

Authoring .NET Installations

Technical White Paper

(version 4.0)

Last Updated: October 1, 2002

Abstract

With the introduction of Microsoft® Visual Studio® .NET, Microsoft has provided a set
of entirely new development tools, including powerful new languages such as
Microsoft Visual C#™ .NET. While much of the whirlwind of information about Visual
Studio .NET and Microsoft’s .NET initiative focus on things like Web Services, there
has been a distinct lack of information regarding more basic issues, such as: How are
.NET applications deployed easily to end-users? How does a developer package a
mixture of .NET and Win32 code to create a reliable installation? How is the Microsoft
.NET runtime redistributed? This paper will answer these questions, as well as explain
how .NET has changed the world of software installation and dispel some of the myths
involving installation of .NET applications.

InstallShield is a registered trademark and service mark of InstallShield Software Corporation. Microsoft, Windows, and
Visual Studio are registered trademarks of Microsoft Corporation. All other trademarks are the property of their respective
owners. This document is presented “as-is” and does not express or imply any warranties on behalf of InstallShield Software
Corporation.

Table of Contents

Terminology 1

How .NET Changes the World of Software Installation 2

The Myth of Self-Installing Code: Why You Can’t Just Use XCOPY 2

Installation Requirements 2
Building the Installation Package 2
Installing The .Net Application 2

Inter-Operable Code 3

Isolated Applications and Side-by-Side Components (Win32) 3

New .NET-related Functionality in InstallShield Developer 4

Enabling the .NET Functionality in InstallShield Developer 4

New Project Types 4

New Component Properties 5
.NET Scan At Build 5
.NET Application File 6
.NET Installer Class 6
.NET COM INTEROP 6
.NET Precompile Assembly 6

New Assembly Node for Component Advanced Settings 7
New .NET Assembly 7
New WIN32 Assembly 7

New .NET Framework Panel in the Release Wizard 8
Download From the Web 8
Extract From SETUP.EXE 8
Copy From Source Media 8
Do Not Include Or Setup .NET Framework 8

New Release Properties 9
.NET Framework Location 9
.NET Framework Url 9
Display .NET Option Dialog 9
.NET Build Configuration 9

Working with Visual Studio .NET and InstallShield Developer 10

Adding an InstallShield Project to your Visual Studio .NET Solution 11

All About Project Outputs 14

Building Your InstallShield Developer Project 16

The Task List 16

Editing InstallShield Dialogs in the Visual Studio IDE 17

Advanced Options 18

Creating an Installation for a .NET Assembly (Manual Method) 18

Creating an Installation for a Side-by-Side (Win32) Assembly 19

About InstallShield’s .NET Solutions 20

Authoring .NET Installations

 2002 InstallShield Software Corporation. All Rights Reserved. 1

Terminology
The following terms will be used in this discussion of .NET installations:

.NET, .NET Code, and .NET Applications — While .NET generically refers to a large
Microsoft business initiative involving web-based services, in this paper .NET Applications
refer to programs that are created with Visual Studio .NET and require the .NET Framework
to operate. .NET code is also known as managed code, because it is managed by the .NET
Framework.

.NET Framework — Also known as the Common Language Runtime, this is a collection of
redistributable files required to be present on a system for a .NET application to function
properly.

.NET Assembly — A .NET Assembly is a collection of files and their related metadata. You
can think of a .NET Assembly as something similar to a Windows Installer component, as
.NET Assemblies are always installed and removed as a singular unit. Because their
architectures are so similar, the Windows Installer is the perfect engine to install .NET
Assemblies.

A .NET Assembly can come in many forms. For the purpose of this paper we will discuss a
simple .NET Assembly containing only one file with the metadata embedded in the header of
the file and assume that this assembly was created in Visual Studio .NET. .NET Assemblies
can be installed local to the application or to the Global Assembly Cache, if appropriately
signed, to share with other applications.

Win32 and Win32 Applications — Refer to traditional 32-bit Windows programs that don’t
require the .NET Framework to operate correctly. Win32 code is also known as unmanaged
code, because it is not managed by the .NET Framework.

