

Appendix B: Advanced
Topics

Contents

How to Use Multidimensional Arrays 1

How to Use Jagged Arrays 3

How to Use XML with a DataSet 5

How to Change or Filter the View of the
Data in the DataGrid 8

How to Overload Operators 10

How to Override and Implement Equals 13

How to Override GetHashCode 15

What Is Serialization? 18

How to Use Binary Serialization 20

How to Use XML Serialization 22

Lab B.1: Using Serialization 24

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, ActiveX, BizTalk, FrontPage, IntelliSense, JScript,
Microsoft Press, MSDN, PowerPoint, Visual Basic, Visual C++, Visual C#, Visual Studio, Win32,
Windows Media are either registered trademarks or trademarks of Microsoft Corporation in the
United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Appendix B: Advanced Topics 1

How to Use Multidimensional Arrays

� Declare an array

� Initialize when declaring

� Use new operator when declaring without initialization

� Assign a value to an array element

int[,] myArray = new int [4,2];int[,] myArray = new int [4,2];

int[,] myArray = { {1,2}, {3,4}, {5,6}, {7,8} };int[,] myArray = { {1,2}, {3,4}, {5,6}, {7,8} };

myArray[2,1] = 25; myArray[2,1] = 25;

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can use a multidimensional array to store values that naturally fall into a
grid-like or rectangular structure. For example, to keep track of each pixel on
your computer screen, you can refer to its X coordinates in one dimension and
its Y coordinates in a second dimension.

To declare a multidimensional array, use the following syntax:

int[,] myArray;

Multidimensional arrays can have any number of dimensions. The following
declaration creates an array of three dimensions, 4, 2, and 3:

int[,,] myArray = new int [4,2,3];

If a two-dimensional array is like a rectangle, you can visualize a three-
dimensional array as being like a cube, with the dimensions corresponding to
height, width, and depth.

Introduction

Declaring

2 Appendix B: Advanced Topics

You can initialize the array upon declaration, as shown in the following
example:

int[,] myArray;
myArray = new int[,] { {1,2}, {3,4}, {5,6}, {7,8}};

Or more simply:

int[,] myArray = new int[,] {{1,2}, {3,4}, {5,6}, {7,8}};

Or even more simply:

int[,] myArray = {{1,2}, {3,4}, {5,6}, {7,8}};

string[,] siblings = new string[,] { {"Mike","Amy"},
 {"Mary","Ray"} };

You can also assign a value to an array element, for example:

myArray[2,1] = 25;

The total storage that the array requires increases dramatically when you
start adding dimensions to an array. Declare the smallest array that you can.

Initializing

Assigning a value to an
array element

Note

 Appendix B: Advanced Topics 3

How to Use Jagged Arrays

� int [] [] jaggedExample = new int[6][];

� jaggedExample[0] = new int[6];

[3][0][3][0]

[0][0][0][0]

[2][1][2][1]

[4][2][4][2]

[0][0]

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A jagged array is an array whose elements are arrays. The elements of a jagged
array can be of different dimensions and sizes. A jagged array is sometimes
called an array of arrays.

The following code declares a two-dimensional jagged array that is made up of
a single-dimensional array that has six elements, each of which is another
single-dimensional array of integers:

int[][] myJaggedArray = new int[6][];

Before you can use myJaggedArray, you must initialize its elements. You can
initialize the elements as shown in the following example:

myJaggedArray[0] = new int[6];
myJaggedArray[1] = new int[2];
myJaggedArray[2] = new int[4];
myJaggedArray[3] = new int[1];
myJaggedArray[4] = new int[6];
myJaggedArray[5] = new int[6];

Each of the elements of the first array is a single-dimensional array of integers.
The first element is an array of 6 integers, the second is an array of 2 integers,
the third is an array of 4 integers, and so on.

