

Contents

Overview 1

Lesson: ADO.NET Architecture 2

Lesson: Creating an Application That Uses
ADO.NET to Access Data 13

Lesson: Changing Database Records 35

Review 50

Lab 7.1: Creating a Data Access
Application with ADO.NET 52

Lab 7.2 (optional): Creating a Windows
Application That Uses ADO.NET 60

Module 7: Using
ADO.NET to Access
Data

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, ActiveX, BizTalk, FrontPage, IntelliSense, JScript,
Microsoft Press, MSDN, PowerPoint, Visual Basic, Visual C++, Visual C#, Visual Studio, Win32,
Windows Media are either registered trademarks or trademarks of Microsoft Corporation in the
United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 7: Using ADO.NET to Access Data iii

Instructor Notes
This module explains how to use Microsoft® ADO.NET and the objects in the
System.Data namespace to access data in a database. It describes how to create
an application based on Microsoft Windows® that uses ADO.NET. This
module also describes how to use that application to connect to a database,
create a query, and use a DataSet object to manage the data, bind data to
controls, and insert, update, and delete records in a database.

This module may contain many new concepts for students who are unfamiliar
with ActiveX® Data Objects (ADO) or ADO.NET. In teaching this module, it is
sufficient to provide a cursory overview of ADO.NET and its features and to
refer the students to their workbooks for later study.

Most practices in this module are labeled as “Guided,” so that you may,
at your discretion, step through the practices with the students after giving them
a few minutes to start. Each practice also offers optional tasks for more
advanced learners.

Two advanced topics about ADO.NET, How to Change or Filter the View of
the Data in the DataGrid, and How to Use XML with a DataSet, are available
for your students’ reference in Appendix B, “Advanced Topics”.

After completing this module, students will be able to:

� Describe ADO.NET.
� Create a Windows-based application that uses ADO.NET.
� Connect to a database.
� Create a query.
� Use a DataSet object to manage data.
� Bind a DataGrid object to a data source.
� Insert, update, and delete a database record.

To teach this module, you need the following materials:

� Microsoft PowerPoint® file 2609A_07.ppt.
� Module 7, “Using ADO.NET to Access Data”.
� Multimedia demonstration file 2609A_ADO_NetAcc.swf.
� Multimedia practice file 2609A_ADO.Arch.swf.

To prepare for this module:

� Read all of the materials for this module.
� Review the multimedia demonstration, Using ADO.NET to Access Data,

and ADO.NET Architecture.
� Complete the practices and labs.
� Practice the instructor-led demonstration, Using the Data Wizards in

Microsoft Visual Studio® .NET.

Presentation:
120 minutes

Lab:
60 minutes

Note

Required materials

Preparation tasks

iv Module 7: Using ADO.NET to Access Data

How to Teach This Module
This section contains information that will help you to teach this module.

Lesson: ADO.NET Architecture
This section describes the instructional methods for teaching each topic in this
lesson.

The topics in this lesson cover ADO.NET architecture, connected and
disconnected environments, the ADO.NET object model, the DataSet class,
and Microsoft .NET data providers. This section includes one animation, Using
ADO.NET to Access Data, and one animated matching practice, ADO.NET
Architecture.

Your students will find emphasis on the following points helpful:

� The ADO.NET object model consists of two major parts: the DataSet
classes and the .NET data provider classes.

� The DataSet class has a Tables property, which gets a collection of
DataTable objects in the DataSet, and a Relations property, which gets a
collection of the DataRelation objects in the DataSet.

� Before describing the process of accessing data through using a DataSet,
show the following animation.

 Module 7: Using ADO.NET to Access Data v

This animation demonstrates how to access data by using ADO.NET. To run
this animation, click the icon in the center of the slide for this topic.

� To view the animation, click Start

Action Description

Start animation. There are two ways to access data from a database by using

ADO.NET: by using a DataSet object or by using a
DataReader object. This animation demonstrates how these
two methods work and highlights their differences.

Click Start.

Click DataSet. Using the DataSet object is a disconnected way to access data
from a database.

In this method, when a user requests data from a database, the
DataAdapter object is used to create a DataSet, which is a
collection of data tables from the database that also retains the
relationships between these tables. Notice that, after a DataSet
is populated, it is disconnected from the database.

To display the data from the DataSet, you bind the DataSet
directly to a list-bound control. You can use any of the three
list-bound controls, DataGrid, Repeater, or DataList, to
display data.

The data in the list-bound control is then displayed on the
client.

Click
DataReader.

Using the DataReader object is similar to the ADO way of
accessing data by using recordsets.

In this method, when a user requests data from a database, the
Command object retrieves the data into a DataReader. A
DataReader is a read-only/forward-only view of the data. A
DataReader works similarly to a Recordset in ADO, allowing
you to simply loop through the records. Like the ADO
Recordset, the DataReader is connected to the database. You
must explicitly close the connection when you are finished
reading data.

This section ends with a matching practice. In this practice, the students will
use an interactive animation to manipulate various components of ADO.NET
and place them in their correct order. To run this animation, click the icon in the
center of the slide for this practice.

Tasks Detailed steps

Start the animation. To run this animation, click the icon in the center of the slide

for this topic.

Drag and drop each
component to the
appropriate location.

Drag and drop the Microsoft SQL Server™ 2000, SQL Data
Adapter, DataSet DataGrid, and Windows Form to their
appropriate squares.

Drag and drop Select and Connect Commands, Data Source,
and Fill to their appropriate callouts.

Press Reveal. Press Reveal to see the correct order that these components
should have been placed.

Press Reset. Press Reset to restart the practice.

Multimedia: Using
ADO.NET to Access
Data

Practice: ADO.NET
Architecture

vi Module 7: Using ADO.NET to Access Data

Lesson: Creating an Application That Uses ADO.NET to Access
Data

This lesson describes the objects that are used to connect to a database by using
a DataSet, and includes examples of how to use these objects to create a
DataSet object and bind it to a DataGrid control.

This lesson includes as instructor-led demonstration, Using the Data Wizards in
Visual Studio .NET. Emphasize the following points:

� Connecting to a data source
Tell the students that all of the examples in this module use SqlConnection
objects rather than OleDbConnection objects. Direct the students to the
Microsoft .NET Framework software development kit (SDK)
documentation for more information.

� Accessing data with DataSet objects
ADO.NET provides two ways to access data, the DataSet and the
DataReader objects. This section focuses on accessing data by using the
DataSet.
The DataSet represents a new concept, so spend additional time on this
section. The demonstrations actually show every aspect of data access with
ADO.NET. Go through the demonstrations carefully, and make sure that the
students understand the details.

The following instructor-led demonstrations introduce the students to the
wizards that are provided in ADO.NET.

� How to Use the Data Adapter Configuration Wizard
1. Connect to Northwind database by using the SqlDataAdapter object.
2. Specify connection and SQL command information using the Query

Builder.
3. Select a table and generate the dataset.

� How to Use Server Explorer
1. Access Server Explorer.
2. Add and remove connections using Server Explorer.
3. Drag items from Server Explorer and drop them onto the Windows Forms

Designer.
4. View database elements using Server Explorer.

� How to Use the Data Form Wizard
1. Start the Data Form Wizard.
2. Add a Form to a Project by using the Data Form Wizard.
3. Choose a database connection, choose tables and display them on the form.
The Data Form Wizard creates a new Form. You can easily display this form by
changing the parameter to Application.Run in the Main method, so that it
references the form created by the Wizard

Instructor-led
demonstrations

 Module 7: Using ADO.NET to Access Data vii

Lesson: Changing Database Records
This section focuses on creating, updating, and deleting database records. As
with other lessons in this module, a brief overview of the concepts and
procedures will be sufficient.

Review
The review questions are based mostly on conceptual understanding and
procedures that were covered thoroughly in the module. You can use a
discussion format to answer the questions so that everyone gets the benefit of
knowing the right answers.

Lab 7.1: Creating a Data Access Application with ADO.NET
Before beginning this lab, students should have completed all of the practices
and answered the review questions. Students must be able to perform most of
the tasks that they learned in the lessons and the practices. The lab is simple but
comprehensive. It leads students through the entire process of using ADO.NET
to access data by creating a data access application, as described in the lessons
of this module.

Lab 7.2 (optional): Creating a Windows Application that uses
ADO.NET

This optional lab is also provided. This lab is for students who are interested in
working with more advanced material. Students may choose either one of the
labs to complete in class and then complete the other one at a later time.

 Module 7: Using ADO.NET to Access Data 1

Overview

� ADO.NET Architecture

� Creating an Application That Uses ADO.NET to Access
Data

� Changing Database Records

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This module explains how to use Microsoft® ADO.NET and the objects in the
System.Data namespace to access data in a database. It describes how to create
an application based on Microsoft Windows® that uses ADO.NET. This module
also describes how to use that application to connect to a database, create a
query, and use a DataSet object to manage the data, bind data to controls, and
insert, update, and delete records in a database.

After completing this module, you will be able to:

� Describe ADO.NET.
� Create a Windows-based application that uses ADO.NET.
� Connect to a database.
� Create a query.
� Use a DataSet object to manage data.
� Bind a DataGrid object to a data source.
� Insert, update, and delete a database record.

Introduction

Objectives

2 Module 7: Using ADO.NET to Access Data

Lesson: ADO.NET Architecture

� What Is ADO.NET?

� What Is a Connected Environment?

� What Is a Disconnected Environment?

� What Is the ADO.NET Object Model?

� What Is the DataSet Class?

� What Is the .NET Data Provider?

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This lesson describes ADO.NET, the basic structure of a database, ADO.NET
DataSet classes, and .NET data providers.

After completing this lesson, you will be able to:

� Explain ADO.NET.
� Explain the ADO.NET object model.

This lesson includes the following topics and activities:

� What Is ADO.NET?
� What Is a Connected Environment?
� What Is a Disconnected Environment?
� What Is the ADO.NET Object Model?
� Multimedia: Using ADO.NET to Access Data
� What Is the DataSet Class?
� What Is the .NET Data Provider?
� Practice: ADO.NET Architecture

Introduction

Lesson objectives

Lesson agenda

 Module 7: Using ADO.NET to Access Data 3

What Is ADO.NET?

ADO.NET is a data access technology. It provides:

� A set of classes, interfaces, structures, and
enumerations that manage data access from within the
.NET Framework

� An evolutionary, more flexible successor to ADO

� A system designed for disconnected environments

� A programming model with advanced XML support

*****************************ILLEGAL FOR NON-TRAINER USE******************************

With the evolution of computers, data access and processing models evolved
from highly localized to highly distributed. As the number of users and the
amount of data increased, data access models evolved from a single user on a
single application to multiple users on the Internet.

