

Contents

Overview 1

Lesson: Introduction to .NET and the .NET
Framework 2

Lesson: Exploring Visual Studio .NET 11

Lesson: Creating a Windows Application
Project 21

Review 29

Module 1: Getting
Started

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, ActiveX, BizTalk, FrontPage, IntelliSense, JScript,
Microsoft Press, MSDN, PowerPoint, Visual Basic, Visual C++, Visual C#, Visual Studio, Win32,
Windows Media are either registered trademarks or trademarks of Microsoft Corporation in the
United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 1: Getting Started iii

Instructor Notes
This module uses multimedia presentations, an instructor-led demonstration, a
paper-based practice, lecture, and a hands-on practice to introduce students to
the Microsoft® .NET platform and the .NET Framework, and to expose students
to the Microsoft Visual Studio® .NET integrated development environment
(IDE).

There is no lab in this module.

After completing this module, students will be able to:

� Identify components of the .NET platform and the .NET Framework by
their functions.

� Explore the Visual Studio .NET development environment.
� Create a basic application based on Microsoft Windows®.

To teach this module, you need the following materials:

� Microsoft PowerPoint® file 2609A_01.ppt
� Module 1, “Getting Started”
� Multimedia file 2609_Intro_to_dotNET.htm
� Multimedia file 2609_Intro_to_dotNET_Framework.htm

To prepare for this module:

� Read all of the materials for this module.
� Review the multimedia presentations.
� Complete the practices.
� Practice the instructor-led demonstration.

Presentation:
60 Minutes

Lab:
0 Minutes

Required materials

Preparation tasks

iv Module 1: Getting Started

How to Teach This Module
This section contains information that will help you to teach this module.

This module uses multimedia presentations, an instructor-led demonstration, a
paper-based practice, lecture, and a hands-on practice.

Lesson: Introduction to .NET and the .NET Framework
This section describes the instructional methods for teaching certain topics in
this lesson.

• The What Is the .NET Platform topic is an opportunity for you to briefly
introduce the .NET platform before you show the multimedia presentation
that presents a more in-depth introduction to XML and the components of
the .NET platform. Do not present the components in depth; just name them.
Concentrate on presenting the benefits of the .NET platform for developers.

Access and run this multimedia presentation as follows:

� Start the multimedia presentation
1. Open the multimedia file, 2609_Intro_to_dotNET.htm, located in the

Powerpnt folder on the Trainer compact disc.
2. When the multimedia presentation is finished, provide an opportunity for

students to ask questions.

� The What Is the .NET Framework? topic is an opportunity for you to briefly
introduce the .NET Framework before you show the multimedia
presentation, which provides a more in-depth introduction to the
components of the .NET Framework.

� Use the What Is the .NET Framework? slide to help the students visualize
where the Framework class library and the common language runtime fit in
the .NET Framework, and explain that the .NET Framework runs on an
operating system and supports any language that conforms to the common
language specification (CLS).

� Emphasize that developers should choose a development language based on
what they want to achieve with their application and what tasks they must
accomplish.

� The multimedia presentation that follows the How the .NET Framework
Works topic thoroughly explains how the .NET Framework common
language runtime and .NET Framework class library function.

� Use the How the .NET Framework Works slide to introduce Microsoft
Intermediate Language (MSIL), and briefly cover how Visual Studio .NET
translates application source code into MSIL. Emphasize that any
programming language can be used. Also, introduce the runtime just-in-time
(JIT) compilation feature and explain its function. Conclude by explaining
that when a client device on the .NET platform launches the .NET-based
application, it starts running in the machine language of the client system
and can fully integrate and interact with other .NET-based applications and
services regardless of the language in which it was developed.

Multimedia: Introduction
to .NET

 Module 1: Getting Started v

Access and run this multimedia presentation as follows:

� Start the multimedia presentation
1. Open the multimedia file, 2609_Intro_to_dotNET_Framework.htm, located

in the Powerpnt folder on the Trainer compact disc.
2. When the multimedia presentation is finished, provide an opportunity for

students to ask questions.

Lesson: Exploring Visual Studio .NET
This section describes the instructional methods for teaching each topic in this
lesson.

� This lesson begins with a thorough instructor-led demonstration that guides
the students through the most commonly used features of the development
environment. Refer to the Demonstration section of these instructor notes
for procedures for carrying out the demonstration.

� The demonstration covers most of the programming features of Visual
Studio .NET. For the “Programming Features of Visual Studio .NET” topic,
use the slide to emphasize that the development environment provides the
tools to cover the entire scope of development, from design through
deployment.

� During your lecture, emphasize the benefits of the programming tools as
follows:

• Stress that although developers may not need to use forms to program in
.NET, forms do simplify development.

• Emphasize the data access feature and wizards. In Visual Studio .NET,
wizards generate the code so that it is easy to access the code for
customization.

� Structure of Visual Studio Solutions and Projects is an important topic. It is
the only opportunity in the course to cover the structure of solutions and
projects in the development environment and to describe the file extensions
that are used. Emphasize that when a project is created in Visual Studio
.NET, project files are organized in a larger container called a solution, and
that a solution usually contains one or more related projects. Define the term
project, and explain the benefits of using solutions for the developer.

