

Contents

Overview 1

Lesson: Working with Application Settings 2

Lesson: Deploying Applications 18

Review 28

Lab 11.1: Deploying an Application 29

Lab 11.2 (optional): Working with
Application Settings 34

Module 11: Application
Settings and
Deployment

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, ActiveX, BizTalk, FrontPage, IntelliSense, JScript,
Microsoft Press, MSDN, PowerPoint, Visual Basic, Visual C++, Visual C#, Visual Studio, Win32,
Windows Media are either registered trademarks or trademarks of Microsoft Corporation in the
United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 11: Application Settings and Deployment iii

Instructor Notes
This module provides students with an introduction to working with application
settings and deployment.

This module includes a Guided Practice. Each practice or the Lab
may also include optional tasks to accommodate advanced learners.

This module also provides two labs from which you or your students may
choose one to complete.

After completing this module, students will be able to:

� Work with application settings.
� Deploy an application.

To teach this module, you need the following materials:

� Microsoft® PowerPoint® file 2609A_11.ppt
� Module 11: Application Settings and Deployment

To prepare for this module:

� Read all of the materials for this module.
� Complete the labs.

Presentation:
60 minutes

Lab:
60 minutes Important

Required materials

Preparation tasks

iv Module 11: Application Settings and Deployment

How to Teach This Module
This section contains information that will help you to teach this module.

Lesson: Working with Application Settings
This section describes the instructional methods for teaching this lesson.

� It is recommended that you do not spend more than the allotted time on this
module.

� This lesson is meant to provide students with a brief overview of the topics.
� You can begin by asking students, “What are user preferences?” and then

state that these default settings must be stored somewhere.

Lesson: Deploying Applications
� The lesson on deployment is intended to show how easy it is to deploy

applications by using the setup and deployment project templates in
Microsoft® Visual Studio® .NET.

� It is recommended that you keep your discussion brief on this topic.

Review
The review questions are based mostly on conceptual understanding and
procedures that were covered thoroughly in the module. You can use a
discussion format to answer the questions so that everyone gets the benefit of
knowing the right answers.

Lab 11.1: Deploying an Application
There are two labs provided for this module. The students may choose either
one to complete. Lab 11.2, Working with User Preferences in the Registry, is
the more challenging of the two.

Before beginning this lab, students should have completed all of the practices
and answered the review questions. Students will need to be able to perform
most of the tasks that they learned in the lessons and the practices. The lab is
simple but comprehensive. It leads students through the process of deployment
as described in the lessons of this module.

Lab 11.2 (optional): Working with User Preferences in the Registry
Before beginning this lab, students should have completed all of the practices
and answered the review questions. Students will need to be able to perform
most of the tasks that they learned in the lessons and the practices. The lab is
simple but comprehensive. It leads students through the entire process of
working with setting user preferences in the Registry as described in the lessons
of this module.

 Module 11: Application Settings and Deployment v

Customization Information
This section identifies the lab setup requirements for a module and the
configuration changes that occur on student computers during the labs. This
information is provided to assist you in replicating or customizing Microsoft
Official Curriculum (MOC) courseware.

The labs in this module are dependent on the classroom
configuration that is specified in the Customization Information section at the
end of the Automated Classroom Setup Guide for Course 2609, Introduction to
C# Programming with Microsoft .NET.

Important

 Module 11: Application Settings and Deployment 1

Overview

� Working with Application Settings

� Deploying Applications

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This module describes how to store user preferences and configure application
settings. It also introduces the procedures that are involved in deploying a C#
application by using Microsoft® Visual Studio® .NET. It explains how to
deploy both Web-based applications and applications that are based on
Microsoft Windows®.

After completing this module, you will be able to:

� Work with application settings.
� Deploy an application.

Introduction

Objectives

2 Module 11: Application Settings and Deployment

Lesson: Working with Application Settings

� How to Work With User Preferences and Application
Settings

� How to Save Application Settings by Using XML
Serialization

� How to Save Application Settings to a Database

� How to Save Application Settings to the Windows
Registry

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This lesson explains how to manage application configuration in a Windows-
based application.

After completing this lesson, you will be able to store application settings by:

� Using XML serialization.
� Using a database.
� Using the Windows registry.

This lesson includes the following topics:

� How to Work with User Preferences and Application Settings
� How to Save Application Settings by Using XML Serialization
� How to Save Application Settings to a Database
� How to Save Application Settings to the Windows Registry
� Practice: Using the Windows Registry

Introduction

Lesson objectives

Lesson agenda

 Module 11: Application Settings and Deployment 3

How to Work with User Preferences and Application Settings

UserPreferences
Class

UserPreferences
Class

XMLXML

UserPreferences up =
new
UserPreferences();

if (up.DoubleSided) {

…

}

RegistryRegistry

DatabaseDatabase

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When developing an application, you may establish application or user settings
that you want to be persisted between sessions of the application. For example,
you may want to store a color scheme or maintain the size of a window. These
preferences must be stored somewhere so that they can be used the next time
the application is run.

The Microsoft .NET Framework provides several mechanisms for storing
information about an application, its users, and default system settings.
Depending upon the type of application that you are deploying, there are three
primary ways that you can save settings and preferences:

� XML files
For a Web application, an XML file may be a good choice for persisting
information. XML files are also useful for persisting settings while an
application is offline and therefore unable to connect to and set or retrieve
settings from a database or other storage mechanism.

� Database files
If your application depends upon data that is stored in a database, to the
point where it will not function if a connection to the database is not
established, then storing user preferences in the database is an appropriate
decision.