Inter-operable Code and COM-interop — Inter-operable code generically refers to code that
contains both Win32 and .NET code. COM-interop specifically refers to the mechanism used
for Win32 and .NET code to work with one another.

Isolated Applications and Side-by-Side Components — An Isolated Application is an
application designed to have a “no impact” installation on the system. All components that
belong to the application are installed isolated to just that application. Side-by-Side
Components refer to components (such as DLL’s) that are written so that different versions of
the same component can be loaded into memory (side-by-side) at the same time without
causing any conflicts.

Authoring .NET Installations

 2002 InstallShield Software Corporation. All Rights Reserved. 2

How .NET Changes the World of Software
Installation

The Myth of Self-Installing Code: Why You Can’t Just Use XCOPY

You may have heard that you can install .NET Applications using XCOPY. You may have
even seen a demonstration of how it works. Of course, this would bring up the question, “Why
do I even need a software installer anymore?” While it is true that some simple .NET
applications can be copied to a system so they function properly without registration, this
represents an incomplete view of what actually needs to happen during the software
installation process.
Software installation is more than simply getting your files from point A to B. Software
installers provide a friendly, reliable, and consistent way for the end-user to place software on
their machine. First, most installers manage the process of collecting input from the user
regarding software installation preferences through a consistent and familiar user interface.
The Installer then manages creation of a directory hierarchy, shortcut creation,
upgrades, Internet-based installation, license-key management, software uninstallation, and
many other tasks. In the above example, the user is faced with performing many of these
tasks alone. Other tasks, such as license-key management, simply aren’t possible with “self-
installing” code.

Additionally, applications that are a mix of managed and unmanaged code can’t be self-
installed. In fact, the process of installing a mix of managed and unmanaged code is more
complex than installing traditional unmanaged code. Since most developers won’t be throwing
out their unmanaged code and starting from scratch with managed code, many of these
mixed environments are expected to exist for a long time. Finally, and most importantly, the
.NET Framework must be installed and configured on the end-user’s machine. Only an
installation package can determine if the appropriate version of the .NET Framework is
installed on the end-user’s machine and install or update the .NET Framework as needed
before the application is installed on the system.

Installation Requirements

BUILDING THE INSTALLATION PACKAGE
Microsoft advises that the Windows Installer Service be used to install and configure .NET
applications on an end-user’s system. To do this, a Windows Installer package must be
configured appropriately to install the .NET application. This process involves determining the
correct information to write to the Windows Installer tables, including Custom Actions for any
special-cases that the Windows Installer does not handle natively, and including the
appropriate version of the .NET Framework redistributable in the installation package.

INSTALLING THE .NET APPLICATION
Once the installation package is delivered to the end-user’s system, a number of tasks must
be completed in addition to the typical tasks associated with software installation. Firstly, both
the Windows Installer Service as well as the .NET Framework need to be installed and
configured on the system. Secondly, the Windows Installer Service must be called to install
and configure all of the assemblies and other data associated with the .NET application.
Finally, the system must be configured to allow the application to be cleanly removed when no
longer needed.

Authoring .NET Installations

 2002 InstallShield Software Corporation. All Rights Reserved. 3

Inter-Operable Code

Visual Studio .NET provides methods for developers to write managed code that works
together with traditional, non-managed code. This functionality is known as COM-interop.
While this functionality is extremely useful for developers, it introduces a level of complexity
into software installation that was previously unknown. Specifically, to register a component
for COM-interop requires a separate utility and generation of individual registry files for each
component. These files then need to be installed with the inter-operable components.
Additionally, tracking dependencies between managed and unmanaged code can be a
daunting task, to say the least. Developers require an easier way to install inter-operable code
on end-users machines.

