

Contents

Overview 1

Lesson: Using Arrays 2

Lesson: Using Collections 21

Lesson: Using Interfaces 35

Lesson: Using Exception Handling 55

Lesson: Using Delegates and Events 65

Review 82

Lab 5:1: Using Arrays 84

Lab 5.2 (optional): Using Indexers and
Interfaces 88

Lab 5.3 (optional): Using Delegates and
Events 96

Module 5: Programming
with C#

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, ActiveX, BizTalk, FrontPage, IntelliSense, JScript,
Microsoft Press, MSDN, PowerPoint, Visual Basic, Visual C++, Visual C#, Visual Studio, Win32,
Windows Media are either registered trademarks or trademarks of Microsoft Corporation in the
United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 5: Programming with C# iii

Instructor Notes
This module introduces various data structures, including arrays (the
System.Array class) and collections (classes in the System.Collections
namespace), and explains when to use each of these data structures in an
application. The module also introduces interfaces, describes the concepts and
syntax of exception handling, and explains delegates and their use in event
handling.

As a result, this module is particularly content-rich and will take approximately
6 hours to teach. The topics covering delegates and their uses in event handling
may be among the most difficult for students to grasp, so prepare your class for
a challenging day.

This module also provides three labs from which you or your
students may choose one to complete. This module also includes one additional
optional practice. The students are free to choose from the available options.

Two advanced topics, Multidimensional Arrays and Jagged Arrays, are also
included in Appendix B, “Advanced Topics,” for your students’ future
reference.

After completing this module, students will be able to:

� Create and use arrays.
� Use classes in the System.Collections namespace.
� Use the ArrayList class.
� Use interfaces.
� Handle exceptions.
� Create and call a delegate.
� Use delegates to handle events.

To teach this module, you need the following materials:

� Microsoft® PowerPoint® file 2609A_05.ppt
� Module 5, “Programming with C#”

To prepare for this module

� Read all of the materials for this module.
� Complete the practices and lab.

Presentation:
360 minutes

Lab:
30 minutes

Important

Required materials

Preparation tasks

iv Module 5: Programming with C#

How to Teach This Module
This section contains information that will help you to teach this module.

Lesson: Using Arrays
This section describes the instructional methods for teaching each topic in this
lesson.

In this lesson, the students learn how to use arrays to hold a series of objects,
and how to index the array. It is helpful here to point out the advantages of
using an array while iterating through a complex algorithm. You may also
mention that System.Array class is an abstract class that provides many
methods including Add, Remove, Clear, Insert, and Sort.

This lesson concludes with a hands-on practice that uses a foreach loop to list
the contents of an array. The lesson also provides an optional practice, Using an
Indexer, in which the students write an indexer for a given class.

Lesson: Using Collections
This section describes the instructional methods for teaching each topic in this
lesson.

This lesson introduces the various data structures in the Collections namespace
with specific emphasis on how to use the ArrayList, Queue, Stack, and
Hashtable classes. Point to the table in the What Are Lists, Queues, Stack, and
Hash Tables topic for a description and example of the best uses for each of
these classes.

Lesson: Using Interfaces
This section describes the instructional methods for teaching each topic in this
lesson.

This lesson describes why interfaces are an important part of C# programming
and explains how to implement interfaces in a C# application.

� Use the term “contract” to concretely describe the behavior of an interface.
An interface defines a set of methods, properties, indexers, and events, but
does not provide an implementation method. A class that inherits from an
interface must provide the implementation method, and must implement
every aspect of that interface exactly as it is defined.

� Point to similarities between an interface and an abstract class, and give
examples of best uses as indicated in the How to Inherit Multiple Interfaces
topic.

� Point out that interfaces are useful when you want to maintain the same
functionality and behavior into unrelated classes.

 Module 5: Programming with C# v

Lesson: Using Exception Handling
This section describes the instructional methods for teaching each topic in this
lesson.

This lesson describes error handling using exception handlers, including user
exceptions and basic exception handling syntax, such as try, catch, and finally.
It also explains how to use exception types. The lesson also covers throwing
exceptions by using the throw keyword.

� It is a good idea to mention to the students that under normal circumstances,
an application should not encounter any exceptions. Exceptions are not
designed to handle programming errors; rather, they are designed to provide
control in situations where there is a true exception to the expected behavior
of the application.

� Use a code sample when discussing exception handling syntax, multiple
catch blocks, or catch sequence planning.

Lesson: Using Delegates and Events
This section describes the instructional methods for teaching each topic in this
lesson.

The concept of delegates is abstract and sometimes difficult for students to
grasp. Because this course is an introductory course, there is no need to unduly
dwell on this topic. It is sufficient for students to understand that a delegate is a
data structure that literally functions as a pointer, or a reference, to a method.

� Mention that the closest equivalent of a delegate in C or C++ is a function
pointer. However, a function pointer can only reference static functions,
whereas a delegate can reference both static and instance methods.

� Stress that a delegate can reference a method only if the signature of the
method exactly matches the signature that is specified by the delegate type.

� Stress the benefit of using delegates, for instance, the reusability of code by
third parties.

� Use the mouse and keyboard events to concretely illustrate that events can
be generated by a user action, such as clicking a button with the mouse, or
pressing a key. When one of these events occurs and there is code in the
associated event handler, that code is invoked.

� Mention that the Microsoft .NET Framework event model uses delegates to
bind events to the methods that are used to handle them. The delegate
allows other classes to register for event notification by specifying a handler
method. When the event occurs, the delegate calls the bound method or
methods. The method that is called when the event occurs is referred to as
the event handler.

Review
The review questions are mostly based on conceptual understanding and
procedures that were covered thoroughly in the module. You can use a
discussion format to answer the questions so that everyone gets the benefit of
knowing the right answers.

vi Module 5: Programming with C#

Lab 5.1: Using Arrays
Before beginning this lab, students should have completed the Using Arrays
lesson. The lab is simple but comprehensive. This lab presents the students with
a problem which is solved by using arrays.

Lab 5.2: Using Indexers and Interfaces
Before beginning this lab, students should have completed the lessons in this
module. In Exercise 1, the students will write an indexer for a provided class,
and in Exercise 2, they will implement the IEnumerable and IEnumerator
interfaces.

Lab 5.3: Using Delegates and Events
Before beginning this lab, students should have completed the lessons in this
module. They will use delegates and events to create stock buying and selling
functions.

 Module 5: Programming with C# 1

Overview

� Using Arrays

� Using Collections

� Using Interfaces

� Using Exception Handling

� Using Delegates and Events

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This module introduces various data structures including arrays (the
System.Array class) and collections (classes in the System.Collections
namespace), and explains when to use each of these data structures in an
application. The module also introduces interfaces, describes the concepts and
syntax of exception handling, and explains delegates and their use in event
handling.

After completing this module, you will be able to:

� Create and use arrays.
� Use classes in the System.Collections namespace.
� Use the ArrayList class.
� Use interfaces.
� Handle exceptions.
� Create and call a delegate.
� Use delegates to handle events.

Introduction

Objectives

2 Module 5: Programming with C#

Lesson: Using Arrays

� What Is an Array?

� How to Create an Array

� How to Initialize and Access Array Members

� How to Iterate Through an Array Using the foreach
Statement

� How to Use Arrays as Method Parameters

� How to Index an Object

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This lesson introduces arrays and the Array class in the System namespace. It
explains how to use arrays to hold a series of objects, and how to index the
array.

After completing this lesson, students will be able to:

� Create an array.
� Index an array.
� Use the foreach statement to iterate through the items in the array.

This lesson includes the following topics and activity:

� What Is an Array?
� How to Create an Array
� How to Initialize and Access Array Members
� How to Iterate Through an Array Using the foreach Statement
� How to Use Arrays as Method Parameters
� How to Index an Object
� Practice: Using foreach with an Array
� Practice (optional): Using an Indexer

Introduction

Lesson objectives

Lesson agenda

 Module 5: Programming with C# 3

What Is an Array?

� A data structure that contains a number of variables
called elements of the array

� All of the array elements must be of the same type
� Arrays are zero indexed
� Arrays are objects
� Arrays can be:

� Single-dimensional, an array with the rank of one
� Multidimensional, an array with a rank greater than one
� Jagged, an array whose elements are arrays

� Array methods

*****************************ILLEGAL FOR NON-TRAINER USE******************************

An array can be thought of as a list. By using arrays, you can store a group of
elements that have the same data type under one variable name. You can also
easily access, use, and store values of the same type. An array is a good choice
when you want to maintain a list of items.

An array is a data structure that contains a number of variables called the
elements of the array. To refer to a specific element in the series, you use a
number, or index. C# arrays are zero indexed; that is, the array indexes start at
zero. Arrays are objects.

 [0] [1] [2] [3] [4] [5] [6]

Index 0 Index 6

An array that consists of a single list or sequence is called a single-dimensional
array. An array has one or more dimensions.

A multidimensional array is indexed by more than one value. Multidimensional
arrays of specific sizes are often referred to by size, such as two-dimensional
arrays and three-dimensional arrays. You can think of a two-dimensional array
as a grid. For example, you can store a set of graph coordinates, such as x and
y, in a 2-dimensional array.

Consider a shelf full of books as a single-dimensional array. The shelf is the
array dimension and a book is an element in the array. A bookcase is more like
a multidimensional array, with the shelves being one dimension on the array,
and the books being another dimension. For example, you would refer to the
third book on the second shelf.

The elements of an array can be any type, including an array type. An array of
arrays is called a jagged array.

Introduction

Definition

Single dimensional array

Multidimensional array

Analogy

Jagged array

4 Module 5: Programming with C#

C# natively supports arrays, based on the Microsoft® .NET Framework class
System.Array. The System.Array class is an abstract class that provides many
methods that you can use when working with arrays.

The following table includes some of the most commonly used methods.

Method Description

Sort Sorts the elements in an array

Clear Sets a range of elements to zero or null

Clone Creates a copy of the array

GetLength Returns the length of a given dimension

IndexOf Returns the index of the first occurrence of a value

Length Gets the number of elements in the specified dimension of the array

Array methods

 Module 5: Programming with C# 5

How to Create an Array

� Declare the array by adding a set of square brackets to
end of the variable type of the individual elements

� Instantiate to create

� int[] numbers = new int[5];

� To create an array of type Object

� object [] animals = new object [100];

int[] MyIntegerArray; int[] MyIntegerArray;

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Before you can use an array, you must create it by declaring it and then
instantiating it.

You create or declare arrays in code just as you declare other variables. You
follow the same guidelines for naming, scoping, and choosing data types. When
you declare an array, you place the brackets ([]) after the type. These square
brackets are called the index operators.

int[] MyIntegerArray;

int[] table;

To declare an array, use the following syntax:

type[] array-name;

For example:

int[] numbers;

Arrays in C# are objects and must be instantiated. When you instantiate the
array, you set aside memory, on the heap, to hold the elements of the array.

The following code allocates space for 5 integers:

int[] numbers;
numbers = new int[5];

As with other variable declarations, you can combine these statements as
follows:

int[] numbers = new int[5];

Introduction

Syntax

Declaring an array

Instantiating an array

6 Module 5: Programming with C#

When you create an array of value types, the contents of the array are initialized
to the default value for that type. For an integer array, the default value is zero.

The array can be of any type. For example, you can maintain a list of names or
bank account balances in an array.

string[] names = new names[7];
decimal[] balances = new balances[10];

You can also create an array of type Object as shown in the following example.
Creating this type of array can be useful if you must manage a list of many
different types of objects.

object[] animals = new object[100];

Initial values

Examples

 Module 5: Programming with C# 7

How to Initialize and Access Array Members

� Initializing an array

� Accessing array members

int[] numbers = {10, 9, 8, 7, 6, 5, 4, 3, 2,
1, 0};

numbers[4] = 5;

int[] numbers = {10, 9, 8, 7, 6, 5, 4, 3, 2,
1, 0};

numbers[4] = 5;

string[] animal = {"Mouse", "Cat", "Lion"};
animal[1]= "Elephant";
string someAnimal = animal[2];

string[] animal = {"Mouse", "Cat", "Lion"};
animal[1]= "Elephant";
string someAnimal = animal[2];

*****************************ILLEGAL FOR NON-TRAINER USE******************************

C# provides simple ways to initialize arrays and access array members.

To initialize a single-dimensional array when it is declared, enclose the initial
values in curly braces { }.

If an array is not initialized when it is declared, array members are
automatically initialized to the default initial value for the array type.

The following examples show various ways to initialize single-dimensional
arrays:

int[] numbers = new int[5] {1, 2, 3, 4, 5};

string[] animals = new string[3] {"Elephant", "Cat", "Mouse"};

If an initializer is provided, you can omit the new statement, as shown in the
following examples:

int[] numbers = {1, 2, 3, 4, 5};

string[] animals = {"Elephant", "Cat", "Mouse"};

Note that the size of the array is inferred from the number of elements that are
specified.

Introduction

Initializing a single-
dimensional array

Note

8 Module 5: Programming with C#

Accessing array members in C# is straightforward. For example, the following
code creates an array called numbers and then assigns 5 to the fifth element of
the array:

int[] numbers = {10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0};
numbers[4] = 5;

The following code creates an array of 100 integers and fills them with the
values 100 down to 1:

int[] countdown = new int[100];

for (int i = 0, j = 100; i < 100; i++, j--) {
 countdown[i] = j;
}

When you declare an array to include a number of elements, you must access
only valid array elements. If you attempt to access an element that is out of
range, you generate an IndexOutOfRange exception, a type of run-time error.

For example, the following code generates a run-time error because the array
allocates 5 integers but attempts to access the sixth element in the array.
Remember that arrays are zero-indexed.

int[] errorArray = new int[5];
errorArray[5] = 42; // runtime error

It is very useful to check the contents of an array while your application is
running. The debugging tool provides excellent access to array element values
through the various debugging windows such as the Autos window and the
Watch window:

To examine the contents of an array, set a breakpoint at the array, and then, in
the Debug window, click the expand button next to the array name.

Accessing array
members

Example

Examining arrays using
the debugging tool

 Module 5: Programming with C# 9

How to Iterate Through an Array Using the foreach Statement

� Using foreach statement repeats the embedded
statement(s) for each element in the array

int[] numbers = {4, 5, 6, 1, 2, 3, -2, -1, 0};

foreach (int i in numbers) {

Console.WriteLine(i);

}

int[] numbers = {4, 5, 6, 1, 2, 3, -2, -1, 0};

foreach (int i in numbers) {

Console.WriteLine(i);

}

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Code that iterates through an array and executes the same statements on each
element is very common. Although you can use any looping statement to iterate
through an array, the foreach statement simplifies this common process by
eliminating the need for you to check the size of the array.

