

Contents

Overview 1

Lesson: Understanding the Fundamentals
of a C# Program 2

Lesson: Using C# Predefined Types 7

Lesson: Writing Expressions 23

Lesson: Creating Conditional Statements 33

Lesson: Creating Iteration Statements 42

Review 50

Lab 2.1: Writing a Savings Account
Calculator 52

Module 2: Understanding
C# Language
Fundamentals

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, ActiveX, BizTalk, FrontPage, IntelliSense, JScript,
Microsoft Press, MSDN, PowerPoint, Visual Basic, Visual C++, Visual C#, Visual Studio, Win32,
Windows Media are either registered trademarks or trademarks of Microsoft Corporation in the
United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 2: Understanding C# Language Fundamentals iii

Instructor Notes
This module explains the syntax and structure of the C# programming
language. These topics are essential for students to understand in order to be
successful in the remainder of the course; however, it is likely that most
students will come into the class with some experience applying these concepts
in other languages.

After completing this module, students will be able to:

� Understand the fundamentals of a C# program.
� Use C# predefined types.
� Write expressions.
� Create conditional statements.
� Create iteration statements.

To teach this module, you need the following materials:

� Microsoft® PowerPoint® file 2609A_02.ppt
� Module 2, “Understanding C# Language Fundamentals”

To prepare for this module:

� Read all of the materials for this module.
� Complete the practices and lab.

 Presentation:
120 minutes

Lab:
60 minutes

Required materials

Preparation tasks

iv Module 2: Understanding C# Language Fundamentals

How to Teach This Module
This section contains information that will help you to teach this module.

Lesson: Understanding the Fundamentals of a C# Program
• Discuss the two different types of layout and point out that both are

acceptable but that consistency is important.

Lesson: Using C# Predefined Types
� There are two job aids for students: 2609A_JA1 that lists the C# predefined

types and their allowed values, and 2609A_JA2, which lists all the C#
statements. Encourage students to use these resources throughout the course
to assist with their selection of variable type declarations and writing
statements.

� You may want to use a white board to provide students with more examples
of declaring literal values and using escape characters.

Lesson: Writing Expressions
The practice entitled Using Operators is paper-based.

Practices
The hands-on practices for this module are scheduled to last approximately 10
minutes each. If the students cannot complete the steps, they may open the
solution file in a new instance of Microsoft Visual Studio® .NET. You may also
choose to demonstrate the solution on your instructor computer as in a guided
practice.

Review
The review questions are based mostly on conceptual understanding and
procedures that were covered thoroughly in the module. You can use a
discussion format to answer the questions so that everyone gets the benefit of
knowing the right answers.

Lab 2.1: Writing a Savings Account Calculator
Before beginning this lab, students should have completed all of the practices
and answered the review questions. Students must be able to perform most of
the tasks that they learned in the lessons and the practices. The lab is simple but
comprehensive. It leads students through the entire process of using variables,
loops and making decisions, as described in the lessons of this module.

 Module 2: Understanding C# Language Fundamentals 1

Overview

� Understanding the Fundamentals of a C# Program

� Using C# Predefined Types

� Writing Expressions

� Creating Conditional Statements

� Creating Iteration Statements

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This module introduces you to the basic syntax and structure of the C#
language. It describes C# data types, including variables and constants,
describes the Microsoft® .NET common type system, introduces conditional
and iterative statements, and explains how to create user-defined enumeration
types. Understanding the syntax of the language is fundamental to writing code
in C#.

After completing this module, you will be able to:

� Understand the fundamentals of a C# program.
� Use C# predefined types.
� Write expressions.
� Create conditional statements.
� Create iteration statements.

Introduction

Objectives

2 Module 2: Understanding C# Language Fundamentals

Lesson: Understanding the Fundamentals of a C#
Program

� What Is the Structure of a C# Program?

� How to Format Code in C#

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This lesson describes the structure of a C# program. This information is
provided as a resource for developers who have no experience with a C-style
language.

After completing this lesson, you will be able to:

� Identify C# statements.
� Use braces to group statements.
� Include comments in code.

This lesson includes the following topics:

� What Is the Structure of a C# Program?
� How to Format Code in C#

Introduction

Lesson objectives

Lesson agenda

 Module 2: Understanding C# Language Fundamentals 3

What Is the Structure of a C# Program?

� Program execution begins at Main()

� The using keyword refers to resources in the .NET
Framework class library

� Statements are commands that perform actions
� A program is made up of many separate statements
� Statements are separated by a semicolon
� Braces are used to group statements

using System;
class HelloWorld {

static void Main() {
Console.WriteLine ("Hello, World");

}
}

using System;
class HelloWorld {

static void Main() {
Console.WriteLine ("Hello, World");

}
}

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Before you write your first lines of code in C#, it is helpful to understand the
structure of the language.

The structure of a programming language specifies the elements that you must
include in your application and defines how to organize those elements so that
the compiler understands your code.

The following code shows the basic structure of a C# application:

using System;

class HelloWorld {
 static void Main() {
 Console.WriteLine ("Hello, World");
 }
}

The elements and organizing principles that are shown in the preceding six lines
of code are briefly described line by line in the following sections.

The using keyword refers to resources in the Microsoft .NET Framework class
library. Typically, you insert this keyword at the beginning of the program file,
usually several times, to reference various resources.

System is a namespace that provides access to all of the system functionality
upon which your application is built.

Programming in C#, or any object-oriented language, consists of writing
classes, which are used to create objects. In the preceding code example, the
class is named HelloWorld.

Methods describe the behavior of a class. In the third line, static void Main is a
global method that tells the compiler where to begin execution of the
application. Every C# application must include a Main method in one of the
classes.

Introduction

Definition

Example of C# structure

The using keyword

The System namespace

Class

The Main method

4 Module 2: Understanding C# Language Fundamentals

Statements are instructions that are completed to perform actions in C#
applications. Statements are separated by a semicolon to enable the compiler to
distinguish between them.

Some languages place one statement on one line. In C#, you can include
multiple statements on one line, or one statement on multiple lines. It is good
practice to write one statement per line; although, for the purpose of readability,
you may want to break a long statement into several lines.

Braces, { and }, are used to identify the beginning and end of blocks of code in
your application. Braces are used to group statements together. Every opening
brace must have one matching closing brace.

