msdn training

Module 8: Creating
Windows—based
Applications

Contents

Overview 1
Lesson: Creating the Main Menu

Lesson: Creating and Using Common

Dialog Boxes 10
Lesson: Creating and Using Custom Dialog

Boxes 20
Lesson: Creating and Using Toolbars 33
Lesson: Creating the Status Bar 47
Lesson: Creating and Using Combo Boxes 55
Review 64

Lab 8.1: Building Windows Applications 65

Microsoft



Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

0 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, ActiveX, BizTalk, FrontPage, IntelliSense, JScript,
Microsoft Press, MSDN, PowerPoint, Visual Basic, Visual C++, Visual C#, Visual Studio, Win32,
Windows Media are either registered trademarks or trademarks of Microsoft Corporation in the
United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.



Module 8: Creating Windows-based Applications iii

Instructor Notes

Presentation:
105 minutes

Lab:
60 minutes

Required materials

Preparation tasks

This module describes how to create menus, common and custom dialog boxes,
status bars, and toolbars to enhance the usability of an application based on
Microsofte Windowse. The purpose of this module is to allow the students to
apply their newly acquired C# language skills and develop useful Windows-
based applications.

Important Each lesson of this module is preceded by an instructor-led
demonstration, and followed by a Guided Practice.

Two advanced topics, Printing from an Application, and Implementing Drag
and Drop, are available for your students’ reference in Appendix B, “Advanced
Topics.”

After completing this module, students will be able to:

m  Create the main menu.

Create and use common dialog boxes.
m Create and use custom dialog boxes.

Create and use toolbars.

Create the status bar.

Create and use combo boxes.

To teach this module, you need the following materials:

m  Microsoft PowerPointe file 2609A_08.ppt
m  Module 8, “Creating Windows-based Applications”

To prepare for this module:

m  Read all of the materials for this module.
m  Complete the practices and lab.

m Practice the instructor-led demonstrations.



iv Module 8: Creating Windows-based Applications

How to Teach This Module

This section contains information that will help you to teach this module.

Lesson: Creating the Main Menu

This section describes the instructional methods for teaching each topic in this
lesson.

In this section, the students learn how to create the main window menu, add
items to the menu, and associate methods with menu items. The following
instructor-led demonstration will help you teach these skills effectively.

Demonstration » How to create the main menu

1. Open Microsoft Visual Studio® .NET and create a new Windows
Application project named MyForm.

2. Add a MainMenu control to the form.

3. Add some menu items, for example File, Edit, and View.

RI=TEY

[ty

4. Add some submenus, for example, New, Open, Save, Save As, and Print.

5. Add an event handler to a menu item.



Module 8: Creating Windows-based Applications v

Lesson: Creating and Using Common Dialog Boxes

In this lesson, the students examine some of the most common dialog boxes that
are provided in the Forms namespace and learn how to use them in a Windows-
based application. The following instructor-led demonstration will help you
teach these skills effectively.

» How to create and use a common dialog box

1. Open Visual Studio .NET and create a new Windows Application project
named MyForm.

2. Create an instance of any one of the common dialog boxes, for example,
OpenFileDialog, SaveFileDialog, FontDialog, or PrintDialog.

3. Set properties of the common dialog box. The following table shows
properties of an OpenFileDialog dialog box.

Property Description

Filter The file filters to display in the dialog box, for example, C# files
(*.cs); all files (*.*)

Multiselect Controls whether multiple files can be selected in the dialog box

ShowHelp Enables the Help button

4. Add an event handler to open the dialog box.
5. Use the ShowDialog( ) method to display the dialog box.
6. Test the application.



Vi Module 8: Creating Windows-based Applications

Lesson: Creating and Using Custom Dialog Boxes

This lesson explains how to work with tabbed dialog boxes by using the
development environment. The following instructor-led demonstration will help
you teach these skills effectively.

» How to create and use a custom dialog box

1. Open Visual Studio .NET and create a new Windows Application project
named MyForm.

2. Add a dialog box to the project by right-clicking the project in Solution
Explorer.

3. Set the dialog box properties as shown in the following table.

Property Setting
FormBorderStyle FixedDialog
ControlBox False
MinimizeBox False
MaximizeBox False
ShowInTaskbar False

4. Provide a way for users to dismiss the dialog box by adding two buttons to
the form. Change the Text property of one button to OK and the other
button to Cancel, as shown in the following illustration:

@ Feedback =10 x|

5. Set the DialogResult property of the OK and Cancel buttons to OK and
Cancel respectively.

6. Instantiate and display the dialog box from the event handler of any menu
item, using the ShowDialog method.



Module 8: Creating Windows-based Applications vii

P> How to create a custom tabbed dialog box

1. Open Visual Studio .NET, create a new Windows Application project
named MyForm.

2. Add a dialog box to the project by right-clicking the project in Solution
Explorer.

3. Add a TabControl to the dialog box.
4. Add or remove tabs by using the TabPage Collection Editor.

=10l

Mew | Check, upl

Lesson: Creating and Using Toolbars

The toolbar is a standard feature in many Windows-based applications. In this
lesson, the students learn how to display a row of buttons and drop-down menus
that activate commands, and how to write the code for the Button-Click event.
The following instructor-led demonstration will help you teach these skills
effectively.

» How to create a toolbar

1. Open Visual Studio .NET and create a new Windows Application project
named MyForm.

2. Add a Toolbar control to the form.
3. Set toolbar properties.
Property Description

Appearance Sets the appearance of the ToolBar control: Normal for a three-
dimensional and raised view. Flat for a flat button that rises to a
three-dimensional view.

Button size Suggests the size of buttons of the tool bar.

Buttons (Collection) editor allows adding and removing tool bar buttons.

Cursor The cursor that appears when the mouse passes over the control.

ImageList The imageList from which this tool bar will get all of the button
images.

Dock Determines the docking location of the tool bar.

_ioix
RN




viii Module 8: Creating Windows-based Applications

4. Add icons to the toolbar.

Tip Visual Studio .NET provides a library of icons in the
Program_Files\Visual Studio.NET\Common7\Graphics\icons\ folder.

5. Set docking options for a toolbar.

B Layout
anchor Top, Left
Top -

Location
Size

Dock




Module 8: Creating Windows-based Applications ix

Lesson: Creating the Status Bar

In this lesson, the students learn how to add a status bar to a form and
customize it to provide useful information, such as the name of a file that is
currently open or the current date or time. Students also learn how to add panels
to a status bar. The following instructor-led demonstration will help you teach
these skills effectively.

» How to create a status bar

1. Open Visual Studio .NET and create a new Windows Application project
named MyForm.

2. Add a StatusBar control to the form.
3. Set the status bar properties.

Properties Description

ShowPanel Determines whether a status bar displays panels or a single line of
text

Panels (Collection) Editor allows adding and removing panels to the
status bar

4. Add panels to a status bar at design time.

page 1 Sec 12:54 prm g




X Module 8: Creating Windows-based Applications

Lesson: Creating and Using Combo Boxes

The Windows Forms ComboBox control is used to display data in a drop-down
combo box. In this lesson, the students learn how to create a combo box, and
how to associate objects with it. The following instructor-led demonstration
will help you teach these skills effectively.

Review

P How to create and use a combo box

1.

Open Visual Studio .NET and create a new Windows Application project
named MyForm.

2. Add a ComboBox control to the form.

3.

£ safari Planner

Filz  Wigw

Sll-102

South Africa
Swaziland

Add strings to the items collection by using the Add and AddRange
methods.

The review questions are based mostly on conceptual understanding and
procedures that were covered thoroughly in the module. You can use a
discussion format to answer the questions so that everyone gets the benefit of
knowing the right answers.

Lab 8.1: Building Windows Applications

Before beginning this lab, students should have completed all of the practices
and answered the review questions. Students must be able to perform most of
the tasks that they learned in the lessons and the practices. The lab is simple but
comprehensive. It leads students through the entire process of creating a

Windows-based application as described in the lessons of this module.



Module 8: Creating Windows-based Applications 1

Overview

= Creating the Main Menu

m Creating and Using Common Dialog Boxes
m Creating and Using Custom Dialog Boxes
m Creating and Using Toolbars

= Creating the Status Bar

= Creating and Using Combo Boxes

Introduction

Objectives

Menus, dialog boxes, status bars, and toolbars are tools that enable you to
expose functionality to your users or alert them to important information in
your application. Menus contain commands that are grouped by a common
theme. You can use dialog boxes to interact with the user and retrieve user
input. Status bars indicate application state or provide information about the
entity in the application that has focus, such as a menu command. Toolbars
provide buttons that make frequently used commands available.

This module describes how to create menus, common and custom dialog boxes,
status bars, and toolbars to enhance the usability of your application.

After completing this module, you will be able to:

Create the main menu.

Create and use common dialog boxes.
Create and use custom dialog boxes.
Create and use toolbars.

Create the status bar.

Create and use combo boxes.



2 Module 8: Creating Windows-based Applications

Lesson: Creating the Main Menu

= How to Create the Main Menu

= How to Associate Methods with Menu ltems

Il

Introduction This lesson explains how to create the main window menu, add items to the
menu, and associate methods with menu items.

Lesson objectives After completing this lesson, you will be able to:
m  Create the main menu.

m  Add items to the menu.

m  Associate methods with menu items.

Lesson agenda This lesson includes the following topics and activities:

m  Demonstration: Creating the Main Menu
m  How to Create the Main Menu
m  How to Associate Methods with Menu Items

m Practice: Creating the Main Menu



Module 8: Creating Windows-based Applications 3

Demonstration: Creating the Main Menu

m This instructor-led demonstration will show

Ny you how to add a MainMenu control to a
_ ) Windows Form in C#. It will also show how
to create a hierarchy of menus and write
code for the Click event.
w’

%

N

& .
r
[ .4
*****************************ILLEGAL FOR NON-TRAINER USE******************************

This instructor-led demonstration will show you how to add a MainMenu
control to a Microsofte Windows® Form in C#. It will also show how to create
a hierarchy of menus and write code for the Click event. The instructor will:

1. Open Microsoft Visual Studio® .NET and create a new Windows
Application project named MyForm.

2. Add a MainMenu control to the form.

3. Add some menu items, for example File, Edit, and View.

(Bl

4. Add some submenus, for example, New, Open, Save, Save As, and Print.

5. Add an event handler to a menu item.



4 Module 8: Creating Windows-based Applications

How to Create the Main Menu

Daka |

#ML Schema
Components
Windows Forms |~
| K Pointer agﬁ:lrn‘ll !Elﬂ
A Las
A LinkLshel ] B
- o Mew Tl
ab| Butkon L
. Qpen Lo
abl TexkBox oS|[0 C 0 00ooocoooooooa
hperee  Jfiiiiiiiiiiiin

MainMenu
[V CheckBox
* RadioButton
m GroupBox
FictureBiox
{71 Panel
5] DataGrid
=B ListBox
CheckedListBox

Introduction The purpose of a menu is to make using your application easy and intuitive for
the user. You can create a menu in Windows Forms by adding a MainMenu
object from the Toolbox to the form at design time. You can then create the
menu items and submenus for your menu by using the Menu Designer.

Creating a menu, menu To add a menu and menu items to a form:

items, and submenus
1. In the Windows Forms Designer, open the form to which you want to add a

menu.
2. In the Toolbox, double-click the MainMenu control.
A menu is added to the form. The menu displays the text “Type Here.”

