

Module 6: Building
.NET-based Applications
with C#

Contents

Overview 1

Lesson: Examining the .NET Framework
Class Library 2

Lesson: Overriding Methods from
System.Object 9

Lesson: Formatting Strings and Numbers 15

Lesson: Using Streams and Files 25

Review 37

Lab 6.1: Using Streams 39

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, ActiveX, BizTalk, FrontPage, IntelliSense, JScript,
Microsoft Press, MSDN, PowerPoint, Visual Basic, Visual C++, Visual C#, Visual Studio, Win32,
Windows Media are either registered trademarks or trademarks of Microsoft Corporation in the
United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 6: Building .NET-based Applications with C# iii

Instructor Notes
This module presents the Microsoft® .NET Framework class library, the Object
Browser, and methods that are inherited from the System.Object class. This
module also explains how to format strings and numbers and how to use
streams and files.

After completing this module, students will be able to:

� Identify a namespace in the .NET Framework class library by its function.
� Override and implement the ToString method.
� Format strings, currency, and date values.
� Read and write both binary and text files.

To teach this module, you need the following materials:

� Microsoft PowerPoint® file 2609A_06.ppt
� Module 6, “Building .NET-based Applications with C#”

To prepare for this module:

� Read all of the materials for this module.
� Complete the practices and lab.
� Practice the instructor-led demonstration of the StringOrStringBuilder

application.

Presentation:
120 minutes

Lab:
60 minutes

Required materials

Preparation tasks

iv Module 6: Building .NET-based Applications with C#

How to Teach This Module
This section contains information that will help you to teach this module.

The practices for this module are scheduled to last approximately 10 minutes
each. Encourage the students to try the practices and, if they cannot complete
the steps, to open the solution file in a new instance of Microsoft Visual
Studio® .NET, if a solution is available.

The practices for this module are labeled as hands-on or guided. However, you
can approach the practices in the following three ways depending on your
students’ needs:

� If your students are experienced with the topic and most of them
successfully complete the practice in the allotted time, you do not need to
intervene. This strategy is called a hands-on practice.

� If most of your students complete the practice but you feel they could
benefit from more instruction, after about 8 minutes into a practice, you can
stop them and have them watch and listen as you demonstrate how to solve
the tasks on your instructor computer.

� If your students are at beginner level, you can have them perform the steps
simultaneously while you demonstrate the solution on your instructor
computer. This strategy is called a guided practice.

Lesson: Examining the .NET Framework Class Library
This section describes the instructional methods for teaching certain topics in
this lesson.

� Mention that the class hierarchy shown on the .NET Framework Class
Library slide represents only a selection of some of the most common
classes.

� Encourage students to refer to the Visual Studio.NET documentation for a
complete listing of .NET Framework class library classes and their
members.

� A hands-on practice follows The Object Browser topic. Best practice,
however, is to demonstrate each element of the Object Browser by opening
the Object Browser on your instructor computer prior to the practice.

� Explain the difference between using the Object Browser and the Class
View to examine objects and projects in a solution.

 Module 6: Building .NET-based Applications with C# v

Lesson: Overriding Methods from System.Object
This section describes the instructional methods for teaching certain topics in
this lesson.

� Emphasize the ToString method, because it is the focus of the lesson and
practice. However, also mention the other inherited methods:
GetHashCode, Equals, and GetType.

� The GetHashCode, Equals, and GetType methods are topics in
Appendix B: Advanced Topics, in Course 2609, Introduction to C#
Programming with Microsoft .NET. You may want to point your students to
the appendix, but you are not required to teach that content.

Lesson: Formatting Strings and Numbers
This section describes the instructional methods for teaching certain topics in
this lesson.

� When you refer to the code in the table that appears after the methods of the
StringBuilder class, emphasize that each row in the table builds on the state
of the object s in the preceding row.

� You may want to show students the sample application,
StringOrStringBuilder, located in the
install_folder\Samples\StringOrStringBuilder folder. This basic application
demonstrates the performance implications of using a string variable instead
of an instance of the StringBuilder class.

To demonstrate the StringOrStringBuilder application:

1. Open the application in Visual Studio, and then run the application.
Inform the students that the code at the top of the application window will
run for the number of iterations as entered in the Number of Iterations box
(by default 500).

2. Click Test String.
While the code is running, discuss the code and why it takes so long, which
can be 30 seconds or more, depending on the speed of the computer.

3. After the code runs, click Test StringBuilder.
This time, the code runs very quickly. The code at the top of the application
window changes to show the equivalent code using a StringBuilder object.

4. Click the Compare Results button to calculate the speed improvement
accomplished by using the StringBuilder class.

Lesson: Using Streams and Files
This section describes the instructional methods for teaching certain topics in
this lesson.

A guided practice, Using File System Information, concludes this lesson. Use
your instructor computer to lead the students through the steps that are outlined
in the practice.

vi Module 6: Building .NET-based Applications with C#

Review
You can use a discussion format to answer the questions so that everyone gets
the benefit of knowing the right answers.

The first review question is a paper-based matching question and may not be
suitable for open discussion.

Lab 6.1: Using Streams
Before beginning this lab, students should have completed all of the practices.

The lab focuses on the stream content from the module and the formatting
content from the module.

 Module 6: Building .NET-based Applications with C# 1

Overview

� Examining the .NET Framework Class Library

� Overriding Methods from System.Object

� Formatting Strings and Numbers

� Using Streams and Files

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This module presents the Microsoft® .NET Framework class library, focusing
on the System.Object class and several of its most useful derived classes.

Every programming language requires access to computer features so that it can
accomplish tasks such as read a file, accept input from a user, convert data
types, and so on. In languages such as C and C++, an application often includes
files that contain common functions so that the developer does not have to re-
invent common functions. The .NET Framework class library provides
common functions for all of the languages that .NET supports. This module
examines some of the namespaces that convert data types, read a file, and so on,
for .NET-based applications.

After completing this module, you will be able to:

� Identify a namespace in the .NET Framework class library by its function.
� Override and implement the ToString method.
� Format strings, currency, and date values.
� Read and write both binary and text files.

Introduction

Objectives

2 Module 6: Building .NET-based Applications with C#

Lesson: Examining the .NET Framework Class Library

� .NET Framework Class Library

� The Object Browser

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This lesson describes the hierarchy of namespaces in the .NET Framework class
library and also describes the Object Browser, the Microsoft Visual Studio®
.NET feature that is used to browse the object hierarchy.

After completing this lesson, you will be able to:

� Identify a namespace in the .NET Framework class library by its function.
� Use the Object Browser.

