

Contents

Overview 1

Lesson: Defining a Class 2

Lesson: Declaring Methods 18

Lesson: Using Constructors 35

Lesson: Using Static Class Members 44

Review 52

Lab 3.1: Creating Classes in C# 54

Module 3: Creating
Objects in C#

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, ActiveX, BizTalk, FrontPage, IntelliSense, JScript,
Microsoft Press, MSDN, PowerPoint, Visual Basic, Visual C++, Visual C#, Visual Studio, Win32,
Windows Media are either registered trademarks or trademarks of Microsoft Corporation in the
United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 3: Creating Objects in C# iii

Instructor Notes
This module introduces the fundamentals of object-oriented programming,
including the concepts of objects, classes, and methods.

After completing this module, students will be able to:

� Define a class.
� Declare methods.
� Use constructors.
� Use static class members.

To teach this module, you need the following materials:

� Microsoft® PowerPoint® file 2609A_03.ppt
� Module 3, “Creating Objects in C#”
� Multimedia presentation: Introduction to Classes and Objects.

To prepare for this module:

� Read all of the materials for this module.
� Complete the practices and lab.
� View the multimedia presentation.

Presentation:
180 minutes

Lab:
60 minutes

Required materials

Preparation tasks

iv Module 3: Creating Objects in C#

How to Teach This Module
This section contains information that will help you to teach this module.

Lesson: Defining a Class
This section describes the instructional methods for teaching each topic in this
lesson.

� Begin the lesson by showing the multimedia presentation which is an
introduction to Classes and Objects. To run this multimedia presentation,
click the icon in the center of the slide for this topic.

� It is very important that students grasp the difference between classes and
objects. Spend time on this subject and use various examples to identify the
difference.

• A class is like a blueprint for a house, and an object is like the individual
houses that are built from that blueprint.

• A cookie cutter class is used to create cookie objects.

• If a class is designed to represent a person, then an example of a person
object is Bill or Suzan.

� If you receive a question about structs, let the students know that this topic
is covered briefly in Module 12, “Exploring Future Learning.”

� Define Pascal case (PascalCase) and Camel case (camelCase).
� At the end of this lesson, consider asking students some questions to be sure

that they are absorbing this information, such as:

• How do you declare a class?

• Can you declare more than one class per file?

• Can you declare more than one public class per file?

Lesson: Declaring Methods
� For the How to Write a Method topic, the Lion code is provided in

install_folder\Samples\Mod03\Methods\Methods.sln. You may find it
useful to step through the code.

� Consider working with the students to develop an example on the white
board or in Microsoft Visual Studio® .NET. For example, write a Subtract
method for the SimpleMath class.

� Be sure that students grasp the concept that when you pass by value, the
method works on a copy of that variable so that the object containing the
value is not changed.

� Point out the various parameter lists of the overloaded method on the slide.
Identify the method name and parameter types as the method signature.

 Module 3: Creating Objects in C# v

Lesson: Using Constructors
• You may want to highlight the differences between readonly and const.

Lesson: Using Static Class Members
C# enforces the distinction between classes and objects as follows: the only
way to call a static member is to use the actual class name.

Practices
The hands-on practices for this module are scheduled to last approximately 10
minutes each. If the students cannot complete the steps, they may open the
solution file in a new instance of Microsoft Visual Studio®.NET. You may also
choose to demonstrate the solution on your instructor computer as in a guided
practice.

Review
The review questions are mostly based on conceptual understanding and
procedures that were covered thoroughly in the module. You can use a
discussion format to answer the questions so that everyone gets the benefit of
knowing the right answers.

Lab 3.1: Creating Classes in C#
Before beginning this lab, students should have completed all of the practices
and answered the review questions. Students must be able to perform most of
the tasks that they learned in the lessons and the practices. The lab is simple but
comprehensive. It leads students through the entire process of creating classes,
as described in the lessons of this module.

 Module 3: Creating Objects in C# 1

Overview

� Defining a Class

� Declaring Methods

� Using Constructors

� Using Static Class Members

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This module introduces the fundamentals of object-oriented programming,
including the concepts of objects, classes, and methods. It explains how to
define classes and create objects, how to organize classes by using namespaces,
and how to define, write, and call methods. Finally, it describes how to use
constructors.

After completing this module, you will be able to:

� Define a class
� Declare methods
� Use constructors
� Use static class members

Introduction

Objectives

2 Module 3: Creating Objects in C#

Lesson: Defining a Class

� What Are Classes and Objects?
� What Are Value Types and Reference Types?
� How to Define a Class and Create an Object
� How to Organize Classes Using Namespaces
� How to Define Accessibility and Scope

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This lesson discusses how to define classes, instantiate objects, access class
members, and use namespaces to organize classes.

After completing this lesson, you will be able to:

� Define a class.
� Create an object.
� Use access modifiers to define the scope of class members.
� Organize classes by using namespaces.

This lesson includes the following topics and activities:

� Multimedia: Introduction to Classes and Objects
� What Are Classes and Objects?
� What Are Value Types and Reference Types?
� How to Define a Class and Create an Object
� How to Organize Classes Using Namespaces
� How to Define Accessibility and Scope
� Practice: Defining Classes and Creating Objects

Introduction

Lesson objectives

Lesson agenda

 Module 3: Creating Objects in C# 3

Multimedia: What Are Objects and Classes?

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This animation introduces you to the fundamental user-defined type in C#, the
class.

4 Module 3: Creating Objects in C#

What Are Classes and Objects?

� Classes:
� Are like blueprints for objects
� Contain methods and data

� Objects:
� Are instances of a class
� Created using the new

keyword

� Have actions

ObjectObject

kitchen

Living Room

Bath Office

Dining
Room Family

Room

Covered Porch

ClassClass

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A class is the fundamental user-defined type in C#. You must define a class
before you can create an object.

A class is essentially like a blueprint, from which you can create objects. A
class defines the characteristics of an object, including properties that define the
types of data that the object can contain and methods that describe the behavior
of the object. These characteristics determine how other objects can access and
work with the data that is contained in the object.

An object is an instance of a class. If a class is like a blueprint, then an object is
what is created from that blueprint. The class is the definition of an item; the
object is the item. The blueprint for your house is like a class; the house that
you live in is an object.

For example, if you want to build objects that represent ducks, you can define a
Duck class that has certain behaviors, such as walking, quacking, flying, and
swimming—and specific properties, such as height, weight, and color. It is
important to notice that the behaviors are relevant to the object. Although it is
obviously illogical to create a duck object that barks like a dog, relating
behavior to objects is not always so clear when you work with the type of data
that a programmer typically manipulates.

The Duck class defines what a duck is and what it can do. A Duck object is a
specific duck that has a specific weight, color, height, and behavioral
characteristics. The duck that you feed is a duck object.

Introduction

Definition

Example 1

 Module 3: Creating Objects in C# 5

Suppose that a programmer must write a function that changes a customer’s
address in a database. In a traditional approach, the programmer may write a
ChangeAddress function that takes a database table and row as a parameter
and changes the address information in that row. Or, the programmer may use
the person’s name as a parameter, search the table for that name, and then
change the address in the record. The disadvantage of this approach is that
when you want to change the information about the person, you must know
something about how that information is represented, in this case, in a specific
table in a database.

An object-oriented approach is to define a class that represents customers and
provides the ability to change addresses. The application that uses the
Customer class is likely to manage multiple customer objects, each
representing one customer. Each customer object contains information about
the location of that customer’s record in the database, so when the application
must change the address information, it can simply invoke the ChangeAddress
action or method for that particular customer. The application tells the
Customer object to change its address, in effect.

In C#, everything behaves like an object. When you create an object, you are
creating a new type, called a reference type.

Example 2

6 Module 3: Creating Objects in C#

What Are Value Types and Reference Types?

� Value types

� Directly contain data

� Stored on the stack

� Must be initialized

� Cannot be null

� An int is a value type

int i;
i = 42;

int i;
i = 42; CostObject c;CostObject c;

•• 4242

� Reference types
� Contain a reference to the

data
� Stored on the heap
� Declared using new keyword
� .NET garbage collection

handles destruction
� A class is a reference type

4242
i c

*****************************ILLEGAL FOR NON-TRAINER USE******************************

There are two kinds of types: value types and reference types. Most of the
predefined types are value types. For example, an integer is a value type.

Value types directly contain their data. Therefore, each value type variable
directly contains the value that it is assigned.

Value types store themselves, and the data that they contain, in an area of
memory called the stack. The stack is an area of memory that is used to store
items in a last-in, first-out manner.

