

Contents

Overview 1

Lesson: Creating a Web Forms Application 2

Lesson: Accessing Data by Using a Web
Forms Application 19

Lesson: Configuring ASP.NET Application
Settings 29

Review 38

Lab 10.1: Developing an ASP.NET Web
Application 40

Course Evaluation 46

Module 10: Creating a
Web Application with
Web Forms

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, ActiveX, BizTalk, FrontPage, IntelliSense, JScript,
Microsoft Press, MSDN, PowerPoint, Visual Basic, Visual C++, Visual C#, Visual Studio, Win32,
Windows Media are either registered trademarks or trademarks of Microsoft Corporation in the
United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 10: Creating a Web Application with Web Forms iii

Instructor Notes
In this module, students learn that in Microsoft® Visual Studio® .NET, you can
use Web Forms to create programmable Web pages. This module introduces the
System.Web.UI namespace and describes how to create a Web application
with a Web Form. Students learn how to add controls to a Web Form and then
use the Web Form to submit data and respond to events. The module also
covers Microsoft ASP.NET state management, security, and configuration
settings.

It is helpful here to point out the similarities and differences between Microsoft
Windows® Forms and Web Forms.

This module includes guided, hands-on, and matching practices.
Each practice or the lab may also include optional tasks to accommodate
advanced learners.

After completing this module, students will be able to:

� Create a Web Forms application.
� Handle events on a Web Forms application.
� Access data from a Web Form application.
� Configure ASP.NET application settings.

To teach this module, you need the following materials:

� Microsoft PowerPoint® file 2609A_010.ppt
� Module 10, Creating a Web Application with Web Forms
� Multimedia animation 2609A_ASP_NETExec.exe

To prepare for this module:

� Read all of the materials for this module.
� Review the multimedia demonstration.
� Complete the practices and lab.

Presentation:
60 minutes

Lab:
60 minutes

Important

Required materials

Preparation tasks

iv Module 10: Creating a Web Application with Web Forms

How to Teach This Module
This section contains information that will help you to teach this module.

Lesson: Creating a Web Forms Application
This section describes the instructional methods for teaching each topic in this
lesson.

This lesson points to ASP.NET as the hidden technology that operates behind
Web applications. Explain to your students that just as the user interface of a
Windows-based application is made up of Windows Forms, an ASP.NET Web
application user interface is made up of Web Forms. Avoid detailed discussion
of this technology to keep the students focused on their tasks.

You may consider using an instructor-led demonstration similar to the one that
is provided for Windows Forms to show the students how to add a control to a
Web Form and how to add an event handler for the control.

A hands-on practice concludes this lesson.

Lesson: Accessing Data by Using a Web Forms Application
In this lesson, students learn how to use Microsoft ADO.NET to access data by
using a Web Forms application. Point out the similarities of accessing data by
using Windows Forms and Web Forms.

A guided practice concludes this lesson.

Lesson: Configuring ASP.NET Application Settings
The animation that is provided for this lesson, ASP.NET Execution Model,
depicts how clients’ requests are processed by servers that use ASP.NET. To
run this animation, click the icon in the center of the slide.

A short matching practice concludes this lesson.

Review
The review questions are based mostly on conceptual understanding and
procedures that were covered thoroughly in the module. You can use a
discussion format to answer the questions so that everyone gets the benefit of
knowing the right answers.

Lab 10.1: Developing an ASP.NET Web Application
Before beginning this lab, students should have completed all of the practices
and answered the review questions. Students must be able to perform most of
the tasks that they learned in the lessons and the practices. The lab is simple but
comprehensive. It leads students through the entire process of creating a Web
application with Web Forms as described in the lessons of this module.

 Module 10: Creating a Web Application with Web Forms 1

Overview

� Creating a Web Forms Application

� Accessing Data by Using a Web Form Application

� Configuring ASP.NET Application Settings

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Microsoft® Visual Studio® .NET allows you to create applications that take
advantage of the important features of the World Wide Web. These features
include traditional Web sites that use HTML pages, fully-featured business
applications that run on an intranet or the Internet, and sophisticated business-
to-business applications that provide Web-based components that can exchange
data by using Extensible Markup Language (XML).

In Visual Studio .NET, you can use Web Forms to create powerful,
programmable Web pages. These Web pages serve as the user interface for your
Web application. This module introduces the System.Web.UI namespace and
describes how to create a Web application with a Web Form. The module also
explains how to add controls to a Web Form and then use the Web Form to
submit data and respond to events. The module also covers Microsoft ASP.NET
state management, security, and configuration settings.

After completing this module, you will be able to:

� Create a Web Forms application.
� Handle events on a Web Form application.
� Access data from a Web Forms application.
� Configure ASP.NET application settings.

Introduction

Objectives

2 Module 10: Creating a Web Application with Web Forms

Lesson: Creating a Web Forms Application

� What Is ASP.NET?

� What Is a Web Forms Application?

� How to Create a Web Forms Application

� What Are the Components of a Web Forms
Application?

� What Is the Life Cycle of a Web Forms Application?

� How to Add Controls to a Web Forms Application

� How to Add an Event Handler for the Control

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This lesson introduces Web Forms and describes how to create a Web Form,
add controls to it, and add event handlers for the controls.

After completing this lesson, you will be able to:

� Explain ASP.NET.
� Create a Web Form and add controls.
� Write event handlers for the controls.

This lesson includes the following topics and activity:

� What Is ASP.NET?
� What Is a Web Forms Application?
� How to Create a Web Forms Application
� What Are the Components of a Web Forms Application?
� What Is the Life Cycle of a Web Forms Application?
� How to Add Controls to a Web Forms Application
� How to Add an Event Handler for the Control
� Practice: Creating a Web Forms Application

Introduction

Lesson objectives

Lesson agenda

 Module 10: Creating a Web Application with Web Forms 3

What Is ASP.NET?

� Evolutionary, more flexible successor to Active
Server Pages (ASP)

� Dynamic Web pages that can access server resources

� Server-side processing of Web forms

� Language independent

� Browser independent

� XML Web services let you create distributed Web
applications

*****************************ILLEGAL FOR NON-TRAINER USE******************************

For many years, developers have used Active Server Pages (ASP) technology to
build dynamic Web pages. ASP.NET is the logical development of ASP; it runs
on a Web server and provides a way for you to develop content-rich, dynamic,
personalized Web sites by using the power of Microsoft .NET.

ASP.NET is a Web run-time environment that is built on top of .NET. ASP
technology mixed HTML and script together in the same document. In
ASP.NET, the code, which can be any .NET-compatible language, is held
separately from the HTML page.

A new component of ASP.NET is the Web Form. As the user interface to an
application based on Microsoft Windows® is made up of Windows Forms, an
ASP.NET Web application user interface is made up of Web Forms. An
ASP.NET Web application includes one or more Web Forms.

The ASP.NET technology provides the platform for running XML Web
services. XML Web services allow distributed applications to transfer
information between clients, applications, and other XML Web services. It is
also possible from within an ASP.NET application to consume XML Web
services from other servers.

Introduction

Definition

XML Web services

4 Module 10: Creating a Web Application with Web Forms

What Is a Web Forms Application?