� Windows registry
For a Windows-based application, storing application settings in the
Windows registry is often the preferred method.

Introduction

Options

4 Module 11: Application Settings and Deployment

Regardless of where user preferences and application settings are stored, it is
recommended that you create a class to access and manipulate this data. Using
an object-oriented approach provides many benefits:

� Encapsulation. Because objects encapsulate both data and functionality
together, only the data and methods that a user must access are made public,
and not all the internal information about the object.

� Scalability. There is no limitation to the number and type of user
preferences that you can save.

� Portability. If the application must store user preferences somewhere other
than its current location, you can update the UserPreferences object
without affecting any other code.

An object-oriented
solution to storing
preferences

 Module 11: Application Settings and Deployment 5

How to Save Application Settings by Using XML Serialization

<?xml version="1.0" ?>

<UserPreferences
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">

<pageOrientation>false</pageOrientation>

<doubleSided>true</doubleSided>

<addPageNumbers>true</addPageNumbers>

</UserPreferences>

<?xml version="1.0" ?>

<UserPreferences
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">

<pageOrientation>false</pageOrientation>

<doubleSided>true</doubleSided>

<addPageNumbers>true</addPageNumbers>

</UserPreferences>

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The .NET Framework provides classes that you can use to serialize an object.
When you store your application or user settings in a class, serializing the class
is straightforward.

XML serialization is the process of converting the public properties and fields
of an object to an XML serial format for storage or transport. Deserialization
re-creates the object in its original state from the XML output.

For more information about XML serialization, see Module 6, "Building
.NET-based Applications with C#," in Course 2069, Introduction to C#
Programming with Microsoft .NET.

To serialize an object to a file, you must instantiate a new XmlSerializer object
and then call the Serialize method, as shown in the following code:

MySerializableClass myObject = new MySerializableClass();
XmlSerializer mySerializer = new
 XmlSerializer(typeof(MySerializableClass));
StreamWriter myWriter = new StreamWriter("myFileName.xml");
mySerializer.Serialize(myWriter, myObject);

To deserialize an object, you call the Deserialize method.

The following code shows a class named UserPreferences that contains three
properties, pageOrientation, doubleSided, and addPageNumbers. An
instance of the class is created by calling the UserPreferences.Load static
method. This method returns an instance of the class with the settings loaded
from an XML file. The name of the XML file is the user domain and user name,
which are available through the System.Environment.UserDomainName and
System.Environment.UserName static properties.

Introduction

Definition

Note

Syntax

Example

6 Module 11: Application Settings and Deployment

public class UserPreferences {
 private bool pageorientation;
 private bool doublesided;
 private bool addpagenumbers;

 public bool pageOrientation {
 get {
 return pageorientation;
 }
 set {
 pageorientation=value;
 }
 }

 public bool doubleSided {
 get {
 return doublesided;
 }
 set {
 doublesided=value;
 }
 }

 public bool addPageNumbers {
 get{
 return addpagenumbers;
 }
 set {
 addpagenumbers=value;
 }
 }

 public UserPreferences() {
 }

 public static UserPreferences Load() {
 UserPreferences up;
 XmlSerializer myXmlSerializer = new
 XmlSerializer(typeof(UserPreferences));
 string filename = System.Environment.CurrentDirectory+
 "\\"+System.Environment.UserDomainName+
 System.Environment.UserName+".xml";
 if (File.Exists(filename)) {
 FileStream fs = new
 FileStream(filename,FileMode.Open);
 up=(UserPreferences)myXmlSerializer.Deserialize(fs);
 fs.Close();
 }
 else {
 up = new UserPreferences();
 }
 return up;
 }

Code continued on the following page.

 Module 11: Application Settings and Deployment 7

 public void Save() {
 XmlSerializer myXmlSerializer = new
 XmlSerializer(typeof(UserPreferences));
 string filename =
 System.Environment.CurrentDirectory+
 "\\"+System.Environment.UserDomainName+
 System.Environment.UserName+".xml";
 FileStream fs = new FileStream(filename,
 FileMode.Create);
 myXmlSerializer.Serialize(fs,this);
 fs.Close();
 }
}

The UserPreferences object is created for the current user by using the static
method of the UserPreferences class, as shown in the following code:

UserPreferences up = UserPreferences.Load();

The following XML code is created:

<?xml version="1.0" ?>
- <UserPreferences
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <pageOrientation>false</pageOrientation>
 <doubleSided>true</doubleSided>
 <addPageNumbers>true</addPageNumbers>
</UserPreferences>

8 Module 11: Application Settings and Deployment

How to Save Application Settings to a Database

� System.Environment provides easy access to
UserName and UserDomainName
� UserPreferences class abstracts between storage and

application

UserPreferences
Class

UserPreferences
Class

UserPreferences up =
new
UserPreferences();

if (up.DoubleSided) {

…

}

DatabaseDatabase

*****************************ILLEGAL FOR NON-TRAINER USE******************************

If the application that you develop depends upon data that is stored in a
database, to the point where it will not function if a connection to the database
is not established, then an appropriate place to store your user preferences is in
the database.

In object-oriented programming, a good way to manage user preferences is to
create a class that encapsulates the specific functions of retrieving and updating
the user preferences.

There are several benefits of using a database to store settings:

� Central location. When all user settings are saved in a database,
administrative changes must be made in only one location instead of at each
user's computer.

� Global preferences. User preferences are available to users on any computer
that they use to run your application.

� Regular backups. User preferences are backed up with the database backup.