Isolated Applications and Side-by-Side Components (Win32)

The .NET initiative even affects the installation of Win32 components. As part of the Windows
XP Operating System and .NET, Microsoft has provided an infrastructure for reducing the
occurrences of DLL Hell. Applications often rely on shared resources to operate correctly. The
concept behind shared resources is that once a shared resource is on the system, other
applications that require that resource don’t need to install it to use it. DLL Hell is an
unfortunately common scenario where an application may require a newer version of a shared
resource than what is on the machine, so the application’s installer overwrites the old
resource with a newer version. Over time, newer versions of shared resources may be
incompatible with older versions, and since only one version of a shared resource can exist on
the machine, applications that rely on the older resource are broken.

The solution to the DLL Hell problem that Microsoft has provided allows for Isolated
Applications and Side-by-Side Components. Isolated Applications are applications that install
dedicated versions of all components required to run the application — these applications are
then completely unaffected by changes made to the system by installation of other
applications. Side-by-Side Components are shared resources that are designed to be
installed and run on the system alongside older and newer versions of the same shared
resource. Many shared resources that developers currently rely on are being written as Side-
by-Side Components for Windows XP.

Developers can take advantage of Side-by-Side Components and partially isolate their
application by creating an Application Manifest. The Application Manifest is installed with the
application and expresses application dependency and version information. With this
information, the operating system can be sure to always load the appropriate version of a
shared resource into memory for that application. For example, an application may be written
and tested on COMCTL32 v5 — when installed the application manifest will express the
application’s dependency on v5 of COMCTL32. Even if the operating system has other
versions of COMCTL32, the application will always be run with v5, therefore avoiding DLL Hell
for that application.

Authoring .NET Installations

 2002 InstallShield Software Corporation. All Rights Reserved. 4

New .NET-related Functionality in InstallShield
Developer
InstallShield Developer introduces many new views, options and wizards to assist setup
developers in creating installations for .NET applications. Additionally, InstallShield Developer
is the only robust installation authoring environment to offer integration with Visual Studio
.NET. This section will walk you through all the new .NET-related functionality in InstallShield
Developer. To review the process of building .NET installations from within the Visual Studio
.NET IDE, see the section titled: Working with Visual Studio .NET and InstallShield Developer
on page 10.

Enabling the .NET Functionality in InstallShield Developer

Before you begin using the .NET functionality in InstallShield Developer, it is important that
you have the .NET Framework installed and configured on your machine. There are a number
of ways to do this:

If you are using InstallShield Developer 7, download the InstallShield Developer .NET Update
from http://www.installshield.com/products/dotnet.asp. This update will install and configure
the .NET Framework on your machine so you can utilize all the functionality described in this
paper.

Install Visual Studio .NET. Installing Visual Studio .NET will install and configure the .NET
Framework as well as allow you to utilize InstallShield Developer’s Visual Studio .NET
integration features.

Download the Microsoft .NET Framework Software Development Kit from
http://msdn.microsoft.com. This will install and configure the .NET Framework on your
machine as well as give you additional documentation.

InstallShield Developer 8 will automatically install the .NET Framework on your system.

New Project Types

InstallShield Developer includes two .NET specific project types: the Visual C# .NET Project
type and the Visual Basic .NET Project type. These project types provide quick ways to import
your .NET application and jumpstart your installation development.

http://www.installshield.com/products/dotnet.asp
http://msdn.microsoft.com/

Authoring .NET Installations

 2002 InstallShield Software Corporation. All Rights Reserved. 5

New Component Properties

Components have five new .NET-related properties, which are all displayed in their property
sheet: .NET Scan at Build, .NET Application File, .NET Installer Class, and .NET COM Interop.
These properties provide advanced control of how InstallShield builds components that contain
Assemblies. In most cases these properties can remain set to their default.

.NET SCAN AT BUILD
At build-time, InstallShield can automatically include all of a .NET Assembly’s
Properties and/or Dependencies in the setup package. The options available are:

• None — No build-time dependency or property scanning occurs. This option

assumes that you are defining all properties through the Component’s
Advanced Settings or using the Component Wizard to perform a static scan
and that you are including all dependencies manually.

• Dependencies and Properties — Scan for both dependencies and properties
at build-time.