The syntax of the foreach statement is:

foreach (type identifier in expression)
 statement-block

The following code creates an array named numbers, iterates through the array
with the foreach statement, and then writes the values out to the console, one
per line:

int[] numbers = {4, 5, 6, 1, 2, 3, -2, -1, 0};
foreach (int i in numbers) {
 Console.WriteLine(i);
}

You must not modify the iteration variable in a foreach loop. In the
preceding example, i is the iteration variable.

Introduction

Syntax

Using the foreach
statement

Important

10 Module 5: Programming with C#

This example shows how the foreach statement can be useful when you work
with an array of objects. Two classes, Lion and Elephant, are derived from
Animal. Both of the derived classes implement the Eat method. The classes are
instantiated, and then a Lion and an Elephant object are placed in an array. The
foreach statement is used to iterate through the array so that the polymorphic
Eat method is called. Note that the base object type is used to specify the type
of the identifier.

using System;

namespace ArraySample {
 public abstract class Animal {
 abstract public void Eat();
 }

 public class Lion : Animal {
 public override void Eat() {
 // eats meat
 }
 }

 public class Elephant : Animal {
 public override void Eat() {
 // eats vegetation
 }
 }

 class ClassZoo {
 static void Main(string[] args) {
 Lion aLion = new Lion();
 Elephant anElephant = new Elephant();

 Animal[] zoo = new Animal[2];
 zoo[0] = aLion;
 zoo[1] = anElephant;

 foreach (Animal a in zoo) {
 a.Eat();
 }
 }
 }
}

Example

 Module 5: Programming with C# 11

How to Use Arrays as Method Parameters

� Pass an array to a method

� Use the params keyword to pass a variable number of
arguments to a method

public int Sum(params int[] list) {
int total = 0;
foreach (int i in list) {

total += i;
}
return total;

}

...
// pe is the object providing Sum()
...
int value = pe.Sum(1, 3, 5, 7, 9, 11);

public int Sum(params int[] list) {
int total = 0;
foreach (int i in list) {

total += i;
}
return total;

}

...
// pe is the object providing Sum()
...
int value = pe.Sum(1, 3, 5, 7, 9, 11);

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You may want to write a method that can accept an unpredictable number of
parameters, for example, a method that would return the sum of any set of
integers.

To write this type of method, you can place the integers in an array, pass the
array to the method, and then use the foreach statement to iterate through the
array.

Introduction

Passing an array to a
method

12 Module 5: Programming with C#

The following example shows how to do this with the Sum method. Note the
declaration of the Sum method and note the declaration and initialization of the
tester array.

using System;

namespace ParameterExample {
 public class ParamExample {
 public int Sum(int[] list) {
 int total = 0;
 foreach (int i in list) {
 total += i;
 }
 return total;
 }
 }

 class Tester {
 static void Main(string[] args) {
 ParamExample pe = new ParamExample();
 int[] tester = {1, 2, 3, 4, 5, 6, 7 };

 int total = pe.Sum(tester);

 Console.WriteLine(total); // 28
 }
 }
}

Example

 Module 5: Programming with C# 13

Although this approach works, C# provides a better solution by allowing you to
use the params keyword rather than creating the array yourself. When you
place the params keyword before the array declaration in the parameter list,
you can use the method as shown in the following example:

using System;

namespace ParameterExample {
 public class ParamExample {
 public int Sum(params int[] list) {
 int total = 0;
 foreach (int i in list) {
 total += i;
 }
 return total;
 }
 }

 class Tester {
 static void Main(string[] args) {
 ParamExample pe = new ParamExample();

 int total = pe.Sum(1, 2, 3, 4, 5, 6, 7);

 Console.WriteLine(total); // 28
 }
 }
}

Using params keyword

14 Module 5: Programming with C#

The params keyword can modify any type of parameter. A params parameter
need not be the only parameter. For example, you can add the following method
to the ParamExample class:

class ParamExample {
 public string Combine(string s1, string s2,
 params object[] others) {
 string combination = s1 + " " + s2;
 foreach (object o in others) {
 combination += " " + o.ToString();
 }
 return combination;
 }
}

You can use this method as follows:

string combo = pe.Combine("One", "two", "three", "four");
// combo has the value "One two three four"

combo = pe.Combine("alpha", "beta");
// combo has the value "alpha beta"

Notice how this method is implemented in the preceding example. The first call
to pe.Combine matches the method that has the params parameter, and the
compiler creates an array and then passes that array to your method. The second
call to pe.Combine matches the method that takes two string parameters, and
the compiler does not create an array. When using the params keyword, you
must consider the overhead that is involved.

If you expect that the users of your method are normally going to pass one,
two, or three parameters, it is a good idea to create several overloads of the
method that can handle those specific cases.

Tip

 Module 5: Programming with C# 15

How to Index an Object

� Use this keyword, and get and set accessors

public class Zoo {
private Animal[] theAnimals;
public Animal this[int i] {

get {
return theAnimals[i];

}
set {

theAnimals[i] = value;
}

}
}

public class Zoo {
private Animal[] theAnimals;
public Animal this[int i] {

get {
return theAnimals[i];

}
set {

theAnimals[i] = value;
}

}
}

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When a class contains an array, or a collection, it is useful to access the
information as though the class itself were an array. An indexer is a property
that allows you to index an object in the same way as an array.

To declare an indexer in C#, you use the this keyword. Like properties,
indexers can contain get and set clauses, as shown in the following example:

type this [type index-argument] { get-accessor; set-
accessor; }

The get accessor uses the same index-argument as the indexer, as shown in the
following example:

public numbers this[int i] {
get {
 return myIntegerArray[i];
}

}

The set accessor uses the same index-argument as the indexer, in addition to the
value implicit parameter, as shown in the following example:

set {
 myArray[i] = value;
}

In the following complete example, the Zoo class maintains a private array of
Animal objects named theAnimals. An indexer is provided so that users of the
Zoo class can access the animals in Zoo just like an array, as shown in Main
method.

Introduction

Declaring an indexer

The get accessor

The set accessor

Example

16 Module 5: Programming with C#

using System;

namespace IndexExample {

 public class Zoo {
 private Animal[] theAnimals;
 public Animal this[int i] {
 get {
 return theAnimals[i];
 }
 set {
 theAnimals[i] = value;
 }
 }

 public Zoo() {
 // Our Zoo can hold 100 animals
 theAnimals = new Animal[100];
 }
 }

 class ZooKeeper {
 static void Main(string[] args) {
 Zoo myZoo = new Zoo();
 myZoo[0] = new Elephant();
 myZoo[1] = new Lion();
 myZoo[2] = new Lion();
 myZoo[3] = new Antelope();

 Animal oneAnimal = myZoo[3];
 // oneAnimal gets an antelope
 }
 }

 public abstract class Animal {
 abstract public void Eat();
 }
 public class Lion : Animal {
 public override void Eat() { }
 }
 public class Elephant : Animal {
 public override void Eat() { }
 }
 public class Antelope : Animal {
 public override void Eat() { }
 }
}

Instead of using the indexer, you can either make the array public, which
violates the design principals of encapsulation, or write methods to add and
remove animals from the array.

The preceding code is available on the Student Materials compact disc in the
IndexObject.sln file in the Samples\Mod05\Indexers folder.

 Module 5: Programming with C# 17

Practice: Using a foreach Statement with an Array

� In this practice, you will create an array,
populate it, and use the foreach statement
to print out the values in the array

� In this practice, you will create an array,
populate it, and use the foreach statement
to print out the values in the array

Hands-on PracticeHandsHands--on Practiceon Practice

10 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will use a foreach loop to list the contents of an array. Each Animal object in
the array has a property named Species that returns the animal species as a string. You can display
this property by using the Output method that is provided in the starter code as shown in the
following code, assuming anAnimal is an Animal object:

Output (anAnimal.Species);

The array animalArray is defined as follows:

Animal animalArray[] = new Animal[5];

Animals are assigned to the array as follows:

animalArray[0] = new Lion();

The output is shown in the following illustration:

18 Module 5: Programming with C#

The solution for this practice is located in install_folder\Practices\Mod05\Arrays_Solution
\ArrayExample.sln. Start a new instance of Microsoft Visual Studio® .NET before opening the
solution.

Tasks Detailed steps

1. Start Visual Studio .NET,
and then open install_folder
\Practices\Mod05\Arrays
\ArrayExample.sln.

a. Start a new instance of Visual Studio .NET.

b. On the Start Page, click Open Project.

c. In the Open Project dialog box, browse to install_folder\Practices
\Mod05\Arrays, click ArrayExample.sln, and then click Open.

d. In Solution Explorer, click Form1.cs, and then press F7 to open the
Code Editor.

2. Review the Task List. a. On the View menu, point to Show Tasks, and then click All.

b. Review the tasks in the Task List.

3. Write a foreach loop that
lists the contents of the
animalArray array.

a. Double-click the task TODO: Write a foreach loop that lists the
animals.

Note that the animalArray has been declared and initialized with some
animals.

b. Write a foreach loop that displays the Species of every animal in the
animalArray.

c. Press F5 to compile and run your application. In your application
window, click Run.

Your application output should be the same as that shown in the
introduction to this practice.

4. Save your solution, and the
quit Visual Studio .NET.

a. On the File menu, click Save All.

b. On the File menu, click Exit.

 Module 5: Programming with C# 19

Practice (optional): Using an Indexer

� In this practice, you will write an indexer
for the Zoo class

� In this practice, you will write an indexer
for the Zoo class

Hands-on PracticeHandsHands--on Practiceon Practice

10 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will write an indexer for the Zoo class. Currently, the Zoo class maintains
Animal objects in a public array named animalsArray. When you click the Run button, a Zoo
object named myZoo is created, and three Animal objects are created and placed in the
animalsArray array in myZoo.

Next, a for loop is used to display the species of the animals in the animalsArray in the Zoo
object.

Your tasks are to:

� Write an indexer to modify the array.
� Use the indexer to add the animals to the array (code is provided).
� Display the animals in the array, using the indexer (code is provided).

The solution will look like this:

The solution for this practice is located in install_folder\Practices\Mod05\
Indexers_Solution\Indexers.sln. Start a new instance of Visual Studio .NET before opening the
solution.

20 Module 5: Programming with C#

Tasks Detailed steps

1. Start Visual Studio .NET,
and then open install_folder
\Practices\Mod05\Indexers
\Indexers.sln.

a. Start a new instance of Visual Studio .NET.

b. On the Start Page, click Open Project.

c. In the Open Project dialog box, browse to
install_folder\Practices\Mod05\Indexers, click Indexers.sln, and then
click Open.

d. In Solution Explorer, click Form1.cs, and then press F7 to open the
Code Editor.

2. Review the Task List. a. On the View menu, point to Show Tasks, and then click All.

b. Review the tasks in the Task List.

3. Locate and complete the
task Write an Indexer for
this class, based on
animalArray.

a. Double-click the task TODO: Write an Indexer for this class, based
on animalArray.

b. Write an indexer for the Zoo class. In the get accessor, return an
Animal object from the animalArray. In the set accessor, add an
Animal object to the animalArray.

4. Comment out the lines in
the Zoo class
runExample_Click method
that directly use
animalArray.

To test your indexer, you will comment out the code in the
runExample_click method that uses animalArray directly, and
uncomment the code that uses the indexer.

a. Double-click the task TODO 2 : Comment out the following:

b. Comment out the lines that assign animals to the animalArray, and
comment out the for loop immediately following these assignments.

Note that you can use the Comment Selection function to comment out
selected lines of code. This function is available on the Edit menu under
Advanced, and also as a toolbar button, as shown on the left.

5. Uncomment the code that
uses the Zoo indexer to read
assign the animals and
display them.

a. Locate the task TODO 3: Uncomment the following lines.

b. Remove the comments from the lines following this task description.

6. Compile and run your
application, and test that the
animal names display
correctly when you click
Run.

� Press F5 to compile and run your application, and then click Run on
your application window.

The output should list the three animal species.

7. Quit Visual Studio .NET,
saving your solution.

a. On the File menu, click Save All.

b. On the File menu, click Exit.

 Module 5: Programming with C# 21

Lesson: Using Collections

� What Are Lists, Queues, Stacks, and Hash Tables?

� How to Use the ArrayList Class

� How to Use Queues and Stacks

� How to Use Hash Tables

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This lesson introduces the various data structures in the Collections namespace,
with special attention given to the ArrayList class. The lesson explains how to
create an ArrayList class, add items to a collection, iterate through the items in
a collection, and use hash tables to access collection elements.

After completing this lesson, you will be able to:

� Create and use collections.
� Use a hash table to access collection elements.

This lesson includes the following topics and activity:

� What Are Lists, Queues, Stacks, and Hash tables?
� How to Use the ArrayList Class
� How to Use Queues and Stacks
� How to Use Hash Tables
� Practice: Creating and Using Collections

Introduction

Lesson objectives

Lesson agenda

22 Module 5: Programming with C#

What Are Lists, Queues, Stacks, and Hash Tables?

� List: A collection that allows you access by index
Example: An array is a list; an ArrayList is a list

� Queue: First-in, first-out collection of objects
Example: Waiting in line at a ticket office

� Stack: Last-in-first-out collection of objects
Example: A pile of plates

� Hash table: Represents a collection of associated keys
and values organized around the hash code of the key
Example: A dictionary

Lists, queues, stacks, and hash tables are common
ways to manage data in an application

*****************************ILLEGAL FOR NON-TRAINER USE******************************

An array is a useful data structure, but it has some limitations. For example,
when you create an array, you must know how many elements you will need,
and accessing the element by a sequential index may not be the most
convenient method for your application. Lists, queues, stacks, and hash tables
are other common ways to manage data in an application.

The System.Collections namespace contains interfaces and classes that define
various collections of objects, such as lists, queues, stacks, and hash tables, that
provide a useful variety of data structures.

Many of the objects in the .NET Framework classes use collections to manage
their data, so understanding these data structures is critical to your ability to
successfully create C# applications.

Introduction

Definition

 Module 5: Programming with C# 23

The following table shows some of the classes in the System.Collections
namespace and illustrates their best uses through examples.

Class Description Use Example

ArrayList Represents an ordered

collection of objects
that can be
individually indexed.

Use an ArrayList when you want to
access elements by using an index. In
almost every situation, an ArrayList is a
good alternative to an array.

Mailboxes: items can be inserted
or removed at any position.

Queue Represents a first-in,
first-out collection of
objects.

Use a queue when you need first-in,
first-out access.

A queue is often used to hold elements
in that are discarded immediately
thereafter, such as information in a
buffer.

Waiting in line at a ticket office,
where you join at the back and
leave from the front.

Requests coming over a network
are queued and then discarded
after they are processed.

Stack Represents a simple
last-in, first-out
collection of objects.

Use a stack when you need last-in, first-
out access. A stack is often used to hold
items during calculations.

A pile of plates, in a cupboard,
where you place them on top,
and remove them from the top.

Hashtable Uses a key to access
the elements in the
collection.