Reference type variables contain a reference to their data. Objects are reference
types.

More than one reference type variable can reference the same object. Therefore,
it is possible for operations on one reference type variable to affect other
variables that refer to the same object, the same data. Reference types contain a
reference to data that is allocated on the heap. The heap is an area of memory
where objects are allocated.

When you declare a value type variable, you must then initialize it before it can
be used. To initialize a value type variable, you simply assign a value to that
variable, as shown in the following example:

int anInteger;
anInteger = 42;

The first line declares the value type variable int by naming it anInteger and
the second line initializes the variable by assigning it a value of 42.

When you declare a reference type variable, you then initialize it by using the
new keyword. This keyword allocates some memory on the heap for your
variable. For example, suppose that you have a class named Customer.

Customer bestCustomer = new Customer();

The variable bestCustomer refers to an object of type Customer.

Introduction

Value types

Reference types

Initializing a value type

Initializing a reference
type

 Module 3: Creating Objects in C# 7

C# allows you to treat value types like reference types. For example, you can
declare an integer, assign a value to it, and call the ToString method.
Console.WriteLine method uses boxing in exactly this manner, to write the
string format of the parameters that are passed to it.

int x = 25;
Console.WriteLine(x);

x is declared as a value type, but when the ToString method is invoked, it is
converted to an object, which is what provides the ToString method. This
process is called boxing. Boxing occurs implicitly when you use a value type
where a reference type is expected. You can also explicitly box a value type by
converting it to an object type, as shown in the following example:

object boxedValue = (object) x;

You can convert x back to a value type, although you must do so explicitly.
This is called unboxing. To do this, simply copy the boxed variable to a value
type variable, explicitly converting it to the correct value type, as shown in the
following example:

int y = (int) boxedValue;

You can unbox a value only if it can be assigned to the unboxed value type.

Boxing

8 Module 3: Creating Objects in C#

How to Define a Class and Create an Object

public class Customer {
public string name;
public decimal creditLimit;
public uint customerID;

}

public class Customer {
public string name;
public decimal creditLimit;
public uint customerID;

}

� How to define a class

� How to instantiate a class as an object
Customer nextCustomer = new Customer();Customer nextCustomer = new Customer();

� How to access class variables
nextCustomer.name = "Suzan Fine";nextCustomer.name = "Suzan Fine";

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A class is like a blueprint that is used to create objects, in the same way that a
blueprint for a house is used to create many individual houses.

To define a class, you place the class keyword before the name of your class,
and then you insert the class members between braces.

[attributes] [access-modifiers] class identifier {class-body}

It is recommended that you use Pascal case for your class name, for example,
MyClassName. Pascal case means that the initial letter of each word in the
identifier is capitalized.

The following example defines a new class, Customer, with three associated
pieces of relevant information—the customer’s name, the credit limit of the
customer, and a customer ID. Although the Customer class is defined in the
example, there are no Customer objects yet. They still must be created.

class Customer {
 public string name;
 public decimal creditLimit;
 public uint customerID;
}

A class is a user-defined type, as opposed to a system-provided type. When you
define a class, you actually create a new type in your application. To use a class
that you have defined, you must first instantiate an object of that type by using
the new keyword.

<class> <object> = new <class>

Customer nextCustomer = new Customer();

Introduction

Syntax

Pascal case

Example

Syntax

 Module 3: Creating Objects in C# 9

After you instantiate an object, to access and use the data that the object
contains, you type the name of the instantiated class, followed by a period and
the name of the class member that you want to access.

For example, you can access the name member of the Customer class and
assign it a value in your nextCustomer object, the name of the instantiated
class, as follows:

nextCustomer.name = "Suzan Fine";

The following code defines a new class named Lion with one class member,
weight, and creates an instance of the Lion class, an object named zooLion. A
value is assigned to the weight member of the zooLion class.

public class Lion {
 public int weight;
}

. . .

Lion zooLion = new Lion();
zooLion.weight = 200;

Each Lion object that is created is a separate object, as shown in the following
code:

Lion largerLion = new Lion();
Lion smallerLion = new Lion();
largerLion.weight = 200;

The preceding code does not change the weight member of smallerLion object.
That value is zero, which is the default value for an integer.

The following code does change the weight member of the smallerLion object:

Lion largerLion = new Lion();
largerLion.weight = 225;

Lion smallerLion = new Lion();
smallerLion.weight = 175;

Lion recentlyWeighedLion = smallerLion;

recentlyWeighedLion.weight = 185;

// smallerLion’s weight is now 185.

In the preceding code, the value of smallerLion.weight is 185.

Because Lion is a reference type, the assignment to recentlyWeighedLion
causes smallerLion and recentlyWeighedLion to reference the same object.

When you create an object, you are actually allocating some space in memory
for that object. The Microsoft® .NET Framework provides an automatic
memory management feature called garbage collection.

Accessing class
variables

Example 2

Classes are reference
types

Object destruction

10 Module 3: Creating Objects in C#

The garbage collector monitors the lifetime of objects and frees the memory
that is allocated to them when they are no longer being referenced. By working
in the .NET Framework, a programmer no longer needs to worry about
de-allocation and destruction of objects in memory.

When the garbage collector locates objects that are no longer being referenced,
it implicitly executes the termination code that de-allocates the memory and
returns it to the pool.

The garbage collector does not operate on a predictable schedule. It can run at
unpredictable intervals, usually whenever memory becomes low.

Occasionally, you may want to dispose of your objects in a deterministic
manner. For example, if you must release scarce resources over which there
may be contention, such as terminating a database connection or a
communication port, you can do so by using the IDisposable interface.

For more information about interfaces, see Module 5, “Programming
with C#,” in Course 2609, Introduction to C# Programming with Microsoft
.NET.

Garbage collection

Note

 Module 3: Creating Objects in C# 11

How to Organize Classes Using Namespaces

� Declaring a namespace

namespace CompanyName {
namespace Sales {

public class Customer () { }
}

}
// Or
namespace CompanyName.Sales { ... }

namespace CompanyName {
namespace Sales {

public class Customer () { }
}

}
// Or
namespace CompanyName.Sales { ... }

� The using statement
using System;
using CompanyName.Sales;
using System;
using CompanyName.Sales;

� Nested namespaces

namespace CompanyName {
public class Customer () { }

}

namespace CompanyName {
public class Customer () { }

}

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You use namespaces to organize classes into a logically related hierarchy.
Namespaces function as both an internal system for organizing your application
and as an external way to avoid name clashes (collisions) between your code
and other applications.

Because more than one company may create classes with the same name, such
as “Customer,” when you create code that may be seen or used by third parties,
it is highly recommended that you organize your classes by using a hierarchy of
namespaces. This practice enables you to avoid interoperability issues.

A namespace is an organizational system that is used to identify groups of
related classes.

To create a namespace, you simply type the keyword namespace followed by a
name.

It is recommended that you use Pascal case for namespaces.

It is also recommended that you create at least a two-tiered namespace, which is
one that contains two levels of classification, separated by a period. Typically,
you use your company name, followed by the name of a department or a
product line.

Introduction

Definition

Creating a namespace

Best practices

12 Module 3: Creating Objects in C#

The following code shows an example of a two-tiered namespace:

namespace CompanyName.Sales {
 // define your classes within this namespace
 public class Customer() {

 }
}

The preceding two-tiered namespace declaration is identical to writing each
namespace in a nested format, as shown in the following code:

namespace CompanyName {
 namespace Sales {
 public class Customer() {

 }
 }
}

In both cases, you can refer to the class by using the following code:

CompanyName.Sales.Customer()

This is the fully qualified name of the Customer class. Users of the Customer
class can use the fully qualified name to refer to this specific customer class and
avoid name collisions with other Customer classes.

You should avoid creating a class with the same name as a namespace.

The Microsoft .NET Framework is made up of many namespaces, the most
important of which is named System. The System namespace contains the
classes that most applications use to interact with the operating system.

For example, the System namespace contains the Console class, which
provides several methods, including WriteLine, which is a command that
enables you to write code to an on-screen console. You can access the
WriteLine method of the Console class as follows:

System.Console.WriteLine("Hello, World");

A few of the other namespaces that are provided by the .NET Framework
through the System namespace are listed in the following table.