Authoring .NET Installations

 2002 InstallShield Software Corporation. All Rights Reserved. 6

• Properties Only — Scan for properties but not dependencies at build-time.
This option assumes you are including all dependencies manually.

The Options Dialog (Tools Options) has a new tab labeled .NET. This tab configures
how the Scan At Build property is set by default for new components.

.NET APPLICATION FILE
This Parameter sets the File_Application column in the MsiAssemby Table, identifying the
application that uses your Assembly. Normally this setting is left blank and the key file of the
component is used as the Application File. If you wish to override this behavior and set a
different Application File, such as the primary application executable, specify a different file
here.

.NET INSTALLER CLASS
If your .NET Assembly takes advantage of the System.Configuration.Install namespace in
order to support .NET custom actions written in the same language as your .NET application,
set this property to Yes. This property defaults to No.

.NET COM INTEROP
Extra work must be done to set up a .NET Assembly for COM Interop at install time.
Fortunately, InstallShield does all the extra work for you. Toggle this property to Yes if your
Assembly requires COM Interop functionality. This property defaults to No.
(Note: This option only works if you are installing your assembly to the Global Assembly
Cache.)

.NET PRECOMPILE ASSEMBLY
If your assembly takes advantage of just-in-time compilation, set this property to YES and
InstallShield will automatically compile your code when installed.
(Note: This functionality does not work for Assemblies being installed into the GAC. It also
does not work for Assemblies being upgraded by a minor upgrade.)

Authoring .NET Installations

 2002 InstallShield Software Corporation. All Rights Reserved. 7

Additionally, a Component’s Destination field now contains a new option,
[GlobalAssemblyCache]. When this destination is selected, the component will be installed to
the Global Assembly Cache.
(Note: This works only for appropriately signed and configured assemblies.)

New Assembly Node for Component Advanced Settings

Under a component’s Advanced Settings, there is a new Assembly node. This node allows for
exact control over how an Assembly is built into your package. In order to use the Assembly
node, be sure that you have the component’s .NET Scan-at-Build property set to None. Right
click on the Assembly node and select either New .NET Assembly or New Win32 Assembly.

NEW .NET ASSEMBLY
Selecting this assembly type will allow you to manually configure the settings for a .NET
Assembly. In most cases InstallShield’s build-time .NET property extraction is sufficient and
there is no need to manually specify your Assembly settings.

NEW WIN32 ASSEMBLY
Win32 Assemblies allow you to take advantage of the Application Isolation functionality that is
built into Windows XP and later operating systems. InstallShield does not currently support
build-time property extraction of Win32 Assemblies, so if you are working with a Win32
Assembly you will always need to define the property values manually. Be sure your manifest
file is contained in the component you are working on and select the file from the drop-down
for the Manifest Property. To finish the configuration of your Assembly, specify the name, type,
and version properties.
(Note: Your Assembly may have other properties that need to be defined; if this is the case
left-click in the property grid to add a new property.)

Authoring .NET Installations

 2002 InstallShield Software Corporation. All Rights Reserved. 8

New .NET Framework Panel in the Release Wizard

In order to install a .NET Assembly on an end-user’s machine, the .NET Framework must first
be installed. InstallShield will automatically determine if the user’s machine contains an
appropriate .NET Framework for your application and will install or update the framework, if
necessary. This panel of the Release Wizard controls how InstallShield performs this task.

DOWNLOAD FROM THE WEB
InstallShield will automatically download the redistributable for the .NET Framework from the
specified URL, if necessary, and install it on the end-user’s machine. This option requires that
the end-user has an active Internet connection. If the version of the .NET Framework on the
end-user’s machine is appropriate for your application, no files will be downloaded.

EXTRACT FROM SETUP.EXE
The .NET Framework redistributable will be compressed into the Setup.exe file and installed, if
necessary, on the end-user’s machine.

COPY FROM SOURCE MEDIA
The .NET Framework redistributable will be stored on the release media and installed, if
necessary, on the end-user’s machine.