In the example, the braces following “class HelloWorld” enclose the items that
are in the HelloWorld class. The braces following “Main” are used to enclose
the statements that are in the Main method.

Microsoft Visual Studio® .NET provides several visual cues that help to ensure
that your braces are correctly matched. When you type a closing brace, the
enclosing element is briefly shown in bold. Also, the document outline
indicators to the left show the extent of a group of statements.

You do not need to add a semicolon after braces because the braces
themselves indicate the end of a group of statements, implying that the
statements within the braces are complete and separate blocks of code.

Statements

Braces

Note

 Module 2: Understanding C# Language Fundamentals 5

How to Format Code in C#

� Use indentation to indicate enclosing statements

� C# is case sensitive

� White space is ignored

� Indicate single line comments by using //

� Indicate multiple-line comments by using /* and */

using System;
class HelloWorld {

static void Main() {
Console.WriteLine ("Hello, World");

}
}

using System;
class HelloWorld {

static void Main() {
Console.WriteLine ("Hello, World");

}
}

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Formatting is another element of program design that helps you to organize
your code. You are encouraged to use formatting conventions to improve the
structure and readability of your code.

The following code sample demonstrates how to apply the formatting principles
of indentation, case sensitivity, white space, and comments:

using System;

class HelloWorld {
 static void Main() {
 Console.WriteLine ("Hello, World");
 //writes Hello, World
 }
}

Indentation indicates that a statement is within an enclosing statement.
Statements that are in the same block of statements should all be indented to the
same level. This is an important convention that improves the readability of
your code. Although indenting is not a requirement, or enforced by the
compiler, it is a recommended best practice.

C# is case sensitive, which means that the compiler distinguishes between
uppercase and lowercase characters. For example, the words “code,” “Code,”
and “CODE” are differentiated in your application; you cannot substitute one
for the other.

White space is ignored by the compiler. Therefore, you can use spaces to
improve the readability and formatting of your code. The only exception is that
the compiler does not ignore spaces between quotation marks.

Introduction

Example

Indentation

Case sensitivity

White space

6 Module 2: Understanding C# Language Fundamentals

You can include single-line comments in your application by inserting a double
slash (//) followed by your comment.

Alternately, if your comment is lengthy and spans multiple lines, you can use
slash asterisk (/*) to indicate the beginning of a comment and asterisk slash (*/)
to indicate the end of your comments. The following example of a multiple line
comment includes an asterisk at the beginning of each line. These asterisks are
optional and you can include them to make your comment easier to identify.

/*
 * Multiple line comment
 * This example code shows how to format
 * multiple line comments in C#
 */

/* alternative use of this comment style */

You can place the opening brace at the end of the line that starts a statement
group, or you can place the opening brace on the line following the method or
class, as shown in the following example:

using System;

class HelloWorld
{
 static void Main()
 {
 Console.WriteLine("Hello, World");
 }
}

Both layouts are acceptable and correct. It is important, however, to be
consistent. In the examples in Course 2609, Introduction to C# Programming
with Microsoft .NET, the opening brace is placed at the end of the line. Your
organization should choose one layout that everyone uses.

Comments

Multiple-line comment
example

Layout

 Module 2: Understanding C# Language Fundamentals 7

Lesson: Using C# Predefined Types

� What Are Predefined Types?

� How to Declare and Initialize Variables

� How to Declare and Initialize Strings

� How to Create and Use Constants

� How to Create and Use Enumeration Types

� How to Convert Between Types

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This lesson introduces the basic syntax of the C# language and the .NET
common type system, including how to use types, variables, constants,
enumerations, and strings.

When you write any application, you must represent data in some way. This
process fundamentally depends upon working with types.

After completing this lesson, you will be able to:

� Declare and initialize variables.
� Create and use strings.
� Create and use constants.
� Create and use enumerated types.
� Convert between types.

This lesson includes the following topics and activity:

� What Are Predefined Types?
� How to Declare and Initialize Variables
� How to Declare and Initialize Strings
� How to Create and Use Constants
� How to Create and Use Enumeration Types
� How to Convert Between Types
� Practice: Using C# Types

Introduction

Lesson objectives

Lesson agenda

8 Module 2: Understanding C# Language Fundamentals

What Are Predefined Types?

� Types are used to declare variables

� Variables store different kinds of data

� Let the data that you are representing determine your
choice of variable

� Predefined types are those provided by C# and the .NET
Framework

� You can also define your own

� Variables must be declared before you can use them

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Whenever your application must store data temporarily for use during
execution, you store that data in a variable. You can think of variables as
storage boxes. These boxes come in different sizes and shapes, called types,
which provide storage for various kinds of data. For example, the type of
variable that is used to store a number is different than one that is used to store
a person’s name.

Predefined types are those that are supplied by the C# language and the .NET
Framework. The following table lists the predefined types and describes the
data that they are designed to store.

Predefined type Definition # Bytes

byte Integer between 0 and 255 1

sbyte Integer between -128 and 127 1

short Integer between -32768 and 32767 2

ushort Integer between 0 and 65535 2

int Integer between -2147483648 and 2147483647 4

uint Integer between 0 and 4294967295 4

long Integer between -9223372036854775808 and
9223372036854775807

8

ulong Integer between 0 and 18446744073709551615 8

bool Boolean value: true or false 1

float Single-precision floating point value (non-whole
number)

4

double Double-precision floating point value 8

decimal Precise decimal value to 28 significant digits 12

object Base type of all other types N/A

char Single Unicode character between 0 and 65535 2

string An unlimited sequence of Unicode characters N/A

Introduction

Definition

 Module 2: Understanding C# Language Fundamentals 9

Suppose that you are writing an application that allows a user to purchase items
over the Internet with a credit card. Your application must handle several pieces
of information: the person’s name, the amount of the purchase, the credit card
number, and the expiration date on the card. To represent this information in
your application, you use different types.

Let the data that you are representing determine your choice of type. For
example, if something can be only true or false, a bool type is the obvious
choice. A decimal type is a good choice for currency. When working with
integers, an int type is the typical choice, unless there is a specific reason to
choose another type.

In addition to the predefined types that are supplied by the .NET Framework,
you can define your own types to hold whatever data you choose.