An increasing number of applications use XML to encode data to be passed
over network connections. ADO.NET provides a programming model that
incorporates features of both XML and ActiveX® Data Objects (ADO) within
the Microsoft .NET Framework to accommodate distributed data access and
processing that uses Windows-based, Web, or console (command-line)
applications.

ADO.NET is a data access technology. It provides:

� A set of classes, interfaces, structures, and enumerations that manage data
access from within the .NET Framework.

� A system designed for disconnected environments.
� A programming model with advanced XML support.

ADO.NET provides the following advantages over previous data access
models:

� Scalability. The ADO.NET programming model encourages programmers
to conserve system resources for applications that run on the Web. Because
data is held locally in in-memory caches, there is no need to maintain active
database connections for extended periods.

� Programmability. The ADO.NET programming model uses strongly typed
data. Strongly typed data makes code more concise and easier to write
because Microsoft Visual Studio® .NET provides statement completion.

� Interoperability. ADO.NET makes extensive use of XML. XML is a
portable, text-based technology to represent data in an open and platform-
independent way, which makes it easier to pass data between applications
even if they are running on different platforms.

Introduction

Definition

Benefits

4 Module 7: Using ADO.NET to Access Data

The ADO.NET components are designed to separate data access from data
manipulation. The two components of ADO.NET that accomplish this are the
DataSet object and the .NET data provider. The components of the .NET data
provider are explicitly designed for disconnected data manipulations.

ADO.NET and Windows Forms provide data consumer components that you
can use to display your data. These components include controls, such as the
DataGrid control, that can be bound to data, and data-binding properties on
most standard Windows controls, such as the TextBox, Label, ComboBox, and
ListBox controls.

ADO.NET components

 Module 7: Using ADO.NET to Access Data 5

What Is a Connected Environment?

� A connected environment is one in which users are
constantly connected to a data source

� Advantages:
� Environment is easier to secure
� Concurrency is more easily controlled
� Data is more likely to be current than in other scenarios

� Disadvantages:
� Must have a constant network connection
� Scalability

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A connected environment is one in which a user or an application is
continuously connected to a data source. For much of the history of computers,
the only available environment was the connected environment.

A connected scenario offers the following advantages:

� A secure environment is easier to maintain.
� Concurrency is easier to control.
� Data is more likely to be current than in other scenarios.

A connected scenario has the following disadvantages:

� It must have a constant database connection.
� It is not scalable.

The following are examples of connected environments:

� A factory that requires a real-time connection to monitor production output
and storage.

� A brokerage house that requires a constant connection to stock quotes.

Introduction

Advantages

Disadvantages

Examples

6 Module 7: Using ADO.NET to Access Data

What Is a Disconnected Environment?

� In a disconnected environment, a subset of data from a
central data store can be copied and modified
independently, and the changes merged back into the
central data store

� Advantages
� You can work at any time that is convenient for you, and can

connect to a data source at any time to process requests
� Other users can use the connection
� A disconnected environment improves the scalability and

performance of applications
� Disadvantages

� Data is not always up to date
� Change conflicts can occur and must be resolved

*****************************ILLEGAL FOR NON-TRAINER USE******************************

With the advent of the Internet and with the increasing use of mobile devices,
disconnected scenarios have become commonplace. Laptop, notebook, and
other portable computers allow you to use applications when you are
disconnected from servers or databases.

In many situations, people do not work entirely in a connected or disconnected
environment, but rather in an environment that combines the two approaches.

A disconnected environment is one in which a user or an application is not
constantly connected to a source of data. Mobile users who work with laptop
computers are the primary users in a disconnected environment. Users can take
a subset of data with them on a disconnected computer and then merge changes
back into the central data store.

A disconnected environment provides the following advantages:

� You can work at any time that is convenient for you, and you can connect to
a data source at any time to process requests.

� Others can share connection resources.
� The scalability and performance of applications is improved.

When you return your rental car, the person who accepts the car uses a
handheld computer to read the return information. Because the handheld device
may have limited processing capacity, it is important to scale the data to the
task that the user performs at any given time.

A disconnected environment has the following disadvantages:

� Data is not always up to date.
� Change conflicts can occur and must be resolved.

Introduction

Definition

Advantages

Example

Disadvantages

 Module 7: Using ADO.NET to Access Data 7

What Is the ADO.NET Object Model?

DatabaseDatabaseDatabase

.NET Data Provider.NET Data Provider

ConnectionConnection

TransactionTransaction

CommandCommand

ParametersParameters

DataReaderDataReader

DataAdapterDataAdapter

SelectCommandSelectCommand

InsertCommandInsertCommand

UpdateCommandUpdateCommand

DeleteCommandDeleteCommand

DataSetDataSet

DataTableCollectionDataTableCollection

DataTableDataTable

DataRowCollectionDataRowCollection

DataColumnCollectionDataColumnCollection

ConstraintCollectionConstraintCollection

DataRelationCollectionDataRelationCollection

XMLXMLXML

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The ADO.NET object model consists of two major parts:

� .NET data provider classes
� DataSet class

The .NET data provider classes are specific to a data source. Therefore, the
.NET data providers must be written specifically for a data source and will
work only with that data source. The .NET data provider classes enable you to
connect to a data source, retrieve data from the data source, and perform
updates on the data source.

The ADO.NET object model includes the following .NET data provider classes:

� SQL Server .NET Data Provider
� OLE DB .NET Data Provider

The DataSet class allows you to store and manage data in a disconnected
cache. The DataSet is independent of any underlying data source, so its
features are available to all applications, regardless of the origin of the data in
the application.

Introduction

.NET data provider
classes

DataSet class

8 Module 7: Using ADO.NET to Access Data

Multimedia: Using ADO.NET to Access Data

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This animation demonstrates how to access data by using ADO.NET.

� To view the animation

Action Description

Start animation. There are two ways to access data from a database by using

ADO.NET: by using a DataSet object or by using a DataReader
object. This animation demonstrates how these two methods work
and highlights their differences.

Click Start.

Click DataSet. Using the DataSet object is a disconnected way to access data from
a database.

In this method, when a user requests data from a database, the
DataAdapter object is used to create a DataSet, which is a
collection of data tables from the database that also retains the
relationships between these tables. Notice that, after a DataSet is
populated, it is disconnected from the database.

To display the data from the DataSet, you bind the DataSet directly
to a list-bound control. You can use any of the three list-bound
controls, DataGrid, Repeater, or DataList, to display data.

The data in the list-bound control is then displayed on the client.

Click
DataReader.

Using the DataReader object is similar to the Microsoft ActiveX®
Data Objects (ADO) way of accessing data by using recordsets.

In this method, when a user requests data from a database, the
Command object retrieves the data into a DataReader. A
DataReader is a read-only/forward-only view of the data. A
DataReader works similarly to a Recordset in ADO, allowing you
to simply loop through the records. Like the ADO Recordset, the
DataReader is connected to the database. You must explicitly close
the connection when you are finished reading data.

 Module 7: Using ADO.NET to Access Data 9

What Is the DataSet Class?

DataSetDataSet

ConstraintsConstraints

TableTable

ColumnColumn

ConstraintConstraint

RowsRows

RowRow

RelationsRelations

RelationRelation

ObjectObject CollectionCollection

TablesTables

ColumnsColumns

� DataSets consist of one or
more tables and relations
� Loaded from one or more

data adapters
� Created as you work
� Loaded from XML
� Loaded from other DataSets

� Tables contain columns,
constraints, and rows
� All are collections!

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The ADO.NET DataSet class is the core component of the disconnected
architecture of ADO.NET.

The DataSet objects in the System.Data namespace serve as a virtual cache of
a database, including not only data, but also schemas, relationships, and
constraints, which may be loaded from one or more data adapters, created as
you work, loaded from XML, or loaded from other datasets. DataSet objects
are disconnected from the parent data source, so you effectively have full access
to the data without needing a persistent connection to the data source.

When you work with a database, you most likely use only a small portion of the
database. The DataSet class allows you to retrieve only the data that you need
at a given time.

The DataSet class contains collections of:

� Tables. Tables are stored as a collection of DataTable objects, which in
turn each hold collections of DataColumn and DataRow objects.

� Relations. Relations are stored as a collection of DataRelation objects that
describe the relationships between tables.

� Constraints. Constraints track the information that ensures data integrity.

In ADO.NET, DataSet, DataTable, and DataColumn objects enable you to
represent data in a local cache and provide a relational programming model for
the data, regardless of its source.

Introduction

DataSet objects

Example

DataSet collections

10 Module 7: Using ADO.NET to Access Data

What Is the .NET Data Provider?

Manages the connection
to a database

Manages the connection
to a database

Executes a query command
on the database

Executes a query command
on the database

Exchanges data between
the data set and the database

Exchanges data between
the data set and the database

Provides efficient access to a
stream of read-only data

Provides efficient access to a
stream of read-only data

DatabaseDatabaseDatabase

ConnectionConnection

CommandCommand

DataReaderDataReader

DataAdapterDataAdapter

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A .NET data provider enables you to connect to a database, execute commands,
and retrieve results.

Those results are either processed directly or placed in an ADO.NET DataSet
object to be exposed to the user in an ad-hoc manner, combined with data from
multiple sources, or used remotely.

A .NET data provider can handle basic data manipulation, such as updates,
inserts, and basic data processing. Its primary focus is to retrieve data from a
data source and pass it on to a DataSet object, where your application can use it
in a disconnected environment.

ADO.NET provides two kinds of .NET data providers:

� SQL Server .NET Data Provider
The SQL Server .NET Data Provider accesses databases in Microsoft
SQL Server™ version 7.0 or later. It provides excellent performance because
it accesses SQL Server directly instead of going through an intermediate
OLE DB provider.

� OLE DB. NET Data Provider
The OLE DB .NET Data Provider accesses databases in SQL Server 6.5 or
earlier, Oracle, and Microsoft Access.

Introduction

.NET data providers

 Module 7: Using ADO.NET to Access Data 11

ADO.NET exposes a common object model for .NET data providers. The
following table describes the core classes that make up a .NET data provider,
which you can use in a disconnected scenario.

Class Description

Connection Establishes and manages a connection to a specific data source. For

example, the SqlConnection class connects to OLE DB data sources.

Command Executes a query command from a data source. For example, the
SqlCommand class can execute SQL statements in an OLE DB data
source.