DO NOT INCLUDE OR SETUP .NET FRAMEWORK
The .NET Framework will not be included with this package. InstallShield will assume that the
appropriate version of the .NET Framework is already installed on the end-user’s machine.

Authoring .NET Installations

 2002 InstallShield Software Corporation. All Rights Reserved. 9

New Release Properties

The property sheet for a release now has three new .NET-related properties.

.NET FRAMEWORK LOCATION
The options in this dropdown are the same as the options available from the Release Wizard.

.NET FRAMEWORK URL
The URL where InstallShield will look for the .NET Framework redistributable, provided that
Download From The Web is selected for the .NET Framework Location property.

DISPLAY .NET OPTION DIALOG
Setting to YES will give the user the option to not install the .NET Framework at install-time.

.NET BUILD CONFIGURATION
This property associates a specific Solution Configuration in Visual Studio .NET with this
release. For example, if you specify Debug, then the Debug outputs from the Visual Studio
project will be included at build-time. If you specify Release, then the Release outputs from the
Visual Studio project will be included at build-time.

Authoring .NET Installations

 2002 InstallShield Software Corporation. All Rights Reserved. 10

Working with Visual Studio .NET and InstallShield
Developer
Using InstallShield Developer’s Integration with Visual Studio .NET

InstallShield Developer 8 introduces powerful new integration with the Visual Studio .NET IDE
that greatly increases ease of use and productivity. InstallShield Developer’s Visual Studio
integration makes your InstallShield project part of your Visual Studio .NET development
solution. This allows you to:

• Build your setup individually, or as part of the rest of your development project.
• Edit all aspects of your setup project directly in the Visual Studio IDE along with the rest of

your solution.
• Automatically include new elements of your solution to your setup project.
• Dynamically acquire any dependencies every time the solution is built.

To utilize InstallShield Developer’s Visual Studio .NET integration, you must have Visual
Studio .NET installed before you install InstallShield Developer. InstallShield Developer will
automatically detect that Visual Studio .NET is installed on the machine and install the
required elements for integration with the Visual Studio IDE. The next time you start Visual
Studio .NET, the InstallShield logo will be displayed as part of the startup screen.

ABOVE: The Visual Studio .NET startup screen after InstallShield Developer is installed.

Authoring .NET Installations

 2002 InstallShield Software Corporation. All Rights Reserved. 11

Adding an InstallShield Project to your Visual Studio .NET
Solution

The first step in working with InstallShield Developer’s Visual Studio integration is to add an
InstallShield project to your current solution.

1. Right-click on the root of your solution tree and select Add New Project

2. Select InstallShield Developer Projects from the Add New Project window.

3. Choose the type of InstallShield project you wish to add from the templates listed on the

right side of the window.

ABOVE: The New Project window

Authoring .NET Installations

 2002 InstallShield Software Corporation. All Rights Reserved. 12

The easiest way to add an InstallShield project to your solution is to select the Project Wizard
project type from the Add New Project window. This will launch the InstallShield Visual Studio
.NET Project Wizard, which will guide you through the process of creating a basic InstallShield
project and linking your solution’s output groups to the project.

1. Select whether you wish to use a Standard Project or Basic MSI Project.

In most cases, you will use a Basic MSI Project unless your setup will require InstallScript
functionality.

2. Provide the application’s name, version, and default installation directory.
You can change all of this later inside of the IDE.

3. Select whether or not the application will utilize the InstallShield Update Service.
Further information about the service is available at http://www.installshield.com/isus/.

4. Enter your company information.
This will be displayed in the Windows Add/Remove Programs control panel.

5. Select languages.
Choose which languages, if any, your setup will support besides the primary language you
selected during the Developer installation process. Language Packs (sold separately) are
required to support additional languages in the same installation.

6. Create your feature choices and organization.

If you’re not sure which features you will need, just keep the defaults and you can change
the feature layout later in the IDE.