Namespace Definition

System.Windows.Forms Provides the classes that are useful for building

applications based on Microsoft Windows®

System.IO Provides classes for reading and writing data to files

System.Data Provides classes that are useful for data access

System.Web Provides classes that are useful for building Web Forms
applications

Example

Note

Commonly used
namespaces in the .NET
Framework

 Module 3: Creating Objects in C# 13

There is no limit to the number of tiers that a namespace can contain and,
therefore, namespaces can grow long and cumbersome. To make code more
readable, you can apply the using directive.

The using directive is a shortcut that tells your application that the types in the
namespace can be referenced directly, without using the fully qualified name.
Normally, at the top of your code file, you simply list the namespaces that you
use in that file, prefixed with the using statement. You can put more than one
using directive in the source file.

using System;
using CompanyName.Sales;
...
Console.WriteLine("Hello, World");
Customer nextCustomer = new Customer();

The using directive

Example

14 Module 3: Creating Objects in C#

How to Define Accessibility and Scope

� Access modifiers are used to define the accessibility
level of class members

DeclarationDeclarationDeclaration DefinitionDefinitionDefinition

publicpublic Access not limited.Access not limited.

privateprivate Access limited to the containing class.Access limited to the containing class.

internalinternal Access limited to this program.Access limited to this program.

protectedprotected Access limited to the containing class and to
types derived from the containing class
Access limited to the containing class and to
types derived from the containing class

protected
internal
protected
internal

Access limited to the containing class, derived
classes, or to members of this program
Access limited to the containing class, derived
classes, or to members of this program

*****************************ILLEGAL FOR NON-TRAINER USE******************************

By using access modifiers, you can define the scope of class members in your
applications. It is important to understand how access modifiers work because
they affect your ability to use a class and its members.

Scope refers to the region of code from which an element of the program can be
referenced. For example, the weight member of the Lion class can be accessed
only from within the Lion class. Therefore, the scope of the weight member is
the Lion class.

Items that are nested within other items are within the scope of those items. For
example, Lion is within the ClassMain class, and therefore can be referenced
from anywhere within ClassMain.

The following table lists the access modifiers that can be added to your class
members to control their scope at the time of declaration.

Declaration Definition

public Access is not limited: any other class can access a public member.

private Access is limited to the containing type: only the class containing
the member can access the member.

internal Access is limited to this assembly: classes within the same
assembly can access the member.

protected Access is limited to the containing class and to types derived from
the containing class.

protected internal Access is limited to the containing class, derived classes, or to
classes within the same assembly as the containing class.

An assembly is the collection of files that make up a program.

Introduction

Definition of scope

C# access modifiers

 Module 3: Creating Objects in C# 15

The following rules apply:

� Namespaces are always (implicitly) public.
� Classes are always (implicitly) public.
� Class members are private by default.
� Only one modifier can be declared on a class member. Although protected

internal is two words, it is one access modifier.
� The scope of a member is never larger than that of its containing type.

The accessibility of your class members determines the set of behaviors that the
user of your class sees. If you define a class member as private, the users of that
class cannot see or use that member.

You should make public only those items that users of your class need to see.
Limiting the set of actions that your class makes public reduces the complexity
of your class from the point of view of the user, and it makes it easier for you to
document and maintain your class.

If a class named Animal contains a member named weight, the member is
private by default and is accessible only from within the Animal class. If you
try to use the weight member from another class, you get a compilation error,
as shown in the following code:

using System;

namespace LearnCSharp.ClassExample {
 class ClassMain {

 public class Lion {
 public int age;
 private int weight;
 }

 static void Main(string[] args) {
 Lion zooLion = new Lion();
 zooLion.age = 7;
 // the following line causes a compilation error
 zooLion.weight = 200;
 }
 }
}

Compiling the preceding code produces the following error:

'LearnCSharp.ClassExample.ClassMain.Lion.weight' is
inaccessible due to its protection level

Rules

Recommendations

Example 1

16 Module 3: Creating Objects in C#

Practice: Defining Classes and Creating Objects

� In this practice, you will define a class,
instantiate an instance of the class, and
assign values to the class members

� In this practice, you will define a class,
instantiate an instance of the class, and
assign values to the class members

Hands-on PracticeHandsHands--on Practiceon Practice

10 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will create a class that represents an Antelope and create an instance of that
class.

The solution code for this practice is located in install_folder\Practices\Mod03\Classes_Solution
\ExampleClass.sln. Start a new instance of Microsoft Visual Studio® .NET before opening the
solution.

Tasks Detailed steps

1. Start Visual Studio .NET,
and then open install_folder\
Practices\Mod03\Classes
\ExampleClass.sln.

a. Start a new instance of Visual Studio .NET.

b. On the Start Page, click Open Project.

c. In the Open Project dialog box, browse to
install_folder\Practices\Mod03\Classes, click ExampleClass.sln, and
then click Open.

2. Review the tasks for this
practice.

a. In Solution Explorer, click Form1.cs, and then press F7 to open the
Code Editor.

b. On the View menu, point to Show Tasks, and then click All.

c. Review the tasks listed in the Task List.

3. Write code to define an
Antelope class.

a. In the Task List, double-click TODO 1: Define an Antelope class.

b. The Antelope class should have at least the following characteristics:

• Exhibit number

• Age

 Module 3: Creating Objects in C# 17

Tasks Detailed steps

4. Create an instance of an
Antelope object, and assign
values to the members.

a. Locate the task TODO 2: Create an instance of the Antelope class.

Any code that you place in the runExample_Click method will run when
you click the Run button in the application window.

b. Create an instance of the Antelope object, and assign a value to the
Exhibit number member.

5. Use the supplied Output
method to display the
exhibit number for the
Antelope object.

� Use the provided Output method to display the information, replacing
the word null in the provided example with the value that you want to
display.

6. Compile your application,
and then step through it in
the debugging tool to ensure
that your application is
working as expected.

a. Set a breakpoint at the line where you instantiate your first object.

b. Press F5 to compile and run your application in debug mode.

c. Click Run in your application.

d. Step through your code by using the Step Over button, shown on the
left, or by pressing F10.

7. Save your application, and
then quit Visual Studio
.NET.

a. Save your application.

b. Quit Visual Studio .NET.

18 Module 3: Creating Objects in C#

Lesson: Declaring Methods

� How to Write a Method

� How to Pass Parameters to a Method

� How to Pass Parameters by Reference

� How to Pass a Reference Type

� How to Overload a Method

� How to Use XML Code Comment Features

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This lesson explains how to implement actions in C# by using methods.

After completing this lesson, you will be able to:

� Write a method.
� Pass parameters to a method.
� Use the ref keyword to modify a parameter in a method.
� Use the out keyword to initialize a value in a method.
� Overload a method.
� Use the XML comment feature in Visual Studio .NET.

This lesson includes the following topics and activity:

� How to Write a Method
� How to Pass Parameters to a Method
� How to Pass Parameters by Reference
� How to Pass a Reference Type
� How to Overload a Method
� How to Use XML Code Comment Features
� Practice: Writing and Calling a Method

Introduction

Lesson objectives

Lesson agenda

 Module 3: Creating Objects in C# 19

How to Write a Method

class Lion {
private int weight;
public bool IsNormalWeight () {

if ((weight < 100)||(weight > 250)) {
return false;

}
return true;

}
public void Eat() { /* some action */ }
public int GetWeight() {return this.weight;}

}
. . .
Lion bigLion = new Lion();
bool weightNormal = bigLion.IsNormalWeight();
bigLion.Eat();
int weight = bigLion.GetWeight();

class Lion {
private int weight;
public bool IsNormalWeight () {

if ((weight < 100)||(weight > 250)) {
return false;

}
return true;

}
public void Eat() { /* some action */ }
public int GetWeight() {return this.weight;}

}
. . .
Lion bigLion = new Lion();
bool weightNormal = bigLion.IsNormalWeight();
bigLion.Eat();
int weight = bigLion.GetWeight();

� A method is a command for action

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A method is a class member that is used to define the actions that can be
performed by that object or class.

The syntax for declaring a method is as follows:

[attributes] [modifiers] return-type method-name ([parameter-
list]) statement-block

The following rules apply to methods:

� In the method declaration, you must always specify a return type. If the
method is not designed to return a value to the caller, you specify a return
type of void.

� Even if the method takes no arguments, you must include a set of empty
parentheses after the method name.

� When calling a method, you must match the input parameters of the method
exactly, including the return type, the number of parameters, their order, and
their type. The method name and parameter list is known as the method
signature.

The following are recommendations for naming methods:

� The name of a method should represent the action that you want to carry
out. For this reason, methods usually have action-oriented names, such as
WriteLine and ChangeAddress.