DataAdapter Uses the Connection, Command, and DataReader classes implicitly
to populate a DataSet object and to update the central data source
with any changes made to the DataSet. For example, the
SqlDataAdapter object can manage the interaction between a
DataSet and an Access database.

DataReader Provides an efficient, forward-only, read-only stream of data from a
data source.

.NET data provider
classes

12 Module 7: Using ADO.NET to Access Data

Practice: ADO.NET Architecture

Matching PracticeMatching PracticeMatching Practice

10 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will use an interactive animation to manipulate various components of
ADO.NET. Place the components in order, so that they show how information is read from a
database and displayed on a Windows Form.

Tasks Detailed steps

1. Start the animation located
at install_folder\
Mod07\AdoArchitecture\
2609A_ADO.Arch.htm.

� Using Windows Explorer, navigate to install_folder\
Mod07\AdoArchitecture and then double-click 2609A_ADO.Arch.htm.

2. Drag and drop each
component to the correct
location.

a. Drag and drop the SQL Server 2000, SQL Data Adapter, DataSet,
DataGrid, and Windows Form to their appropriate squares.

b. Drag and drop Select and Connect Commands, Data Source, and Fill
to their appropriate callouts.

3. Check your answer by
clicking Reveal.

� Click Reveal to see the correct order that these components should
have been placed.

4. Close the animation
window.

� Close the animation window.

 Module 7: Using ADO.NET to Access Data 13

Lesson: Creating an Application That Uses ADO.NET to
Access Data

� How to Specify the Database Connection

� How to Specify the Database Command

� How to Create the DataAdapter Object

� How to Create a DataSet Object

� How to Bind a DataSet to a DataGrid

� How to Use the Data Wizards in Visual Studio .NET

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This lesson explains how to create an application that uses ADO.NET to access
a database. This lesson also describes how to display database contents by
binding a DataSet object to a DataGrid.

After completing this lesson, you will be able to:

� Create an application that uses ADO.NET.
� Retrieve information from a database by using ADO.NET.
� Bind a DataSet object to a DataGrid control.

This lesson includes the following topics and activities:

� How to Specify the Database Connection
� How to Specify the Database Command
� How to Create the DataAdapter Object
� How to Create a DataSet Object
� How to Bind a DataSet to a DataGrid
� Demonstration: Using the Data Wizards in Visual Studio .NET
� How to Use the Data Wizards in Visual Studio .NET
� Practice: Using the Data Adapter Configuration Wizard

Introduction

Lesson objectives

Lesson agenda

14 Module 7: Using ADO.NET to Access Data

How to Specify the Database Connection

� Use the Connection object to:

� Choose the connection type

� Specify the data source

� Open the connection to the data source

� Use the connection string to specify all of the options
for your connection to the database, including the
account name, database server, and database name

string connectionStr = @"Data Source=localhost;
Integrated Security=SSPI; Initial
Catalog=northwind";

string connectionStr = @"Data Source=localhost;
Integrated Security=SSPI; Initial
Catalog=northwind";

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Before you can work with data, you must first establish a connection to a data
source. To connect to a data source, you choose the connection type, specify the
data source, and then open the connection to the data source. As you connect to
the data source, you should also consider certain database security issues.

You can use the Connection object to connect to a specific data source. You
can use either the SqlConnection object to connect to a SQL Server database or
the OleDbConnection object to connect to other types of data sources.

After you choose the connection type, you use a ConnectionString property to
specify the data provider, the data source, and other information that is used to
establish the connection.

Introduction

Choosing the
connection type

Specifying the data
source

 Module 7: Using ADO.NET to Access Data 15

The following table describes common parameters of connection strings. The
table contains a partial list of the values.

Parameter Description

Initial Catalog The name of the database.

Data Source The name of the SQL Server to be used when a connection is
open, or the filename of a Microsoft Access database.

Integrated Security
or Trusted
Connection

The parameter that determines whether the connection is to be a
secure connection. True, False, and SSPI are the possible
values. SSPI is the equivalent of True.

User ID The SQL Server login account.

Password The login password for the SQL Server account.

Provider The property used to set or return the name of the provider for
the connection, used only for OleDbConnection objects.

Connection Timeout
or Connect Timeout

The length of time in seconds to wait for a connection to the
server before terminating the attempt and generating an
exception. 15 is the default.

Persist Security Info When set to False, security-sensitive information, such as the
password, is not returned as part of the connection if the
connection is open or has ever been in an open state. Setting
this property to True can be a security risk. False is the default.

The following code shows how to specify the connection to a SQL Server
database by using the SQL .NET Data Provider (note the use of a verbatim
string):

string connectionString = @"data source=localhost;integrated
security=SSPI;initial catalog=Northwind";

In this example, the database is located on the local computer (localhost),
Windows authentication is used, and the database name is Northwind.

The following code establishes a connection to an Access database by using the
OLE DB .NET Data Provider:

string connectionString =
@"provider=Microsoft.JET.OLEDB.4.0;data
source=C:\samples\northwind.mdb";

In this example, the provider connects to the database that is located at
C:\samples\northwind.mdb.

Syntax

Example 1

Example 2

16 Module 7: Using ADO.NET to Access Data

When you build an application that accesses data, you normally must connect to
a secure database. To do so, you must pass security information, such as user
name and password, to the database before a connection can be made. The
database security that is available depends on the database that you access.

SQL Server can operate in one of two authentication modes:

� Microsoft Windows Authentication (recommended)
� Mixed Authentication Mode (Windows Authentication and SQL Server

authentication)

Windows Authentication allows a user to connect through a Windows user
account. Network security attributes for the user are established at network
login time and are validated by a Windows domain controller.

When a network user tries to connect, SQL Server verifies that the user has a
valid SQL Server account, and then permits or denies login access based on that
network user name alone, without requiring a separate login name and
password.

Although it is possible to specify the user name and password in the connection
string, you should avoid using these parameters, and use the stronger security
offered by Windows Authentication.

If you decide to build the connection string from user input, make
sure that you carefully check the input so that the user does not include extra
commands in their text.

Database security

Warning

 Module 7: Using ADO.NET to Access Data 17

How to Specify the Database Command

� Create a string containing SQL statements
� Remember that Verbatim strings can make this much

easier!

� Examples of SQL statements:
� SELECT * FROM Customers
� SELECT CustomerName FROM Customers
� SELECT * FROM Customers WHERE Country =

'Mexico'

string commandStr=@"SELECT CustomerName,
CompanyName FROM Customers";

string commandStr=@"SELECT CustomerName,
CompanyName FROM Customers";

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After you connect to a database, you must specify the set of information that
you want to retrieve from it. There are several ways to do this. This topic
describes how to create a string that contains a database query and then how to
send that string to a database.

The following four examples use the Northwind Traders database.

The following simple query selects all of the data in the Customers table:

string queryString = "SELECT * FROM Customers";

The following query selects the data rows in the Customer table where the
value of the CompanyName column is equal to Island Trading (note the use
of a verbatim string):

string commandString = @"SELECT * FROM Customers WHERE
CompanyName='Island Trading'";

The following code selects the CompanyName and ContactName fields from
only those rows in which CompanyName is Island Trading:

string commandString = @"SELECT CompanyName, ContactName FROM
Customers WHERE CompanyName='Island Trading'";

Introduction

Example 1

Example 2

Example 3

18 Module 7: Using ADO.NET to Access Data

The following more complex SQL command shows how to define a command
string that selects a number of fields from the Products table, such as
Products.ProductID, and a number of items from the Suppliers table, such as
Suppliers.CompanyName. Note the use of the INNER JOIN command
specifying the relationship between Suppliers.SupplierID and
Products.SupplierID.

string commandString = @"SELECT Products.ProductID,
Products.ProductName, Products.SupplierID,
Products.CategoryID, Products.QuantityPerUnit,
Products.UnitPrice, Suppliers.CompanyName,
Suppliers.SupplierID AS Expr1 FROM Products INNER JOIN
Suppliers ON Products.SupplierID = Suppliers.SupplierID";

For more information about the SQL Query, see the following resources.
� Online resource: MSDN® at msdn.microsoft.com
� Printed resource: Microsoft Press® SQL Book, Microsoft SQL Server 2000

Resource Kit, ISBN 0-7356-1266-8.
� Training resource: Course 2389, Programming with ADO.NET.

Example 4

Note

 Module 7: Using ADO.NET to Access Data 19

How to Create the DataAdapter Object

Data sourceDataAdapterDataTable

DataTable

DataSet

DataAdapter

FillFill

UpdateUpdate

UpdateUpdate

FillFill

*****************************ILLEGAL FOR NON-TRAINER USE******************************

To establish the connection to the data source and manage the movement of
data to and from the data source, you use a DataAdapter object.

A DataAdapter object serves as a bridge between a DataSet object and a data
source, such as a database, for retrieving and saving data. The DataAdapter
object represents a set of database commands and a database connection that
you use to fill a DataSet object and update the data source. DataAdapter
objects are part of the .NET data providers, which also include connection
objects, data-reader objects, and command objects.

Each DataAdapter object exchanges data between a single DataTable object
in a dataset and a single result set from a SQL statement. Use one DataAdapter
object for each query when you send more than one query to a database from
your application.

You use a DataAdapter object to exchange data between the data source and a
DataSet object. In many applications, this means reading data from a database
into a dataset through the data adapter, and then writing changed data from the
dataset to the data adapter and back to the database. A data adapter can move
data between any source and a dataset. For example, an adapter can move data
between a server running Microsoft Exchange and a dataset.

Visual Studio .NET makes two primary data adapters available for use with
databases. Other data adapters can also be integrated with Visual Studio .NET.

The primary data adapters are:

� OleDbDataAdapter, which is suitable for use with certain OLE DB
providers.

� SqlDataAdapter, which is specific to a Microsoft SQL Server 7.0 or later
database. The SqlDataAdapter is faster than the OleDbDataAdapter
because it works directly with SQL Server and does not go through an OLE
DB layer.

Introduction

Definition

Example

Primary DataAdapters
for databases

20 Module 7: Using ADO.NET to Access Data

You use DataAdapter objects to act on records from a data source. You can
specify which actions you want to perform by using one of the following four
DataAdapter properties, which execute a SQL statement. The properties are
actually command objects that are instances of the SqlCommand or
OleDbCommand class.

Select Command Retrieves rows from the data source.

InsertCommand Writes inserted rows from the DataSet into the data source.

UpdateCommand Writes modified rows from the DataSet into the data source.

DeleteCommand Deletes rows in the data source.