� Based on ASP.NET technology to create powerful
programmable Web pages

� Compatible with any browser or mobile device
� Compatible with any language supported by common

language runtime
� Allow for separation between code and content on a

page
� Support a rich set of controls
� Provide a set of state management features that

preserve the view state of a Web page between
requests

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Just as you use Windows Forms to create Windows-based applications, you can
use Web Forms to build powerful programmable Web pages dynamically. Web
Forms pages are built with ASP.NET technology. You can add Web Forms
pages to several types of Visual Studio .NET projects. Most often, when you
want to work with Web Forms pages, you will use the project template for the
ASP.NET Web Application.

A Web Form is a dynamic Web page, which users view in a browser that can
access server resources.

Web Forms Applications:

� Are based on ASP.NET technology to create powerful programmable Web
pages.

� Run on any browser and automatically render the correct, browser-
compliant HTML code for features such as styles and layout.

� Are programmable in any language that the common language runtime
supports, including C#, Microsoft Visual Basic®, and Microsoft JScript®
.NET.

� Support WYSIWYG (what you see is what you get) editing tools and
powerful rapid application development (RAD) tools, such as Visual Studio
.NET, for designing and programming your forms.

� Provide a rich set of controls that allow you to encapsulate page logic into
reusable components and declaratively handle page events.

Introduction

Definition

Features

 Module 10: Creating a Web Application with Web Forms 5

Web Forms provide a set of state management features that automatically
preserve the view state of a page between requests. State refers to the
information that an application must maintain about a Web page.

When a Web server receives a request for a page, it finds the page, processes it,
sends it to the browser, and then discards all page information. If the user
requests the same page again, the server repeats the entire sequence,
reprocessing the page from the beginning. Servers have no memory of the
pages that they have processed. Therefore, if an application must maintain
information about a page, you must provide for it in application code. Web
Forms automatically handle the task of maintaining the state of your form and
its controls, and provides you with explicit ways to maintain the state of
application-specific information.

State management

6 Module 10: Creating a Web Application with Web Forms

How to Create a Web Forms Application

� Use ASP.NET Web Application Template

Files in
Solution
Explorer

Files in
Solution
Explorer

Web FormWeb Form

ControlsControls

PropertiesProperties

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The first step in creating a Web Form is to create an ASP.NET Web
Application project.

To create an ASP.NET Web Application project:

1. On the File menu, point to New, and then click Project.
2. In the New Project dialog box, perform the following steps:

a. In the Project Types pane, click Visual C# Projects.
b. In the Templates pane, click ASP.NET Web Application.
c. In the Location box, enter the complete Uniform Resource Locator

(URL) for your application, including http://, the name of the server, and
the name of your project.

d. Click OK.
When you click OK, a new project is created at the root of the Web
server that you specified. Also, a new Web Forms page named
WebForm1.aspx is displayed, in Design view, in the Web Forms
Designer.

Introduction

Creating a Web
Application project

 Module 10: Creating a Web Application with Web Forms 7

When you create an ASP.NET Web Application project by using Microsoft
Visual C#™, Visual Studio .NET creates several files on your local computer.
The following table lists and describes some of these files.

File Created Description

WebForm1.aspx and
WebForm1.aspx.cs
files

These two files make up a single Web Forms page. The .aspx
file contains the visual elements of the Web Forms page, for
example the HTML elements and Web Forms controls. The
WebForm1.aspx.cs class file is a dependent file of
WebForm1.aspx. It contains the code-behind class for the
Web Forms page, which contains event-handler code.

AssemblyInfo.cs A project information file (AssemblyInfo.vb or
AssemblyInfo.cs file) that contains metadata about the
assemblies in a project, such as name, version, and culture
information.

Web.config An XML-based file that contains configuration data about
each unique URL resource that is used in the project.

Global.asax and
Global.asax.cs files

Global.asax is an optional file for handling application-level
events. This file resides in the root directory of an ASP.NET
application. The Global.asax.cs class file is a hidden,
dependent file of Global.asax. It contains the code for
handling application events, such as the Application_OnError
event. At run time, this file is parsed and compiled.

.vsdisco (project
discovery) file

An XML-based file that contains links (URLs) to resources
providing discovery information for an XML Web service.

To view all of the files in a project, click the Show All Files button in the
toolbar of Solution Explorer.

Project files created

Viewing the files

8 Module 10: Creating a Web Application with Web Forms

What Are the Components of a Web Forms Application?

� Visual component
� Design view
� HTML view

� User interface logic

Class MyWebFormClass MyWebForm

Welcome!Welcome!
Name:

Password:

OK
Visual

Component
Visual

Component

MyWebForm.asp.cs

MyWebForm.aspx

User Interface
Logic

User Interface
Logic

MyWebForm

Both files together make up MyWebForm

Welcome!Welcome!
Name:

Password:

OK

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Web Forms pages provide a distinction between the visual component, the
visible portion of the form, and user interface logic, the code that interacts with
the form.

When you work with Web Forms, you must understand the two views that
Visual Studio .NET provides. These views are the Design view and the HTML
view.

You can work in either view. When you switch between them, each view is
updated with the changes that you make in the other view.

The Design tab is located at the bottom of the Web Forms Designer.

The Design view shows you the WYSIWYG view of the .aspx file that you are
working with. In the Design view, you can drag controls from the Toolbox and
use the Properties window to configure the controls.

Introduction

Visual component views

Design view

 Module 10: Creating a Web Application with Web Forms 9

The HTML tab is located at the bottom of the Web Forms Designer.

The HTML view shows you the HTML format of the .aspx file that you are
working with. As in other code editor views, the Web Forms Designer supports
Microsoft IntelliSense® for elements in HTML view.

A Web Forms page code model consists of two files:

� WebForm.aspx
The WebForm1.aspx file is referred to as the page. This file contains
Hypertext Markup Language (HTML), static text, and the server controls
that make up the visual components of the page. HTML is the computer
language that is used to create documents for the Web. The page works as a
container for the text and controls that you want to display.

� WebForm.aspx.cs
This file, which is also referred to as the code-behind file, contains code that
you create to interact with the form. The extension for this file is language
specific. For example, the extension is vb if you use Visual Basic .NET and
cs if you are using C#.

HTML view

User interface logic

10 Module 10: Creating a Web Application with Web Forms

What Is the Life Cycle of a Web Forms Application?

The life cycle of an ASP.NET Web Form has five basic stages:

Page_InitPage_Init

ValidationValidationEvent
Handling
Event

Handling

Page_UnloadPage_Unload Page_LoadPage_Load

*****************************ILLEGAL FOR NON-TRAINER USE******************************

It is helpful to understand some fundamental characteristics of how Web Forms
pages work in Web applications before you examine the details of what occurs
inside a page when it is processed.

It is important to understand the division of labor on a Web Forms page. The
browser presents the user with a form, and the user interacts with the form,
causing the form to post back to the server. However, because all processing
that interacts with server components must occur on the server, for each action
that requires processing, the form must be posted to the server, processed, and
returned to the browser. This sequence of events is referred to as a round trip.

In Web Forms, most user actions—such as clicking a button—result in a round
trip. For that reason, the events that are available in ASP.NET server controls
are usually limited to click-type events.