Storing data

Choosing a type

10 Module 2: Understanding C# Language Fundamentals

How to Declare and Initialize Variables

Declaring
� Assign a type
� Assign a name
� End with a semicolon

int numberOfVisitors;int numberOfVisitors;

Initializing
� Use assignment operator
� Assign a value
� End with a semicolon

11

22

33

11

22

33

Assigning literal values
� Add a type suffix11

decimal deposit = 100M;decimal deposit = 100M;

string bear;string bear;

string bear = "Grizzly";string bear = "Grizzly";

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A variable is a storage location for a particular type. For example, if your
application must process a currency value, it requires a variable to hold that
value.

Before you can use a variable, you must declare it. By declaring a variable, you
are actually reserving some storage space for that variable in memory. After
declaring a variable, you must initialize it by assigning a value to it.

The syntax for declaring a variable is the type declaration followed by the
variable name. For example:

int myInteger;
bool fileWasClosed;

The following list identifies some best practices for naming your variables:

� Assign meaningful names to your variables.
� Use camel case. In camel case, the first letter of the identifier is lowercase,

and the first letter of each subsequent word in the identifier is capitalized,
such as newAccountBalance.

� Do not use C# keywords.
� Although C# is case sensitive, do not create variables that differ only by

case.

Introduction

Syntax

Naming variables

 Module 2: Understanding C# Language Fundamentals 11

To initialize a variable, you assign it a value. To assign a value to a variable,
use the assignment operator (=), followed by a value, and then a semicolon, as
shown in the following example:

int myVariable;
myVariable = 1;

You can combine these steps, as shown in the following example:

int myVariable = 1;

More examples of declaring variables are shown in the following code:

int x = 25;
int y = 50;
bool isOpen = false;
sbyte b = -55;

When you assign 25 to x in the preceding code, the compiler places the literal
value 25 in the variable x. The following assignment, however, generates a
compilation error:

decimal bankBalance = 3433.20; // ERROR!

This code causes an error because the C# compiler assumes than any literal
number with a decimal point is a double, unless otherwise specified. You
specify the type of the literal by appending a suffix, as shown in the following
example:

decimal bankBalance = 3433.20M;

The literal suffixes that you can use are shown in the following table.
Lowercase is permitted.

Category Suffix Description

Integer U Unsigned

 L Long

 UL Unsigned long

Real number F Float

 D Double

 M Decimal

 L Long

You specify a character (char type) by enclosing it in single quotation marks:

char myInitial = 'a';

Initializing variables

Assigning literal values

Characters

12 Module 2: Understanding C# Language Fundamentals

Some characters cannot be specified by being placed in quotation marks—for
example, a newline character, a beep, or a quotation mark character. To
represent these characters, you must use escape characters, which are shown in
the following table.

Escape sequence Character name

\' Single quotation mark

\" Double quotation mark

\\ Backslash

\0 Null

\a Alert

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\v Vertical tab

For example, you can specify a quotation mark as follows:

char quoteMark = '\'';

The Visual Studio .NET development environment provides useful tools that
enable you to examine the values of variables while your application is running.

To examine the value of a variable, set a breakpoint at the variable that you
want to examine, run your application in debug mode, and then use the debug
windows to examine the values.

1. Set a breakpoint by clicking in the left margin in the source window. The
breakpoint is indicated by a red dot. You can also set breakpoints by
clicking New Breakpoint on the Debug menu, or by pressing SHIFT+B.

2. Run your application in debug mode by clicking Start on the standard
toolbar, or by clicking Start on the Debug menu, or by pressing F5.

3. Your application runs until it encounters a breakpoint. When the application
encounters a breakpoint, it pauses, and the development environment
highlights the line of code that will be executed next.

Escape characters

Examining variables in
Visual Studio .NET

 Module 2: Understanding C# Language Fundamentals 13

4. Use the debug windows to view the value of the variables. To open debug
windows, on the Debug menu, point to Windows, and then click Autos, or
click Locals, or click This.

The Autos window displays variables used in the current and previous
statements. By default, the Autos window is visible at the bottom of the
development environment when you are in debug mode.
The Locals window displays local variables, and the This window shows
objects that are associated with the current method.

5. To proceed to the next breakpoint when you are ready to continue executing
your program, you can press F5 or click Continue in the Debug menu. Or,
you can execute one program step at a time by pressing F10 or clicking Step
Over on the Debug menu.

14 Module 2: Understanding C# Language Fundamentals

How to Declare and Initialize Strings

� Example string

� Declaring literal strings

� Using escape characters

� Using verbatim strings

� Understanding Unicode

string s = "Hello World"; // Hello Worldstring s = "Hello World"; // Hello World

string s = "Hello\nWorld"; // a new line is addedstring s = "Hello\nWorld"; // a new line is added

string s = @"Hello\n"; // Hello\nstring s = @"Hello\n"; // Hello\n

string s = "\"Hello\""; // "Hello"string s = "\"Hello\""; // "Hello"

The character “A” is represented by “U+0041”The character “A” is represented by “U+0041”

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Strings are one of the most commonly used types.

A string variable contains a sequence of alphanumeric characters that are used
as input for calculations or searches.

There is no limit to the number of characters that can make up a string.

You declare a string the same way you declare any other variable, by assigning
a type (string) and giving it a name.

You can assign a literal value to the string variable by enclosing the value in
quotation marks.

string sample = "Hello World";

You can also include escape characters in a string.

For example, if you want to create a string that is written on two lines, you can
insert a line break within your string by using the \n escape character, as shown
in the following example:

string sample = "Hello\nWorld";

This code produces the following output:

Hello
World

Introduction

Definition

Note

Syntax

Declaring literal strings

Using escape characters

 Module 2: Understanding C# Language Fundamentals 15

If you want to insert a tab, use the \t escape character, as shown in the following
example:

string sample = "Hello\tWorld"; // produces Hello World

To insert a backslash, which is useful for including file path locations, use the \\
escape character, as shown in the following example:

string sample = "c:\\My Documents\\sample.txt";
// produces c:\My Documents\sample.txt

A verbatim string is a string that is interpreted by the compiler exactly as it is
written, which means that even if the string spans multiple lines or includes
escape characters, these are not interpreted by the compiler and they are
included with the output. The only exception is the quotation mark character,
which must be escaped so that the compiler can recognize where the string
ends.