Depending on how you specify your DataAdapter, these command objects can
be generated automatically. For example, if you pass a command string and a
connection string to the constructor when you create the DataAdapter, the
SelectCommand property is constructed for you.

You use DataAdapter methods to fill a dataset or to transmit changes in a
DataSet table to a corresponding data store. These methods include:

� Fill
Use this method of a SqlDataAdapter or OleDbDataAdapter to add or
refresh rows from a data source and place them in a DataSet table. The Fill
method uses the SELECT statement that is specified in the
SelectCommand property.

� Update
Use this method of a DataAdapter object to transmit changes to a DataSet
table to the corresponding data source. This method calls the corresponding
INSERT, UPDATE, or DELETE command for each specified row in a
DataTable in a DataSet.

� Close
Use this method to close the connection to the database.

DataAdapter properties

Methods used by a
DataAdapter

 Module 7: Using ADO.NET to Access Data 21

The following example uses a SqlDataAdapter object to define a query in the
Northwind database:

using System;
using System.Data;
using System.Data.SqlClient;

namespace Samples {
 class SampleAdo {
 static void Main(string[] args) {
 string connectionString = @"data source=localhost;
Initial catalog=Northwind; integrated security=SSPI";
 string commandString = @"SELECT * FROM Customers";
 SqlDataAdapter dataAdapter = new SqlDataAdapter(
commandString, connectionString);

 DataSet myDataSet = new DataSet();
 dataAdapter.Fill(myDataSet);

 DataTable table = myDataSet.Tables[0];
 int numberRows = table.Rows.Count;
 }
 }
}

The following example uses a OleDbDataAdapter object to define a query in
the Northwind database.

using System;
using System.Data;
using System.Data.OleDb;

namespace Samples {
 class SampleAdo {
 static void Main(string[] args) {
 string connectionString =
@"provider=Microsoft.JET.OLEDB.4.0;data
source=c:\samples\Northwind.mdb";
 string commandString = @"SELECT * FROM Customers";
 OleDbDataAdapter dataAdapter = new
OleDbDataAdapter(commandString, connectionString);

 DataSet myDataSet = new DataSet();
 dataAdapter.Fill(myDataSet);

 DataTable table = myDataSet.Tables[0];
 int numberRows = table.Rows.Count;
 }
 }
}

Example of creating a
DataAdapter
programmatically

Example

22 Module 7: Using ADO.NET to Access Data

How to Create a DataSet Object

DataSetDataSet

ConstraintsConstraints

TableTable

ColumnColumn

ConstraintConstraint

RowsRows

RowRow

RelationsRelations

RelationRelation
ObjectObject CollectionCollection

TablesTables

ColumnsColumns

� Use Fill method of DataAdapter

� Populate programmatically by
creating a table structure and
filling it

� Read an XML document or
stream into a DataSet

� Use Merge method to copy the
contents of another DataSet
object

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After you specify the data that you want to retrieve, the next step is to populate
a DataSet object with data from the database. DataSet objects store data in a
disconnected cache. The structure of a DataSet is similar to that of a relational
database; it exposes an object model of tables, rows, and columns. It also
contains constraints and relationships that are defined for the DataSet.

A DataSet is a container; therefore, you must populate it with data. You can
populate a DataSet in a variety of ways:

� Call the Fill method of a data adapter
This method causes the adapter to execute an SQL statement and fill the
results into a table in the DataSet. If the DataSet contains multiple tables,
you probably have separate data adapters for each table and therefore must
call the Fill method of each adapter separately.

� Manually populate tables in the DataSet
You use this method by creating DataRow objects and adding them to the
Rows collection of the table. You can set the Rows collection only at run
time, not at design time.

� Read an XML document or stream into the DataSet
� Copy or merge the contents of another DataSet

This scenario can be useful if your application obtains DataSets from
various sources, such as various XML Web services, but must consolidate
them into a single DataSet.

Introduction

Populating DataSets

 Module 7: Using ADO.NET to Access Data 23

You use a DataAdapter to access data stored in a database, and store the data
in DataTable objects in a DataSet in your application. The following example
shows how to create a DataSet that contains all the data in the Customers table
in the Northwind Traders database.

using System;
using System.Data;
using System.Data.SqlClient;

namespace Samples {
 class SampleSqlADO {
 static void Main(string[] args) {
 string connectionString = @"data source=localhost;
Initial catalog=Northwind; integrated security=SSPI";
 string commandString = @"SELECT * FROM Customers";
 SqlDataAdapter dataAdapter = new SqlDataAdapter(
commandString, connectionString);

 DataSet myDataSet = new DataSet();
 dataAdapter.Fill(myDataSet);
 }
 }
}

One of the overloads of the Fill method allows you to specify a name that you
can subsequently use to reference the table, as shown in the following example:

using System;
using System.Data;
using System.Data.SqlClient;

namespace Samples {
 class SampleSqlADO {
 static void Main(string[] args) {
 string connectionString = @"data source=localhost;
Initial catalog=Northwind; integrated security=SSPI";
 string commandString = @"SELECT * FROM Customers";
 SqlDataAdapter dataAdapter = new SqlDataAdapter(
commandString, connectionString);

 DataSet myDataSet = new DataSet();
 dataAdapter.Fill(myDataSet, "Customers");

 DataTable table = myDataSet.Tables["Customers"];
 }
 }
}

You can use this feature to make your code more readable and therefore more
maintainable.

Example 1

Example 2

24 Module 7: Using ADO.NET to Access Data

How to Bind a DataSet to a DataGrid

� To bind programmatically

DataGrid dataGrid1 = new DataGrid();
sqlDataAdapter1.Fill(dataSet1, "Customers");
sqlDataAdapter2.Fill(dataSet1, "Orders");
dataGrid1.DataSource = dataSet1;

DataGrid dataGrid1 = new DataGrid();
sqlDataAdapter1.Fill(dataSet1, "Customers");
sqlDataAdapter2.Fill(dataSet1, "Orders");
dataGrid1.DataSource = dataSet1;

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After you populate a DataSet object, you can view and modify data by using
the Windows Forms DataGrid control. The DataGrid displays data in a series
of rows and columns. In a simple example, the grid is bound to a data source
with a single table that contains no relationships and the data appears in simple
rows and columns, as in a spreadsheet.

If the DataGrid control is bound to data with multiple related tables, and if
navigation is enabled on the grid, the grid displays expanders in each row. An
expander allows navigation from a parent table to a child table. Clicking a node
displays the child table, and clicking the Back button displays the original
parent table. In this fashion, the grid displays the hierarchical relationships
between tables.

The DataGrid can provide a user interface for a DataSet, navigation between
related tables, and rich formatting and editing capabilities.

The display and manipulation of data are separate functions:

� The control handles the user interface.
� The data-binding architecture of Windows Forms and ADO.NET data

providers handle data updates.
Therefore, multiple controls that are bound to the same data source stay in sync.

For the DataGrid control to work, you must bind it to a data source by using
the DataSource property or by using the SetDataBinding method. You can set
the DataSource property by using the Properties window in the development
environment, or programmatically.

This binding points the DataGrid to an instantiated data-source object, such as
a DataSet or DataTable, and the DataGrid control shows the results of actions
that are performed on the data.

Introduction

How the DataGrid
control works

Binding data to the
control

 Module 7: Using ADO.NET to Access Data 25

You can bind to a DataSet, which may contain multiple tables, as shown in the
following example:

 .
 .
 .
 public class Form1 : System.Windows.Forms.Form {
 private System.Windows.Forms.DataGrid dataGrid1;
 .
 .
 public Form1() {

 string connectionString = @"data source=localhost;
Initial catalog=Northwind; integrated security=SSPI";
 string commandString = @"SELECT * FROM Customers";
 dataAdapter = new SqlDataAdapter(commandString,
connectionString);

 myDataSet = new DataSet();
 dataAdapter.Fill(myDataSet, "Customers");

 dataGrid1.DataSource = myDataSet;
 }
 .
 .
 .
}

Or, you can bind to a single table in a DataSet object, as shown in the
following example:

dataGrid1.DataSource = myDataSet.Tables["Customers"];

Scenario 1

Scenario 2

26 Module 7: Using ADO.NET to Access Data

Demonstration: Using the Data Wizards in Visual Studio .NET

� In instructor-led demonstration will show
you how to use the Data Adapter
Configuration Wizard, how to use the
Server Explorer, and how to use the Data
Form Wizard

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This instructor-led demonstration will show you how to use the Data Adapter
Configuration Wizard, how to use Server Explorer, and how to use the Data
Form Wizard.

� How to Use the Data Adapter Configuration Wizard
1. Connect to Northwind Database by using SqlDataAdapter object.
2. Specify connection and SQL command information by using the Query

Builder.
3. Select a table and generate the dataset.

� How to Use the Server Explorer
1. Access Server Explorer.
2. Add and remove connections by using Server Explorer.
3. Drag items from Server Explorer and drop them into Windows Forms

Designer.
4. View database elements by using Server Explorer.

� How to Use the Data Form Wizard
1. Start the Data Form Wizard.
2. Add a form to a project by using the Data Form Wizard.
3. Select a database connection, select tables, and then display them on the

form.

The Data Form Wizard creates a new Form. You can easily display this
form by changing the parameter to Application.Run in the Main method, so
that it references the form created by the Wizard.

Tip

 Module 7: Using ADO.NET to Access Data 27

How to Use the Data Wizards in Visual Studio .NET

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can use the visual tools in Visual Studio .NET to automatically generate
much of the code that is required to access a database. This feature can be
useful for rapidly prototyping database applications.

Visual Studio .NET provides the Data Adapter Configuration Wizard to build
Data Provider objects. This wizard is complemented by Server Explorer, which
lets you view and manipulate database information, such as connections, tables
and records, on any server to which you have network and database access, and
the Data Form Wizard, which helps you create Web-based pages and Windows-
based forms containing data-bound controls.

The Data Adapter Configuration Wizard helps you set the properties of a new
or existing data adapter. A data adapter contains SQL commands that your
application can use to read data into a DataSet from a database and write it
back again. The wizard can optionally create a data connection that allows the
adapter to communicate with a database.

To use the Data Adapter Configuration Wizard:

1. Drag an OleDbDataAdapter or SqlDataAdapter object from the Toolbox
onto a form or component.

2. Specify connection and SQL command information.
The wizard displays several dialog boxes:
a. If you ask to create a connection, the wizard displays the Connection

tab of the Data Link Properties dialog box, which allows you to
specify a provider, server name, database name, user name, and
password for the connection.

b. To help you create SQL statements, the wizard provides the Query
Builder, a utility that allows you to create and test a SELECT statement
by using visual tools. To launch it, click the Query Builder button when
asked for a SQL statement.

