

`

Contents

Overview 1

Lesson: Designing Objects 2

Lesson: Using Inheritance 12

Lesson: Using Polymorphism 24

Review 36

Lab 4.1: Creating Classes in C# 37

Module 4: Implementing
Object-Oriented
Programming
Techniques in C#

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, ActiveX, BizTalk, FrontPage, IntelliSense, JScript,
Microsoft Press, MSDN, PowerPoint, Visual Basic, Visual C++, Visual C#, Visual Studio, Win32,
Windows Media are either registered trademarks or trademarks of Microsoft Corporation in the
United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 4: Implementing Object-Oriented Programming Techniques in C# iii

Instructor Notes
This module introduces the fundamentals of object-oriented programming,
including the concepts of objects, classes, and methods.

After completing this module, students will be able to:

� Design objects.
� Use inheritance.
� Use polymorphism.

To teach this module, you need the following materials:

� Microsoft® PowerPoint® file 2609A_04.ppt
� Module 4, “Implementing Object-Oriented Programming Techniques in C#”

To prepare for this module:

� Read all of the materials for this module.
� Complete the practices and lab.

Presentation:
120 minutes

Lab:
60 minutes

Required materials

Preparation tasks

iv Module 4: Implementing Object-Oriented Programming Techniques in C#

How to Teach This Module
This section contains information that will help you to teach this module.

Lesson: Designing Objects
This section describes the instructional methods for teaching each topic in this
lesson.

• When discussing properties, you might point out that properties are an
example of encapsulation.

Practices
The hands-on practices for this module are scheduled to last approximately 10
minutes each. If the students cannot complete the steps, they may open the
solution file in a new instance of Microsoft Visual Studio®.NET. You may also
choose to demonstrate the solution on your instructor computer as in a guided
practice.

Review
The review questions are based mostly on conceptual understanding and
procedures that were covered thoroughly in the module. You can use a
discussion format to answer the questions so that everyone gets the benefit of
knowing the right answers.

Lab 4.1: Creating Classes in C#
Before beginning this lab, students should have completed all of the practices
and answered the review questions. Students must be able to perform most of
the tasks that they learned in the lessons and the practices.

The lab is simple but comprehensive. It leads students through the process of
creating bank accounts, as does Lab 3.1, Creating Classes in C#, in Module 3,
“Creating Objects in C#,” in Course 2609, Introduction to C# Programming
with Microsoft .NET. In this lab, however, students are shown that it is easier to
create the bank accounts by using the object-oriented principles that are
described in this module. Students can use their solutions from Lab 3.1 at your
discretion.

 Module 4: Implementing Object-Oriented Programming Techniques in C# 1

Overview

� Designing Objects

� Using Inheritance

� Using Polymorphism

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This module describes the most important principles of object-oriented design:
encapsulation, inheritance, and polymorphism. It discusses the benefits of
object-oriented programming, and it explains how to design classes so that they
encapsulate functionality but limit accessibility to information that the users of
your objects do not need.

This module also explains how to create classes that other classes can use
through the process of inheritance, so that you can reuse previous work and
increase productivity. Finally, this module explains how to override methods
that are provided by a base class and how to define abstract classes that specify
a set of functionality that a derived class must follow.

After completing this module, you will be able to:

� Encapsulate information in an object.
� Create an object that inherits functionality from another object.
� Implement polymorphism to use abstract classes.

Introduction

Objectives

2 Module 4: Implementing Object-Oriented Programming Techniques in C#

Lesson: Designing Objects

� What Are the Benefits of Object-Oriented Programming?

� What Is Encapsulation?

� What Are Properties?

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This lesson explains how to use the design principals of abstraction and
encapsulation to create classes that present a useful programming model to the
object user.

After completing this lesson, you will be able to:

� List the benefits of object oriented programming.
� Encapsulate data in an object.
� Use properties to manage access to encapsulated data.

This lesson includes the following topics and activity:

� What Are the Benefits of Object-Oriented Programming?
� What Is Encapsulation?
� What Are Properties?
� Practice: Writing and Using Properties

Introduction

Lesson objectives

Lesson agenda

 Module 4: Implementing Object-Oriented Programming Techniques in C# 3

What Are the Benefits of Object-Oriented Programming?
Object-Oriented Tendencies

Object-CenteredObject-Centered

Nonordered
Algorithm

Nonordered
Algorithm

Structured Design Tendencies

Process-CenteredProcess-Centered

Ordered
Algorithm
Ordered

Algorithm

Modular UnitsModular UnitsSingle UnitSingle Unit

ReusableReusableOne-Time UseOne-Time Use

Hides DataHides DataReveals DataReveals Data

111

222

333

444

555

*****************************ILLEGAL FOR NON-TRAINER USE******************************

An object-oriented approach to programming provides many benefits over the
structured approach.

The structured approach to programming is process-centered, meaning that it
takes a problem and focuses on a hierarchy of processes that must be performed
sequentially to arrive at a solution.

Object-oriented analysis and design focuses on objects. The objects have certain
behaviors and attributes that determine how they interact and function. No
attempt is made to provide an order for those actions at design time because
objects function based on the way other objects function.

Object-oriented programming allows developers to create objects that reflect
real-world scenarios. Most people find the object-oriented approach a much
more natural design model than other methodologies. This is because it meshes
well with the way people naturally interpret the world. Human understanding
largely rests on identification and generalization (objects and classes), finding
relationships between groups, and interacting through the normal interface of an
entity (behaviors).

The structured approach packages data and procedures, which are revealed or
accessible to the rest of the program. There is little effort to actually hide
information from other processes. The structured approach leaves this decision
up to the implementer.

The object-oriented implementations hide data, which shows only behaviors to
users and hides the underlying code of an object. The behaviors that the
programmer exposes are the only items that the user of the object can affect.

Introduction

Process-centered vs.
object-centered

Reveals data vs. hides
data

4 Module 4: Implementing Object-Oriented Programming Techniques in C#

The structured approach is based on a single unit of code, where processes call
other processes and are dependent on each other.

The object-oriented approach allows objects to be self-contained. Objects stand
on their own, with the functionality to call behaviors of other objects. Using the
object-oriented approach, developers can create applications that reflect real-
world objects such as rectangles, ellipses, and triangles, in addition to money,
part numbers, and items in inventory.

Structured processes may not be reusable, depending on the implementation.

In the object-oriented approach, objects are by definition modular in their
construction. That is, they are complete entities and therefore tend to be highly
reusable.