In any Web scenario, pages are re-created with every round trip. As soon as the
server finishes processing and sending the page to the browser, it discards the
page information. By freeing server resources after each request, a Web
application can scale to support hundreds or thousands of simultaneous users.
The next time the page is posted, the server starts over in creating and
processing it, and for this reason, Web pages are said to be stateless.

Introduction

Round trips

Recreating the page

 Module 10: Creating a Web Application with Web Forms 11

The life cycle of an ASP.NET Web Form has five basic stages:

1. Page_Init. The ASP.NET page framework uses this event to restore control
properties and postback data, which is data that the user entered in controls
before the form was submitted.

2. Page_Load. The developer uses this event either to perform some initial
processing, if this is the first visit to the page, or to restore control values, if
this is a postback.

3. Validation. The Validate method of ASP.NET server controls is called to
perform validation for the controls.

4. Other event handling. Various controls expose many events. For example,
the Calendar control exposes a SelectionChanged event. If the page
contains validation controls, you should check the IsValid property of the
page and individual validation controls to determine whether validation has
been passed.

5. Page_Unload. This event is called as the page finishes rendering.

It is at this last stage where you clean up any resources that were allocated,
especially expensive resources such as the file handlers and database
connections.

The life cycle of an
ASP.NET Web Form

Tip

12 Module 10: Creating a Web Application with Web Forms

How to Add Controls to a Web Forms Application

� To add a Web server control

� In Design view, drag Web Server control object from the
Toolbox Web Forms tab

� To add an HTML server control

� Drag an HTML element onto the page from the HTML
tab of the Toolbox

� Right-click the element and choose Run As Server
Control to convert it to a control

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After you create the Web Form, you can add controls to build the user interface.
Visual Studio .NET provides Forms Designer, an editor, controls, and
debugging tools, which together allow you to build programmable user
interfaces for the Web.

Controls for Web Forms are called server controls because when the page runs,
the controls are instantiated in server code as part of the page class. When users
interact with a control, the code that is associated with the control runs on the
server after the page is posted. For example, when a user clicks a Web Forms
button control, the code for the button runs on the server after the page is
displayed. You can set properties and write event handlers in the server code.

There are two types of server controls:

� Web server controls
These are controls specific to Web Forms that provide more features than
HTML server controls and do not map directly to HTML elements.

� HTML server controls
These are HTML elements that are marked to be programmable in server
code. Typically, you convert HTML elements to HTML server controls only
if you want to program them from server code.

Not every element on the Web Forms page is a server control. For example, by
default, static HTML text is not a server control, and you cannot control it from
server code. Even standard HTML controls, such as an HTML button, are not
server controls by default. You can program the HTML elements in the client
code. Therefore, to work with controls on a Web Forms page, you must add
them as server controls.

Introduction

Server controls

Converting client
controls to run as server
controls

 Module 10: Creating a Web Application with Web Forms 13

Adding an HTML server control to a Web Forms page is a two-step process.

To add an HTML control to a Web Forms page and convert it to a server
control:

1. From the HTML tab of the Toolbox, drag an HTML element onto the page.
2. Convert the element to a server control by right-clicking it, and then

clicking Run As Server Control.

The Web Forms Designer adds the attribute runat="server" to the element,
which alerts the server to treat the element as a server control. A symbol
appears on the control in Design view to indicate that it is a server-based
control.

By default, the Web Forms page uses Grid layout, and you place controls at
absolute positions on the page by using x and y coordinates. If you want to use
linear layout, in which the page elements flow in the same manner as in a word
processing document, you can change the pageLayout property or include a
Flow Layout Panel HTML server control.

Adding an HTML server
control by using Web
Forms Designer

14 Module 10: Creating a Web Application with Web Forms

How to Add an Event Handler for the Control

� Many events are triggered by user action in
the browser

� Code to handle raised event is executed on the server

� When code completes execution, the resulting Web
page is sent back to the browser

private void Button1_Click(object
sender,System.EventArgs e) {
//(………)

}

private void Button1_Click(object
sender,System.EventArgs e) {
//(………)

}

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After you create the project and add controls, you can add event handlers to the
controls. Web Forms bring to Web applications the model of writing event-
handling methods for events that occur in either the client or server. The Web
Forms framework abstracts this model in such a way that the underlying
mechanism of capturing an event on the client, transmitting it to the server, and
calling the appropriate handler is automatic and invisible. The result is a clear,
easily written code structure.

Interacting with users is one of the primary reasons for creating ASP.NET Web
Forms. You program various events to handle these interactions. The Web page
itself can execute code, and so can the many events that are raised by various
objects, including all of the server controls.

You can add events to individual controls, to a page, to an application, or to a
session.

Controls have a default event, which is the event that is most commonly
associated with that control. For example, the default event for a button is the
Click event. You can create event handlers for both the default event and other
events, but the procedure is different for each type of event.

To create an event handler for non-default events:

1. In Design view, select the control, and then press F4 to display the
Properties window.

2. In the Properties window, click the Events button ().
The Properties window displays a list of the events for the control, with
boxes to the right that display the names of the event handlers that are
bound to those events.

3. Locate the event that you want to create a handler for, and then, in the event
name box, type the name of an event handler.

Introduction

Adding events

Creating an event
handler for a non-default
event

 Module 10: Creating a Web Application with Web Forms 15

To create the event handler for a default event:

• In Design view of the Web Forms Designer, double-click the control or
page. The Code Editor opens with the insertion point in the event handler.

A Button Web server control can raise a Click event when a user clicks a
button on the page.

The code to handle the raised event is executed on the server. When the user
clicks a button, the page is posted back to the server. The framework for the
ASP.NET page parses the event information, and if you have an event handler
corresponding to the event, your code is called automatically. When your code
finishes, the page is sent back to the browser with any changes that the event
handler code made.

To create an event handler for the Button Web server control:

• Double-click the Button Web server control.
The designer opens the class file for the current form and creates a skeleton
event handler for the Click event of the button control. The code is as
follows:
private void button1_Click(object sender, System.EventArgs
e) {
}

For more information about recommendations for ASP.NET server
controls, see the Visual Studio. NET documentation. Use the Help index and
search for ASP.NET Server Control.

Creating the event
handler for a default
event

Example

Note

16 Module 10: Creating a Web Application with Web Forms

Practice: Creating a Web Forms Application

� The Web Forms application in this
practice will use several controls,
including validation controls

� In this practice, you will write an event
handler that executes when the Form is
loaded and in response to particular user-
initiated events, such as a button click

� The Web Forms application in this
practice will use several controls,
including validation controls

� In this practice, you will write an event
handler that executes when the Form is
loaded and in response to particular user-
initiated events, such as a button click

Hands-on PracticeHandsHands--on Practiceon Practice

10 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will develop a simple Web Forms application that calculates the sum of two
values that are entered into the form. The form will validate that the first number entered is in the
range of 1 to 1000 and that the second number entered is in the range of 1 to 500.

The solution for this practice is in install_folder\Practices\Mod10\WebFormPractice_Solution. To
open the solution, follow the instructions in the Readme.txt file located in the folder.