3. Click the text Type Here, and then type the name of the desired menu item
to add it to the menu.

4. To provide access to the built-in keyboard shortcut feature of Microsoft
Windows, type an ampersand (&) in front of the letter that will be the
shortcut. These shortcuts are indicated by an underlined letter, and can be
activated by pressing ALT plus the underlined letter.

For example, enter the string &File to place File on the menu, or E&xit for
Exit. If you need to place an ampersand in a menu, type &&

5. The name you type is listed as the Text property of the menu item.

Note By default, the MainMenu object contains no menu items, so the
first menu item that you add to the menu becomes the menu heading.




Module 8: Creating Windows-based Applications 5

6. To add another menu item, click another “Type Here” area in the Menu
Designer.

a. To add a submenu, click the area to the right of the current menu item.
You cannot add a submenu to a menu heading.

b. To add another item to the same menu, click the area below the current
menu item.

7. Change the Name property of the menu item to something meaningful. For
example, if you added a menu item labeled Open to the File menu, name
the item fileOpen.

8. You can insert a horizontal line into a menu by setting the text property to
the minus symbol (-).



6 Module 8: Creating Windows-based Applications

How to Associate Methods with Menu Items

= Double-click the menu item to open the event handler

m Write code for the event handler

this.menuItemFilePrint.Index = 4;
this.menuItemFilePrint.Text = "Print...";

this.menuItemFilePrint.Click += new
System.EventHandler(this.menuItemFilePrint_Click);

public void menultemFilePrint_Click( Object sender,
EventArgs e ) {

// code that runs when the event occurs

Introduction After you create the menu, you can add functionality to the menu by associating
methods with the menu items.

Associating methods You can add functionality to menu items by associating methods with the Click

with menu items event of the menu item. The Click event occurs when the user clicks the menu
item, when the user selects the item by using the keyboard and presses ENTER,
or when the user clicks an access key or shortcut key that is associated with the
menu item.

To associate methods, and therefore functionality, with a menu item:

1. In the Menu Designer, click the menu item you want to add functionality to.

2. In the Properties window, rename the Name property of the item by using
the naming convention that you will use for all items on the menu. For
example, name the Open menu item Openltem.

3. Double-click the menu item to open an event handler for its Click event.

4. Write the code for the event handler.



Module 8: Creating Windows-based Applications

7

Practice: Creating the Main Menu

‘ Guideld Practice
% , = You will practice creating the main menu,
gl;; adding items such as File, View, and Exit
ﬁi% to the menu. You will create an event
Q-‘“‘% handler for one of the menu options, such
"‘:ﬁ’ as Exit.
: = You can use the solution to this practice
2 in the next lesson

S w2

In this practice, you will open an application, add a main menu to it, and then implement menu
functions.

The existing application reads animal information from an XML file and displays it in a simple
Windows-based application. Currently, the application appears as follows:

(™ 700 Information |:||E|E|

Load | Wiew Mext Save

Antelope range in zize from the biny royal antelope, which
stands about 25 cm [about 10 i) high at the shoulder, to the
giant eland, zometimes about 1.8 m [about 5.9 ft] in height
and weighing up to about B30 kg [about 1500 [b].

Antelope

The solution for this practice is located in install_folder\Practices\Mod08\MainMenu_Solution.
Start a new instance of Visual Studio .NET before opening the solution.

Your task is to use menu functions to replace the buttons.



8

Module 8: Creating Windows-based Applications

Note that the solution contains the following three C# files:

= Animals.cs—contains the definitions for the animal types. You will not need to change anything in

this file.

s Forml.cs—the Windows interface code. You will write your code in this file.

m  Zoo.cs—the class that contains the collection of animals. You will not need to change anything in

this file.

The application expects to find the data files in the solution folder.

The solution for this practice is in install_folder\Practices\Mod08\MainMenu_Solution
\Animals.sln. Start a new instance of Visual Studio .NET before opening the solution.

Tasks

Detailed steps

1. Start Visual Studio .NET, and then
open install_folder\Practices
\Mod08\MainMenu\Animals.sln.

Start a new instance of Visual Studio .NET.
On the Start Page, click Open Project.

In the Open Project dialog box, browse to install_folder
\Practices\Mod08\MainMenu, click Animals.sln, and then click
Open.

In Solution Explorer, click Form1.cs, and then press F7 to open
the Code Editor.

2. Build and run the solution, and
familiarize yourself with it.

In Visual Studio .NET, press F5.

In the Zoo Information window, click Load, and then click
View Next.

Close the Zoo Information window.

3. Add a MainMenu control to the
Form.

For detailed information on how to complete this task, see How
to Create the Main Menu in this lesson.

4. Add the following menu items, and
create event handlers for them as
specified in the following tables:

For detailed information on how to complete this task, see How
to Create the Main Menu and How to Associate Methods with
Menu Items in this lesson.

Menu Action

File None

Open Same as Load button: call the Zoo.Load method and Initialize the form
Save Same as Save button: call the Save method in the Zoo class

- Insert a horizontal line

Exit (Optional: use Application.Exit() to exit the application.)
View None
Next Same as View Next button: display the next animal

- Insert a horizontal line

Options Do nothing in the event handler




Module 8: Creating Windows-based Applications 9

Tasks

Detailed steps

5. Build and test your solution.

a. On the Build menu, click Build Solution.

b. Ifnecessary, use breakpoints and the debugging tool to check

your application.

6. Delete the Load, View Next, and
Save buttons, and their event
handlers, and test your application
again.

[ 00 Information

Options. ..

After you load the data, your application should appear as
follows:

Elephant

Ovwer the past 40 million years, mare than B00 species of
elephants have roamed the earth. Today only bwo species
are alivethe African elephant and the Asian elephant. Climate
fuctuations ower the millennia and resulting wegetation
changes caused the extinction of many elephant species, but
human impact has also taken its toll

7. Save your solution.

®  On the File menu, click Save All.




10 Module 8: Creating Windows-based Applications

Lesson: Creating and Using Common Dialog Boxes

= How to Create and Use a Common Dialog Box
= How to Set Common Dialog Box Properties

= How to Read Information from a Common Dialog Box

Introduction This lesson examines some of the most common dialog boxes that are provided
in the Forms namespace and explains how to use them in a Windows-based
application.

Lesson objectives After completing this lesson, you will be able to:

m  Use the OpenFileDialog control.
m  Use the SaveFileDialog control.
m  Use the PrintDialog control.

m  Use the FontDialog control.

Lesson agenda This lesson includes the following topics and activities:

m  Demonstration: Creating and Using a Common Dialog Box
m  How to Create and Use a Common Dialog Box

m  How to Set Common Dialog Box Properties

m  How to Read Information from a Common Dialog Box

m  Practice: Using a Common Dialog Box



Module 8: Creating Windows-based Applications 11

Demonstration: Creating and Using a Common Dialog Box

m This instructor-led demonstration will show
S you how to create a common dialog box, for
example OpenFileDialog, and add
functionality to it

This instructor-led demonstration will show you how to create a common
dialog box, for instance OpenFileDialog, and add functionality to it. The
instructor will:

1. Open Visual Studio .NET and create a new Windows Application project
named MyForm.

2. Create an instance of any one of the common dialog boxes, such as
OpenFileDialog, SaveFileDialog, FontDialog, or PrintDialog.

3. Set the properties of the common dialog box. The following table shows
properties of an OpenFileDialog dialog box.

Property Description

Filter The file filters to display in the dialog box, for example, C# files
(*.cs); all files (*.*)

Multiselect Controls whether multiple files can be selected in the dialog box
ShowHelp Enables the Help button.

4. Add an event handler to open the dialog box.
5. Use the ShowDialog( ) method to display the dialog box.
6. Test the application.



12 Module 8: Creating Windows-based Applications

How to Create and Use a Common Dialog Box

To create a dialog box in an application:
= Drag a common dialog box to your form

= Browse to the event handler with which you want to
open the dialog box

= In the event handler, add the code to open the dialog
box

private void OpenMenuItem_Click(object sender,
System.EventArgs e) {

openFileDialogl.ShowDialog(Q);

Introduction In this topic, you will learn how to add a common dialog box to a form, how to
configure it, and how to write code to display it.

The Microsoft NET Framework provides six classes that provide the common
user interface functions of opening files, saving files, selecting fonts, setting
page printing values, printing, and selecting a color. These classes,
OpenFileDialog, SaveFileDialog, FontDialog, PageSetupDialog,
PrintDialog, and ColorDialog, are implemented as dialog boxes.

Cre_ating and displaying  To add a common dialog box to an application, you select it from the Toolbox
a dialog box and drag it onto your form. To display a dialog box, you must create the object
and then invoke the ShowDialog method on the object.

It is normal to display the dialog box in response to an event, such as a menu
selection or a button click from the user of the application.

To display a dialog box:

1. Create an instance of the common dialog box.
2. Browse to the event handler within which you want to open the dialog box.

3. Use the ShowDialog() method to show the dialog box.

Example For example, Visual Studio .NET inserts the following line of code when you
add an OpenFileDialog control to your project:

private System.Windows.Forms.OpenFileDialog openFileDialogl;

OpenMenultem_Click, an event handler that is called when the user clicks
Open on the File menu, is shown in the following example. This method
displays the common Windows Open File dialog box.

private void OpenMenuIltem_Click( object sender,
System.EventArgs e) {
openFileDialogl.ShowDialog();
}



Module 8: Creating Windows-based Applications 13

How to Set Common Dialog Box Properties

| Properties

3 x|

Properties
window

—

IopenFiIeDiangl System.Windows.Forms.OpenFiIeDiangLI

A EE A=

El Configurations

fadvanced)

E pesign
{Mame)
Modifiers

B Misc
AddExtension
CheckFileExists
CheckPathExists
DefaultExt
DereferenceLinks

Options

FileMarne

Filker
FilterInde:x
InitialDirectary

Multiselect

Restorelirectory
ShowHelp
ShowReadOnly
Title
alidatefames

& (DynamicProperties)

ReadOnlyChecked

openFileDialog1

Private ;I

True
True
True

True

1

False
False
False
False
False

True

Introduction

Common dialog boxes

Visual Studio .NET includes a set of preconfigured dialog boxes, which you
can adapt for your own applications. By relying on standard Windows dialog
boxes, you create applications whose basic functionality is immediately familiar

to users.

The following table shows some of the most common dialog boxes, their
functions, and some of their associated properties.

Options Description Properties
OpenFileDialog  Allows users to open files ~ Multiselect: You can enable users to
by using a preconfigured multi-select files to be opened with
dialog box. the Multiselect property
Filter property sets the current file
name filter string, which determines
the options that appear in the Files of
type box in the dialog box.
SaveFileDialog Selects files to save and FileName: The file first shown in the
the location where they dialog box, or the last one selected by
are saved. the user
Filter: The file filters to display in
the dialog box
FontDialog Exposes the fonts that are ~ Font: The font selected by the user
currently installed on the MaxSize: The maximum size that
system. can be selected (or zero to disable)
MinSize: The minimum size that can
be selected (or zero to disable)
PrintDialog Displays a document as it ~ AllowPrintToFile: Enables and

would appear when it is
printed.

disables the Print To File check box



14

Module 8: Creating Windows-based Applications

Example

The OpenFile and SaveFile dialog boxes show all types of files unless the
Filter property is set. To set this property, you pass a properly formatted string
to the property. The string consists of pairs of labels and filters, separated by the
vertical bar (]) character. The first pair is the default value.