This lesson includes the following topics and activity:

� .NET Framework Class Library
� The Object Browser
� Practice: Using the Object Browser

Lesson objectives

Lesson agenda

 Module 6: Building .NET-based Applications with C# 3

.NET Framework Class Library

� Classes in the .NET
Framework class library are
arranged into a hierarchy of
namespaces

� Most common namespaces

SystemSystem

System.CollectionsSystem.Collections

System.DiagnosticsSystem.Diagnostics

System.IOSystem.IO

System.DataSystem.Data

System.DrawingSystem.Drawing

System.Windows.FormsSystem.Windows.Forms

System.Web.ServicesSystem.Web.Services

System.Web.UISystem.Web.UI

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Classes in the .NET Framework class library are arranged into a hierarchy of
namespaces. For example, all of the classes for data collection management are
in the System.Collections namespace.

For more information about the namespaces and classes in the .NET
Framework class library, see the Visual Studio .NET documentation. Use the
Help index and look for Class Library.

Introduction

Tip

4 Module 6: Building .NET-based Applications with C#

Some of the most common namespaces in the .NET Framework class library
are described in the following table.

Namespace Description

System Contains fundamental classes and base classes that define

commonly-used value and reference data types, events
and event handlers, interfaces, attributes, and processing
exceptions.

System.Data Contains most of the classes that constitute the Microsoft
ADO.NET architecture. The ADO.NET architecture
enables you to build components that manage data from
multiple data sources.

System.Drawing Provides access to the Graphical Device Interface (GDI+)
functions. More advanced functions are provided in the
System.Drawing.Drawing2D, System.Drawing.Text,
and System.Drawing.Imaging namespaces. GDI+ is the
set of classes that you use to produce any sort of drawing,
graph, or image.

System.Windows.Forms Contains classes for creating applications based on
Microsoft Windows®.

System.Web.Services Contains the classes that you use to build and use XML
Web Services.

System.Web.UI Contains classes and interfaces that allow you to create
controls and pages that will appear in your Web
applications as user interface on a Web page.

System.Collections Contains interfaces and classes that define various
collections of objects, such as lists, queues, bitarrays,
hash tables, and dictionaries.

System.Diagnostics Contains classes that allow you to interact with system
processes, event logs, and performance counters. This
namespace also provides classes that allow you to debug
your application and to trace the execution of your code.

System.IO Contains types that allow you to read and write files.

Common .NET
Framework class library
namespaces

 Module 6: Building .NET-based Applications with C# 5

The Object Browser

� Allows you to examine and discover objects and their members

Objects paneObjects pane Members paneMembers pane

Description paneDescription pane

BrowseBrowse CustomizeCustomize ToolbarToolbar

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Use the Visual Studio .NET Object Browser to examine objects such as
namespaces, classes, structures, interfaces, types, and object members such as
properties, methods, events, and constants from projects in your solution,
referenced components within those projects, and external components.

To open the Object Browser by using shortcut keys, press CTRL+ALT+J.

Elements of the Object Browser are described in the following table.

Element Description

Objects pane Namespaces and their members are displayed in the Objects (left)

pane. As you browse objects in this pane, you can display the
inheritance hierarchy that makes up a particular member.

Members pane If an object in the Objects pane includes members such as
properties, methods, events, variables, constants, and enumerated
items, those members are displayed in the Members (right) pane.

Description pane This pane displays detailed information about the currently
selected object or member, such as:

• Name and parent object.

• Syntax, based on the current programming language.

• Links to related objects and members.

• Description, comments, or Help text.

• Attributes.

Not every object or member has all of this information.

You can copy text from the Description pane to the editor
window.

Introduction

Tip

Object Browser
elements

6 Module 6: Building .NET-based Applications with C#

(continued)
Element Description

Browse This element allows you to locate an object within the namespace

hierarchy, or to select either the Active Project browsing scope or
the Selected Components browsing scope. You can determine
what components are shown by choosing and customizing the
browsing scope.

The Active Project browsing scope is the contents of the active
project and its referenced components. The Object Browser
updates as the active project changes.

The Selected Components browsing scope allows you to choose
specific components to browse. These components can include
projects in your solution and their referenced components, and any
other external components, such as .NET Framework components.

Customize button This button is available when you select Selected Components as
your browsing scope. This displays the Selected Components
dialog box where you specify the components that you want to
browse—projects and their referenced components, and external
components.

Toolbar This element allows you to specify and customize the browsing
scope, sort and group the contents of the Object Browser, move
around within it, and search for symbols by using the Find
Symbol dialog box.

You can also use Class View to view projects in your solution. Class
View gives you a hierarchical view of symbols restricted to only the projects in
your solution. You can use Class View to discover and edit the structure of your
code and the relationships between objects in it.

To use Class View, in Visual Studio .NET, on the View menu, click Class
View, or press CTRL+ALT+C.

Note

 Module 6: Building .NET-based Applications with C# 7

Practice: Using the Object Browser

In this practice, you will open Object
Browser, navigate namespaces and
members, and document your results

Hands-on PracticeHandsHands--on Practiceon Practice

10 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will open Object Browser, browse namespaces and members, and document
your results.

Tasks Detailed steps

1. Start Visual Studio .NET, and then
create a new project.
Project Type: Visual C#
Template: Windows Application
Name: ObjectBrowserPractice

a. Start a new instance of Visual Studio .NET.

b. On the Start Page, click New Project.

c. In the New Project dialog box, under Project Types, click
Visual C# Projects.

d. Under Templates, click Windows Application.

e. In the Name box, type ObjectBrowserPractice

f. In the Location box, browse to
install_folder\Practices\Mod06 and then click OK.

2. Display the Object Browser. � On the View menu, point to Other Windows, and then click
Object Browser.

Using the Object Browser, document the Equals method of the Object object. Include the access modifiers
in your documentation.

The Equals method has two forms, public static Equals(object,object) and public virtual
Equals(object).

8 Module 6: Building .NET-based Applications with C#

Tasks Detailed steps

Using the Object Browser, document how many implementations of the method Compare are supported by
the String object.

6

Using the Object Browser, find the Convert class and document the class modifiers that are listed for the
class. In your document, include what effect the modifier has on the class.

The class modifiers for the Convert class are public and sealed. Because the class is sealed, it is not
possible to derive a class from this class.

Using the Object Browser, find the ReadUInt16 method. What does this method do?

Reads a 2-byte unsigned integer from the current stream using little endian encoding and advances the
position of the stream by two bytes.

Using the Object Browser, find the ArrayList class. Can you set the IsReadOnly property to true or false?

No, the Object Browser shows this property as being a GET property as opposed to a SET GET
property. You can read the value (GET) but not update the value (SET).

Using the Object Browser, find the FileStream class. What namespace contains this class?

System.IO.

Using the Object Browser, find the ReadUInt32 method. What does this method do?

Reads a 4-byte unsigned integer from the current stream and advances the position of the stream by
four bytes.