� Methods should be named using Pascal case.

Introduction

Syntax

Rules

Recommendation

20 Module 3: Creating Objects in C#

When you call a method, the execution jumps to that method and it executes
until either a return statement or the end of the method is reached. At that
point, the execution returns to the calling method.

When you want a method to return a value to the caller, use the return keyword
followed by the value, where the type of the value is the same as the return-type
of the method. If the return type of the method is void, you do not need to use
the return keyword, or you can use return with no value specified.

In the following code, the IsNormalWeight method checks the value of weight
and returns false if the weight is outside the normal range. In the following
example, IsNormalWeight must return true or false, because the return-type
is bool:

class Lion {
 private int weight;

 public bool IsNormalWeight() {
 if ((weight < 100) || (weight > 250)) {
 return false;
 }
 return true;
 }
 public void Eat() { }
 public int GetWeight() {
 return weight;
 }
}

You create the object as follows:

Lion bigLion = new Lion();

The IsNormalWeight method returns a Boolean value, so it can be used in an
if statement as follows:

if (bigLion.IsNormalWeight() == false) {
 Console.WriteLine("Lion weight is abnormal");
}

The Eat method does not return a value, having a return type of void, so the
following line of code simply instructs the bigLion object to perform the Eat
action:

bigLion.Eat();

The GetWeight method returns an int, and it can be used to assign the resulting
value to an int in the calling method as follows:

int bigLionWeight = bigLion.GetWeight();

Returning a value from a
method

Example

 Module 3: Creating Objects in C# 21

The this keyword is used to refer to the current instance of an object. When this
is used within a method, it allows you to refer to the members of the object.

For example, the GetWeight method can be modified to use this as follows:

public int GetWeight() {
 return this.weight;
}

In this case, the statement this.weight refers to the weight member of this
object. This is functionally identical to the GetWeight method shown in the
Lion class in the above example.

Using this can help to make your code more readable because it is immediately
apparent to the person reading the code that you are referring to a member of
this object. In addition, Microsoft IntelliSense® provides a list of class members
when you type this.

The code used in this topic is available on the Student Materials compact
disc in Samples\Mod03\Methods\Methods.sln.

The this keyword

Note

22 Module 3: Creating Objects in C#

How to Pass Parameters to a Method

class Lion {
private int weight;
public void SetWeight(int newWeight) {

weight = newWeight;
}

}
. . .

Lion bigLion = new Lion();

int bigLionWeight = 250;
bigLion.SetWeight(bigLionWeight);

class Lion {
private int weight;
public void SetWeight(int newWeight) {

weight = newWeight;
}

}
. . .

Lion bigLion = new Lion();

int bigLionWeight = 250;
bigLion.SetWeight(bigLionWeight);

� Passing by value

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When a value type variable is passed to a method, the method receives a copy
of the value that was assigned to the variable. The method uses this value to
perform an action.

For example, given the following class:

class Lion {
 private int weight;
 public void SetWeight(int newWeight) {
 weight = newWeight;
 }
}

If you pass the value of 200 to the SetWeight method:

Lion bigLion = new Lion();

int bigLionWeight = 200;
bigLion.SetWeight(bigLionWeight);

When the method is called, the value of bigLionWeight is copied to the
newWeight parameter, and this changes the private member weight to 200.

Introduction

Example 1

 Module 3: Creating Objects in C# 23

In this example, two parameters are passed to an Add method that adds the
numbers and returns the result. The result, 50, is assigned to the integer variable
total, as shown in the following code:

class SimpleMath {
 public int Add(int x, int y) {
 return x + y;
 }
}

SimpleMath sums = new SimpleMath();
int total = sums.Add (20, 30);

When you pass a variable as a parameter, the method works on a copy of that
variable. This is called passing by value, because the value is provided to the
method, yet the object that contains the value is not changed.

In the following example, the attempt to double the variable fails:

public void Double(int doubleTarget) {
 doubleTarget = doubleTarget * 2;
}

int numbertoDouble = 10;
sums.Double (numbertoDouble);
// numbertoDouble is still 10

When the Double method is called, the numberToDouble variable is copied
into the doubleTarget parameter. This copy, in the doubleTarget variable, is a
local variable within the scope of the Double method and is discarded when the
method returns. The value in numberToDouble is unchanged.

An alternative implementation of the SetWeight method follows:

class Lion {
 private int weight;
 public void SetWeight(int weight) {
 this.weight = weight;
 }
}

In this example, the parameter weight has the same name as the class member.
When weight is referenced within the scope of the method, the compiler will
use the parameter value, so this is used to reference the class member.

This example illustrates the scope of parameters, and the use of the this
keyword. You should make every attempt to avoid name collisions in your
code.

The code used in this topic is available on the Student Materials compact
disc in Samples\Mod03\ValueParameters\Value.sln.

Example 2

Passing by value

The this keyword

Note

24 Module 3: Creating Objects in C#

How to Pass Parameters by Reference

� Using the ref keyword

� Definite assignment
� Using the out parameter keyword

� Allows you to initialize a variable in a method

public void GetAddress(ref int number,
ref string street) {
number = this.number;
street = this.street;

}
. . .
int sNumber = 0; string streetName = null;
zoo.GetAddress(ref sNumber, ref streetName);
// sNumber and streetName have new values

public void GetAddress(ref int number,
ref string street) {
number = this.number;
street = this.street;

}
. . .
int sNumber = 0; string streetName = null;
zoo.GetAddress(ref sNumber, ref streetName);
// sNumber and streetName have new values

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Methods return only a single value, but sometimes you want a method to
modify or return multiple values. You can achieve this by passing the method a
reference to the variable that you want to modify. The method can use the
reference to access the actual value and change the value.

When a value is passed by reference, the method receives a reference to the
actual value—so any changes that the method makes to the variable are actually
made to the object that was passed to the method.

You declare that a parameter is a reference parameter by using the ref keyword.
Use the ref keyword in the parameter list to indicate to the compiler that the
value is being passed by reference. You also must use the ref keyword when
you call the method.

Suppose that you have a class representing a Zoo that attempts to implement a
GetAddress method, as shown in the following code:

class Zoo {
 private int streetNumber = 123;
 private string streetName = "High Street";
 private string cityName = "Sammamish";
 public void GetAddress(int number, string street,
 string city) {
 number = streetNumber;
 street = streetName;
 city = cityName;
 }
}

Introduction

The ref keyword

Non-example

 Module 3: Creating Objects in C# 25

The attempt to retrieve the address fails, as shown in the following code:

Zoo localZoo = new Zoo();
int zooStreetNumber = 0;
string zooStreetName = null;
string zooCity = null;
localZoo.GetAddress(zooStreetNumber, zooStreetName, zooCity);
// zooStreetNumber, zooStreetName, and zooCity still 0 or null

The GetAddress method in the preceding example operates on copies of the
parameters, so zooStreetNumber is still 0 and zooStreetName and zooCity are
still null after the method is called.

Using the ref keyword allows this code to work as planned:

public void GetAddress(ref int number,
 ref string street,
 ref string city) {
 number = streetNumber;
 street = streetName;
 city = cityName;
}

You must also use the ref keyword when you call the function:

localZoo.GetAddress(ref zooStreetNumber, ref zooStreetName,
ref zooCity);

if (zooCity == "Sammamish") {
 Console.WriteLine("City name was changed");
}

The variables zooStreetNumber, zooStreetName, and zooCity are assigned
the values that are stored in the object.

C# imposes definite assignment, which requires that all variables are initialized
before they are passed to a method. This eliminates a common bug caused by
the use of unassigned variables.

Even if you have a variable that you know will be initialized within a method,
definite assignment requires that you initialize the variable before it can be
passed to a method. For example, in the preceding code, the lines that initialize
zooStreetNumber, zooStreetName, and zooCity are required to make the code
compile, even though the intent is to initialize them in the method.

By using the out keyword, you can eliminate the redundant initialization. Use
the out keyword in situations where you want to inform the compiler that
variable initialization is occurring within a method. When you use the out
keyword with a variable that is being passed to a method, you can pass an
uninitialized variable to that method.