Tasks Detailed steps

1. Start Visual Studio .NET. � Start a new instance of Visual Studio .NET.

2. Create a new project:
Project Type: Visual C# Project
Template: ASP.NET Web Application.
Location:
http://localhost/WebFormPractice

a. On the Start page, click New Project.

b. In the New Project dialog box, under Project Types, click
Visual C# Projects.

c. Under Templates, click ASP.NET Web Application.

d. In the Location box, type
http://localhost/WebFormPractice and then click OK.

3. From the Web Forms tab of the
Toolbox, add the following controls to
the form:
2 TextBox controls
1 Label control
1 Button control

a. Point to the Toolbox, and then drag a TextBox control onto
the form.

b. Point to the Toolbox, and then drag another TextBox control
onto the form.

c. Point to the Toolbox, and then drag a Label control onto the
form.

d. Point to the Toolbox, and then drag a Button control onto
the form.

 Module 10: Creating a Web Application with Web Forms 17

Tasks Detailed steps

4. (Optional) From the Web Forms tab
of the Toolbox add the following
controls to the form:
2 RangeValidator controls

a. Point to the Toolbox, and then drag a RangeValidator
control onto the form.

b. Point to the Toolbox, and then drag another RangeValidator
control onto the form.

5. Lay out the controls on the form to
match the following illustration.

� Lay out the controls on the form to match the following
illustration.

Note: Lay out your form to match the illustration, RangeValidator controls are optional.

6. Set the Text property of the button to
Calculate.

a. In the WebForm1.aspx form editor, click the button.

b. In the Properties window, click Text, and then type Calculate

7. (Optional) Change the following
properties of the RangeValidator
located at the top of the form.
Errormessage: The number entered
must be in the range 1-1000.
ControlToValidate: TextBox1
MaximumValue: 1000
MinimumValue: 1
Type: Integer

a. In the WebForm1.aspx form editor, click the RangeValidator
control located at the top of the form.

b. In the Properties window, click Errormessage, and then type
The number entered must be in the range 1-1000

c. In the ControlToValidate list, click TextBox1.

d. Click MaximumValue, and then type 1000

e. Click MinimumValue, and then type 1

f. In the Type list, click Integer.

8. (Optional) Change the following
properties of the RangeValidator
located beneath the other
RangeValidator.
Errormessage: The number entered
must be in the range 1-500.
ControlToValidate: TextBox2
MaximumValue: 500
MinimumValue: 1
Type: Integer

a. In the WebForm1.aspx form editor window, click the
RangeValidator control located beneath the other
RangeValidator control.

b. In the Properties window, click Errormessage, and then type
The number entered must be in the range 1-500

c. In the ControlToValidate list, click TextBox2.

d. Click MaximumValue, and then enter 500

e. Click MinimumValue, and then enter 1

f. In the Type list, click Integer.

18 Module 10: Creating a Web Application with Web Forms

Tasks Detailed steps

9. Add code into the Button click event
to calculate the sum of the two text
boxes and place the result into the
label.

a. Double-click Calculate on the form to open
WebForm1.aspx.cs in the Code Editor. The cursor is placed in
the Button1_Click event.

b. Type the following code:

Label1.Text =
(System.Convert.ToInt32(TextBox1.Text) +
System.Convert.ToInt32(TextBox2.Text))

.ToString();

10. Run the application, enter various
values into the textboxes displayed
and examine the behavior of the
application.

a. On the standard toolbar, click Start.

b. Enter various values into the text boxes that are displayed, and
examine the behavior of the application.

11. Quit Microsoft Internet Explorer. � Quit Internet Explorer.

12. Save any changes to the project, and
then quit Visual Studio .NET.

a. On the File menu, click Save All.

b. On the File menu, click Exit.

 Module 10: Creating a Web Application with Web Forms 19

Lesson: Accessing Data by Using a Web Forms
Application

� How to Access Data by Using a Web Forms
Application

� How to Display Data on a Web Forms Application

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This lesson explains how use Microsoft ADO.NET to access data by using a
Web Forms application.

After completing this lesson, you will be able to:

� Use ADO.NET from a Web Forms application.
� Display data on a Web Forms application.

This lesson includes the following topics:

� How to Access Data by Using a Web Forms Application
� How to Display Data on a Web Forms Application
� Practice: Displaying Data from a Database on a Web Forms Application

Introduction

Lesson objectives

Lesson agenda

20 Module 10: Creating a Web Application with Web Forms

How to Access Data by Using a Web Forms Application

� Fundamental principles
� Using a disconnected model
� Reading data more often than updating it
� Minimizing server resource requirements
� Accessing data using remote processes

� Data sources for Web Forms pages
� Database access, ADO.NET
� XML data
� Other sources

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Many Web Forms pages involve data access, displaying data and, in some
cases, allowing users to edit and update data. Knowledge of data access
technology in Web Forms pages helps you create efficient Web applications.

Data access in Web Forms pages is built around the following fundamental
principles:

� Using a disconnected model
Web Forms pages are disconnected. Each time a Web Forms page is
requested, it is built, processed, sent to the browser, and discarded from
server memory. By extension, the same process applies to data access in a
Web Forms page. Data is read or updated while the page is processed on the
server. After the page is processed and sent to the browser, data is discarded
along with other page elements.

� Reading data more often than updating it
The Web Forms data model presumes that most data access by Web pages is
read-only. Typical examples are catalog or search listings that display data
items. In most cases, the user does not enter data that is written back to the
data source.

� Minimizing server resource requirements
Data access in Web Forms pages therefore requires careful attention to how
you use resources.

� Accessing data by using remote processes
Web Forms pages are the presentation tier of your Web application. You
can build data access into your pages, but it is also common to separate data
access logic from the user interface by building it into another component,
such as an XML Web service, that interacts with the data source.

Introduction

Principles

 Module 10: Creating a Web Application with Web Forms 21

The Web Forms page architecture provides a very flexible notion of data. This
includes everything from traditional database access, to using XML documents
as a data source, to generating data at run time and storing it in an array:

� Database access
To read and write database data, you use ADO.NET. ADO.NET includes
managed data providers (connection and command objects) to communicate
with Microsoft SQL Server™ or OLE DB–compatible databases. ADO.NET
also includes support for disconnected data access by means of a dataset,
which is an in-memory cache into which you can read records to work with.
Alternatively, you can use ADO.NET objects to execute SQL commands or
stored procedures directly. This allows you to read data straight from the
database and send updates back.

� XML data
Another possible source of data in a Web Forms page is an XML document
or stream. You can work with XML data in two ways:

• If the XML data is structured—that is, if it can be represented as
relational data—you can convert the XML data into a dataset and use
ADO.NET data functions to read and update the data. This feature
allows you to take advantage of the comparatively sophisticated and
simple data-processing functionality of datasets. You can then convert
the data back to XML to share with other processes.

• If the XML data cannot be represented as relational data, you can use
XML parsing and processing functions from the System.Xml
namespace to manipulate the data. In Web Forms pages, you can do this
by using the XML Web server control. Alternatively, you can work
directly with XML documents in code.

� Other data sources
Web Forms pages allow you to work with virtually any other type of data
also.
The data-binding architecture of Web Forms pages allows you to bind a
control to any structure. In practice, this means you can bind to any arrays
or collections that are available in the page, as well as to properties of the
page or of other controls.