Introduction

Benefits of using a
database

 Module 11: Application Settings and Deployment 9

In the following example, three user preferences are held as properties of a class
and stored in a database. Notice the use of the System.Environment class,
which is provided by the .NET Framework class library, to retrieve the user
name and domain name for the currently logged-on user.

The class definition is shown in the following code:

public class UserPreferences {
 private bool pageorientation;
 private bool doublesided;
 private bool addpagenumbers;

 public bool pageOrientation {
 get {
 return pageorientation;
 }
 set {
 pageorientation=value;
 }
 }

 public bool doubleSided {
 get {
 return doublesided;
 }
 set {
 doublesided=value;
 }
 }

 public bool addPageNumbers {
 get {
 return addpagenumbers;
 }
 set {
 addpagenumbers=value;
 }
 }

Example

10 Module 11: Application Settings and Deployment

Notice in the remainder of the code how the default constructor for the
UserPreferences class uses information from the System.Environment class
to query the Microsoft SQL Server™ database for the user preferences for the
logged-in user.

public UserPreferences() {
 SqlConnection sqlcon = new SqlConnection(

 "Data Source=localhost; Integrated "+
 "Security=SSPI;Initial Catalog=2609");

 sqlcon.Open();
 string sqlcomtext="SELECT * FROM UserPreferences "+
 "WHERE UserName = N'" +
 System.Environment.UserDomainName + "\\" +
 System.Environment.UserName.ToString() + "')";
 SqlCommand sqlcom = new SqlCommand(sqlcomtext,sqlcon);
 SqlDataReader sqldr=sqlcom.ExecuteReader();
 while (sqldr.Read()) {
 pageorientation=System.Convert.ToBoolean
 (sqldr.GetInt32(1));
 doublesided=System.Convert.ToBoolean
 (sqldr.GetInt32(2));
 addpagenumbers=System.Convert.ToBoolean
 (sqldr.GetInt32(3));
 }
 sqldr.Close();
 sqlcon.Close();
 }

The UserPreferences class has only one public method, Save. In the remainder
of the code, the preferences for this user are updated in the UserPreferences
table in the database.

public void Save() {
 SqlConnection sqlcon = new SqlConnection(
 "Data source=localhost;Integrated "+
 "Security=SSPI;Initial Catalog=2609");
 sqlcon.Open();
 string sqlcomtext="UPDATE UserPreferences SET "+
 "DoubleSide=" + System.Convert.ToInt32
 (doublesided).ToString() + " ,AddPageNumbers=" +
 System.Convert.ToInt32(addpagenumbers).ToString()+
 ",PrintPageOrientation="+System.Convert.ToInt32
 (pageorientation).ToString()+" WHERE ("+
 "UserName = N'" + System.Environment.UserDomainName
 + "\\" + System.Environment.UserName.ToString() +
 "')";
 SqlCommand sqlcom = new SqlCommand(sqlcomtext,sqlcon);
 sqlcom.ExecuteNonQuery();
 sqlcon.Close();
 }
}

The default constructor
for the class

The save method

 Module 11: Application Settings and Deployment 11

The following illustration shows how the User Preferences table looks in the
database:

The following code uses the UserPreferences class defined above:

UserPreferences up = new UserPreferences();
If (up.AddPageNumbers) {
 // add page numbers code
}

Example using the class

12 Module 11: Application Settings and Deployment

How to Save Application Settings to the Windows Registry

� Registry Key Base Class

Common Static FieldsCommon Static FieldsCommon Static Fields

HKEY_CLASSES_ROOTHKEY_CLASSES_ROOT

HKEY_CURRENT_USERHKEY_CURRENT_USER

HKEY_LOCAL_MACHINEHKEY_LOCAL_MACHINE

HKEY_USERSHKEY_USERS

Common MethodsCommon MethodsCommon Methods

CreateSubKeyCreateSubKey

OpenSubKeyOpenSubKey

SetValueSetValue

GetValueGetValue

CloseClose

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The Windows registry is a general-purpose mechanism for storing program
information that must be maintained when a Windows-based application
terminates.

The .NET Framework class library makes accessing the registry
straightforward.

The static read-only base keys that are exposed by the Registry class are shown
in the following table.

Base key Stores information about

HKEY_CLASSES_ROOT Types and classes and their properties

HKEY_CURRENT_USER User preferences

HKEY_LOCAL_MACHINE Configuration of local computer

HKEY_USERS Default user configuration

Introduction

Accessing the registry

Registry static fields

 Module 11: Application Settings and Deployment 13

The most common methods used to manipulate the RegistryKey class are
shown in the following table.

RegistryKey method Used for

CreateSubKey Creating your own key for your application

OpenSubKey Opening a key for reading and writing to the registry

SetValue Modifying and storing an integer or a string to the registry

GetValue Retrieving current values from the registry

Close Exiting the registry

The following code uses the Registry.CurrentUser static field to access the
HKEY_CURRENT_USER registry base key. The OpenSubKey method of
the RegistryKey class is then used to open the appropriate lower-level key.

Notice the use of the GetValue and SetValue methods to read and write values
in the registry, respectively. Also, notice the use of the CreateSubKey method
to create a new subkey.