Example

Definite assignment

The out keyword

26 Module 3: Creating Objects in C#

The following code modifies the zoo GetAddress method to demonstrate use
of the out keyword:

using System;

namespace LearnCSharp.MethodExample1 {
 class Zoo {
 private int streetNumber = 123;
 private string streetName = "High Street";
 private string cityName = "Sammamish";

 public void GetAddress(out int number,
 out string street,
 out string city) {
 number = streetNumber;
 street = streetName;
 city = cityName;
 }
 }

 class ClassMain {
 static void Main(string[] args) {
 Zoo localZoo = new Zoo();
 // note these variables are not initialized
 int zooStreetNumber;
 string zooStreetName;
 string zooCity;
 localZoo.GetAddress(out zooStreetNumber,
 out zooStreetName,
 out zooCity);

 Console.WriteLine(zooCity);
 // Writes "Sammamish" to a console
 }
 }
}

Example

 Module 3: Creating Objects in C# 27

How to Pass a Reference Type

� When you pass a reference type to a method, the
method can alter the actual object

class Zoo {
public void AddLion(Lion newLion) {

newLion.location = "Exhibit 3";
. . .

}
}

. . .

Zoo myZoo = new Zoo();
Lion babyLion = new Lion();
myZoo.AddLion(babyLion);
// babyLion.location is "Exhibit 3"

class Zoo {
public void AddLion(Lion newLion) {

newLion.location = "Exhibit 3";
. . .

}
}

. . .

Zoo myZoo = new Zoo();
Lion babyLion = new Lion();
myZoo.AddLion(babyLion);
// babyLion.location is "Exhibit 3"

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When you pass a reference type variable to a method, the method can alter the
actual value because it is operating on a reference to the same object.

In the following example, a babyLion object is passed to an AddLion method,
where the location member of babyLion is assigned the value Exhibit 3.
Because the reference to the actual object is passed to the method, the method
can change the value of location in the babyLion object.

using System;

namespace LearningCSharp {
 class MainClass {
 static void Main(string[] args) {
 Zoo myZoo = new Zoo();
 Lion babyLion = new Lion();

 myZoo.AddLion(babyLion);
 // babyLion.location is Exhibit 3
 }
 }

 class Lion {
 public string location;
 }

 class Zoo {
 public void AddLion(Lion newLion) {
 newLion.location = "Exhibit 3";
 }
 }
}

Introduction

Example 1

28 Module 3: Creating Objects in C#

The following code defines an Address class. It creates an Address object,
zooLocation, in the Main method and passes the object to the GetAddress
method. Because Address is a reference type, GetAddress receives a reference
to the same object that was created in Main. GetAddress assigns the values to
the members, and when control returns to Main, the zooLocation object has the
address information.

using System;

namespace LearningCSharp {
 class Address {
 public int number;
 public string street;
 public string city;
 }

 class Zoo {
 private int streetNumber = 123;
 private string streetName = "High Street";
 private string cityName = "Sammamish";

 public void GetAddress(Address zooAddress) {
 zooAddress.number = streetNumber;
 zooAddress.street = streetName;
 zooAddress.city = cityName;
 }
 }

 class ClassMain {
 static void Main(string[] args) {
 Zoo localZoo = new Zoo();
 Address zooLocation = new Address();

 localZoo.GetAddress(zooLocation);

 Console.WriteLine(zooLocation.city);
 // Writes "Sammamish" to a console
 }
 }
}

You can use different types of parameters in a single method. For example, you
may want to request a specific exhibit for the new lion.

public void AddLion(Lion newLion, int preferedExhibit) { }

Example 2

Example 3

 Module 3: Creating Objects in C# 29

How to Overload a Method

� Overloading enables you to create multiple methods
within a class that have the same name but different
signatures

class Zoo {
public void AddLion(Lion newLion) {
...
}
public void AddLion(Lion newLion,

int exhibitNumber) {
...
}

}

class Zoo {
public void AddLion(Lion newLion) {
...
}
public void AddLion(Lion newLion,

int exhibitNumber) {
...
}

}

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When calling a method, you must match the input parameters exactly; including
the return type, the number of parameters, and their order.

Method overloading is a language feature that enables you to create multiple
methods in one class that have the same name but that take different signatures.

By overloading a method, you provide the users of your class with a consistent
name for an action while also providing them with several ways to apply that
action.

Your Zoo class includes an AddLion method that allows you to add new Lion
objects, but sometimes you want to place them in a specific exhibit and other
times you do not want to specify this information. You can write two AddLion
methods, one that accepts a Lion parameter, and one that accepts Lion and
exhibit number parameters.

class Zoo {
 public void AddLion(Lion newLion) {
 // Place lion in an appropriate exhibit
 }
 public void AddLion(Lion newLion, int exhibitNumber) {
 // Place the lion in exhibitNumber exhibit
 }
}

When you subsequently call the AddLion method, you call the correct method
by matching the parameters, as shown in the following code:

Zoo myZoo = new Zoo();
Lion babyLion = new Lion();

myZoo.AddLion(babyLion);
myZoo.AddLion(babyLion, 2);

Introduction

Definition

Example 1

30 Module 3: Creating Objects in C#

Suppose you have a Web site that allows people to sign up for a newsletter
about a zoo. Some information is necessary, such as name and e-mail address,
but some is optional, such as favorite animal. You can use one method name to
handle this situation, as shown in the following code:

class ZooCustomer {
 private string name;
 private string email;
 private string favoriteAnimal;

 public void SetInfo(string webName,
 string webEmail,
 string animal) {
 name = webName;
 email = webEmail;
 favoriteAnimal = animal;
 }

 public void SetInfo(string webName, string webEmail) {
 name = webName;
 email = webEmail;
 }
}

Consider the following guidelines as you decide whether to use method
overloading:

� Use overloading when you have similar methods that require different
parameters.

� Overloaded methods are a good way for you to add new functionality to
existing code.

� Use overloaded methods only to implement methods that provide similar
functionality.

Example 2

Why overload?

 Module 3: Creating Objects in C# 31

How to Use XML Code Comment Features

� Three forward slashes (///) inserts XML comments

� Hovering over a section of code produces a pop-up
menu for accessing class member information

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Visual Studio .NET provides several useful features for working with classes
and accessing class members. These features include pop-up menus for
accessing class member information, and an XML code comment feature.

For example, in the Code Editor, when you type the dot operator after an object
name, Visual Studio .NET displays all the members of that class in a list from
which you can select the member you want to access, as shown in the following
illustration:

You can also access this list from the Edit menu by pointing to IntelliSense
and then clicking List Members, or by pressing CTRL+J.

Visual Studio .NET also provides an XML code comment feature that makes it
easy for you to include useful comments in your code.

When you type three forward slashes (///), Visual Studio.NET inserts several
lines of XML code for you, and all you have to do is enter the actual description
of the type and type members. Even the correct values for the parameter names
are included for you in the <param> tags.

Introduction

Pop-up menus

XML comments

32 Module 3: Creating Objects in C#

The following table shows the <param> tags that you can use:

IntelliSense enables you to hover your mouse pointer over a section of code to
reveal the comments and type information.

Use the following procedures to include XML comments in your code:

1. Type /// on the line above the method.

2. Examine the XML template that is provided by Visual Studio .NET.
3. Document your method.

4. Use the method to see how your code comments are integrated with
IntelliSense.

The C# compiler can extract the XML elements from your comments and
generate an XML file for you.

Adding comments to a
method

 Module 3: Creating Objects in C# 33

Practice: Writing and Calling a Method

� In this practice, you will add a method to
an animal class

� In this practice, you will add a method to
an animal class

Hands-on PracticeHandsHands--on Practiceon Practice

10 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will add a method to an animal class.

The solution code for this practice is provided in install_folder\Practices\Mod03\Methods
\MethodExample.sln. Start a new instance of Visual Studio .NET before opening the solution.

Tasks Detailed steps

1. Start Visual Studio .NET,
and then open install_folder\
Practices\Mod03\Methods
\MethodExample.sln.

a. Start a new instance of Visual Studio .NET.

b. On the Start Page, click Open Project.

c. In the Open Project dialog box, browse to install_folder\Practices
\Mod03\Methods, click MethodExample.sln, and then click Open.

2. Review the tasks for this
practice.

a. In Solution Explorer, click Form1.cs, and then press F7 to open the
Code Editor.

b. On the View menu, point to Show Tasks, and then click Comment.

3. Write a method in the
Antelope class that sets the
private member weight to a
value that is specified in a
parameter.

a. In the Task List, double-click TODO 1: Write a SetWeight method,
that sets the weight member.

b. In the Antelope class, write a SetWeight method that takes one
parameter, representing the weight of the animal.

c. Use the parameter that is passed to the method to set the private
member weight in the Antelope class.