7. Associate your project outputs with features.

All of the default project outputs will be displayed, even if you’re not using them. At a
minimum, you will want to associate your primary output with one feature. (More
information on associating project outputs is included in the section All About Project
Outputs.)

8. Associate any additional files with features.

If you have files that are not part of your solution (e.g., Readme.txt), you can select those
files here and associate them with features.

http://www.installshield.com/isus/

Authoring .NET Installations

 2002 InstallShield Software Corporation. All Rights Reserved. 13

9. Create Shortcuts.
If you select your project’s primary output as the target of the shortcut, an Advertisable
Shortcut will automatically be created for the project’s executable.

10. Import any additional registry data.

You don’t need to import any COM or .NET registry data; this information will be
automatically included in your setup as part of the build process.

11. Select default dialogs.

You will be able to edit these dialogs and/or include custom dialogs inside of the IDE.

Once you complete the Project Wizard, your InstallShield project will be listed as part of
your solution in the Solution Explorer. Each node on the tree under the InstallShield
project represents a different view from the InstallShield IDE. These views work just like
they would in the InstallShield IDE, so there is no need to learn a different interface.

ABOVE: The Solution Explorer with an InstallShield
project (called AppSetup) added to the solution.

Authoring .NET Installations

 2002 InstallShield Software Corporation. All Rights Reserved. 14

All About Project Outputs

Since the files that make up your solution are likely to change frequently, InstallShield uses
the solution’s project outputs as place-holders for the files that your solution will generate and
ultimately be included in the setup. When you associate a project’s output with an
InstallShield project, InstallShield will automatically include all the files as part of that output
group as well as dynamically acquire any dependencies, every time you build your solution.

Use the Application Data Files view to associate project outputs with your InstallShield
project.

1. Use the Destination computer’s folders frame to create the necessary destination

folders on the target machine.

2. Select the project you want to work with under the Visual Studio Solution node of the

Source computer’s folder frame.

3. Select which feature you want to associate the project output with at the very top of the

frame.

4. Select the output group you want to associate from the Source computer’s files frame

and drag-and-drop to the appropriate folder on the Destination computer’s folders
frame.

5. Continue this process for all projects and output groups you want to include in your

InstallShield setup project.

ABOVE: The files view inside of the Visual Studio .NET IDE.

It is important to note that InstallShield will list all the default output groups for a particular
project even if you’re not using that output group. For example, InstallShield will list the
Localized output group as an option available for association with your project, even if you are
not creating any localized versions of your application. It is up to you to ensure that you
include all the necessary output groups as part of your InstallShield project.

Authoring .NET Installations

 2002 InstallShield Software Corporation. All Rights Reserved. 15

If you want to review the files that are part of an output group, or view which dependencies
are being brought into the setup by a particular output group, you can do so by right-clicking
on the output group in the Destination computer’s files pane and selecting the appropriate
menu item.

ABOVE: The right-click menu on a Visual Studio output group.

InstallShield will automatically scan an included output group at build-time and include any
necessary dependencies. The Merge Module Search Path will be searched for the
dependencies, and if an appropriate Merge Module is found, it will be included in the project.
Otherwise, the individual files that your project depends on will be included in the setup. If you
want to view the files that your project is dependent on, select the Dependencies from scan
at build and InstallShield will run a dependency scan and display the results in the
Dependencies window. You can also override dependency inclusion in the Dependencies
window by un-checking dependent files you don’t want to include in the build.

ABOVE: The dependencies list of a project that is dependent on
Crystal Reports.

Authoring .NET Installations

 2002 InstallShield Software Corporation. All Rights Reserved. 16

Building Your InstallShield Developer Project

Your InstallShield Project can be built separately by right-clicking on the Setup node in the
Solution Explorer and by selecting the appropriate build option. Your setup will also be re-built
every time you initiate a re-build of your entire solution. In either case, the build log will be
sent to the Output window in the Visual Studio IDE, so you can see the results of your build
and any errors or warnings that have been generated.