RegistryKey methods

Example

14 Module 11: Application Settings and Deployment

public class UserPreferences {
 private bool pageorientation;
 private bool doublesided;
 private bool addpagenumbers;

 public bool pageOrientation {
 get {
 return pageorientation;
 }
 set {
 pageorientation=value;
 }
 }

 public bool doubleSided {
 get {
 return doublesided;
 }
 set {
 doublesided=value;
 }

 }

 public bool addPageNumbers {
 get {
 return addpagenumbers;
 }
 set {
 addpagenumbers=value;
 }
 }

 public UserPreferences() {
 RegistryKey uprk=Registry.CurrentUser.OpenSubKey
 ("SOFTWARE\\Microsoft\\Demo");
 if (uprk!=null) {
 pageorientation=System.Convert.ToBoolean
 (uprk.GetValue("PageOrientation"));
 doublesided =System.Convert.ToBoolean
 (uprk.GetValue("DoubleSided"));
 addpagenumbers=System.Convert.ToBoolean
 (uprk.GetValue("AddPageNumbers"));
 }
 else {
 pageorientation =false;
 doublesided =false;
 addpagenumbers =false;
 }
 }

Code continued on the following page.

 Module 11: Application Settings and Deployment 15

 public void Save() {
 RegistryKey uprk=Registry.CurrentUser.OpenSubKey
 ("SOFTWARE\\Microsoft\\Demo",true);
 if (uprk==null) {
 RegistryKey msrk=Registry.CurrentUser.OpenSubKey
 ("SOFTWARE\\Microsoft",true);
 uprk=msrk.CreateSubKey("Demo");
 }
 uprk.SetValue("PageOrientation",pageorientation);
 uprk.SetValue("DoubleSided",doublesided);
 uprk.SetValue("AddPageNumbers",addpagenumbers);
 }
}

The following code creates a user preferences object tests the AddPageNumbers
property:

UserPreferences up = new UserPreferences();
If (up.AddPageNumbers) {
 // add page numbers code
}

Notice that the preceding code is the same as the example for storing data in the
database.

Example using the class

16 Module 11: Application Settings and Deployment

Practice: Using the Windows Registry

� In this practice you will write a simple
Windows application that writes a string
into the Windows Registry

� In this practice you will write a simple
Windows application that writes a string
into the Windows Registry

Guided PracticeGuided PracticeGuided Practice

10 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will write a simple Windows application that writes a string into the Windows
Registry.

The solution for this practice is located at install_folder\Practices\Mod11\
Registry_Solution\Registry_Solution.sln. Start a new instance of Visual Studio .NET before
opening the solution.

Tasks Detailed steps

1. Start Visual Studio and
create a new project.
Name: Registry
Project Type: Visual C#
projects
Template: Windows
Application
Location:
install_folder\Practices\
Mod11

a. Start Visual Studio.NET.

b. On the File menu, point to New, and then click Project.

c. In the New Project window, under Project Types, click Visual C#
Projects.

d. Under Templates, click Windows Application.

e. In the Name box, type Registry

f. In the Location box, type install_folder\Practices\Mod11 and then
click OK.

2. Add a button to the form.
Set the Text property of the
button to Add Info to the
Registry.

a. Hover over the toolbox, drag a button control from the toolbox and drop
it onto the form.

b. In the Properties window, click Text and then type Add Info to the
Registry.

 Module 11: Application Settings and Deployment 17

Tasks Detailed steps

3. Add the code below into the
button click event.

a. Double-click the button.

b. In the button1_Click event procedure, add the code below.

Add the following code into the button1_Click event procedure.

Microsoft.Win32.RegistryKey key = Microsoft.Win32.Registry.

 CurrentUser.CreateSubKey("SOFTWARE\\MSDNTraining");

key.SetValue("TestData","ABCDEF");

key.Close();

4. Run the application and click
the button. Close the
window.

a. Click Start on the standard toolbar.

b. Click the button on the form.

c. Close the window.

5. Open RegEdit and verify that
the key
HKEY_CURRENT_USER
\Software\MSDNTraining
contains a value for
TestData of ABCDEF.
Close the Registry Editor
window, close Visual Studio.

a. Click Start, and then click Run.

b. In the Run dialog box, in the Open box, type RegEdit and then click
OK.

c. In the Registry Editor window, expand HKEY_CURRENT_USER,
expand SOFTWARE, and then click MSDNTraining.

d. Verify that the string value TestData contains ABCDEF.

e. Close the Registry Editor window.

f. Close Visual Studio.

The first line of the code added into the button click event could be shortened. How would you accomplish
this?

By including a using Microsoft.Win32 statement at the top of the Form1.cs file. The occurrences of
Microsoft.Win32 in the code statement could then be removed.

18 Module 11: Application Settings and Deployment

Lesson: Deploying Applications

� What Are the .NET Packaging and Deployment
Options?

� How to Package and Deploy an Application Using
Windows Installer

� How to Deploy a Web Application by Using XCOPY

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This lesson explains how to package and deploy Windows-based and Web-
based applications in the .NET environment.

After completing this lesson, you will be able to:

� Package and deploy a Windows-based application.
� Deploy a Web application.

This lesson includes the following topics:

� What Are the .NET Packaging and Deployment Options?
� How to Package and Deploy an Application Using Windows Installer
� How to Deploy a Web Application by Using XCOPY

Introduction

Lesson objectives

Lesson agenda

 Module 11: Application Settings and Deployment 19

What Are the .NET Packaging and Deployment Options?

� Packaging Options

� As a set of executables and DLLs

� Microsoft Windows Installer project

� Cabinet files

� Deployment Options Using Windows Installer

� Merge Module Project: packages files/components into a single
module

� Setup Project: builds an installer for a Windows-based application

� Web Setup Project: builds an installer for Web application

� Cab Project: creates a cabinet file for downloading to legacy

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This lesson explores the packaging and deployment options that are available
for applications that you develop on the .NET Framework. Your choices
depend primarily upon whether you are deploying a Web server application or a
Windows-based desktop application.