For example, a graphics program may allow the user to browse for TIF files and
JPEG files, expecting file extensions of .tif and .jpg. The Filter string could be
“TIF files (*.tif) | *.tif | JPEG files (*.jpg) [*.jpg”.

If you want to use more than one file extension filter with a label, separate the
filters with a semicolon as shown in the following example:

openFileDialogl.Filter = @"C Sharp files|*.cs;*.csproj|XML
Files|*.xm1|A11 files (*.*)[*.*";

When this dialog box is opened, it appears as follows:

Look, in: |J ahimals ﬂ = I:j( =0
' Ibin
5% 5 ICobi

My Recent Ebl animals.cs
Documents & animals, csproj

@: Ebl AssemblyInfo.cs

BFnrml.cs

Dezktop B TR

My Documents

L !
m

My Computer

>
My Netwark. File name: | j \ﬂl
[

Places
Filez of tupe: |EI Sharp files

Cahicel

#ML Files
Al files 7]




Module 8: Creating Windows-based Applications 15

How to Read Information from a Common Dialog Box

DisogResultProperty

Use the value returned by this property to determine what
action the user has taken

| Rezing th euls fom adialog box

Determine the DialogResult
OK, Cancel, Abort, Retry, Ignore, Yes, No, (or None)

if (openFileDialogl.ShowDialog() == DialogResult.OK) {

MessageBox.Show(openFileDialogl.FileName) ;

Introduction

Retrieving a result from
a dialog box

Reading the user
information

When you display a dialog box in an application, it is very important to know
what action the user took. For example, if you display a dialog box that prompts
users to dismiss the dialog box, you must know whether the user clicked the
OK button or the Cancel button.

When the user closes a dialog box, the ShowDialog method returns a
DialogResult value to the calling method. The object that displayed the dialog
box can check the DialogResult to determine if the user clicked OK, Cancel,
or some other value.

For example:

if ( openFileDialogl.ShowDialog() == DialogResult.OK ) {
MessageBox.Show( "You selected " +
openFileDialogl.FileName );
}

Possible DialogResult values are OK, Cancel, Abort, Retry, Ignore, Yes, and
No (or None).

The dialog box object maintains information about user selections and makes
that information available through properties. For example, you can use the
Font property of the FontDialog object to determine the font that the user
selected. In the preceding examples, the FileName property of the
OpenFileDialog object is used to determine the name of the file that the user
selected.



16 Module 8: Creating Windows-based Applications

Reading user
information from a
dialog box

To read user information from a dialog box:

1. Browse to the event handler or the method for which you want to set the
DialogResult property.

2. Add code to retrieve the DialogResult value.

The following examples illustrate how user input is derived from a FontDialog
object:

fontDialogl = new FontDialog();
if ( fontDialogl.ShowDialog() == DialogResult.OK ) {
string fontInfo = fontDialogl.Font.Name + " -- ems:"
+ fontDialogl.Font.Size.ToString(Q);
MessageBox.Show("You selected: " + fontInfo );

}

The preceding code shows how to read the name of the selected font and the
size of the font in ems. This code produces the following output:

Fant: Fant style: Size:
|C0uriel New |F|egu|al oK. |
-~
Estrangelo Edessa — |ltalic 3 Cancel
() Franklin Gothic Mediur—' |Bold
() Garamond Bold Italic
() Gautami
Georgia
T Georgia Ref b i
Effects Sample
[T Strikeaout
[~ Underline \.Aa BbYVZ Z
Script:
|westemn |

‘fou selected: Courier New -- ems: 24




Module 8: Creating Windows-based Applications 17

Setting the owner of the
dialog box

The Form.ShowDialog method has an optional argument, owner, that you can
use to specify a parent-child relationship for a form. Usually, you want the
owner of the dialog box to be the object that created and uses the dialog box.
When you specify that a dialog box is a child of your form, that dialog box
always appears in front of the form, which is the correct Windows behavior for
dialog boxes.

In your form code, you can use the this keyword to specify the calling object as
the owner of the dialog box, as shown in the following code:

public class Forml : System.Windows.Forms.Form {
// .
openFile_Click( object sender, EventArgs e ) {
OpenfileDialog openFile = new OpenFileDialog();
if ( openFile.ShowDialog( this ) == DialogResult.0K ) {
// open the file
}



18 Module 8: Creating Windows-based Applications

Practice: Using a Common Dialog Box

-V

= In this practice, you will add an
OpenFileDialog control to an application.
Optional tasks include filtering file types.

m Optional: use your solution from the

previous lesson

In this practice, you will add an OpenFileDialog control to the Zoo Information application.

If you have a working solution from the Creating the Main Menu lesson in this module and you
want to build upon that, open that solution and skip steps 1 and 2 in this practice.

The solution for this practice is located in install_folder\Practices\Mod08
\CommonDialog Solution\Animals.sIn. Start a new instance of Visual Studio .NET before opening

the solution.

Tasks

Detailed steps

1. Start Visual Studio .NET, and
then open install_folder
\Practices\Mod08\CommonDialog
\Animals.sln.

a. Start a new instance of Visual Studio .NET.
b. On the Start Page, click Open Project.

c. Inthe Open Project dialog box, browse to
install_folder\Practices\Mod08\CommonDialog, click
Animals.sln, and then click Open.

d. In Solution Explorer, click Forml.cs, and then press F7 to open
the Code Editor.

2. (Optional) Build and run the
solution, and familiarize yourself
with it.

a. In Visual Studio .NET, press F5.
b. Examine the Zoo Information application.

¢. Close the Zoo Information window.

3. Add an OpenFileDialog control
to your project.

®  Drag an OpenFileDialog control from the Toolbox onto your
Form.

By default, this is called openFileDialog1.




Module 8: Creating Windows-based Applications 19

Tasks

Detailed steps

4. In the event handler for the
loadItem menu item, add code so
that the OpenFileDialog object
shows XML files by default.

In Design view, on the File menu, double-click Open.

In the loadItem_Click method, use the Filter property of
openFileDialog to show XML files and all files:

openFileDialogl.Filter = @"XML Files
Ceoxm) [*.xm1 [A1T files (*.%)|*.*";

5. Show the OpenFileDialog object,
retrieve the filename selected by
the user, and then load the file.

Note that the provided LoadZoo method loads the file that is specified
in the zooFile string.

a. Use the ShowDialog method to display openFileDialog]1.

b. If ShowDialog returns DialogResult.OK, then execute the
following code:
zooFile = openFileDialogl.FileName;
this.LoadZoo();

InitializeDisplay();

c. An alternative solution to this task is to call the Zoo.Load method
directly. If you do this, remember to handle any exceptions that
may be thrown.

6. Test your application by loading a.  On the Build menu, click Build Solution.
the XML data file b. If necessary, use breakpoints and the debugger to check your

AnimalData.xml.

application.

7. Save your solution.

On the File menu, click Save All




20 Module 8: Creating Windows-based Applications

Lesson: Creating and Using Custom Dialog Boxes

= How to Create and Use a Custom Dialog Box

= How to Create and Use a Custom Tabbed Dialog Box

L] Options El@gl

Introduction This lesson explains how to work with tabbed dialog boxes by using the
development environment.

Lesson objectives After completing this lesson, you will be able to:

m  Create and use a dialog box.

m Create and use a tabbed dialog box.

Lesson agenda This lesson includes the following topics and activities:

= Demonstration: Creating and Using a Custom Dialog Box
m  How to Create and Use a Custom Dialog Box

m  Demonstration: Creating a Custom Tabbed Dialog Box

m  How to Create and Use a Custom Tabbed Dialog Box

m Practice: Creating a Custom Dialog Box



Module 8: Creating Windows-based Applications 21

Demonstration: Creating and Using a Custom Dialog Box

m This instructor-led demonstration will show

.y you how to create a custom dialog box,
_ ) dismiss the dialog box by adding OK and

Cancel buttons, set the DialogResult
properties, and add an event method to
display the dialog box

J:‘

(4
4

This instructor-led demonstration will show you how to create a custom dialog
box, dismiss the dialog box by adding OK and Cancel buttons, set the
DialogResult properties, and add an event method to display the dialog box.
The instructor will:

1. Open Visual Studio .NET and create a new Windows Application project
named MyForm.

2. Add a dialog box to the project by right-clicking the project in Solution
Explorer.

3. Set the dialog box properties, as shown in the following table:

Property Setting
FormBorderStyle FixedDialog
ControlBox False
MinimizeBox False
MaximizeBox False

ShowInTaskbar False



22

Module 8: Creating Windows-based Applications

4. Provide a way for users to dismiss the dialog box by adding two buttons to

the form. Change the Text property of one button to OK and the other
button to Cancel as follows:

™ Feedback =10 x|

. Set the DialogResult property of the OK and Cancel buttons to OK and

Cancel respectively.

. Instantiate and display the dialog box from the event handler of any menu

item by using the ShowDialog method.



Module 8: Creating Windows-based Applications 23

How to Create and Use a Custom Dialog Box

[Im Use the Toolbox to add a dialog box to the form
ﬂ” Set dialog box properties
Eﬂ” Add event methods to display the dialog box

!w

Display the dialog using Show () or DoModal()

Introduction

Modal or modeless
dialog boxes

A dialog box is a form, System.Windows.Forms.Form, whose
FormBorderStyle Enumeration property is set to FixedDialog. Dialog boxes
are often used to provide or collect information from the user.

A dialog box is usually, but not always, characterized by a modal style of
interaction with the user. (Modal means that the user is not able to use the rest
of the software application while the modal dialog box is open.)

Dialog boxes are derived from the System.Windows.Forms.Form class, so
when you create a new dialog box, you must inherit this class. You can do this
easily by using the Visual Studio .NET Windows Forms Designer. The
Windows Forms Designer automatically creates a new class for your dialog box
that is derived from System.Windows.Forms.Form, and you can place
controls on it just as you would on the main form.

A dialog box is either modal or modeless.

A modal dialog box, the most common type, must be explicitly closed before
you can continue working with the rest of the application. To close the dialog
box, you usually click OK, Cancel, or an equivalent. A modeless dialog box
allows you to keep it open while you work in another window in the same
application.

Use modal dialog boxes when you must obtain some information from the user
before the program can proceed. For example, if the user wants to save a file,
you must get a filename before you can create or open the file. So, you create a
modal dialog box to obtain this information.

Use a modeless dialog boxes when an application must have multiple windows
open at once. For example, a painting program may have a modeless dialog box
that you can keep open so that you can adjust paintbrush properties.



24 Module 8: Creating Windows-based Applications

Example

Adding a custom dialog
box

Dismissing the dialog
box

Setting the DialogResult
property of a button

Any dialog box can be displayed in either manner.
To display a modal dialog box, use the following code:

userOptions.ShowDialog()

To display a modeless dialog box, use the following code:

userOptions.Show();

Show and ShowDialog take an optional parameter that allows you to specify
the owner of the dialog box. Dialog boxes always layer on top of their owner.
Normally, you can easily pass a reference to the main form by using this
keyword.

printDialog.ShowDialog(this);

To add a custom dialog box to your application from the Toolbox:

1. Add a form to your project by right-clicking the project in Solution
Explorer, pointing to Add, and then clicking Windows Form.

2. Right-click the form in Solution Explorer, and then click Rename to rename
the dialog box to something meaningful for your application.

3. In the Properties window, change the FormBorderStyle property to
FixedDialog.

4. Set the ControlBox, MinimizeBox, and MaximizeBox properties to false.
Dialog boxes do not usually include menu bars, window scroll bars,
Minimize and Maximize buttons, status bars, or sizable borders.