 Module 6: Building .NET-based Applications with C# 9

Lesson: Overriding Methods from System.Object

� Methods Inherited from System.Object

� How to Override and Implement ToString

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Every object in the .NET Framework inherits ToString, GetHashCode,
Equals, and GetType methods from System.Object. When you create a new
object, you can override these built-in functions to improve how these functions
fit your object.

After completing this lesson, you will be able to:

� Name the methods that are inherited from the Object class.
� Override and implement the ToString method.

This lesson includes the following topics and activity:

� Methods Inherited from System.Object
� How to Override and Implement ToString
� Practice: Overriding the ToString Method

Introduction

Lesson objectives

Lesson agenda

10 Module 6: Building .NET-based Applications with C#

Methods Inherited from System.Object

� ToString
Creates and returns a human-readable text string that
describes an instance of the class

� GetHashCode
Returns an integer number as a hashcode for the object

� Equals
Determines whether two objects are equal

� GetType
Returns the type of the current instance

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Every object in the .NET Framework inherits from the System.Object base
class. This class implements a small number of methods that are available on all
objects. These methods are ToString, GetHashCode, Equals, and GetType.
When you create a new class, the new class inherits these methods.

The default implementation of Object class methods may not provide the
function that you need for your new class, requiring you to override the method.
Generally, only the ToString, GetHashCode, and Equals are overridden.

The ToString method creates and returns a human-readable text string that
describes an instance of the class.

The following code demonstrates how to call the ToString method:

object o = new object();
MessageBox.Show(o.ToString());

The GetHashCode method returns an integer number as a hash code for the
object. Other .NET Framework class library classes and .NET-compatible
languages such as C# use this method to quickly locate instances of an object
when the object is contained in a hash table. For example, the C# statement
switch, uses a hash table that is populated with hash entries from the
GetHashCode method to improve the efficiency of the statement.

Introduction

Overriding methods

ToString method

GetHashCode method

 Module 6: Building .NET-based Applications with C# 11

The Equals method determines whether two objects are equal.

The following code demonstrates how to call the Equals method:

object o1 = new object();
object o2 = o1;
MessageBox.Show(o1.Equals(o2).ToString());

The GetType method obtains the type of the current instance.

The following code demonstrates how to call the GetType method:

object o = new object();

MessageBox.Show(o.GetType().FullName);

It is unlikely that you would ever override the GetType method. It is included
here because it is inherited from the System.Object class.

Equals method

GetType method

12 Module 6: Building .NET-based Applications with C#

How to Override and Implement ToString

� Override ToString to provide a more useful string

� Inherited ToString() returns the name of the class

public override string ToString() {
return (this.Size.ToString() + " Car");

}

public override string ToString() {
return (this.Size.ToString() + " Car");

}

public enum CarSize {
Large,
Medium,
Small,

}
public class Car {

public CarType Size;
public int TopSpeed;

}
Car myCar = new Car();
myCar.Size = CarSize.Small;
MessageBox.Show(myCar.ToString());

public enum CarSize {
Large,
Medium,
Small,

}
public class Car {

public CarType Size;
public int TopSpeed;

}
Car myCar = new Car();
myCar.Size = CarSize.Small;
MessageBox.Show(myCar.ToString());

WindowsApplication1.Form1.CarWindowsApplication1.Form1.Car

Small CarSmall Car

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When you create a class, the class inherits the ToString method.

The following code contains a Car class with two public fields. The code under
the class writes to the console the output from the default ToString method that
was inherited from the System.Object object.

public enum CarSize {
 Large,
 Medium,
 Small,
}
public class Car {
 public CarType Size;
 public int TopSpeed;
}
Car myCar = new Car();
myCar.Size = CarSize.Small;
MessageBox.Show(myCar.ToString());

The preceding line of code writes the name of the executing object to the
console as follows:

WindowsApplication1.Form1.Car

Introduction

Example

 Module 6: Building .NET-based Applications with C# 13

However, if you need the ToString method to produce the size of the car
instead of the Car class name, you must override the default ToString method,
as shown in the following code:

public override string ToString() {
 return (this.Size.ToString() + " Car");
}

Using ToString on the Car class now produces the following output:

Small Car

This output is written to the console for the instance that was created in the
preceding example.

For further information about overriding methods from the
System.Object class, see Appendix B, “Advanced Topics,” in Course 2609,
Introduction to C# Programming with Microsoft .NET.

Overriding the ToString
method

Note

14 Module 6: Building .NET-based Applications with C#

Practice: Overriding the ToString Method

� In this practice, you will override the
ToString method

� In this practice, you will override the
ToString method

Hands-on PracticeHandsHands--on Practiceon Practice

10 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will override the ToString method.

The solution code for this practice is located in install_folder\Practices\Mod06\
OverrideToString_Solution\OverrideToString.sln. Start a new instance of Visual Studio .NET
before opening the solution.

Tasks Detailed steps

1. Start Visual Studio .NET, and then
open the solution
install_folder\Practices\Mod06\
OverrideToString\
OverrideToString.sln

a. Start a new instance of Visual Studio .NET.

b. On the Start Page, click Open Project.

c. In the Open Project dialog box, browse to
install_folder\Practices\Mod06\OverrideToString.

d. Click OverrideToString.sln, and then click Open.

2. Run the application, and then click
Create Car Object.

a. On the standard toolbar, click Start.

b. In the Module 6 Practice 2 window, click Create Car Object.

Note: A message displays the output of the myCar.ToString() method. The message box contains
Mod06_Pratice2.Car, which is the class name of the object.

3. Override the ToString method to
return the manufacturer and model
name of the car.

� Refer to the content and code examples earlier in this module
for detailed information about overriding the ToString
method.

4. Run the application and then click
Create Car Object.

a. On the standard toolbar, click Start.

b. In the Module 6 Practice 2 window, click Create Car Object.

Note: Your application message box should now contain the message BIGCARS NICECAR.

 Module 6: Building .NET-based Applications with C# 15

Lesson: Formatting Strings and Numbers

� How to Format Numbers

� How to Format Date and Time

� How to Create Dynamic Strings

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This lesson introduces students to the classes in the .NET Framework class
library that provide numeric and string formatting functions.

After completing this lesson, students will be able to:

� Use the Format method to format numbers and currencies.
� Format currency and date values.

This lesson includes the following topics and activity:

� How to Format Numbers
� How to Format Date and Time
� How to Create Dynamic Strings
� Practice: Formatting Strings

Introduction

Lesson objectives

Lesson agenda

16 Module 6: Building .NET-based Applications with C#

How to Format Numbers

� Some .NET Framework classes use format strings to return
common numeric string types, including these methods:
� String.Format, ToString, Console.WriteLine

� String.Format class example

� The {0:c} is the formatting information, where
"0" is the index of the following objects
":c" dictates that the output use the currency format

� Output is $12,345.67 (on a US English computer)

� Custom numeric format strings apply to any format string that
does not fit the definition of a standard numeric format string
� # character in the number example

string s = String.Format("{0:c}",
12345.67);

string s = String.Format("{0:c}",
12345.67);

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Formatting refers to the various ways that you can display a particular numeric
value. You use formatting to display values in a way that is appropriate for the
type of application or locale.