Packaging is the act of creating a package that can install your application on
the user's computer.

There are several methods that you can use to package .NET Framework
applications:

� As copied files.
� The easiest way to package your application is simply to copy the files

directly. For example, you can put all the files on a CD-ROM and write a
batch file to copy the files to a directory on the user's hard disk. The user
can then just run the application. To uninstall the application, you simply
delete the files.

� As cabinet (.cab) files.
This option is typically used for Internet download scenarios to compress
files and reduce download time.

� As a Microsoft Windows Installer 2.0 package.
With this option, you create .msi files for use with Windows Installer.

Introduction

Packaging

20 Module 11: Application Settings and Deployment

Deployment is the act of distributing a finished application to the computer and
setting up the application so it will run correctly.

Deployment in the .NET Framework differs from traditional setup and
deployment in many respects. The .NET Framework provides the following
options for deploying applications:

� Use XCOPY or FTP.
Because common language runtime applications are self-describing and
require no registry entries, you can use XCOPY or FTP to simply copy the
application to an appropriate directory. The application can then be run from
that directory. For all but the simplest cases, it is recommended that you
deploy your project rather than use XCOPY.

� Use code download.
If you distribute your application over the Internet or through a corporate
intranet, you can simply download the code to a computer and run the
application there.

� Use no-touch deployment.
Windows Forms allow no-touch deployment, in which applications can be
downloaded, installed, and run directly on the user's computer without any
alteration of the registry. The application removes itself from the user's
computer when the application is closed.

� Use an installer program, such as Windows Installer 2.0.
The Microsoft Windows Installer that is provided with Visual Studio .NET
includes templates for four types of deployment projects and a Setup wizard
that guides you through the process of creating a deployment project.
The following four templates are available for your deployment project:

• Merge Module Project. Packages components that may be shared by
multiple applications. Merge Module projects allow you to package files
or components into a single module to facilitate sharing. You can use the
resulting .msm files in any other deployment project.

• Setup Project. Builds an installer for a Windows-based application.

• Web Setup Project. Builds an installer for a Web application.

• Cab Project. Creates a cabinet file for downloading to an earlier version
of a Web browser.

The distinction between the Setup and Web Setup projects is where the
installer deploys the files:

• For a Setup project, the installer installs files into a Program Files
directory on a target computer.

• For a Web Setup project, the installer installs files into a virtual root
directory on a Web server.

Deployment

 Module 11: Application Settings and Deployment 21

How to Package and Deploy an Application Using Windows Installer

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This lesson explains how to use the Windows Installer Setup Project template to
customize and deploy an application. In addition to using Windows Installer to
package your application as an .msi file and copy the file to the target
computer’s hard disk, you can also use the installer to add information in the
registry, add shortcuts to the application, and create uninstall files.

The following table describes the uses for the various components of a
Windows Installer Setup project.

Setup component Description

Application Folder Used to store the application itself

Global Assembly Cache Folder Used to install shared assemblies

User's Desktop Used to install shortcuts on the desktop

User's Programs Menu Used to install a shortcut in the Programs menu

Introduction

Components of a
Windows Installer Setup
project

22 Module 11: Application Settings and Deployment

When you deploy a Windows-based application on a version of Windows
earlier than Microsoft Windows XP, you must include a bootstrapping
application, which will execute Windows Installer on your target system before
installing the application. To do this, on the Visual Studio .NET menu, click
Project, click Properties, and then on the Bootstrapper menu, click Windows
Installer Bootstrapper.

For more information about deploying applications in the .NET
Framework and including a bootstrapping application, see the MSDN® article,
.NET Framework Deployment Guide.

To use the Setup Project template to create a Windows Installer package:

1. Start Visual Studio .NET, and then click New Project.
2. In the New Project dialog box, under Project Types, click Setup and

Deployment Projects, and then under Templates, double-click Setup
Project.

A note about the
bootstrapping
application

Note

Procedure: Using a
Windows Installer Setup
Project

 Module 11: Application Settings and Deployment 23

3. In the Properties window, set project properties such as Author,
Description, Manufacturer, ManufacturerUrl, ProductName, Title, and
Version.

4. To add the application files to be installed in the application folder, right-
click the Application Folder in the left pane, click Add, and then click
Folder or File, as appropriate.

5. If you want to change the location where the contents of the Application
folder will be installed, change the DefaultLocation property of the
Application Folder.

24 Module 11: Application Settings and Deployment

6. To add the icons for your application to the setup project, in the left pane,
right-click User’s Desktop or User’s Program Menu, and then click
Create Shortcut to User’s Desktop or Create Shortcut to User’s
Programs Menu, as appropriate.

7. Build the setup project.
The output is an .msi file.

8. Using Windows Explorer, locate and double-click the .msi file to install the
application on your computer.

 Module 11: Application Settings and Deployment 25

How to Deploy a Web Application by Using XCOPY

� Copy command

� On the Project menu, click Copy Project.

� Select the destination project folder.

� Select the Web access method.

� Select the files to be copied.

� XCOPY command

� Type xcopy/? in a command prompt window

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In the .NET Framework, you can deploy Web applications by using the Copy
Project or XCOPY commands. The Copy Project command is available on
the Project menu of Visual Studio .NET. To use the XCOPY command, type
xcopy/? in a command prompt window.

Copying a project, rather than deploying it, is the simpler way to move the
content of your project to a target Web server. Copying does not automatically
configure the directory settings of Microsoft Internet Information Services
(IIS). Therefore, it is recommended that you deploy your project in most cases,
because it allows you to take advantage of extensive deployment project
management features, such as registration and IIS configuration.