Introduction

Declaring

Initializing

4 Appendix B: Advanced Topics

You can use initializers to fill the array elements with values, in which case,
you do not need the array size as shown in the following example:

myJaggedArray[0] = new int[] {1,3,5,7,9,11};
myJaggedArray[1] = new int[] {0,2};
myJaggedArray[2] = new int[] {11,22,33,44};

You can also initialize the array upon declaration as shown in the following
example:

int[][] myJaggedArray = new int [][]
 {
 new int[] {1,3,5,7,9},
 new int[] {0,2,4,6},
 new int[] {11,22}
 };

You can also mix jagged and multidimensional arrays. The following example
shows a declaration and initialization of a single-dimensional jagged array that
contains two-dimensional array elements of different sizes:

int[][,] myJaggedArray = new int [3][,]
 {
 new int[,] { {1,3}, {5,7} },
 new int[,] { {0,2}, {4,6}, {8,10} },
 new int[,] { {11,22}, {99,88}, {0,9} }
 };

You can access individual array elements, as shown in the following examples:

// Assign 33 to the second element of the first array:
myJaggedArray[0][1] = 33;
// Assign 44 to the second element of the third array:
myJaggedArray[2][1] = 44;

Examples

Accessing array
elements

 Appendix B: Advanced Topics 5

How to Use XML with a DataSet

� Read data from a DataSet object in XML format

� Fill a DataSet object with XML data

� Create an XML Schema for the XML representation of
the data in a DataSet

� Load XML data into a Document Object Model (DOM)
tree, from a stream or file. You can then manipulate the
data as XML or as a DataSet

� Create typed DataSets

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Microsoft® ADO.NET is tightly integrated with XML. The ADO.NET object
model was designed with XML at its core. As a result, ADO.NET makes it easy
to convert relational data into XML format. You can also convert data from
XML into tables and relations.

XML is a rich, platform-independent, and portable way of representing data. An
important characteristic of XML data is that it is text-based. Using text-based
data makes it easier to pass XML data between applications and services, even
if they are running on different platforms. XML also enables organizations to
exchange data without further customization of each organization’s proprietary
software.

You must write an application that processes XML data. That XML data may
come from an external business through an XML Web service, e-mail,
Microsoft BizTalk® Server, or many other sources.

Introduction

Benefit of using XML

Scenario

6 Appendix B: Advanced Topics

The ADO.NET object model includes extensive support for XML. Consider the
following facts and guidelines when you use the XML support in ADO.NET:

� You can write data from a DataSet object in XML format. The XML format
is useful if you want to pass data between applications or services in a
distributed environment.

� You can fill a DataSet object with XML data. This is useful if you receive
XML data from another application or service, and want to update a
database by using this data.

� You can create an XML Schema for the XML representation of the data in a
DataSet. You can use the XML Schema to perform tasks such as serializing
the XML data to a stream or file.

� You can load XML data into a Document Object Model (DOM) tree from a
stream or file. You can then manipulate the data as XML or as a DataSet. To
do this, you must have an XML Schema to describe the structure of the data
to the DataSet.

� You can create typed DataSets. A typed DataSet is a subclass of DataSet,
with added properties and methods to expose the structure of the DataSet.
To describe the XML representation of the DataSet, Microsoft Visual
Studio® .NET generates an equivalent XML Schema definition for the typed
DataSet.

XML support

 Appendix B: Advanced Topics 7

The following code loads the Customer table from the Northwind Traders
database, saves it as XML to a temporary file, creates a new DataSet, and then
loads the XML representation of the Customers table from the temporary file.
The System.IO namespace is included for the Path class.

using System;
using System.Data;
using System.Data.SqlClient;
using System.IO; // included to get the temp path

namespace Samples {
 class DataSetXMLExample {
 static void Main(string[] args) {

 string tempfile = Path.GetTempFileName();

 string connectionString = @"data source=localhost;
Initial catalog=Northwind; integrated security=SSPI";
 string commandString = @"SELECT * FROM Customers";
 SqlDataAdapter dataAdapter = new SqlDataAdapter(
commandString, connectionString);

 DataSet myDataSet = new DataSet();
 dataAdapter.Fill(myDataSet, "Customers");

 myDataSet.WriteXml(tempfile);
 Console.WriteLine("Wrote Customer table to XML file
{0}", tempfile);

 DataSet data2 = new DataSet();
 data2.ReadXml(tempfile);

 int nRows = data2.Tables["Customers"].Rows.Count;
 Console.WriteLine("Read {0} records from XML file
{1}", nRows, tempfile);
 // nRows is 91
 }
 }
}

This code sample is available on the Student Materials compact disc in the
Samples\ModXB\XML folder.

For more information about how to fill a DataSet with an XML stream,
see “DataSet class, XML” in the Visual Studio .NET online documentation.

For more information about obtaining data as XML from SQL Server, see
“SQL Server .NET Data Provider, XML” in the Visual Studio .NET online
documentation.