For example, consider the value 12345.67. You can represent this value in
several ways.

You can represent the value with or without a comma:

12345.67
12,345.67

You can also display it as a negative number in various ways:

-12,345.67
(12345.67)

Finally, you can display the value by using exponential notation:

1.2E+004
1.234567E+004

The .NET Framework uses formatting strings and custom formatting strings to
specify the output format of numeric values such as currency amount, fixed
point digits, date, time, and so on.

A number of classes within the .NET Framework use formatting strings to
specify the output format. Three examples of these methods are String.Format,
ToString, and Console.WriteLine.

A string that consists of a single alphabetic character, optionally followed by a
sequence of digits that form a value between 0 and 99, is considered a standard
format string. All other strings are considered custom format strings.

Introduction

Example of value
display formats

‘Standard numeric
format strings

 Module 6: Building .NET-based Applications with C# 17

You use standard numeric format strings to return common numeric string
types. A standard format string takes the form Axx where A is an alphabetic
character that is called the format specifier, and xx is a sequence of digits that
are called the precision specifier.

The following table describes the standard numeric format strings.

Format
specifier Name Description

C Currency The number is converted to a string that represents a

currency amount. The conversion is controlled by the
currency format information of the NumberFormatInfo
object that is used to format the number.

D Decimal This format is supported for integral types only. The
number is converted to a string of decimal digits (0-9),
prefixed by a minus sign if the number is negative.

E Exponential The number is converted to a string of the form “-
d.ddd…E+ddd” or “-d.ddd…e+ddd”, where each d
indicates a digit (0-9). The string starts with a minus sign
if the number is negative. One digit always precedes the
decimal point.

The system picks fixed point or exponential.

F Fixed Point The number is converted to a string of the form “-
ddd.ddd…” where d is a digit (0-9). The string starts with
a minus sign if the number is negative.

G General The number is converted to the most compact decimal
form, using fixed or scientific notation.

N Number The number is converted to a string of the form “-
d,ddd,ddd.ddd…”, where d is a digit (0-9). The string
starts with a minus sign if the number is negative.
Thousand separators are inserted between each group of
three digits to the left of the decimal point.

R Roundtrip The roundtrip specifier guarantees that a numeric value
that is converted to a string will be parsed back into the
same numeric value.

X Hexadecimal The number is converted to a string of hexadecimal digits.
The case of the format specifier indicates whether to use
uppercase or lowercase characters for the hexadecimal
digits greater than 9.

Use numbers after D, E, and F to control the displayed decimal places. For
complete information about standard numeric format strings, see the Visual
Studio .NET documentation. Use the Help index and look for Standard
Numeric Format Strings.

To maintain consistency between numeric formats and system settings, use
the format codes in the preceding table rather than by creating custom
formatting codes.

Tip

Tip

18 Module 6: Building .NET-based Applications with C#

The following code shows the String.Format method being used to format the
numbers. “{0:c}” is the formatting information, where “0” is the index of the
following objects and “:c” causes the number to be formatted as currency.

string s = String.Format("{0:c}", 12345.67);

If a string is interpreted as a standard numeric format string and contains one of
the standard numeric format specifiers, the numeric value is formatted
accordingly. However, if a string is interpreted as a standard format string but
does not contain one of the standard format specifiers, a FormatException
error occurs.

Any numeric format string that does not fit the definition of a standard numeric
format string is interpreted as a custom numeric format string. Also, if the
standard numeric format specifiers do not provide the type of formatting that
you require, you can use custom format strings to further enhance string output.

The following table shows the characters that you can use to create custom
numeric format strings and their definitions.

Character Description Example Example output

0 Zero placeholder {0:00#####.##} 0012345.67

Digit or space placeholder. {0:#####} 12346

, Display a comma. {0:##,### } 12,346

. Display the decimal point. {0:#####.##} 12345.67

% Display percent {0:#%} 2%

; Statement separator for
positive, negative, and zero.

{0:##;(#);#} The output is
dependent on the
input being either +,
-, or 0 (zero).

Some of the patterns that are produced by these characters are influenced
by the values in the Regional and Language Options settings in Control
Panel.

In some circumstances, you may require a number to be formatted with a
number sign character (#) in the number. In the following example, the #
character is a formatting character that appears at the end of the digit sequence.
Typically, the # character does not appear; instead, it is interpreted as part of the
formatting.

The following code demonstrates how you can use \# to cause what is called
escaping the character. Using \# causes # character to be treated as a normal
character and not part of the formatting information.

If you want to use the # character to create 123456#, use \# as follows:

String.Format("{0:#\\#}",123456)

escape it (escape the \ to escape the #) – or better:

String.Format(@"{0:#\#}",123456)

use the verbatim string character.

String.Format class
example

Custom numeric format
strings

Note

Custom format string
example

 Module 6: Building .NET-based Applications with C# 19

How to Format Date and Time

� DateTimeFormatInfo class
� Used for formatting DateTime objects

� String output is: Wednesday, March 20, 2002 10:30 AM

� Custom formatting string
� String output is: 20 Mar 2002 - 10:30:00

System.DateTime dt = new
System.DateTime(2002,3,20,10,30,0);

MessageBox.Show(dt.ToString("f"));

System.DateTime dt = new
System.DateTime(2002,3,20,10,30,0);

MessageBox.Show(dt.ToString("f"));

System.DateTime dt = new
System.DateTime(2002,3,20,10,30,0);

MessageBox.Show(dt.ToString("dd MMM
yyyy - hh:mm:ss"));

System.DateTime dt = new
System.DateTime(2002,3,20,10,30,0);

MessageBox.Show(dt.ToString("dd MMM
yyyy - hh:mm:ss"));

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Like the numeric data types, the DateTime class implements the IFormattable
interface, which allows you to format the value of an object as a string by using
one of the overloads of the DateTime.ToString method. The standard format
provider class that is used for formatting DateTime objects in the .NET
Framework is DateTimeFormatInfo.

DateTime format string parameters are either standard format strings or custom
format strings.

For complete information about DateTime standard format strings, see the
Visual Studio .NET documentation. Use the Help index and look for Date and
Time Format Strings.

Format strings are interpreted as standard format specifiers if they contain only
one of the single format specifiers that are listed in the following table.

The following table lists only a few of the most common format
specifiers. For complete information about the format specifiers, see the Visual
Studio .NET documentation.