5. Set the ShowInTaskbar property to false, because dialog boxes should not
show in the Windows taskbar.

Because a dialog box does not have a Close box, you must provide a way for
users to dismiss the dialog box. Normally, you do this by add OK and Cancel
buttons.

To add an OK button and a Cancel button:

1. Add two buttons to the form.

2. Change the Text property of one button to OK and change the Name
property to something meaningful, for example ok.

3. Change the Text property of the other button to Cancel, and change the
Name property to something meaningful, such as cancel.

Your dialog box must return a DialogResult property to the calling method so
that the application can determine if the dialog box was accepted or canceled.
Because buttons are used to perform this function, they have a DialogResult
property that you can set to determine the value that is returned to the calling
method. For example:

Button ok;

ok.DialogResult = DialogResult.OK;



Module 8: Creating Windows-based Applications 25

Setting accept and
cancel behavior

Adding an event method

Obtaining selections

The dialog box must know which buttons provide accept and cancel types of
behavior, so it can provide normal Windows behaviors, such as being dismissed
when the user presses the Escape key. You set these behaviors with the
AcceptButton and CancelButton properties.

» Set the dialog box properties AcceptButton and CancelButton to the
okOptions and cancelOptions button objects.

Now you can add controls and code to the dialog box to implement the required
functionality.

You display custom dialog boxes in an application the same way you display a
common dialog box or any other form, by using the ShowDialog method.
Usually this is done in response to a user request, in an event handler.

For example, the following event handler is called when the user selects an
Options menu item. It creates a custom dialog box OptionsDialog and calls the
ShowDialog method to display the form.

private void OptionsItem_Click(object sender,
System.EventArgs e) {
OptionsDialog userOptions = new OptionsDialog(Q);
if ( userOptions.ShowDialog() == DialogResult.OK ) {
// User clicked OK
}
}

The return value from the ShowDialog method is checked to discover whether
the user clicked OK or Cancel.

The reason for using a dialog box is to allow the user to provide information or
to change application settings. When the user clicks OK and closes the dialog
box, your application needs a way to examine the settings of the dialog box. To
do this, you create public properties for the dialog box form.

For example, if you have a TextBox called myName in a dialog box, you can
encapsulate myName.Text in a public property called Name, as shown in the
following code:

public class OptionsDialog : System.Windows.Forms.Form {

public string Name {
get {
return myName.Text;
}
}

You can use the following code from the main form:

if ( userOptions.ShowDialog() == DialogResult.OK ) {
string username = userQOptions.Name;

}



26 Module 8: Creating Windows-based Applications

Setting the tab order of a  The tab order is the order in which a user moves focus from one control to

form or dialog box another on a form by pressing the TAB key. Each form has its own tab order.
By default, the tab order is the same as the order in which you created the
controls. Tab-order numbering begins with zero.

Setting the tab order To set the tab order by using the View menu:
using the View menu
1. On the View menu, click Tab Order.

2. Click the controls sequentially to establish the tab order that you want.

3. When you are finished, on the View menu, click Tab Order again.

@0 WindowsApplicationt - Microsoft Yisual C# .NET [design] - Form1.cs [Design]™

File  Edit | Wiew | Project Build Debug Data Formak  Tools  Window  Help
i -t {E Code Fro |- E-E | ) Debug - | g
e = -5| Designer Shift+F7

B | g (B Do e T H e (B .
r— Open

Toolbox L1 =P rt Page  Formil.cs [Design]*|
Data Open With..,
Companents | [ Salution Explorer Chrl+alk+L

‘Windows For
5% Class View Ctrl+Shift4+C

k- Fointer | _,

Zm|  Server Explorer Chrl+al+3

A Label =

A LinkLabe Fl presource View Crrl+shift+E

b| Button Properties 'Window F4

bl TextBod 22 Toolbax ChrlHAlt+

% Mainte J_% Pending Checkins

IV Check ‘web Browser »

(% RadioBu )

o Other Windows »

u GroupB =

1 Datacridi T3k Order

Pickuref; Shows Tasks »

{ ] Panel Toolbars »

Alternatively, you can set tab order in the Properties window by using the
TablIndex property. The TabIndex property of a control determines where it is
positioned in the tab order. By default, the first control drawn has a TabIndex
value of 0; the second has a TabIndex of 1, and so on.

Setting the tab order To set the tab order using the TabIndex property:
using the Tabindex
property 1. Select the control.

2. Set the TabIndex property to the required value.
3. Set the TabStop property to True.

If you set the TabStop property to False, the control is passed over in the
tab order of the form. A control whose TabStop property has been set to
False still maintains its position in the tab order, even though the control is
skipped when you cycle through the controls by using the TAB key.



Module 8: Creating Windows-based Applications 27

Demonstration: Creating a Custom Tabbed Dialog Box

m This instructor-led demonstration will show
you how to add and remove a tab to a

n
: custom dialog box in the designer
-

%

N

& ,
r
[ .4
*****************************ILLEGAL FOR NON_TRAINER USE******************************

This instructor-led demonstration will show you how to add and remove a tab
to a custom dialog box in the designer. The instructor will:

1. Open Visual Studio .NET and create a new Windows Application project
named MyForm.

2. Add a dialog box to the project by right-clicking the project in Solution
Explorer.

3. Add a TabControl to the dialog box.
4. Add or remove tabs by using the TabPage Collection Editor.

=10l

Mew | Check, upl




28 Module 8: Creating Windows-based Applications

How to Create and Use a Custom Tabbed Dialog Box

Introduction

TabControl object

TabControl properties

Adding and removing a
tab in the designer

The .NET Framework provides many controls that you can add to your
application so that it provides a standard Windows user interface. Most of these
are simple to use, but others have some unique features. Some of the more
interesting controls are described in this topic.

You can customize a dialog box by adding a Windows Forms TabControl
object. The TabControl object displays multiple tabs, like dividers in a
notebook or labels in a set of folders in a filing cabinet. The tabs can contain
pictures and other controls. You can use the TabControl object to produce the
kind of multiple-page dialog box that appears many places in the Windows
operating system, such as the Display control panel.

The most important property of the TabControl object is the TabPages
collection, which contains the individual tabs. Each individual tab is a TabPage
object. Clicking a tab raises the Click event for that TabPage object.

You can change the appearance of tabs in Windows Forms by using the
properties of the TabControl and the TabPage objects that make up the
individual tabs on the control. By setting these properties, you can display
images on tabs, display tabs vertically instead of horizontally, have multiple
rows of tabs, and enable or disable tabs programmatically.

To add a tab in the designer:

1. Drag a TabControl from the Windows Forms tab of the Toolbox to the
designer.

2. In the Properties window, click the Add Tab link.
-Or-

In the Properties window, click the Ellipsis button ../ next to the TabPages
property to open the TabPage Collection Editor, and then click the Add
button.



Module 8: Creating Windows-based Applications 29

Adding, removing,
enabling, and disabling
tabs programmatically

To remove a tab in the designer:
1. In the Properties window, click the Ellipsis button --. next to the TabPages
property to open the TabPage Collection Editor.

2. In the left window, under Members:, select the tab to remove, and then
click the Remove button.

To add a tab programmatically:

» Use the Add method of the TabPages property.

TabPage myTabPage = new TabPage(”Print Options”);
tabControll.TabPages.Add(myTabPage) ;

To remove a tab programmatically:

* To remove selected tabs, use the Remove method of the TabPages
property. To remove all tabs, use the Clear method of the TabPages

property.
tabControll.TabPages.Remove(tabControll.SelectedTab);

// Removes all the tabs:
tabControll.TabPages.Clear( );

To enable or disable tabs programmatically:

tabPagel.Enabled = false;



30 Module 8: Creating Windows-based Applications

Practice: Creating a Custom Dialog Box

"

aQ = In this practice, you will create a custom
3? dialog box that can be used to set an
ﬁl& application option that allows the animal
P name label to be optionally displayed
== . .
o m Optional: use your solution from the
Q previous lesson
°
ar 9
NE

In this practice, you will create a custom dialog box that can be used to set an application option
that allows the animal name label to be optionally displayed. The Options dialog box is launched
from the Options item on the View menu.

Elephant

W Show Animal Name

g | Cancel

If you have a working solution from the Using a Common Dialog Box lesson in this module and
you want to build on that, open that solution and skip steps 1 and 2 in this practice.

The solution for this practice is located in install_folder\Practices\Mod08\Custom_Solution
\Animals.sIn. Start a new instance of Visual Studio .NET before opening the solution.



Module 8: Creating Windows-based Applications 31

Tasks

Detailed steps

1. Start Visual Studio .NET and then
open install_folder\Practices
\Mod08\Custom\Animals.sln.

Start a new instance of Visual Studio .NET.
b. On the Start Page, click Open Project.

c. Inthe Open Project dialog box, browse to install_folder
\Practices\Mod08\Custom folder, click Animals.sln, and then
click Open.

d. In Solution Explorer, click Forml.cs, and then press F7 to open
the Code Editor.

2. (Optional) Build and run the
solution, and familiarize yourself
with it.

a. In Visual Studio .NET, press F5.
b. Examine the Zoo Information application.

c¢. Close the Zoo Information window.

3. Add a new custom dialog box to
your project.

a. In Solution Explorer, use the Add New Item option on the Add
menu to add a new Window Form to your project.

* Name the form Options.cs.
b. Set the following property values:
* FormBorderStyle: FixedDialog

¢ ControlBox, MinimizeBox, MaximizeBox and
ShowInTaskbar: false

*  FormBorderStyle is located under Appearance in the
Properties window.

¢ ControlBox, MinimizeBox, MaximizeBox, and
ShowInTaskbar are located under Window Style in the
Properties window.

4. Add OK and Cancel buttons to
your dialog box.

®  Drag two buttons from the Toolbox to the Options form.

e Name the OK button ok, and change the Text property to
OK.

* Name the Cancel button cancel, and change the Text
property to Cancel.

* Set the DialogResult properties for the buttons to the correct
values.

5. Add a CheckBox control to your
Options form, and set the following
properties:

e Name: showLabel
¢ Text: Show animal name

¢ Checked: true

a. Drag a CheckBox control from the Toolbox to the Options.cs
form.

b. Change the Name, Text, and Checked properties to the values
shown in the left column.




32

Module 8: Creating Windows-based Applications

Tasks

Detailed steps

6.

Write a Property bool
Options.ShowLabel that returns
true when the CheckBox is
checked.

This value is retrieved from the
CheckBox.Checked property.

a. Switch to the Code Editor for the Options form.

b. Write a property named ShowLabel that returns the value of
CheckBox.Checked. Place this code between the class member
variable declarations and the Options constructor.

Example code:
public bool ShowlLabel {
get {
return showlLabel.Checked;

In the event handler for the
Options menu item, write code to
create and display your new dialog
box.

a. Ifnecessary, create an event handler for the Options menu item
by switching to Design view and double-clicking the Options
menu item.

b. In the event handler, create your dialog box by using the

following code:
Options zooOptions = new Options();

c. Use the ShowDialog method to display the dialog box.

In the Options event handler, set
animalName.Visible to false if the
user cleared the Show animal
name check box on your dialog
box, and clicked OK.

" In the Options event handler, write code that sets the
animalName.Visible property to the value of the showLabel
property on your custom dialog box if the DialogResult is
DialogResult.OK:

animalName.Visible = zooOptions.ShowlLabel;

Test your application by loading
the XML data file

AnimalData.xml, and changing
the Show Animal Name option.

a. On the Build menu, click Build Solution.

b. If necessary, use breakpoints and the debugger to check your
application.