Example

Note

8 Appendix B: Advanced Topics

How to Change or Filter the View of the Data in the
DataGrid

� Bind to DataViewManager to specify single or multiple
column sort orders, including ascending and
descending parameters

� ApplyDefaultSort to automatically create a sort order

� RowFilter to specify subsets of rows based on their
column values

� RowStateFilter to specify which row versions to view

� DataGridTableStyle

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A DataView object provides a method for creating a customizable view for a
single DataTable. You can sort and filter the view and specify what editing
operations can be performed on the view’s data.

You use a DataViewManager object to manage view settings for all the tables
in a DataSet. The DataViewManager provides you with a convenient way to
manage default view settings for each table. When you must bind a control to
more than one table of a DataSet, binding to a DataViewManager is the ideal
choice.

The DataView provides several ways to sort and filter data in a DataTable, as
shown in the following table.

Use the: To:

Sort property Specify single or multiple column sort orders and include ASC

(ascending) and DESC (descending) parameters

ApplyDefaultSort
property

Automatically create a sort order, in ascending order, based on
the primary key column or columns of the table

RowFilter property Specify subsets of rows based on their column values

Find or FindRows
methods of the
DataView

Return the results of a particular query on the data rather than
provide a dynamic view of a subset of the data

RowStateFilter
property

Specify which row versions to view

Introduction

Sorting and filtering data
using a DataView

 Appendix B: Advanced Topics 9

For example, the following code snippet sorts items in the Customers table by
Country.

string connectionString = @"data source=localhost; Initial
catalog=Northwind; integrated security=SSPI";
string commandString = @"SELECT * FROM Customers";
dataAdapter = new SqlDataAdapter(commandString,
connectionString);

myDataSet = new DataSet();
dataAdapter.Fill(myDataSet, "Customers");

DataViewManager dvm = new DataViewManager(myDataSet);

dvm.DataViewSettings["Customers"].Sort = "Country";

dataGrid1.SetDataBinding(dvm, "Customers");

Example

10 Appendix B: Advanced Topics

How to Overload Operators

Measurement m1 = new Measurement(100,MeasurementUnit.CM);
Measurement m2 = new Measurement(1,MeasurementUnit.M);

Measurement m1 = new Measurement(100,MeasurementUnit.CM);
Measurement m2 = new Measurement(1,MeasurementUnit.M);

� Overload operators such as == or + when you want your
class to exhibit value-type semantics

if (m1==m2) {
MessageBox.Show("Lengths are equal");

}

if (m1==m2) {
MessageBox.Show("Lengths are equal");

}

if (m1==m2) {
MessageBox.Show("Lengths are equal");

}

if (m1==m2) {
MessageBox.Show("Lengths are equal");

}

Not overridenNot overriden

OverridenOverriden

�

�

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You override operators such as == or + when you want your class to use value-
type semantics. The following code demonstrates when you may want your
class to display value-type semantics.

public class Measurement {
 public decimal Length;
 public MeasurementUnit Unit;
 public Measurement(decimal len, MeasurementUnit t) {
 Length=len;
 Unit=t;
 }
}

public enum MeasurementUnit {
 M,
 CM,
 MM,
}

The preceding code contains a simple class, Measurement. Each instance of
the class should store a Length and Unit value. Consider the following code:

Measurement m1 = new Measurement(100,MeasurementUnit.CM);
Measurement m2 = new Measurement(1,MeasurementUnit.M);
if (m1==m2) {
 MessageBox.Show("Measurements are the same");
}
else {
 MessageBox.Show("Measurements are not the same");
}

Introduction

Overloading the
== operator

 Appendix B: Advanced Topics 11

Although the two lengths are actually the same, the preceding test is testing for
the instances referenced by the two measurement variables being the same,
which in this case they are not.

For the preceding code to work, it is necessary to override the == operator.
Overriding the == operator allows the class to behave more like a value type. In
the following code, the class overrides the == operator:

public class Measurement {
 public decimal Length;
 public MeasurementUnit Unit;
 public Measurement(decimal len, MeasurementUnit t) {
 Length=len;
 Unit=t;
 }

 public static bool operator==(Measurement m1,
 Measurement m2) {
 decimal meters1 = 0;
 decimal meters2 = 0;
 switch (m1.Unit) {
 case MeasurementUnit.M:
 meters1 = m1.Length;
 break;
 case MeasurementUnit.CM:
 meters1 = m1.Length / 100;
 break;
 case MeasurementUnit.MM:
 meters1 = m1.Length / 1000;
 break;
 }
 switch (m2.Unit) {
 case MeasurementUnit.M:
 meters2 = m2.Length;
 break;
 case MeasurementUnit.CM:
 meters2 = m2.Length / 100;
 break;
 case MeasurementUnit.MM:
 meters2 = m2.Length / 1000;
 break;
 }
 if (meters1 == meters2) {
 return true;
 }
 else {
 return false;
 }
 }
}

12 Appendix B: Advanced Topics

The code in the overridden == operator converts each length to a length
specified as a meter. The lengths can then be compared correctly. Notice how
the overridden operator must be static; references to the two objects to be
compared are passed as parameters.