� So that students appreciate the scope of development tasks that are
integrated into the development environment, the Development Process
topic presents the typical development process for creating applications in
Visual Studio .NET. This process is not contained elsewhere in the course,
so it is important to cover the process steps in this lesson.

Multimedia: Introduction
to the .NET Framework

vi Module 1: Getting Started

Lesson: Creating a Windows Application
This section describes the instructional methods for teaching each topic in this
lesson.

� In the instructor-led demonstration, you exposed the students to the
application templates that appear when creating a project and the Windows
Form Designer. This lesson is an opportunity to cover the Windows Form
Designer and the Properties window in more depth, to prepare the students
for the practice that follows.

� Use the application templates that appear in the slide to explain more
thoroughly the available choices and under what circumstances one
application template is more appropriate than another template.

Review
The review questions measure knowledge transfer for topics that are not
reinforced by practices but are module objectives. You can use a discussion
format to answer the questions so that everyone gets the benefit of knowing the
right answers.

Lab
There is no lab in this module.

Demonstrations
This module includes one instructor-led demonstration that guides the students
through commonly used features of the development environment.

Use the procedures that follow for this demonstration.

� Open Visual Studio .NET and use the Start Page
1. Start Visual Studio .NET.

• Explain that the My Profile pane allows developers who are familiar
with previous versions of Microsoft Visual Basic® or Microsoft Visual
C++® to customize the development environment so that it is more like
previous versions. For this demonstration, do not change the default
settings. Mention that this pane appears when Visual Studio .NET is
started for the first time and is located on the Start Page thereafter.

• Cover all the links that appear on the Start Page, such as the What’s New
and Online Community links.

2. Click Online Community. Explain that this pane provides easy access to
newsgroups that are related to .NET development.

3. Click Search Online. Explain that this pane provides easy access to search
the MSDN® Online Library.

4. Click Get Started.

Working in the
Development
Environment

 Module 1: Getting Started vii

� Create a new project
1. On the Projects tab, click New Project.
2. In the New Project dialog box, in the Templates pane, click Windows

Application.
3. In the Name box, type DemoApplication and then click OK.

Explain that a Visual C# Windows Application template provides a
single Windows form. The form is named Form1.cs, and it opens in Design
view.

� Examine Solution Explorer
1. In Solution Explorer, click Form1.cs.

Point out that the Form1.cs file is provided by the Windows Application
template that is used to create the project.

2. Right-click Solution ‘DemoApplication’ (1 project).
Point out that you can add other projects to the solution in addition to being
able to build and debug the solution from this shortcut menu.

3. Right-click DemoApplication under the Solution node.
Point out that the shortcut menu for the project includes options for adding
references and other files to the project.

� Add a new class file to the project
1. Right-click the project DemoApplication, point to Add, and then click Add

Class.
2. In the Add New Item dialog box, in the Name box, type Animals.cs and

then click Open.
Point out the new file under the DemoApplication project. Also point out
how the file is ready to be edited when it is opened.

3. Close the Animals.cs Code Editor window.

� Change the properties of the form
• Drag the handle in the lower right of the form to make the form rectangular.

Be sure to point out how the Size property values are now bold, indicating
that they have changed.

� Add buttons to the form
1. In the Toolbox, click a Button control, and then drag it onto the form.
2. Drag a second button onto the form.

Note

viii Module 1: Getting Started

� Add code to a button
1. On the form, double-click Button1.

Point out that the Code Editor opens and that the tab is named
Form1.cs*.

2. In the Code Editor, between Private Sub Button1_Click and End Sub,
where the cursor should be currently located, type the following code:
MessageBox.Show("Visual C# is awesome!");

� Dynamic Help and Microsoft IntelliSense®
1. On the Help menu, click Dynamic Help.

This step ensures that the Dynamic Help window is visible.
2. Cover the categories of Help available, Contents, Index, and Search.
3. Go to Design view for Form1.cs.
4. Double-click Button2 on the form.
5. In the Code Editor, between Private Sub Button2_Click and End Sub,

where the pointer should be located, type the following code. Make sure you
instruct your students to watch the Dynamic Help window as you type.
MessageBox.Show ("Visual Studio .NET makes it all easy!");

The students should notice that the Dynamic Help window contents change
as you type the line.

6. Delete the line of code that you entered in the preceding step, and then enter
the code again. This time, discuss the IntelliSense as you enter the code.

� Run and test the application

1. On the standard toolbar, click the Start button.
2. In the Form1 dialog box, click Button1.
3. In the message box, click OK.
4. In the Form1 dialog box, click Button2.
5. In the message box, click OK.
6. Close Form1.

� Use the Auto Hide feature
• On the Output window title bar, click the pushpin icon.

Demonstrate how the Output window disappears when the mouse
pointer is moved away from the window and then opens again when the
pointer rests on the Output tab.

Note

Note

 Module 1: Getting Started ix

� Undock a window
1. On the Toolbox title bar, click the pushpin icon.
2. Click the Toolbox title bar and drag the window into the middle of the

screen.