Consider the example of buying a new car. The manufacturer builds a base
model car. If you prefer additional features such as air conditioning, power
windows, and a sunroof, these items can be added to the car. By adding
features, you extend the characteristics of the base model instead of building an
entirely new car.

Structured approaches with processes tend to result in linear, or top down,
algorithm-based implementations.

Object-oriented applications are constructed on a message-based or event-
driven paradigm, where objects send messages to other objects, such as the
Microsoft® Windows® operating system.

In summary, object-oriented programming benefits developers because:

� Programs are easier to design because objects reflect real-world items.
� Applications are easier for users because data they do not need is hidden.
� Objects are self-contained units.
� Productivity increases because you can reuse code.
� Systems are easier to maintain and adapt to changing business needs.

Single unit vs. modular
unit

One-time use vs.
reusable

Ordered algorithm vs.
nonordered algorithm

Summary of benefits

 Module 4: Implementing Object-Oriented Programming Techniques in C# 5

What Is Encapsulation?

� Grouping related pieces of information and processes
into self-contained unit

� Makes it easy to change the way things work under the
cover without changing the way users interact

� Hiding internal details

� Makes your object easy to use

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Non-object-oriented programming languages consist of data, either in a
database or in computer memory, and separate instructions for manipulating
that data. These languages do not usually enforce any sort of relationship
between the data and the code that manipulates the data. If any aspect of the
data changes—for example, if a year field is changed from 2 digits to 4 digits
then all of the code that uses that data must also be changed. Because the code
is not closely related to the data, changing the code can be difficult and time-
consuming.

In object-oriented programming, encapsulation is the enclosing of both
properties and methods (the data and the code that manipulates that data)
together in a common structure. Encapsulating both data and the actions that
manipulate that data together in this way, and specifying the actions and
properties of the object, creates a new data type called a class.

When data and methods are encapsulated, you can specify methods and
properties that define how the external user sees your information and how they
can request actions from the object. By hiding information that users do not
need, such as implementation information, the user can concentrate on only the
useful characteristics of the object.

For example, the internal mechanism of a telephone is hidden from the user.
The wires, switches, and other internal parts of a telephone are encapsulated by
its cover to allow the user to focus on using the phone and not on the internal
operations of the telephone.

This abstraction also enables you to easily change the implementation details of
your application without the users of your object experiencing any change in
the way they interact with the object.

Introduction

Definition

Benefit of encapsulation

6 Module 4: Implementing Object-Oriented Programming Techniques in C#

When you design a class, there are several questions to consider. What will the
class represent? What actions should the class provide? What elements does a
user of the class need to see?

When you design a class, you should attempt to hide as much of the
implementation detail as possible and expose only those actions and values that
the users of your class need to know about. This enables you to improve and
change the implementation details of your class later, without changing the way
users interact with the class. Therefore, do not expose elements just because
you think that they might be useful. As you refine your design, you can always
add elements to the public definition when you clearly see a need.

At a zoo, visitors can look at a monitor outside an exhibit to learn about the
animals. The monitor at the elephant exhibit shows visitors educational
information about the elephant, including its size, dietary requirements,
reproductive rate, and life span. The application that runs the display uses an
Elephant object to access information about the elephant. The Elephant object
hides internal information that the display application does not need to see, such
as where the animal-specific data is stored, and how the data is structured in the
database.

When you design your application in this way, it is easy for you to change the
implementation details without changing the interface. For example, you can
move the files to a different database location or even database type without the
visitors seeing anything different on the display and without the application that
uses your objects changing its implementation.

By preventing access to internal data structures, you also prevent users of your
object from accessing information that could corrupt your object.

Design considerations

Example

 Module 4: Implementing Object-Oriented Programming Techniques in C# 7

What Are Properties?

� Properties are methods that protect access to class
members

private int animalWeight;
public int Weight {

get {
return animalWeight;

}
set {

animalWeight = value;
}

}

private int animalWeight;
public int Weight {

get {
return animalWeight;

}
set {

animalWeight = value;
}

}

*****************************ILLEGAL FOR NON-TRAINER USE******************************

To separate the implementation details of your objects from what the user sees,
you can define the scope of the class members and thereby control access to the
data in your objects.

Although you can control access to class members by using access modifiers,
an even more powerful way to manage access is through the use of properties.
By using properties, you can manage the access that other objects have to data
in your class.

Properties are class members that provide access to elements of an object or
class.

The syntax for defining a property consists of an access modifier, such as
public or protected, followed by a type, the property name, the keywords get
and set, and the property code for each in curly braces, as shown in the
following code:

public int myIntegerProperty {
 get {
 // Property get code
 }
 set {
 // Property set code
 }
}

The get and set statements are called accessors.

The get accessor must return a type that is the same as the property type, or one
that can be implicitly converted to the property type. The set accessor is
equivalent to a method that has one implicit parameter, named value.

Introduction

Definition

Syntax

8 Module 4: Implementing Object-Oriented Programming Techniques in C#

You are writing an application to track the amount of food that zoo animals
consume so that you can use this value to predict the size of future food
purchases. You decide to represent this consumption value as
DailyFoodIntake, as shown in the following code:

class Elephant {
 // Not a good idea!
 public decimal DailyFoodIntake;
}

class Zoo {
 static void Main(string[] args) {
 Elephant zooElephant = new Elephant();
 zooElephant.DailyFoodIntake = 300M;
 }
}

This code allows the user of the object to directly access the DailyFoodIntake
value of zooElephant and alter it. This is a design flaw because the
programmer has no ability to ensure that the change is allowable or that the
value is correct.

You gain more control over the variable by making it private and using a
method to access it, as shown in the following example:

class Elephant {
 private decimal dailyFoodIntake;

 public decimal GetDailyFoodIntake() {
 return dailyFoodIntake;
 }

 public void SetDailyFoodIntake(decimal newRate) {
 if (newRate < dailyFoodIntake - 25) {
 // call the vet
 }
 else {
 dailyFoodIntake = newRate;
 }
 }
}

class Zoo {
 static void Main(string[] args) {
 Elephant e = new Elephant();
 e.SetDailyFoodIntake(300M);
 }
}

However, this approach also has some disadvantages. This code contains two
methods: one to set the amount of food that is eaten daily, and one to get the
amount. The dailyFoodIntake member is private so you control the values that
can be set, but this implementation requires the user of the object to remember
and use two method names rather than only one element.