10. Save your solution.

®  On the File menu, click Save All.




Module 8: Creating Windows-based Applications 33

Lesson: Creating and Using Toolbars

= How to Create a Toolbar
= How to Use Toolbar Properties
= How to Write Code for the ButtonClick Event

DEeHan SRy t2Rd o-o- | a@EOB=

Final Showing Markup = Show = &% % b« 2%~ (g~ 2 | F]
Prink Preview|

Introduction

Lesson objectives

Lesson agenda

The toolbar is a standard feature in many Windows-based applications.
Toolbars display a row of buttons and drop-down menus that activate
commands. Typically, the buttons and drop-down menus correspond to items in
the menu structure of an application, providing a graphical interface through
which the user has quick access to the application’s most frequently used
functions and commands.

After completing this lesson, you will be able to:
m  Create a toolbar.

m Set toolbar icons and docking options.

m  Write an event handler for the ButtonClick.event.

This lesson includes the following topics and activities:

m  Demonstration: Creating a Toolbar

m  How to Create a Toolbar

m  How to Use Toolbar Properties

m  How to Write Code for the ButtonClick Event

m  Practice: Creating and Using a Toolbar



34 Module 8: Creating Windows-based Applications

Demonstration: Creating a Toolbar

m This instructor-led demonstration will show

Ny you how to create a toolbar, set the toolbar
_ properties, add icons to a toolbar and set the
docking options of a toolbar
w’

%

N

& .
r
[ .4
*****************************ILLEGAL FOR NON-TRAINER USE******************************

This instructor-led demonstration will show you how to create a toolbar, set the
toolbar properties, add icons to a toolbar, and set the docking options of a
toolbar.

The instructor will:

1. Open Visual Studio .NET and create a new Windows Application project
named MyForm.

2. Add a Toolbar control to the form.

Set toolbar properties.
Property Description
Appearance Controls the appearance of the ToolBar control:

Normal for a three-dimensional and raised view
Flat for a flat button that rises to a three-dimensional view

Button size Suggests the size of buttons of the toolbar

Buttons (Collection) editor allows adding and removing tool bar buttons

Cursor The cursor that appears when the mouse passes over the control

ImageList The imageList from which this tool bar will get all of the button
images

Dock Determines the docking location of the tool bar

_ioix
RN




Module 8: Creating Windows-based Applications 35

4. Add icons to the toolbar.

;IEI_I

Tip Visual Studio .NET provides a library of icons in the
Program_Files\Visual Studio.NET\Common7\Graphics\icons\ folder.

5. Set docking options for a toolbar.

B Layout

Anchor Top, Left

Diock, Top -
Locakion /
H Size

Dock




36 Module 8: Creating Windows-based Applications

How to Create a Toolbar

Taoolbo by
| ol
Components |

Windows =orms

[E ContextMenu, s 0 S

ToolBar

L StatusBar S
foes MatifyIcan N

OpenFilebialog oot

5
E SaveFileDislog
1]

15 =1 o R

Fol CaloDialog e
Cliphoard Ring |ﬂ
General |

| Ready ||

Introduction

Creating a toolbar

To create a toolbar for an application, you use the Windows Forms ToolBar
control.

To create and add a toolbar to a form:

1. In the Windows Forms Designer, open the form to which you want to add a
toolbar.

2. In the Toolbox, double-click the Toolbar control. A toolbar is added to the
form.

When you want to add a toolbar that uses images to your application, you must:

= Add a ToolBar control to the form.

= Add ToolBarButton objects to the Buttons collection of the toolbar.
m  Add an ImageList control to the form.

m  Load icon images into the Images collection of the ImageList object.

m  Assign an index to the Images collection of the ImageIndex property of
each ToolBarButtons object.

m Set docking options.

m  Write an event handler for the toolbar.



Module 8: Creating Windows-based Applications 37

Toolbar properties

The following table shows ToolBar properties that you will frequently use.

Property

Description

Appearance

Buttons

ButtonSize

ImageList

ShowToolTips

Affects the appearance of the buttons that are assigned to the
toolbar.

Normal: The toolbar buttons appear three-dimensional and raised.

Flat: The toolbar buttons have a flat appearance. As the mouse
pointer moves over the flat buttons, they appear raised and three-
dimensional.

Holds all the ToolBarButton controls that are assigned to the
toolbar. The Buttons property is a zero-based indexed collection.
Use this property to add buttons to or remove buttons from the
toolbar.

Sets the size of the ToolBarButton controls on the toolbar. If the

ButtonSize property is not set, it will either be set to a default size
or large enough to accommodate the image and text, whichever is
greater.

If you instantiate an ImageList object and assign it to the
ImageList property, you can assign an image from the list to the
ToolBarButton controls.

Determines whether ToolTips will be visible to the user. ToolTips
allow you to provide help to users when they rest the mouse pointer
on a ToolBarButton control. The default value is True.



38 Module 8: Creating Windows-based Applications

How to Use Toolbar Properties

Taolbo:: 8l | ctart Page  Formil.cs [Design]™ | Forml . cs* | 4k X
bata | -
Components ;lglil
Wwindows Forms A | | | I I (/lj

+|+ Splitter
[3 DomainUpDown

A

[TE MumericUpDown

{ ImageList

ﬂ HelpHrovider
B ToalTip imageList 1 imageList?

Clipboard Ring ﬂ
General

| Ready I |

Introduction After you add a ToolBar control to your form, you must add buttons to it. You
can add icons to the buttons to represent various functions, and set docking
options for the toolbar.

Adding buttons to a To add buttons to a toolbar:

toolbar

1.

In Visual Studio .NET, open the Properties window for the ToolBar
control.

Click the Buttons property to select it, and then click the Ellipsis button .-
to open the ToolBarButton Collection Editor.

Use the Add and Remove buttons to add buttons to and remove buttons
from the ToolBar control.

Set the properties of the individual buttons in the Properties window that
appears in the pane to the right of the editor.

Click OK to close the dialog box and create the buttons that you specified.



Module 8: Creating Windows-based Applications 39

Button properties

Adding icons to toolbar
buttons

The following table shows toolbar button properties that you will frequently
use.

Property Description

DropDownMenu Sets the menu that is to appear in the drop-down toolbar button.
The Style property of the toolbar button must be set to
DropDownButton.

Pushed Sets whether a toggle-style toolbar button is currently in the
pushed state. The Style property of the toolbar button must be set
to ToggleButton or PushButton.

Style Sets the style of the toolbar button.

DropDownButton: A drop-down control that displays a menu or
other window when clicked.

PushButton: A standard three-dimensional button.
Separator: A space or line between toolbar buttons.

ToggleButton: A toggle button that appears sunken when clicked
and retains the sunken appearance until it is clicked again.

Text Specifies the text string displayed by the button.

ToolTipText Specifies the text that appears as a ToolTip for the button.
ToolTips allow you to provide help to users when they rest the
mouse pointer on a toolbar button.

Toolbars usually have buttons that use icons to represent a function of the
application. The icons provide easy identification for users. For example, an
icon of a floppy disk is commonly used to represent a File Save function. Each
button should have text or an image assigned to it; you can also assign both.

To display images on your toolbar, you must first add the images to the
ImageList component and then associate the ImageList component with the
ToolBar control.

To add an icon for a toolbar button at design time:

1. Add an ImageList control from the Toolbox to your form.

2. In the Properties window for the ImageList component, click the Images
property to select it, and then click the Ellipsis button ---/ to open the Image
Collection Editor.

3. Use the Add button to add images to the ImageList component, and then
click OK to close the Image Collection Editor.

Tip Visual Studio .NET provides a library of icons in the
Program_Files\Visual Studio.NET\Common7\Graphics\icons\ folder.




40 Module 8: Creating Windows-based Applications

4. In the Properties window for of the ToolBar, set the ImageList property to
the ImageList component that you added earlier.

5. Click the Buttons property of the ToolBar control to select it, and then
click the Ellipsis button -/ to open the ToolBarButton Collection Editor.

6. Select and click a button. Then, in the Properties window that appears in the
pane to the right of the ToolBarButton Collection Editor, set the
Imagelndex property of each toolbar button to one of the values in the list,
which is drawn from the images that you added to the ImageList
component. Click OK to close the ToolBarButton Collection Editor.

Menbers: toolBarButtonz Properties:
toolBarButtonl ﬂ B
{DwnamicPropertie
toolBarButton3 ﬂ =
toolBarButtond Tag
toolBarButtonS =l
({Mame) toolBarButtonz
Modifiers Privake
B
DropDownMenu | {none)
Enabled True
Imagelnde:x Bl 2
PartialPush a
Pushed 1
Style 3
Text (none)
ToolTipText
Add Remove | Visible True
(414 | Cancel Help

Docking the toolbar
right, or left.

A

You can dock toolbars to the edges of your form, either on the top, bottom,



Module 8: Creating Windows-based Applications 41

Setting docking options

for a toolbar

To set docking options for a toolbar on a form:

1.
2.

Drag a Toolbar control onto your form.

In the Properties window, click the arrow to the right of the Dock property.

An editor is displayed that shows a series of boxes representing the edges
and the center of the form.

Click the button that represents the edge of the form where you want to
dock the toolbar. In the Properties window, click the arrow to the right of

the Dock property.

Tockce B =] | Sert oo Formiucs [Meaign]= | 4 & % |[Propartis L]
Cat= RolEar]  Sysen, NIk, Foms, Tooks |
'\u'llh:hml::rms | - : EEHIE"F'E

¥ Tner : |3 AccacchiEy

+|i Edh-

[T Demariipown
¥ mumeddipbon
= TrackBa

i Prognesc Bar
&5 RchTortbos
=50 Inagelist

o] HoProrador
B TodTip

0N bt WAL
24 TeaBar

EF SeaheRar

C;buad-ﬂi'u

Dock to the left

Sanaral

B :l\': |

|| g e
o || eehowior
H Configuratons




42 Module 8: Creating Windows-based Applications

How to Write Code for the ButtonClick Event

= All buttons on a toolbar share a single Click event
m Use the Tag property of the button to define the action

m Add an event handler for the ButtonClick event of the
Toolbar control

m Determine the button the user clicks

m Call the action defined in the Tag property

Introduction All buttons on a toolbar share a single Click event. To add functionality to your
toolbar, you must know which button the user clicks.

Determining which Toolbar buttons normally duplicate events that can be raised in some other

button is clicked manner, usually from menu items. Therefore, when you handle an event on the

toolbar, you identify the button that was pressed and then call the event handler
that it is associated with that button.

Tag property The ToolBarButton class provides a Tag property that makes this task easy.
When you create the ToolBarButton object, set the Tag property to the object
whose behavior you are duplicating. When the toolbar event handler is called,
you can use this property to send a Click event to the original object.



Module 8: Creating Windows-based Applications 43

Example

For example, if the user clicks the icon to open a file, you call the same event
handler that you would call in response to the user selecting Open on the File
menu. The following code, which assumes that you have a menu item,
openFile, illustrates this example.

