distributed Environments for Virtual Reality Applications in 1999. His
interests include virtual environments, high performance graphics, scientific
visualization, human computer interaction, and the application of all these in
collaborative scenarios.

344 About the Authors

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Jaime Ramírez earned his bachelor’s degree in Computer Science from the
Technical University of Madrid in 1996, and his PhD in Artificial Intelligence
from the Artificial Intelligence Department of the Computer Science School at
the Technical University of Madrid in 2002. His research activities mainly have
been related to the field of verification of knowledge base systems, and the
development of applications based on virtual reality and intelligent learning.
Currently, he teaches computer programming courses at the Technical Univer-
sity of Madrid, and he works in the Decoroso Crespo Laboratory at the Technical
University of Madrid as a collaborator professor.

Anthony Steed is a Lecturer in the Department of Computer Science, Univer-
sity College London. He received his PhD from Queen Mary College, University
of London in December 1996. He has worked on many aspects of virtual
environment systems, from evaluation of groups of users using collaborative
virtual environments through to scalable rendering algorithms. He has published
more than 50 papers and is co-author of the book, Computer Graphics and
Virtual Environments: From Realism to Real-Time.

Chadwick A. Wingrave is currently a graduate student of the Virginia Tech
Department of Computer Science. There, he is a member of the Center for
Human-Computer Interaction and the 3D Interaction Group, led by Dr. Doug A.
Bowman. He actively researches human cognitive behavior and response to
computer interfaces, as well as the architectures and tools necessary to create
them. His short-term goals are directed at creating more usable interfaces that
allow for an increased utility of the technologies of virtual reality. Ultimately, he
sees computer technology as a tool for the benevolent reshaping of human life.

Index 345

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Index

Symbols

3D design process 101
3D tracking actor 241
3D virtual environment 92

A

ADM conceptual design phase 168
aesthetics 72
agent-based architecture 212
algebraic theory 121
AMIRE (authoring mixed reality) 319
application actor 241
Ariadne development method (ADM)

167
artificial creatures 182
attenuation 184
audio actor 241
augmented reality (AR) 43
authoring systems 156
authoring tools 307
autonomous acting 179

B

behavioural element 237
believable intelligent virtual agents 177
body actor 241

C

challenge point 80
choice point 80
clear interface 306
client-server architecture 9
cognitive diagnostic agent 220
cognitive mapping 183
cognitive module 181
cognitive vision systems (CogVis) 182
collaborative virtual environments

(CVEs) 235, 269
collectiveness 222
collision actor 241
communication agent 219
communication content 275
communication modes 275
component-oriented approach 302
computer supported collaborative work

51
computer-supported cooperative work

(CSCW) 177
conceptualization principle 158
core implementation process 109
critical human processes 2
customization 307
cyberspace 2

346 Index

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

D

data elements 237
data-sharing mechanism 237
distribution 305
domain 160
dynamic modeling 106

E

engineering 72
environment model 237
event-based communication 307
expert agent 219

F

future interactive systems 1

G

graphic designer 99
graphic representation 93
graphical environments 11

H

head-mounted display 242
historic agent 219
human computer interaction (HCI) 43
hypermedia design techniques 153
hypermedia techniques 155

I

immersive systems 178
implementation framework 237
individuality 222
information rich virtual environments

(IRVEs) 47
inhabited virtual environment 93
intelligent tutoring systems 216
intelligent virtual agents (IVAs) 177
intelligent virtual environments for

training 212
interaction agent 220
interaction machine 72
interactive digital environments (IDEs)

67

interactive digital systems (IDSs) 67
interactive system 67
internal filtering 184
isomorphism 131

K

knowledge modeling agent 220

L

language 75
lateral vision 186
low-tech prototyping 274

M

machine vision (MV) 43
mental space 122
mixed reality applications 302
multi-user communication 93
multi-user dungeons (MUDs) 93
multi-user virtual environments 4
multi-user virtual worlds 93
multimedia design process 103

N

nimbus 185
non-immersive virtual environment 242

O

object appearance 157
object component decomposition 157
objects and inhabitants information

agent 220

P

path planning 228
path planning agent 220
pedagogy 275
perceptual module 181
perceptual opportunities (POs) 78
persistent turing machines (PTMs) 73
physical actions modeling 108
physics actor 241
portability 305
pragmatic perspective 119

Index 347

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

process model 70
psychological agent 219

R

real environment 303
real-time communication 93

S

SAVE (safety virtual environment) 313
semiotic morphism 123
semiotic space 122
semiotic system 121
semiotic theory 121
semiotically closed interaction machine

(SCIM) 73
SENDA 92
sense transition region (STR) 186
sensitive perception 184
sign system 120
signified sign 73
signifier sign 73
social interaction 278
software crisis 94
software developing technique 158
state machine 9
static modeling 106
student modeling agent 219
synthetic character 178
system design process 106
system designer 99

T

technocrats 8
temporal continuity 179
theoretical perspective 119
toolkits 156
transformation 77
tutoring agent 219

U

UbiComp 44
ubiquitous computing (UbiComp) 43
underlying model 70
unified modelling language (UML) 75
usability 178

user embodiments 159
user expectations 242
user modeling 163

V

virtual communities 6
virtual environment 66, 92, 153, 213,

303
virtual environment access 163
virtual environments for training (VETs)

214
virtual humans 182
virtual objects 161
virtual objects behavior 161
virtual objects presentation 161
virtual reality (VR) 3, 40
virtual reality melting pot 40
virtual world 1, 116
virtuality 117
virtuality continuum 43
visual actor 241
visual acuity 186
visual filters 186