Introduction

Tip

DateTime standard
format strings

Note

20 Module 6: Building .NET-based Applications with C#

Format
specifier Name Description

d Short date

pattern
Displays a pattern defined by the
DateTimeFormatInfo.ShortDatePattern property
associated with the current thread or by a specified
format provider.

D Long date
pattern

Displays a pattern defined by the
DateTimeFormatInfo.LongDatePattern property
associated with the current thread or by a specified
format provider.

t Short time
pattern

Displays a pattern defined by the
DateTimeFormatInfo.ShortTimePattern property
associated with the current thread or by a specified
format provider.

T Long time
pattern

Displays a pattern defined by the
DateTimeFormatInfo.LongTimePattern property
associated with the current thread or by a specified
format provider.

f Full date/time
pattern (short
time)

Displays a combination of the long date and short time
patterns, separated by a space.

F Full date/time
pattern (long
time)

Displays a pattern defined by the
DateTimeFormatInfo.FullDateTimePattern property
associated with the current thread or by a specified
format provider.

The following example uses the DateTimeFormat property.

System.DateTime dt = new System.DateTime(2002,3,20,10,30,0);
MessageBox.Show(dt.ToString("f"));

String output is:

Wednesday, March 20, 2002 10:30 AM

The custom format strings allow DateTime objects to be formatted for
situations where the standard formatting strings are not useful. You can create
your own custom format strings.

For complete information about DateTime custom format strings, see the
Visual Studio .NET documentation. Use the Help index and look for Date and
Time Format Strings.

Example

DateTime custom format
strings

Tip

 Module 6: Building .NET-based Applications with C# 21

The following code example uses a custom formatting string:

System.DateTime dt = new System.DateTime(2002,3,20,10,30,0);
MessageBox.Show(dt.ToString("dd MMM yyyy - hh:mm:ss"));

String output is:

20 Mar 2002 - 10:30:00

The DateTime.ToString method converts the value of an instance to its
equivalent string representation.

The DateTime.Now method returns a DateTime data type that is the current
local date and time of the user’s computer.

Example

DateTime.ToString

DateTime.Now

22 Module 6: Building .NET-based Applications with C#

How to Create Dynamic Strings

� Question: After executing the following code, how can
you preserve computer memory?

� Solution: Use the StringBuilder Class

for (int i=0; i < 1000; i++) {
s = s.Concat(s, i.ToString());

}

for (int i=0; i < 1000; i++) {
s = s.Concat(s, i.ToString());

}

StringBuilder s = new StringBuilder();
for (int i=0; i < 1000; i++) {

s.Append(i);
}

StringBuilder s = new StringBuilder();
for (int i=0; i < 1000; i++) {

s.Append(i);
}

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In what circumstances do you use StringBuilder class with a string type?
Because strings are immutable, after a string is stored in memory, the memory
that is allocated for the string cannot change. If the string is changed, a new
memory location is needed to store the changed string. For example, consider
the following:

int amount = 42;
string s1 = "Your balance is ";
s1 = string.Concat(s1, amount.ToString());

In the preceding code, s1 is created and then changed, causing the old and new
version of s1 to be stored temporarily in memory. The old s1 will be cleared
from memory by the garbage collection process. If your application frequently
manipulates strings, you may be holding a large amount of memory in use,
while waiting for the next periodic garbage collection.

The string.Concat method creates a new string, and concatenates s with the
result of the ToString method and then stores the result in a new memory
location, which is then linked to s. This means that you have two strings when
you only need one. When dealing with multiple strings, for example if you
concatenate strings in a loop, this situation can be both a performance and
memory problem.

The solution is to use the StringBuilder class in the System.Text namespace.

Introduction

Concatenating strings

 Module 6: Building .NET-based Applications with C# 23

If your code must manipulate strings, especially looped operations where large
numbers of strings are left in memory, it is recommended that you use the
StringBuilder class.

StringBuilder acts just like the Collection classes. It allocates an initial value
of sixteen characters and if your string becomes larger than this, it automatically
grows to accommodate the string size. You would rewrite your code as follows:

int amount = 42;
StringBuilder sb = new StringBuilder("Your balance is ");
sb.Append(amount);

The preceding code contains only one string, which is referenced by “sb”. Also
note that the Append method takes an object.

The important methods of the StringBuilder class are listed in the following
table.

Method Function

Append Places an item (object) at the end of the current StringBuilder

object.

AppendFormat Specifies a format for the object (for example, number of decimal
places).

Insert Places the object at a specific index.

Remove Removes characters.

Replace Replaces characters (specific or indexed).

The following code shows the creation of the object s. The table that follows
the code shows the contents of the object s after the code statement is executed.
Each row in the table builds on the state of the object s from the previous row.

StringBuilder s = new StringBuilder("ABCD");

Code Output

s.Append("EF"); ABCDEF
s.AppendFormat("{0:n}",1100); ABCDEF1,100.00
s.Insert(2,"Z"); ABZCDEF1,100.00
s.Remove(7,6); ABZCDEF00
s.Replace("0","X"); ABZCDEFXX

For your reference, the sample StringOrStringBuilder application is
located at install_folder\Samples\StringOrStringBuilder folder on the Student
Materials compact disc. This basic application demonstrates the performance
implications of using a string variable instead of an instance of the
StringBuilder class.

Using the StringBuilder
class

Methods of the
StringBuilder class

Example

Note

24 Module 6: Building .NET-based Applications with C#

Practice: Formatting Strings

� In this practice, you will provide the
correct formatting code that produces the
required output to a series of formatting
questions provided in a C# application

� In this practice, you will provide the
correct formatting code that produces the
required output to a series of formatting
questions provided in a C# application

Hands-on PracticeHandsHands--on Practiceon Practice

10 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will provide the correct formatting code that produces the required output to a
series of formatting questions that are provided in a C# application.

Tasks Detailed steps

Note: In this practice, you are provided with an application. You do not use Visual Studio .NET for this
practice.

1. Start the application
StringFormat.exe in
install_folder\Practices\Mod06
\StringFormat.

a. Click Start, and then click Run.

b. Type install_folder\Practices\Mod06\StringFormat
StringFormat.exe and then click OK.

2. Examine the code samples and
then enter the format code that
completes the code samples.

� Study the code samples. Enter the format code that completes the
code examples.

Note: You will progress to the next question when the correct format code is entered. You can skip a
question at any time by clicking Skip.

 Module 6: Building .NET-based Applications with C# 25

Lesson: Using Streams and Files

� What Is File I/O?

� How to Read and Write Text Files

� How to Read and Write Binary Files

� How to Traverse the Windows File System

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This lesson introduces the System.IO namespace and explains how to read and
write binary and text files, how to browse through the file system, how to read
the contents of a file, and how to write a file.

After completing this lesson, you will be able to:

� Read and write binary files.
� Read and write text files.
� Traverse the Windows file system.

