

Contents

Overview 1

Lesson: Exploring Additional Features of C# 2

Course Evaluation 15

Module 12: Exploring
Future Learning

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, ActiveX, BizTalk, FrontPage, IntelliSense, JScript,
Microsoft Press, MSDN, PowerPoint, Visual Basic, Visual C++, Visual C#, Visual Studio, Win32,
Windows Media are either registered trademarks or trademarks of Microsoft Corporation in the
United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 12: Exploring Future Learning iii

Instructor Notes
The module provides the students with pointers to some of the resources that
are available for further study of advanced topics.

After completing this module, students will be able to:

� Locate resources for information about additional C# features.
� Use those resources to further develop any of the projects that they started

earlier in this course.

To teach this module, you need the following materials:

� Microsoft® PowerPoint® file 2609A_12.ppt
� Module 12, “Exploring Future Learning”

To prepare for this module, read all of the materials for this module.

Presentation:
45 minutes

Lab:
00 minutes

Required materials

Preparation tasks

iv Module 12: Exploring Future Learning

How to Teach This Module
This section contains information that will help you to teach this module.

The intention of this module is to provide students with pointers to resources
that are available for future study of advanced topics that are related to
programming in C# in the Microsoft .NET development environment. For this
reason, the content for each topic is limited to a brief introduction to advanced
learning for the topic, and the focus is on pointing the students to the resources
rather than teaching them the content.

Furthermore, there are no practices, demonstrations, labs, or review questions
for this module.

Lesson: Exploring Additional Features of C#
All topics in this lesson are high-level overviews of advanced topics. Rather
than teach that content, emphasize to the students that resources for self-paced
future study are identified for each topic.

 Module 12: Exploring Future Learning 1

Overview

� Exploring Additional Features of C#

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This module provides an opportunity for you to explore some of the more
advanced capabilities of C#, to practice the knowledge and skills that you
acquired during the course, and to discuss your questions as a group.

After completing this module, you will be able to:

� Locate resources for information about additional C# features.
� Use those resources to further develop any of the projects that you started

earlier in this course.

Introduction

Objectives

2 Module 12: Exploring Future Learning

Lesson: Exploring Additional Features of C#

� The C# Preprocessor

� Structs

� C# Threads and Threading

� Attributes and Reflection

� .NET Framework Security

� Interoperability

� .NET Remoting

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This lesson presents some additional features of C# that may interest you as you
further develop your Microsoft® .NET-based projects. These advanced features
are covered only briefly in this lesson. The focus of this lesson is to identify
resources that you can use for further study and to provide an opportunity for
you to develop a project that you started earlier in this course.

After completing this lesson, you will be able to:

� Locate resources for information about advanced features of C#.
� Use those resources to further develop any of the projects that you started in

the practices or labs of this course.

This lesson includes the following topics:

� The C# Preprocessor
� Structs
� C# Threads and Threading
� Attributes and Reflection
� .NET Framework Security
� Interoperability
� .NET Remoting

Introduction

Lesson objectives

Lesson agenda

 Module 12: Exploring Future Learning 3

The C# Preprocessor

� You can use the preprocessing directives to provide
instructions to the compiler

� Examples of preprocessing directives are # if, #else,
#define
#define DEBUG

...

public void Calculate() {

#if DEBUG

// write debug messages

WriteToLogfile("Entering method");

#endif

. . .

}

#define DEBUG

...

public void Calculate() {

#if DEBUG

// write debug messages

WriteToLogfile("Entering method");

#endif

. . .

}

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Before your code is actually compiled, a preprocessor runs, examines, and
prepares your program for the compiler. You can use the preprocessor to
control the code that the compiler receives. In some circumstances, such as
debugging, you may want to compile extra debugging statements into your
program. However, you do not want these statements in your finished
application. You can use preprocessing directives to cause the preprocessor to
compile sections of code only under certain circumstances. This is called
conditional compilation.

Preprocessing directives provide the ability to conditionally skip sections of
source files, to report error and warning conditions, and to delineate distinct
regions of source code.

C# is designed to avoid the need for include files, because classes do not
require a separate definition file. For this reason, the C# preprocessor is less
important than it is in C or C++. Items that typically occur in header files, such
as macros, are also eliminated to provide for simpler code maintenance and
speedy compilation.

A main function of the preprocessor in C# is to enable conditional compilation.

A preprocessing directive always occupies a separate line of source code and
always begins with a pound sign (#) character and a preprocessing directive
name. White space may occur before the # character and between the #
character and the directive name.