Data sources for Web
Forms

22 Module 10: Creating a Web Application with Web Forms

How to Display Data on a Web Forms Application

Create the Web Application project and a Web Form page

Create and configure the dataset you will bind the grid to

Add the DataGrid control to the form and bind it to the data

Add code to fill the dataset, and test

private void Page_Load(object sender,
System.EventArgs e) {

if (!IsPostBack) {
SqlDataAdapter1.Fill(customerDS1);
DataGrid1.DataSource = customerDS1;
DataGrid1.DataBind();

}
}

private void Page_Load(object sender,
System.EventArgs e) {

if (!IsPostBack) {
SqlDataAdapter1.Fill(customerDS1);
DataGrid1.DataSource = customerDS1;
DataGrid1.DataBind();

}
}

11

22

33

44

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Web Forms pages often must display information that is derived from a
database, an XML document or stream, or some other data source. The
architecture of Web Forms pages provides you with ways to incorporate data
sources, or references to them, in the page, to bind controls to data, and to
manipulate data in various ways.

Displaying data in Web Forms is similar to displaying data in Windows
Forms.

To display data on a Web Form:

1. Create the Web application project and a Web Forms page.
2. Create and configure the dataset that you will bind the grid to. This includes

creating a query that populates the dataset from the database.
3. Add the DataGrid control to the form and bind it to data.
4. Add code to fill the dataset, and test.
This procedure is described in detail in the following steps.

Introduction

Note

Displaying data

 Module 10: Creating a Web Application with Web Forms 23

To create a Web application project and a Web Forms page:

1. On the File menu, point to New, and then click Project.
2. In the New Project dialog box, do the following:

a. In the Project Types pane, click Visual C# Projects.
b. In the Templates pane, click ASP.NET Web Application.
c. In the Location box, enter the complete URL for your application,

including http://, the name of the server, and the name of your project.
d. Click OK. A new Web Forms project is created at the root of the Web

server that you specified. Also, a new Web Forms page named
WebForm1.aspx is displayed in the Web Forms Designer in Design
view.

The second step is to create the data connection and data adapter.

1. From the Data tab of the Toolbox, drag a SqlDataAdapter object onto the
form. The Data Adapter Configuration Wizard starts which helps you create
both the connection and the adapter. In the wizard, do the following:

2. Click Next. On Choose Your Data Connection, create or select a
connection pointing to the SQL Server Northwind database.

3. Click Next. On Choose a Query Type, specify that you want to use a SQL
statement to access the database.

4. On Generate the SQL Statements, create the SQL statements, or to build
the SQL statement click Query Builder to launch the Query Builder dialog
box.

5. Click Finish. The wizard creates a connection, sqlConnection1, containing
information about how to access your database. The wizard also creates a
data adapter, sqlDataAdapter1, that contains a query specifying the table
and columns in the database that you want to access.

Step 1

Step 2

24 Module 10: Creating a Web Application with Web Forms

The next step is to create and configure the dataset.

After you establish the connection to the database and specify the information
you want to access by means of the SQL command in the data adapter, you can
have Visual Studio .NET create a dataset. The dataset is an instance of the
DataSet class based on a corresponding schema, .xsd file, that describes the
elements of the class, such as the table, columns, and constraints. Visual Studio
.NET can generate the dataset automatically based on the query that you
specified for the data adapter.

1. On the Data menu, click Generate DataSet.

If you do not see the Data menu, make sure that the focus is on the
form, and then click the form. The Generate Dataset dialog box appears.

2. Click New and name the dataset (CustomerDS in this example). In the list
under Choose which table(s) to add to the dataset, make sure that the
table you want to display is selected.

3. Select the Add this dataset to the designer check box, and then click OK.
Visual Studio .NET generates a typed dataset class and a schema that
defines the dataset. The new schema, CustomerDS.xsd, is displayed in
Solution Explorer.

At this point, you have set up everything you need in order to get information
out of a database and into a dataset.

Next, add a DataGrid to display data.

1. From the Web Forms tab of the Toolbox, drag a DataGrid control onto the
page.

2. In the DataSource property, select customerDS1 (this is the instance of the
CustomerDS class) as the data source. This binds the grid to the dataset as a
whole.

3. In the DataMember property, select the table specified in your SQL query
from Step 2. If a data source contains more than one bindable object, you
can use the DataMember property to specify which object to bind to.
Setting these two properties binds the specified data table in the
customerDS1 dataset to the grid.

Step 3

Tip

Step 4

 Module 10: Creating a Web Application with Web Forms 25

The next step is to fill the dataset and display data in the DataGrid control.

Although the grid is bound to the dataset that you created, the dataset itself is
not automatically filled in. Instead, you must fill the dataset yourself by calling
a data-adapter method.

1. Double-click the page to display the class file of the page in the Code
Editor.

2. In the Page_Load event handler, call the Fill method of the adapter, passing
it the dataset that you want to populate:
sqlDataAdapter1.Fill(customerDS1);

3. Call the DataBind method of the DataGrid control (DataGrid1) to bind the

control to the dataset.

You do not need to refill the dataset and bind the grid with each round trip.
After the DataGrid control is populated with data, its values are preserved in
view state each time the page is posted. Therefore, you must fill the dataset and
bind the grid only the first time that the page is called. You can test for this by
using the IsPostBack property of the page.

The following code shows the complete handler:

private void Page_Load(object sender, System.EventArgs e) {
// Put user code to initialize the page here
if (!IsPostBack) {
 sqlDataAdapter1.Fill(customerDS1);
 DataGrid1.DataBind();
 }
}

The final step is to test the Web Forms page.

1. Save the page.
2. In Solution Explorer, right-click the page, and then click Build and

Browse.
3. Confirm that a list of categories is displayed in the grid.

Step 5

Tip

26 Module 10: Creating a Web Application with Web Forms

Practice: Displaying Data from a Database on a Web Forms
Application

� In this practice, you will create a form that
opens a database table and displays the
contents on the Web Forms page

� In this practice, you will create a form that
opens a database table and displays the
contents on the Web Forms page

Guided PracticeGuided PracticeGuided Practice

10 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will develop a simple Web Forms application that contains a DataGrid
control. The DataGrid control will be used to display the contents of the SQL Server table
BankCustomers.

The solution for this practice is in install_folder\Practices\Mod10\DataGridPractice_Solution. To
open the solution, follow the instructions in the Readme.txt file located in the folder.

Tasks Detailed steps

1. Start Visual Studio .NET. � Start a new instance of Visual Studio .NET.

2. Create a new project:
Project Type: Visual C# Project
Template: ASP.NET Web
Application.
Location:
http://localhost/DataGridPractice

a. On the Start page, click New Project.

b. In the New Project dialog box, under Project Types, click Visual
C# Projects.

c. Under Templates, click ASP.NET Web Application.

d. In the Location box, type http://localhost/DataGridPractice and
then click OK.

3. Drop a DataGrid control onto
the form.

� Point to the Toolbox, and then drag a DataGrid control onto the
form.

4. Position the DataGrid control in
the upper-left corner of the form.

� Drag the DataGrid control to the upper-left of the form.

5. Drop a SqlDataAdapter control
onto the form. This control is
held under the Data tab of the
Toolbox.

� Point to the Toolbox, click the Data tab, and then drag a
SqlDataAdapter control onto the form.