Introduction

Using the Data Adapter
Configuration Wizard

28 Module 7: Using ADO.NET to Access Data

3. In the Component Designer, select the adapter or adapters that will be used
to transfer data between the data source and the DataSet.
Typically, each data adapter accesses data in a single table. Therefore, to
create a DataSet that contains multiple data tables, select all the adapters for
the tables that you want to work with.

4. On the Data menu, click Generate DataSet.
The Generate DataSet dialog box appears.

5. Click New, and then specify a name for the new DataSet. To add the
DataSet to your form or component, select Add this dataset to the
designer and then click OK.

6. You must add code to fill the dataset. Typically, the designer creates a data
adapter named sqlDataAdapter1, and an instance of a dataset named
dataSet11, so you should add the following line:
sqlDataAdapter1.Fill(dataSet11);

To bind the DataGrid control to a single table in the Component Designer:

1. In the Toolbox, on the Data tab, click the DataGrid control and drag it over
the form.

2. Press F4 to display the Properties window.
3. Expand the (DataBindings) property.
4. Set the DataSource property of the control to the object containing the data

items that you want to bind to.
5. If the data source is a DataSet or a data view based on a DataSet table, add

code to the form to fill the DataSet.

You can access Server Explorer at any time during the development process,
while working with any type of project or item.

To access Server Explorer:

• On the View menu, click Server Explorer.
– or –

• If the Server Explorer tab is displayed on the left edge of the screen, click
that tab.

Adding a DataGrid
control

Accessing Server
Explorer

 Module 7: Using ADO.NET to Access Data 29

Server Explorer displays database connections under the Data Connections
node. After you establish a connection, you can design programs to open
connections and retrieve and manipulate the data that is provided. By default,
Server Explorer displays data connections and links to servers that you have
previously used.

To add a data connection in Server Explorer:

1. On the Tools menu, click Connect to Database.
The Data Link Properties dialog box opens.

2. On the Provider tab of the Data Link Properties dialog box, select a
provider.

3. On the Connection tab of the Data Link Properties dialog box, provide the
information requested. The input fields displayed vary, depending upon the
provider that you selected on the Provider tab.
For example, if you select the OLE DB Provider for SQL Server, the
Connection tab displays fields for server name, type of authentication, and
database.

4. Click OK to establish the data connection.
The Data Link Properties dialog box closes, and the new data connection
appears under the Data Connections node, named for the server and
database accessed. For example, if you create a data connection to a
database called NWind on a server named Server1, a new connection
named Server1.NWind.dbo appears under the Data Connections node.

To remove a data connection from Server Explorer:

1. In Server Explorer, expand the Data Connections node.
2. Select the desired database connection.
3. Press DELETE.

There is no effect on the actual database. You are removing the reference
from your view.

You can drag items from Server Explorer and drop them onto the Windows
Forms Designer. Putting items onto the Windows Forms Designer creates new
data resources that are preconfigured to retrieve information from the selected
data source.

To create a new data component by using Server Explorer, you can create a data
component preconfigured to reference a particular resource.

1. In Design view, open the form to which you want to add a data component.
2. In Server Explorer, select the data item that you want to use. An example of

a data item is a field or table.
3. Drag the item from Server Explorer to the designer surface.

Adding and removing
data connections

Dragging and dropping
data resources

30 Module 7: Using ADO.NET to Access Data

You can use Server Explorer to view and retrieve information from all of the
databases that are installed on a server. You can list database tables, views,
stored procedures, and functions in Server Explorer; expand individual tables to
list their columns and triggers; and right-click a table to select the Table
Designer from its shortcut menu.

You use the Data Form Wizard to help create pages and forms that contain
data-bound controls. The Data Form Wizard creates a new page or form in your
project that contains a DataGrid, along with Load, Update, and Cancel All
buttons.

To start the Data Form Wizard:

1. Create a new Windows project.
2. In the Solution Explorer, right-click the project and on the shortcut menu,

point to Add, and then click Add New Item.
3. In the Add New Item dialog box, select the Data category, select the Data

Form Wizard, and then click Open.

Viewing database
elements

Using the Data Form
Wizard

 Module 7: Using ADO.NET to Access Data 31

To add a form to a project by using the Data Form Wizard, perform the
following steps.

The following procedure assumes that you start with a blank Windows
project. If your project contains existing ADO.NET components, the screen
sequence and contents will differ from those in the following procedure.

1. On the Welcome to the DataForm Wizard page, click Next.
2. On the Choose the DataSet you want to use page, type the name of a new

DataSet, and then click Next.
3. On the Choose a data connection page, select a database connection or

create a new one, and then click Next.
4. On the Choose tables or view page, select the table or tables that you want

listed on your page, and then click Next.
5. On the Choose tables and columns to display on the form page, select the

items that you want to display on the form, and then click Next.
6. On the Choose a display style page, select your display options, and then

click Finish.

To display the form, invoke the ShowDialog method on the form. If this form is
the only one that you want to display, you can pass it as a parameter to
Application.Run in the Main method. For example:

Application.Run(new DataForm1());

Note

32 Module 7: Using ADO.NET to Access Data

Practice: Using the Data Adapter Configuration Wizard

� In this practice you will add a new
database record to the Shippers table in
the Northwind Traders database

� You will use the Data Adapter
Configuration Wizard in Visual Studio
.NET to generate most of the code

� In this practice you will add a new
database record to the Shippers table in
the Northwind Traders database

� You will use the Data Adapter
Configuration Wizard in Visual Studio
.NET to generate most of the code

Guided PracticeGuided PracticeGuided Practice

10 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will add a new database record to the Shippers table in the Northwind
Traders database. You will use the Database Wizard in Visual Studio .NET to generate most of the
code.

The solution for this practice is located in install_folder\Practices\Mod07\AdoDemo1\AdoDemo\
AdoDemo.sln. Start a new instance of Visual Studio .NET before opening the solution.

Tasks Detailed steps

1. Start Visual Studio .NET,
and then create a Database
Project named AdoDemo.

a. Start Visual Studio .NET.

b. On the Start Page, click New Project.

Make a note of the location of your project, in case you need to refer back
to it later.

c. In the New Project dialog box, in the Project Types window, expand
Other Projects, and then click Database Projects.

d. In the Templates window, click Database Project.

e. In the Name box, delete the existing name, type AdoDemo and then
click OK.

2. Set the Data Link
Properties by using the
information that is provided
in the following table, and
then click OK.

a. If you have already established a link to the database, an Add
Database Reference dialog box is displayed. If you see this box, click
Add New Reference.

b. Insert the values from the following table into the Data Link
Properties dialog box, and then click OK.

For machinename, substitute the name of your computer, or type localhost

c. If you see the Add Database Reference dialog box, click OK.

 Module 7: Using ADO.NET to Access Data 33

Tasks Detailed steps

Item Value
Select or enter a server name machinename or localhost
Enter information to log on to the server Use Windows NT Integrated Security
Select the database on the server Northwind

3. Use Server Explorer to
examine the Shippers table
in the Northwind database.

a. In Server Explorer, expand machinename.Northwind.dbo, and then
expand Tables.

b. Double-click the Shippers table to see the contents of the database
table.

4. Use Solution Explorer to
add a C# Project named
AdoPractice to the solution.

a. In Solution Explorer, right-click Solution ‘AdoDemo’, point to Add,
and then click New Project.

b. Add a new C# Windows Application project to the solution, naming it
AdoPractice.

5. Use Server Explorer to add
a connection to the
Shippers table to the
application.

� Using a drag operation, drag the Shippers table from Server Explorer
and drop it on the form in the Designer.

Note that Visual Studio .NET creates a SqlConnection (sqlConnection1)
object and a SqlDataAdapter (sqlDataAdapter1) object at the bottom of
the form.

6. Use the Designer to add a
DataSet to the application.

a. Right-click the Data Adapter icon sqlDataAdapter1, and then on the
shortcut menu, click Generate Dataset.

Note that Visual Studio usually selects both sqlDataAdapter1 and
sqlConnection1 after adding them, so you may need to ensure that only
sqlDataAdapter1 is selected. You can easily do this by clicking anywhere
else in the Designer and then clicking sqlDataAdapter1.

b. In the Generate Dataset dialog box, click OK.

This generates a new DataSet type named DataSet1, and creates an
instance of this type, named dataSet11.

7. Add a DataGrid to the
application, and then bind it
to the Shippers table in the
DataSet.

a. Click the Toolbox tab, and then drag a DataGrid onto the form.

b. Resize the DataGrid so that it fills the top ¾ of the form.

c. Use the Properties window to set the DataSource property of the
DataGrid to dataSet11.Shippers.

34 Module 7: Using ADO.NET to Access Data

Tasks Detailed steps

8. Write code to use the Fill
method of the Data Adapter
to fill the DataSet.

a. In Visual Studio .NET, press F7 to open the Code Editor.

b. Locate the TODO line (TODO: Add any constructor code after
InitializeComponent call) in the form constructor.

c. Delete the TODO comment lines and add code that calls the Fill
method on sqlDAtaAdapter1, passing in dataSet11 as the DataSet
parameter:

sqlDataAdapter1.Fill(dataSet11, "Shippers");

9. Test your application. � Press F5 to build and run your application.

10. Save your work and keep
Visual Studio .NET open.

� Save your work and keep Visual Studio .NET open. You will use this
project in the following lesson.

 Module 7: Using ADO.NET to Access Data 35

Lesson: Changing Database Records

� How to Access Data in a DataSet Object

� How to Update a Database in ADO.NET

� How to Create a Database Record

� How to Update a Database Record

� How to Delete a Database Record

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This lesson describes how create, update, and delete records in a database by
using ADO.NET.

After completing this lesson, you will be able to:

� Examine methods for updating a database.
� Create a database record.
� Update a database record.
� Delete a database record.

This lesson includes the following topics and activity:

� How to Access Data in a DataSet Object
� How to Update a Database in ADO.NET
� How to Create a Database Record
� How to Update a Database Record
� How to Delete a Database Record
� Practice: Updating a Database Record

Introduction

Lesson objectives

Lesson agenda

36 Module 7: Using ADO.NET to Access Data

How to Access Data in a DataSet Object

DataRow
objects

DataColumn
objects

DataTable
objects

DataColumn
objects

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The DataSet object contains a collection of tables and knowledge of
relationships between these tables. Each table contains a collection of columns.
These objects together represent the schema of the DataSet. Each table can
have multiple rows, representing the data held by the DataSet. These rows
track their original state along with their current state, which enables the
DataSet to track all the changes that occur during data manipulation.