MenuItem openFile = new MenuItem();
openFile.Click += new EventHandler(openFile_Click);

// create the ToolBar and ToolBarButton objects

ToolBarButton openButton = new ToolBarButton();
openButton.Tag = openFile;

The event handler for the toolbar can handle any button with the following
code:

private void toolBarl_ButtonClick(
object sender,
ToolBarButtonClickEventArgs e) {
ToolBarButton tbb = e.Button;
MenuItem mItem = (Menultem) tbb.Tag;
mItem.PerformClick();
}

From the ToolBarButtonClickEventArgs parameters, the event handler for the
toolbar retrieves a reference to the button that was clicked. The button uses the
Tag property to reference the menu item that has the duplicate functionality, so
the event handler can call the PerformClick method of the menu item, similar
to a click. The PerformClick method causes the event handler for the menu
item to be called.

The advantage of this technique is that the event handler can handle any button.

Note that although the code in the example is broken onto three lines, it
normally would be written as follows:

((MenuItem) (e.Button.Tag)).PerformClick();



44 Module 8: Creating Windows-based Applications

Practice: Creating and Using a ToolBar

‘ Guideld Practice

= In this practice, you create a toolbar and
add File, Open, File Save, and View Next
buttons to it

m Optional: use your solution from the
previous lesson

i

In this practice, you will create a toolbar and add File Open, File Save and View Next buttons to it.
At the end of this practice, your solution should appear similar to the following illustration:

Zoo Information

Lion

Lioevs rival tgess fioe the titke of biggest cat. In fact, lons and
tigers are so smilar in their physical features that without thes
destinctrvedy colored fur, even scientists have rouble beling
|theen apart, Male ions weigh betwean 150 and 250 kg (330
ﬂﬁﬁﬂr:]aﬂdstandabmﬁﬁﬁcmlwﬁh]talmmc
shioniider,




Module 8: Creating Windows-based Applications 45

If you have a working solution from the Creating a Custom Dialog Box lesson in this module and
you want to build upon that, open that solution and skip steps 1 and 2 in this practice.

The solution for this practice is located at install_folder\Practices\Mod08\
ToolBar Solution\Animals.sln. Start a new instance of Visual Studio .NET before opening the

solution.

Tasks Detailed steps

1. Start Visual Studio .NET and then a. Start a new instance of Visual Studio .NET.
open install_folder\Practices b. On the Start Page, click Open Project.
\Mod08\ToolBar\Animals.sln. ]

c. Inthe Open Project dialog box, browse to install_folder
\Practices\Mod08\ToolBar, click Animals.sIn, and then click
Open.

d. In Solution Explorer, click Form1.es, and then press F7 to open
the Code Editor.

2. (Optional) Build and run the a. In Visual Studio .NET, press F5.
so.h}lltl.on, and familiarize yourself b. Examine the Zoo Information application.
with 1t.

c. Close the Zoo Information window.

3. Load icons for buttons by adding a. Press SHIFT+F7 to switch to Design view and then drag an
an ImageList control to the form ImageList control from the Toolbox to Forml.

?md then loading three a_ppropnate b. Use the Images collection and the Image Collection Editor to
1mages from Program F iles add 3 images to the ImageList.

\Microsoft Visual Studio .NET . . .
\Common7\Graphics\icons Samples images can be found in the folders under Program Files

\Microsoft Visual Studio .NET\Common7\Graphics\icons.

4. Add a ToolBar control to your a. Drag the ToolBar control from the Toolbox to your form.
form, and set the Image.Llst b. Set the ImageList property to the ImageList that you created
property to the ImageList that you earlier. By default, this will be imageList1.
created in the previous task.

5. Add four buttons to the Toolbar, B Use the Buttons collection and the ToolBarButton Collection
using the information in the Editor to add the buttons.
following table.

Button Style Name Imagelndex
First button PushButton openFile Select an icon
Second button PushButton saveFile Select an icon
Third button Separator default none

Fourth button PushButton viewNext Select an icon




46 Module 8: Creating Windows-based Applications

Tasks

Detailed steps

6. Write code to set the Tag property
of each PushButton to reference
the menu item that the button is
equivalent to, using the table to
the right.

®  Place the code in the main form constructor, after the
InitializeComponents() method.

Button name Set the tag property value to:

openFile Name of the File Load menu item
saveFile Name of the File Save menu item
viewNext Name of the View Next menu item

For example:

openFile.Tag = ToadItem;

7. Create an event handler for the
ToolBar control that calls the
PerformClick method on the
menu item associated with the
button.

In Design view, double-click the toolbar.

b. Use the following code to invoke the desired method:
ToolBarButton anyButton = e.Button;
MenuItem anyMenultem =

(MenuItem) anyButton.Tag;
anyMenuItem.PerformClick();

8. Test your application by clicking
the ToolBar button that loads the
XML data file AnimalData.xml.

a. On the Build menu, click Build Solution.

b. If necessary, use breakpoints and the debugger to check your
application.

9. Save your solution.

®  On the File menu, click Save All.




Module 8: Creating Windows-based Applications 47

Lesson: Creating the Status Bar

m How to Create a Status Bar

= How to Add Panels to a Status Bar

™ Form1 Q@@

Status Bar Panels

\ \

Status Bar >4 1:42 Phd StatusB alPanel2

Introduction A StatusBar control can be added to a form and customized to provide useful
information, such as the name of a file that is currently open, the current date or
time, or the status of certain keys on the keyboard. In this lesson, you will learn
how to enhance the interface of an application by using the StatusBar control.

Lesson objectives After completing this lesson, you will be able to:

m Create the status bar.

m Set the status bar properties.

Lesson agenda This lesson includes the following topics and activities:
m  Demonstration: Creating a Status Bar
m  How to Create a Status Bar
m  How to Add Panels to a Status Bar

m Practice: Creating a Status Bar



48 Module 8: Creating Windows-based Applications

Demonstration: Creating a Status Bar

m This instructor-led demonstration will show
Ny you how to create a status bar, set the status
_ bar properties and add panels to the status

J a bar

Ny

[

s

<

EPnl
=

This instructor-led demonstration will show you how to create a status bar, add
panels to it, and set the panel properties. The instructor will:

1. Open Visual Studio .NET and create a new Windows Application project
named MyForm.

2. Add a StatusBar control to the form.
3. Set the status bar properties, as shown in the following table:

Properties Description

ShowPanel Determines if a status bar displays panels, or if it displays a single
line of text.

Panels (Collection) Editor allows adding and removing panels to the
status bar.

4. Add panels to a status bar at design time.

page 1 Sec 12:54 prm g




Module 8: Creating Windows-based Applications 49

How to Create a Status Bar

HHN Open the form to which you will add a status bar
EHN Add a StatusBar control from the Toolbox to the form

EHN Set StatusBar Properties

Introduction You can add a StatusBar control to a form and customize the control to
provide useful information, such as the name of a file that is currently open, the
current date or time, or the status of certain keys on the keyboard. The
Windows Forms StatusBar control appears on forms as an area, usually
displayed at the bottom of a window, in which an application can display
various kinds of status information.

Adding a status bar To add a status bar to your form:

1. Open the form to which you want to add a status bar.
2. Use the Toolbox to add a StatusBar control to the form.
3. Set the appropriate StatusBar properties, including ShowPanels.



50 Module 8: Creating Windows-based Applications

StatusBar properties

The following table shows StatusBar properties that you will frequently use.

Property Description

Panels By default, a status bar has no panels. Use the Panels property to add
panels to or remove panels from the StatusBarPanels collection.

ShowPanels If set to False (default), displays only the value of the Text property of
the control.

If set to True, enables you to display panels in your status bar.

SizingGrip  Displays a sizing grip on the lower right corner of the form to indicate to
users that the form can be resized. Use only on a form that can be
resized.

Text Contains the text string displayed in the status bar.

If you will not add panels to the status bar, set the ShowPanels property to
False (the default), and then set the Text property to the text that you want to
appear in the status bar.

To display more than one type of information in the status bar, set the
ShowPanels property to True, and then add the desired number of
StatusBarPanel objects to the Panels collection.



Module 8: Creating Windows-based Applications 51

How to Add Panels to a Status Bar

n”m Open the Properties window for the StatusBar control
EHH Set the ShowPanels property to True
ﬂ‘m In the Panels property, open the StatusBarPanel Collection Editor

EHH Set the panel properties

Use the Add and Remove buttons to add and remove status bar
panels

EHH Close the StatusBarPanel Collection Editor

Introduction

Adding panels to a
status bar

The programmable area in a StatusBar control consists of instances of the
StatusBarPanel class. You can display more than one type of information in
the status bar by setting the ShowPanels property to True and adding panels to
the status bar.

You can use status bar panels to display text or icons to indicate state, or to
display a series of icons in an animation to indicate that a process is working.
For example, a status bar panel in Microsoft Word displays a small icon to
indicate when a document is being saved.

To add panels to a status bar at design time:

1.
2.

Open the Properties window for the StatusBar control.

In the Properties window for the status bar, set the ShowPanels property to
True.

Click the Panels property to select it, and then click the Ellipsis button ..
to open the StatusBarPanel Collection Editor.

Use the Add and Remove buttons to add panels to and remove panels from
the StatusBar control.

Configure the properties of the individual panels in the Properties window
that appears in the pane to the right of the editor.

Click OK to close the dialog box and create the panels that you specified.



52 Module 8: Creating Windows-based Applications

Panel properties

The following table shows StatusBar panel properties that you will frequently

use.

Property

Description

AutoSize

Alignment

BorderStyle

Icon
MinWidth
Style

Text
Width

Sets the resizing behavior of the panel.
Contents: The width of the panel is determined by its contents.

None: The panel does not change size when the status bar control is
resized.

Spring: The panel shares the available space on the status bar with
other panels that have their AutoSize property set to Spring.

Sets the alignment of the panel in the StatusBar control. Options
include Center, Left, and Right.

Sets the type of border that is displayed at the edges of the panel.
None: No border is displayed.

Raised: The panel is displayed with a three-dimensional raised
border.

Sunken: The panel is displayed with a three-dimensional sunken
border.

Sets the icon (.ico file) that is displayed in the panel.
Sets the minimum width of the panel in the status bar.
Sets the style of the panel.

OwnerDraw: Supports the display of images or the use of a different
font than the rest of the panel objects on a status bar.

Text: The panel displays text in the standard font.
Sets the text string displayed in the panel.

Sets the width of the panel, in pixels. This property may change when
the form is resized, depending on the setting of the AutoSize property.



Module 8: Creating Windows-based Applications 53

Practice: Creating the Status Bar

‘ Guid«l‘d Practice

% QJ; = In this practice, you will create a status
“} bar for the application and set the status
ﬁég bar properties by displaying some
& = information on it
=  _ .
o m Optional: use your solution from the
Q previous lesson
Q

S w2

In this practice, you will create a status bar that shows the name of the file that is loaded. When you
are finished, your solution should look similar to the following illustration:

™ Zoo Information Eﬁﬁlg

Lion

Liorvs rival bigers fior the bitle of biggest cat. Infact, bons and
tigers ate =0 similar in thew physcal features that wathout thee
distinctrvely colored fur, even scientists have ouble teling
them apait, Male licns weigh between 150 ard 250 kg (330
and 550 |b) and stand about 123 cm [aboist 48 in) tall al the
shoulder.

Animall atal, xml




54

Module 8: Creating Windows-based Applications

If you have a working solution from the Creating and Using ToolBars lesson in this module that
you want to develop, open that solution and skip steps 1 and 2 in this practice.

The solution for this practice is located in install folder\Practices\Mod08\ StatusBar Solution
\Animals.sIn. Start a new instance of Visual Studio .NET before opening the solution.

Tasks

Detailed steps

1.