� Dock a window
1. Click the title bar of the Toolbox and drag the window to the left side of the

Visual Studio application window until the pointer is almost at the left edge
of the screen.

2. Click the pushpin icon in the Toolbox title bar to enable the Auto Hide
feature again.

� Save a project
• On the standard toolbar, click the Save All button.

The location of the solution is set when the solution is created.

� Close a solution
• On the File menu, click Close Solution.

The Projects tab of the Start Page will display DemoApplication in
the list of recent projects when you restart Visual Studio .NET.

� Quit Visual Studio
• On the File menu, click Exit.

Note

Note

 Module 1: Getting Started 1

Overview

� Introduction to .NET and the .NET Framework

� Exploring Visual Studio .NET

� Creating a Windows Application Project

Use Visual
Studio .NET

Access
Data

Write
Code

Create
Interface

Debug
and Deploy

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This module presents the concepts that are central to the Microsoft® .NET
Framework and platform and the Microsoft Visual Studio® .NET integrated
development environment (IDE). This module also describes how to work in
the development environment and explains how to use Visual Studio .NET to
create and build applications based on Microsoft .NET.

Although you can use Microsoft Notepad to write applications and compile the
applications separately by using the command line, the development
environment increases your productivity by centralizing all application
development tasks in one tool that provides you with many features, including
Microsoft IntelliSense® and Dynamic Help.

After completing this module, you will be able to:

� Identify components of the .NET platform and the .NET Framework by
their function.

� Explore the Visual Studio development environment.
� Create an application based on Microsoft Windows®.

Introduction

Objectives

2 Module 1: Getting Started

Lesson: Introduction to .NET and the .NET Framework

� What Is the .NET Platform?

� What Is the .NET Framework?

� How the .NET Framework Works

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this lesson, a multimedia presentation introduces the concepts that are
fundamental to your knowledge of the .NET platform and the .NET
Framework.

After completing this lesson, you will be able to:

� Identify the components of the .NET platform and the .NET Framework by
their functions.

� Explain the function of the NET Framework class library and the common
language runtime.

This lesson includes the following topics and activities:

� What Is the .NET Platform?
� Multimedia: Introduction to .NET
� What Is the .NET Framework?
� How the .NET Framework Works
� Multimedia: Introduction to the .NET Framework
� Practice: Defining the Elements of .NET

Introduction

Lesson objectives

Lesson agenda

 Module 1: Getting Started 3

What Is the .NET Platform?

XML Web
Services

Devices

Servers

User
Experiences

Developer
Tools

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The .NET platform provides several core technologies and services that
simplify the development of Web-based applications.

� Developer tools
Microsoft Visual Studio .NET and the .NET Framework supply a complete
solution for developers. Visual Studio .NET provides the development
environment for building applications on the .NET Framework. The
development environment provides tools that simplify the creation,
deployment, and ongoing evolution of secure, scalable, highly available
Web applications and XML Web services.

� Devices
Devices are personal computers, laptops, workstations, phones, handheld
computers, Tablet PCs, game consoles, and others. A smart device can
access XML Web services and enable access to data regardless of the
location, type, and number of devices in use.

� User experiences
.NET experiences are applications that use XML Web services to allow
users to access information across the Internet and from stand-alone
applications in an integrated and efficient way.

Introduction

.NET platform
components

4 Module 1: Getting Started

� Servers
The .NET Enterprise Server family accelerates the integration of systems,
applications, and partners by supporting XML Web services. Support of
XML allows enterprises to build on earlier systems rather than replacing
them. For example, Microsoft Host Integration Server provides simple
access to mainframes and Microsoft BizTalk® Server offers automatic
conversions of existing data formats to and from XML.

For information about the .NET Enterprise Server family, see
http://www.microsoft.com/net/products/servers.asp.

� XML Web services
By using XML Web services, applications can share data and invoke
capabilities from other applications without regard to how those applications
were built, what operating system or platform they run on, and what devices
are used to access them.

The .NET platform provides several benefits for developers, including:

� Faster application development
Developers can create applications by using one of many modern
programming languages, greatly increasing the pool of available developer
resources in addition to allowing developers the freedom to use the
programming language that is most suitable for solving a specific problem.

� Greater reliability

• The .NET platform takes advantage of the power of distributed
computing.

• The common language runtime provides for a managed execution
environment, which eliminates memory leaks, access violations, and
versioning problems.

• The .NET Framework enforces type safety, explicit code sharing, and
application isolation, guaranteeing that no application can affect or
illegally call another.

� Based on Web standards
The use of XML removes barriers to data sharing and software integration.
The Simple Object Access Protocol, an XML-based messaging technology
standardized by the World Wide Web Consortium (W3C), specifies all the
necessary rules for using XML Web services, integrating them into
applications and communicating between them.

• .NET has database access capabilities, allowing developers to bring open
database connectivity (ODBC)-compliant data stores into their
application architecture.