Non-Example 1

Non-Example 2

 Module 4: Implementing Object-Oriented Programming Techniques in C# 9

Using properties is the best way to declare DailyFoodIntake, as shown in the
following code:

using System;

namespace LearningCSharp {
 class Elephant {
 private decimal dailyConsumptionRate;

 public decimal DailyFoodIntake {
 get {
 return dailyConsumptionRate;
 }
 set {
 if (value < dailyConsumptionRate - 25) {
 // notify medical center
 }
 else {
 dailyConsumptionRate = value;
 }
 }
 }
 }

class Zoo {
 static void Main(string[] args) {
 Elephant e = new Elephant();
 e.DailyFoodIntake = 300M;
 }
 }

}

In this example, users of the Elephant object can access the DailyFoodIntake
method in the same way that they would access a public member variable in the
class. The implementer of the class can separate the interface that it provides,
DailyFoodIntake, from the member variable that is used internally by the
class, dailyConsumptionRate, to predict animal food purchases. In future
implementations, the programmer can change dailyConsumptionRate to
another type, but users of the Elephant class will not have to modify their code.

Note that the set accessor uses the value keyword to retrieve the new value.

This code sample is available on the Student Materials compact disc as
Properties.sln in the folder Samples\Mod04\Properties.

Example using
properties

10 Module 4: Implementing Object-Oriented Programming Techniques in C#

Practice: Writing and Using Properties

� In this practice, you will write and use
properties

� In this practice, you will write and use
properties

Hands-on PracticeHandsHands--on Practiceon Practice

10 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will write and use properties.

Scenario: the Zoo Medical Center requires a way to represent information about the animals in its
care. You have been asked to develop an object that represents information about lions, such as
name, age, weight, gender. You are given an example of how the user of this object wants it to
behave.

In this practice, you will change the Gender member of the Lion class from a member variable to a
property.

The solution code for this practice located in install_folder\Practices\Mod04\Properties_Solution
\Properties_Solution.sln. Start a new instance of Microsoft Visual Studio® .NET before opening the
solution.

Tasks Detailed steps

1. Start Visual Studio .NET, and
then open install_folder\
Practices\Mod04
\Properties\Properties.sln.

Examine the Lion class, which is
located near the top of the code
window.

a. Start a new instance of Visual Studio .NET.

b. On the Start Page, click Open Project.

c. In the Open Project dialog box, browse to
install_folder\Practices\Mod04\Properties, click Properties.sln,
and then click Open.

d. In Solution Explorer, click Form1.cs, and then press F7 to open
the Code Editor. Review the Lion class, which is located near the
top of the code window.

2. Examine the Task List. � On the View menu, point to Show Tasks, and then click All.

 Module 4: Implementing Object-Oriented Programming Techniques in C# 11

Tasks Detailed steps

3. Implement the rule that the
Gender can be Male or Female.

a. To view the Task List, on the View menu, point to Show Tasks,
and then click All.

b. In the Task List, double-click TODO: Change Gender member
of Lion class to be a property.

c. Modify Gender so that it is a property.

d. Compile and run your program.

e. In your application, click Run, and then check that the output is
as follows:

Leo: Male age 8; weighs 280kg

4. Save your application, and then
quit Visual Studio .NET.

a. Save your application.

b. Quit Visual Studio .NET.

Optional:

� Change the other members of the Lion class to be properties.
� Represent the gender as an enumeration.

12 Module 4: Implementing Object-Oriented Programming Techniques in C#

Lesson: Using Inheritance

� What Is Inheritance?

� How to Create a Derived Class

� How to Call a Base Constructor from a Derived Class

� How to Use a Sealed Class

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This lesson explains how to implement inheritance by creating base classes
from which other classes can be derived.

After completing this lesson, you will be able to:

� Design a base class.
� Create a derived class.
� Create a sealed class.

This lesson includes the following topics and activity:

� What Is Inheritance?
� How to Create a Derived Class
� How to Call a Base Class Constructor from a Derived Class
� How to Use a Sealed Class
� Practice: Creating a Derived Class

Introduction

Lesson objectives

Lesson agenda

 Module 4: Implementing Object-Oriented Programming Techniques in C# 13

What Is Inheritance?

� Inheritance specifies an
is-a-kind-of relationship

� Derived classes inherit
properties and methods
from a base class,
allowing code reuse

� Derived classes become
more specialized

Base Class

Derived Classes

Animal

Elephant Cat

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When you design an application, you often must manage similar but not
identical items. The object-oriented principle of inheritance enables you to
create a generalized class and then derive more specialized classes from it. The
general class is referred to as the base class. A more specific class is referred to
as the derived class. Derived classes inherit properties and methods from the
base class.

Inheritance is the ability of a derived class to take on the characteristics of the
class or derived class on which it is based. Inheritance allows a common set of
behaviors, defined as properties and methods, to be included in a base class and
reused in derived classes. It is a means for creating new, more specific types
from an existing, more general type. Inheritance also defines one type as a
subcategory of another type.

The primary benefit of inheritance is code reuse. In a base class, you can write
code once that all derived classes will automatically inherit. Inheritance
facilitates reusability.

In a hierarchy that uses inheritance, you can design several classes, each one
deriving from the class above it. When you design classes using inheritance,
look for the common features of the objects, and then factor these into a
hierarchy of classes with increasingly more specific attributes, as shown in the
following example:

Animal

 Mammal

 Monotremes Duck-billed platypus

 Multitubercules Extinct

 Marsupials Kangaroo

 Utherians Mouse, Bat, Human

Introduction

Definition

Benefits

Example of an
inheritance hierarchy

14 Module 4: Implementing Object-Oriented Programming Techniques in C#

The most general features and functions that are common to all animals are
defined at the highest level of the hierarchy. In lower levels, previously-defined
features and functionality are inherited and new features are added so that each
level becomes more specific and more specialized.

When you create a derived class in C#, you specify only one base class.

In an application that manages animals, you may need to implement objects for
a cat, a mouse, and an elephant. You can set up your application by creating
three separate classes, one for each type of animal, as shown in the following
code.

{ }indicates where the implementation of the methods would exist.

public class Antelope {
 public bool IsSleeping;
 public void Sleep() { }
 public void Eat() { }
}

public class Lion {
 public bool IsSleeping;
 public void Sleep() { }
 public void EatAntelope() { }
 public void StalkPrey() { }
}

public class Elephant {
 public bool IsSleeping;
 public void Sleep() { }
 public int CarryCapacity;
 public void Eat() { }
}

Elephant e = new Elephant();
e.Sleep();

The design in the previous example has two obvious disadvantages:

� Duplication of code. For example, the Sleep method must be implemented
multiple times.