A verbatim string is indicated with an at sign (@) character followed by the
string enclosed in quotation marks. For example:

string sample = @"Hello";
string sample = @"Hello\tWorld"; // produces "Hello\tWorld"

The following code shows a more useful example:

string sample = @"c:\My Documents\sample.txt";
// produces c:\My Documents\sample.txt

If you want to use a quotation mark inside a verbatim string, you must escape it
by using another set of quotation marks. For example, to produce "Hi" you use
the following code:

string s = @"""Hi"""; // Note: three quotes on either side

The preceding code produces the following string:

"Hi"

The .NET Framework uses Unicode UTF-16 (Unicode Transformation Format,
16-bit encoding form) to represent characters. C# also encodes characters by
using the international Unicode Standard. The Unicode Standard is the current
universal character encoding mechanism that is used to represent text in
computer processing. The previous standard was ASCII.

The Unicode Standard represents a significant improvement over ASCII
because Unicode assigns a unique numeric value, called a code point, and a
name to each character that is used in all the written languages of the world.
ASCII defined only 128 characters, which meant that some languages could not
be correctly displayed in a computer application.

For example, the character “A” is represented by the code point “U+0041” and
the name “LATIN CAPITAL LETTER A”. Values are available for over
65,000 characters, and there is room to support up to one million more. For
more information, see The Unicode Standard at www.unicode.org.

Using verbatim strings

Understanding Unicode

16 Module 2: Understanding C# Language Fundamentals

How to Create and Use Constants

� Declared using the const keyword and a type

� You must assign a value at the time of declaration

const int earthRadius = 6378;//km

const long meanDistanceToSun = 149600000;//km

const double meanOrbitalVelocity = 29.79D;//km sec

const int earthRadius = 6378;//km

const long meanDistanceToSun = 149600000;//km

const double meanOrbitalVelocity = 29.79D;//km sec

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A constant is a variable whose value remains constant. Constants are useful in
situations where the value that you are using has meaning and is a fixed
number, such as pi, the radius of the earth, or a tax rate.

Constants make your code more readable, maintainable, and robust. For
example, if you assign a value of 6378 to a constant named earthRadius, when
you use this value in calculations it is immediately apparent what value you are
referring to, and it is not possible for someone to assign a different value to
earthRadius.

You declare a constant by using the const keyword and a type. You must assign
a value to your constants at the time that you declare them.

const int earthRadius = 6378; // km
const long meanDistanceToSun = 149600000; // km
const double meanOrbitalVelocity = 29.79D; // km/sec

Introduction

Benefits

Syntax

Examples

 Module 2: Understanding C# Language Fundamentals 17

How to Create and Use Enumeration Types

� Defining Enumeration Types

� Using Enumeration Types

� Displaying the Variables

enum Planet {
Mercury,
Venus,
Earth,
Mars

}

enum Planet {
Mercury,
Venus,
Earth,
Mars

}

Planet aPlanet = Planet.Mars;Planet aPlanet = Planet.Mars;

Console.WriteLine("{0}", aPlanet); //Displays Mars Console.WriteLine("{0}", aPlanet); //Displays Mars

*****************************ILLEGAL FOR NON-TRAINER USE******************************

An enumeration type specifies a group of named numeric constants. An
enumeration type is a user-defined type, which means that you can create an
enumeration type, declare variables of that type, and assign values to those
variables. The purpose of an enumeration type is to represent constant values.

In addition to providing all the advantages of constants, enumerations:

� Make your code easier to maintain by ensuring that your variables are
assigned only anticipated values.

� Allow you to assign easily identifiable names to the values, thereby making
your code easier to read.

� Make your code easier to type, because as you assign enumeration values,
Microsoft IntelliSense® displays a list of the possible values that you can
use.

� Allow you to specify a set of constant values and define a type that will
accept values from only that set.

You create an enumeration type by using the enum keyword, assigning a name,
and then listing the values that your enumeration can take.

It is recommended that you use Pascal case for the type name and each
enumeration member. In Pascal case, you capitalize the initial letter of each
word in the identifier, such as ListOfThePlanets.

Introduction

Benefits

Syntax

18 Module 2: Understanding C# Language Fundamentals

An enumeration type is shown in the following example:

enum Planet {
 Mercury,
 Venus,
 Earth,
 Mars

}

The preceding code creates a new type, Planet. You can declare variables of
this type and assign them values from the enumeration list.

When you want to refer to a specific member in an enumeration, you use the
enumeration name, a dot, and the member name.

For example, the following code declares a variable innerPlanet of type
Planet, and assigns it a value:

Planet innerPlanet = Planet.Venus;

You can declare an enumeration in a class or a namespace but not in a method.

If the members of your enumeration must have a specific value, you can assign
that value when you declare the enumeration. The following code assigns a
value based on the equatorial radius of the inner planets:

enum Planets {
 Mercury = 2437,
 Venus = 6095,
 Earth = 6378
}

You can use any integer except char as the base type that is used for the
enumeration by specifying the type after the name of the enumeration type. For
example:

enum Planets : uint {
 Mercury = 2437,
 Venus = 6095,
 Earth = 6378
}

Example

Referring to a specific
member

Assigning values to
enumeration members

Enumeration base types

 Module 2: Understanding C# Language Fundamentals 19

How to Convert Between Types

� Implicit
� Performed by the compiler on operations that are

guaranteed not to truncate information

� Explicit
� Where you explicitly ask the compiler to perform a

conversion that otherwise could lose information

int x = 123456; // int is a 4-byte integer
long y = x; // implicit conversion to a long

int x = 123456; // int is a 4-byte integer
long y = x; // implicit conversion to a long

int x = 65537;
short z = (short) x;
// explicit conversion to a short, z == 1

int x = 65537;
short z = (short) x;
// explicit conversion to a short, z == 1

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When designing applications, you often must convert data from one type to
another. Conversion can be necessary when you perform operations on two
types that are not the same.

There are two types of conversions in the .NET Framework: implicit and
explicit conversions.

� An implicit conversion is a conversion that is automatically performed by
the common language runtime on operations that are guaranteed to succeed
without truncating information.

� An explicit conversion is a conversion that requires you to explicitly ask the
compiler to perform a conversion that otherwise could lose information or
produce an error.

For example, when a currency value is entered on a Web page, the type of the
data may actually be text. A programmer must then convert that text to a
numeric value.