When overriding the == operator, it is necessary to also override the !=
operator. This is accomplished by adding the following code:

public static bool operator !=(Measurement m1,
 Measurement m2) {
 return !(m1 == m2);
}

It is strongly recommended that you also override the Equals and
GetHashCode methods when overriding the == and != operators. Failure to
override Equals and GetHashCode can generate confusion by those who
develop with the class because the logic is not consistent.

Best practices

 Appendix B: Advanced Topics 13

How to Override and Implement Equals

� If a class overrides the operators == and != then the
Equals method should be overridden to match the logic
of the == operator.

public override bool Equals(object o) {
return (this==(Measurement)o);

}

public override bool Equals(object o) {
return (this==(Measurement)o);

}

*****************************ILLEGAL FOR NON-TRAINER USE******************************

If your class must override the ==operator and != operator, you should also
override the Equals method. You should use the == operator in the overridden
Equals method to ensure that implemented logic is consistent between the ==
operator and Equals method.

Expanding on the Measurement class example in the How to Overload
Operators topic, it is good practice to override the Equals method, because the
== operator and != operator are already overridden.

Introduction

Overriding the Equals
method

14 Appendix B: Advanced Topics

public class Measurement {
 public decimal Length;
 public MeasurementUnit Unit;
 public Measurement(decimal len, MeasurementUnit t) {
 Length=len;
 Unit=t;
 }

 public override bool Equals(object o) {
 return (this==(Measurement)o);
 }

 public static bool operator==(Measurement m1,
 Measurement m2) {
 decimal meters1=0;
 decimal meters2=0;
 switch (m1.Unit) {
 case MeasurementUnit.M:
 meters1=m1.Length;
 break;
 case MeasurementUnit.CM:
 meters1=m1.Length / 100;
 break;
 case MeasurementUnit.MM:
 meters1=m1.Length / 1000;
 break;
 }
 switch (m2.Unit) {
 case MeasurementUnit.M:
 meters2=m2.Length;
 break;
 case MeasurementUnit.CM:
 meters2=m2.Length / 100;
 break;
 case MeasurementUnit.MM:
 meters2=m2.Length / 1000;
 break;
 }
 if (meters1==meters2) {
 return true;
 }
 else {
 return false;
 }
 }

 public static bool operator !=(Measurement m1,
 Measurement m2) {
 return !(m1==m2);
 }
}

It is strongly recommended that you override GetHashCode methods when
overriding the ==, != and Equals operators.

Best Practices

 Appendix B: Advanced Topics 15

How to Override GetHashCode

� The .NET Framework uses hash tables to store objects

� The value returned by GetHashCode should be related
to the value returned by Equals

� If you override Equals, override GetHashCode

� Try to return a value unique to your object

public override int GetHashCode() {
return this.Length.GetHashCode();

}

public override int GetHashCode() {
return this.Length.GetHashCode();

}

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You use hashing to efficiently find objects in lookup tables. A hash table is a
method for speeding up a lookup process by producing a hash key for the
objects in the table. You use a hash key to locate the area in the lookup table
where you will most likely find the object, reducing the time spent looking for
the object. For example, when executing a switch statement, C# uses the
Hashtable class to quickly determine which branch to execute.

You can store any object in a hash table. To store an object, use the
GetHashCode method to calculate the object’s hash key.

A hash function must have the following properties:

� If two objects of the same type represent the same value, the hash function
must return the same constant value for either object.

� For the best performance, a hash function should generate a random
distribution for all of the input.

� A hash function should be based on an immutable data member. Immutable
means the data member, or string, and so on, does not change. The hash
function should return exactly the same value regardless of any changes that
are made to the object.

Basing the hash function on a mutable data member can cause
serious problems, including never being able to access that object in a hash
table if the data member changes.