Introduction

Preprocessing
directives

Preprocessing in C#

Directive syntax

4 Module 12: Exploring Future Learning

The following table describes some of the preprocessing directives that are
available for C#:

Directive Description

#if...#endif The #if directive allows you to begin a conditional directive,

test a symbol or symbols to see if they evaluate to true. If they
do evaluate to true, the compiler evaluates all of the code
between the #if and the next directive. The #endif directive
terminates the scope of the #if directive.

#else The #else directive allows you to create a compound
conditional directive, so that if none of the expressions in the
preceding #if or (optional) #elif directives evaluate to true,
the compiler evaluates all code between #else and the
subsequent #endif.

#define The #define directive allows you to define a symbol, such
that, by using the symbol as the expression passed to the #if
directive, the expression evaluates to true.

#region...#endregion The #region and #endregion directives allow you to define
areas of code that can be collapsed and hidden under a label.
The development environment uses this directive to hide the
code that it generates automatically.

In the following example, the call to the WriteToLogfile method is compiled
only when “#define DEBUG” appears as a line in the code.

#define DEBUG
...
public void Calculate() {
#if DEBUG
 // write debug messages
 WriteToLogfile("Entering method");
#endif
 . . .
}

For further information about the C# preprocessor, see “2.5 Preprocessing
Directives” in the Microsoft .NET Framework Software Development Kit
(SDK).

Commonly used
directives

Example

Resources

 Module 12: Exploring Future Learning 5

Structs

� A struct is a value type that can contain constructors,
constants, fields, methods, properties, indexers,
operators, and nested types

� Data structures suitable for use with structs
� Contain a small number of data members
� Do not require use of inheritance
� Can be implemented using value semantics

� Structs vs classes
� Classes are reference types
� Structs are value types

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When you create a class, you create a new reference type. You can also create
new value types called structs, which are similar to classes but do not support
class functionality such as inheritance, although they can implement interfaces.

A struct type is a value type that can contain constructors, constants, fields,
methods, properties, indexers, operators, and nested types. Examples of structs
are complex numbers, points in a coordinate system, or key-value pairs in a
dictionary.

Structs are particularly useful for small data structures that have value
semantics. You should use structs for types that:

� Contain a small number of data members.
� Do not require the use of inheritance.
� Use value semantics, for example, where you expect an assignment to copy

a value instead of a reference.

Structs are similar to classes in that they are types that can contain properties
and methods. Unlike classes, structs are value types and do not require heap
allocation. An instance of a struct directly contains the data of the struct,
whereas an instance of a class contains a reference to the data.

� Structs are value types.
� Classes are reference types.

For further information about structs, see the following resources:

� “Structs Tutorial” in the C# Programmers Reference in the online Help.
� “System.Data.SqlTypes namespace” in the .NET Framework SDK, which

includes an excellent example of data types that are implemented as structs
in the .NET Framework.

Introduction

Definition

Data structures suitable
for use with structs

Structs vs. classes

Resources

6 Module 12: Exploring Future Learning

C# Threads and Threading

� Threads are the basic unit to which an operating system allocates
processor time

� Advantages
� Multiple threads increase responsiveness to the user and

simultaneously process the data necessary to complete the task
� Disadvantages

� Use as few threads as possible to minimize the use of operating-
system resources and improve performance

� Threading features
� The C# language provides the lock statement
� The .NET Framework provides classes in the System.Threading

namespace

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Sometimes you may want to run parts of your application in a different process,
or thread.

A thread is the basic unit to which an operating system allocates processor
time. More than one thread at a time can execute code inside that process.

There are both advantages and disadvantages to using threading:

� Advantages
Using more than one thread is the most powerful technique available to
simultaneously increase responsiveness to the user and process the data
necessary to complete the job.

� Disadvantages
It is recommended that you use as few threads as possible, thereby
minimizing the use of operating-system resources and improving
performance. Threading also has resource requirements and potential
conflicts that you must consider when you design your application.

For example, when you print a large document, you do not want your
application to stop responding to the user as it processes the print job. So, you
create a new thread that handles the printing work while your main application
continues to be available to the user.

C# and the .NET Framework provide features that allow different threads in a
program to start and to communicate with each other.

� The C# language provides the lock statement that allows you to manage
resource conflicts.

� The .NET Framework provides classes in the System.Threading
namespace that support threading and interthread communication.

Introduction

Definition

Advantages and
disadvantages

Example

Threading features

 Module 12: Exploring Future Learning 7

For more information about threads and threading, see the following:

If you are new to threads and threading, it is recommended that you complete
an advanced course or read an appropriate book.

� “Assemblies, Threads and AppDomains” in C# and the .NET Platform, by
Andrew Troelsen, Apress, 2001.