Start Visual Studio .NET and then
open install_folder\Practices
\Mod08\StatusBar\Animals.sIn.

Start a new instance of Visual Studio .NET.
On the Start Page, click Open Project.

In the Open Project dialog box, browse to install_folder
\Practices\Mod08\StatusBar\, click Animals.sln, and then click
Open.

In Solution Explorer, click Form1.cs, and then press F7 to open
the Code Editor.

2. (Optional) Build and run the In Visual Studio .NET, press F5.
solhllltllon, and familiarize yourself Examine the Zoo Information application.
with 1t.

Close the Zoo Information window.

3. Add a StatusBar control to your Press SHIFT+F7 to switch to Design view.
application, and set the Use the Toolbox to add a StatusBar control to your form.
ShowPanels property to true.

Set the ShowPanels property to true.

4. Add a panel to the StatusBar Use the Panels property and the StatusBarPanel Collection
object, naming it filePanel. Editor to add a panel to the status bar.

Set the Name property of the panel to filePanel.

5. Write code to assign the filename Locate the LoadZoo method in Form1, and then under the call
to filePanel. Text when a file is to Zoo.Load, assign the name of the file being loaded to the
loaded. filePanel. Text property.

zooFile holds the full path and file name of the file being
loaded. Use the following code to extract the file name.
int lastFilemarkerIndex = zooFile.LastIndexOf('\\");
filePanel.Text = zooFile.Substring( TastFilemarkerIndex + 1 );

6. Test your application by loading Press F5 to build and run your application.
the'XML data file If necessary, use breakpoints and the debugger to check your
AnimalData.xml. application.

7. Save your solution. On the File menu, click Save All




Module 8: Creating Windows-based Applications 55

Lesson: Creating and Using Comho Boxes

|Tcu:l:u:>< L ><|
Drata |
Carponents

\Windows Morms | -

& RadioButtan
fi] GroupBox
5l Datatrid
PFictureBox
{71 Panel

=4 LiskBox
CheckedListF /x

=4 ComboBox

gaz

2o Listview

Introduction The Windows Forms ComboBox control is used to display data in a drop-down
combo box. This lesson explains how to create a combo box, and how to
associate objects with it.

Lesson objectives After completing this lesson, you will be able to:

m  Use a ComboBox control.
m Associate objects with the combo box.

m  Add an event handler for the combo box.

Lesson agenda This lesson includes the following topic and activities:

m  Demonstration: Creating and Using a Combo Box
s  How to Use a Combo Box

m  Practice: Using a ComboBox Control



56 Module 8: Creating Windows-based Applications

Demonstration: Creating and Using a Combo Box

= This instructor-led demonstration will show
Ny you how to create a Combo Box, and how to
_ associate objects with the Combo Box

\)‘:

This instructor-led demonstration will show you how to create a combo box ,
and how to associate objects with the ComboBox control. The instructor will:

1. Open Visual Studio .NET and create a new Windows Application project
named MyForm.

2. Add a ComboBox control to the form.

£ safari Planner

Filz  Wigw

Sl
South Africa
Swaziland

3. Add strings to the items collection using the Add and AddRange method.




Module 8: Creating Windows-based Applications 57

How to Use a Combo Box

= Create the combo box
| ComboBox cb = new ComboBox() I

= Add items to the combo box

object[] cbItems = {"Lion", "Elephant", "Duck"};
ComboBox.Items.Add(cbItems);

= Write an event handler

comboBox1_SeTlectedIndexChanged(object sender,
System.EventArgs e) {
ComboBox ¢ = (ComboBox) sender;
MessageBox.Show( c.SelectedItem );

Introduction

Creating a combo box

Generally, a combo box is appropriate when there is a list of suggested
selection. A combo box contains a text box field, so users can type selections
that are not on the list. Also, combo boxes save space on a form. Because the
full list is not displayed until the user clicks the down arrow, a combo box can
easily fit in a small space. By default, the ComboBox control contains two
parts:

m A text box at the top that allows the user to type a list item.

= A list box on the bottom that displays a list of items that the user can select
from.

After you create a combo box, you can add to and remove items from it, write
an event handler for it, and associate methods with it.

As with other controls, you can create a Combobox control by dragging the
control from the Toolbox onto your form. You can also create it with code as
shown in the following example:

ComboBox cb = new ComboBox();



58 Module 8: Creating Windows-based Applications

Adding items to a
combo box

You can add items to a combo box in a variety of ways, because these controls
can be bound to a variety of data sources. The simplest way to add items to a
combo box is to add strings to the Items collection by using the Add or
AddRange method, as shown in the following code:

string[] animalNames = { "Antelope", "Bear", "Elephant",
"Lion" };
comboBox1.Items.AddRange( animalNames );

A much more useful way to add items to a combo box is to add the objects
themselves, as shown in the following code:

animallList = new object[] {

new Antelope(),

new Bear(),

new Elephant(),

new Lion() };
comboBox1.Items.AddRange( animalList );

Or:

for (int i = 0; i < object.Length; i++ ) {
comboBox1.Items.Add( animalist[i] );
}

The advantage of adding an object is that when you retrieve the user’s selection,
you can get a reference to the selected object rather than a string.

The combo box uses the ToString method to generate the label for the drop-
down list, so you must often override the ToString method.

Finally, you can bind a combo box to a data source, as shown in the following
code:

comboBox1.DataSource = animalist;



Module 8: Creating Windows-based Applications 59

Writing an event handler

Because a combo box has a test entry element and a menu element, you
normally must write event handlers for both of these components. The most
useful events for the menu are SelectedIndexChanged and
SelectionChangeCommitted. The SelectedIndexChanged event is sent when
the index changes, including when the user scrolls through the menu. The
SelectionChangeCommitted event is sent when the selection is made, such as
when the user closes the menu.

For example, to show the selected item in a message box, you can use the
following code:

private void comboBox1l_SelectionChangeCommitted (object
sender, System.EventArgs e) {
// cast the object sender parameter to a combo box
ComboBox c = (ComboBox) sender;
MessageBox.Show(c.SelectedItem);

}

The text box component of the combo box generates a TextChanged event
when the user types in the text box. You can use this event to retrieve the Text
property from the combo box and, for example, match it against the contents of
the menu.

private void comboBox1l_TextChanged(object sender,
System.EventArgs e) {
ComboBox c = (ComboBox) sender;
MessageBox.Show(this, "You typed " + c.Text );
}

Note Often you will want a combo box to use the menu items to automatically
complete the text typed into the text box. This is achieved by using the
FindString method of the combo box. A working sample is provided on the
Student Materials compact disc, in the file Samples\Mod08\ComboBoxSample\
ComboBoxSample.sin.




60

Module 8: Creating Windows-based Applications

Example

The following example shows how to associate objects with the combo box. In
this example, the combo box holds a collection of objects that are derived from
the Animal class.

public abstract class Animal { }

public class Elephant : Animal {
public override string ToString() { return "Elephant"; }
}

public class Lion : Animal {
public override string ToString() { return "Lion"; }

}

public class Bear : Animal {
public override string ToString() { return

}

Bear"; }

public class Antelope : Animal {
public override string ToString() { return "Antelope"; }

}
// ...create a combobox, name it comboBox1...

The preceding code is written as an array. Under normal circumstances, this
code is created somewhere else in the program and copied into an array, as
shown in the following code:

object[] animalList = {
new Antelope(),
new Bear(),
new Elephant(),
new Lion()

1

You can then add these items to the ComboBox object. To improve
performance when you use the Add method to add the objects, call the
BeginUpdate() method before you add and the EndUpdate() method after you
add.

comboBox1.Items.AddRange( animalList );

The event handler for this is shown in the following code:

private void comboBox1l_SelectionChangeCommitted (
object sender, System.EventArgs e) {
ComboBox ¢ = (ComboBox) sender;
Animal a = (Animal) c.SelectedItem;
MessageBox.Show(this, "You selected " + a.ToString() );
}

Note that the event handler is able to get a reference to the Animal object.



Module 8: Creating Windows-based Applications

61

Practice: Using a ComboBox Control

‘ Guid«i‘d Practice
= In this practice, you will add a ComboBox
control to the main form. The purpose of
the combo box is to allow you to select

animals from the menu, rather than by
clicking the “Next” button.

m Optional: use your solution from the
previous lesson

i

In this practice, you will add a combo box to the main form. The purpose of the combo box is to

allow the user to select animals from the menu, rather than by clicking the Next button.

If you have a working solution from the Creating the Status Bar lesson in this module that you want

to develop, open that solution and skip steps 1 and 2 in this practice.

Your solution should appear as shown in the following illustration:

™ 700 Information

CEX

File  Wiew

EiL-IEd

Animnall atal.xml

e
Antelope
Over the past 40 million years, more YEE{Es =T
8 |elephants have rmamed the earth, T -_
v |are alivethe African elephant and the Asian elephant. Climate
fluctuations over the millennia and resuling vegetation

¥ |changes caused the extinction of many elephant species, but
& |human impact has also taken itz toll.

Elephan




62

Module 8: Creating Windows-based Applications

The solution for this practice is located in install_folder\Practices\Mod08\ComboBox
_Solution\Animals.sln. Start a new instance of Visual Studio .NET before opening the solution.

Tasks Detailed steps

1. Start Visual Studio .NET and a. Start a new instance of Visual Studio .NET.
then open ins tall_folder b. On the Start Page, click Open Project.
\Practices\Mod08\ComboBox ) )
\Animals.sln c. Inthe Open Project dialog box, browse to install folder\Practices

\Mod08\ComboBox , click Animals.sln, and then click Open.
d. In Solution Explorer, click Forml.cs, and then press F7 to open
the Code Editor.

2. (Optional) Build and run the a. In Visual Studio .NET, press F5.
solhllltilon, and familiarize yourself b. Examine the Zoo Information application.
with 1t.

c. Close the Zoo Information window.

3. Add a ComboBox control to a. Press SHIFT+F7 to enter Designer mode.

Forml, and name it b. Drag the ComboBox control from the Toolbox onto Form1.
animalSelection.
c. Change the Name property to animalSelection.

4. In Forml, write a method named a. In the Forml class, write a method named
InitializeAnimalSelection. The InitializeAnimalSelection. This method does not return a value
purpose of this method is to add and takes no parameters.
the An.ima.l objects to the Items b. The method adds the Animal objects to the Items collection in the
col.lect1on mn t.he ) combo box. Sample code is provided below. The for loop checks
animalSelection object. myZoo.Count and adds a reference to each animal in the Zoo to

the Items collection in the animalSelection object. Note that
myZoo has an indexer.
public void InitializeAnimalSelection() {
for ( int i = 0; i < myZoo.Count; i++ ) {
animalSelection.Items.Add( (object) myZoo[i] );
}
3

5. Ensure that ®  Insert a call to InitializeAnimalSelection in the loadItem_Click
InitializeAnimalSelection is event handler, after the call to the Zoo.Load() method.
called after the data file is
loaded.




Module 8: Creating Windows-based Applications 63

Tasks

Detailed steps

6. Write an event handler for the
SelectionChangeCommitted
event that gets the reference to
the selected animal from the
sender parameter, and calls
DisplayAnimal to display it.

Press SHIFT+F7 to switch to Design view.

b. Click the ComboBox control, click the Events button (shown to
the left) in the Properties window, and then double-click
SelectionChangeCommitted.

c. Write code that converts the sender parameter to a ComboBox,
then convert the SelectedItem in the ComboBox object to an
Animal.

d. Call DisplayAnimal with the Animal object.