Introduction

GetHashCode method

Hash function properties

Caution

16 Appendix B: Advanced Topics

If the Equals method determines that two objects are equal, the GetHashCode
method must return the same integer for both objects. If a class overrides the
Equals method, it should override the GetHashCode method.

For example, in the Measurement class example in the How to Override and
Implement Equals topic and in the How to Overload Operators topic, to
complete the implementation, you must override GetHashCode. This is
accomplished by using the GetHashCode method of the data that is used in the
== operator (Length).

Using the Equals
method with the
GetHashCode method

 Appendix B: Advanced Topics 17

public class Measurement {
 public decimal Length;
 public MeasurementUnit Unit;

 public Measurement(decimal len, MeasurementUnit t) {
 Length=len;
 Unit=t;
 }

 public override bool Equals(object o) {
 return (this==(Measurement)o);
 }

 public override int GetHashCode() {
 return this.Length.GetHashCode();
 }

 public static bool operator==(Measurement m1,
 Measurement m2) {
 decimal meters1=0;
 decimal meters2=0;
 switch (m1.Unit) {
 case MeasurementUnit.M:
 meters1=m1.Length;
 break;
 case MeasurementUnit.CM:
 meters1=m1.Length / 100;
 break;
 case MeasurementUnit.MM:
 meters1=m1.Length / 1000;
 break;
 }
 switch (m2.Unit) {
 case MeasurementUnit.M:
 meters2=m2.Length;
 break;
 case MeasurementUnit.CM:
 meters2=m2.Length / 100;
 break;
 case MeasurementUnit.MM:
 meters2=m2.Length / 1000;
 break;
 }
 if (meters1==meters2) {
 return true;
 }
 else {
 return false;
 }
 }

 public static bool operator !=(Measurement m1,
 Measurement m2) {
 return !(m1==m2);
 }
}

18 Appendix B: Advanced Topics

What Is Serialization?

Some Storage Some Storage
DeviceDevice

(File, memory,
buffer, socket)

My
Object
My

Object

New
Object
New

Object

FormatterFormatter

FormatterFormatter

SerializationInfo

Serialize()

Stream

Stream

Deserialize()

SerializationInfo

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When you create an application, the ability to save information between user
sessions is imperative. Occasionally, you will find it necessary to save the state
of your component. You may do this to save personal information about users
of your component, or to change the default configuration of a custom control.

Serialization is the term describing the process of converting the state of an
object into a form (a linear sequence of bytes) that can be persisted or
transported. The byte stream contains all of the necessary information to
reconstruct or deserialize the state of the object for use later.

When you serialize an object to a stream, you also serialize any additional
object references that are required by the root object. After you save a set of
objects to a stream, you can relocate the byte pattern as necessary.

For example, if you serialize a stream of objects to a memory stream, you can
forward this stream to a remote computer or the Microsoft Windows®
Clipboard, save it to a compact disc (CD), or simply store it in a file. It does not
matter where the byte stream itself is stored. What matters is that this stream of
1s and 0s correctly represents the state of serialized objects.

The Microsoft .NET Framework provides two formatters for serialization: the
BinaryFormatter class and SoapFormatter class. These classes convert an in-
memory representation of your object to a stream of data.

� Binary serialization is accomplished by using BinaryFormatter, which
converts the object graph to a binary stream, which is most useful for
desktop applications.

� XML serialization is accomplished by using the SoapFormatter, which
converts the object graph to SOAP format, which is most useful for Internet
applications.

You can save these streams as files that you can deserialize and convert back to
objects when needed.

Introduction

Definitions and terms

Example

.NET Framework
serialization

 Appendix B: Advanced Topics 19

Why would you want to use serialization? The two most important reasons are:

� To persist the state of an object to a storage medium so that you can re-
create an exact copy at a later stage.
It is often necessary to store the value of fields of an object to disk and then
retrieve this data at a later stage. Although storing data and retrieving it later
is easy to achieve without relying on serialization, this approach is often
cumbersome and error prone, and becomes progressively more complex
when you must track a hierarchy of objects.
For example, if you write a large business application containing many
thousands of objects and you must write code to save and restore the fields
and properties to and from a disk for each object, serialization provides a
convenient mechanism for achieving this objective with minimal effort.

� To send the object by value from one application domain to another.