Use a hash table when you must access
elements by using an index and you can
identify a useful index value.

You can access book titles by
their ISBN numbers.

Description

24 Module 5: Programming with C#

How to Use the ArrayList Class

� ArrayList does not have a fixed size; it grows as
needed

� Use Add(object) to add an object to the end of the
ArrayList

� Use [] to access elements in the ArrayList

� Use TrimToSize() to reduce the size to fit the number of
elements in the ArrayList

� Use Clear to remove all the elements

� Can set the capacity explicitly

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The ArrayList class solves the main disadvantage of an array, which is that
you must know the capacity of the data structure when you instantiate the array,
by providing a data structure that behaves like an array but can grow as
required. As elements are added to an ArrayList object, the capacity is
automatically increased. An ArrayList object initially allocates 16 elements.
When you add a seventeenth element, the ArrayList expands to 32 elements.

You can access elements in an ArrayList object in the same way that you
access arrays. You can also use ArrayList methods to add elements to or
remove elements from an ArrayList. To decrease the capacity of an ArrayList,
you can call the TrimToSize method or explicitly set the Capacity property.

Use the Add method to add items to an ArrayList.

You can also use foreach to iterate over items in an ArrayList.

Note that ArrayList elements are objects, such as System.Object, so when you
retrieve the elements from the list, you most likely must perform type
conversion.

Method Use

Add Adds an object to the end of the ArrayList.

Remove Removes the first occurrence of a specific object from the ArrayList.

Clear Removes all elements from the ArrayList.

Insert Inserts an element into the ArrayList at the specified index.

TrimToSize Sets the capacity to the actual number of elements in the ArrayList.

Sort Sorts the elements in the ArrayList.

Reverse Reverses the elements in the ArrayList.

Introduction

Accessing elements in
an ArrayList

Methods

 Module 5: Programming with C# 25

The following code shows how to use an ArrayList. Note the following points:

� You must include the System.Collections namespace.
� The ArrayList (theAnimals) is initialized without specifying its size,

because it will grow as needed.
� The Add and Insert methods are used to add elements to the array. This is

the difference between arrays and ArrayLists.
� In both of the places where elements are retrieved from the ArrayList, they

must be converted to the type of the variable to which they are being
assigned.

� You can access the elements of the ArrayList by using the index operator [].

Example

26 Module 5: Programming with C#

using System;
using System.Collections;

namespace ArrayListExample {
 public class Zoo {
 private ArrayList theAnimals;
 public ArrayList ZooAnimals {
 get {
 return theAnimals;
 }
 }
 public Animal this[int i] {
 get {
 return (Animal) theAnimals[i];
 }
 set {
 theAnimals[i] = value;
 }
 }
 public Zoo() {
 theAnimals = new ArrayList();
 }
 }

 public class ZooKeeper {
 static void Main(string[] args) {
 Zoo myZoo = new Zoo();
 myZoo.ZooAnimals.Add(new Lion());
 myZoo.ZooAnimals.Add(new Elephant());
 myZoo.ZooAnimals.Insert(1, new Lion());

 Animal a = myZoo[0];
 myZoo[1] = new Antelope();
 }
 }

 public abstract class Animal {
 abstract public void Eat();
 }

 public class Lion : Animal {
 public override void Eat() { }
 }

 public class Elephant : Animal {
 public override void Eat() { }
 }

 public class Antelope : Animal {
 public override void Eat() { }
 }
}

The preceding code is available on the Student Materials compact disc in the
ArrayListExample.sln file in the Samples\Mod05\ArrayList folder.

 Module 5: Programming with C# 27

How to Use Queues and Stacks

� Queues: first-in, first-out

� Enqueue places objects in the queue

� Dequeue removes objects from the queue

� Stacks: last-in, first-out

� Push places objects on the stack

� Pop removes objects from the stack

� Count gets the number of objects contained in a stack
or queue

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Queue objects and Stack objects are collection objects in the
System.Collections namespace. The Queue class tracks objects on a first-in,
first-out basis. The Stack class tracks objects on a first-in, last-out basis. By
using the public methods of both Queue and Stack classes, you can move
objects to different locations.

The table below shows some of the public methods of the Queue class and a
description of how they move objects:

Public methods Description

Enqueue-Queue Adds an object to the end of the Queue.

Dequeue-Queue Removes and returns the object at the beginning of the Queue.

The following example shows how to use a Queue object to handle messages.
The Messenger class in this code calls the SendMessage method to send
messages in the sequence “One”, “Two”, “Three”, and “Four”. The Queue
object places the messages in the buffer by using the Enqueue method. When it
is ready to receive the messages, it writes them to the console; in this case, by
calling the Dequeue method.

Introduction

Using queues

Example

28 Module 5: Programming with C#

using System;
using System.Collections;

namespace QueueExample {
 class Message {
 private string messageText;
 public Message (string s) {
 messageText = s;
 }
 public override string ToString() {
 return messageText;
 }
 }

 class Buffer {
 private Queue messageBuffer;
 public void SendMessage(Message m) {
 messageBuffer.Enqueue(m);
 }
 public void ReceiveMessage() {
 Message m = (Message) messageBuffer.Dequeue();
 Console.WriteLine(m.ToString());
 }
 public Buffer() {
 messageBuffer = new Queue();
 }
 }

 class Messenger {
 static void Main(string[] args) {
 Buffer buf = new Buffer();
 buf.SendMessage(new Message("One"));
 buf.SendMessage(new Message("Two"));
 buf.ReceiveMessage ();
 buf.SendMessage(new Message("Three"));
 buf.ReceiveMessage ();
 buf.SendMessage(new Message("Four"));
 buf.ReceiveMessage ();
 buf.ReceiveMessage ();
 }
 }
}

The preceding code produces the following output:

One
Two
Three
Four

The preceding code is available on the Student Materials compact disc in the
Queues.sln file in the Samples\Mod05\Queue folder.

 Module 5: Programming with C# 29

The following table shows some of the public methods of the Stack class and a
description of how they move objects to different locations.

Public methods Description

Count Gets the number of objects contained in a stack.

Push Inserts an object at the top of the stack.

Pop Removes and returns the object at the top of the stack.

The following code uses a Stack object instead of a Queue object. Note that the
messages are added by using the Push method and removed by using the Pop
method.

Using stacks

Example

30 Module 5: Programming with C#

using System;
using System.Collections;

namespace StacksExample {
 class Message {
 private string messageText;
 public Message (string s) {
 messageText = s;
 }
 public override string ToString() {
 return messageText;
 }
 }

 class Buffer {
 private Stack messageBuffer;
 public void SendMessage(Message m) {
 messageBuffer.Push(m);
 }
 public void ReceiveMessage() {
 Message m = (Message) messageBuffer.Pop();
 Console.WriteLine(m.ToString());
 }
 public Buffer() {
 messageBuffer = new Stack();
 }
 }

 class Messenger {
 static void Main(string[] args) {
 Buffer buf = new Buffer();
 buf.SendMessage(new Message("One"));
 buf.SendMessage(new Message("Two"));
 buf.ReceiveMessage ();
 buf.SendMessage(new Message("Three"));
 buf.ReceiveMessage ();
 buf.SendMessage(new Message("Four"));
 buf.ReceiveMessage ();
 buf.ReceiveMessage ();
 }
 }
}

The preceding code produces the following output:

Two
Three
Four
One

This code is available on the Student Materials compact disc in the Stacks.sln
file in the Samples\Mod05\Stack folder.

 Module 5: Programming with C# 31

How to Use Hash Tables

� A hash table is a data structure that associates a key
with an object, for rapid retrieval

Book techBook = new Book("Inside C#", 0735612889);
// ...
public Hashtable bookList;
//
bookList.Add(0735612889, techBook);
//
Book b = (Book) bookList[0735612889];
// b’s title is "Inside C#"

Book techBook = new Book("Inside C#", 0735612889);
// ...
public Hashtable bookList;
//
bookList.Add(0735612889, techBook);
//
Book b = (Book) bookList[0735612889];
// b’s title is "Inside C#"

ObjectObjectKeyKey

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A hash table is a data structure that is designed for fast retrieval. It does this by
associating a key with each object that you store in the table. When you use this
key to retrieve a value, the hash table can quickly locate the value.

Use a hash table when the data that you want to manage has some attribute that
can act as the key. For example, if you are representing customers at a bank,
you can use their taxpayer ID or their name. Or, a car rental company can use
the rental agreement number as the key to the customer record.

In the .NET Framework, you can create hash tables by using the Hashtable
class. After you have created a Hashtable object, you can use the Add method
to add entries to it. The method takes two parameters, the key and the value, as
shown in the following example:

myHashTable.Add(rentalAgreementNumber, someCustomerRecord);

You can retrieve objects from a Hashtable object by using the index operator
and the key value, as shown in the following code.

Customer cr = (Customer) myHashTable[rentalAgreementNumber];

When you select the key value, choose one that is as short as possible and that
will not change over the life of the object.

The following example maintains a list of books by using the ISBN number as
the key. Remember that the Hashtable class stores the data as type Object, so
it is necessary to convert the retrieved object to the correct type before use.

Introduction

Methods

Example

32 Module 5: Programming with C#

using System;
using System.Collections;

namespace HashExample {

 // A library contains a list of books.
 class Library {
 public Hashtable bookList;
 public Library() {
 bookList = new Hashtable();
 }
 }

 // Books are placed in the library
 class Book {
 public Book(string t, int n) {
 Title = t; ISBN = n;
 }
 public string Title;
 public int ISBN;
 }

 class ClassMain {
 static void Main(string[] args) {
 Book b1 = new Book("Programming Microsoft Windows with C#", 0735613702);
 Book b2 = new Book("Inside C#", 0735612889);
 Book b3 = new Book("Microsoft C# Language Specifications", 0735614482);
 Book b4 = new Book("Microsoft Visual C# .NET Lang. Ref.", 0735615543);

 Library myReferences = new Library();
 myReferences.bookList.Add(b1.ISBN, b1);
 myReferences.bookList.Add(b2.ISBN, b2);
 myReferences.bookList.Add(b3.ISBN, b3);
 myReferences.bookList.Add(b4.ISBN, b4);

 Book b = (Book) myReferences.bookList[0735612889];
 Console.WriteLine(b.Title);
 }
 }
}

The preceding code is available on the Student Materials compact disc in the
HashExample.sln file in the Samples\Mod05\Hashtable folder.

 Module 5: Programming with C# 33

Practice: Creating and Using Collections

� In this practice, you will use the ArrayList
class

� In this practice, you will use the ArrayList
class

Hands-on PracticeHandsHands--on Practiceon Practice

10 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The Zoo class uses an object of type ArrayList to maintain a list of Animal objects. You will add
missing code to initialize the list and to add animals to the list.

The solution for this practice is located in install_folder\Practices\Mod05\Collections_Solution
\Collections.sln. Start a new instance of Visual Studio .NET before opening the solution.

Tasks Detailed steps

1. Start Visual Studio. NET,
and then open install_folder
\Practices\Mod05\Collections
\Collections.sln.

a. Start a new instance of Visual Studio .NET.

b. On the Start Page, click Open Project.

c. In the Open Project dialog box, browse to install_folder\Practices
\Mod05\Collections, click Collections.sln, and then click Open.

d. In Solution Explorer, click Form1.cs, and then press F7 to open the
Code Editor.

2. Review the Task List. a. On the View menu, point to Show Tasks, and then click All.

b. Review the tasks in the Task List.

3. Create the ArrayList. a. Double-click the task TODO: Instantiate the ArrayList.

b. Use the new keyword to create the ArrayList.

34 Module 5: Programming with C#

Tasks Detailed steps

4. Ensure that the indexer
returns an Animal type.

� Double-click the task TODO: Fix the return type, and return an
Animal object from the get block in the indexer.

5. Implement the Add method
in the Zoo class.

a. Double-click the task TODO: Implement the Add method.

b. Write an Add method that adds an animal to the ArrayList.

6. Test your application. � Press F5 to test your application. Fix any problems.

7. Quit Visual Studio .NET,
saving your solution.

a. On the File menu, click Save All.

b. On the File menu, click Exit.

 Module 5: Programming with C# 35

Lesson: Using Interfaces

� What Is an Interface?

� How to Use an Interface

� How to Work with Objects That Implement Interfaces

� How to Inherit Multiple Interfaces

� Interfaces and the .NET Framework

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This lesson describes why interfaces are an important part of C# programming
and explains how to implement interfaces in a C# application. This lesson
explains how to work with objects that implement interfaces and how to
implement multiple inheritances. How interfaces work in the .NET Framework
is also covered in this lesson.

After completing this lesson, you will be able to:

� Describe an interface.
� Work with objects that implement interfaces.
� Use interfaces to implement multiple inheritance.

This lesson includes the following topics and activity:

� What Is an Interface?
� How to Use an Interface
� How to Work with Objects That Implement Interfaces
� How to Inherit Multiple Interfaces
� Interfaces and the .NET Framework
� Practice: Using Interfaces

Introduction

Lesson objectives

Lesson agenda

36 Module 5: Programming with C#

What Is an Interface?

An interface:

� Is a reference type that defines a contract

� Specifies the members that must be supplied by
classes or interfaces that implement the interface

� Can contain methods, properties, indexers, events

� Does not provide implementations for the members

� Can inherit from zero or more interfaces

*****************************ILLEGAL FOR NON-TRAINER USE******************************

An interface is in some ways like an abstract class. It defines a set of methods,
properties, indexers, and events, just like any other class. However, it provides
no implementation. The class that inherits the interface must provide the
implementation.

Interface is a reference type that defines a contract in that a class that
implements an interface must implement every aspect of that interface exactly
as it is defined. Like classes, interfaces can contain methods, properties,
indexers, and events as members. Other types implement an interface to
guarantee that they support certain operations. The interface specifies the
members that must be supplied by classes or other interfaces that implement it.
Providing an implementation of the methods, properties, indexers, and events
that are declared by the interface is called implementing the interface.

Although C# imposes a single inheritance rule for classes, the language is
designed so that a class can inherit multiple interfaces.

A well-designed interface combines a set of closely related features that define
a specific behavior. When an object uses this interface, it implements that
behavior.

You can develop enhanced implementations for your interfaces without
jeopardizing existing code, thus minimizing compatibility problems. You can
also add new features at any time by developing additional interfaces and
implementations.

Introduction

Definition

Design considerations

 Module 5: Programming with C# 37

Although interface implementations can evolve, interfaces themselves cannot
be changed after they are published. This is called interface invariance.
Changes to a published interface may break existing code. When an interface
needs enhancement, you must create a new interface.

You are less likely to make errors when you design an interface than when you
create a large inheritance tree. If you start with a small number of interfaces,
you can have parts of a system running relatively quickly. The ability to evolve
the system by adding interfaces allows you to gain the advantages that object-
oriented programming is intended to provide.