A DataSet can contain multiple tables. You can retrieve multiple sets of data
from a database and store them in separate tables in a DataSet. For example,
you can query the supplier table and the products table, and hold both results in
the same DataSet. The tables are stored in the Tables collection, and you can
reference an individual table by using an index.

DataTable firstTable = myDataSet.Tables[0];

You can access individual rows in the DataTable by using the Rows collection.
You can access columns by using the Columns collection.

The following code accesses the Customers table from the Tables collection. It
then retrieves the number of rows in the table by accessing the Count property
of the Rows collection. Finally, it retrieves the name of the first column in the
table by accessing the Columns collection.

Introduction

Using tables in a
DataSet

Using rows and columns
in a DataSet

 Module 7: Using ADO.NET to Access Data 37

using System;
using System.Data;
using System.Data.SqlClient;

namespace LearningCSharp {
 class SampleSqlADO {
 static void Main(string[] args) {
 string connectionString = @"data source=localhost;
Initial catalog=Northwind; integrated security=SSPI";
 string commandString = @"SELECT * FROM Customers";
 SqlDataAdapter dataAdapter = new SqlDataAdapter(
commandString, connectionString);

 DataSet myDataSet = new DataSet();
 dataAdapter.Fill(myDataSet, "Customers");

 DataTable myTable = myDataSet.Tables["Customers"];

 int numberRows = myTable.Rows.Count;
 Console.WriteLine("Rows: {0} ", numberRows);

 DataColumn c = myTable.Columns[0];
 Console.WriteLine("Column one: {0}", c.ColumnName);
 }
 }
}

This sample produces the following output:

Rows: 91
Column one: CustomerID

This sample is available on the Student Materials compact disc, in the
Samples\Mod07\RowColumn folder.

You can reference the tables, rows and columns in a DataSet by name and by
index.

The mapping between tables and names allows you to use names with the
tables, rows and columns in your DataSet rather than having to reference them
by their index. For example, in the code sample above, instead of writing:

DataColumn c = table.Columns[0];

you can write:

DataColumn c = table.Columns["CustomerID"];

CustomerID is the name of the column in the database. If you want to use a
different name, you can create a mapping between the name used in the
database and the one you choose yourself by using the DataTableMapping
object in the System.Data.Common namespace.

Row and column names

38 Module 7: Using ADO.NET to Access Data

The following code creates a DataTableMapping object for the Customers
table. The table mapping is maintained in the Data Adapter.

The DataTableMapping object maps the string NWCustomers to the
Customers table. Note that the Fill method now uses NWCustomers as the
name of the source table.

The DataTableMapping object maintains a collection named
ColumnMappings that is used here to map two columns from the Customers
table to a set of names specified by the programmer. For columns that are not
mapped, the name of the column from the data source is used.

The new name of the column is then used to access the column.

using System;
using System.Data;
using System.Data.Common;
using System.Data.SqlClient;

namespace Samples {
 class DataTableMappingExample {
 static void Main(string[] args) {
 string connectionString = @"data source=localhost;
Initial catalog=Northwind; integrated security=SSPI";
 string commandString = @"SELECT * FROM Customers";
 SqlDataAdapter dataAdapter = new SqlDataAdapter(
commandString, connectionString);

 DataTableMapping dtm =
dataAdapter.TableMappings.Add("Customers", "NWCustomers");
 dtm.ColumnMappings.Add("CompanyName", "Company");

 DataSet myDataSet = new DataSet();
 dataAdapter.Fill(myDataSet, "NWCustomers");

 DataTable myTable =myDataSet.Tables["NWCustomers"];

 DataColumn coColumn =myTable.Columns["CompanyName"];
 }
 }
}

Usually when a DataSet contains multiple tables, there is a relationship between
the data stored in the tables. You can express this relationship in ADO.NET by
using the DataRelation object.

In this example, the Suppliers tables and Products table are read into the
DataSet. These tables are related in the database—the SupplierID from the
Suppliers table identifies the supplier for the products that are listed in the
Products table. In database terminology, SupplierID is the primary key for the
Supplier table, meaning that it is unique and identifies each record in that table.
Each supplier can provide multiple products, so the list of products may
reference the same supplier ID more than once.

Example

Using DataRelation
object

Example

 Module 7: Using ADO.NET to Access Data 39

The following code uses the DataSet.Relations.Add method to create a
relationship between the SupplierID in the Suppliers table and the SupplierID
in the Products table. When this small application is run, the foreach loop
prints a list with each company name (CompanyName) followed by the
various products that they supply (ProductNames).

using System;
using System.Data;
using System.Data.Common;
using System.Data.SqlClient;

namespace LearningCSharp {
 class SuppliersProducts {
 static void Main(string[] args) {
 DataSet myDataSet = new DataSet();

 // Products Table
 string connectionString = @"data source=localhost; Initial
catalog=Northwind; integrated security=SSPI";
 string commandString = @"SELECT * FROM Suppliers";

 SqlDataAdapter dataAdapter =
 new SqlDataAdapter(commandString, connectionString);

 // Suppliers Table
 connectionString = @"data source=localhost; Initial catalog=Northwind;
integrated security=SSPI";
 commandString = @"SELECT * FROM Products";

 SqlDataAdapter dataAdapter2 =
 new SqlDataAdapter(commandString, connectionString);

 dataAdapter.Fill(myDataSet, "Suppliers");
 dataAdapter2.Fill(myDataSet, "Products");

 int tableCount = myDataSet.Tables.Count;

 DataRelation dr = myDataSet.Relations.Add("ProductSuppliers",
 myDataSet.Tables["Suppliers"].Columns["SupplierID"],
 myDataSet.Tables["Products"].Columns["SupplierID"]
);

 foreach (DataRow pRow in myDataSet.Tables["Suppliers"].Rows) {
 Console.WriteLine(pRow["CompanyName"]);
 foreach (DataRow cRow in pRow.GetChildRows(dr)) {
 Console.WriteLine("\t" + cRow["ProductName"]);
 }
 }
 }
 }
}

40 Module 7: Using ADO.NET to Access Data

Sample output follows:

Exotic Liquids
 Chai
 Chang
 Aniseed Syrup
New Orleans Cajun Delights
 Chef Anton’s Cajun Seasoning
 Chef Anton’s Gumbo Mix
 ...

This code sample is available on your Student Materials compact disc in the
Samples\Mod07\DataRelation folder.

 Module 7: Using ADO.NET to Access Data 41

How to Update a Database in ADO.NET

DataSet

Client

DataAdapter
DatabaseDatabaseDatabase

Server

DataData
FillFill

UpdateUpdate

DeleteCommandDeleteCommand

UpdateCommandUpdateCommand

InsertCommandInsertCommand

DataData

DataTable

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After you populate the dataset with data, you must send it from the dataset to
the database. The data adapter uses its Update method to send the data. The
Update method examines every record in the specified data table in the dataset
and, if a record has changed, sends the appropriate Update, Insert, or Delete
command to the database.

Because a dataset is effectively a cache—an in-memory copy—of data, the
process of updating the data in the dataset is separate from the process of
updating the original data source.

Updating a database in ADO.NET involves three steps:

1. Update the data in the dataset.
2. Update the data in the database.
3. Notify the dataset that the database accepted the changes.

The first step is to update the dataset with new information, which includes new
records, changed records, and deleted records. The dataset marks the new
information as Modified, and maintains a copy of the old information, so that it
can restore the original data in the event of a problem updating the database.

In Windows Forms, the data-binding architecture takes sends changes
from data-bound controls to the DataSet, so you do not have to explicitly update
the DataSet with your own code.

Introduction

Updating the database

First step

Note

42 Module 7: Using ADO.NET to Access Data

Next, send the changes from the dataset to the original data source, by calling
the Update method of the same data adapter that you used to populate the
DataSet.

When you call the Update method, the DataAdapter analyzes the changes and
then uses the InsertCommand, UpdateCommand, or DeleteCommand
command to process the change. You must set the commands before calling the
Update method. An exception is thrown if the Update method is called and the
appropriate command does not exist for a particular update, for example, if no
DeleteCommand exists for deleted rows.

After the Update method resolves your changes back to the data source, you
must notify the DataSet that the database accepted the changes. You can do this
by using the AcceptChanges method of the DataSet, or if the changes could
not be made to the database, you can reject the changes and return to the last
DataSet update by using the RejectChanges method. The AcceptChanges
method removes the copy of the old row state, whereas the RejectChanges
method restores the old row state and deletes the changes in the DataSet.

Other clients may have modified data at the data source since the last time you
filled the DataSet. If you need to refresh your DataSet with current data, use
the DataAdapter and Fill the DataSet again. New rows are added to the table
and updated information is incorporated into existing rows.

When you select Update, Insert, or Delete, the DataAdapter calls a
SqlCommand object to execute the function. These SqlCommand objects are
stored in the DataAdapter as the properties SelectCommand,
InsertCommand, UpdateCommand, and DeleteCommand.

You must define, or build, these objects at either design time or run time.

� Design time. Use the DataAdapter Configuration Wizard.
� Run time. At run time or in code, use the SqlCommandBuilder object to

create the necessary commands. After you define the commands, you can
call Update to invoke the appropriate command and synchronize your
DataSet with the database.

Second step

Third step

Defining the Update
commands

 Module 7: Using ADO.NET to Access Data 43

How to Create a Database Record

� Create a new row that matches the table schema

� Add the new row to the dataset

� Update the database

DataRow myRow = dataTable.NewRow();DataRow myRow = dataTable.NewRow();

sqlDataAdapter1.Update(dataSet);sqlDataAdapter1.Update(dataSet);

dataTable.Rows.Add(myRow);dataTable.Rows.Add(myRow);

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After you populate the dataset with data, you often manipulate the data before
sending it back to the data source or to another process or application. Because
each record in a dataset is represented by a DataRow object, changes to a
dataset are accomplished by updating and deleting individual rows. You can
also insert new records into the DataSet by adding new DataRow objects to the
Rows collection of the DataTable object.

To create a database record:

1. Create a new data row.
2. Add the new data row to the DataRow collection of a data table by using

either the NewRow method or the Add method.

• You can call the NewRow method on the data table object as shown in
the following example:
DataRow myRow = dataTable.NewRow();
myRow[0] = … // add data to the row
dataTable.Rows.Add(myRow);

• You can pass the row contents to the Add method of the Rows
collection, as shown in the example at the end of this section.