Tip

.NET platform benefits
for developers

 Module 1: Getting Started 5

Multimedia: Introduction to Microsoft.NET

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This multimedia presentation introduces the concepts that are fundamental to
the .NET platform and covers the following topics:

� Traditional client desktop and server communication
� .NET platform use of XML Web services
� .NET platform components

• XML Web services

• .NET experiences

• .NET Devices

• .NET Servers

• .NET Developer Tools

• Visual Studio .NET

• .NET Framework

For your reference, the Introduction to Microsoft .NET.htm multimedia
presentation file is located on your student compact disc in the Media folder.

Introduction

Note

6 Module 1: Getting Started

What Is the .NET Framework?

Operating SystemOperating System

Common Language RuntimeCommon Language Runtime

.NET Framework Class Library.NET Framework Class Library

ADO.NET, Windows forms, ADO.NET, Windows forms,
ASP.NET, Globalization, SecurityASP.NET, Globalization, Security

Programming LanguagesProgramming Languages

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The .NET Framework provides the foundation for building and running .NET-
based applications. The .NET Framework consists of two components, the
common language runtime and the .NET Framework class library, which run on
an operating system. Any language that conforms to the common language
specification (CLS) can run on the common language runtime. In the .NET
Framework, Microsoft provides support for Microsoft Visual Basic®, Microsoft
Visual C++®, Microsoft Visual C#™ (pronounced C sharp), and Microsoft
JScript®. Third parties can provide additional languages.

Currently, the .NET Framework is built to run on the Microsoft Win32®
operating systems.

The common language runtime manages the execution of code and provides
services to simplify the development process. The common language runtime
provides a robust and secure execution environment, support for multiple
languages, and a managed environment where common services, such as
garbage collection and security, are automatically provided.

Introduction

Note

The common language
runtime

 Module 1: Getting Started 7

The .NET Framework class library exposes features of the runtime and provides
a library of classes that are accessed by all Web, Windows-based, and XML
Web service applications.

In addition to base classes, the .NET Framework class library includes:

Element Description

ADO.NET Microsoft ADO.NET is the next generation of Microsoft

ActiveX® Data Objects (ADO) technology. ADO.NET
provides improved support for the disconnected programming
model. It also provides rich XML support.

ASP.NET Microsoft ASP.NET is a programming framework that is built
on the common language runtime. ASP.NET can be used on a
server to build Web applications. ASP.NET Web Forms
provide an easy and powerful way to build dynamic Web user
interfaces (UI).

XML Web services XML Web services are programmable Web components that
can be shared among applications on the Internet or the
intranet. The .NET Framework provides tools and classes for
building, testing, and distributing XML Web services.

User interfaces The .NET Framework supports three types of user interfaces:

• Web Forms, which work by using ASP.NET.

• Windows Forms, which run on Win32 client computers.

• Console applications.

The .NET Framework
class library

8 Module 1: Getting Started

How the .NET Framework Works

.NET Framework.NET Framework

Common Language Common Language
RuntimeRuntime

Class LibraryClass Library

Windows

Web Services

ADO.NET
Data Types

Visual Basic
Applications

Visual C#
Applications

Visual C++
Applications

Programming Services

.NET
Platform

Code

.NET
Platform

Code

Source code
compiles as MSIL

Source code
compiles as MSIL

JIT compiler produces
machine language

JIT compiler produces
machine language

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The common language runtime is the foundation of the .NET Framework.

When you compile an application in Visual Studio .NET, it is translated into the
runtime’s common language, Microsoft Intermediate Language (MSIL). After
the application is compiled, the runtime manages the execution of the
application.

The runtime includes a feature called just-in-time (JIT) compilation that
translates the MSIL code into the machine language of the system on which the
application will run. When a client device on the .NET platform launches the
.NET-based application, it starts running in the machine language of the client
system and can fully integrate and interact with other .NET-based applications
and services regardless of the language in which it was developed.

Introduction

MSIL

JIT compilation

 Module 1: Getting Started 9

Multimedia: Introduction to the .NET Framework

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This multimedia presentation covers key concepts of the .NET Framework,
including:

� .NET Framework components

• .NET Framework class library

• .NET Framework common language runtime
� Objects in the .NET Framework class library

• XML Web services

• User interface classes

• ASP.NET

• ADO.NET
� .NET Framework security
� The common language runtime manages the execution of code and provides

services to simplify the development process. The multimedia presentation
covers the function of the common language runtime in more depth,
explaining how the .NET Framework works with the common language
runtime.

For your reference, the Introduction to the .NET Framework.htm
multimedia presentation file is located on your student compact disc in the
Media folder.

Introduction

Note

10 Module 1: Getting Started

Practice: Defining the Elements of .NET

� In this practice, you will match .NET terms
and definitions

� In this practice, you will match .NET terms
and definitions

Matching PracticeMatching PracticeMatching Practice

10 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Match the following terms with the appropriate definition by drawing a line that
connects the term and definition.

Term Definition

XML Web services A. Component that periodically checks for objects that

are ready to be released from a computer’s memory.

Devices B. CPU-independent set of instructions than can be
efficiently turned into CPU-specific code.

.NET experiences C. Programmable entity that provides a particular
element of functionality, such as application logic and
is accessible to any number of potentially disparate
systems.