� “Multithreaded Programming” in Inside C#, by Tom Archer, Microsoft
Press®, 2001.

• “How to Build Multi-Threaded Application in .NET” online seminars,

which are available under Developer Resources at
http://www.microsoft.com/net/develop/. Eight seminars are available.

• The .NET Framework SDK. The SDK is a useful source of information and

tutorials about threads and threading.

Resources

Books

Online seminars

SDK

8 Module 12: Exploring Future Learning

Attributes and Reflection

� Use attributes and reflection to:

� Write a program that displays information about an application

� Dynamically write new code at run time

� Create applications called type browsers

� Example: classes in the System.Runtime.Serialization
namespace use reflection to access data and to determine which
fields to persist

� Reflection methods

� The System.Reflection.MemberInfo class discovers the attributes
of a member and provides access to member metadata

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You use attributes to add metadata to your application, and you use reflection to
read the metadata. Metadata in this context means data about the application.
You can think of attributes as annotations that you insert into your application
and reflection as the process that reads these annotations at run time.

You can use attributes and reflection to:

� Write a program that displays information about other applications, for
example, for purposes of documenting those applications.
The Reflection namespace contains the classes and interfaces that support
this functionality.

� Dynamically write new code at run time, and then call that code.
The classes of the System.Reflection.Emit namespace provide a
specialized form of reflection that enables you to build types at run time.

� Create applications called type browsers, which enable users to select types
and then view the information about those types.

� The classes in the System.Runtime.Serialization namespace use reflection
to access data and to determine which fields to persist.

Introduction

Uses for attributes and
reflection

 Module 12: Exploring Future Learning 9

The main reflection methods to query attributes are contained in the
System.Reflection.MemberInfo class, which discovers the attributes of a
member and provides access to member metadata.

The following example demonstrates the basic way of using reflection to obtain
access to attributes:

class MainClass {
 public static void Main() {
 System.Reflection.MemberInfo info = typeof(SomeClass);
 object[] attributes = info.GetCustomAttributes(true);
 for (int i = 0; i < attributes.Length; i ++) {
 System.Console.WriteLine(attributes[i]);
 }
 }
}

For more information about attributes and reflection, see:

� Any C# language book, most of which discuss this topic. For example,
Inside C#, by Tom Archer, Microsoft Press, 2001.

� “Attributes Tutorial” in the .NET Framework SDK.

Reflection methods

Resources

10 Module 12: Exploring Future Learning

.NET Framework Security

� Common language runtime security

� Code access security

� Role-based security

� Cryptographic services

� Command-line security tools

� Caspol.exe

� Signcode.exe

*****************************ILLEGAL FOR NON-TRAINER USE******************************

As a programmer, you must consider the security of the data that you manage.
You are at risk when you open a database, and Web-based applications are a
clear target for malicious users. Security checks ensure that a piece of code has
the credentials to access certain resources.

Although it is unnecessary for most application developers to do any special
work to gain the advantages of the .NET Framework security system, it is
useful to have knowledge of the classes and services that the .NET Framework
provides.

The classes and services that the common language runtime and .NET
Framework provide also enable system administrators to customize the access
that code has to protected resources. Additionally, the runtime and the .NET
Framework provide classes and services that facilitate the use of cryptography
and role-based security.

The .NET Framework provides a security mechanism called code access
security. All managed code that targets the common language runtime receives
the benefits of code access security, even if that code does not make a single
code access security call.

The code access security mechanism:

� Protects computer systems from malicious mobile code.
� Allows code from unknown origins to run safely.

For more information about .NET Framework code access security, see
“Code Access Security” in the .NET Framework Developer’s Guide.

Introduction

Common language
runtime security

Code access security

Tip

 Module 12: Exploring Future Learning 11

The runtime provides support for role-based authorization based on a Microsoft
Windows® account or a custom identity. After you define identity (the user) and
principal objects (the security context for that user), you can perform various
security checks against them.

For more information about .NET Framework role-based security, see
“Role-Based Security” in the .NET Framework Developer’s Guide.

The classes in the .NET Framework Cryptography namespace manage many
details of cryptography for you. You do not need to be an expert in
cryptography to use these classes. When you create a new instance of one of the
encryption algorithm classes, keys are auto-generated for ease of use, and
default properties are always as safe and secure as possible.

For more information about .NET Framework cryptographic services, see
“Cryptographic Services” in the .NET Framework Developer’s Guide.

The .NET Framework SDK supplies command-line tools that help you perform
security-related tasks and test your components and applications before you
deploy them. Some of those tools include:

� Caspol.exe. The policy tool for code access security enables you to view
and configure security policy.