There are three major steps that are required to move your application from the
development environment to a production server. You must first build the
application, then you remove all unnecessary files, and finally you copy the
files to the production environment.

The first step is to build (compile) your Web application. This process creates
the dynamic-link libraries (DLLs) that contain the code for the Web application.

Introduction

Pros and cons

Build the application

26 Module 11: Application Settings and Deployment

The second step in deploying a Web application is to remove all unnecessary
files from the directory that contains the Web application. This increases the
security of your production site by not exposing uncompiled code.

The files that are not needed on the production server include:

� C# solution files (.csproj, and so on)
� Resource (.resx) files
� Code-behind pages (.cs)

The files that are required on the production server include:

� The \bin directory and the DLL files within it
� All Web form, user control, and XML Web service files (.aspx, .ascx,

.asmx)
� Configuration files, including Web.config and global.asax
� Any additional support files that are in the directory, such as XML files

After you compile the Web application and remove all unnecessary files, you
simply copy all of the remaining Web application files in the development
directory to the production directory.

These are the typical steps for copying a project to a server:

1. On the Project menu, click Copy Project.
2. Select the destination project folder.
3. Select the Web access method.
4. Select the files to be copied.

By default, the Copy Project command creates a new Web application on the
target server and copies only the files that are required to run to the application.
Alternatively, you can deploy all project files or all files in the project folder.
Note that Microsoft FrontPage® Server Extensions must be installed on the
target server to use the Copy Project command.

The XCOPY command copies both files and directories, including
subdirectories, to the target computer. Use the following syntax:

XCOPY source [destination] options

The source specifies the location and names of the files that you want to copy
and must include either a drive or a path.

The destination specifies the location where you want to copy the files to. The
destination parameter can include a drive letter, a directory name, a file name,
or a combination of these. If you omit a destination, the XCOPY command
copies the files to the current directory.

Remove unnecessary
files

Using Copy Project

Using XCOPY

 Module 11: Application Settings and Deployment 27

The following table lists a few of the options that you can use when deploying
an assembly by using the XCOPY command.

Option Description

/p Prompts you to confirm whether you want to create each destination file.

/q Suppresses display of XCOPY messages.

/e Copies all subdirectories, even if they are empty.

/s Copies directories and subdirectories, unless they are empty. If you omit this
option, XCOPY works within a single directory.

If you save Web application-specific information in the Machine.config file and
transfer the Web application to a different server, you may need to edit the new
Machine.config file. Deploying an application by using XCOPY or FTP will
not copy the settings in the Machine.config file.

When you use the Copy Project or XCOPY commands, securing your servers
is critical. As with any server, it is imperative that you keep up with the latest
security updates from Microsoft at http://www.microsoft.com/security. Also, it
is recommended that you turn off or disable all services on your Web servers
that are not used, particularly those services that allow you to access the file
system, such as File Transfer Protocol (FTP) and Web-based Distributed
Authoring and Versioning (WebDAV).

XCOPY options

Securing Web servers

28 Module 11: Application Settings and Deployment

Review

� Working with Application Settings

� Deploying Applications

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. What are some benefits of storing user preferences in a database?
Central location
Global preferences
Regular backups

2. What are the four deployment templates that are available in Visual Studio
.NET?
Merge Module Project
Setup Project
Web Setup Project
Cab Project

 Module 11: Application Settings and Deployment 29

Lab 11.1: Deploying an Application

� Exercise 1: Adding a Setup Project to an
Existing Application

� Exercise 2: Installing and Testing the Setup
Application

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will be able to:

� Add a deployment project to an existing solution.
� Set registry settings during the setup of an application.
� Under All Programs on the Start menu, create a shortcut to the installed

application.

Before working on this lab, you must have:

• Knowledge of deploying an application with Visual Studio.NET.

In this lab, you will create a setup application to deploy the Zoo Information
application. You will customize the setup project created to set some registry
settings and add a shortcut under All Programs on the Start menu for the
installed application.

Objectives

Prerequisites

Scenario

Estimated time to
complete this lab:
60 minutes

30 Module 11: Application Settings and Deployment

Exercise 0
Lab Setup

Task Detailed steps

� Log on to Windows as Student with
a password of P@ssw0rd.

� Log on to Windows with the following account:

• User name: Student

• Password: P@ssw0rd

 Module 11: Application Settings and Deployment 31

Exercise 1
Adding a Setup Project to an Existing Application
In this exercise, you will use the Setup Wizard to add a Setup project to the existing Zoo
Information application.

Tasks Detailed steps

1. Start Visual Studio .NET, and then
open the project in the
install_folder\Labfiles\Lab11_1
folder .

a. Start a new instance of Visual Studio .NET.

b. On the Start Page, click Open Project.

c. In the Open Project window, browse to
install_folder\Labfiles\Lab11_1, click animals.sln, and then
click Open.

2. Use Solution Explorer to add a Setup
Wizard template project to the
existing solution.
Name: Setup
Location:
install_folder\Labfiles\Lab11_1

a. In Solution Explorer, right-click Solution ‘animals’, point to
Add, and then click New Project.

b. In the Add New Project window, under Project Types, click
Setup and Deployment Projects.

c. Under Templates, click Setup Wizard.

d. In the Name box, type Setup

e. In the Location box, type install_folder\Labfiles\Lab11_1
and then click OK.