This lesson includes the following topics and activity:

� What Is File I/O?
� How to Read and Write Text Files
� How to Read and Write Binary Files
� How to Traverse the Windows File System
� Practice: Using File System Information

Introduction

Lesson objectives

Lesson agenda

26 Module 6: Building .NET-based Applications with C#

What Is File I/O?

� A file is a collection of data stored on a disk with a name and often
a directory path

� A stream is something on which you can perform read and write
operations

� FileAccess Enumerations

� Read, ReadWrite, Write

� FileShare Enumerations

� Inheritable, None, Read, ReadWrite, Write

� FileMode Enumerations

� Append, Create, CreateNew, Open, OpenOrCreate, Truncate

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The .NET Framework distinguishes between files and streams.

A file is a collection of data stored on a disk with a name and often a directory
path. When you open a file for reading or writing, it becomes a stream. You can
perform read and write operations on a stream.

Streams encompass more than just open disk files, however. Data coming over
a network is a stream, and you can also create a stream in memory. In a console
application, keyboard input and text output are also streams.

Streams involve these fundamental operations:

� Streams can be read from. Reading is the transfer of data from a stream into
a data structure, such as an array of bytes.

� Streams can be written to. Writing is the transfer of data from a data
structure into a stream.

� Streams can support seeking. Seeking is the querying and modifying of the
current position within a stream.

Most file I/O support in the .NET Framework is implemented in the System.IO
namespace. You use the FileStream class in the System.IO namespace to read
from, write to, and close files. FileStream inherits from the abstract class
Stream, and many of its properties and methods are derived from Stream.

To open an existing file or create a new file, you create an object of type File
Stream.

The FileAccess, FileMode, and FileShare enumerations define constants that
are used by some of the FileStream and IsolatedStorageFileStream
constructors and some of the File.Open overloaded methods. These constants
affect the way in which the underlying file is created, opened, and shared.

Introduction

Stream operations

FileStream class

File access, sharing and
type

 Module 6: Building .NET-based Applications with C# 27

Unless you specify a FileAccess enumerator, the file is opened for both reading
and writing. The FileAccess enumerator indicates whether you want to read
from the file, write to it, or both.

Members of the FileAccess enumeration are Read, ReadWrite, and Write.

The following FileStream constructor grants read-only access to an existing
file (FileAccess.Read).

FileStream s2 = new FileStream(name, FileMode.Open,
FileAccess.Read, FileShare.Read);

The FileShare enumerator contains constants for controlling the kind of access
that other FileStream constructors can have to the same file. A typical use of
this enumeration is to define whether two processes can simultaneously read
from the same file. For example, if a file is opened and FileShare.Read is
specified, other users can open the file for reading but not for writing.

Members of the FileShare enumerator are:

� Inheritable, which make the file handle inheritable by child processes.
� None, which declines sharing of the current file.
� Read, which allows subsequent opening of the file for reading.
� ReadWrite, which allows subsequent opening of the file for reading and

writing.
� Write, which allows subsequent opening of the file for writing.

The following FileStream constructor opens an existing file and grants read-
only access to other users (FileShare.Read):

FileStream s2 = new FileStream(name, FileMode.Open,
 FileAccess.Read, FileShare.Read);

This enumerator specifies how the operating system should open a file. A
FileMode parameter is specified in many of the constructors for FileStream,
IsolatedStorageFileStream, and in the Open methods of File and FileInfo to
control how a file is opened.

FileMode parameters control whether a file is overwritten, created, or opened,
or some combination thereof. Use Open to open an existing file. To append to a
file, use Append. To truncate a file or to create it if it does not exist, use
Create.

FileAccess enumeration

FileAccess members

FileShare enumerations

FileShare members

Example

FileMode enumerations

28 Module 6: Building .NET-based Applications with C#

Members of FileMode enumerations are:

� Append, which opens the file if it exists and seeks to the end of the file, or
creates a new file.

� Create, which specifies that the operating system should create a new file.
� CreateNew, which specifies that the operating system should create a new

file.
� Open, which specifies that the operating system should open an existing

file.
� OpenOrCreate, which specifies that the operating system should open a

file if it exists; otherwise, a new file should be created.
� Truncate, which specifies that the operating system should open an existing

file.

The following FileStream constructor opens an existing file (FileMode.Open):

FileStream s2 = new FileStream(name, FileMode.Open,
 FileAccess.Read, FileShare.Read);

FileMode members

Example

 Module 6: Building .NET-based Applications with C# 29

How to Read and Write Text Files

ClassClassClass ExampleExampleExample

StreamReaderStreamReader
StreamReader sr = new StreamReader(@"C:\SETUP.LOG");
textBox1.Text = sr.ReadToEnd();
sr.Close();

StreamReader sr = new StreamReader(@"C:\SETUP.LOG");
textBox1.Text = sr.ReadToEnd();
sr.Close();

StreamWriterStreamWriter
StreamWriter sw = new StreamWriter(@"C:\TEST.LOG",false);
sw.WriteLine("Log Line 1");
sw.WriteLine("Log Line 2");
sr.Close();

StreamWriter sw = new StreamWriter(@"C:\TEST.LOG",false);
sw.WriteLine("Log Line 1");
sw.WriteLine("Log Line 2");
sr.Close();

XmlTextReaderXmlTextReader public class XmlTextReader : XmlReader, IXmlLineInfopublic class XmlTextReader : XmlReader, IXmlLineInfo

XmlTextWriterXmlTextWriter

w.WriteStartElement("root");
w.WriteAttributeString("xmlns", "x", null, "urn:1");
w.WriteStartElement("item","urn:1"); w.WriteEndElement();
w.WriteStartElement("item","urn:1"); w.WriteEndElement();
w.WriteEndElement();

w.WriteStartElement("root");
w.WriteAttributeString("xmlns", "x", null, "urn:1");
w.WriteStartElement("item","urn:1"); w.WriteEndElement();
w.WriteStartElement("item","urn:1"); w.WriteEndElement();
w.WriteEndElement();

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Use the Stream class to read and write data. The Stream class is the abstract
class that supports reading and writing bytes. If you know that your file
contains only text, you may use the StreamReader or StreamWriter classes.
If you know that your file contains data from different inputs, such as a stream
object, a TextReader class object, and a URL identifying a local file location,
or Web site, you may use the XMLTextReader and XMLTextWriter classes.

The StreamReader class implements a TextReader that reads lines of
information from a standard text file such as a log file. A TextReader
represents a reader that can read a sequential series of characters.

The following code uses the StreamReader class:

StreamReader sr = new StreamReader(@"C:\SETUP.LOG");
textBox1.Text = sr.ReadToEnd();

The following line places entire file into the textbox:

sr.Close();

The StreamWriter class inherits from the abstract class TextWriter for
writing characters to a stream in a particular encoding. The TextWriter class
represents a writer that can write a sequential series of characters.