34 Module 3: Creating Objects in C#

Tasks Detailed steps

4. Call the SetWeight method
with a weight of 100.

a. Locate the task TODO 2: Call the method to set the Antelope's
weight.

b. In the runExample_Click method, write code that calls the
SetWeight method of the babyAntelope object, with the value 100 as
a parameter.

5. Compile your program and
run it. The value 500 should
be displayed in the text
window.

a. Press F5 to compile and run your application.

b. In your application window, click Run.

c. Ensure that the value 100 appears in the text window.

6. Save your application, and
then quit Visual Studio
.NET.

a. Save your application.

b. Quit Visual Studio .NET.

Optional:

Add a GetWeight method to the Antelope class. GetWeight should take no parameters and return
the weight of the babyAntelope object. If you do this, make the weight member private.

Modify the Output method so that it uses the GetWeight method.

 Module 3: Creating Objects in C# 35

Lesson: Using Constructors

� How to Initialize an Object

� How to Overload a Constructor

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This lesson defines class constructors and explains how to use them to initialize
objects.

After completing this lesson, you will be able to:

� Write constructors.
� Overload constructors.

This lesson includes the following topics and activity:

� How to Initialize an Object
� How to Overload a Constructor
� Practice: Using Constructors

Introduction

Lesson objectives

Lesson agenda

36 Module 3: Creating Objects in C#

How to Initialize an Object

public class Lion {
public Lion() {

Console.WriteLine("Constructing Lion");
}

}

public class Lion {
public Lion() {

Console.WriteLine("Constructing Lion");
}

}

� Instance constructors are special methods that
implement the actions required to initialize an object
� Have the same name as the name of the class
� Default constructor takes no parameters

� Readonly
� Used to assign a value to a variable in the constructor

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Every class implicitly or explicitly includes an instance constructor, which is a
method that is automatically called by the runtime whenever an instance of the
class is created.

Constructors are special methods that implement the actions that are required to
initialize an object.

The constructor method is defined by using the same name as the class in which
it is declared.

[attributes] [modifiers] constructor-name ([parameters])
[initializer] statement-block

For example, the following code contains a constructor:

public class Lion {
 public Lion() {
 Console.WriteLine("Constructing Lion");
 }
}

When the following code is executed, the Lion constructor is called when the
object is instantiated:

Lion babyLion = new Lion();
Console.WriteLine("Made a new Lion object");

The following output is produced:

Constructing Lion
Made a new Lion object

Introduction

Definition

Creating a class
constructor

Syntax

 Module 3: Creating Objects in C# 37

If you do not write an instance constructor, C# automatically provides a default
instance constructor. For example, you can write a class as follows:

public class Lion {
 private string name;
}

This is exactly equivalent to:

public class Lion {
 private string name;
 public Lion() {
 }
}

Constructors can take parameters, like any other method. When you specify a
constructor with a parameter, the default constructor for that object is not
provided. For example, if you want users of your class to always specify the
name of the lion when they create it, you can write a constructor as shown in
the following code:

public class Lion {
 private string name;
 public Lion(string newLionName) {
 this.name = newLionName;
 }
}

When users create this object, they must specify a name:

Lion babyLion = new Lion("Leo");

Failure to provide a name will result in a compilation error.

When an object is created, the instance members in the class are implicitly
initialized. For example, in the following code, zooName is initialized to null:

class Zoo {
 public string zooName;
}

Usually, the purpose of writing your own constructor is to perform some
initialization of the members of the object. For example:

class Zoo {
 public string zooName;
 public Zoo() {
 zooName = "Sammamish Zoo";
 }
}

The zooName member of every instance of the Zoo class is now set to
“Sammamish Zoo”. When a new Zoo class is instantiated:

Zoo localZoo = new Zoo();
Console.WriteLine(localZoo.zooName);

Constructor parameters

Class initialization

38 Module 3: Creating Objects in C#

The following output is produced:

Sammamish Zoo

A better way to write this class is as follows:

class Zoo {
 public string zooName = "Sammamish Zoo";
}

When an instance of Zoo is created, the instance member variables are
initialized. Because any values are assigned before the constructor is executed,
the constructor can use the values.

class Zoo {
 public string zooName = "Sammamish Zoo";
 public Zoo() {
 if (zooName == "Duwamish Zoo") {
 // This can never happen
 }
 }
}

When you use the readonly modifier on a member variable, you can only
assign it a value when the class or object initializes, either by directly assigning
the member variable a value, or by assigning it in the constructor.

Use the readonly modifier when a const keyword is not appropriate because
you are not using a literal value—meaning that the actual value of the variable
is not known at the time of compilation.

In the following example, the value of admissionPrice is set in the constructor,
and subsequent attempts to set the value will fail, resulting in a compilation
error.

class Zoo {
 private int numberAnimals;
 public readonly decimal admissionPrice;

 public Zoo() {
 // Get the numberAnimals from some source...
 if (numberAnimals > 50) {
 admissionPrice = 25;
 }
 else {
 admissionPrice = 20;
 }
 }
}

readonly

 Module 3: Creating Objects in C# 39

How to Overload a Constructor

� Create multiple constructors that have the same name
but different signatures

� Specify an initializer with this
public class Lion {

private string name;
private int age;

public Lion() : this("unknown", 0) {
Console.WriteLine("Default: {0}", name);

}
public Lion(string theName, int theAge) {

name = theName;
age = theAge;
Console.WriteLine("Specified: {0}", name);

}
}

public class Lion {
private string name;
private int age;

public Lion() : this("unknown", 0) {
Console.WriteLine("Default: {0}", name);

}
public Lion(string theName, int theAge) {

name = theName;
age = theAge;
Console.WriteLine("Specified: {0}", name);

}
}

*****************************ILLEGAL FOR NON-TRAINER USE******************************

It is often useful to overload a constructor to allow instances to be created in
more than one way.

You overload a constructor in the same way that you overload a method: create
a base class that contains two or more constructors with the same name but
different input parameters.

Introduction

Syntax

40 Module 3: Creating Objects in C#

For example, if you create a new record for an adopted lion, you can create
different constructors depending upon the information that is available at the
time that you create the record, as shown in the following code:

 class Lion {
 private string name;
 private int age;

 public Lion(string theName, int theAge) {
 name = theName;
 age = theAge;
 }

 public Lion(string theName) {
 name = theName;
 }

 public Lion(int theAge) {
 age = theAge;
 }
 }

 Lion adoptedLion = new Lion("Leo", 3);
 Lion otherAdoptedLion = new Lion("Fang");
 Lion newbornLion = new Lion(0);

Now, when you create a lion record, you can add the information that you have
available. You can assume that other methods exist to allow you to update the
object information.

Often when you have multiple constructors, you initialize each one in a similar
manner. Rather than repeating the same code in each constructor, attempt to
centralize common code in one constructor and call that from the other
constructors.

To call a specific constructor that is defined in the class itself, use the this
keyword. When you add this to the constructor declaration, the constructor that
matches the specified parameter list (has the same signature) is invoked. An
empty parameter list invokes the default constructor.

Example 1

Specifying an initializer

 Module 3: Creating Objects in C# 41

public class Lion {
 private string name;
 private int age;

 public Lion() : this ("unknown", 0) {
 Console.WriteLine("Default {0}", name);
 }

 public Lion(string theName, int theAge) {
 name = theName;
 age = theAge;
 Console.WriteLine("Specified: {0}", name);
 }
}

. . .

Lion adoptedLion = new Lion();

In this example, when the user of the class creates the adoptedLion object, the
class invokes the matching constructor, which is Lion(). Before Lion() executes
the code in the body of the constructor, it invokes an alternative instance
constructor that has parameters matching those specified in the this initializer (a
string and an int). Before any of the code in the constructors is executed,
however, the member variables are initialized and assigned.

The output from this sample is:

Specified unknown
Default unknown

Example 2

42 Module 3: Creating Objects in C#

Practice: Using Constructors

� In this practice, you will modify the
solution to the last practice, so that it
uses constructors to initialize animal
objects properly

� In this practice, you will modify the
solution to the last practice, so that it
uses constructors to initialize animal
objects properly

Hands-on PracticeHandsHands--on Practiceon Practice

10 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will modify the solution to the last practice, so that it uses constructors to
initialize animal objects properly.

The solution code for this practice is provided in install_folder\Practices\Mod03\
Ctor_Solutions\CtorExample.sln. Start a new instance of Visual Studio .NET before opening the
solution.