There are several reasons that you may want to use interfaces instead of class
inheritance:

� Interfaces are better suited to situations in which your applications require
many possibly unrelated object types to provide certain functionality.

� Interfaces permit polymorphism between classes with different base classes.
� Interfaces are more flexible than base classes because you can define a

single implementation that can implement multiple interfaces.
� Interfaces are better in situations in which you do not need to inherit

implementation from a base class.
� Interfaces are useful in cases where you cannot use class inheritance.

Interface invariance

Purpose

38 Module 5: Programming with C#

How to Use an Interface

� An interface defines the same functionality and
behavior to unrelated classes

� Declare an interface

� Implement an interface

interface ICarnivore {
bool IsHungry { get; }
Animal Hunt();
void Eat(Animal victim);

}

interface ICarnivore {
bool IsHungry { get; }
Animal Hunt();
void Eat(Animal victim);

}

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Interfaces define a standard set of properties, methods, indexers, and events that
are found in any class that implements the interface. As such, interfaces are
useful when you want to maintain the same functionality and behavior in
unrelated classes.

You use the interface keyword to declare an interface. The syntax is:

[attributes] [access-modifier] interface interface-name
[:base-list] { interface-body }

The following example defines an interface named ICarnivore with one
method and one property. The class that implements this interface must
implement the EatMeat method and the IsHungry property. The compiler
enforces this implementation.

interface ICarnivore {
 bool IsHungry { get; }
 Animal Hunt();
 void Eat(Animal victim);
}

If you want the user of the interface to be able to set the IsHungry property,
define it as follows:

bool IsHungry { get; set; }

Interface names normally start with an upper case I. The language does
not enforce this, but it is a good practice.

Introduction

Declaring an interface

Example

Note

 Module 5: Programming with C# 39

To implement a specific interface, a class must inherit that interface. In the
following example, the Lion class implements the ICarnivore interface.

public class Lion: ICarnivore {
 private bool hungry;
 public bool IsHungry {
 get {
 return hungry;
 }
 }

 public Animal Hunt() {
 // hunt and capture implementation
 // return animal object
 }

 public void Eat(Animal victim) {
 // implementation
 }
}

The preceding code defines the Lion class as having the behaviors of the
ICarnivore interface. The primary benefit of this approach is that any other
object that can work with objects that implement the ICarnivore interface can
now work with your object.

The class that implements an interface can be a derived class that includes some
unique class members. The following example shows a Lion class that inherits
the Animal class and implements the ICarnivore interface.

The following example is also provided on the Student Materials compact disc
in the Carnivore.sln file in the Samples\Mod05\Interfaces folder.

Implementing an
interface

40 Module 5: Programming with C#

Using System;

namespace LearningCSharp {

 interface ICarnivore {
 bool IsHungry { get; }
 Animal Hunt();
 void Eat(Animal victim);
 }

 public abstract class Animal {
 public abstract void Sleep();
 }

 public class Antelope: Animal {
 public override void Sleep() { }
 }

 public class Lion: Animal, ICarnivore {

 public Lion() {
 hungry = true;
 }

 // ICarnivore implementation
 private bool hungry;
 public bool IsHungry {
 get {
 return hungry;
 }
 }

 public Animal Hunt() {
 // hunt and capture implementation
 return new Antelope();
 }

 public void Eat(Animal prey) {
 // implementation
 Console.WriteLine("Lion is no longer hungry");
 }

 // Inherited from base class
 public override void Sleep() {
 // sleeping
 }

 public void JoinPride() {
 // Join with a Pride of other Lions
 }
 }

Code continued on the following page.

 Module 5: Programming with C# 41

 class Tester {
 static void Main(string[] args) {
 Lion aLion = new Lion();
 Antelope a = new Antelope();

 // carnivore-like behavior
 if (aLion.IsHungry) {
 Animal victim = aLion.Hunt();
 if (victim != null) {
 aLion.Eat(victim);
 }
 }

 // Lion specific
 aLion.JoinPride();

 // Animal behavior
 aLion.Sleep();
 }
 }
}

42 Module 5: Programming with C#

How to Work with Objects That Implement Interfaces

� is

� as

if (anAnimal is ICarnivore) {
ICarnivore meatEater = (ICarnivore) anAnimal;
Animal prey = meatEater.Hunt();
meatEater.Eat(prey);

}

if (anAnimal is ICarnivore) {
ICarnivore meatEater = (ICarnivore) anAnimal;
Animal prey = meatEater.Hunt();
meatEater.Eat(prey);

}

ICarnivore meatEater = anAnimal as ICarnivore;
if (meatEater != null) {

Animal prey = meatEater.Hunt();
meatEater.Eat(prey);

}

ICarnivore meatEater = anAnimal as ICarnivore;
if (meatEater != null) {

Animal prey = meatEater.Hunt();
meatEater.Eat(prey);

}

// is and as with an object
if (prey is Antelope) { ... }
// is and as with an object
if (prey is Antelope) { ... }

*****************************ILLEGAL FOR NON-TRAINER USE******************************

At run time, your application may not know if an object implements a certain
interface. You can use the is and as keywords to determine whether an object
implements a specific interface.

For example, you may want to know whether the objects in the preceding
examples implement the ICarnivore or IHerbivore interface, so that you can
call only the GatherFood method for the animals that are herbivores:

interface ICarnivore {
 bool IsHungry { get; }
 Animal Hunt();
 void Eat(Animal victim);
}
interface IHerbivore {
 bool Hungry { get; }
 void GatherFood();
}

public class Chimpanzee: Animal, IHerbivore, ICarnivore {
 // implement members of IHerbivore and ICarnivore
}
public class Lion: Animal, ICarnivore {
 // implement members of ICarnivore
}
public class Antelope: Animal, IHerbivore {
 // implement members of IHerbivore
}
public class elephant: Animal, IHerbivore {
 // implement members of IHerbivore
}

Introduction

Example

 Module 5: Programming with C# 43

Suppose that you have an ArrayList zoo that contains objects that are derived
from the Animal class, some of which are Lion, which implements
ICarnivore, Antelope, which implements IHerbivore and others such as
Elephant. To discover if the animal implements IHerbivore, use the is
keyword.

After you determine that the object implements the interface, you must obtain a
reference to the interface. To obtain a reference to the interface, you can cast to
the interface, as shown in the following example, where someAnimal is cast to
type IHerbivore as it is assigned to veggie.

foreach (Animal someAnimal in zoo) {
 if (someAnimal is IHerbivore) {
 IHerbivore veggie = (IHerbivore) someAnimal;
 veggie.GatherFood();
 }
}

Note that when the application tries to perform a type cast, it checks to make
sure that it will succeed. In the preceding example, checking is performed
twice, because the is operator also checks the type of someAnimal. Because
this is a fairly common situation, C# provides a way to avoid the double check,
by using the as operator.

The as operator combines the check with the type cast, allowing you to rewrite
the preceding code as follows:

foreach (Animal someAnimal in zoo) {
 IHerbivore veggie = someAnimal as IHerbivore;
 if (veggie != null) {
 veggie.EatPlant();
 }
}

Note that the is and as operators work with other types. You can use them to
determine the type of a class at run time. For example, the Eat method can be
rewritten as follows:

public void Eat(Animal prey) {
 // implementation
 if (prey is Antelope) {
 Console.WriteLine("Favorite meal");
 }
 Console.WriteLine("Lion is no longer hungry");
}

Using is and as with
other types

44 Module 5: Programming with C#

How to Inherit Multiple Interfaces

� Interfaces should describe a type of behavior

� Examples:

� Lion is-a-kind-of Animal; Lion has Carnivore behavior

� Shark is-a-kind-of Animal; has Carnivore behavior

� Derive Lion and Shark from abstract class Animal

� Implement Carnivore behavior in an Interface

class Chimpanzee: Animal, ICarnivore, IHerbivore { … }class Chimpanzee: Animal, ICarnivore, IHerbivore { … }

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A class can inherit multiple interfaces. Interfaces can also inherit from one or
more interfaces.

To implement multiple interface inheritance, you list the interfaces in a comma-
separated list, as shown in the following example:

class Chimpanzee: Animal, ICarnivore, IHerbivore { … }

The Chimpanzee class must provide the implementation of all of the members
of ICarnivore and of IHerbivore, as shown in the following code:

interface ICarnivore {
 bool IsHungry { get; }
 Animal Hunt();
 void Eat(Animal victim);
}

interface IHerbivore {
 bool IsHungry { get; }
 void GatherFood();
}

An interface can inherit from other interfaces. Unlike classes, interfaces can
inherit more than one other interface. To inherit more than one interface, the
interface identifier is followed by a colon and a comma-separated list of base
interface identifiers. An interface inherits all members of its base interfaces and
the user of the interface must implement all the members of all the inherited
interfaces.

Introduction

Inheriting multiple
interfaces

Interfaces inheriting
interfaces

 Module 5: Programming with C# 45

For example, if an IOmnivore interface inherits both ICarnivore and
IHerbivore, any class that implements IOmnivore must write an
implementation of IsHungry, Hunt(), Eat(Animal), and GatherFood(), as
shown in the following code:

interface ICarnivore {
 bool IsHungry { get; }
 Animal Hunt();
 void Eat(Animal victim);
}
interface IHerbivore {
 bool IsHungry { get; }
 void GatherFood();
}

interface IOmnivore: IHerbivore, ICarnivore {
}

You can extend the IOmnivore interface by adding another member, as shown
in the following code:

interface IOmnivore: IHerbivore, ICarnivore {
 void DecideWhereToGoForDinner();
}

In the preceding example, it is not possible to determine whether the IsHungry
property in the Chimpanzee class implements IHerbivore.IsHungry or
ICarnivore.IsHungry. To make this implementation explicit, you must declare
the interface in the declaration, as shown in the following example:

public class Chimpanzee: Animal, IHerbivore, ICarnivore {
...// implement other interface members
bool ICarnivore.IsHungry {
 get {
 return false;
 }
}

bool IHerbivore.IsHungry {
 get {
 return false;
 }
}

}

Access modifiers are not permitted on explicit interface implementations, so to
access these members you must convert the object to the interface type, as
shown in the following code:

Chimpanzee chimp = new Chimpanzee();
IHerbivore vchimp = (IHerbivore) chimp;
bool hungry = vchimp.IsHungry;

Explicit interface
implementation

46 Module 5: Programming with C#

Deciding whether to design your functionality as an interface or an abstract
class is sometimes difficult. An abstract class is a class that cannot be
instantiated, but must be inherited from. An abstract class may be fully
implemented, but is more usually partially implemented or not implemented at
all, thereby encapsulating common functionality for inherited classes.

An interface, by contrast, is a totally abstract set of members that can be
thought of as defining a contract for conduct. The implementation of an
interface is left completely to the developer.

Abstract classes provide a simple and easy way to manage versions of your
components. By updating the base class, all inheriting classes are automatically
updated with the change. Interfaces, on the other hand, cannot be changed after
they are created. If an interface needs revisions, you must create a new
interface.

The following recommendations suggest when to use an interface or an abstract
class to provide polymorphism for your components:

When you: Use:

Create multiple versions of your component Abstract class

Create a function that is useful across a wide
range of disparate objects

Interface

Design small, concise bits of functionality Interface

Design large functional units Abstract class

Abstract classes should be used primarily for objects that are closely
related, whereas interfaces are best suited for providing common functionality
to unrelated classes.

Interfaces vs. abstract
classes

Recommendations

Note

 Module 5: Programming with C# 47

Interfaces and the .NET Framework

� Allows you to make your objects behave like .NET
Framework objects

� Example: Interfaces used by Collection classes

� ICollection, IComparer, IDictionary, IDictionary Enumerator,
IEnumerable, IEnumerator, IHashCodeProvider, IList

public class Zoo : IEnumerable {
. . .
public IEnumerator GetEnumerator() {

return (IEnumerator)new ZooEnumerator(
this);
}

public class Zoo : IEnumerable {
. . .
public IEnumerator GetEnumerator() {

return (IEnumerator)new ZooEnumerator(
this);
}

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Interfaces are used in many places in the .NET Framework. You can enhance
the usefulness of classes that you develop by implementing appropriate
interfaces.

One area of the .NET Framework that makes extensive use of interfaces is the
set of classes in the System.Collections namespace.

Collection classes use the following interfaces:

ICollection Defines size, enumerators, and synchronization methods for
all collections.

IComparer Exposes a method that compares two objects.

IDictionary Represents key-value pairs, as used by hash tables.

IDictionaryEnumerator Enumerates the elements in a dictionary (a hashtable is a
dictionary).

IEnumerable Exposes the enumerator, for iteration over a collection.

IEnumerator Supports iteration over a collection. IEnumerator is the
base interface for all enumerators. Enumerators only allow
reading the data in the collection. Enumerators cannot be
used to modify the underlying collection.

IHashCodeProvider Defines a method for getting a hash code.

IList Supports array-like indexing.

ICloneable Supports cloning, which creates a new instance of a class
with the same value as an existing instance.

Introduction

Definitions

48 Module 5: Programming with C#

By implementing specific interfaces, you can make your objects behave like
collection objects, as shown in the following two examples.

Suppose that you have a class that maintains a set of objects as follows:

public class Zoo {
 private int insertPosition = 0;
 private Animal[] animals;

 public Zoo() {
 animals = new Animal[100];
 }

 public void Add(Animal a) {
 if (insertPosition >= 100) {
 return;
 }
 animals[insertPosition++] = a;
 }
}

The user of the class may find it useful to use the foreach statement to iterate
through the elements of your class.

To iterate through a collection, a class (or struct or interface) must implement
the IEnumerable interface. The IEnumerator interface contains one instance
method named GetEnumerator that returns an object that implements
IEnumerator.

A class that implements IEnumerator must contain:

� A property named Current that returns the current element of the
collection.

� A bool method named MoveNext that increments an item counter and
returns true if there are more items in the collection.

� A void method named Reset that resets the item counter.

Collection requirements

Example 1

 Module 5: Programming with C# 49

In this example, animals are added to a Zoo object. The Zoo object implements
the IEnumerable interface:

public class Zoo : IEnumerable {
. . .
public IEnumerator GetEnumerator() {
 return (IEnumerator) new ZooEnumerator(this);
}

The GetEnumerator method returns an instance of ZooEnumerator. The
ZooEnumerator class provides the specific IEnumerator implementation for
moving through the data structure that contains the animals in the zoo.
Although this data structure is an array, the programmer can use any data
structure to maintain the Animal objects.