3. Complete the setup wizard using the
following information:
Project Type: Create a setup for a
Windows application.
Include: Primary output from
animals.
Additional Files: AnimalData.xml,
Antelope.jpg, Elephant.jpg,
Lion.jpg from the folder
install_folder\Labfiles\Lab11_1

a. In the Setup Wizard, on the Welcome to the Setup Project
Wizard page, click Next.

b. On the Choose a project type page, click Next.

c. On the Choose project outputs to include page, under
Which project output groups do you want to include?
Click Primary output from animals, and then click Next.

d. On the Choose files to include page, click Add.

e. In the Add Files dialog box, change Look In to
install_path\Labfiles\Lab11_1.

f. Press and hold the CTRL key, and then click
AnimalData.xml. With the CTRL key still held down, click
Antelope.jpg, click Elephant.jpg, click Lion.jpg, and then
click Open.

g. On the Choose files to include page, click Next.

h. On the Create Project page, click Finish.

4. Set the following properties of the
Setup project:
Author: AdventureWorks
Manufacturer: AdventureWorks
Title: Zoo Information
ProductName: Zoo Information

a. In Solution Explorer, click Setup.

b. In the Properties window, click Author, and then type
AdventureWorks

c. Click Manufacturer, and then type AdventureWorks

d. Click Title, and then type Zoo Information

e. Click ProductName, and then type Zoo Information

32 Module 11: Application Settings and Deployment

Tasks Detailed steps

5. Create a shortcut to the primary
output, and then move this shortcut
to a folder under the users Programs
Menu.
Program Sub-menu name: Zoo
Applications.

a. In the File System (Setup) editor window, under File System
on Target Machine, right-click User’s Programs Menu,
point to Add, and then click Folder.

b. Type Zoo Applications

c. Under File System on Target Machine, click Application
Folder.

d. In the contents of the Application Folder, right-click
Primary output from animals, and then click Create
Shortcut to Primary output from animals (Active).

e. Type Zoo Information

f. Drag this new shortcut icon from the Application Folder to the
Zoo Applications folder under User’s Programs Menu.

6. Use the Registry editor of the Setup
project to create a sub-key under
HKEY_CURRENT_USER\Softwa
re\[Manufacturer] called
ZooInformation. Add two string
values to this key:
AutoLoad = False
ShowTitle = True

a. In Solution Explorer, right-click Setup, point to View, and
then click Registry.

b. In the Registry (Setup) editor window, under Registry on
Target Machine, under HKEY_CURRENT_USER, under
Software, right-click [Manufacturer], point to New, and then
click Key.

c. Type ZooInformation

d. Right-click ZooInformation, point to New, and then click
String Value.

e. Type AutoLoad

f. In the Properties window, click Value, and then enter False.

g. Right-click ZooInformation, point to New, and then click
String Value.

h. Type ShowTitle

i. In the Properties window, click Value, and then enter True.

7. Build the Setup project. � In Solution Explorer, right-click Setup, and then click Build.

 Module 11: Application Settings and Deployment 33

Exercise 2
Installing and Testing the Setup Application
In this exercise, you will install the application on your computer. You will then run the application.

Tasks Detailed steps

1. Install the setup. a. In Solution Explorer, right-click Setup, and then click Install.

b. Accept the defaults provided by the setup wizard.

2. Run the Zoo Information application. a. Click Start, point to All Programs, point to Zoo
Applications, and then click Zoo Information.

b. In the Zoo Information window, click File, and then click
Open.

c. In the Open dialog box, click AnimalData.xml, and then
click Open.

3. Close the application, save changes
to your solution, and then quit Visual
Studio .NET.

a. Close the Zoo Information window.

b. In Visual Studio .NET, on the File menu, click Save All.

c. On the File menu, click Exit.

34 Module 11: Application Settings and Deployment

Lab 11.2 (optional): Working with Application Settings

� Exercise 1: Adding the UserPreferences Class
� Exercise 2: Adding User Preferences to the Form

Load Event
� Exercise 3: Adding User Preferences to the

loadItem_Click Event
� Exercise 4: Declaring an Instance of the

UserPreferences Class in the Options Form
� Exercise 5: Setting the Checkbox Controls to the

Values Contained in the Registry
� Exercise 6: Save the Checkbox Controls Values to

the Registry
� Exercise 7: Testing the Zoo Information Application

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will be able to:

� Read data from the registry.
� Write data to the registry.

Before working on this lab, you must have:

• Knowledge of working with application settings including the RegistryKey
class of the .Net Framework Class Library.

In this lab, you will enhance the existing code of the Zoo Information
application, which is already written, to store the following simple user
preferences in the Windows registry:

� ShowTitle preference. Controls whether to display the name of the animal
above the text in the user interface.

� AutoLoad preference. Controls whether the application automatically
attempts to open the data file that it last opened. The AutoLoad functionality
requires that the last file opened by the application is stored in the registry.

The solution for this lab is provided in install_folder\Labfiles\Lab11_1\
Solution_Code\Animals.sln. Start a new instance of Visual Studio .NET before
opening the solution.

Objectives

Prerequisites

Scenario

Estimated time to
complete this lab:
30 minutes

 Module 11: Application Settings and Deployment 35

Exercise 0
Lab Setup

Task Detailed steps

� Log on to Windows as Student with
a password of P@ssw0rd.

� Log on to Windows with the following account:

• User name: Student

• Password: P@ssw0rd

36 Module 11: Application Settings and Deployment

Exercise 1
Adding the UserPreferences Class
The first step in modifying the application is adding the UserPreferences class definition to the
application. The UserPreferences class has three public fields: showtitle, autoload, and
lastfilename. Information is retrieved from the registry during the execution of the class constructor
and saved to the registry in a method called Save.