The following code uses the StreamWriter class:

StreamWriter sw = new StreamWriter(@"C:\TEST.LOG",false);
sw.WriteLine("Log Line 1");
sw.WriteLine("Log Line 2");
sr.Close();

Introduction

StreamReader class

StreamWriter class

30 Module 6: Building .NET-based Applications with C#

The XmlTextReader class inherits from the class XmlReader, and provides a
fast, performant parser. It enforces the rules that XML must be well-formed. It
is neither a validating nor a non-validating parser because it does not have a
document type definition (DTD) or schema information. It can read text in
blocks or read characters from a stream.

The XmlTextReader provides the following functionality:

� Enforces the rules that XML must be well-formed.
� Checks that the DTD is well-formed. However, XmlTextReader does not

use the DTD for validation, expanding entity references, or adding default
attributes.

� Validating is not performed against DTDs or schemas.
� Checks that any DOCTYPE nodes are well-formed.
� Checks that the entities are well-formed. For node types of

EntityReference, a single, empty EntityReference node is returned. An
empty EntityReference node is one in which its Value property is
string.Empty. This is because you have no DTD or schema with which to
expand the entity reference. The XmlTextReader does ensure that the
whole DTD is well-formed, including the EntityReference nodes.

� Provides a performant XML parser, because the XmlTextReader does not
have the overhead involved with validation checking.

The XmlTextReader can read data from different inputs, such as a stream
object, a TextReader Class object, and a URL identifying a local file location
or Web site.

The following code defines the XmlTextReader class:

public class XmlTextReader : XmlReader, IXmlLineInfo

XmlTextReader class

 Module 6: Building .NET-based Applications with C# 31

The XmlTextWriter class represents a writer that provides a fast, non-cached,
forward-only way of generating streams or files containing XML data that
conforms to the World Wide Web Consortium (W3C) XML 1.0 and the
namespaces in XML recommendations.

XmlTextWriter maintains a namespace stack corresponding to all of the
namespaces defined in the current element stack. Using XmlTextWriter you
can declare namespaces manually.

XmlTextWriter promotes the namespace declaration to the root element to
avoid having it duplicated on the two child elements. The following code
generates the XML output:

w.WriteStartElement("root");
w.WriteAttributeString("xmlns", "x", null, "urn:1");
w.WriteStartElement("item","urn:1"); w.WriteEndElement();
w.WriteStartElement("item","urn:1"); w.WriteEndElement();
w.WriteEndElement();

The child elements pick up the prefix from the namespace declaration. Given
the preceding code, the code output is:

<root xmlns:x="urn:1">
 <x:item/>
 <x:item/>
</x:root>

XmlTextWriter also allows you to override the current namespace
declaration.

XmlTextWriter class

Tip

32 Module 6: Building .NET-based Applications with C#

How to Read and Write Binary Files

� BinaryReader

� Reads primitive data types as binary values in a specific encoding

� BinaryWriter

� Writes primitive types in binary to a stream and supports writing
strings in a specific encoding

FileStream fs = new
FileStream(@"C:\TEST2.DAT",FileMode.CreateNew);

BinaryWriter w = new BinaryWriter(fs);
w.Write((byte)65);
w.Write((byte)66);
w.Close();
fs.Close();

FileStream fs = new
FileStream(@"C:\TEST2.DAT",FileMode.CreateNew);

BinaryWriter w = new BinaryWriter(fs);
w.Write((byte)65);
w.Write((byte)66);
w.Close();
fs.Close();

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You use the BinaryReader and BinaryWriter classes for writing and reading
binary data. Therefore, you use a binary rather than a text file stream when you
must handle binary streams of information rather than textual information.

The BinaryReader class reads primitive data types as binary values in a
specific encoding.

The BinaryWriter class writes primitive types in binary to a stream and
supports writing strings in a specific encoding.

The following code example demonstrates writing two bytes of data to a file:

FileStream fs = new
 FileStream(@"C:\TEST2.DAT",FileMode.CreateNew);
BinaryWriter w = new BinaryWriter(fs);
w.Write((byte)65);
w.Write((byte)66);
w.Close();
fs.Close();

Introduction

BinaryReader class

BinaryWriter class

Example

 Module 6: Building .NET-based Applications with C# 33

How to Traverse the Windows File System

� Using the DirectoryInfo and FileInfo classes

� Using recursion
� Technique where a function calls itself, repeatedly, passing in a

different parameter

DirectoryInfo d = new DirectoryInfo("C:\\");
DirectoryInfo[] subd = d.GetDirectories();
foreach (DirectoryInfo dd in subd) {

if (dd.Attributes==FileAttributes.Directory) {
FileInfo[] f = dd.GetFiles();
foreach (FileInfo fi in f) {

listBox1.Items.Add(fi.ToString());
}

}
}

DirectoryInfo d = new DirectoryInfo("C:\\");
DirectoryInfo[] subd = d.GetDirectories();
foreach (DirectoryInfo dd in subd) {

if (dd.Attributes==FileAttributes.Directory) {
FileInfo[] f = dd.GetFiles();
foreach (FileInfo fi in f) {

listBox1.Items.Add(fi.ToString());
}

}
}

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The ability to look over files and subdirectories for a specific directory is
essential for many programming tasks. You can work with files and directories
by using the DirectoryInfo and FileInfo classes in combination, which is a
very efficient way to obtain all of the information that you need about files and
subdirectories in a specific directory.

The DirectoryInfo class exposes instance methods for creating, moving, and
enumerating through directories and subdirectories. This class includes the
GetFiles method which returns a file list from the current directory.

The objects inside the directory can be files or directories. You can iterate
through the directory twice, looking for files first, and directories next. An
alternate solution is to use the FileSystemInfo object, which can represent a
FileInfo or a DirectoryInfo object. Using the FileSystemInfo object allows
you to iterate through the collection only once.

DirectoryInfo d = new DirectoryInfo("C:\\");
DirectoryInfo[] subd = d.GetDirectories();
foreach (DirectoryInfo dd in subd) {
 if (dd.Attributes==FileAttributes.Directory) {
 FileInfo[] f = dd.GetFiles();
 foreach (FileInfo fi in f) {
 listBox1.Items.Add(fi.ToString());
 }
 }
}

Introduction

DirectoryInfo class

FileInfo class

Example

34 Module 6: Building .NET-based Applications with C#

Recursion is a programming technique where a function calls itself, repeatedly,
passing in a different parameter. For example, to traverse the Windows file
system, you can pass the root of a particular drive, such as C:\, into a function.
The function then obtains the subdirectories of this directory and calls itself for
each subdirectory, and so on.

Recursion can generate a StackOverflowException error.