.NET Framework D. Component that contains a collection of reusable
types that you can use to develop applications.

.NET Framework class
library

 E. Programming model of the .NET platform for
building, deploying, and running XML Web services
and all types of applications—both desktop and Web-
based.

Common language runtime F. Refers to a hand held computer or mobile telephone
that can use .NET-based applications.

Garbage collection G. Component that manages the execution of code and
provides services to make the development process
easier.

MSIL H. Services, .NET-based applications, and Web sites
that rely on XML Web services to enhance the user
experience.

XML Web services = C, Devices = F, .NET experiences = H, .NET
Framework = E, .NET Framework class library = D, Common language
runtime = G, Garbage collection = A, MSIL = B

 Module 1: Getting Started 11

Lesson: Exploring Visual Studio .NET

� Programming Features of Visual Studio .NET

� Structure of Visual Studio Solutions and Projects

� The Development Process

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This lesson uses an instructor-led demonstration to present some of the most
commonly performed tasks and features of the development environment of
Visual Studio .NET and explains the file structure and development cycle of the
development environment.

After completing this lesson, you will be able to:

� Identify the programming features of Visual Studio .NET by their functions.
� Describe the structure of solutions and projects in the development

environment.
� Determine which programming feature to use to perform a development

task.

This lesson includes the following topics and activity:

� Demonstration: Working in the Development Environment
� Programming Features of Visual Studio .NET
� Structure of Visual Studio Solutions and Projects
� The Development Process

Introduction

Lesson objectives

Lesson agenda

12 Module 1: Getting Started

Demonstration: Working in the Development Environment

� This instructor-led demonstration uses the
example of creating a simple C#
application in Visual Studio .NET to
demonstrate many of the commonly used
features of the development environment

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This instructor-led demonstration uses the example of creating a simple C#
application in Visual Studio .NET to demonstrate many of the commonly used
features of the development environment.

Your instructor will demonstrate the following procedures:

� Open Visual Studio .NET and use the Start Page
1. Start Visual Studio .NET.
2. Click Online Community.
3. Click Search Online.
4. Click Get Started.

� Create a new project
1. On the Projects tab, click New Project.
2. In the New Project dialog box, in the Templates pane, click Windows

Application.
3. In the Name box, type DemoApplication and then click OK.

� Examine Solution Explorer
1. In Solution Explorer, click Form1.cs.
2. Right-click Solution ‘DemoApplication’ (1 project).
3. Right-click DemoApplication under the Solution node.

 Module 1: Getting Started 13

� Add a new class file to the project
1. Right-click the project DemoApplication, point to Add, and then click Add

Class.
2. In the Add New Item window, in the Name box, type Animals.cs and then

click Open.
3. Close the Animals.cs Code Editor window.

� Change the size of the form
• Drag the bottom-right resize handle on the form to make the form

rectangular.

� Add buttons to the form
1. In the Toolbox, click a Button control, and then use a drag-and-drop

operation to place a button onto the form.
2. Place a second button onto the form.

� Add code to a button
1. Double-click Button1 on the form.
2. In the Code Editor, between Private Sub Button1_Click and End Sub,

where the pointer should be located, type the following code:
MessageBox.Show("Visual C# is awesome!");

� Use Dynamic Help and IntelliSense
1. On the Help menu, click Dynamic Help.

This step ensures that the Dynamic Help window is visible.
2. Choose Design view for Form1.cs.
3. Double-click Button2 on the form.
4. In the Code Editor, between Private Sub Button2_Click and End Sub,

where the pointer should be located, type the following code, and observe
the Dynamic Help window as you type:
MessageBox.Show ("Visual Studio .NET makes it all easy!");

Notice that the Dynamic Help contents change as you type the line.

5. Delete the line of code that you entered in the preceding step and then enter
the code again. This time, notice how IntelliSense functions as you type the
code.

14 Module 1: Getting Started

� Run and test the application

1. On the standard toolbar, click the Start button .
2. In the Form1 dialog box, click Button1.
3. In the message box, click OK.
4. In the Form1 dialog box, click Button2.
5. In the message box, click OK.
6. Close Form1.

� Use the Auto Hide feature
• On the Output window title bar, click the pushpin icon.

� Undock a window
1. On the Toolbox title bar, click the pushpin icon.
2. Click the Toolbox title bar and drag the window into the middle of the

screen.

� Dock a window
1. Click the title bar of the Toolbox, and then drag the window to the left side

of the Visual Studio application window until the pointer is almost at the left
edge of the screen.

2. Click the pushpin icon in the Toolbox title bar to enable the Auto Hide
feature again.

� Save a project
• On the standard toolbar, click the Save All button.

The location of the solution is set when the solution is created.

� Close a solution
• On the File menu, click Close Solution.

The Projects tab of the Start Page will display DemoApplication in
the list of recent projects when you restart Visual Studio .NET.

� Quit Visual Studio
• On the File menu, click Exit.