Tasks Detailed steps

1. Start Visual Studio .NET,
and then open install_folder\
Practices\Mod03\Ctor
\CtorExample.sln.

a. Start a new instance of Visual Studio .NET.

b. On the Start Page, click Open Project.

c. In the Open Project dialog box, browse to install_folder\Practices
\Mod03\Ctor, click CtorExample.sln, and then click Open.

2. Review the tasks for this
practice.

a. In Solution Explorer, click Form1.cs, and then press F7 to open the
Code Editor.

b. On the View menu, point to Show Tasks, and then click Comment.

3. Specify the antelope's
gender in the constructor
call.

� In the Task List, double-click TODO 1: Change the constructor call to
specify the gender.

• Specify the gender as a string, for example “male”.

 Module 3: Creating Objects in C# 43

Tasks Detailed steps

4. Test your code and observe
the error.

a. Press F5 to compile and run your application.

b. You will receive an error. This is because the Antelope class does not
contain a constructor that takes a parameter.

5. Write an Antelope
constructor that accepts a
string.

a. In the Task List, double-click TODO 2: Add a constructor.

b. Add a constructor that accepts the string that you added in step 3, and
uses it to set the Antelope member gender.

6. Test your code and verify
that a male antelope is
created.

a. Press F5 to compile and run your application.

b. In the application window, click Run, and verify that you receive a
message stating that a male antelope object was created.

7. Save your application, and
then quit Visual Studio
.NET.

a. Save your application.

b. Quit Visual Studio .NET.

44 Module 3: Creating Objects in C#

Lesson: Using Static Class Members

� How to Use Static Class Members

� How to Initialize a Class

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This lesson introduces you to static class members. Static members belong to
the class, rather than an instance. Static constructors are used to initialize a
class.

After completing this lesson, you will be able to:

� Use static class members.
� Initialize a class using a static constructor.

This lesson includes the following topics and activity:

� How to Use Static Class Members
� How to Initialize a Class
� Practice: Using Static Class Members

Introduction

Lesson objective(s)

Lesson Agenda

 Module 3: Creating Objects in C# 45

How to Use Static Class Members

� Static Members

� Belong to the class

� Initialize before an instance of the class is created

� Shared by all instances of the class

class Lion {
public static string family = "felidae";

}
...
// A Lion object is not created in this code
Console.WriteLine("Family: {0}", Lion.family);

class Lion {
public static string family = "felidae";

}
...
// A Lion object is not created in this code
Console.WriteLine("Family: {0}", Lion.family);

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Classes can have static members, such as properties, methods and variables.

Static members are associated with the class, not with a specific instance of the
class. Static members are useful when you want to initialize or provide a value
that is shared by all instances of a class.

Because static members belong to the class, rather than an instance, they are
accessed through the class, not through an instance of the class. The following
complete code example shows how to use the static member family.

using System;

namespace StaticExample {
 class ZooDemo {
 static void Main(string[] args) {
 Console.WriteLine("Family: {0}", Lion.family);
 Console.ReadLine();
 }
 }

 class Lion {
 public static string family = "felidae";
 }
}

This code samples produces the following output:

fedilae

Introduction

Static members

46 Module 3: Creating Objects in C#

Methods can also be static. When the static access modifier is applied to a
method, the method is accessible only through the class, not an object instance.

Because static methods are part of the class, you can invoke them without
creating an instance of the object. In C#, you cannot access a static method
from an instance.

The static modifier provides global methods. When you add a static declaration
to a method, you declare that there will be only one copy of the method, no
matter how many times that class is created.

Use static members when they refer to or operate on information that is about
the class, rather than about an instance of a class. For example, you can use a
static method to maintain a count of the number of objects that are created from
a class, or to log information about objects of a specific class.

The following example counts the number of male or female lions that are
added to the Zoo:

using System;

namespace StaticExample {
 enum Gender {
 Male,
 Female
 }

 class ZooDemo {
 static void Main(string[] args) {
 Lion male1 = new Lion(Gender.Male);
 Lion male2 = new Lion(Gender.Male);
 Lion male3 = new Lion(Gender.Male);

 Console.WriteLine("Males {0}", Lion.NumberMales());
 }
 }

 class Lion {
 private static int males;
 private static int females;

 public Lion(Gender lionGender) {
 if (lionGender == Gender.Male) {
 males++;
 }
 else {
 females++;
 }
 }
 public static int NumberMales() {
 return males;
 }
 }
}

The preceding code is provided on the Student Materials compact disc in the
Samples\Mod03\Static folder.

Static methods

 Module 3: Creating Objects in C# 47

How to Initialize a Class

� Static Constructors

� Will only ever be executed once

� Run before the first object of that type is created

� Have no parameters

� Do not take an access modifier

� May co-exist with a class constructor

� Used to initialize a class

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Instance constructors are used to initialize an object. You can, however, write a
constructor that initializes a class. This type of constructor is called a static
constructor. You create a static constructor by using a static modifier.

A static constructor is sometimes referred to as a shared or global constructor
because it does not operate on a specific instance of a class.

You cannot call a static constructor directly. It is executed at most once before
the first instance of the class is created or before any static methods are used.
Therefore, a static constructor is useful for initializing values that will be used
by all instances of the class.

Like instance constructors, static constructors have the same name as the class,
and an empty parameter list. You declare a static constructor by using the static
modifier. It does not take an access modifier and it can coexist with an instance
constructor.

class Lion {
 static Lion() {
 // class-specific initialization
 }
}

Introduction

Static constructor

Syntax

48 Module 3: Creating Objects in C#

For example, suppose that there are several zoo animal classes, each of which
has a class member family. All Lions belong to the family felidae, so it is
useful to set this information for the class.

class Lion {
 static private string family;
 static Lion() {
 family = "felidae";
 }
}

For example, if your code must initialize a series of values that are required for
a calculation, or load a set of data that will be used by all instances of the class,
such as a look-up table, then it can be useful to perform this task only once for
the class, rather than every time an instance is created.

The following example uses System.Random, the pseudo-random number
generator that is provided in the .NET Framework, to generate random
numbers. It creates a single instance of Random, and every instance of the
RandomNumberGenerator class uses this object.

using System;

namespace StaticConstructor {

 class RandomNumberGenerator {
 private static Random randomNumber;

 static RandomNumberGenerator() {
 randomNumber = new Random();
 }

 public int Next() {
 return randomNumber.Next();
 }
 }

 class Class1 {
 static void Main(string[] args) {
 RandomNumberGenerator r
 = new RandomNumberGenerator();

 for (int i = 0; i < 10; i++) {
 Console.WriteLine(r.Next());
 }
 }
 }
}

Example 1

Example 2

 Module 3: Creating Objects in C# 49

In this example, the randomNumber member of the class is declared as static.
This member variable must be static for the static constructor to be able to
assign a value to it. Instance members are not initialized until an instance of the
class is created, so an attempt to assign to an instance variable from a static
constructor results in a compilation error.

For example, the following code will not compile, because firstNumber does
not exist when the constructor is called.

class RandomNumberGenerator {
 private static Random randomNumber;
 private int firstNumber; // ERROR!

 static RandomNumberGenerator() {
 randomNumber = new Random();
 firstNumber = randomNumber.Next();
 }
}

50 Module 3: Creating Objects in C#

Practice: Using Static Class Members

� In this practice, you will modify a class to
use static class members

� In this practice, you will modify a class to
use static class members

Hands-on PracticeHandsHands--on Practiceon Practice

10 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will maintain a count of the number of Antelope objects that are created, by
adding a static member to the Antelope class and incrementing it in the antelope constructor.

The solution code for this practice is located in
install_folder\Practices\Mod03\Static_Solution\StaticExample.sln. Start a new instance of Visual
Studio .NET before opening the solution.

Tasks Detailed steps

1. Start Visual Studio .NET,
and then open install_folder\
Practices\Mod03
\Static\StaticExample.sln.

a. Start a new instance of Visual Studio .NET.

b. On the Start Page, click Open Project.

c. In the Open Project dialog box, browse to
install_folder\Practices\Mod03\Static, click StaticExample.sln, and
then click Open.

2. Review the tasks for this
practice.

a. In Solution Explorer, click Form1.cs, and then press F7 to open the
Code Editor.

b. On the View menu, point to Show Tasks, and then click Comment.