3. Call the Update method on the DataAdapter as shown in the following
example:
sqlDataAdapter1.Update(dataSet);

4. Calling the update method invokes the Insert SqlCommand.
Tell the DataSet to accept the changes:
myDataSet.AcceptChanges();

Introduction

Creating a database
record

44 Module 7: Using ADO.NET to Access Data

The following example creates a new row in the Shippers table of the
Northwind database.

using System;
using System.Data;
using System.Data.Common;
using System.Data.SqlClient;

namespace LearningCSharp {
 class AddToShippers {
 static void Main(string[] args) {
 string connectionString = @"data source=localhost;
Initial catalog=Northwind; integrated security=SSPI";
 string commandString = @"SELECT * FROM Shippers";

 SqlDataAdapter dataAdapter = new SqlDataAdapter(
commandString, connectionString);

 SqlCommandBuilder scb = new SqlCommandBuilder(
dataAdapter);

 DataSet myDataSet = new DataSet();
 dataAdapter.Fill(myDataSet, "Shippers");

 DataTable sTable = myDataSet.Tables["Shippers"];

 // add data
 object[] o = { 0, "General", "555-1212" };
 sTable.Rows.Add(o);

 dataAdapter.Update(myDataSet, "Shippers");

 myDataSet.AcceptChanges();
 }
 }
}

Example

 Module 7: Using ADO.NET to Access Data 45

How to Update a Database Record

Modify the row containing the record

Generate a new dataset containing the changes

Check the new dataset for errors

Merge the changes back into the original dataset

Call the Update method on the data adapter

Call the AcceptChanges method on your original dataset

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When you modify a database record, you change the data in the row in the
dataset and then call the Update method to merge the changes back into the
database. However, because other users of the data may have changed the data
while you were disconnected, you must also handle any errors that may be
raised.

To modify a database record:

1. Make the desired modifications to the rows in the DataSet.
2. Generate a new dataset that contains only the changed records (rows).
3. Examine this dataset for errors, and then fix any errors that you can.
4. If you have fixed any changes, merge the new dataset back into the original

dataset.
5. Call the Update method of the data adapter to merge the changes back into

the database.
6. If the changes to the database were successful, accept them in the dataset by

calling the AcceptChanges method. If they were unsuccessful, reject them
by calling the RejectChanges method.

To handle an error that is raised because another user changed the data:

1. Use a try…catch block to handle exceptions that may be raised during the
database update.
The return value from the Update method tells you how many records were
updated.

2. After the database update, call the DataSet AcceptChanges method to
indicate that the changes are successful, or call the RejectChanges method
to reject the changes.

Introduction

Modifying a database
record

Handling an error

46 Module 7: Using ADO.NET to Access Data

using System;
using System.Data;
using System.Data.Common;
using System.Data.SqlClient;

namespace LearningCSharp {
 class SampleUpdate {
 static void Main(string[] args) {
 .
 .
 // modify
 try {
 DataRow targetRow = sTable.Rows[3];

 targetRow.BeginEdit();
 targetRow["CompanyName"] = "Standard";
 targetRow.EndEdit();

 DataSet changedSet;
 changedSet = myDataSet.GetChanges(DataRowState.Modified);
 if (changedSet == null)
 return;

 // check for errors
 bool fixed = false;
 if (changedSet.HasErrors) {
 // Fix errors setting fixed=true
 // or else return;
 return;
 }

 if (fixed) {
 myDataSet.Merge(changedSet);
 }
 int n = dataAdapter.Update(myDataSet, "Shippers");

 if (n > 0) {
 myDataSet.AcceptChanges();
 }
 }
 catch {
 // handle error
 // attempt to fix changes
 // If not fixable, reject changes
 myDataSet.RejectChanges();
 }
 }
 }
}

Example

 Module 7: Using ADO.NET to Access Data 47

How to Delete a Database Record

� Delete the row from the dataset

� Update the database

� Accept the changes to the dataset

dataTable.Rows[0].Delete();dataTable.Rows[0].Delete();

dataSet.AcceptChanges();dataSet.AcceptChanges();

dataAdapter.Update(dataSet);dataAdapter.Update(dataSet);

*****************************ILLEGAL FOR NON-TRAINER USE******************************

To delete a DataRow object from a DataTable object, use the Delete method
of the DataRow object.

The Delete method marks the row for deletion. The actual removal occurs when
the application calls the AcceptChanges method. By using Delete, you can
programmatically check which rows are marked for deletion before actually
removing them. When a row is marked for deletion, its RowState property is
set to Deleted.

When using a DataSet or DataTable in conjunction with a DataAdapter and a
relational data source, use the Delete method of the DataRow to remove the
row. The Delete method marks the row as Deleted in the DataSet or
DataTable but does not remove it. Instead, when the DataAdapter encounters
a row marked as Deleted, it executes its DeleteCommand to delete the row at
the data source. You can then permanently remove the row by using the
AcceptChanges method.

The following example demonstrates how to call the Delete method on a
DataRow to change its RowState to Deleted:

DataTable sTable = myDataSet.Tables["Shippers"];
.
.
.
sTable.Rows[3].Delete();
int nRows = dataAdapter.Update(myDataSet, "Shippers");
myDataSet.AcceptChanges();

Introduction

Delete method

Example

48 Module 7: Using ADO.NET to Access Data

Practice: Updating a Database Record

� In this practice, you will create and delete
a database record, experimenting with the
Update, AcceptChanges and
RejectChanges methods

� In this practice, you will create and delete
a database record, experimenting with the
Update, AcceptChanges and
RejectChanges methods

Guided PracticeGuided PracticeGuided Practice

10 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will use a simple application that adds and deletes a row of data to the
Shippers table in the Northwind database. The application is shown in the following illustration:

 Module 7: Using ADO.NET to Access Data 49

The application buttons perform the following functions:

� Add: Adds a row to the dataset (not the database table), with the data Northwest Shipping and
555-1212.

� Delete: Deletes the fourth row from the dataset.
� Reload from Database: Reloads the table from the database into the dataset.
� Update: Updates the database, using dataAdapter.Update().
� Accept: Accepts changes in the dataset, using dataset.AcceptChanges().
� Reject: Rejects changes in the dataset, using dataset.RejectChanges().

The DataGrid shows the current contents of the dataset.

The source code for the application used in this practice is located in install_folder\Practices\
Mod07\AddDelete\AddDelete.sln.

Tasks Detailed steps

1. Using Windows Explorer,
browse to
install_folder\Practices
\Mod07\AddDelete and
double-click AddDelete.exe.

a. Using Windows Explorer, browse to
install_folder\Practices\Mod07\AddDelete.

b. Double-click AddDelete.exe to run the application.

2. Add a record to the dataset
by clicking Add.

� In the application window, click Add.

Note that a record is added to the dataset. This change is not yet committed
to the database.

3. Refresh the dataset from the
database by clicking Reload
from Database.

� In the Application window, click Reload from Database.

Note that the new record disappears. This is because the record was not
added to the database.

4. Add a record to the dataset
by clicking Add and then
Update.

a. In the application window, click Add and then click Update.

The Update button updates the dataset with the changes.

b. Click Reload from Database to verify that the change was made to
the Shippers table.

5. Delete the record from the
dataset by clicking Delete.

� In the application window, click Delete.

6. Reject the deletion. a. In the application window, click Reject.

b. Verify that the deletion was rejected by clicking Reload from
Database to reload the Shippers table.

7. When you are finished, close
the application.

� When you have finished with the application, close it by clicking the
Close button.

If time permits, experiment with the application, or examine the source code.

50 Module 7: Using ADO.NET to Access Data

Review

� ADO.NET Architecture

� Creating an Application That Uses ADO.NET to Access
Data

� Changing Database Records

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. Name two major parts of the ADO.NET object model.
.NET data provider classes and the DataSet class.

2. What is the difference between a connected and disconnected environment?
A connected environment is one in which a user or an application is
continuously connected to a data source.
A disconnected environment is one in which a user or an application is
not constantly connected to data source. Users can take a subset of data
with them on a disconnected device, and then merge change back into
the central data base later.

3. What is the purpose of the DataAdapter object?
A DataAdapter object is a tool that is used to create and initialize
various tables. It allows for the retrieval and saving of data between a
DataSet object and the data source. It is responsible for pulling out data
from the physical store and pushing it into data tables and relations.

 Module 7: Using ADO.NET to Access Data 51

4. What is the name of the Windows Forms control that you can use to display
multiple records that are retrieved from a data source?
The DataGrid control.

5. Which method is used to populate a DataSet with results of a query?
The method that is used to populate the DataSet with results of a query
is the Fill method.

52 Module 7: Using ADO.NET to Access Data

Lab 7.1: Creating a Data Access Application with
ADO.NET

� Exercise 1: Creating a simple database
table viewer

� Exercise 2: Writing a Simple Database
Table Viewer

� Exercise 3 (if time permits): Creating a
simple database viewer

1 hour

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will be able to:

� Use the Visual Studio .NET development environment database wizards and
tools to create an ADO.NET application.

� Write an ADO.NET application in C#.

This lab focuses on the concepts in this module and as a result may not
comply with Microsoft security recommendations.

Before working on this lab, you must have:

� The ability to create a Windows application in C#.
� The ability to use Server Explorer to access database tables.

Objectives

Note

Prerequisites

Estimated time to
complete this lab:
30 minutes

 Module 7: Using ADO.NET to Access Data 53

Exercise 0
Lab Setup
The Lab Setup section lists the tasks that you must perform before you begin the lab.

Task Detailed steps

� Log on to Windows by
using your Student account.

� Log on to Windows by using the following account information:

• User name: Student

• Password: P@ssw0rd

Note that the 0 in the password is a zero.

Note that by default the install_folder is C:\Program Files\Msdntrain\2609.

54 Module 7: Using ADO.NET to Access Data

Exercise 1
Creating a Simple Database Table Viewer
In this exercise, you will use the Visual Studio development environment database wizards and
tools to build a simple application that reads, displays, and allows you to view and edit a specific
table in a database.

Use the following information to build your connection string and your command statement.

� Server: your computer (or localhost)
� Database: 2609
� Table: BankCustomers
When you are finished, your solution should appear as shown in the following illustration:

 Module 7: Using ADO.NET to Access Data 55

The solution for this lab is located in install_folder\Labfiles\Lab07_1\Exercise1\
Solution_Code\LabADO.sln. Start a new instance of Visual Studio .NET before opening the
solution.