 Module 10: Creating a Web Application with Web Forms 27

Tasks Detailed steps

6. Step through the Data Adapter
Configuration Wizard.
Create a new connection to your
local server; use Microsoft
Windows NT® Integrated Security
and database 2609.
Use SQL statements for the query
type. Enter a SQL statement of
Select * from BankCustomers.

a. In the Data Adapter Configuration Wizard, on the Welcome to
the Data Adapter Configuration Wizard page, click Next.

b. On the Choose Your Data Connection page, click New
Connection.

c. In the Data Link Properties dialog box, in the Select or enter a
server name box, type your_server_name

d. Under Enter information to log on to the server, click Use
Windows NT Integrated security.

e. Under Select the database on the server, click 2609, and then
click OK.

f. On the Choose Your Data Connection page, click Next.

g. On the Choose A Query Type page, click Use SQL Statements,
and then click Next.

h. Under What data should the data adapter load into the
dataset, type SELECT * from BankCustomers and then click
Next.

i. On the View Wizard Results page, click Finish.

Note: Your form now has two hidden controls. A sqlDataAdapter1 control and a sqlConnection1 object.
The connection object is generated automatically by the wizard.

7. Use the Generate Dataset option
on the Data menu to create a
dataset named Customers. Add
the BankCustomers table to this
dataset.

a. On the Data menu, click Generate Dataset.

b. In the Generate Dataset dialog box, under Choose a dataset,
click New, replace DataSet1 with Customers and then click OK.

8. Set the DataSource property of
the DataGrid control to
customers1.

a. In the WebForm1.aspx form editor, click the DataGrid control.

b. In the Properties window, in the DataSource list, click
customers1.

9. Use the Auto Format URL at the
bottom of the Properties window
to set the format to Colorful 2.

a. In the Properties window, click the Auto Format link.

b. In the Auto Format dialog box, under Select a scheme, click
Colorful 2, and then click OK.

10. Add the following code to the
Form_Load event of the form.

a. Double-click an area of the form that is not covered by the
DataGrid control.

b. Add the following code to the Page_Load event procedure.

if (!IsPostBack) {

 sqlDataAdapter1.Fill(customers1);

 DataGrid1.DataBind();

}

28 Module 10: Creating a Web Application with Web Forms

Tasks Detailed steps

11. Run the application and view the
contents of the data grid.

� On the standard toolbar, click Start.

Note: The DataGrid control contains all the columns of data held in the dataset. The following steps show
how the columns of the dataset can be modified.

12. Close the browser window. � Close the browser window.

13. Change the AutoGenerateColumns
property to False.

a. In the editor, click the WebForm1.aspx tab.

b. Click the DataGrid control on the form.

c. In the Properties window, change AutoGenerateColumns from
True to False.

14. Use the Property Builder feature of
the DataGrid control to add the
following columns to the DataGrid.
CustomerID
CustomerName
CustomerAddress
CustomerPhone

a. Right-click the DataGrid control, and then click Property
Builder.

b. In the DataGrid1 Properties window, click Columns.

c. Under Available Columns, click CustomerID, and then
click >.

d. Under Available Columns, click CustomerName, and then
click >.

e. Under Available Columns, click CustomerAddress, and then
click >.

f. Under Available Columns, click CustomerPhone, click > and
then click OK.

15. Run the application and view the
contents of the DataGrid.

� On the standard toolbar, click Start.

Note: The DataGrid now contains only the required columns.

16. Close the browser window. � Close the browser window.

17. Save the changes to the project, and
then quit Visual Studio .NET.

a. On the File menu, click Save All.

b. On the File menu, click Exit.

 Module 10: Creating a Web Application with Web Forms 29

Lesson: Configuring ASP.NET Application Settings

� ASP.NET State Management

� ASP.NET Security

� How to Configure an ASP.NET Application Setting

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This lesson introduces ASP.NET technology, as it relates to developing Web
applications.

After completing this lesson, you will be able to:

� Explain ASP.NET state management.
� Explain ASP.NET security.
� Configure an ASP.NET application setting.

This lesson includes the following topics and activities:

� Multimedia: ASP.NET Execution Model
� ASP.NET State Management
� ASP.NET Security
� How to Configure an ASP.NET Application Setting
� Practice: Configuring a Web Application Using Web.Config

Introduction

Lesson objectives

Lesson agenda

30 Module 10: Creating a Web Application with Web Forms

Multimedia: ASP.NET Execution Model

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this animation, you will see how ASP.NET works to send information to a
requesting client.

Introduction

 Module 10: Creating a Web Application with Web Forms 31

ASP.NET State Management

� HTTP is stateless

� ASP.NET provides both application and session state
management

private void Page_Load(object
sender,System.EventArgs e) {

Session["Demo"]="ABCDEF";

}

private void Page_Load(object
sender,System.EventArgs e) {

Session["Demo"]="ABCDEF";

}

private void Page_Load(object
sender,System.EventArgs e) {
textBox1.Text =
(string)Session["Demo"];

}

private void Page_Load(object
sender,System.EventArgs e) {
textBox1.Text =
(string)Session["Demo"];

}

WebForm1.aspx.csWebForm1.aspx.cs

WebForm2.aspx.csWebForm2.aspx.cs

*****************************ILLEGAL FOR NON-TRAINER USE******************************

HTTP is a stateless protocol. A browser requests a page from a Web server; the
Web server receives that request, fetches the page from the hard disk, and then
returns that page to the browser.

However, if the browser requests another page from the same Web server, the
Web server has no knowledge of the fact that the browser recently requested a
page. In the early days of the Internet, when much of the available content was
static, this process was not a problem.

The fact that the Internet is currently being used for more than just the casual
browsing of static Web pages presents the Web application developer with a
problem. How can the developer maintain information between requests to
different pages while the user browses the developer’s Web application? This
problem is solved by ASP.NET state management.

ASP.NET improves on the state management mechanism provided by the
earlier versions of ASP.NET, Active Server Pages. ASP.NET provides two
objects: Application and Session. You use the Application object to hold
information that is common to all users of a particular Web application. You
use the Session object to store information on a user-by-user basis.

Introduction

ASP.NET state
management

32 Module 10: Creating a Web Application with Web Forms

As shown in the following code, the string ABCDEF is placed into the Session
object for storage between pages. As you keep track of variables by using
different names, this string is held in the Session object against the name Demo.
When a user accesses this page, ASP.NET creates a Session object for the user
and stores the string against the name Demo. When the user accesses the second
page in the example, ASP.NET retrieves the object from the Session object by
the name Demo.

private void Page_Load(object sender,System.EventArgs e){
 Session["Demo"]="ABCDEF";
}

Notice the cast from Session["Demo"], which is type object, to string.

private void Page_Load(object sender,System.EventArgs e) {
 textBox1.Text = (string)Session["Demo"];
}

In ASP.NET, the previous implementation of state management was
enhanced to allow it to scale better for large installations and to be more
reliable.

Example

Note

 Module 10: Creating a Web Application with Web Forms 33

ASP.NET Security

� Authentication

� None

� Windows

� Forms

� Passport

� Authorization

� Impersonation

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Developing dynamic and interactive Web sites typically involves some element
of security.

Allowing users of a Web site to save their preferred airlines for future use
requires an ability to validate the user who is accessing the Web site so that the
correct information can be retrieved. This type of security is called
authentication.