Because the ZooEnumerator class is so closely linked to the Zoo class, it is
declared in the Zoo class. The full code sample is included at the end of this
topic.

private class ZooEnumerator : IEnumerator {
 private Zoo z;
 private int currentPosition = -1;

 public ZooEnumerator(Zoo aZoo) {
 z = aZoo;
 }
. . .
}

The constructor simply saves the reference to the Zoo object aZoo that is
passed in as a parameter. Note that currentPosition is set to -1. This is because
the MoveNext method will increment this to zero and then check to see if this
is a valid position in the data.

public bool MoveNext() {
 ++currentPosition;
 if (currentPosition < z.insertPosition) {
 return true;
 }
 return false;
}

Example 2

50 Module 5: Programming with C#

z.insertPosition is the first unassigned position. The code returns false if the
current position moves beyond this point, and this will cause the foreach loop
that is using your Zoo class collection to exit.

The Current property is used to retrieve the current element:

public object Current {
 get {
 return z.animals[currentPosition];
 }
}

And the Reset method simply resets currentPosition:

public void Reset() {
 currentPosition = -1;
}

The preceding code implements the IEnumerable and IEnumerator
interfaces, and it is now possible to iterate through Zoo with the foreach
statement:

Zoo z = new Zoo();
z.Add(new Antelope());
z.Add(new Elephant());
z.Add(new Antelope());

foreach (Animal a in z) {
 a.Sleep();
 Console.WriteLine(a.ToString());
}

 Module 5: Programming with C# 51

The complete code follows:

using System;
using System.Collections;

namespace LearningCSharp {
 public abstract class Animal {
 public abstract void Sleep();
 }

 public class Elephant : Animal {
 public override void Sleep() { }
 }

 public class Antelope : Animal {
 public override void Sleep() { }
 }

 public class Zoo : IEnumerable {
 private int insertPosition = 0;
 private Animal[] animals;

 // Constructor
 public Zoo() {
 animals = new Animal[100];
 }

 // public methods
 public void Add(Animal a) {
 if (insertPosition >= 100) {
 return;
 }
 animals[insertPosition++] = a;
 }

 // IEnumerable
 public IEnumerator GetEnumerator() {
 return (IEnumerator)new ZooEnumerator(this);
 }

 // ZooEnumerator as private class
 private class ZooEnumerator : IEnumerator {
 private Zoo z;
 private int currentPosition = -1;

Code continued on the following page.

52 Module 5: Programming with C#

 public ZooEnumerator(Zoo aZoo) {
 z = aZoo;
 }

 // IEnumerator
 public object Current {
 get {
 return z.animals[currentPosition];
 }
 }
 public bool MoveNext() {
 ++currentPosition;
 if (currentPosition < z.insertPosition) {
 return true;
 }
 return false;
 }
 public void Reset() {
 currentPosition = -1;
 }
 }
 }

 class Tester {
 static void Main(string[] args) {
 Zoo z = new Zoo();
 z.Add(new Antelope());
 z.Add(new Elephant());
 z.Add(new Antelope());

 foreach (Animal a in z) {
 a.Sleep();
 Console.WriteLine(a.ToString());
 }
 }
 }
}

This preceding code produces the following output:

LearningCSharp.Antelope
LearningCSharp.Elephant
LearningCSharp.Antelope

This code is available on the Student Materials compact disc in the
Interfaces2.sln file in the Samples\Mod05\Interfaces2 folder.

 Module 5: Programming with C# 53

Practice: Using Interfaces

� In this practice, you will implement the
ICloneable interface

� In this practice, you will implement the
ICloneable interface

Hands-on PracticeHandsHands--on Practiceon Practice

10 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will add the ICloneable interface to the Zoo class. The ICloneable interface
consists of one method: object Clone(). The Clone method creates and returns a copy of an object.

The solution for this practice is located in install_folder\Practices\Mod05\Interfaces_Solution
\Interfaces.sln. Start a new instance of Visual Studio .NET before opening the solution.

Tasks Detailed steps

1. Start Visual Studio .NET, and then
open install_folder\Practices
\Mod05\Interfaces\Interfaces.sln.

a. Start a new instance of Visual Studio .NET.

b. On the Start Page, click Open Project.

c. In the Open Project dialog box, browse to install_folder
\Practices\Mod05\Interfaces, click Interfaces.sln, and then
click Open.

d. In Solution Explorer, click Form1.cs, and then press F7 to
open the Code Editor.

2. Review the Task List. a. On the View menu, point to Show Tasks, and then click All.

b. Review the tasks in the Task List.

3. Add the ICloneable interface
reference to the class. Compile your
application and read the error
message.

a. Double-click TODO: State that this class implements the
ICloneable Interface.

b. Add the ICloneable interface to the class definition.

c. Press F5 to test your application. Read the error message.

d. On the View menu, point to Show Tasks, and then click All.

54 Module 5: Programming with C#

Tasks Detailed steps

4. Add the Clone method to the Zoo
class.

a. Double-click TODO: Implement ICloneable.

b. Remove the comments from the Clone method.

c. Note that the Clone method creates and returns a new Zoo
object.

5. Test your implementation of
ICloneable by declaring a new Zoo
object zooTwo, and cloning myZoo.

a. Double-click TODO: Test ICloneable.

b. Uncomment the call to Clone, and to
DisplayZooInformation.

c. Press F5 to test your application. Fix any problems.

6. Quit Visual Studio .NET, saving your
solution.

a. On the File menu, click Save All.

b. On the File menu, click Exit.

 Module 5: Programming with C# 55

Lesson: Using Exception Handling

� How to Use Exception Handling

� How to Throw Exceptions

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This lesson describes error handling using exception handlers, including user
exceptions and basic exception handling syntax, such as try, catch, and finally.
It also explains how to use exception types. The lesson also covers throwing
exceptions by using the throw keyword.

After completing this lesson, you will be able to:

� Explain exception handling.
� Use the throw keyword.
� Use the try, catch, and finally keywords.
� Catch specific exception types.

This lesson includes the following topics and activity:

� How to Use Exception Handling
� How to Throw Exceptions
� Practice: Using Exception Handling

Introduction

 Lesson objectives

Lesson agenda

56 Module 5: Programming with C#

How to Use Exception Handling

� Exception handling syntax

try {
// suspect code

}
catch {

// handle exceptions
}
finally {

// always do this
}

try {
// suspect code

}
catch {

// handle exceptions
}
finally {

// always do this
}

*****************************ILLEGAL FOR NON-TRAINER USE******************************

An exception is any error condition or unexpected behavior that is encountered
by an executing program. Exceptions can be raised because of a fault in your
code or in code that you call, resources not being available, such as running out
of memory or not being able to locate a particular file, or other unexpected
conditions.

You should, of course, attempt to eliminate all bugs in your code. Exceptions
are not designed to handle programming errors; they are designed to provide
control in situations where there is a true exception to the expected behavior of
the application. When possible, make every effort to avoid a condition that
could throw an exception. Under normal circumstances, your application should
not encounter any exceptions.

The code samples in this topic are intended to illustrate exception
handling. As such, these samples do not try to anticipate and avoid error
conditions.

Introduction

Note

 Module 5: Programming with C# 57

The following examples represent situations that might cause exceptions:

Scenario Solution

Opening a file Before opening a file, check that the file exists

and that you can open it.

Reading an XML document You will normally read well-formed XML
documents, but you should deal with the
exceptional case where the document is not valid
XML. This is a good example of where to rely
on exception handling.

Accessing an invalid member of an
array

If you are the user of the array, this is an
application bug that you should eliminate.
Therefore, you should not use exception
handling to catch this exception.

Dividing a number by zero This can normally be checked and avoided.

Converting between types using the
System.Convert classes

With some checking, these can be avoided.

You can handle these error conditions by using try, catch, and finally
keywords.

To write an exception handler, place the sections of code that may throw
exceptions in a try block, and then place code that handles exceptions in a
catch block. The catch block is a series of statements that begin with the catch
keyword, followed by an exception type and an action to be taken.

The following code shows a Microsoft Windows® text box named
numberOfTickets into which the user types the number of tickets that they
want to purchase. Text boxes provide access to their contents through the Text
property, which is a string type, so the user input must be converted to an
integer. The following code uses a byte to hold the number of tickets:

numberOfTickets = new TextBox();
...
byte tickets = Convert.ToByte(numberOfTickets.Text);

The Convert.ToByte method throws an exception, System.FormatException
if the user enters a character string. The following code demonstrates how to
handle this situation:

try {
 byte tickets = Convert.ToByte(numberOfTickets.Text);
}
catch {
 MessageBox.Show("Please enter a number");
}

The try block encloses the code that may throw an exception. The catch block
catches all exceptions that are thrown in the try block, because catch does not
specify the exception that it will handle.

Using try/catch to catch
exceptions

Example

58 Module 5: Programming with C#

You can also specify the type of the exception that you want to catch, as shown
in the following code:

try {
 byte tickets = Convert.ToByte(numberOfTickets.Text);
}
catch (FormatException) {
 MessageBox.Show("Format Exception: please enter a number");
}

When the user enters text instead of numbers, a message box appears containing
an appropriate message.

Suppose that the user wants to buy 400 tickets. This quantity exceeds the
capacity of the byte, so a System.OverflowException is thrown. To handle the
OverflowException and the FormatException, you must specify more than
one catch block, as shown in the following example:

try {
 byte tickets = Convert.ToByte(numberOfTickets.Text);
}
catch (FormatException e) {
 MessageBox.Show("Format Exception: please enter a number");
}
catch (OverflowException e) {
 MessageBox.Show("Overflow: too many tickets");
}

When the user tries to purchase 400 tickets, the overflow message is displayed.
When the user enters text, the format exception message is displayed.

The order in which the exceptions are listed is significant. For example,
System.DivideByZeroException is derived from
System.ArithmeticException. If you try to catch an ArithmeticException
before a DivideByZeroException, the DivideByZeroException is not caught
because the DivideByZeroException is a type of ArithmeticException—that is,
it derived from ArithmeticException. Fortunately, the C# compiler checks for
this situation and provides a warning message if you try to catch exceptions in
an order that does not work.

Although these examples simply inform the user that the exception has
occurred, in a real application you should make some attempt to correct the
situation that caused the error. However, you should also keep the code in the
catch block as small as possible to avoid the possibility of throwing another
exception while handling the first.

Handling specific
exceptions

Multiple catch blocks

Planning the catch
sequence

 Module 5: Programming with C# 59

When an exception occurs, execution stops and control is given to the closest
exception handler. This often means that lines of code that you expect to always
be called are not executed. However, some resource cleanup, such as closing a
file, must always be executed even if an exception is thrown. To accomplish
this, you can use a finally block. A finally block is always executed, regardless
of whether an exception is thrown.

FileStream xmlFile = null;
try {
 xmlFile = new FileStream("XmlFile.xml", FileMode.Open);
}
catch(System.IO.IOException e) {
 return;
}
finally {
 if (xmlFile != null) {
 xmlFile.Close();
 }
}

In this example, the finally block is used to close the file, if it was open.

When an exception occurs, as shown in the following code, where
ReadSetupFile does not have a try/catch block in the method, the application
looks up through the stack for the first exception handler that can handle the
current exception type. If you do not provide any exception handler, the runtime
provides a handler as in the following code:

try {
 zoo.ReadSetupFile();
}
catch {
 // error handling
}

You may have seen this handler if any of your programs have ever thrown an
exception.

Using the finally
keyword

Scope of exception
handlers

60 Module 5: Programming with C#

How to Throw Exceptions

� Throw keyword

� Exception handling strategies

� Exception types

� The predefined common language runtime exception
classes
Example: ArithmeticException, FileNotFoundException

� User-defined exceptions

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Sometimes you may want to catch an exception, do some work to handle the
exception, and then pass an exception on to the calling code. This is called
throwing an exception. It is good coding practice to add information to an
exception that is rethrown to provide more information when debugging.

You use the throw keyword to throw an exception, as shown in the following
code:

Exception e = new Exception();
throw e;

The preceding code is equivalent to:

throw new Exception();

There are several strategies for handling exceptions:

� You can decide to ignore an exception, relying instead on the caller to
handle the exception. This strategy can leave your object in an incorrect
state, but it is sometimes necessary.

� You can catch the exception, try to fix the error, ensuring that at least your
object is in a known state, and then rethrow the exception. This strategy has
the advantage of leaving your object in a usable state, but it does not give
the caller much useful information.

� You can catch the exception and add information to it by throwing a new
exception that wraps around the old exception. This strategy is preferable
because your object can then provide additional information about the error.

Introduction

Exception handling
strategies

 Module 5: Programming with C# 61

Exceptions inherit from the System.Exception base class. There are two
important classes that are derived from System.Exception:

� System.SystemException is the base class for exceptions that are defined
by the system.

� System.ApplicationException is the base class for exceptions that are
defined by applications.

This example throws an exception if the contents of a text box cannot be
converted to a number, and catches FormatException. If the problem occurred
because the user did not type a value, it creates a new exception that wraps up
the FormatException, and adds information.

private int ReadData() {
 byte tickets = 0;
 try {
 tickets = Convert.ToByte(textBox1.Text);
 }
 catch (FormatException e) {
 if (textBox1.Text.Length == 0) {
 throw (new FormatException("No user input ", e));
 }
 else {
 throw e;
 }
 }
 return tickets;
}

In a real application, you check the user input rather than throwing an
exception.

The user of the ReadData method can catch the new FormatException and
retrieve the additional information provided by the object that threw the
exception, as shown in the following code:

private void run_Click(object sender, System.EventArgs ea) {
 int tickets = 0;
 try {
 tickets = ReadData();
 }
 catch (FormatException e) {
 MessageBox.Show(e.Message + "\n");
 MessageBox.Show(e.InnerException.Message);
 }
}

When the exception is caught by the run_Click method, e references the new
FormatException object thrown in ReadData, so the value of e.Message is
No user input. The property e.InnerException refers to the original exception,
so the value of e.InnerException.Message is Input string was not in a
correct format, which is the default message for FormatException.

This code sample is provided on the Student Materials compact disc in the
Exception.sln file in the Samples\Mod05\Exception folder.

System.Exception

Example 1

62 Module 5: Programming with C#

You can create your own exception classes by deriving from the
Application.Exception class. When creating your own exceptions, it is good
coding practice to end the class name of the user-defined exception with the
word “Exception”.

This example defines a new class named TicketException that is thrown when
there is an error in the ticket ordering process. TicketException is derived from
ApplicationException.

class TicketException: ApplicationException {
 private bool purchasedCompleted = false;
 public bool PurchaseWasCompleted {
 get {
 return purchasedCompleted;
 }
 }
 public TicketException(bool completed, Exception e)
 : base ("Ticket Purchase Error", e){
 purchasedCompleted = completed;
 }
}

The ReadData and run_Click methods can use TicketException:

private int ReadData() {
 byte tickets = 0;
 try {
 tickets = Convert.ToByte(textBox1.Text);
 }
 catch (Exception e) {
 // check if purchase was complete
 throw (new TicketException(true, e));
 }
 return tickets;
}

private void run_Click(object sender, System.EventArgs ea) {
 int tickets = 0;
 try {
 tickets = ReadData();
 }
 catch (TicketException e) {
 MessageBox.Show(e.Message);
 MessageBox.Show(e.InnerException.Message);
 }
}

Typically, you should overload the constructor so that the user can provide
more detailed information about the error.