� User confusion. The eating methods have different names in different
objects.

A better way of designing this application is by using inheritance. You can
place the common features of the animals in a base class, derive new classes
that inherit these features from the base class, and then refine the derived class
to implement any object-specific changes.

Note

Non-example

Note

Why the non-example is
poor design

 Module 4: Implementing Object-Oriented Programming Techniques in C# 15

How to Create a Derived Class

public class Animal {

protected bool IsSleeping;

public void Sleep() { }

public void Eat() { }

}

public class Lion : Animal {

public void StalkPrey() { }

}

...

Lion adoptedLion = new Lion();

adoptedLion.StalkPrey();

adoptedLion.Eat();

public class Animal {

protected bool IsSleeping;

public void Sleep() { }

public void Eat() { }

}

public class Lion : Animal {

public void StalkPrey() { }

}

...

Lion adoptedLion = new Lion();

adoptedLion.StalkPrey();

adoptedLion.Eat();

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can use many of the classes that are available in the Microsoft .NET class
library as base classes from which you can derive new classes. For example,
when you create a new Windows application in Visual Studio .NET, the main
form that is created by the integrated development environment is a new class
that is derived from the System.Windows.Forms class.

To create a derived class, use the following syntax:

[attributes] [access-modifiers] class identifiers [:base-class] {class-body}

The previous example requires you to create objects that represent types of
animals. To use inheritance, first create a base class named Animal, and then
include any methods that are common to all your derived classes, as shown in
the following example:

public class Animal {
 public bool IsSleeping;
 public void Sleep() { }
 public void Eat() { }
}

Introduction

Syntax

Example

16 Module 4: Implementing Object-Oriented Programming Techniques in C#

Then, you can create your derived classes. The following code creates the
Antelope, Lion, and Elephant classes with animal-specific behavior:

public class Animal {
 public bool IsSleeping;
 public void Sleep() {
 Console.WriteLine("Sleeping");
 }
 public void Eat() { }
}

public class Antelope : Animal {
}

public class Lion : Animal {
 public void StalkPrey() { }
}

public class Elephant : Animal {
 public int CarryCapacity;
}

Note that the Sleep and Eat methods are defined only once in the Animal base
class. The derived Antelope, Lion, and Elephant classes each inherit these
methods, and they can be invoked as follows:

Elephant e = new Elephant();
e.Sleep();

The preceding code produces the following output:

Sleeping

 Module 4: Implementing Object-Oriented Programming Techniques in C# 17

Remember that when you define a new class, you create a new reference type.

Avoid overusing inheritance in your applications. For example, although it is
possible to create new versions of Windows user interface components, such as
buttons, there is rarely a good reason to do so.

You can inherit from any class that is not sealed, so you can inherit derived
classes. The following code declares a Mammal class that inherits from the
Animal class. The code then defines classes for specific animals that inherit the
Mammal class.

public class Animal {
 public bool IsSleeping;
 public void Sleep() {
 Console.WriteLine("Sleeping");
 }
 public void Eat() { }
}

public class Mammal : Animal {
 public MammalGroup PhylogenicGroup;
}

public class Antelope : Mammal {
}

public class Lion : Mammal {
 public void StalkPrey() { }
}

public class Elephant : Mammal {
 public int CarryCapacity;
}

The MammalGroup enumeration is defined as follows:

public enum MammalGroup {
 Monotremes,
 Multitubercules,
 Marsupials,
 Utherians
}

You can also write code that uses the public members of any object in the
inherited hierarchy, as shown in the following example:

Elephant e = new Elephant();
e.Sleep();
e.PhylogenicGroup = MammalGroup.Utherians;

Design considerations

18 Module 4: Implementing Object-Oriented Programming Techniques in C#

The purpose of the protected access modifier is to limit the scope of the
members of the protected class to only that class and those classes that inherit
it.

For example, in the following code, the Boolean value IsSleeping is declared as
protected, so it can be used only by the base Animal class and derived classes.

public class Animal {
 protected bool IsSleeping = false;
 public void Sleep() { }
 public void Eat() { }
}

Protected access
modifier

 Module 4: Implementing Object-Oriented Programming Techniques in C# 19

How to Call a Base Constructor from a Derived Class

� The base keyword is used in derived classes to specify
a non-default base class constructor

public class Animal {
public Animal(GenderType gender) {

// . . .
Console.WriteLine("Constructing Animal");

}
}

public class Elephant : Animal {
public Elephant(GenderType gender): base(gender) {

//Elephant code
Console.WriteLine("Constructing Elephant");

}
}

public class Animal {
public Animal(GenderType gender) {

// . . .
Console.WriteLine("Constructing Animal");

}
}

public class Elephant : Animal {
public Elephant(GenderType gender): base(gender) {

//Elephant code
Console.WriteLine("Constructing Elephant");

}
}

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When you create an object, the instance constructor is executed. When you
create an object from a derived class, the instance constructor for the base class
is executed first, and then the instance constructor for the derived class is
executed.

Because the derived class uses the base class, the base class must be instantiated
before the derived class.

public class Animal {
 public Animal() {
 Console.WriteLine("Constructing Animal");
 }
}

public class Elephant : Animal {
 public Elephant() {
 Console.WriteLine("Constructing Elephant");
 }
}

When an Elephant object is created, as shown in the following code:

Elephant e = new Elephant();

The following output is produced:

Constructing Animal
Constructing Elephant

Notice that the constructor for the base class is executed before the constructor
for the derived class. The base class of the hierarchy is constructed first, so in a
hierarchy that consists of an Elephant class that is derived from a Mammal
class, which in turn is derived from an Animal class, the order of constructor
execution is Animal, followed by Mammal, followed by Elephant.

Introduction

Order of execution

20 Module 4: Implementing Object-Oriented Programming Techniques in C#

If the base class has a non-default constructor that you want to use, you must
use the base keyword.

For example, the Animal class may allow you to specify the gender of the
animal when it is created, as shown in the following code:

public enum GenderType {
 Male,
 Female
}

public class Animal {
 public Animal() {
 Console.WriteLine("Constructing Animal");
 }

 public Animal(GenderType gender) {
 if (gender == GenderType.Female) {
 Console.WriteLine("Female ");
 }
 else {
 Console.WriteLine("Male ");
 }
 }
}

You use the base keyword in the derived class constructor to call the base class
constructor with a matching signature.