You may want to restrict some pages of your Web site to particular users. After
your Web application authenticates the user, access to specific pages can be
allowed or denied. This type of security is called authorization.

Finally, you may want your Web application to interact with other applications,
such as a database. You also may want it to appear to other applications that it
is being accessed by the user of the Web site, or possibly by a different, fixed
user account. This type of security is called impersonation.

To enable an authentication provider for an ASP.NET application, you need
only create an entry for the application configuration file as shown in the
following code:

// web.config file
<authentication mode= "[Windows/Forms/Passport/None]">
</authentication>

ASP.Net Authorization
<authentication mode="Forms">
 <forms name="Test Application Logon Page"
loginURL="logonform.aspx" />
</authentication>
<authorization>
 <deny users="?">
</authorization>

Introduction

Authentication

Authorization

Impersonation

To enable an
authentication provider

34 Module 10: Creating a Web Application with Web Forms

How to Configure an ASP.NET Application Setting

� Using Web.CONFIG
<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<system.web>
<compilation defaultLanguage="c#"

debug="true"/>
<identity impersonate="true"

userName="DOMAIN\User"
password="123dfget252"/>

<authentication mode="Forms">
<forms name="AdvWorks"

loginUrl="logon.aspx"/>
</authentication>
<authorization>

<deny users="?"/>
</authorization>

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<system.web>
<compilation defaultLanguage="c#"

debug="true"/>
<identity impersonate="true"

userName="DOMAIN\User"
password="123dfget252"/>

<authentication mode="Forms">
<forms name="AdvWorks"

loginUrl="logon.aspx"/>
</authentication>
<authorization>

<deny users="?"/>
</authorization>

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The configuration file for an ASP.NET application is contained in the file
Web.config. Configuration files in ASP.NET applications inherit the settings of
configuration files in the URL path.

For example, given the URL www.microsoft.com/aaa/bbb, where
www.microsoft.com/aaa is the Web application, the configuration file that is
associated with the application is located at www.microsoft.com/aaa.
ASP.NET pages that are in the subdirectory /bbb use both the settings that are
in the configuration file at the application level and the settings in the
configuration file that is in /bbb.

ASP.NET applies configuration settings to resources in a hierarchical manner.
Web.config files supply configuration information to the directories in which
they are located and to all child directories. The configuration settings for a
Web resource are supplied by the configuration file that is located in the same
directory as the resource and by all configuration files in all parent directories.

Web.Config should be listed as a file in your project in Solution Explorer.
Double-click Web.Config to open an editing window to make changes to the
file.

Introduction

Hierarchical
configuration
architecture

Using Visual Studio
.NET to change
Web.Config

 Module 10: Creating a Web Application with Web Forms 35

In the following example, the ASP.NET application impersonates the identity
DOMAIN/User. Authentication for the application uses the Forms method and
specifically the Web page logon.aspx to validate logon requests. Users must be
authenticated as anonymous users ("?") or will otherwise be denied access.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.web>
 <compilation defaultLanguage="c#"
 debug="true"/>
 <identity impersonate="true"
 userName="DOMAIN\User"
 password="123dfget252"/>
 <authentication mode="Forms">
 <forms name="AdvWorks" loginUrl="logon.aspx"/>
 </authentication>
 <authorization>
 <deny users="?"/>
 </authorization>
….

Example

36 Module 10: Creating a Web Application with Web Forms

Practice: Configuring a Web Application Using Web.Config

� In this practice, given the Web.Config for
an application, you will match answers to
a series of questions

� In this practice, given the Web.Config for
an application, you will match answers to
a series of questions

Matching PracticeMatching PracticeMatching Practice

10 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will match answers to a series of questions about the
following Web.Config file for an application:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.web>
 <compilation defaultLanguage="c#" debug="true" />
 <!-- AUTHENTICATION
 This section sets the authentication policies of the
application. Possible modes are "Windows", "Forms",
 "Passport" and "None"
 -->
 <authentication mode="windows" />
 <authorization>
 <deny users="?" />
 </authorization>
 <trace enabled="false" requestLimit="10"
pageOutput="false" traceMode="SortByTime" localOnly="true" />
 <sessionState mode="InProc"
stateConnectionString="tcpip=127.0.0.1:42424"
sqlConnectionString="data source=127.0.0.1;user
id=sa;password=" cookieless="true" timeout="20" />
 <!-- GLOBALIZATION
 This section sets the globalization settings of the
application.
 -->
 <globalization requestEncoding="utf-8"
responseEncoding="utf-8" />
 </system.web>
</configuration>

 Module 10: Creating a Web Application with Web Forms 37

With reference to the preceding Web.Config file, answer the following
questions:

1. What kind of authentication mechanism is specified by this Web.Config
file?
Windows

2. Are un-authenticated users allowed access to this Web application?
No. This is specified by the <deny users="?" />.

3. What is the default language of this Web application?
C#

38 Module 10: Creating a Web Application with Web Forms

Review

� Creating a Web Forms Application

� Accessing Data by Using a Web Form Application

� Configuring ASP.NET Application Settings

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. How can you view all of the files that Visual Studio .NET creates for a new
ASP.NET Web application?
Click Show All Files in the toolbar of Solution Explorer.

2. What are the extensions for the two files that make up a Web Forms page?
The WebForm1.aspx file and the WebForm1.aspx.cs file.

3. What are the three components, not visible on a Web page, that are required
to display the contents of a SQL Server table in a DataGrid control?
SqlConnection object, SqlDataAdapter object, and DataSet object.

4. Name the five basic stages of a Web Forms page life cycle.
Page_Init, Page_Load, Validation, other event handling, and
Page_Unload.

 Module 10: Creating a Web Application with Web Forms 39

5. Name the five steps that are necessary to display data on a Web Forms page.
Create a Web application and Web Forms page, create the data
connection and data adapter, create the DataSet, add a DataGrid to
display data, and fill the DataSet and display data in the DataGrid
control.

6. What browsers are supported by ASP.NET?
All browsers.

7. Can you have more than one Web.Config applications settings?
Yes, in different cascading folders.

40 Module 10: Creating a Web Application with Web Forms

Lab 10.1: Developing an ASP.NET Web Application

� Exercise 1: Completing the User
Authentication Validation Code

� Exercise 2: Completing the Code for the
Master.aspx Form

� Exercise 3: Testing the Application

1 hour

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will be able to:

� Develop an ASP.NET Web application.
� Use Forms based authentication.

Before working on this lab, you must have the ability to:

� Create a Web Form.
� Handle events on a Web Form.
� Access data from Web Form applications.
� Configure ASP.NET application settings.

In this lab, you will complete the code development of a basic Web interface to
the AdventureWorks bank. This Web application allows users to view their
accounts, display the transactions against an account, change their logon
password, transfer money between accounts, and request traveler’s checks in
various currencies.

This lab consists of two exercises. In the first exercise, you will write the code
to validate the user’s logon. In the second exercise, you will complete the code
in the event procedures for the main form, master.aspx. The code for the main
form is provided. However, you must examine each code block, and then copy
and paste it into the appropriate event procedure because this information is not
given to you.