Tasks Detailed steps

1. Create a new Windows
application and use Server
Explorer to add a
SqlDataAdapter object to your
application. The data adapter
should read all information
from the BankCustomers table
in the 2609 database on your
computer.

a. Create a new Windows application.

b. Use Server Explorer to locate the 2609 database and the
BankCustomers table on your computer.

c. Use Server Explorer to add the BankCustomers table to your
application.

By default, the SqlDataAdapter object created by Server Explorer reads
all of the data in the table. This object is named sqlDataAdapter1 by
default; this is the name that we will use to refer to the object throughout
this lab.

What ADO.NET objects are created when you use Server Explorer to add the BankCustomers table to your
application?

A SqlDataAdapter object, a SqlConnection object, and four SqlCommand objects (to perform
SelectCommand, InsertCommand, UpdateCommand and DeleteCommand). Only the SqlConnection
and SqlDataAdapter objects are shown on the design window. You can see the SqlCommand objects in
the code window.

2. Create a DataSet object and fill
it with the data from the
BankCustomers table.

a. In the Designer window, select sqlDataAdapter1 and on the Data
menu, click Generate Dataset.

b. Use the dialog box to add the DataSet object to your application.

c. Write code to fill the DataSet object with the data that is read by
sqlDataAdapter1 by using sqlDataAdapter1.Fill. You can place
this line of code in the Form1 constructor, after the call to
InitializeComponent.

3. Add a DataGrid to your form,
and bind its DataSource to the
BankCustomers table in the
DataSet object.

a. Use the Toolbox to add a DataGrid to your form.

b. Use the Properties window to set the DataGrid DataSource
property to the BankCustomers table in the DataSet object.

56 Module 7: Using ADO.NET to Access Data

Tasks Detailed steps

4. Add a button to your form,
label it Update, and then add a
Click event handler that will
call the data adapter Update
method.

a. Add a button to the form, changing its Text property to Update.

b. Double-click the Update button and note that a new method is
added.

By default, this method is called button1_Click, and it is called when
the Update button is clicked.

c. In button1_Click, call the Update method of the SqlDataAdapter
object. For example:

sqlDataAdapter1.Update(dataSet11);

5. Compile, run, and test your
application.

a. Press F5 to compile and run your application.

b. You can edit existing database entries and then click Update to
commit these changes to the database.

c. Use Server Explorer to verify that your changes have been made to
the database.

d. You can also add new records if you specify a unique CustomerID.

6. Save your application and quit
Visual Studio .NET.

a. Save your application.

b. Quit Visual Studio .NET.

 Module 7: Using ADO.NET to Access Data 57

Exercise 2
Writing a Simple Database Table Viewer
In this exercise, you will write code that creates a simple Windows-based application that reads
information from the BankCustomers table in the 2609 database on your computer, and displays
the Customer name and ID. This action will be performed when the user clicks the Load button on
the form.

Do not use the Designer to add any ADO.NET components to your form.

The solution for this lab is located in install_folder\Labfiles\Lab07_1\Exercise2\
Solution_Code\LabADO2.sln. Start a new instance of Visual Studio .NET before opening the
solution.

Tasks Detailed steps

1. Start Visual Studio .NET and
then open install_folder
\Labfiles\Lab07_1\Exercise2
\LabADO2.sln.

a. Start a new instance of Visual Studio .NET.

b. On the Start Page, click Open Project.

c. In the Open Project dialog box, browse to the folder
install_folder\Labfiles\Lab07_1\Exercise2, click LabADO2.sln,
and then click Open.

2. In the loadData_Click method,
write code to connect to the
BankCustomers table in the
2609 database, and read the
contents of the table into a
DataSet object.

a. Create a connect string that connects to a data source on your
computer, with an initial catalog of 2609.

b. Create a command string that selects everything from the
BankCustomers table.

c. Create a SqlDataAdapter object, using the connect string and the
command string.

d. Create a DataSet object.

e. Use the Fill method of the SqlDataAdapter to fill the DataSet
object.

58 Module 7: Using ADO.NET to Access Data

Tasks Detailed steps

3. Write code to write the contents
of the DataSet table to the
ListBox control.

a. Use a foreach loop to iterate over the Rows collection in the
DataSet table.

Each element of the Rows collection is of type DataRow.

b. Within the foreach loop, create a string that contains the customer
name and customer ID for each customer in the table.

For example, if the row for an individual customer is called
customerRecord, you can access the customer name by using the
following code:

string name = customerRecord["CustomerName"];

c. Within the foreach loop, use the following code to add items to the
ListBox, where the ListBox is named listBox1:

listBox1.Items.Add(name);

4. Compile, run, and test your
application.

a. Press F5 to compile and run your application.

b. Compare your output to that shown in the graphic at the start of this
exercise.

5. Save your application and quit
Visual Studio .NET.

a. Save your application.

b. Quit Visual Studio .NET.

 Module 7: Using ADO.NET to Access Data 59

If Time Permits
Creating a Simple Database Table Viewer

Modify the database query to view more than one table. For example, the BankAccounts table is
related to the BankCustomer table by CustomerID.

60 Module 7: Using ADO.NET to Access Data

Lab 7.2 (optional): Creating a Windows Application That
Uses ADO.NET

� Exercise 1: Creating a Windows
Application that uses ADO.NET

� Exercise 2 (if time permits): Writing an
ADO.NET Application with Windows Forms

1 hour

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will be able to create a Windows-based
application that uses ADO.NET to add, delete, and modify database
information.

This lab focuses on the concepts in this module and, as a result, may not
comply with Microsoft security recommendations.

Before working on this lab, you must be able to:

� Describe ADO.NET.
� Create a Windows-based application that uses ADO.NET.
� Connect to a database.
� Create a query.
� Use a DataSet object to manage data.
� Bind a DataGrid object to a data source.

Objectives

Note

Prerequisites

Estimated time to
complete this lab:
60 minutes

 Module 7: Using ADO.NET to Access Data 61

Exercise 0
Lab Setup
The Lab Setup section lists the tasks that you must perform before you begin the lab.

Task Detailed steps

� Log on to Windows by
using your Student account.

� Log on to Windows by using the following account information:

• User name: Student

• Password: P@ssw0rd

Note that the 0 in the password is a zero.

Note that by default the install_folder is C:\Program Files\Msdntrain\2609.

62 Module 7: Using ADO.NET to Access Data

Exercise 1
Creating a Windows Application That Uses ADO.NET
In this exercise, you will write a Windows application that reads information from a database table
and provides users with the ability to add new records, delete records, and modify records.

When you are finished, your solution should appear as shown in the following illustration:

 Module 7: Using ADO.NET to Access Data 63

Starter code is provided for the user interface. In this lab, you will implement the Save, Delete, and
Update button functionality.

The solution for this lab is located in install_folder\Labfiles\Lab07_2\Solution_Code\LabADO.sln.
Start a new instance of Visual Studio .NET before opening the solution.

Tasks Detailed steps

1. Start Visual Studio.NET and
then open install_folder
\Labfiles\Lab07_2
\LabADO.sln.

a. Start a new instance of Visual Studio.NET.

b. On the Start Page, click Open Project.

c. In the Open Project dialog box, browse to install_folder\Labfiles
\Lab07_2, click LabADO.sln, and then click Open.

d. In Solution Explorer, click Form1.cs, and then press F7 to open the
Code Editor.

2. Build and run the
application, and familiarize
yourself with the intended
purpose of the New, Save,
Delete, and Update buttons.

a. In Visual Studio .NET, press F5.

b. Examine the Customers application and set breakpoints so that you can
follow the execution sequence.

c. Click New. Notice that the TextBoxes are cleared and that the Save
button is active. Users can now enter new customer information in the
text boxes and it will be saved to the database when they click Save.

d. Click Save, and notice that the Save button is disabled. The Save
function will place the new customer information in the database.

e. The Update button will allow the user to change an existing record.

f. The Delete button will allow the user to delete the currently selected
record from the database.

g. Close the Customers window.

3. Implement the Save
function.

a. In Visual Studio .NET, on the View menu, point to Show Tasks, and
then click All.

b. In the Task List, double-click TODO 1: Add the customer to the
database.

Note that the code that reads the customer information from the form is
supplied to you. The new customer information is placed in a new
DataRow object called newRow.

c. Write code to complete the buttonSave_Click method by adding the
new row to the dataset, updating the database, and accepting the
changes in the dataset. Note that the dataset is called customerDS.

64 Module 7: Using ADO.NET to Access Data

Tasks Detailed steps

4. Implement the Delete
function.

a. In Visual Studio .NET, on the View menu, point to Show Tasks and
then click All.

b. In the Task List, double-click TODO 2: Delete the selected customer
from the database.

c. Use the following method provided in the Form1 class to identify the
currently selected row:

this.SelectedRow()

d. Delete the selected row from the dataset, and update the database. If the
update is successful, accept the dataset changes, otherwise reject the
changes.

e. Use the following method to update the User Interface when you have
finished the deletion:

this.UpdateTextBoxes()

5. Implement the Update
function.

a. In Visual Studio .NET, on the View menu, point to Show Tasks and
then click All.

b. In the Task List, double-click TODO 3: Update the customer record.

c. Use the GetChanges method to get the changed dataset.

d. If the changed dataset does not exist, has no changes, or has errors,
then simply reject the changes and return.

e. Update the database with the changed set, and if the update was
successful, accept the changes.

Note: Do not use the Merge method of the dataset. The Update
command that is auto-generated by SqlCommandBuilder is not
intended to work with merged datasets and will cause the Update
method to throw a DBConcurencyException.

6. Save your solution and quit
Visual Studio .NET.

a. On the File menu, click Save All.

b. On the File menu, click Exit.

 Module 7: Using ADO.NET to Access Data 65

If Time Permits
Writing an ADO.NET Application with Windows Forms

Some areas of the ValidCustomer method in this sample application should be developed.

The sample application copies the input directly from the user and saves it to the database. In a real
application, this action is a security risk because the user can enter SQL commands instead of data,
and thereby attempt to access the database in unexpected ways. Although the database security
should limit access so that users can access only what they really need, the application must also
ensure that only valid data is sent to the database.

The ValidCustomer method should check that the values sent to the database are valid data. For
example, the telephone number must contain only digits, a name must contain only the set of
characters A to Z and a to z plus a period. Regular expressions are a good way to validate data in
this way. The .NET Framework provides a regular expression class named Regex. If time permits,
read about this class in the .NET Framework documentation.

THIS PAGE INTENTIONALLY LEFT BLANK