� Signcode.exe. This file-signing tool signs a portable executable (PE) file
with requested permissions, giving you more control over the security
restrictions that are placed on your components.

For more information about .NET Framework security tools, see “Security
Tools” in the .NET Framework Developer’s Guide.

For more information about making your code secure, see the following:

� Course 2350, Securing and Deploying Microsoft .NET Assemblies.
� Writing Secure Code, by Michael Howard and David LeBlanc. Microsoft

Press, 2001.
� The .NET Framework SDK, which provides a tutorial on security. For

further information, see the C# Programmer’s reference section for the
security tutorial.

Role-based security

Tip

Cryptographic services

Tip

Command-line security
tools

Tip

Resources

12 Module 12: Exploring Future Learning

Interoperability

� The .NET Framework supports interaction with COM components,
COM+ services, external type libraries, and many operating system
services

� Marshaling service

The Interop marshaler maps between managed and unmanaged types

� Platform invocation service

Platform invoke service uses attributes to locate exported functions
and pass them arguments at run time

� COM components

Marshals method calls between COM components and managed code

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The .NET Framework supports interaction with unmanaged code, such as COM
components, COM+ services, external type libraries, and many operating
system services. Data types, method signatures, and error-handling mechanisms
vary between managed and unmanaged object models. To simplify
interoperation between the .NET Framework components and unmanaged code,
the common language runtime conceals the differences in these object models
from both clients and servers.

Most data types have common representations in both managed and unmanaged
memory. The interop marshaler handles these types for you. Other types can be
ambiguous or not represented at all in managed memory. Marshaling occurs
whenever the caller and recipient cannot operate on the same instance of data.
The interop marshaler makes it possible for both the caller and recipient to
appear to be operating on the same data even though the caller and recipient
have their own copy of the data. You can supply explicit instructions to the
interop marshaler about how it is to marshal an ambiguous type.

You can call C functions in dynamic-link libraries (DLLs) through a feature
called Platform invoke. Platform invoke is a service that uses attributes to locate
exported functions and pass arguments to them at run time. This service enables
managed code to call unmanaged functions that are implemented in DLLs, such
as those in the Microsoft Win32® application programming interface (API). The
Platform invoke feature uses interop marshaling to pass method parameters and
return values between managed code and the unmanaged library.

Introduction

Marshaling service

Platform invocation
service

 Module 12: Exploring Future Learning 13

A .NET Framework application that must support a COM component cannot
directly consume the functionality that is exposed by that component. Instead, it
must access the functionality by using a proxy class, sometimes called a
wrapper. Although a utility (Tlbimp.exe) is provided to help create this class,
this utility does not remove the requirement for manual coding when you
require detailed control of the component.

For more information about interoperability, see the following:

� Course 2571: Application Upgrade and Interoperability Using Microsoft
Visual Studio® .NET.

� Any C# language book that discusses this topic. For example, Inside C#, by
Tom Archer, Microsoft Press, 2001.

COM components

Resources

14 Module 12: Exploring Future Learning

.NET Remoting

� Supports distributed applications

� Communicate with applications:

� On the same computer

� On a different computer on the same network

� On a different computer at a remote location

� Improves scalability

� Similarities to XML Web services

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can use .NET Remoting to enable different applications to communicate
with one another, whether those applications reside on the same computer, on
different computers in the same local area network, or across the world in very
different networks; even if the computers run different operating systems.

The System.Runtime.Remoting namespace provides classes to activate remote
objects, send messages to and receive messages from remote objects, and much
more.

You can use remoting to create distributed applications and to make your
applications more scalable.

On the surface, .NET Remoting and XML Web services appear very similar to
each other. In fact, XML Web services are built on the .NET Remoting
infrastructure. However, as a general rule:

� .NET Remoting tends to be more appropriate for applications where the
implementation of the applications at both ends of the conversation is under
the control the same organization.

� XML Web services are more appropriate for applications where the client
side of the service is likely to be outside the control of a particular
organization, for example, a trading partner.

For more information about .NET Remoting, see Course 2349, Programming
the Microsoft .NET Framework with C#.

Introduction

.NET Remoting vs. XML
Web services

Resources

 Module 12: Exploring Future Learning 15

Course Evaluation

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Your evaluation of this course will help Microsoft understand the quality of
your learning experience.

To complete a course evaluation, go to
http://www.microsoft.com/traincert/coursesurvey.

Microsoft will keep your evaluation strictly confidential and will use your
responses to improve your future learning experience.

THIS PAGE INTENTIONALLY LEFT BLANK