Tasks Detailed steps

1. Start Visual Studio .NET, and the
open install_folder\Labfiles
\Lab11_2\animals.sln.

a. Start a new instance of Visual Studio .NET.

b. On the Start Page, click Open Project.

c. In the Open Project dialog box, browse to
install_folder\Labfiles\Lab11_2, click animals.sln, and then
click Open.

2. View the code of Form1.cs. � In Solution Explorer, right-click Form1.cs, and then click
View Code.

3. Add the UserPreferences class
definition at the bottom of the
existing code in Form1.cs.

a. Scroll to the bottom of Form1.cs.

b. On the line before the last brace, }, add the following class
definition:

public class UserPreferences{

}

‘
4. In the UserPreferences class, create

three public fields:

• showtitle (Boolean)

• autoload (Boolean)

• lastfilename (String)

� In the class definition that you created in the preceding step,
add the following three public fields:

• showtitle (Boolean)

• autoload (Boolean)

• lastfilename (String)

 Module 11: Application Settings and Deployment 37

Tasks Detailed steps

5. Add a default constructor to the
UserPreferences class. You should
be able to modify the code examples
in this module to solve this problem.

a. In this constructor, open the registry key
HKEY_CURRENT_USER\Software\AdventureWorks\
ZooInformation.

Note: If this key does not exist, your application should default the
values of the fields shown in the following step.

b. Set the public fields that you created in the preceding step from
the values held in the key:
ShowTitle (default true)
AutoLoad (default false)
LastFileName (default “”)

6. Add a Save method to the
UserPreference class. You should
be able to modify the code examples
in this module to solve this problem.

a. In this method, open the registry key
HKEY_CURRENT_USER\Software\AdventureWorks\
ZooInformation for writing.

Note: If this key does not exist, your application should create it.

b. Store the public fields in the registry values:
ShowTitle
AutoLoad
LastFileName

38 Module 11: Application Settings and Deployment

Exercise 2
Adding User Preferences to the Form Load Event
In this exercise, you will use the UserPreferences class to read the user preferences and determine
if the application should automatically load the last file opened.

Task Detailed steps

� Locate the Form1_Load event in
Form1.cs. Complete the instructions
in the comments for Lab11.2
Exercise 2.

a. Locate the Form1_Load event.

b. Add the required code as described in the comments titled
Lab11.2 Exercise 2.

 Module 11: Application Settings and Deployment 39

Exercise 3
Adding User Preferences to the loadItem_Click Event
In this exercise, you will use the UserPreferences class to update the LastFileName value held in
the registry after a user selects a file to open.

Task Detailed steps

� Locate the loadItem_Click event in
Form1.cs. Scroll through the code in
this event until you locate the
Exercise 3 instructions. Complete the
instructions.

a. Locate the loadItem_Click event.

b. Scroll through the code until you locate the Exercise 3
instructions.

c. Add the code as described in the instructions.

40 Module 11: Application Settings and Deployment

Exercise 4
Declaring an Instance of the UserPreferences Class in the
Options Form
In this exercise, you will declare an instance of the UserPreferences class as private for use in the
Options form.

Tasks Detailed steps

1. Open the Options.cs code editor. � In Solution Explorer, right-click Options.cs, and then click
View Code.

2. Within the definition of the class
Options, locate and then follow the
Lab11.2 Exercise 4 instructions.

a. Locate the Options class within the code.

b. Locate and then follow the Lab11.2 Exercise 4 instructions.

 Module 11: Application Settings and Deployment 41

Exercise 5
Setting the Checkbox Controls to the Values Contained in the
Registry
In this exercise, you will create an instance of the UserPreferences class and use the properties of
the class to set the check boxes on the form. You will place this code into the Options_Load event.

Task Detailed step

� Locate the Options_Load event, and
then follow the Lab11.2 Exercise 5
instructions.

� Locate the Options_Load event, and then follow the Lab11.2
Exercise 5 instructions.

42 Module 11: Application Settings and Deployment

Exercise 6
Save the Checkbox Controls Values to the Registry
In this exercise, you will set the values of the check boxes on the form into the properties of the
UserPreferences instance that you created in Exercise 5, and then call the Save method.

Task Detailed step

� Locate the ok_Click event, and then
follow the Lab11.2 Exercise 6
instructions.

� Locate the ok_Click event, and then follow the Lab11.2
Exercise 6 instructions.

 Module 11: Application Settings and Deployment 43

Exercise 7
Testing the Zoo Information Application
In this exercise, you will run the Zoo Information application and test that the user preferences are
stored correctly in the registry.

Tasks Detailed steps

1. Run the Zoo Information application. � On the Standard toolbar, click Start.

2. In the Zoo Information window,
open the file AnimalData.xml.

a. In the Zoo Information window, on the File menu, click
Open.

b. In the Open dialog box, click AnimalData.xml, and then
click Open.

3. On the View menu, click Options,
and then click Autoload Last File on
Startup.

a. On the View menu, click Options.

b. In the Options window, click Autoload Last File on Startup,
and then click Open.

4. Close the Zoo Information window. � Close the Zoo Information window.

5. Run the application. � On the Standard toolbar, click Start.

Note: The application should automatically load the AnimalData.xml file and display the Antelope
information page. If the application displays an error or this functionality does not appear, debug your
application.

6. Close the Zoo Information window. � Close the Zoo Information window.

7. Save the changes to the solution, and
then quit Visual Studio .NET.

a. In Visual Studio .NET, on the File menu, click Save All.

b. On the File menu, click Exit.

THIS PAGE INTENTIONALLY LEFT BLANK