W

wearable computing (WC) 43
world agent 219

BO O K CH A P T E R S

JO U R N A L ART I C L E S

CO N F E R E N C E PR O C E E D I N G S

CA S E ST U D I E S

The InfoSci-Online database is the

most comprehensive collection of

full-text literature published by

Idea Group, Inc. in:

n Distance Learning

n Knowledge Management

n Global Information Technology

n Data Mining & Warehousing

n E-Commerce & E-Government

n IT Engineering & Modeling

n Human Side of IT

n Multimedia Networking

n IT Virtual Organizations

BENEFITS

n Instant Access

n Full-Text

n Affordable

n Continuously Updated

n Advanced Searching Capabilities

The Bottom Line: With easy
to use access to solid, current
and in-demand information,
InfoSci-Online, reasonably
priced, is recommended for
academic libraries.

- Excerpted with permission from
Library Journal, July 2003 Issue, Page 140

“

”

Start exploring at
www.infosci-online.com

Recommend to your Library Today!

Complimentary 30-Day Trial Access Available!

InfoSci-Online

Instant access to the latest offerings of Idea Group, Inc. in the fields of

INFORMATION SCIENCE, TECHNOLOGY AND MANAGEMENT!

Database
InfoSci-Online
Database

A product of:

Information Science Publishing*
Enhancing knowledge through information science

*A company of Idea Group, Inc.
www.idea-group.com

An excellent addition to your library

�����������	�
��
���
��
��	����
����������
����	����	��	�

��������������� ��!�"

#	��$����%�"�����%""����&
��'�	��(�!�) �*	�������������������++�

ISBN 1-59140-150-X (h/c) • US$74.95 • ISBN 1-59140-183-6 (s/c) • US$59.95
• 290 pages • Copyright © 2004

Information Science Publishing
Hershey • London • Melbourne • Singapore

���������	����,
���������*

-
���.	���%
/�0�
��(�	���*
�1�
��*
�

Anne-Marie Armstrong, PhD, Government Printing Office, USA

2004 RELEASE

Instructional Design in the Real World: A View from the

Trenches offers guidance on how the traditional instructional

design system has been used and how it must be changed to

work within other systems. The environments and systems that

affect the ADDIE (Analysis, Design, Development,

Implementation, Evaluation) process and to which it must be

adapted include corporations, industry, consulting organizations,

health care facilities, church and charitable groups, the military,

the government, educational institutions, and others. Its

application must be filtered and altered by the environments and

the systems where the learning or training takes place. Every chapter includes a case

study showing how the application of ID strategies, learning theories, systems theory,

management theories and practices and communication tools and practices are

adapted and applied in various environments. The chapters also contain lessons

learned, tool tips, and suggestions for the future.

“This book provides a pragmatic approach to Instructional Design. It cuts through the theoretical
jargon and provides practitioners with practical steps that can be applied in the ‘real’ World.”

 – Steve Hayleck
Government Printing Office, USA

An excellent addition to your library

�����������	�
��
���
��
��	����
����������
����	����	��	�

��������������� ��!�"

#	��$����%�"�����%""����&
��'�	��(�!�) �*	�������������������++�

ISBN 1-931777-92-6 (h/c) • US$74.95 • ISBN 1-59140-292-1 (s/c) • US$59.95
• 377 pages • Copyright © 2004

Information Science Publishing
Hershey • London • Melbourne • Singapore

���������	��,��������	��%
-�����$���	������

���	.���.
�,���	��*
�

Claude Ghaoui, PhD, Liverpool John Moores University, UK

2004 RELEASE

E-Education Applications: Human Factors and Innovative
Approaches enforces the need to take multi-disciplinary
and/or inter-disciplinary approaches, when solutions for e-
education (or online-, e-learning) are introduced. By focusing
on the issues that have impact on the usability of e-learning,
the book specifically fills-in a gap in this area, which is
particularly invaluable to practitioners. The book is aimed at
researchers and practitioners from academia, industry, and
government, for an in-depth coverage of a broad range of
issues, ideas and practical experiences on this subject. It
aims to raise more awareness in this important subject,
promote good practice, and share and evaluate experiences
(advantages, disadvantages, problems faced and lessons learned).

“The consideration of people with diverse needs, capabilities and cultural differences
must direct scientists and education stakeholders to look at the World in a new light.
Widening access requires reducing disabling conditions under which users of education
work.”

– Claude Ghaoui, PhD
Liverpool John Moores University, UK

	Developing Future Interactive Systems
	Cover

	Table of Contents
	Preface
	Chapter I. Real Living with Virtual Worlds: The Challenge of Creating Future Interactive Systems
	Chapter II. The Future Virtual Reality Melting Pot
	SECTION I: WHOLE VIRTUAL ENVIRONMENTS DEVELOPMENT METHODS
	Chapter III. A Methodology of Design for Virtual Environments
	Chapter IV. SENDA: A Whole Process to Develop Virtual Environments

	SECTION II: DESIGNING VIRTUAL ENVIRONMENTS
	Chapter V. Steps Toward a Design Theory for Virtual Worlds
	Chapter VI. Conceptual Modeling of Virtual Environments Using Hypermedia Design Techniques
	Chapter VII. Design of Believable Intelligent Virtual Agents
	Chapter VIII. An Agent-Based Architecture for Virtual Environments for Training
	Chapter IX. Construction of Collaborative Virtual Environments
	Chapter X. Toward a User-Centred Method for Studying CVEs for Learning
	Chapter XI. A Component-Oriented Approach for Mixed Reality Applications

	Glossary
	About the Authors
	Index