The release-types available as part of your InstallShield project automatically include any
configurations that you have specified in the Visual Studio Configuration Manager. By default,
there are two configurations: Debug and Release. So, if you select to build the Debug release
type, InstallShield will automatically include all the project configurations that you have
specified in the Configuration Manager for the Debug configuration.

ABOVE: The Releases View in InstallShield with the Debug type selected.

The Task List

In addition to utilizing the Visual Studio Output Window, InstallShield also makes full use of
the Task Window. Whenever your build or validation produces any warnings or errors, an
item will be created on the task list for you to follow-up on later. In many cases, the item will
have a hyperlink to more information about that error/warning, should you require additional
assistance.

ABOVE: A view of the task list after validating a setup.

Authoring .NET Installations

 2002 InstallShield Software Corporation. All Rights Reserved. 17

Editing InstallShield Dialogs in the Visual Studio IDE

Since the Windows Installer utilizes a special dialog format and has many controls that are
unique to the Windows Installer UI, InstallShield provides its own dialog editor separate from
the Visual Studio dialog editor. Whenever you select to edit a dialog, the Visual Studio
Toolbox automatically loads with the InstallShield Dialogs tab and the InstallShield Layout
toolbar is also activated, giving you all the tools you need to edit a Windows Installer dialog.

ABOVE: A view of a dialog (right) with the InstallShield Dialogs toolbox (left)
and the InstallShield Layout toolbar (top).

In addition to the InstallShield Layout toolbar, you can activate and de-activate other
InstallShield toolbars by right-clicking in the toolbar area and selecting them from the menu:

• InstallScript — Allows you to navigate through the various InstallScript files that are part

of your project.

• InstallShield — Provides access to all basic InstallShield functionality, such as running

the various wizards and accessing InstallShield’s default options.

• InstallShield Layout — Allows you to change the layout of elements on a dialog.

• MSI Debugger — Gives you the ability to add, remove, and monitor breakpoints in your

project.

In most cases, the appropriate toolbar will be displayed and activated automatically for you,
so you won’t need to turn these on and off manually.

Authoring .NET Installations

 2002 InstallShield Software Corporation. All Rights Reserved. 18

Advanced Options

Creating an Installation for a .NET Assembly (Manual Method)

1. Create a new project or open your currently existing project in InstallShield Developer.

2. In the Setup Design view, create a component to hold your .NET Assembly.

3. Add the file(s) belonging to the .NET Assembly to the component’s file list.

4. Right-click on the Assembly node in the Advanced Settings of your component and select

New .NET Assembly.

5. Select the .NET Assembly node and examine the properties. You’ll see that your .DLL or

.EXE has automatically been selected as the Manifest file.

6. Select whether you want the Assembly to be installed to the Global Assembly Cache or

not by setting the File Application property.

Tip: Your Assembly must be properly signed in order to be correctly installed into the
Global Assembly Cache. See the .NET documentation for more information.

7. Set the Name, Version, and PublicKeyToken properties. If your Assembly contains other

properties, you may add them by clicking on the last row of the property list for your
Assembly.

Tip: If your Assembly does not have PublicKeyToken, you’ll want to go into the Direct
Editor and remove the PublicKeyToken value from the MsiAssemblyName table for your
Assembly.

Tip: The InstallShield Developer online help provides sample code to assist you in
extracting the correct property names and values from your .NET Assembly.

Above: A look at the .NET Assembly properties in InstallShield Developer.

Congratulations! You have created a component for a .NET Assembly. Repeat the above
process for each .NET Assembly in your project.

Authoring .NET Installations

 2002 InstallShield Software Corporation. All Rights Reserved. 19

Creating an Installation for a Side-by-Side (Win32) Assembly

A Side-by-Side (Win32) Assembly usually consists of a single Side-by-Side Portable
Executable (.EXE, .DLL, .OCX, etc …) and its accompanying .MANIFEST file. As mentioned
previously, Side-by-Side components only operate Side-by-Side on Windows XP, so you
must take special care to author your installation to work on down-level platforms if you
intend to support them. Side-by-Side components can be configured for isolated application
installation or to the Global Assembly Cache.