If your base class does not have a default constructor, you must use the base
keyword to specify which constructor to call when your derived class is
instantiated, as shown in the following code:

public class Elephant : Animal {
 public Elephant(GenderType gender) : base(gender) {
 Console.WriteLine("Elephant");
 }
}

You can then create an Elephant object as follows:

Elephant e = new Elephant(GenderType.Female);

The preceding code produces the following output:

Female
Elephant

This code sample is available on the Student Materials compact disc as
BaseConstructor.sln in the folder Samples\Mod04\BaseConstructor.

Calling a specific
constructor

 Module 4: Implementing Object-Oriented Programming Techniques in C# 21

How to Use a Sealed Class

� You cannot derive from a sealed class

� Prevents the class from being overridden or extended
by third parties

public sealed class MyClass {
// class members

}

public sealed class MyClass {
// class members

}

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You cannot inherit from a sealed class. Any attempt to derive a class from a
sealed class causes a compile-time error. You can add the sealed keyword to
any class or method to create a class that cannot be inherited from to prevent the
class from being overridden or extended by third parties.

Creating a sealed class is useful when you want to prevent a class or a method
from being overridden. For example, you may apply the sealed keyword when
the class you are writing is crucial to the functionality of your program and any
attempts to override it will cause problems. Or, you may also use it to mark
certain classes in your program as proprietary to prevent third-party users from
extending them.

The .NET Framework class System.String is a sealed class because it has a
very strict set of conditions under which its internal data structures must
operate, and derived classes may break these rules.

Many of the classes in the System.Security and
System.Security.Cryptography namespaces are sealed to prevent users from
overriding their functionality.

The syntax for using the sealed keyword is as follows:

[attributes] [access-modifiers] sealed class identifiers {class-body}

public sealed class Elephant {
 ...
}

Introduction

Designing a sealed class

Example

Syntax

22 Module 4: Implementing Object-Oriented Programming Techniques in C#

Practice: Creating a Derived Class

� In this practice, you will learn how to use
base classes and derived classes

� In this practice, you will learn how to use
base classes and derived classes

Hands-on PracticeHandsHands--on Practiceon Practice

10 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will learn how to use base classes and derived classes.

The solution code for this practice is provided in install_folder\Practices\Mod04
\Inheritance_Solution\Inheritance_Solution.sln. Start a new instance of Visual Studio .NET before
opening the solution.

Tasks Detailed steps

1. Start Visual Studio .NET and open
install_folder\Practices\Mod04
\Inheritance\Inheritance.sln.

a. Start a new instance of Visual Studio .NET.

b. On the Start Page, click Open Project.

c. In the Open Project dialog box, browse to
install_folder\Practices\Mod04\Inheritance, click
Inheritance.sln, and then click Open.

d. In Solution Explorer, click Form1.cs, and then press F7 to
open the Code Editor, and then review the provided code.

2. Examine the Task List. � On the View menu, point to Show Tasks, and then click All.

3. Write a Dolphin class that derives
from the Animal class.

a. In the Task List, double-click TODO 1: Create a Dolphin
class, derived from Animal.

b. Write a class named Dolphin that is derived from the Animal
class.

You do not need to write any methods or properties in your
Dolphin class.

 Module 4: Implementing Object-Oriented Programming Techniques in C# 23

Tasks Detailed steps

4. Create a Dolphin object. a. In the Task List, double-click TODO 2: Create a Dolphin
object.

b. Create an instance of the Dolphin class.

5. Test your code. a. Build and run your application by pressing F5.

b. In your application window, click Run.

A message appears informing you that an animal object has been
created. Note that this method is defined in the Animal class.

6. Call the Sleep method on the
Dolphin object, and then test your
code.

a. In the Task List, double-click TODO 3: Call the Sleep
method on the dolphin object.

b. Add code that calls the Sleep method of the Dolphin object
that you created in step 4.

c. Test your code by pressing F5.

7. Save your application, and then quit
Visual Studio .NET.

a. Save your application.

b. Quit Visual Studio .NET.

24 Module 4: Implementing Object-Oriented Programming Techniques in C#

Lesson: Using Polymorphism

� What Is Polymorphism?

� How to Write Virtual Methods

� How to Use Base Class Members from a Derived Class

� What Are Abstract Methods and Classes?

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This lesson explains how to use polymorphism in a C# application.

After completing this lesson, you will be able to:

� Implement polymorphism by using virtual methods in base classes.
� Create and use abstract classes.

This lesson includes the following topics and activity:

� What Is Polymorphism?
� How to Write Virtual Methods
� How to Use Base Class Members from a Derived Class
� What Are Abstract Methods and Classes
� Practice: Using Polymorphism

Introduction

Lesson objectives

Lesson agenda

 Module 4: Implementing Object-Oriented Programming Techniques in C# 25

What Is Polymorphism?

Animal
Objects
Animal
Objects

Elephant

Cat

Mouse

BehaviorBehavior

Eat Grass

Eat Mouse

Eat Cheese

Method
Called

Method
Called

Eat ()

Eat ()

Eat ()

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Classes can inherit functionality from a base class, and a derived class can
provide new functionality when you change the details of an inherited behavior.
In fact, the purpose of creating a derived class is to extend the functionality of
the base class and provide multiple ways to accomplish a task.

Polymorphism is an object-oriented concept that enables you to treat your
derived classes in a similar manner, even though they are different. When you
create derived classes, you provide more specialized functionality;
polymorphism enables you to treat these new objects in a general way.

You are writing an application for a zookeeper to use to manage feeding of the
animals. First, you design a base class named Animal. In that base class, you
include a method named Eat that determines how much food the animal will
receive. Then, you create the derived classes, such as one for an elephant and
one for a cat. Because the dietary requirements of these two types of animals
are different, you change the method in each derived class to apply a different
set of rules. For example, the Eat method for the elephant may calculate a
quantity of grass, whereas the Eat method for the cat may calculate a quantity
of protein.

Although the Eat method performs differently in each derived class,
polymorphism enables you to simply call Eat() on an instance of either derived
class without knowing anything about the differences in dietary requirements of
these animals.