3. Add an public static int
variable to the Antelope
class, and name it
numberOfAntelopes.

a. In the Task List, double-click TODO 1: Add a public static int called
numberOfAntelopes.

b. Add the following line of code to the class:

public static int numberOfAntelopes;

 Module 3: Creating Objects in C# 51

Tasks Detailed steps

4. In the Antelope constructor,
increment the
numberOfAntelopes
member variable.

a. Locate the task TODO 2: Increment the numberOfAntelopes
variable.

b. Every time an Antelope object is created, increment the
numberOfAntelopes variable by adding the following code to the
constructor:

numberOfAntelopes++;

5. Display the number of
antelopes that are created.

a. Locate the task TODO 3: Display the number of antelopes created.

b. Replace the null parameter in the Output method with a reference to
the static numberOfAntelopes method. For example:

Output("Number of Antelopes: " +
 Antelope.numberOfAntelopes);

6. Test your code. a. Set a breakpoint at the first statement in the runExample_Click
method.

b. Press F5 to compile and run your application.

c. In your application window, click Run.

d. Step through the code and ensure that your program is functioning as
expected.

Note that the numberOfAntelopes variable is shared by both of the
Antelope objects.

e. When you are finished, stop debugging by closing your application or
pressing SHIFT+F5.

7. Save your application, and
quit Visual Studio .NET.

a. Save your application.

b. Quit Visual Studio .NET.

52 Module 3: Creating Objects in C#

Review

� Defining a Class

� Declaring Methods

� Using Constructors

� Using Static Class Members

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. What is the default accessibility level of a class member?
a. Public
b. Private
c. Internal
b. (Private) By default, a class member is accessible from within the
containing class only.

2. What is the keyword that is used to inform the compiler that a variable is
initialized within a method?
out

3. What is the purpose of overloading a constructor?
To allow instances to be created in more than one way.

 Module 3: Creating Objects in C# 53

4. When and how often does a static constructor execute?
At most once, before the first instance of the class is created or before
any static methods are used.

5. Can you invoke a static method without instantiating an object? Why or
why not?
Yes; because static methods belong to the class.

54 Module 3: Creating Objects in C#

Lab 3.1: Creating Classes in C#

Exercise 1: Creating the Bank Account Objects

1 hour

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will be able to:

� Create classes and objects.
� Write methods.
� Pass parameters to methods.

This lab focuses on the concepts in this module and as a result may not
comply with Microsoft security recommendations.

You are a programmer at a bank and have been asked to define objects for the
types of bank accounts that customers can open. These accounts are:

� Checking account
� Savings account

Each checking account has the following characteristics:

� The account holder’s name can be assigned only when the account is
created.

� The opening balance must be specified when the account is created.
� The account number must be assigned when the account is created.

Checking account numbers range from 100000 to 499999, and every
checking account must have a unique account number. You do not need to
check the upper limit of the account number in this lab.

Objectives

Note

Scenario

Checking account

 Module 3: Creating Objects in C# 55

A checking account holder can:

� Order a checkbook.
� Check the account balance.
� Add money to the checking account.
� Withdraw money if the account has sufficient funds.

A savings account has the following characteristics:

� The account holder’s name can be assigned only when the account is
created.

� Saving account numbers range from 500000 to 999999. You do not need to
check the upper limit of the account number in this lab.

� The account earns interest.
The interest rate depends on the account balance. If the balance is above
1000, the rate is 6%; otherwise, it is 3%.

A savings account holder can:

� Check the account balance.
� Add money to the account.
� Withdraw money if the account has sufficient balance.

Savings account

Estimated time to
complete this lab:
60 minutes

56 Module 3: Creating Objects in C#

Exercise 0
Lab Setup
The Lab Setup section lists the tasks that you must perform before you begin the lab.

Task Detailed steps

� Log on to Windows as
Student with a password of
P@ssw0rd.

� Log on to Windows with the following account:

• User name: Student

• Password: P@ssw0rd

Note that the 0 in the password is a zero.

Note that by default the install_folder is C:\Program Files\Msdntrain\2609.

 Module 3: Creating Objects in C# 57

Exercise 1
Creating the Bank Account Objects
In this exercise, you will write the objects that represent the bank account classes that are outlined
in the scenario.

A sample solution is shown in the following illustration:

The solution code for this lab is located at install_folder\Labfiles\Lab03_1\
Exercise1\Solution_Code. Start a new instance of Visual Studio .NET before opening the solution.

Tasks Detailed steps

1. Start Microsoft Visual Studio
.NET, and then open
install_folder\Labfiles
\Lab03_1\Exercise1
\Bank.sln.

a. Start a new instance of Visual Studio .NET.

b. On the Start Page, click Open Project.

c. In the Open Project dialog box, browse to install_folder\Labfiles
\Lab03_1\Exercise1, click Bank.sln, and then click Open.

Form1.cs provides the user interface.

2. In Solution Explorer, locate
the BankAccount.cs file.

� In Solution Explorer, click the C# file BankAccount.cs, and then
press F7 to open the Code Editor.

This file is provided as a place for you to implement the bank account class
or classes.

58 Module 3: Creating Objects in C#

Tasks Detailed steps

3. Write the checking account
class.

a. Define a class named CheckingAccount.

b. Write a constructor that implements the following rules:

• An account holder’s name can be assigned only when the account
is created.

• The opening balance must be specified when the account is
created.

• An account number must be assigned when the account is created.
Checking account numbers range from 100000 to 499999, and
every checking account must have a unique account number. You
do not need to check the upper limit of the account number in this
lab. Use a static member to implement this rule.

4. Test your code by performing
the actions listed on the right.

Place your test code in the
methods that are provided in the
Form1 class in the sample code.

a. In the checking_Click method in the Form1 class, create a new
checking account for the customer Suzan Fine, with a balance of 700.

The object should be declared in Form1, but not in the checking_Click
method. Look for the comment //TODO: place bank account objects
here.

b. Display the information about the account in the text box window by
using the provided Output method.

c. Run your application by pressing F5, and then in the application
window, click Create Checking.

5. In the CheckingAccount
class, write a method to order
a checkbook.

a. In the CheckingAccount class, write a method named
OrderCheckBook that always returns true.

b. Call the OrderCheckBook method from the Form1 class, in the
checkbook_Click method.

c. Compile and test your application.

6. Write Deposit and
Withdraw methods in the
CheckingAccount class.

a. In the CheckingAccount class, write a method named Deposit that
adds money to the account.

b. In the CheckingAccount class, write a method named Withdraw that
removes money from the account. Do not permit the balance to fall
below zero, and return false if the withdrawal amount is greater than
the balance.

7. Call the Withdraw and
Deposit methods from the
Form1 class.

a. In the deposit_Click method in the Form1 class, write code to deposit
700 into the checking account, and display the new balance.

b. In the withdraw_Click method in the Form1 class, write code to
withdraw 100 from the checking account, and display the new
balance.

 Module 3: Creating Objects in C# 59

Tasks Detailed steps

8. Write a SavingAccount
class.

� In the BankAccount.cs file, define a SavingAccount class that
implements the following rules:

• An account holder’s name can be assigned only when the account
is created. Savings account numbers range from 500000 to
999999. You do not need to check the upper limit of the account
number in this lab. Hint: use a static member to manage the
account numbers.

• The interest rate depends on the account balance. If the balance is
above 1000, the rate is 6%; otherwise it is 3%.

9. Create a SavingAccount
object.

a. In the saving_Click method in the Form1 class, create a new
checking account for the customer Suzan Fine, with a balance of 700.

The object should be declared in Form1, but not in the saving_Click
method. Look for the comment //TODO: place bank account objects
here.

b. Display the information about the account in the text box window by
using the provided Output method.

c. Run your application by pressing F5, and then in the application
window click Create Saving.

10. Write a GetRate method for
the SavingAccount class,
that returns the current
interest rate, and call it from
the interest_Click method in
Form1.

a. In the SavingAccount class, write a method that returns the current
interest rate.

b. In the interest_Click method in Form1, call the SavingAccount
method, and display the current interest rate by using the Output
method.

c. Compile, run, and test your application.

11. Write Deposit and
Withdraw methods in the
SavingAccount class.

a. In the SavingAccount class, write a method named Deposit that adds
money to the account. Adjust the interest rate accordingly.

b. In the SavingAccount class write a method named Withdraw that
removes money from the account. Do not permit the balance to fall
below zero, and return false if the withdrawal amount is greater than
the balance. Adjust the interest rate accordingly.

12. Call the Deposit method
from the Form1 class.

a. In the deposit_Click method in the Form1 class, write code to deposit
400 into the checking account, and display the new balance.

b. Compile, run and test your application.

13. Save your application, and
then quit Visual Studio .NET.

a. Save your application.

b. Quit Visual Studio .NET.

THIS PAGE INTENTIONALLY LEFT BLANK