The common language runtime manages how objects are laid out in memory
and provides an automated serialization mechanism by using reflection. When
an object is serialized, the name of the class, the assembly, and all of the data
members of the class instance are written to storage. Objects often store
references to other instances in member variables. When the class is serialized,
the serialization engine keeps track of all referenced objects already serialized
to ensure that the same object is not serialized more than once.

When the serialized class is deserialized, the class is re-created and the values
of all the data members are automatically restored.

For more about serialization guidelines, see the Visual Studio .NET
documentation.

Using serialization

Reflection

Tip

20 Appendix B: Advanced Topics

How to Use Binary Serialization

� Mark the class with the Serializable attribute

[Serializable]
public class MyObject {
public int n1 = 0;
public int n2 = 0;
public string str = null;

}

[Serializable]
public class MyObject {
public int n1 = 0;
public int n2 = 0;
public string str = null;

}

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The BinaryFormatter class defines two core methods that read and write an
object to a stream:

� Serialize (). Serializes an object to a stream.
� Deserialize (). Deserializes a stream of bytes to an object.

The default configuration of BinaryFormatter also defines a number of
properties that configure specific details regarding the serialization or
deserialization process.

Mark each class that you wish to persist to a stream with the Serializable
attribute as follows:

[Serializable]
public class MyObject {
 public int n1 = 0;
 public int n2 = 0;
 public string str = null;
}

Introduction

Example

 Appendix B: Advanced Topics 21

The following code demonstrates how to serialize an instance of this class to a
file:

MyObject obj = new MyObject();
obj.n1 = 1;
obj.n2 = 24;
obj.str = "Some String";
IFormatter formatter = new BinaryFormatter();
Stream stream = new FileStream("MyFile.bin", FileMode.Create,
 FileAccess.Write, FileShare.None);
formatter.Serialize(stream, obj);
stream.Close();

This example uses a binary formatter to perform the serialization. All you must
do is create an instance of the stream and the formatter that you intend to use,
and then call the Serialize method on the formatter.

Restoring the object to its former state is just as simple. First, create a stream
for reading and a formatter, and then instruct the formatter to deserialize the
object. The following code snippet demonstrates all of the above:

IFormatter formatter = new BinaryFormatter();
Stream stream = new FileStream("MyFile.bin", FileMode.Open,
 FileAccess.Read, FileShare.Read);
MyObject obj = (MyObject) formatter.Deserialize(fromStream);
stream.Close();

Console.WriteLine("n1: {0}", obj.n1);
Console.WriteLine("n2: {0}", obj.n2);
Console.WriteLine("str: {0}", obj.str);

All objects that are serialized with this formatter can also be deserialized
with it.

Restoring the object
state

Tip

22 Appendix B: Advanced Topics

How to Use XML Serialization

� To serialize and deserialize an object
� Create the object
� Construct an XMLSerializer
� Call the Serialize/Deserialize methods

StreamWriter mySWriter = new StreamWriter(
@“C:\myFileName.xml");

try {
// Serialize the customerList object
XmlSerializer serializer = new XmlSerializer(

typeof (CustomerList));
serializer.Serialize(mySWriter, customerList);

}
finally {

mySWriter.Close();
}

StreamWriter mySWriter = new StreamWriter(
@“C:\myFileName.xml");

try {
// Serialize the customerList object
XmlSerializer serializer = new XmlSerializer(

typeof (CustomerList));
serializer.Serialize(mySWriter, customerList);

}
finally {

mySWriter.Close();
}

*****************************ILLEGAL FOR NON-TRAINER USE******************************

XML serialization serializes only the public fields and property values of an
object into an XML stream, and does not include type information. Because
XML is an open standard, any application can process the XML stream, as
needed, regardless of platform.

XML serialization does not convert methods, indexers, private fields, or
read-only properties, except read-only collections. To serialize all of an object's
fields and properties, both public and private, use the BinaryFormatter class
instead of XML serialization.

You can use the XmlSerializer class to serialize the following items.

� Public read/write properties and fields of public classes
� Classes that implement the ICollection interface or the IEnumerable

interface.

Only collections are serialized, not public properties.

� XmlElement objects
� XmlNode objects
� DataSet objects

You can also use XML serialization to serialize objects into XML streams that
conform to the SOAP specification. The other available formatter for serializing
your types is the SoapFormatter class. The SoapFormatter class represents
your object as a SOAP message, which is expressed in XML format. Use the
SoapFormatter if portability is a requirement. Simply replace the formatter in
the code that is used in the following example with SoapFormatter, and call
the Serialize and Deserialize methods.