Another reason for conversion is to avoid number overflow. If you try to add
two bytes, the compiler returns an int. It returns an int because a byte can hold
only eight bits, up to a value of 255, so the result of adding two bytes could
easily result in a number greater than 255. Therefore, the resulting value is
converted by the compiler and returned as an int.

Introduction

Definitions

Why convert?

20 Module 2: Understanding C# Language Fundamentals

The following table shows the implicit type conversions that are supported in
C#:

From To

sbyte short, int, long, float, double, decimal

byte short, ushort, int, uint, long, ulong, float, double, decimal

short int, long, float, double, decimal

ushort int, uint, long, ulong, float, double, decimal

int long, float, double, decimal

uint long, ulong, float, double, decimal

long, ulong float, double, decimal

float double

char ushort, int, uint, long, ulong, float, double, decimal

Notice that implicit conversions can be performed only from a smaller type to a
larger type or from an unsigned integer to a signed integer.

The following example shows an implicit conversion:

int x = 123456; // int is a 4-byte integer
long y = x; // implicit conversion to a long

The syntax for performing an explicit conversion is shown in the following
code:

type variable1 = (cast-type) variable2;

The type in the parentheses indicates to the compiler that the value on the right
side is to be converted to the type specified in the parentheses.

The following example shows explicit type conversion:

int x = 500;
short z = (short) x;
// explicit conversion to a short, z contains the value 500

It is important to remember that explicit conversions can result in data loss. For
example, in the following code, a decimal is explicitly converted to an int:

decimal d = 1234.56M;
int x = (int) d;

The result of this conversion is that x is assigned a value of 1234.

The .NET Framework class library also provides support for type conversions
in the System.Convert class.

Implicit conversions

Example

Explicit conversions

Example

Other conversions

 Module 2: Understanding C# Language Fundamentals 21

Practice: Using C# Types

� In this practice, you will declare and
initialize variables and then examine them
using the debugging tool

� In this practice, you will declare and
initialize variables and then examine them
using the debugging tool

Hands-on PracticeHandsHands--on Practiceon Practice

10 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will declare and initialize several variables and then examine them with the
debugging tool.

The starter code contains descriptions of several tasks for you to perform. Under each task is a line
similar to the following:

Output(null);

When you replace the word null with the variable that you declared, the value of the variable
appears in the form. For example, if you are asked to declare an integer and assign it the value 42,
write the following code:

int x = 42;
Output(x);

The solution code for this practice is located in install_folder\Practices\Mod02\Types_Solution
\Types.sln. Start a new instance of Visual Studio .NET before opening the solution.

Tasks Detailed steps

1. Start Visual Studio .NET,
and then open install_folder\
Practices\Mod02
\Types\Types.sln.

a. Start a new instance of Visual Studio .NET.

b. On the Start Page, click Open Project.

c. In the Open Project dialog box, browse to install_folder\Practices
\Mod02\Types, click Types.sln, and then click Open.

d. In Solution Explorer, click Form1.cs, and then press F7 to open the
Code Editor.

2. Review the tasks for this
practice.

a. On the View menu, point to Show Tasks, and then click All.

b. Review the tasks that are listed in the Task List window.

22 Module 2: Understanding C# Language Fundamentals

Tasks Detailed steps

3. Declare, initialize, and
display a variable with the
value Suzan Fine.

a. In the Task List, double-click TODO: 1 Initialize the suzanName
variable with the value “Suzan Fine”.

b. Assign the value Suzan Fine to the variable suzanName.

c. Change the word null on the following line to suzanName.

4. Declare, initialize, and
display a variable with the
value 135.20.

a. In the Task List, double-click TODO: 2 Declare and initialize a
variable to hold a currency amount (135.20).

b. Declare a variable, and assign it the value 135.20.

Remember that the value 135.20 is assumed to be a double, unless you
append a suffix that indicates otherwise.

c. Change the word null on the following line to the name of your
variable.

5. Declare a Planet variable,
assign the value
Planet.Earth to it, and
display its value.

a. In the Task List, double-click TODO 3: Using the Planet
enumeration, assign Planet.Earth to ourPlanet.

b. At the top of the source code file, locate the Planet enumeration.

c. Declare a variable of the enumeration type:

Planet ourPlanet;

d. Assign the value Planet.Earth to the variable.

e. Change the word null on the following line to the name of your
variable.

6. Use the debugging tool to
step through your code,
examining the values of the
variables by using the
Locals window.

a. Locate the line int x = 42; and set a breakpoint at that line.

b. Press F5 to compile and run your application.

c. In Visual Studio .NET, on the Debug menu, point to Windows, and
then click Locals.

d. In your application window, click Run.

e. Step through your code, one line at a time, by clicking the Step Over
button shown on the left, or by pressing F10.

f. Examine the Locals and Autos windows to check that your program is
assigning values correctly.

7. Save your application, and
then quit Visual Studio
.NET.

a. Save your application.

b. Quit Visual Studio .NET.

Optional: The solution code declares additional variables.

� Use the debugging tool to examine the value of the variables.
� Explain why myShort has the value of 1 after the assignment.

 Module 2: Understanding C# Language Fundamentals 23

Lesson: Writing Expressions

� What Are Expressions and Operators?

� How to Determine Operator Precedence

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This lesson explains how to use operators to create expressions.

After completing this lesson, you will be able to use operators to create
expressions.

This lesson includes the following topics and activity:

� What Are Expressions and Operators?
� How to Determine Operator Precedence
� Practice: Using Operators

Introduction

Lesson objective

Lesson agenda

24 Module 2: Understanding C# Language Fundamentals

What Are Expressions and Operators?

� Operators Are Symbols Used in Expressions

Common OperatorsCommon OperatorsCommon Operators

• Increment / decrement

• Arithmetic

• Relational

• Equality

• Conditional

• Assignment

ExampleExample

++ --

* / % + -

< > <= >=

== !=

&& || ?:

= *= /= %= += -= <<=
>>= &= ^= |=

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The purpose of writing an expression is to perform an action and return a value.
For example, you can write an expression to perform a mathematical
calculation, assign a value, or compare two values.

An expression is a sequence of operators and operands. An operator is a
concise symbol that indicates the action that you want to occur in your
expression. An operand is the value on which an operation is performed. An
operator is specifically designed to produce a new value from the value that is
being operated on.