The solution for this lab is provided in install_folder\Labfiles\Lab10_1\
AdvWorksBank_Solution. To open the solution, follow the instructions in the
Readme.txt file located in the folder.

Objectives

Prerequisites

Scenario

Estimated time to
complete this lab:
60 minutes

 Module 10: Creating a Web Application with Web Forms 41

Exercise 0
Lab Setup

The Lab Setup section lists the tasks that you must perform before you begin the lab. The ASP.NET
application calls a local XML Web service. This Web service must be installed before you
complete the lab.

Tasks Detailed steps

1. Log on to Windows as Student with a
password of P@ssw0rd.

� Log on to Windows with the following account:

• User name: Student

• Password: P@ssw0rd.

2. Install the Travelers Checks Web
Service using the Setup.exe located in
install_folder\Labfiles\Lab10_1\Web
Service.

a. Click Start, and then click Run.

b. In the Run dialog box, in the Open box, type
install_folder\Labfiles\Lab10_1\WebService\Setup.exe and
then click OK.

c. In the Travelers Checks Web Service setup wizard, on the
Welcome to the Travelers Checks Web Service Setup
Wizard page, click Next.

d. On the Select Installation Address page, click Next.

e. On the Confirm Installation page click Next.

f. On the Installation Complete page, click Close.

42 Module 10: Creating a Web Application with Web Forms

Exercise 1
Completing the User Authentication Validation Code

Because this ASP.NET Web Application uses Forms-based authentication, the first exercise
involves writing the code that authenticates the user’s logon attempt.

When the user attempts to access the Web site, ASP.NET will test the user for the presence of an
encrypted session cookie. If the session cookie is not present on the client computer, ASP.NET
automatically redirects the user to the logonform.aspx page. This redirection is accomplished by the
authentication element that is contained in the Web.Config file. The logonform.aspx page contains
two text boxes: a label to display any error messages, and a button. Users enter their customer
number in one text box and then enter their password in the second text box. You must add code to
the button click event that tests whether the password entered on the form matches the password
stored in the database. If the passwords match, the user is issued a session cookie and redirected to
the main page of the application.

Tasks Detailed steps

1. Copy the folder
install_folder\Labfiles\Lab10_1\
AdvWorksBank to
C:\Inetpub\wwwroot.

a. Click Start, point to All Programs, point to Accessories,
and then click Windows Explorer.

b. Click install_folder\labfiles\Lab10_1, in the list of items in
this folder right-click AdvWorksBank, and then click Copy.

c. In the left pane of Windows Explorer, right-click
C:\Inetpub\wwwroot, and then click Paste.

d. Close the Windows Explorer window.

2. Using the Microsoft Internet
Information Services application,
change the virtual folder
AdvWorksBank from the default
application to standalone application
named AdvWorksBank.
Execute Permissions: Scripts only.
Application Protection: Medium
(Pooled).

a. Click Start, and then click Control Panel.

b. In Control Panel, double-click Performance and
Maintenance, and then double-click Administrative Tools.

c. In the Administrative Tools dialog box, double-click
Internet Information Services.

d. Expand your_servername.

e. Expand Web Sites.

f. Click Default Web Site

g. In the content list of the Default Web Site, right-click
AdvWorksBank, and then click Properties.

h. In the AdvWorksBank Properties window, under
Application Settings, click Create (this gives the Web site
the default Execute Permissions of Scripts only and the
Application Protection of Medium), and then click OK.

i. Close Internet Information Services.

j. Close Administrative Tools.

k. Close Control Panel.

 Module 10: Creating a Web Application with Web Forms 43

Tasks Detailed steps

3. Open the AdvWorksBank solution in
the folder
C:\Inetpub\wwwroot\AdvWorksBank

a. Start Visual Studio .NET.

b. On the File menu, click Open Solution.

c. In the Open Solution dialog box, select the AdvWorksBank
folder in the Look In folder (under C:\Inetpub\wwwroot).

d. If it is not already selected, click AdvWorksBank.sln, and
then click Open.

4. View the code for the file
logonform.aspx.

� In Solution Explorer, right-click logonform.aspx, and then
click View Code.

5. Scroll down and locate the
Button1_Click procedure. Add code to
this procedure as directed by the
comments included.

� Scroll down and locate the Button1_Click procedure. Using
the comments included in the procedure, write the code
necessary to authenticate the user logon.

44 Module 10: Creating a Web Application with Web Forms

Exercise 2
Completing the Code for the Master.aspx Form
In this exercise, you will complete the code for the main form, master.aspx. Five event procedures
in the form have no code. You are provided with five (5) code blocks in a text file called (Code
Blocks.txt). These code blocks contain no comments to indicate which event procedure they should
be copied to. You must examine each code block, determine what the code does, and then paste the
code into the correct event procedure. In the file master.aspx.cs, you will find 5 procedures with a
comment indicating that the procedure needs one of the code blocks from the code block text file.

Tasks Detailed steps

1. Open the Code Editor for
master.aspx.

� In Solution Explorer, right-click master.aspx, and then click
View Code.

2. Open the text file Code Blocks.txt. � In Solution Explorer, right-click Code Blocks.txt, and then
click Open.

3. Read each code block and determine
its functionality. Paste the code block
into the correct event procedure in
master.aspx. Repeat for each code
block.

a. Read the first code block and determine its functionality.

b. Highlight the lines of code for the code block, and then on the
Edit menu, click Copy.

c. In the Code Editor, click the master.aspx.cs tab.

d. Scroll down the code to the area where the event procedures
contain the comment Code block required here. Click inside
the correct event procedure.

e. Press ENTER to start a new line.

f. On the Edit menu, click Paste.

g. Repeat steps a through f until all event procedures in
master.aspx.cs have code.

 Module 10: Creating a Web Application with Web Forms 45

Exercise 3
Testing the Application
In this exercise, you will test that the application functions correctly.

Tasks Detailed steps

1. Run the application. If prompted to
set the initial Web page, select
master.aspx.

� On the standard toolbar, click Start. If prompted to set the
initial Web page, select master.aspx.

2. Log on to the application using
Customer Number: 100
Password: Password

a. In the AdventureWorks Internet Banking form, in the
Customer number box, enter 100

b. In the Password box, type Password and then click Logon.

Note: If you entered the customer number and password correctly, the page displays the accounts that are
held by this customer. If you failed to log on, try logging on again. If you still cannot log on or your
application generates an error, you must debug the application.

3. Display the transactions for account
1000.

� In the list of accounts, in the row for account 1000, click
View.

4. Request $1000 of traveler’s checks in
British Pounds Sterling.

a. Click Request Travelers Checks.

b. In the Amount of Travelers Checks in USD box, type 1000

c. In the Check Currency list, click British Pounds Sterling,
and then click Order.

Note: A message should appear on the page stating “Order reference is nn for 720.00 British Pounds
Sterling Made up of 1 500s 4 50s 2 10s. Total cost $1,1014.08”.

46 Module 10: Creating a Web Application with Web Forms

Course Evaluation

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Your evaluation of this course will help Microsoft understand the quality of
your learning experience.

At a convenient time between now and the end of the course, please complete a
course evaluation, which is available at
http://www.metricsthatmatter.com/survey.

Microsoft will keep your evaluation strictly confidential and will use your
responses to improve your future learning experience.