ComboBox ¢ = (ComboBox) sender;

Animal a = (Animal) c.SelectedItem;

DispTlayAnimal( a );

7. Test your application by loading
the XML data file
AnimalData.xml.

a. On the Build menu, click Build Solution.

b. If necessary, use breakpoints and the debugger to check your
application.

8. Save your solution and quit
Visual Studio .NET.

a. On the File menu, click Save All.
b. Quit Visual Studio .NET.




64 Module 8: Creating Windows-based Applications

Review

m Creating the Main Menu

m Creating and Using Common Dialog Boxes
m Creating and Using Custom Dialog Boxes
m Creating and Using Toolbars

= Creating the Status Bar

= Creating and Using Combo Boxes

1. What namespace contains menus, dialog boxes, status bars, and toolbars?

System.Windows.Forms

2. What is the difference between a form and a dialog box?

A dialog box is a form that has its FormBorderStyle set to FixedDialog,
and its ControlBox, MinimizeBox, MaximizeBox, and ShowInTaskbar
properties set to false.

3. Which of the following statements are true?
Images for a toolbar’s buttons are:
a. Assigned an index number in the Image Collection Editor.
b. Automatically attached to the toolbar button based on function.
c. Maintained in the ToolBarButton Image Collection Editor.
d. Maintained in a separate ImageList control.

Both a and d are true.

4. Name two methods by which you can add items to a combo box.

The simplest way to add items to a combo box is to add strings to the
Items collection by using the Add or the AddRange method.



Module 8: Creating Windows-based Applications 65

Lab 8.1: Building Windows Applications

- = Exercise 1: |ng common dia 0g boxes
glll ’ E 1: Add dialog b
3“.; !]! toan application

- . , :
Q = Exercise 2: Creating and using custom
s;gﬁ] dialog boxes
9

I' = Exercise 3: Creating a status bar
Q

0 = Exercise 4 (if time permits): Using
2 . ComboBox controls
o
o
Jf‘-

=

Objectives After completing this lab, you will be able to create an application that uses
standard Windows controls to create a user interface.

Note This lab focuses on the concepts in this module and, as a result, may not
comply with Microsoft security recommendations.

Prerequisites Before working on this lab, you must have the ability to add Windows controls
to an application.

Scenario In this lab, you will add typical Windows functionality to an existing bank teller
application.

The existing application is a very simple example, so that you can quickly
understand it in this lab.

™ Banki ng E@@

M ame |

Tax D |

Balance |

Select | j

Load Mew Customer | Deposit |
Save Withdraw




66 Module 8: Creating Windows-based Applications

Estimated time to
complete this lab:
60 minutes

The provided application has the following files:

Account.cs. Contains CheckingAccount and SavingAccount classes, both
derived from BankAccount. These have properties, such as Balance, and
methods, such as Withdraw and Deposit. This class is complete and you
will not need to change the code in this file to complete the lab.

Customer.cs. Contains the Customer class. Each customer contains a list of
bank accounts, although this example creates only one bank account per
customer. Customers have properties, such as Name, and methods, such as
AddAccount. This class is complete and you will not need to change the
code in this file to complete the lab.

Bank.cs. Contains the list of bank customers. Important methods in the Bank
class are Load and Save, which load and save the bank data, and Add,
which adds a new customer to the bank. This class is complete and you will
not need to change the code in this file to complete the lab.

Form1l.cs. The main application window, shown in the preceding
illustration. In this lab, you will modify this class so that it uses Windows
controls.

NewCustomer.cs. A dialog box that allows the user to create a new customer
account. This class is complete and you will not need to change the code in
this file to complete the lab.

In the starter code:

The Load button loads the bank data from a file.
The Save button saves the bank data to the same file.

The New Customer button opens a dialog box that allows the user to enter
new customer information.

The Deposit and Withdraw buttons do nothing.



Module 8: Creating Windows-based Applications 67

Exercise 0
Lab Setup

The Lab Setup section lists the tasks that you must perform before you begin the lab.

Task

Detailed steps

® Log on to Windows using
your Student account.

®  Logon to Windows using the following account information:
e User name: Student
e Password: P@sswOrd

Note that the 0 in the password is a zero.

Note that by default the install folder is C:\Program Files\Msdntrain\2609.

The solution code for this lab is located in install _folder\Labfiles\Lab08 1\Exercisel
\Solution_Code\Bank.sln. Start a new instance of Visual Studio .NET before opening the solution.

Note that exercises 2 and 3 do not have separate starter code. If necessary, you can use the starter
code listed in exercise 1, step 1, to start these exercises.




68

Module 8: Creating Windows-based Applications

Exercise 1
Adding Common Dialog Boxes to an Application

In this exercise, you will modify the bank teller application so that it uses the OpenFileDialog and
SaveFileDialog controls instead of the current Load and Save buttons.

The application uses a data file to store all the information. By default, this is called bankdata.bnk
and is located in the same folder as the starter code.

Allow users of the application to use a typical File Open menu selection to browse to any file
location, and load the file. Also, allow them to use a typical File Save menu selection to save the
file to any location.

control, display it when the
user selects Open from the
File menu, and then load the
selected data file.

Tasks Detailed steps
1. Start Visual Studio.NET and a. Start a new instance of Visual Studio.NET.
then open install_folder b. On the Start Page, click Open Project.
\Labfiles\Lab08_1\Exercisel ) )
\Bank.sln. c. Inthe Open Prpject d¥alog box, browse to insta_ll _folder\ Labfiles\
Lab08 I1\Exercisel, click Bank.sln, and then click Open.
2. Add a main menu to the a. Add a main menu to the application.
applicatiop, with a File menu b. Add a File menu to the main menu.
that contains an Open option. .
¢. Add an Open menu item to the File menu.
Remember to change the name properties of the menu items to
meaningful values.
3. Add an OpenFileDialog Add an OpenFileDialog control to your application.

Add an event handler to the Open menu item by double-clicking it in
the design window.

In the event handler, write code that uses the OpenFileDialog to
locate a data file, and then load it.

The data file is called bankdata.bnk, and it located in install_folder\
Labfiles\ Lab08 1\Exercisel.

d.

If the result returned from the OpenFileDialog is DialogResult.OK,
then use the method Load in the Bank class to load the data file
specified in the FileName property of the OpenFileDialog object.




Module 8: Creating Windows-based Applications 69

Tasks

Detailed steps

4. Add a Save option to the File
menu. Implement the expected
functionality for this option.

Add a Save item to the File menu.
b. Add a SaveFileDialog control to your application.

¢. Add an event handler to the Save menu item, and write code that
uses the SaveFileDialog to define a file name, and then save the
data.

The method Save in the Bank class saves a data file.

Remember to delete the Load and Save buttons from the form.

5. Test your code.

a. Copy the data file bankdata.bnk to your desktop.

b. Press F5 to compile your application and then locate the copy of the
data file that is on your desktop, and load it.

¢. Add a new customer record.
d. Save the data, and exit your application.

e. Restart your application and load the data file, to ensure that the new
customer record is loaded.




70

Module 8: Creating Windows-based Applications

Exercise 2
Creating and Using Custom Dialog Boxes

In this exercise, you will invoke the New Customer dialog box, and create custom dialog boxes
that allow the user of the application to withdraw and deposit amounts of money into the selected
account.

The New Customer dialog box appears as follows:

Mew Customer

Mame |

Tax D o =
Deposit n.o0 =
Account Type * Checking

" Savings
Create | Cancel

The Withdraw and Deposit dialog boxes appear as follows:

Armnourt ||:|_|:||:| ::l

Ok | Cancel |




Module 8: Creating Windows-based Applications 71

Tasks

Detailed steps

1.

Create a new menu labeled
Customers with an item
labeled New. Invoke the
New Customer dialog box
when this item is selected.

a. On the main menu, add a menu labeled Customers and a menu item
labeled New.

The purpose of this item is to allow the user to choose to create a new
customer account.

b. Add an event handler to the menu item and in the event handler, create
a NewCustomer object, and then display it by using the ShowDialog

method.
2. Create a new customer a. If the dialog box is closed by clicking the Create button, create a new
account and a bank account customer record and a new bank account.
for that customer. Note that the value of the DialogResult property for the Create button is
DialogResult.OK.
Look in the newCustomer_Click method in the Form1 class for sample
code.
b. Delete the New Customer button from Forml.
3. Add menu items that will a. Add a Withdraw menu item.
invoke thg Withdraw and b. Add a Deposit menu item.
Deposit dialog boxes. .
c. Create event handlers for these menu items.
4. Create a Withdraw dialog a. Using Solution Explorer, add a new Windows form to the project,

box.

name it Withdraw, and configure it as a dialog box by setting the
FormBorderStyle property to FixedDialog, and the ControlBox,
MaximizeBox, MinimizeBox, and ShowInTaskBar properties to
false.

b. Add a NumericUpDown control to the Withdraw form.

c. Create a public property called WithdrawalAmount that returns the
value in the Value property of the NumericUpDown object.

d. Add OK and Cancel buttons to the form.




72

Module 8: Creating Windows-based Applications

Tasks

Detailed steps

5. Write code to open the
Withdraw dialog box from
the application menu.

a. Inthe Withdraw menu item event handler in Form1, write code to
create and display the Withdraw dialog box.

b. If the Withdraw form object returns a DialogResult of
DialogResult.OK, then read the value in the WithdrawalAmount
property, and perform the withdrawal from the currently selected
customer’s account.

The currently selected customer is always referenced from the
currentCustomer member of Form1.

The currently selected customer’s bank account can be accessed by using
the following code:

BankAccount thisAccount = (BankAccount)
currentCustomer.Accounts[0];

c¢. Use the Withdraw method of the BankAccount object to remove the
correct amount from the currently selected account.

For the purposes of this lab, you can assume that every customer has one
bank account.

d. Use the SetCurrentCustomer method to update the display on the
main form after you have withdrawn the money.

6. Implement a Deposit dialog
box.

a. Following the steps outlined in the previous two tasks, create a Deposit
dialog box.

b. Use the BankAccount.Deposit method to add the correct amount of
money in the currently selected account.

7. Test your code.

a. Press F5 to compile your application.

b. Withdraw money and deposit money to ensure that your application is
working as expected.

8. Save your application and
quit Visual Studio .NET.

a. Save your application.
b. Quit Visual Studio .NET.




Module 8: Creating Windows-based Applications 73

Exercise 3

Creating a Status Bar

In this exercise, you will add a status bar to the application.

Tasks

Detailed steps

1. Add a status bar to the
application, with one status
pane.

a. Add a status bar control to your application.

b. Use the Panels property and the StatusBarPanel Collection Editor to
add one panel to the status bar.

c¢. Remember to set the ShowPanels property to true.

2. Display the total number of
customers in the status bar
pane.

" Write code that displays the total number of customers in the status bar.
The following code returns the total number of customers:
theBank.Customers.Count.ToString(Q);

The SetCurrentCustomer method is called every time a change is made to
the data, so this is a good place to add the code that updates the contents of
the status bar panel.

3. Test your application.

a. Press F5 to compile your application.

b. Add a new customer to the list and make sure that the status bar
updates correctly.

4. Save your application and
quit Visual Studio .NET.

Save your application.

b. Quit Visual Studio .NET.




74 Module 8: Creating Windows-based Applications

If Time Permits
Using ComboBox Controls

Write a dialog box that transfers money from one account to another. Use a
combo box on the transfer dialog box to select destination customer accounts.