When an error occurs, this sample produces the Ticket Purchase Error
message, and also provides access to the original exception through the
InnerException property.

This code sample is provided on the Student Materials compact disc in the
UserException.sln file in the Samples\Mod05\UserException folder.

Throwing user-defined
exceptions

Example 2

 Module 5: Programming with C# 63

Practice: Using Exception Handling

� In this practice, you will use throw and
catch an exception

� In this practice, you will use throw and
catch an exception

Hands-on PracticeHandsHands--on Practiceon Practice

10 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will use exception handling to prevent a run-time error from occurring when
you attempt to access an invalid index of the Zoo class.

The solution for this practice is located in install_folder\Practices\Mod05\Exceptions_Solution
\Exceptions.sln. Start a new instance of Visual Studio .NET before opening the solution.

64 Module 5: Programming with C#

Tasks Detailed steps

1. Start Visual Studio .NET, and
then open install_folder
\Practices\Mod05\Exceptions
\Exceptions.sln.

a. Start a new instance of Visual Studio .NET.

b. On the Start Page, click Open Project.

c. In the Open Project dialog box, browse to install_folder\Practices
\Mod05\Exceptions, click Exceptions.sln, and then click Open.

d. In Solution Explorer, click Form1.cs, and then press F7 to open
the Code Editor.

2. Cause a run-time error by
attempting to access an animal in
the zoo that does not exist.

a. Double-click the task TODO: catch the error thrown in this
assignment.

The assignment from myZoo[10] throws an exception because the
myZoo only has 3 elements.

b. Press F5 to compile and run your application, and note the error
message that results.

c. You will receive a System.ArgumentOutOfRangeException
exception, along with some explanatory text.

In the Microsoft Development Environment dialog box, you
can click Break to debug your application. When you click
Break, the line that threw the exception is displayed in the
code window (the Zoo Indexer). To see the code that called
the Indexer, in the Call Stack window, double-click the line
immediately below the line that is highlighted with the green
arrow. To access the Call Stack window, on the Debug menu,
point to Windows and then click Call Stack, or press
CTRL+ALT+C.

3. Use a try...catch block to catch
the
ArgumentOutOfRangeException
and use the following code to
display your own message:

MessageBox.Show("Zoo
access error");

a. Enclose the myZoo[10] statement in a try block.

b. Write a catch block that catches an
ArgumentOutOfRangeException exception.

c. In the catch block, use the following code to display a message
box:

 MessageBox.Show("Zoo access error");

4. Test the application. � Press F5 to test your application. Fix any problems.

5. Quit Visual Studio .NET, saving
your solution.

a. On the File menu, click Save All.

b. On the File menu, click Exit.

 Module 5: Programming with C# 65

Lesson: Using Delegates and Events

� How to Create a Delegate

� What Is an Event?

� How to Write an Event Handler

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This lesson introduces delegates, describes the purpose and syntax of delegates,
and explains how to create and use a delegate function. This lesson also
introduces event handling and explains how events are handled in C#.

After completing this lesson, you will be able to:

� Describe a delegate.
� Create a delegate.
� Use a delegate.
� Describe an event.
� Write an event handler.

This lesson includes the following topics and activity:

� How to Create a Delegate
� What Is an Event?
� How to Write an Event Handler
� Practice: Declaring and Calling a Delegate

Introduction

Lesson objectives

Lesson agenda

66 Module 5: Programming with C#

How to Create a Delegate

Medical Center
ScheduleApointment

Medical Center
ScheduleApointment

Calls
ProcessNextPatient

Delegate
AppointmentType

Calls
ProcessNextPatient

Delegate
AppointmentType

Zoo Keeper 2
Schedule antelope

CheckHooves

Zoo Keeper 2
Schedule antelope

CheckHooves

Zoo Keeper 1
Schedule lion
CheckClaws

Zoo Keeper 1
Schedule lion
CheckClaws

Antelope
CheckHooves

Antelope
CheckHooves

Lion
CheckClaws

Lion
CheckClaws

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A delegate is an object that contains a reference to a method.

A delegate is a variable, a reference type that can contain a reference to a
method. Using delegates is useful when you know that your application must
perform an action by calling a method; but, at compile time, you do not know
what that action will be.

Delegates allow you to specify at runtime the method to be invoked. Delegates
are object-oriented, type-safe, and secure.

A delegate specifies the return type and parameters that each method must
provide.

The following example shows how to declare a delegate type for a method that
takes a single argument of type Image and has a void return type:

delegate void ImageFunctionsDelegateType(Image i);

After you declare a delegate type, you can create a delegate object and associate
it with a particular method. A new delegate object is created with the new
operator.

For example, the Invert method is in the ImageUtility class, as shown in the
following code:

class ImageUtility {
 void Invert(Image i) {
 // inverts an image
 }
}

The class is instantiated, as shown in the following code:

ImageUtility utilities = new ImageUtility();

Introduction

Definition

Declaring a delegate

Example

Instantiating a delegate

 Module 5: Programming with C# 67

You create an instance of the delegate as shown in the following code:

ImageFunctionsDelegateType someUtility;
someUtility = new ImageFunctionsDelegateType(
utilities.Invert);

The preceding code initialized someUtility, which is an instance of the delegate
type ImageFunctionsDelegateType. The someUtility variable is then
initialized, like any other reference type. The parameter that is passed to the
delegate constructor is the name of a method that can be called through the
delegate. Note that this must have the same signature as the delegate.

When the someUtility method delegate instance is subsequently called, the
actual method that is invoked is utilities.Invert.

this.someUtility(imageToBeProcessed);

A delegate does not need to know the class of the object that it references. A
delegate can reference any object as long as the signature of the method
matches the signature of the delegate.

For example, The Zoo Medical Center creates a class that zookeepers use when
they check the health of the animals. The medical checkup to be performed,
such as a tooth check or a claw check, is specific to the animal and therefore is
listed as part of the animal definition. The following example shows how the
MedicalCenter class uses a delegate instance called animalCheckup to
reference and call the method instance passed as a parameter to
ScheduleAppointment.

1. Define the animals and include the information about the types of checkup
they need:
public abstract class Animal { }

public class Antelope : Animal {
 public void CheckHooves() {
 Console.WriteLine("Schedule Hoof Checkup");
 }
}
public class Lion: Animal {
 public void CheckClaws() {
 Console.WriteLine("Schedule Claw Checkup");
 }
}

2. Define the delegate:
public delegate void AppointmentType();

The signature of the delegate matches the CheckHooves and CheckClaws
methods.

Calling a delegate

Example

68 Module 5: Programming with C#

3. Define the medical center:
public class MedicalCenter {
 private AppointmentType animalCheckup;

 public void ScheduleAppointment(AppointmentType a) {
 animalCheckup = a;
 }
 public void ProcessNextPatient() {
 animalCheckup();
 }
}

The MedicalCenter class has a private member animalCheckup, which is
the delegate instance. The ScheduleAppointment method is called by the
user of the MedicalCenter class to schedule an animal for a check-up or a
medical procedure. It assigns the instance method passed in the
AppointmentType parameter to animalCheckup.
To use this system, create or obtain a MedicalCenter object and some
animals:
MedicalCenter animalHospital = new MedicalCenter();
Antelope bigMaleAntelope = new Antelope();
Lion notVeryBraveLion = new Lion();

4. Schedule a medical check-up.
animalHospital.ScheduleAppointment(new AppointmentType(
bigMaleAntelope.CheckHooves));

This code creates a new AppointmentType delegate instance that will call
the CheckHooves method and passes it to the MedicalCenter object.
In this implementation, only one appointment is stored, and it can be
processed by invoking:
animalHospital.ProcessNextPatient();

This code in turn calls animalCheckup(), which invokes the CheckHooves
method.
In a more realistic implementation, the medical center may maintain a queue
of animals that are expecting procedures, and the ProcessNextPatient
method would dequeue animals when facilities became available, always
calling the animalCheckup method to invoke the specific medical
procedure for that animal.

 Module 5: Programming with C# 69

The complete code sample follows:

using System;

namespace DelegateExample {
 class Zoo {
 public abstract class Animal { }

 public class Antelope : Animal {
 public void CheckHooves() {
 Console.WriteLine("Schedule Hoof Checkup");
 }
 }
 public class Lion: Animal {
 public void CheckClaws() {
 Console.WriteLine("Schedule Claw Checkup");
 }
 }

 public class MedicalCenter {
 public delegate void AppointmentType();
 public AppointmentType animalCheckup;

 public void ScheduleAppointment(AppointmentType a) {
 animalCheckup = a;
 }
 public void ProcessNextPatient() {
 if (animalCheckup != null) {
 animalCheckup();
 }
 }
 }

 static void Main(string[] args) {
 MedicalCenter animalHospital = new MedicalCenter();
 Lion notVeryBraveLion = new Lion();
 Antelope bigMaleAntelope = new Antelope();

 animalHospital.ScheduleAppointment(new
MedicalCenter.AppointmentType(bigMaleAntelope.CheckHooves)
);
 animalHospital.ProcessNextPatient();

 animalHospital.ScheduleAppointment (new
MedicalCenter.AppointmentType(notVeryBraveLion.CheckClaws)
);

 animalHospital.ProcessNextPatient();
 }
 }
}

This code sample is provided on the Student Materials compact disc in the
DelegateSample.sln file in the Samples\Mod05\DelegateSample folder.

70 Module 5: Programming with C#

In the preceding example, it is only possible to schedule one appointment at a
time. To schedule two or more procedures for one animal, you could maintain a
queue, or array, of the methods and call them in sequence. However, a delegate
can call more that one method. This is called multicasting. The delegate
maintains a list of methods that it calls in order. This list is called the delegate’s
invocation list.

Multicasting is used frequently in the .NET Framework to allow a user interface
object to have multiple event handlers.

To combine delegates, use the following syntax:

DelegateType d1 = d2 + d3;

When d2 and d3 are combined, the methods that they encapsulate are added to
the d1’s invocation list. Invoking d1 invokes both methods that are referenced
in d2 and d3.

A more common way to add delegates is to use the += operator to add
delegates. This syntax is used to add event handlers to Windows controls, as
shown in the following example:

Button myButton.Click += new System.EventHandler(myAction);

You can also use – and -= to remove delegates as follows:

d1 -= d3;

This removes the last delegate from d1 that contains a method that matches the
method named in d3. This means that you can also remove a delegate as
follows:

myClass.d1 += new DelegateType (myMethod);
. . .
d1 -= new DelegateType (myMethod);

The removal statement removes a myMethod method from the invocation list.

For example, the code in the Zoo Medical Center application can be modified
so that one animal can be scheduled for multiple procedures, as shown in the
following example. The following code invokes both CheckHooves and
TakeBloodSample from one delegate. The methods simply write a string to the
console.

public class Antelope : Animal {
 public void CheckHooves() {
 Console.WriteLine("Schedule Hoof Checkup");
 }
 public void TakeBloodSample() {
 Console.WriteLine("Schedule Blood Check");
 }
}

Multicasting

Syntax

Example

 Module 5: Programming with C# 71

Then instantiate the Antelope object, just as before, but this time the
ScheduleAppointment method is called twice.

Antelope bigMaleAntelope = new Antelope();

animalHospital.ScheduleAppointment(new
MedicalCenter.AppointmentType(bigMaleAntelope.CheckHooves)
);
animalHospital.ScheduleAppointment(new
MedicalCenter.AppointmentType(bigMaleAntelope.TakeBloodSample
));

In the original ScheduleAppointment method, the TakeBloodSample method
replaces the CheckHooves method in the delegate, so the
ScheduleAppointment method must be modified slightly, as shown in the
following code:

public void ScheduleAppointment(AppointmentType a) {
 animalCheckup += a
}

The animalCheckup delegate now adds the second delegate to itself. The
ProcessNextPatient code is unchanged:

public void ProcessNextPatient() {
 if (animalCheckup != null) {
 animalCheckup();
 }
}

A single call to ProcessNextPatient produces the following output:

Schedule Hoof Checkup
Schedule Blood Check

72 Module 5: Programming with C#

What Is an Event?

� Mouse and keyboard

� Property

MouseDown,
MouseUp,
MouseMove,
MouseEnter,
MouseLeave,
MouseHover

MouseDown,
MouseUp,
MouseMove,
MouseEnter,
MouseLeave,
MouseHover

KeyPress,
KeyDown,
KeyUp

KeyPress,
KeyDown,
KeyUp

FontChanged
SizeChanged
CursorChanged

FontChanged
SizeChanged
CursorChanged

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When you create a Windows-based application or a Web application, you create
an event-driven application. Event-driven applications execute code in response
to an event. Each form that you create and control that you use exposes a
predefined set of events that you can program against. When one of these
events occurs and there is code in the associated event handler, that code is
invoked.

An event is an action that you can respond to, or handle, in code. Events can be
generated by a user action, such as clicking a button with the mouse or pressing
a key. Events can also be programmatically generated. The primary use of
multicasting is to handle events by using program code or the operating system.

The types of events that are raised by an object vary, but many types of events
are common to most controls. For example, most objects handle a Click
event—when a user clicks a form, code in the Click event handler of the form
is executed. The most commonly used events are keyboard, mouse, and
property events. If your application supports drag-and-drop operations, it will
handle drag-and-drop events.

Several events are related to the user's use of the mouse and keyboard. Each of
these events has an event handler for which you can write code in your
Windows-based applications. These events include MouseDown, MouseUp,
MouseMove, MouseEnter, MouseLeave, MouseHover, KeyPress,
KeyDown, and KeyUp. The mouse-related event handlers receive an argument
of type EventArgs, which contain data related to their events. The key-related
event handlers receive an argument of type KeyEventArgs, which contains
data related to their events.

Property events occur when a property changes. For example, a control can
register to receive a SizeChanged event when its Size property changes.

Introduction

Definition

Types of events

Mouse and keyboard
events

Property events

 Module 5: Programming with C# 73

How to Write an Event Handler

� Declare events using delegates

� System.EventHandler is declared as a delegate

� Event handler is called when the event occurs

� EventArgs parameter contains the event data

private void button1_Click(object sender,
System.EventArgs e) {

MessageBox.Show(e.ToString());

}

private void button1_Click(object sender,
System.EventArgs e) {

MessageBox.Show(e.ToString());

}

button1.Click += new
System.EventHandler(button1_Click);

button1.Click += new
System.EventHandler(button1_Click);

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The most familiar use for events is in graphical user interfaces. Typically, the
classes that represent controls in the graphical user interface include events that
are notified when a user manipulates the control, such as when a user clicks a
button.

Events also allow an object to signal state changes that may be useful to clients
of that object. Delegates are particularly suited for event handling and are used
to implement event handling in C#.