Introduction

Definition

Example

26 Module 4: Implementing Object-Oriented Programming Techniques in C#

How to Write Virtual Methods

� Virtual methods are used to define base class methods
that you expect to be overridden in derived classes

Base Class

Animal

Virtual Method

Eat ()

Derived Class

Cat

Override Method

Eat ()

Eat MouseEat Something

What HappensWhat Happens

public class Animal {

public virtual void Eat() {

Console.WriteLine("Eat something");

}

}

public class Cat : Animal {

public override void Eat() {

Console.WriteLine("Eat small animals");

}

}

public class Animal {

public virtual void Eat() {

Console.WriteLine("Eat something");

}

}

public class Cat : Animal {

public override void Eat() {

Console.WriteLine("Eat small animals");

}

}

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When you create a method in a base class that you expect to be altered in the
derived classes, define the method in your base class as a virtual method.

A virtual method is one whose implementation can be replaced by a method in
a derived class.

To define a method in your base class as a virtual method, use the keyword
virtual as shown in the following code:

public class Animal {
 public virtual void Eat() {
 Console.WriteLine("Eat something");
 }
}

In the preceding code, any class that is derived from Animal can implement a
new Eat method.

To indicate that a method in a derived class is overriding the base class method,
you use the override keyword, as shown in the following code:

public class Cat : Animal {
 public override void Eat() {
 Console.WriteLine("Eat small animals");
 }
}

When you override a virtual method, the overriding method must have the same
signature as the virtual method.

Introduction

Definition

Using the virtual
keyword

Using the override
keyword

 Module 4: Implementing Object-Oriented Programming Techniques in C# 27

You can use polymorphism to treat derived classes in a generalized manner. To
achieve this, you can treat derived objects as though they are of their base class
type. In the following example, when you use an Animal object, you can call
the Eat method, and the appropriate method for the object will be called.

For example, in the following code, the FeedingTime method takes a
parameter of Animal and calls the Eat method to produce the action that is
appropriate for that particular animal. The FeedingTime method uses
polymorphism to invoke the desired action. The FeedingTime method can
accept as a parameter any object that is derived from Animal.

public void FeedingTime(Animal someCreature) {
 if (someCreature.IsHungry) {
 someCreature.Eat();
 }
}

The FeedingTime method can be passed a Cat object, for example:

Cat myCat = new Cat();
FeedingTime(myCat);

When you invoke a virtual method in your application, a run-time decision
determines which method is actually invoked. The most derived
implementation of the method is invoked. The most derived method is the
original virtual method if no overriding method is provided (Animal.Eat in this
example); otherwise, the most derived method is the overriding method in the
object for which the method has been invoked (Cat.Eat in this example).

Calling virtual methods

28 Module 4: Implementing Object-Oriented Programming Techniques in C#

using System;
namespace LearningCSharp {
 public class Animal { // base class
 public Animal() { }
 public void Sleep() { }
 public bool IsHungry = true;
 public virtual void Eat() {
 Console.WriteLine("Eat something");
 }
 }

 public class Elephant : Animal {
 public int CarryCapacity;
 public override void Eat() {
 Console.WriteLine("Eat grass");
 }
 }

 public class Mouse : Animal {
 public override void Eat() {
 Console.WriteLine("Eat cheese");
 }
 }

 public class Cat : Animal {
 public void StalkPrey() { }
 public override void Eat() {
 Console.WriteLine("Eat mouse");
 }
 }

 public class WildLife {
 public WildLife() {
 Elephant myElephant = new Elephant();
 Mouse myMouse = new Mouse();
 Cat myCat = new Cat();

 FeedingTime(myElephant);
 FeedingTime(myMouse);
 FeedingTime(myCat);
 }

 public void FeedingTime(Animal someCreature) {
 //Notice use of polymorphism here
 if (someCreature.IsHungry) {
 someCreature.Eat();
 }
 }

 static void Main(string[] args) {
 WildLife w = new WildLife();
 }
 }
}

 Module 4: Implementing Object-Oriented Programming Techniques in C# 29

When run, the preceding code produces the following result:

Eat grass
Eat cheese
Eat mouse

This code sample is provided on the Student Materials compact disc in
Samples\Mod04\Polymorphism\Polymorphism.sln.

30 Module 4: Implementing Object-Oriented Programming Techniques in C#

How to Use Base Class Members from a Derived Class

� The base keyword is used to call a method in the base
class from a derived class

public class Cat : Animal {

public override void Eat() {

base.Eat();

Console.WriteLine("Eat small animals");

}

}

public class Cat : Animal {

public override void Eat() {

base.Eat();

Console.WriteLine("Eat small animals");

}

}

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The base keyword is used in derived classes to access members of the base
class.

To call the Animal.Eat method from the Cat.Eat method, you specify
base.Eat() in the Cat object, as shown in the following code:

public class Animal {
 public virtual void Eat() {
 Console.WriteLine("Eat something");
 }
}

public class Cat : Animal {
 public void StalkPrey() { }
 public override void Eat() {
 base.Eat();
 Console.WriteLine("Eat small animals");
 }
}

The following code creates a Cat object and calls the Eat method:

Cat c = new Cat();
c.Eat();

The following output is produced:

Eat something
Eat small animals

You will find it useful to call base methods from your derived class when you
want to extend the functionality of a method in a base class. You can call the
base method from your overriding method, reuse the base method code, and
then provide your own extra functionality.

Introduction

Example

 Module 4: Implementing Object-Oriented Programming Techniques in C# 31

What Are Abstract Methods and Classes?

� An abstract class is a generic base class

� Contains an abstract method that must be implemented by
a derived class

� An abstract method has no implementation in the base
class

� Can contain non-abstract members

public abstract class Animal {
public abstract void Eat();
public abstract Group PhylogenicGroup { get; }

}

public abstract class Animal {
public abstract void Eat();
public abstract Group PhylogenicGroup { get; }

}

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Often, it is useful to create a class that contains methods that must be
implemented by all derived classes but not by the base class itself.

An abstract method is an empty method—one that has no implementation.
Instead, derived classes are required to provide an implementation.

An abstract class is a class that can contain abstract members, although it is not
required to do so. Any class that contains abstract members must be abstract.
An abstract class can also contain non-abstract members.

Because the purpose of an abstract class is to act as a base class, it is not
possible to instantiate an abstract class directly, nor can an abstract class be
sealed.

The syntax for creating an abstract method is to use the abstract modifier with
the name of the method and the parameters, followed by a semicolon instead of
a statement block.