Introduction

Note

XmlSerializer class

Note

SoapFormatter class

 Appendix B: Advanced Topics 23

To serialize an object, first create the object that is to be serialized and set its
public properties and fields. To set the properties and fields, you must
determine the transport format in which the XML stream is to be stored—either
as a stream or as a file. For example, if the XML stream must be saved in a
permanent form, create a FileStream object. When you deserialize an object,
the transport format determines whether you will create a stream or file object.
After you have determined the transport format, you can call the Serialize or
Deserialize methods, as required.

To serialize an object, complete the following tasks:

1. Create the object and set its public fields and properties.
2. Construct an XmlSerializer class by using the type of the object.
3. Call the Serialize method to generate either an XML stream or a file

representation of the object's public properties and fields. The following
example creates a file.

MySerializableClass myObject = new MySerializableClass();
XmlSerializer mySerializer = new
 XmlSerializer(typeof(MySerializableClass));
StreamWriter myWriter = new StreamWriter("myFileName.xml");
mySerializer.Serialize(myWriter, myObject);

To deserialize an object, complete the following tasks:

1. Construct an XmlSerializer class by using the type of the object to
deserialize.

2. Call the Deserialize method to produce a replica of the object. When
deserializing, you must convert the returned object to the type of the
original, as shown in the following example. The following example
deserializes the object into a file; however, it could also be deserialized into
a stream.
MySerializableClass myObject;
XmlSerializer mySerializer = new
XmlSerializer(typeof(MySerializableClass));
FileStream myFileStream = new FileStream("myFileName.xml",
 FileMode.Open);
myObject = (MySerializableClass)
mySerializer.Deserialize(myFileStream)

Serialize and Deserialize
methods

Serializing an object

Example

Deserializing an object

24 Appendix B: Advanced Topics

Lab B.1: Using Serialization

� Exercise 1: Deserializing an Instance from
an XML File

1 hour

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will be able to:

� Serialize an object into an XML file.
� Deserialize an object from an XML file.

Before working on this lab, you must have:

� Knowledge of the .NET Framework class library XmlSerializer class.
� Knowledge of the Serializable attribute.

In this lab, you will add code to the Zoo Animal Information Display
application that will add code to the Zoo.Load method that will deserialize the
XML file and return an instance of the Zoo class.

The solution for this lab is provided in install_folder\Labfiles\LabXB_1\
Solution_Code\Animals.sln. Start a new instance of Visual Studio .NET before
opening the solution.

Objectives

Prerequisites

Scenario

Estimated time to
complete this lab:
60 minutes

 Appendix B: Advanced Topics 25

Exercise 1
Deserializing an Instance from an XML File
In this exercise, you will complete the code in the Zoo.Load method to deserialize an XML file
into an instance of the Zoo class.

Tasks Detailed steps

1. Start Visual Studio .NET, and then
open the install_folder\Labfiles
\LabXB_1\animals.sln.

a. Start a new instance of Visual Studio .NET.

b. On the Start Page, click Open Project.

c. In the Open Project dialog box, browse to install_folder
\Labfiles\LabXB_1, click animals.sln, and then click Open.

2. Locate the method Zoo.Load
contained in the file zoo.cs.

a. In Solution Explorer, right-click zoo.cs, and then click View
Code.

b. Scroll through the code until you locate the method public
static Zoo Load(string filename);.

3. To the Zoo.Load method, add code
that creates a FileStream object that
uses the filename passed to the
method. Create an XmlSerializer
object, and then use this object to
deserialize the file stream.

� Refer to the content in this module for code samples of
deserializing an object. You must modify this code to suit the
application used in this lab. Note that the method returns a
value of True if the method was successful.

4. Run the application. Open the file
install_folder\Labs\LabXB_1\Anim
alData.xml. Browse through the text
that describes the animals.

a. On the standard toolbar, click Start.

b. In the Zoo information window, click File, and then click
Open.

c. In the Open dialog box, click AnimalData.xml, and then
click Open.

At this point, your de-serialization code is being executed. If your
code fails, attempt to debug your code and repeat this step.

d. On the View menu, click Next.

5. Close the application. Save changes
to your solution and then quit Visual
Studio .NET.

a. Close the Zoo Information window.

b. In Visual Studio .NET, on the File menu, click Save All.

c. On the File menu, click Exit.

THIS PAGE INTENTIONALLY LEFT BLANK