The .NET framework event model uses delegates to bind events to the methods
that are used to handle them. The delegate allows other classes to register for
event notification by specifying a handler method. When the event occurs, the
delegate calls the bound method or methods. The method that is called when the
event occurs is referred as the event handler.

Remember that multicasting allows a delegate to call several methods.

The most common use of events in the .NET Framework is to handle activity in
the user interface.

The easiest way to register to receive events is to use the Visual Studio .NET
development environment.

The Properties window in the development environment contains an Events
icon, as shown below:

Introduction

Delegates as event
handlers

Tip

Receiving an event

74 Module 5: Programming with C#

Clicking this icon displays a list of events that can be sent from the selected
object.

When you double-click the name of an event, the development environment
creates an event handler for that event. The following code, which is generated
in the initialization method, adds the button1_Click method to the delegate:

this.button1.Click += new
System.EventHandler(this.button1_Click);

Visual Studio .NET inserts the button1_Click method into the code, and you
place your event-handling code in this method:

private void button1_Click(object sender, System.EventArgs e)
{

}

The sender parameter passes a reference to the object that caused the event. In
the preceding example, this is a reference to the button1 object.

The System.EventArgs class contains useful information about the event.
Certain events pass a specific EventArgs class. For example, the MouseUp,
MouseDown, and MouseMove events pass a MouseEventArgs object to the
subscribed event handler. The MouseEventArgs class defines the X and Y
position of the mouse, in addition to button click and mouse wheel information.

 Module 5: Programming with C# 75

The following example shows how to handle mouse events.

This Windows form displays the current coordinates of the mouse when the left
mouse button is held down. As the mouse moves, the coordinates are updated.
When the button is released, the display is cleared.

The text box is named MouseCoordinateDisplay. Three event handlers are
registered for the form (Form1), one each for MouseDown, MouseUp, and
MouseMove event.

When the mouse button is pressed, a MouseDown event is sent to the handler,
which sets a Boolean variable tracking to true.

When the mouse is moved, the MouseMove event handler is called. If tracking
is set to true, this handler updates the display with the current mouse position.

When the button is released, the MouseUp event handler is called, which sets
tracking to false and clears the display.

The event-handling code follows:

private bool tracking = false;
string coordinateDisplay = null;

private void Form1_MouseDown(object sender,
System.Windows.Forms.MouseEventArgs e) {
 tracking = true;
}

private void Form1_MouseUp(object sender,
System.Windows.Forms.MouseEventArgs e) {
 tracking = false;
 MouseCoordinateDisplay.Clear();
}

private void Form1_MouseMove(object sender,
System.Windows.Forms.MouseEventArgs e) {
 if (tracking) {
 coordinateDisplay = "X: " + e.X + " Y:" + e.Y;
 MouseCoordinateDisplay.Text = coordinateDisplay;
 }
}

Example

76 Module 5: Programming with C#

The following code registers the event handlers (this is Form1):

this.MouseDown += new
System.Windows.Forms.MouseEventHandler(this.Form1_MouseDown);
this.MouseUp += new
System.Windows.Forms.MouseEventHandler(this.Form1_MouseUp);
this.MouseMove += new
System.Windows.Forms.MouseEventHandler(this.Form1_MouseMove);

MouseEventHandler is the delegate type that is declared in the Forms class,
and MouseDown, MouseUp, and MouseMove are the Forms class delegates
that provide the event notification.

This code sample is available on the Student Materials compact disc, in the
WinEventExample.sln file in the Samples\Mod05\WinEventSample folder.

When you declare an event in a class, you state that your class will notify other
objects that have registered an event handler with your object.

To declare an event inside a class, you must first declare a delegate type for the
event. The delegate type defines the set of arguments that are passed to the
method that handles the event.

Suppose that the Zoo Medical Center wants to allow users to receive an event
when an animal is released. This example uses two classes: the MedicalCenter
class, which implements an event, and the ZooKeeper class, which must be
notified when animals are released. The example uses Lion and Antelope
objects, the implementation of which can be seen in the full code example at the
end of this topic.

The delegate type for the event is declared in the MedicalCenter class:

public delegate void AnimalCollectionHandler(Animal a);

The event itself is also declared in the MedicalCenter class. You declare an
event as you would declare a field of delegate type, except that the event
keyword follows the modifiers and precedes the delegate type. Events usually
are declared public, but any accessibility modifier is allowed.

public event AnimalCollectionHandler
OnAnimalReadyForCollection;

It is normal to prefix your event with On.

The ZooKeeper class must have a method that will be invoked by the event.
This method is as follows:

public void ReleasedNotification (Animal a) { . . . }

The purpose of this method is to notify the keeper when an animal is released
from the medical center. Because it is invoked by the event delegate, it must
have a matching signature.

Sending (declaring)
events

Example

 Module 5: Programming with C# 77

The Keeper class registers this method as an event handler for
OnAnimalReadyForCollection events:

public void GetReleaseNotifications(MedicalCenter hospital) {
 hospital.OnAnimalReadyForCollection += new
MedicalCenter.AnimalCollectionHandler(this.ReleasedNotificatio
n);
}

The MedicalCenter object will continue to process animals until none are left,
sending an event as each animal is released. Pending work is stored on the
queuedProcedures queue, and the event handlers are invoked by the
OnAnimalReadyForCollection call. The if statement that checks against null
is to test if any event handlers are registered.

public void ProcessPatients() {
 Animal a;
 for(;;) {
 if (queuedProcedures.Count == 0)
 break;
 a = (Animal) queuedProcedures.Dequeue();
 a.Checkup();
 if (OnAnimalReadyForCollection != null) {
 OnAnimalReadyForCollection(a);
 }
 }
}

Note the use of for (; ;) to loop forever.

The complete code example follows:

78 Module 5: Programming with C#

using System;
using System.Collections;

namespace EventExample {
 class Zoo {
 // represents a Zoo medical center
 public class MedicalCenter {
 private Queue queuedProcedures;

 // User of this class can register for the following event
 public delegate void AnimalCollectionHandler(Animal a);

 public event AnimalCollectionHandler OnAnimalReadyForCollection;

 public MedicalCenter() {
 // procedures are stored in a queue
 queuedProcedures = new Queue();
 }

 public void Add(Animal sickAnimal) {
 // Add animals to the work queue
 queuedProcedures.Enqueue(sickAnimal);
 }

 public void ProcessPatients() {
 Animal a;
 for(;;) {
 if (queuedProcedures.Count == 0)
 break;
 a = (Animal) queuedProcedures.Dequeue();
 a.Checkup(); // Do the medical procedure
 if (OnAnimalReadyForCollection != null) {
 // Call the event handler
 OnAnimalReadyForCollection(a);
 }
 }
 }
 }

 // User of the MedicalCenter
 public class ZooKeeper {
 // This is called when an animal is released
 public void ReleasedNotification (Animal a) {
 Console.WriteLine("Keeper: " + a + " was just released from the
medical center");
 }

 // This method registers the event handler
 public void GetReleaseNotifications(MedicalCenter hospital) {
 hospital.OnAnimalReadyForCollection += new
MedicalCenter.AnimalCollectionHandler(this.ReleasedNotification);
 }
 }

Code continued on the following page.

 Module 5: Programming with C# 79

 static void Main(string[] args) {
 MedicalCenter animalHospital = new MedicalCenter();

 Lion notVeryBraveLion = new Lion();
 Antelope bigMaleAntelope = new Antelope();

 ZooKeeper manager = new ZooKeeper();
 manager.GetReleaseNotifications(animalHospital);

 animalHospital.Add(notVeryBraveLion);
 animalHospital.Add(bigMaleAntelope);

 animalHospital.ProcessPatients();

 Console.ReadLine();
 }
 }

 public abstract class Animal {
 public abstract void Checkup();
 }
 public class Antelope : Animal {
 public override void Checkup() {
 Console.WriteLine("Antelope: Checkup ");
 }
 public override string ToString() {
 return "Antelope";
 }
 }
 public class Lion: Animal {
 public override void Checkup() {
 Console.WriteLine("Lion: Checkup");
 }
 public override string ToString() {
 return "Lion";
 }
 }
}

The preceding code produces the following output:

Lion: Checkup
Keeper: Lion was just released from the medical center
Antelope: Checkup
Keeper: Antelope was just released from the medical center.

This code sample is available on the Student Materials compact disc, in the
EventExample.sln file in the Samples\Mod05\EventSample folder.

80 Module 5: Programming with C#

Practice: Declaring and Calling a Delegate

� In this practice, you will create and use a
delegate

� In this practice, you will create and use a
delegate

Hands-on PracticeHandsHands--on Practiceon Practice

10 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will create and use a delegate.

The zoo has some interactive displays, where visitors can locate information about the animals in
the zoo. One of the displays is oriented to children and displays information about dolphin
behaviors and tricks that they can perform.

Because these tricks may change from time to time as old dolphins are taught new tricks; the trick
implementation is referenced in the Dolphin class by a delegate.

In this application, clicking a Set Trick button attaches a method to the dolphin’s Trick delegate.
Clicking Perform calls the method referenced in the delegate.

The solution for this practice is located in install_folder\Practices\Mod05\Delegates_Solution
\Dolphin.sln. Start a new instance of Visual Studio .NET before opening the solution.

 Module 5: Programming with C# 81

Tasks Detailed steps

1. Start Visual Studio .NET, and
then open install_folder
\Practices\Mod05\Delegates
\Dolphin.sln.

a. Start a new instance of Visual Studio .NET.

b. On the Start Page, click Open Project.

c. In the Open Project dialog box, browse to install_folder\Practices
\Mod05\Delegates, click Dolphin.sln, and then click Open.

d. In Solution Explorer, click Dolphin.cs, and then press F7 to open
the Code Editor.

The Dolphin class is located in the file Dolphin.cs.

2. Examine the Delegate
declaration.

a. On the View menu, point to Show Tasks, and then click All.

b. Double-click the task TODO 1: Examine the delegate: void
TrickType().

Note that the delegate declaration is for a method that takes no
parameters and has a void return type.

3. In the Dolphin class, add a
property called Trick that allows
the user of the class to assign a
method to the private delegate
instance member dolphinTrick.

a. Locate the task TODO 2: Write a public property called Trick.

b. Add a property called Trick that allows the user of the class to
assign a method to dolphinTrick by removing the comments from
the lines that follow the TODO comment.

4. In Form1.cs, locate the method
setTrick2_Click and write code
to assign a trick to
zooDolphin.Trick.

a. In Solution Explorer, click Form1.cs, and then press F7 to open
the Code Editor.

b. Locate the task TODO 3: Assign a trick to the dolphin.

c. In the setTrick2_Click method, remove the Select a trick
comment, and replace it with one of the methods that implements a
trick.

Trick methods are located at the bottom of this file. The
JumpThroughHoop method is already assigned to the Set Trick 1
button.

Note that this statement creates a new Delegate and assigns it to the
Trick property of the zooDolphin object.

5. Test the application. a. Press F5 to test your application.

b. In the Dolphin Display window, click Perform. Nothing should
happen because no methods have been assigned to the dolphin's
delegate.

c. Click Set Trick 1, and then click Perform.

d. Click Set Trick 2, and then click Perform.

6. Quit Visual Studio .NET, saving
your solution.

a. On the File menu, click Save All.

b. On the File menu, click Exit.

82 Module 5: Programming with C#

Review

� Using Arrays

� Using Collections

� Using Interfaces

� Using Exception Handling

� Using Delegates and Events

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. In the array int[] number = {1, 2, 3, 4 } how do you access the value 3?
number[2];

2. Create an array that contains the integers 1, 2, and 3. Then use the foreach
statement to iterate over the array and output the numbers to the console.
int [] numbers = {1, 2, 3};

foreach (int i in numbers) {

 System.Console.WriteLine("number: {0}", i);

}

 Module 5: Programming with C# 83

3. Name two collection objects in System.Collections namespace, and
describe how these classes track objects.

• The Queue class tracks objects on a first-in, first-out basis.

• The Stack class tracks object on a first-in, last-out basis.

4. What is a delegate, what is the benefit of using a delegate, and when should
you use it?
A delegate is a reference to a method. If a delegate is invoked, the
method referred to by the delegate is executed.
Delegates allow you to build scalability in your classes. You use a
delegate when you want to call a method, but you will not know what
method until run time.

84 Module 5: Programming with C#

Lab 5:1: Using Arrays

� Exercise 1: Sorting Numbers in an Array

30 minutes

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will be able to use an array to sort numbers.

Before working on this lab, you must have the ability to:

� Declare and initialize arrays.
� Assign to and from arrays.

This lab focuses on the concepts in this module and as a result may not
comply with Microsoft security recommendations.

Objectives

Prerequisites

Note

Estimated time to
complete this lab:
30 minutes

 Module 5: Programming with C# 85

Exercise 0
Lab Setup
The Lab Setup section lists the tasks that you must perform before you begin the lab.

Task Detailed steps

� Log on to Windows as
Student with a password of
P@ssw0rd.

� Log on to Windows with the following account:

• User name: Student

• Password: P@ssw0rd

Note that the 0 in the password is a zero.

Note that by default the install_folder is C:\Program Files\Msdntrain\2609.

86 Module 5: Programming with C#

Exercise 1
Sorting Numbers in an Array
In this exercise, you will sort numbers in an array.

Scenario
Although C# and the .NET Framework provide sorting algorithms, as a programmer you will find it
useful to understand how data is held in an array and what happens when that data is sorted.

In this lab, you will implement the BubbleSort method as shown in the following code:

private void BubbleSort(int[] anArray)

The anArray integer array contains randomly generated numbers. Your BubbleSort method will
sort the numbers in the array, with the lower numbers at the beginning of the array.

You will use the following simple algorithm to sort the numbers in the array:

For every element in array a
 For every unsorted element in array a
 If a[n] > a[n + 1]
 swap them

To move the lowest numbers to the beginning of the array, pass through the array multiple times in
the BubbleSort method, each time moving the highest unsorted number to the end of the list.

Within the loop, you examine each element n in array a and compare the element to the one that
follows it, n + 1. If a[n] is greater than a[n + 1], the elements must be swapped. Continue to move
down the list comparing adjacent elements. In this way, higher values are moved down the list until
they are in place.

On each pass, you must compare only the unsorted elements of the array.

The solution code for this lab is provided in install_folder\Labfiles\Lab05_1\Exercise1
\Solution_Code\Bubble Sort.sln. Start a new instance of Visual Studio .NET before opening the
solution.

 Module 5: Programming with C# 87

Tasks Detailed steps

1. Start Visual Studio .NET, and
then open install_folder
\Labfiles\Lab05_1\Exercise1
\Bubble Sort.sln.

a. Start a new instance of Visual Studio .NET.

b. On the Start Page, click Open Project.

c. In the Open Project dialog box, browse to install_folder\Labfiles
\Lab05_1\Exercise1, click Bubble Sort.sln, and then click Open.