 [access-modifiers] abstract return-type method-name ([parameters]) ;

The following example shows how to create an abstract class Animal class with
an abstract Eat method:

public abstract class Animal {
 public abstract void Eat();
}

The benefit of creating abstract methods is that it enables you to add methods to
your base class that subsequently must be implemented by all derived classes,
but the implementation details for these methods do not have to be defined in
the base class.

The Eat method in the preceding examples is a good use of an abstract method
because although all animals eat, the implementation details of Eat vary enough
between animals that it is not useful to provide a default implementation.

Introduction

Definitions

Syntax

Example

Benefits

32 Module 4: Implementing Object-Oriented Programming Techniques in C#

When a derived class inherits an abstract method from an abstract class, it must
override the abstract methods. This requirement is enforced at compile time.

The following example shows how a Mouse class, which is derived from
Animal, uses the override keyword to implement the Eat method:

public class Mouse : Animal {
 public override void Eat() {
 Console.WriteLine("Eat cheese");
 }
}

When you call the Eat method on the Mouse object, the following output is
produced:

Eat cheese

You can also create an abstract class that contains virtual methods, as shown in
the following example:

public abstract class Animal {
 public virtual void Sleep() {
 Console.WriteLine("Sleeping");
 }
 public abstract void Eat();
}

In this case, a derived class does not have to provide an implementation of the
Sleep method because Sleep is defined as virtual. Therefore, if you have a
generic method that is common to all derived classes, and you want to force
each derived class to implement the method, you must define the method as
abstract in the base class.

Because some animals sleep in different ways—some sleep while standing,
others sleep for long periods, and so on—you decide that sleep is a good
candidate for an abstract method.

To do this, you change the definition of Sleep to abstract and remove the
implementation, as shown in the following code:

public abstract class Animal {
 public abstract void Sleep();
 public abstract void Eat();
}

When the application is compiled, because the mouse object does not
implement the Sleep method, you receive the following error:

LearningCSharp.Mouse' does not implement inherited abstract
member 'LearningCSharp.Animal.Sleep()'

LearningCSharp is the namespace that contains the Animal classes.

By changing Sleep to an abstract method, you force the derived classes to
implement their own version of the method.

Override

Abstract class with
virtual method

Example

Note

 Module 4: Implementing Object-Oriented Programming Techniques in C# 33

The following code shows an implementation of both the Eat and the Sleep
methods in the Mouse class:

public class Mouse : Animal {
 public override void Eat() {
 Console.WriteLine("Eat cheese");
 }
 public override void Sleep() {
 Console.WriteLine("Mouse sleeping");
 }
}

Properties may also be declared as abstract.

To declare an abstract property, specify the property name and the accessors
that the derived property should implement.

The following example shows how to create an animal class and declare an
abstract property named PhylogenicGroup (Group is an enumeration that
contains phylogenic group names):

public abstract class Animal {
 public abstract Group PhylogenicGroup{get; set;}
}

To make the property read-only or write-only, you can remove the
corresponding accessor.

The following code produces a compilation error because the code attempts to
set a value while the property is declared as read-only:

public abstract class Animal {
 public abstract Group PhylogenicGroup{get;}
}

public class Cat : Animal {
 public override Group PhylogenicGroup{
 get{
 return Group.Utherians;
 }
 }
}

. . .

Cat c = new Cat();
//The following line causes a compilation error
c.PhylogenicGroup = Group.Utherians;

Abstract properties

Example 1

Example 2

34 Module 4: Implementing Object-Oriented Programming Techniques in C#

Practice: Using Polymorphism

� In this practice, you will implement the
Animal class as an abstract class, and
modify the derived classes so that they
override the abstract methods in the
Animal class

� In this practice, you will implement the
Animal class as an abstract class, and
modify the derived classes so that they
override the abstract methods in the
Animal class

Hands-on PracticeHandsHands--on Practiceon Practice

1 hour

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will implement the Animal class as an abstract class, and modify the derived
classes so that they override the virtual functions in the Animal class.

The solution code for this practice is provided in install_folder\Practices\Mod04\
Abstract_Solution\Abstract.sln. Start a new instance of Visual Studio .NET before opening the
solution.

Tasks Detailed steps

1. Start Visual Studio .NET,
and then open install_folder
\Practices\Mod04\Abstract
\Abstract.sln.

a. Start a new instance of Visual Studio .NET.

b. On the Start Page, click Open Project.

c. In the Open Project dialog box, browse to install_folder\Practices
\Mod04\Abstract, click Abstract.sln, and then click Open.

2. Examine the tasks, and
double-click Next button
code.

a. In Solution Explorer, click Form1.cs, press F7 to open the Code
Editor, and then review the provided code.

b. On the View menu, point to Show Tasks, and then click All.

 Module 4: Implementing Object-Oriented Programming Techniques in C# 35

Tasks Detailed steps

3. Change the methods in the
Animal class so that they are
abstract methods.

a. In the Task List, double-click TODO 1: Make the methods in the
class abstract.

b. Change the methods Sleep and Eat to abstract methods.

c. Test your code by pressing F5.
The compiler should list errors indicating that the Lion and
Antelope classes do not implement the abstract members of
Animal.

4. Change the derived classes
to correctly inherit from the
Animal class.

a. Double-click TODO 2: Change Lion and Antelope to work with
the abstract Animal class.

b. Change the Lion and Antelope classes so that they correctly inherit
from the Animal class.

c. Test your code by pressing F5.

5. Save your application, and
then quit Visual Studio
.NET.

a. Save your application.

b. Quit Visual Studio .NET.

36 Module 4: Implementing Object-Oriented Programming Techniques in C#

Review

� Designing Objects

� Using Inheritance

� Using Polymorphism

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. What keyword do you add to your class definition if you do not want other
classes to inherit from it?
Sealed

2. Should a derived class be more specialized or more generalized than its base
class?
A derived class should be more specialized than its base class. A base
class should provide generalized properties and actions.

3. What are some of the benefits of object-oriented programming?

• Programs are easier to design because objects reflect real-world
items.

• Applications are easier for users because data that they do not need
is hidden.

• Objects are self-contained units.

• Productivity increases because you can reuse code.

• Systems are easier to maintain and adapt to changing business
needs.

 Module 4: Implementing Object-Oriented Programming Techniques in C# 37

Lab 4.1: Creating Classes in C#

� Exercise 1: Creating the Bank Account
Objects

1 hour

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will be able to:

� Use properties to provide access to data in a class.
� Create base classes and derive classes from them.
� Create abstract classes and derive classes from them.