Note

Note

 Module 1: Getting Started 15

Programming Features of Visual Studio .NET

One-stop Application
Development

Visual Studio .NET

DesignDesignDesign DevelopDevelopDevelop DebugDebugDebug DeployDeployDeploy

Data AccessData AccessXML Web
Services Tools

XML Web
Services Tools

Windows
Forms Tools

Windows
Forms Tools

Web Forms
Tools

Web Forms
Tools

Error
Handling

Error
Handling

Multiple
Languages

Multiple
Languages

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Visual Studio .NET is an integrated development environment that helps you to
quickly design, develop, debug, and deploy .NET-based applications. You can
access a common set of tools, designers, and editors from any Visual Studio
.NET programming language. You can create Windows Forms and Web Forms
applications that integrate data and business logic.

Visual Studio .NET includes the programming features described in the
following table.

Feature Description

Windows Forms Designer A graphical design surface enables you to quickly

create the user interface for an application. You can
drag or draw controls onto this surface.

Tools for Windows Forms A Windows Forms Designer, a Windows Application
template, essential project references, and starter code
are provided to help you create standard Windows
Forms applications.

Tools for Web Forms A Web Forms Designer, an ASP.NET Web Application
template, essential project references, and starter code
are provided to help you build Web Forms applications
in which the primary user interface is a browser.

Introduction

Programming features

16 Module 1: Getting Started

(continued)
Feature Description

Tools for XML Web services An ASP.NET Web services template is provided that

constructs a Web application project structure on a
development Web server and a Visual Studio solution
file on your local computer.

Multiple language support All of the .NET platform programming languages,
including Visual C#, are integrated into the
development environment.

Data access Components for creating applications that share data,
visual database tools for accessing data, and a robust set
of ADO.NET classes make it easy to work with all
types of data.

Error handling Debugging tools with cross-language support help you
to find and fix errors in your code, and you can use
structured exception classes to build error handling into
your application.

Wizards Wizards help you to quickly complete common and
perhaps complex tasks. Each page of a wizard helps
you set options, configure settings, and customize
projects.

 Module 1: Getting Started 17

Structure of Visual Studio Solutions and Projects

� Solution

� A container for the projects
and solution items that can
be built into an application

� A solution usually contains
one or more related
projects

� Project

� A container within a solution
to logically manage, build,
and debug the project items
that make up your
application

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Solution Explorer allows you to view files and perform file management tasks
in a solution or a project. A single Visual Basic .NET solution and its projects
appear in a hierarchical list that provides updated information about the status
of your solution, projects, and files.

When you create a project in Visual Studio .NET, project files are organized in
a larger container called a solution. A solution usually contains one or more
related projects.

A project is a container in a solution that you can use to logically manage,
build, and debug the project items that make up your application.

Solutions allow you to concentrate on the project or set of projects that are
required to develop and deploy your application, instead of having to focus on
the details of managing the objects and files that define them.

A solution allows you to:

� Work on multiple projects in the same instance of the development
environment.

� Work on items, settings, and options that apply to a group of projects.
� Manage miscellaneous files that are opened outside the context of a solution

or project.
� Use Solution Explorer, which is a graphical view of your solution, to

organize and manage all of the projects and files that are required to design,
develop, and deploy an application.

Introduction

Terms and definitions

Solution benefits

18 Module 1: Getting Started

Visual Studio .NET supports many file types and their associated file
extensions. The following table describes some common file types that are
specific to .NET-based applications.

Extension Name Description

.sln Visual Studio solution Organizes projects, project items, and

solution items in the solution by giving the
environment references to their locations on
disk.

.suo Solution user options Records all of the options that you may
associate with your solution so that each time
you open the solution, it includes any
customizations that you made.

.cs Visual C# project Represents forms, user controls, classes, and
module files that belong to a single-project
solution. Any files that are not based on a
programming language have their own
extension. For example, a Crystal Report file
has the extension .rpt, and a text file has the
extension .txt.

.csproj Visual C# projects Represents forms, user controls, classes, and
module files that belong to a multiple-project
solution. This extension allows you to
differentiate between files written in Visual
C# and other .NET-compatible languages.

.aspx

.asmx

.asax

Web project items Web project items include Web-specific files
such as .aspx for Web Forms, .asmx for XML
Web services, and .asax for global application
classes. Web projects also use the .cs file
extension for classes and modules.

Solution and project
files

 Module 1: Getting Started 19

The Development Process

Create a design specification

Create the user interface

Set properties for the user interface objects

Write code to add functionality

Test and debug the application

Make an executable file

Create a setup application

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Visual Studio .NET contains everything you need to build your own
applications from start to finish. To create the user interface, you place controls
from the Toolbox on a form, then you customize the controls by setting
properties. After that, you write code to define what your program will do.
Finally, you can save, run, and compile your program so others can use it.

Creating an application in Visual Studio .NET involves seven basic steps:

1. Create a design specification.
The design specification is the blueprint that you use when you create an
application. Before writing any code, take time to design the application you
will create. Although Visual Studio .NET provides tools to help you quickly
develop an application, having a clear understanding of the user needs and
initial feature set will help you be more efficient in your development
efforts. Planning the design will also help you save time by minimizing the
potential for rewriting code because of a poor or nonexistent design
specification.