Some of the common types of operators that you can use in your C#
applications include:

� Increment and decrement. Used to increase or decrease a value by one.
� Arithmetic. Used to perform arithmetic calculations like addition.
� Relational. Used to define greater than, greater than or equal to, less than,

and so on.
� Equality. Used to state equal to, or not equal.
� Conditional. Used to define and/or situations.
� Assignment. Used to assign a value to a variable.

Most operators work only with numeric data, but equality and assignment
operators can also work on strings of text.

Introduction

Definitions

Types of operators

 Module 2: Understanding C# Language Fundamentals 25

The following table lists all the operators that can be used in a C# application:

Operator type Operator

Primary (x), x.y, f(x), a[x], x++, x--, new, typeof, sizeof, checked,

unchecked

Unary +, -, !, ~, ++x, --x, (T)x

Mathematical + , - ,*, /, %

Shift << , >>

Relational < , > , <= , >= , is

Equality ==

Logical & , | , ^

Conditional && , || , ?

Assignment = , *= , /= , %= , += , -= , <<=, >>= , &= , ^= , |=

It is important to notice the difference between the assignment operator
and the equality operator. Notice that “is equal to” is represented by two equal
signs (==), because a single equal sign (=) is used to assign a value to a
variable.

int x = 10; // assignment
int y = 20;
int z = x + y; // mathematical plus (z == 30)

C# makes it possible for you to use concise syntax to manipulate data in
complex ways. The following table lists the C# operator shortcuts.

Shortcut Identical Expression

x++ , ++x x = x + 1

The first form increments x after the expression is evaluated; the second
form increments x before the expression is evaluated.

x--, --x x = x - 1

x += y x = x + y

x -= y x = x – y

x *= y x = x * y

x /= y x = x / y

x %= y x = x % y

x >>= y x = x >> y

x <<= y x = x << y

x &= y x = x & y

x |= y x = x | y

x ^= y x = x ^ y

int x = 11;
int z = 20;
z += x;

After the preceding expressions are evaluated, z has the value 31.

Note

Example

Operator shortcuts

Example

26 Module 2: Understanding C# Language Fundamentals

The increment and decrement operators can occur either before or after an
operand. For example, x++ and ++x are both equivalent to x=x+1. However,
when these operators occur in expressions, x++ and ++x behave differently.

++x increments the value of x before the expression is evaluated. In other
words, x is incremented and then the new value of x is used in the expression.

int x = 5;
(++x == 6) // true or false?

The answer is true.

x++ increments the value of x after the expression is carried out; therefore, the
expression is evaluated using the original value of x.

x = 5
(x++ == 6) // true or false?

The answer is false.

int x = 10
int y = x++; // y is equal to ten
int z = x + y; // z is equal to twenty-one

To improve the readability of your code, place increment and decrement
operators in separate statements.

An exclamation point (!) is the logical negation operator. It is used in an
assignment to reverse the value of a Boolean.

If bool b is false, !b is true.

If b is true, !b is false.

For example:

bool isAwake = true;
bool isAsleep = !isAwake;

In addition to the obvious + - * and / operators, there is a remainder operator
(%) that returns the remainder of a division operation. For example:

int x = 20 % 7; // x == 6

Increment and
decrement

Example 1

Example 2

Example 3

Tip

Logical negation
operator

Mathematical operators

 Module 2: Understanding C# Language Fundamentals 27

C# provides logic operators, as shown in the following table.

Logic operator type Operator Description

Conditional && x && y returns true if x is true AND y is true; y

is evaluated only if x is true

 | | x || y returns true if x is true OR y is true; y is
evaluated only if x is false

Boolean & x & y returns true if x AND y are both true

 | x | y returns true if either x OR y is true

 ^ x ^ y returns true if x OR y is true, but false if
they are both true or both false

Developers often use conditional logic operators. These operators follow the
same rules as Boolean logic operators but have the useful characteristic that the
expressions are evaluated only if they need to be evaluated.

You can also apply the plus and the equality operators to string types. The plus
concatenates strings whereas the string equality operator compares strings.

string a = "semi";
string b = "circle";
string c = a + b;
string d = "square";

The string c has the value semicircle.

bool sameShape = ("circle" == "square");

sameShape = (b == d);

The Boolean sameShape is false in both statements.

Logic operators

Using operators with
strings

28 Module 2: Understanding C# Language Fundamentals

How to Determine Operator Precedence

� Expressions are evaluated according to operator
precedence

� Parentheses can be used to control the order of evaluation

� Operator precedence is also determined by associativity
� Binary operators are left-associative
� Assignment and conditional operators are right-associative

(10 + 20) / 5 result is 6
10 + (20 / 5) result is 14

(10 + 20) / 5 result is 6
10 + (20 / 5) result is 14

10 + 20 / 5 result is 1410 + 20 / 5 result is 14

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Developers often create expressions that perform more than one calculation,
comparison, or a combination of the two. In these situations, the precedence of
the operators controls the order in which the expression is evaluated. If you
want the operations performed in a different order; you must tell the compiler to
evaluate the expression differently by using parentheses.

The order in which operators are evaluated in an expression is shown in the
following precedence table.

Operator type Operator

Primary x.y, f(x), a[x], x++, x--, new, typeof, checked, unchecked

Unary +, -, !, ~, ++x, --x, (T)x

Multiplicative *, /, %

Additive + , -

Shift << , >>

Relational < , > , <= , >= , is, as

Equality == , !=

Logical & , ^ , |

Conditional && , || , ?:

Assignment = , *= , /= , %= , += , -= , <<=, >>= , &= , ^= , |=

For example, the plus operator + has a lower precedence than the multiplication
operator, so a + b * c means multiply b and c, and then add the sum to a.

Introduction

Evaluation order

 Module 2: Understanding C# Language Fundamentals 29

Use parentheses to show the order of evaluation and to make the evaluation
order of your expressions more readable. Extra parentheses are removed by the
compiler and do not slow your application in any way, but they can make an
expression much more readable.

For example, in the following expression, the compiler will multiply b by c and
then add d.

a = b * c + d

Using parentheses, in the following expression, the compiler first evaluates
what is in parentheses, (c + d), and then multiplies by b.

a = b * (c + d)

The following examples demonstrate operator precedence and the use of
parentheses for controlling the order of evaluation in an expression:

10 + 20 / 5 (result is 14)
(10 + 20) / 5 (result is 6)
10 + (20 / 5) (result is 14)
((10 + 20) * 5) + 2 (result is 152)

All binary operators, those that take two operands, are left-associative, meaning
that the expression is evaluated from left to right, except for assignment
operators. Assignment operators and conditional operators are right-associative.