Below are general steps necessary for creating a Side-by-Side Assembly component:

1. Create a new project or open your currently existing project in InstallShield Developer.

Tip: Be sure to create an Install Condition in your Product Properties if your Side-by-Side
components do not support down-level platforms.

2. In the Setup Design view, create a component to hold your Side-by-Side assembly.

3. Add the file(s) belonging to the Assembly to the component’s file list.

Tip: If you do not set a key file, InstallShield will automatically set the .MANIFEST file as
the key file in the next step.

4. Right-click on the Assembly node in the Advanced Settings of your component and select

New Win32 Assembly.

5. Select the Win32 Assembly node and examine the properties.

You’ll see that your .MANIFEST file has automatically been selected as the Manifest file.

Tip: If you plan to target down-level platforms, be sure to include all the COM data that is
part of your assembly in the COM Registration section of the component’s Advanced
Settings view. You can also use InstallShield’s extract COM information at build or
component wizard functionality to automatically extract the required COM data for
down-level platforms. (See InstallShield Developer’s online help for more information on
this functionality.) Note that on Windows XP this information will be ignored and the
manifest data will be used instead.

6. Select whether you want the Assembly to be installed to the Global Assembly Cache or

not by setting the Global Cache property.

Tip: Your Assembly must be properly signed in order to be correctly installed into the
Global Assembly Cache. See the Windows Platform SDK for more information.

7. Set the Name, Type, and Version properties. These values must be copied exactly as

they appear in the assembly manifest. If your assembly contains other properties, you
may add them by clicking on the last row of the property list for your assembly.

Authoring .NET Installations

 2002 InstallShield Software Corporation. All Rights Reserved. 20

Above: A look at the Win32 Assembly properties in InstallShield Developer.

Congratulations! You have created a component for a Side-by-Side Assembly. Repeat the
above process for each Side-by-Side Assembly in your project.

About InstallShield’s .NET Solutions
InstallShield Developer is the most comprehensive .NET solution available for managed, non-
managed, and inter-operable code deployment. For more information about InstallShield’s
.NET installation solutions, please visit http://www.installshield.com/products/dotnet.asp.

http://www.installshield.com/products/dotnet.asp

	Abstract
	Table of Contents
	Terminology
	How .NET Changes the World of Software Installation
	The Myth of Self-Installing Code: Why You Can’t Just Use XCOPY
	Installation Requirements
	BUILDING THE INSTALLATION PACKAGE
	INSTALLING THE .NET APPLICATION

	Inter-Operable Code
	Isolated Applications and Side-by-Side Components (Win32)

	New .NET-related Functionality in InstallShield Developer
	Enabling the .NET Functionality in InstallShield Developer
	New Project Types
	New Component Properties
	.NET SCAN AT BUILD
	.NET APPLICATION FILE
	.NET INSTALLER CLASS
	.NET COM INTEROP
	.NET PRECOMPILE ASSEMBLY

	New Assembly Node for Component Advanced Settings
	NEW .NET ASSEMBLY
	NEW WIN32 ASSEMBLY

	New .NET Framework Panel in the Release Wizard
	DOWNLOAD FROM THE WEB
	EXTRACT FROM SETUP.EXE
	COPY FROM SOURCE MEDIA
	DO NOT INCLUDE OR SETUP .NET FRAMEWORK

	New Release Properties
	.NET FRAMEWORK LOCATION
	.NET FRAMEWORK URL
	DISPLAY .NET OPTION DIALOG
	.NET BUILD CONFIGURATION

	Working with Visual Studio .NET and InstallShield Developer
	Adding an InstallShield Project to your Visual Studio .NET Solution
	All About Project Outputs
	Building Your InstallShield Developer Project
	The Task List
	Editing InstallShield Dialogs in the Visual Studio IDE

	Advanced Options
	Creating an Installation for a .NET Assembly (Manual Method)
	Creating an Installation for a Side-by-Side (Win32) Assembly

	About InstallShield’s .NET Solutions