This lab focuses on the concepts in this module and as a result may not
comply with Microsoft security recommendations.

Before working on this lab, you must have:

� Knowledge of how to create derived classes.
� Knowledge of how to write properties.

You are a programmer at a bank and have been asked to define an object
hierarchy for the types of bank accounts that customers can open. These
accounts are:

� Checking account
� Savings account

If you have a working solution from module 3, then you can use it in this
lab, rather than the starter code.

Objectives

Note

Prerequisites

Scenario

Note

38 Module 4: Implementing Object-Oriented Programming Techniques in C#

A checking account has the following characteristics:

� The account holder’s name can be assigned only when the account is
created.

� The opening balance must be specified when the account is created.
� The account number must be assigned when the account is created.

• Checking account numbers range from 100000 to 499999, and every
checking account must have a unique account number. You do not need
to check the upper limit of the account number in this lab.

A checking account holder can:

� Order a checkbook.
� Check the account balance.
� Add money to the checking account.
� Withdraw money if the account has sufficient funds.

A savings account has the following characteristics:

� The account holder’s name that can be assigned only when the account is
created.
Saving account numbers range from 500000 to 999999. You do not need to
check the upper limit of the account number in this lab.

� The account earns interest.
The interest rate depends on the account balance. If the balance is above
1000, the rate is 6%; otherwise, it is 3%.

A savings account holder can:

� Check the account balance.
� Add money to the account.
� Withdraw money if the account has sufficient balance.

Your bank is likely to add more account types in the future, so it is important to
reuse as much code as possible, while ensuring that the different account
objects implement a standard set of features.

Checking account

Savings account

Estimated time to
complete this lab:
60 minutes

 Module 4: Implementing Object-Oriented Programming Techniques in C# 39

Exercise 0
Lab Setup
The Lab Setup section lists the tasks that you must perform before you begin the lab.

Task Detailed steps

� Log on to Windows as
Student with a password of
P@ssw0rd.

� Log on to Windows with the following account.

• User name: Student

• Password: P@ssw0rd

Note that the 0 in the password is a zero.

Note that by default the install_folder is C:\Program Files\Msdntrain\2609.

40 Module 4: Implementing Object-Oriented Programming Techniques in C#

Exercise 1
Creating the Bank Account Objects
In this exercise, you will write the objects that represent the bank account classes that are outlined
in the scenario.

A sample application is shown in the following illustration:

The solution code for this lab is provided in install_folder\Labfiles\Lab04_1\Exercise1
\Solution_Code\Bank.sln. Start a new instance of Visual Studio .NET before opening the solution.

Tasks Detailed steps

1. Start Visual Studio .NET,
and then open
install_folder\Labfiles
\Lab04_1\Exercise1
\Bank.sln.

a. Start a new instance of Visual Studio .NET.

b. On the Start Page, click Open Project.

c. In the Open Project dialog box, browse to install_folder\ Labfiles\
Lab04_1\Exercise1, click Bank.sln, and then click Open.

Form1.cs provides the user interface.

BankAccount.cs is provided as a place for you to implement the bank
account class or classes.

2. In Solution Explorer, locate
the BankAccount.cs file.

� In Solution Explorer, click the C# file BankAccount.cs, and then
press F7 to open the Code Editor.

This file provides a sample implementation of the checking account and
saving account classes.

 Module 4: Implementing Object-Oriented Programming Techniques in C# 41

Tasks Detailed steps

3. Write a base class called
BankAccount and modify
the CheckingAccount and
SavingsAccount classes so
that they inherit
BankAccount.

The sample solution provides two classes, CheckingAccount and
SavingsAccount. These classes duplicate some code, and allow
uncontrolled access to information. In this step you will create a base class,
and in the next step you will implement the methods and properties of the
base class.

a. At the top of the BankAccount.cs file, locate TODO: Implement
BankAccount class here, and declare a base class for
CheckingAccount and SavingsAccount.

b. Modify CheckingAccount and SavingsAccount so that they inherit
BankAccount.

4. Decide which properties
should be provided by the
base class, add them to the
base class, and modify the
CheckingAccount and
SavingsAccount classes to
remove public variables.

a. Examine the public variables in the CheckingAccount and
SavingsAccount classes, and change them to properties, moving them
to the base class where appropriate.

b. Use Pascal case for your properties, and change the calling code in
Form1.cs appropriately.

� Note that you can use the protected keyword to limit access to a
variable to derived classes only.

� Some properties should be read only: you can make a property read
only by omitting the set accessor.

5. Decide which methods
should be provided by the
base class, add them to the
base class, and modify the
CheckingAccount and
SavingsAccount classes to
reuse code.

a. Examine the methods in CheckingAccount and SavingsAccount to
determine which should be provided by the BankAccount class, and
then change the code so that they are provided by BankAccount.

b. Use Pascal case for your properties, and change the calling code in
Form1.cs appropriately.

� Note that you can use the protected keyword to limit access to a
variable to derived classes only.

6. Provide a BankAccount
constructor that forces the
derived classes to specify the
account holder name and
initial balance.

a. Examine the constructors in CheckingAccount and SavingsAccount
to determine what features should be provided by a BankAccount
constructor.

b. Add a BankAccount constructor that requires the account holder's
name and an initial balance.

c. Change the CheckingAccount and SavingsAccount constructors so
that they pass the correct values to the BankAccount constructor.

42 Module 4: Implementing Object-Oriented Programming Techniques in C#

Tasks Detailed steps

7. If any existing methods
would be more appropriately
implemented as properties,
then change them to
properties.

� Examine the methods in CheckingAccount and SavingsAccount to
determine if any should be properties, and change any that you
identify.

8. Test your code by running
the application, and then
clicking the buttons in
sequence from top to bottom.

a. Press F5 to compile and run your application.

b. Click each button in sequence and ensure that your application
produces the expected output:

• Create Checking: a message stating that Suzan Fine has created a
checking account with a balance of 700.

• Order Checkbook: a message stating that a checkbook has been
ordered.

• Deposit 900: a balance of 1600.

• Withdraw 100: a balance of 1500.

• Create Saving: a message stating that Suzan Fine has created a
saving account with a balance of 700.

• Display Rate: an interest rate of 3%.

• Deposit 400: a balance of 1100.

c. Click Display Rate once more to check that the interest rate has
increased to 6%.

9. Save your application and
quit Visual Studio .NET.

a. Save your application.

b. Quit Visual Studio .NET.