2. Examine the code and run the
sample application.

a. In Solution Explorer, click Bubble.cs, and then press F7.

b. Locate the sort_Click method, located at the bottom of the file, and
examine the code.

The sort_Click method is called when you click the Sort button in the
application. It generates 1000 random integers and places in them in
array a. It then calls the BubbleSort method, passing the array. Finally it
lists the contents of the array in the application window.

c. Build and run the application by pressing F5.

d. In the application window, click Sort.

e. Close the application window.

3. Write the BubbleSort method. � Locate the BubbleSort method and write code to sort the elements
in the array, using the algorithm outlined in the scenario.

4. Test your method by running
the program and clicking the
Sort button.

a. In Visual Studio .NET, press F5 to compile and run your program.

b. In the Sorting an Array window, click Sort.

5. Quit Visual Studio .NET,
saving your solution.

a. On the File menu, click Save All.

b. On the File menu, click Exit.

88 Module 5: Programming with C#

Lab 5.2 (optional): Using Indexers and Interfaces

� Exercise 1: Writing the Check Pick-up
Application

� Exercise 2: Using Interfaces

1 hour

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will be able to:

� Use collection classes to manage objects.
� Write indexers to provide indexed access to the data in your objects.
� Implement interfaces for an object.
� Use exception handling to handle unexpected errors.

This lab focuses on the concepts in this module and as a result may not
comply with Microsoft security recommendations.

Before working on this lab, you must have the ability to:

� Declare, initialize, and use indexers.
� Implement interfaces.

Objectives

Note

Prerequisites

 Module 5: Programming with C# 89

When bank customers who order traveler’s checks ask to pick them up in
person, the check numbers and amounts are placed in a list for the bank teller
who subsequently retrieves the checks and places them in an envelope for the
customers.

You have been asked to create a prototype for a system that reads the list of
checks and displays them to the teller. This system consists of three parts:

� The user interface where the data operator will retrieve, view, and clear the
check information, which is provided to you.

� The component that generates the list of checks, which is simulated and
provided to you.

� A data structure that holds the collection of the checks that the teller
retrieved but has not yet processed.

Scenario

Estimated time to
complete this lab:
60 minutes

90 Module 5: Programming with C#

Exercise 0
Lab Setup
The Lab Setup section lists the tasks that you must perform before you begin the lab.

Task Detailed steps

� Log on to Windows as
Student with a password of
P@ssw0rd.

� Log on to Windows with the following account:

• User name: Student

• Password: P@ssw0rd

Note that the 0 in the password is a zero.

Note that by default the install_folder is C:\Program Files\Msdntrain\2609.

 Module 5: Programming with C# 91

Exercise 1
Writing the Check Pick-up Application
In this exercise, you will write the traveler’s check customer pick-up application.

Scenario
A bank provides a service that allows users to order traveler's checks by using the Web site, and
then pick them up in person.

The Get Checks button retrieves the checks that are waiting for collection and then displays the
number of retrieved checks. The code that generates the checks is provided to you. The application
is shown in the following illustration:

The List Checks button lists the checks that were retrieved, as shown in the following illustration:

92 Module 5: Programming with C#

The Clear Check button removes a check from the top of the list:

,

You have been provided with a sample user interface to the traveler’s check customer pick-up
application. It currently consists of the following C# source files:

� Checks.cs. Implement your check collection class in this file. The file contains two classes,
Checks and TravelerCheck. TravelerCheck is a simple implementation of the information that
is required to locate a traveler’s check, and Checks is the class that you will implement. You do
not need to modify the TravelerCheck class. Checks will maintain a collection of
TravelerCheck objects, and provide methods and properties that allow users of the class to do the
following:

• Add TravelerCheck objects to the Checks collection

• Reference TravelerCheck objects in Checks by index, for example:
myTravelerCheck = todaysChecks[0];

• Remove TravelerCheck objects from Checks
� Form1.cs. The main window. The code that calls your check collection class is in this file.
� CheckSource.cs. Contains the code that generates the list of checks that will be collected today. It

contains one class, CheckSource, with one method, Next, that you use to retrieve checks, as
shown in the following code:

// source is the CheckSource object
TravelerCheck someCheck = source.Next();
 while (someCheck != null) {
 someCheck = source.Next();
 // add to todaysChecks
 }

You will not need to modify the CheckSource class.

The solution for this lab is provided in install_folder\Labfiles\Lab05_2\Exercise1\Solution_Code
\Checkprocess.sln. Start a new instance of Visual Studio .NET before opening the solution.

 Module 5: Programming with C# 93

Tasks Detailed steps

1. Start Visual Studio .NET, and
then open install_folder\Labfiles
\Lab05_2\Exercise1
\Checkprocess.sln.

a. Start a new instance of Visual Studio .NET.

b. On the Start Page, click Open Project.

c. In the Open Project dialog box, browse to install_folder\Labfiles
\Lab05_2\Exercise1, click Checkprocess.sln, and then click
Open.

2. Review the code in Form1.cs
and in Checks.cs.

a. In Solution Explorer, click Form1.cs, and then press F7 to open
the Code Editor.

b. Find the constructor for Form1 and note that the objects source
and todaysChecks are created.

• The source object is used to produce a list of checks, by using
the algorithm described above.

• The todaysChecks object is an instance of the Checks class
which you will implement.

c. Locate the getChecks_Click, listChecks_Click, and
clearCheck_click methods, and then review the comments and
code in them.

d. In Solution Explorer, click Checks.cs, and then press F7 to open
the Code Editor. Review the code.

This file contains two classes, TravelerCheck and Checks. The
TravelerCheck class represents a single traveler’s check, and the
Checks class represents the collection of checks.

3. Write code that allows the user
of the Checks class to add
TravelerCheck objects to a data
structure maintained within the
class.

a. Choose an appropriate data structure for the Checks class, and use
it to maintain a collection of TravelerCheck objects:

• Declare the data structure below the declaration of Count.

• Add a constructor and initialize the data structure in the
constructor.

b. Write a method that adds items to the data structure.

4. Complete the code in the
getChecks_Click method, and
then test your code.

a. On the View menu, point to Show Tasks, and then click All.

b. In the Task List, double-click TODO 1: Get the list of checks
from the check source.

c. Complete the getChecks_Click method.

d. Build your application.

e. Run your application, and then click Get Checks. You should see
a message indicating that you have some checks to process.

94 Module 5: Programming with C#

Tasks Detailed steps

5. Complete the code in the
listChecks_Click method, and
then test your code.

a. On the View menu, point to Show Tasks, and then click All.

b. In the Task List, double-click TODO 2: Write an indexer and
use it to list the contents.

After you write the indexer, you can use the code that is commented
out in the method to display the list of checks.

c. Complete the listChecks_Click method.

d. Build your application.

e. Run your application, click Get Checks, and then click List
Checks.

You should see a list of the checks to process.

6. Write a method that removes the
top item from the list of checks.

a. In Solution Explorer, click Checks.cs, and then press F7.

b. In the Checks class, write a method that removes the top item
from the list of checks.

7. Complete the code in the
clearCheck_Click method, and
then test your code.

a. On the View menu, point to Show Tasks, and then click All.

b. In the Task List, double-click TODO 3: Remove the top check.

c. Complete the method clearCheck_Click.

d. Include code to refresh the display. An easy way to do this is to
simulate a click of the List Checks button:

listChecks.PerformClick();

e. Build your application.

f. Run your application, and then click Clear Check. You should see
that the top check is removed from the list.

8. Save your solution. � On the File menu, click Save All.

 Module 5: Programming with C# 95

Exercise 2
Using Interfaces
In this exercise, you will implement the IEnumerable interface for the Checks class, and test this
interface by replacing the for statement in listChecks_Click with a foreach statement.

You can either continue to use your application from Exercise 1, or you can use the starter code that
is provided.

The solution for this lab is provided in install_folder\Labfiles\Lab05_2\Exercise2\Solution_Code\
Checkprocess.sln. Start a new instance of Visual Studio .NET before opening the solution.

Tasks Detailed steps

1. In Visual Studio .NET, either
use the application that you
wrote in Exercise 1, or open
install_folder\Labfiles
\Lab05_2\Exercise2
\Checkprocess.sln.

a. If you want to use the starter code, then in Visual Studio .NET, on the
File menu, point to Open, and then click Project.

b. In the Open Project dialog box, browse to install_folder\Labfiles
\Lab05_2\Exercise2.

c. Click Checkprocess.sln, and then click Open.

2. Modify the Checks class so
that it implements the
IEnumerable interface.

a. Change the Checks class so that it inherits IEnumerable.

b. Implement GetEnumerator.

c. In the Checks class, create a CheckEnumerator class that
implements IEnumerator.

3. Test your code by modifying
the listChecks_Click method
in the Form1 class so that it
uses a foreach loop.

a. Delete the for statement in your code and substitute a foreach
statement.

b. Build your application, and then run it.

c. Check Get Checks, and then click List Checks.

You should see a list of the checks to process.

4. Save your solution, and then
quit Visual Studio .NET.

a. On the File menu, click Save All.

b. On the File menu, click Exit.

96 Module 5: Programming with C#

Lab 5.3 (optional): Using Delegates and Events

� Exercise 1: Working with Events and
Delegates

1 hour

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will be able to:

� Create and use delegates.
� Write event procedures and send events to registered event handlers.

This lab focuses on the concepts in this module and as a result may not
comply with Microsoft security recommendations.

Before working on this lab, you must have the ability to use delegates, events,
and event handlers.

In this lab, you will write an application that allows the user to buy and sell
stock by setting a buy value and a sell value.

Objectives

Note

Prerequisites

Scenario

Estimated time to
complete this lab:
60 minutes

 Module 5: Programming with C# 97

Exercise 0
Lab Setup
The Lab Setup section lists the tasks that you must perform before you begin the lab.

Task Detailed steps

� Log on to Windows as
Student with a password of
P@ssw0rd.

� Log on to Windows with the following account:

• User name: Student

• Password: P@ssw0rd

Note that the 0 in the password is a zero.

Note that by default the install_folder is C:\Program Files\Msdntrain\2609.

98 Module 5: Programming with C#

Exercise 1
Working with Events and Delegates
In this exercise, you will complete an application that simulates a detail page on a stock trader’s
application.

You will write code that represents a stock. The stock will raise three events: OnStockChange,
OnStockFall, and OnStockRise. The trader’s application allows the trader to use the OnStockFall
event to buy the stock at a given price. The OnStockRise price is used to specify the sale price of
the stock.

The application is shown in the following illustrations:

When the application runs, it monitors the current price of the stock for a fictitious company,
Northwind Traders, displaying the current price in the center area. The trader can set a Buy or Sell
price, by using the NumericUpDown boxes, and then click Buy when Below or Sell when Above
to place the order. If the price drops below the buy price, stock is purchased and the order is
removed. Similarly, if the price rises above the sell price, the stock is sold and the order is removed.

Because this lab is about using delegates and events to place and act on the orders, the quantities of
stock being bought and sold are not considered.

The code for the user interface and the stock price changes is provided to you. Your task is to
implement the OnStockRise and OnStockFall events, and to register handlers for them.

 Module 5: Programming with C# 99

How the Code Works
The StockTicks class contains a StockTicker method that regularly updates the price of a stock.
When the application initializes, the Northwind Traders stock is passed to the StockTicker, and
thereafter the Price property is automatically updated.

When the Price property changes, you should raise the Stock class appropriate event. For example,
when the stock price goes up, raise the OnStockRise and OnStockChange events.

The Form1 class, the code for the main window, uses the Stock class in the following ways:

� To update the stock price display, the Form1 class registers for OnStockRise and OnStockFall
events.

When a button is clicked, the Form1 class also registers either a Buy event handler or Sell event
handler for the events, depending on the button that is clicked. For example, the Buy event handler
is registered for the OnStockFall event, and when the price drops below the value in the
NumericUpDown box, it buys the stock.

When a Buy or Sell decision is made, you clear the order by removing the event handler.

Note: Some of the starter code in this lab uses events and properties of the Stock class that you will
write. For that reason, the starter code will not compile until you provide those elements in the
Stock class.

The solution for this lab is provided in install_folder\Labfiles\Lab05_3\Exercise1\Solution_Code
\StockPrice.sln. Start a new instance of Visual Studio .NET before opening the solution.

Tasks Detailed steps

1. Start Visual Studio .NET, and
then open install_folder
\Labfiles\Lab05_3\Exercise1
\StockPrice.sln.

a. Start a new instance of Visual Studio .NET.

b. On the Start Page, click Open Project.

c. In the Open Project dialog box, browse to install_folder\Labfiles
\Lab05_3\Exercise1, click StockPrice.sln, and then click Open.

d. In Solution Explorer, click Stock.cs, and then press F7 to open the
Code Editor.

2. In the Stock class, declare a
delegate named StockChange.

a. On the View menu, point to Show Tasks, and then click Comment.

b. In the Task List, double-click TODO 1: Declare a delegate named
StockChange.

c. In the Stock class, under the comment, declare a delegate named
StockChange.

3. Declare two event handlers
named OnStockRise, and
OnStockFall.

a. In the Task List, double-click TODO 2: Declare two more event
handlers.

b. Under the comment, declare two event handlers named
OnStockRise, and OnStockFall.

100 Module 5: Programming with C#

Tasks Detailed steps

4. Write a property named Price
that raises the following
events:

• OnStockRise: raise this
event when the new stock
price is higher than the
previous stock price.

• OnStockFall: raise this
event when the new stock
price is lower than the
previous stock price.

a. In the Task List, double-click TODO 3: Complete the property
named Price.

b. The Price property encapsulates the stockPrice private member.

c. Raise an OnStockRise event every time the Price property is
assigned a value that is higher than its previous value.

d. Raise an OnStockFall event every time the Price property is
assigned a value that is lower than its previous value.

5. In the Form1 class, in the
buying_Click method, write
code to add the method Buy as
an event handler for the
OnStockFall method.

a. In Solution Explorer, click Form1.cs, and then press F7.

b. In the Code Editor, locate the buying_Click method.

This method is called when the user clicks the Buy when Below button in
the user interface.

c. Add the Buy method as an event handler for the OnStockFall
method.

6. In the Buy method, add code
to remove Buy from the
OnStockFall delegate after a
successful stock purchase.

a. Locate the Buy method, directly below the buying_Click method.

b. Add code to remove the Buy method from the invocation list of
OnStockFall.

7. Write the code to sell stock at
a price specified in sell.Value.

� Locate the task TODO 4: Write code to sell at a price specified in
sell.Value, and write the code.

8. Test your application. � Compile and run your application.

9. Save your solution, and then
quit Visual Studio .NET.

a. On the File menu, click Save All.

b. On the File menu, click Exit.