Using recursion

Caution

 Module 6: Building .NET-based Applications with C# 35

Practice: Using File System Information

� In this practice, you will create a
Windows-based application that
calculates the size of all the files that are
contained in a folder

� In this practice, you will create a
Windows-based application that
calculates the size of all the files that are
contained in a folder

Guided PracticeGuided PracticeGuided Practice

10 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will create a Windows-based application that calculates the size of all the files
that are contained in a folder.

The solution for this practice is located in install_folder\Practices\Mod06\Streams_Solution. Start a
new instance of Visual Studio .NET before opening the solution.

Tasks Detailed steps

1. Start Visual Studio .NET. � Start a new instance of Visual Studio .NET.

2. Open install_folder\Practices
\Mod06\Streams\Streams.sln.

a. On the Start Page, click Open Project.

b. In the Open Project dialog box, browse to install_folder\Practices
\Mod06\Streams, click Streams.sln, and then click Open.

3. Open the Code Editor for
Form1.

� In Solution Explorer, under Solution ‘Strings’, under project
Strings, right-click Form1.cs, and then click View Code.

36 Module 6: Building .NET-based Applications with C#

Tasks Detailed steps

4. To the button1_Click
procedure, add code that
calculates the size of the files in
the directory specified in
textBox1.

a. Scroll down through the code displayed in the window and locate
the button1_Click procedure.

b. Add code into this procedure that calculates the total size of the files
contained in the directory specified by textBox1. Use the
MessageBox class to display your result to the user.

5. Run the application and test it
with the
C:\Program Files\Msdntrain
directory.

a. On the standard toolbar, click Start.

b. In the Streams Practice window, in the Directory text box type
C:\Program Files\Msdntrain and then click Calculate Size.
The total size of the files contained in the directory should be
displayed in a message box.

OPTIONAL: If you have time, try using recursion in your application to calculate the size of all the files
contained in the folder specified and all subfolders of that folder.
You might want to examine the solution install_folder\Practices\Mod06\Streams_Recursive\Streams.sln.
Notice the use of the ref keyword in the calculate_size procedure and the calls to this procedure.

 Module 6: Building .NET-based Applications with C# 37

Review

� Examining the .NET Framework Class Library

� Overriding Methods from System.Object

� Formatting Strings and Numbers

� Using Streams and Files

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. The following table lists namespace contents and namespaces. Draw a line
to match the namespace to its contents.

Namespace Namespace contents

System A. Types that allow you to read and write

files.

System.Collections B. Most of the classes that constitute the
ADO.NET architecture.

System.Data C. Fundamental classes and base classes
that define commonly-used value and
reference data types, events and event
handlers, interfaces, attributes, and
processing exceptions.

System.Diagnostics D. Interfaces and classes that define various
collections of objects.

System.IO E. Classes that allow you to interact with
system processes, event logs, and
performance counters.

System = C, System.Collections = D, System.Data = B,
System.Diagnostics = E, System.IO = A

2. What methods are inherited from the System.Object base class when you
create a new class?
The ToString, GetHashCode, Equals and GetType methods are
inherited from the System.Object class.

38 Module 6: Building .NET-based Applications with C#

3. The Append, AppendFormat, Insert, and Replace methods belong to
which class?
The StringBuilder class.

4. What type of object do you create to open an existing file or to create a new
file?
Create a FileStream object to create a new file, or to open an existing
file.

5. Which two classes are used for writing and reading binary data?
The BinaryReader and BinaryWriter classes are used for writing and
reading binary data.

 Module 6: Building .NET-based Applications with C# 39

Lab 6.1: Using Streams

� Exercise 1: Converting a Binary File to a
Text File

1 hour

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will be able to:

� Read data from a binary file.
� Write text to a file.
� Format strings.

Before working on this lab, you must have:

� Format strings, currency, and date values.
� Read and write both binary and text files.

In this, lab you will build a C# application that will take the data contained in a
binary file and write it as a human-readable text file. The data contained in the
file represents transactions from a transaction clearing company. The data
consists of the account number that the money was debited from, the amount of
money, and the date the transaction occurred. The data is encoded in the file as
shown in the following table:

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10
Account
(1-999)

DayOfYear
(1-365)

Year
(1900-3000)

Amount
Implied 2 decimal places
(for example, 100.25 held as
10025)

Your application will take the data contained in install_folder\Labs\
Lab06_1\data.bin and convert it into a file named install_folder\Labs
\Lab06_1\output.txt.

Objectives

Prerequisites

Scenario

40 Module 6: Building .NET-based Applications with C#

Your output text file should contain the columns shown in the following table:

Column Size

Date in Long date format 44 characters

Account 3 characters

Amount shown as a currency 8 characters

Write your conversion code to calculate the total of the Amount column. Your
total should equal $223,652.00.

Estimated time to
complete this lab:
60 minutes

 Module 6: Building .NET-based Applications with C# 41

Exercise 1
Converting a Binary File to a Text File
In this exercise, you will write an application that converts a binary file to a text file.

Tasks Detailed steps

1. Start Visual Studio .NET, and then
create a new project.
Project Type: Visual C#
Template: Windows Application
Location:
install_folder\Labfiles\Lab06_1
Name: FileConversion

a. Start a new instance of Visual Studio .NET.

b. On the Start Page, click New Project.

c. In the New Project dialog box, under Project Types, click
Visual C# Projects.

d. Under Templates, click Windows Application.

e. In the Location box, type install_folder\Labfiles\Lab06_1

f. In the Name box, type FileConversion and then click OK.

2. Write the code to convert the file. � Write the necessary code to convert the file as described in the
lab scenario.

Application Hints. You may wish to work through the following step guidelines to create this application.

a. Add a button to the form.

b. Add the code to for this application into the button_Click event.

c. Create a FileStream object to open the binary file.

d. Use the opened FileStream object to create a BinaryReader object. The BinaryReader object provides you
with binary methods to manipulate the binary file.

e. Create a StreamWriter object to output the text file.

f. Add definitions for variables that your code will use.

g. Create a while loop structure to loop through the binary file. The loop condition should be:

(binaryReaderObj.Length > binaryReader.Position)

h. Within the loop, use the ReadUInt16 method to read the 2 byte data and the ReadUInt32 method to read the
4 byte data.

i. Calculate the running total.

j. The binary file holds the date as a year and the number of days from the beginning of the year. To use this
data to set a variable of type DateTime:

System.DateTime dt = new System.DateTime(yearfrombinaryfile,1,1);

k. Use the AddDays method of the DateTime class to correct for the days in the year.

dt = dt.AddDays(dayofyearfrombinaryfile);

l. Notice above that the AddDays method returns a new DateTime object.

m. Format the data to be written into the text file. Use the WriteLine method to output the line of text to the text
file.

n. When the loop is complete, close all stream-based objects.

3. Run the application and create the
output file.

� Run your application.

THIS PAGE INTENTIONALLY LEFT BLANK