For example:

x + y + z is evaluated as (x + y) + z

x = y = z is evaluated as x = (y = z)

Parentheses

Associativity

30 Module 2: Understanding C# Language Fundamentals

Practice: Using Operators

� In this practice, you will predict the values
calculated in expressions

� In this practice, you will predict the values
calculated in expressions

Paper-based PracticePaperPaper--based Practicebased Practice

10 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this paper-based practice, look at each line of code, and then answer the question. Assume that
the code is executed in sequence, as written.

Tasks Detailed steps

1. Read the code in the right
column, and then answer the
following question.

a. Read the following code:

int x = 10;

int y = x++;

b. Answer the following question.

What is the value of y? Why?

y == 10, because x was incremented after the assignment.

2. Read the code in the right
column, and then answer the
following question.

a. Read the following code, which is continued from the preceding step:

x += 10;

b. Answer the following question.

What is the value of x? Why?

x == 21. x was incremented to 11 after being assigned to y in step 1 and has 10 added to it in step 2.

 Module 2: Understanding C# Language Fundamentals 31

Tasks Detailed steps

3. Read the code in the right
column, and then answer the
following question.

a. Read the following code, which is continued from the preceding step:

int z = 30;

int a = x + y * z;

b. Answer the following question.

What is the value of a? Why? Write this in a more readable form.

a == 321 because the multiplication takes precedence, 10 * 30 is calculated first, resulting in 300, and
then the addition takes place giving 300 + 21.
int a = x + (y * z);

4. Read the code in the right
column, and then answer the
following question.

a. Read the following code, which is continued from the preceding step:

int a = 10;

int b = a++;

bool myBool = (a == b);

b. Answer the following question.

What does this code do? What is the value of myBool?

This code declares and initializes a to 10. Then b is initialized to 10 (because a post-increments). It then
compares a and b for equality. Because they are not equal, the expression is false, and myBool is
assigned the value false.

5. Start Visual Studio .NET,
and then open
install_folder\Practices
\Mod02\Operators
\Operators.sln.

a. Start a new instance of Visual Studio .NET.

b. On the Start Page, click Open Project.

c. In the Open Project dialog box, browse to
install_folder\Practices\Mod02\Operators, click Operators.sln, and
then click Open.

d. In Solution Explorer, click Form1.cs, and then press F7 to open the
Code Editor.

\

32 Module 2: Understanding C# Language Fundamentals

Tasks Detailed steps

6. Check your answers by
stepping through the code.

a. Locate the line int x = 10; and set a breakpoint at that line.

b. Press F5 to compile and run the application.

c. If the Locals window is not visible, in Visual Studio .NET, on the
Debug menu, point to Windows, and then click Locals.

d. In your application window, click Run.

e. Step through your code, a line at a time, by clicking the Step Over
button, or by pressing F10.

f. Examine the Locals and Autos windows to check that your application
assigns values correctly.

7. Quit Visual Studio .NET. � Quit Visual Studio .NET.

 Module 2: Understanding C# Language Fundamentals 33

Lesson: Creating Conditional Statements

� How and When to Use the if Statement

� How and When to Use the switch Statement

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This lesson introduces you to conditional statements. You learn how and when
to use if and switch statements.

After completing this lesson, you will be able to:

� Use the if…else conditional statement to manage the flow of control in an
application.

� Use the switch conditional statement to manage the flow of control in an
application.

This lesson includes the following topics and activity:

� How and When to Use the if Statement
� How and When to Use the switch Statement
� Practice: Using Conditional Statements

Introduction

Lesson objectives

Lesson agenda

34 Module 2: Understanding C# Language Fundamentals

How and When to Use the if Statement

� if
if (sales > 10000) {

bonus += .05 * sales;
}

if (sales > 10000) {
bonus += .05 * sales;

} if (sales > 10000) {
bonus += .05 * sales;

}
else {

bonus = 0;
}

if (sales > 10000) {
bonus += .05 * sales;

}
else {

bonus = 0;
}

� if else

� if else if
if (sales > 10000) {

bonus += .05 * sales;
}
else if (sales > 5000) {

bonus = .01 * sales;
}
else {

bonus = 0;
if (priorBonus == 0) {

//ScheduleMeeting;
}

}

if (sales > 10000) {
bonus += .05 * sales;

}
else if (sales > 5000) {

bonus = .01 * sales;
}
else {

bonus = 0;
if (priorBonus == 0) {

//ScheduleMeeting;
}

}

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A conditional statement allows you to control the flow of your application by
selecting the statement that is executed, based on the value of a Boolean
expression. There are three variations to the conditional if statement, including:
if, if else, and if else if.

When the expression that is being evaluated is true, the code following the if
statement is executed.

The syntax of an if statement is as follows:

if (boolean-expression) statement

In the following example, if the value of sales is greater than 10000, the bonus
calculation statement is performed:

if (sales > 10000) {
 bonus += .05 * sales;
}

Introduction

Declaring an if
statement

 Module 2: Understanding C# Language Fundamentals 35

The syntax for declaring an if else statement is as follows:

if (boolean-expression) statement1 else statement2

Statement1 is executed if the Boolean expression is true. Otherwise, statement2
is executed.

For example:

if (sales > 10000) {
 bonus += .05 * sales;
}
else {
 bonus = 0;
}

You can nest if statements by writing them in the form of an if else if statement,
as shown in the following example:

if (sales > 10000) {
 bonus += .05 * sales;
}
else if (sales > 5000) {
 bonus = .01 * sales;
}
else {
 bonus = 0;
 if (priorBonus == 0) {
 // Schedule a Meeting;
 }
}

You can evaluate more than one expression in an if statement. For example, the
following if statement evaluates to true if the value of sales is greater than
10,000 but less than 50,000:

if ((sales > 10000) && (sales < 50000)) {
 // sales are between 10001 and 49999 inclusive
}

The ternary operator (?) is a shorthand form of the if…else statement. It is
useful when you want to perform a comparison and return a Boolean value.