2. Create the user interface.
To create the interface for your application, first place controls and objects
on a form by drawing or painting them in the Windows Forms Designer.
You can look at other applications, such as Microsoft Excel or Microsoft
Word, for ideas on how to design the interface. For information about
interface design, see Microsoft Windows User Experience published by
Microsoft Press®.

3. Set properties for the user interface objects.
After you add objects to a form, you can set their properties in the Properties
window or in the Code Editor.

Introduction

Creating an application
in Visual Studio .NET

20 Module 1: Getting Started

4. Write code to add functionality.
After you set the initial properties for the form and its objects, you can add
code that runs in response to events. Events occur when various actions are
performed on a control or object. For example, the Click event of a
command button occurs when the user clicks it with the mouse. For most
applications, you must also write code to add business logic and to access
data.

5. Test and debug the application.
Testing and debugging is not a one-time step but something that you do
iteratively throughout the development process. Each time you make a
major change in steps 2, 3, or 4, you must run a debug build of the
application and ensure that it is working as expected. Visual Studio .NET
provides debugging tools for finding and fixing errors in your application.

6. Make an executable file.
After completing the project, create a release build of the project. Creating a
release build compiles the various files that make up the program into a
stand-alone executable file called an assembly.

7. Create a setup application.
To run your application, the user usually needs other files, such as any
dynamic-link library (DLL) files that you used to create your application.
Visual Studio provides the Setup Wizard, which automates the creation of
the setup program and ensures that the user has all of the necessary files.

 Module 1: Getting Started 21

Lesson: Creating a Windows Application Project

� What Is an Application Template?

� How to Use the Windows Forms Designer

� How to Use the Properties Window

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This lesson prepares you for creating your first basic Windows application.

After completing this lesson, you will be able to:

� Start a Visual C# project based on the Windows Application template.
� Explore Windows Forms Designer.
� Explore the Properties window.
� Create a basic Windows application.

This lesson includes the following topics and activity:

� What Is an Application Template?
� How to Use the Windows Forms Designer
� How to Use the Properties Window
� Practice: Creating a Basic Windows Application

Introduction

Lesson objectives

Lesson agenda

22 Module 1: Getting Started

What Is an Application Template?

Provides starter files, project structure,
and environment settings

Provides starter files, project structure,
and environment settings

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Visual Studio .NET offers several application templates to support the
development of different kinds of applications and components. Before you
start a new project, you must choose the type of template that you want to use.

An application template provides starter files and a project structure and
contains the basic project objects and the environment settings you need to
create the type of application that you want to build.

Two of the most commonly used templates are the Windows Application and
the ASP.NET Web Application templates.

� Windows Application template
This template provides the tools, structure, and starter code for a standard
Windows-based application. It automatically adds the essential project
references and files to use as a starting point for your application.

� ASP.NET Web Application template
This template is used to create an ASP.NET Web application on a computer
that has Microsoft Internet Information Services (IIS) version 5.0 or later
installed. The template creates the basic files that the server requires to help
you start designing your application.

Introduction

Definition

Examples of application
templates

 Module 1: Getting Started 23

When you start a new Microsoft Visual C# .NET project, one of the first steps
is to choose an application template.

To create a Windows Application project in Visual Studio .NET:

1. Start Visual Studio .NET.
2. On the Get Started pane, click New Project.

– or –
On the File menu, point to New, and then click Project.

3. In the Project Types pane, click Visual C# Projects. In the Templates pane,
click Windows Application.

4. In the Name field, type a unique project name that indicates the purpose of
the application.

5. In the Location field, type the directory in which you want to save your
project, or click the Browse button to browse to it.

6. Click OK.
The Windows Forms Designer opens and displays Form1 of the project that
you created.

Creating a Windows
Application project

24 Module 1: Getting Started

How to Use the Windows Forms Designer

Controls to create
the user interface

Controls to create
the user interface

Windows Forms
Designer

Windows Forms
Designer

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When you start a project in Visual C# .NET, the Windows Forms Designer
opens in Design view, showing Form1 of the project. You place controls from
the Toolbox on the form to create the user interface for a window used in your
application.

The default form contains the basic elements that most forms use: a title bar, a
control box, and Minimize, Maximize, and Close buttons.

To view a form in Design view:

• In Solution Explorer, double-click the form.
– or –
In Solution Explorer, click the form, and then, on the toolbar, click View
Designer.

You create the user interface objects for your application by adding controls
from the Toolbox to a form. The Toolbox is initially located on the left side of
the development environment. There are several tabs for different categories of
controls, such as Windows Forms and Data.

The Toolbox contains a variety of controls that you can use to add images
labels, buttons, list boxes, scroll bars, menus, and geometric shapes to a user
interface. Each control that you add to a form becomes a programmable user
interface object in your application. These objects are visible to the user when
the application runs and operate like the standard objects in any Windows-
based application.

Introduction

Elements of a form

Viewing a form

Creating the user
interface

Toolbox controls

 Module 1: Getting Started 25

To close and open the Toolbox:

1. To close the Toolbox, in the upper-right corner of the Toolbox, click Close.
2. To open the Toolbox, on the View menu, click Toolbox.
3. To keep the Toolbox open, on the Toolbox title bar, click the pushpin.

To hide and reopen the Toolbox:

1. To hide the Toolbox, on the Toolbox title bar, click the pushpin.
2. To reopen the Toolbox when it is hidden, on the View menu, click Toolbox.

To move the Toolbox:

1. Right-click the Toolbox title bar, and then click Floating.
2. Drag the Toolbox to the desired location.

Closing and opening the
Toolbox

Hiding and reopening
the Toolbox

Moving the Toolbox

26 Module 1: Getting Started

How to Use the Properties Window

Set properties such
as size, caption,
and color

Set properties such
as size, caption,
and color

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The Properties window lists the property settings for the selected form or
control that you can modify while you create or edit the application. A property
describes a characteristic of an object, such as size, caption, or color.

A form is made up of various controls. You can modify the style and function
of forms and controls by changing various attributes of these controls. These
attributes are referred to as properties.

To open the Properties window:

• If the Properties window is not visible, click Properties Window on the
View menu, or press F4.

Some controls, documents, and forms display a large number of properties in
the Properties window. This can make it difficult to locate the property that you
want to set. The Properties window allows you to view the properties for a form
or control in a categorized view instead of an alphabetic view.

To view properties:

1. To view the properties by category, click the Categorized button in the
Properties window.
The properties for the selected form or control will be separated into the
categories that are defined by the control.

2. To view the properties in a category, expand the category node. To hide the
properties in a category, collapse the category node.

3. To view the properties alphabetically, click the Alphabetic button in the
Properties window.

Introduction

Terms and definitions

Opening the Properties
window

Viewing properties

 Module 1: Getting Started 27

Practice: Creating a Basic Windows Application

� In this practice, you will create a basic
Windows application

� In this practice, you will create a basic
Windows application

Hands-on PracticeHandsHands--on Practiceon Practice

10 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will create a basic Windows application.

Tasks Detailed steps

1. Start Visual Studio .NET. � Start a new instance of Visual Studio .NET.

2. Create a new project.
Project Type: Visual C#
Template: Windows Application
Name: SimpleWindowsApplication

a. On the Start Page, click New Project.

b. In the New Project window, under Project Types, click
Visual C# Projects.

c. Under Templates, click Windows Application.

d. In the Name box, type SimpleWindowsApplication and then
click OK.

3. Change the Text property of Form1
to SimpleApplication and then
change the size of the form.
Width = 400 pixels
Height = 200 pixels

a. On the View menu, click Properties Window.

b. In the Properties window, in the Text property box, type
SimpleApplication

c. In the Size property box, type 400,200 and then press ENTER.

4. Add a Label control to Form1.
Locate this label on the form at
position 20,20. Change this label to
be 350 pixels wide and 130 pixels
high.

a. Click the Toolbox.

b. Drag a Label control from the Toolbox to the Form.

c. In the Properties window, in the Location property box type
20,20 and then press ENTER.

d. In the Size box, type 350,130 and then press ENTER.

28 Module 1: Getting Started

Tasks Detailed steps

5. Change the Text property of the label
to Hello World and then change the
font size to 40 points.

a. In the Text property field, type Hello World

b. Expand the Font property, in the Size field type 40 and then
press ENTER.

6. Change the TextAlign property of
the label to MiddleCenter.

� Change the TextAlign property to MiddleCenter.

7. Run the application. � On the standard toolbar, click the Start button.

8. Close the application, save all
changes, and then quit Visual Studio
.NET.

a. Close the SimpleApplication window.

b. On the standard toolbar, click the Save All button.

c. On the File menu, click Exit.

 Module 1: Getting Started 29

Review

� Introduction to .NET and the .NET Framework

� Exploring Visual Studio .NET

� Creating a Windows Application Project

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. Complete the following statement:
When you create a project in Visual Studio .NET, files
are organized in a larger container called a .
When you create a project in Visual Studio .NET, project files are
organized in a larger container called a solution.

2. Draw a line to match the following file extensions with the correct
description.

Extension Description

.cs A. Organizes projects, project items, and solution

items in the solution.

.sln B. Records all of the options that you may associate
with your solution.

.aspx C. Represents forms, user controls, classes, and
module files that belong to a single-project solution.

.suo D. Represents forms, user controls, classes, and
module files that belong to a multiple-project
solution.

.csproj E. Represents a Web project item.

.cs = C, .sln = A, .aspx = E, .suo = B, .csproj = D

30 Module 1: Getting Started

3. Complete the following statement:
An provides starter files and a project
structure and contains the basic project objects and the environment settings
that you need to create the type of application that you want to build.
An application template provides starter files and a project structure
and contains the basic project objects and the environment settings that
you need to create the type of application that you want to build.

4. What must be installed on a client computer to run .NET-based
applications?
The .NET runtime must be installed on a client computer to run .NET-
based applications.

5. What is one advantage of programming by using the .NET Framework
versus using a traditional development environment?
The .NET Framework allows the developer to write code in one
operating system and then to deploy the application on other computers
running other operating systems.