For example, the following expression assigns the value 0 to bonus if the value
of sales is less than 10000:

bonus = (sales > 10000) ? (sales * .05) : 0 ;

Declaring an if else
statement

Declaring an if else if
statement

Evaluating multiple
expressions

Using the ternary
operator

36 Module 2: Understanding C# Language Fundamentals

How and When to Use the switch Statement

int moons;
switch (aPlanet){

case Planet.Mercury:
moons = 0;
break;

case Planet.Venus:
moons = 0;
break;

case Planet.Earth:
moons = 1;
break;

}

int moons;
switch (aPlanet){

case Planet.Mercury:
moons = 0;
break;

case Planet.Venus:
moons = 0;
break;

case Planet.Earth:
moons = 1;
break;

}

� Default case

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A switch statement selects the code to execute based upon the value of a test.
However, a switch statement enables you to test for multiple values of an
expression rather than just one condition.

Switch statements are useful for selecting one branch of execution from a list of
mutually-exclusive choices. Using switch statements makes your application
more efficient and your code more readable than using multiple, nested if
statements.

A switch statement takes the form of a switch expression followed by a series
of switch blocks, indicated by case labels. When the expression in the argument
evaluates to one of the values in a particular case, the code immediately
following that case executes. When no match occurs, a default condition is
executed, if one is defined.

You must include a break statement at the end of each switch block, or a
compile error occurs. It is not possible to fall through from one switch block to
the following switch block.

In the following switch statement, assume that “x” is an integer:

switch (x) {
 case 0:
 // x is 0
 break;
 case 1:
 // x is 1
 break;
 case 2:
 // x is 2
 break;
}

Introduction

Syntax

Break

Example

 Module 2: Understanding C# Language Fundamentals 37

The execution sequence is as follows:

1. x is evaluated.
2. If one of the constant values in the case label is equal to the value of the

switch expression, control is passed to the statement following that case
label.

3. If none of the case labels match the value of the expression, control is
passed to the end point of the case statement, or to the default case, which is
described in the following section.

If x has the value 1, the statements following the case 1 label are selected and
executed.

Often, you want to define a default condition so that values that are not handled
specifically can still be caught. The following example shows how to define a
default condition:

switch (x) {
 case 0:
 // x is 0
 break;
 case 1:
 // x is 1
 break;
 case 2:
 // x is 2
 break;
 default:
 // x is not 0, 1 or 2
 break;
}

The default label catches any values that are not matched by the case labels.

Execution sequence

Defining a default
condition

38 Module 2: Understanding C# Language Fundamentals

The type that is evaluated in the expression must be an integer type, a character
type, a string, an enumeration type; or a type that can be implicitly converted to
one of these types. You will often use switch statements with enumeration
types.

In the following example, the switch statement selects the case based on the
value of the enumeration type. This switch statement makes the code very
readable.

enum Animal {
 Antelope,
 Elephant,
 Lion,
 Osprey
}
. . .

switch(favoriteAnimal) {
 case Animal.Antelope:
 // herbivore-specific statements
 break;
 case Animal.Elephant:
 // herbivore-specific statements
 break;
 case Animal.Lion:
 // carnivore-specific statements
 break;
 case Animal.Osprey:
 // carnivore-specific statements
 break;
}

Using enumerations
with switch statements

 Module 2: Understanding C# Language Fundamentals 39

You can use multiple case labels on a single switch expression as shown in the
following example:

switch(favoriteAnimal) {
 case Animal.Antelope:
 case Animal.Elephant:
 // herbivore-specific statements
 break;
 case Animal.Lion:
 case Animal.Osprey:
 // carnivore-specific statements
 break;
}

In this case, if favoriteAnimal is either Lion or Osprey, the carnivore-specific
statements are executed.

You cannot place a statement between the Antelope and the Elephant cases
unless you also place a break statement between them.

If you are familiar with switch statements in C or C++, it is important to
note that C# does not allow you to fall through a switch expression to the next
switch expression. In C#, every case that has statements must also have a break
statement.

Combining cases

Note

40 Module 2: Understanding C# Language Fundamentals

Practice: Using Conditional Statements

� In this practice, you will create conditional
statements

� if…else

� In this practice, you will create conditional
statements

� if…else

Hands-on PracticeHandsHands--on Practiceon Practice

10 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will complete code that lacks appropriate conditional logic.

Suppose that a zoo needs 5000 visitors per week to meet a budget projection. You will use an if
statement to check the number of visitors and write a message indicating whether the number of
visitors was above or below the goal of 5000 visitors.

The solution code for this practice is located in install_folder\Practices\Mod02\Conditions_Solution
\conditions.sln. Start a new instance of Visual Studio .NET before opening the solution.

Tasks Detailed steps

1. Start Visual Studio .NET, and
then open
install_folder\Practices\Mod02
\Conditions\Conditions.sln.

a. Start a new instance of Visual Studio .NET.

b. On the Start Page, click Open Project.

c. In the Open Project dialog box, browse to install_folder\Practices
\Mod02\Conditions, click Conditions.sln, and then click Open.

d. In Solution Explorer, click Form1.cs, and then press F7 to open
the Code Editor.

2. Locate the task TODO 1: using if
statements.

a. On the View menu, point to Show Tasks, and then click All.

b. In the Task List, double-click TODO 1: using if statements.

3. If the value in visitors is 5000 or
more, then use the Output
method to display a message
indicating that the target was
achieved. Otherwise, display a
message saying that the target
was not achieved.

a. Use an if statement to test whether the value of visitors is 5000 or
more.

b. If visitors is 5000 or more, use the Output method to display a
message that says that the target has been achieved. For example:

Output("Visitor target achieved");

 Module 2: Understanding C# Language Fundamentals 41

Tasks Detailed steps

4. Test your code.

a. Press F5 to build and run your application.

b. In your application window, click Run, and verify that the output
matches the rules listed above.

c. In the NumericUpDown control, shown at the left, delete the
existing value, and then type 5000

d. Click Run and verify that the output matches the rules listed
above.

e. In the NumericUpDown control, change the value to 4999

f. Click Run and verify that the output matches the rules listed
above.

5. Use the debugging tool to step
through the code.

a. In Solution Explorer, click Form1.cs, and then press F7.

b. Locate the following line and set a breakpoint at that line.

int visitors = (int) visitorsUpDown.Value;

c. Press F5 to compile and run the application.

d. If the Locals window is not visible, in Visual Studio .NET, on the
Debug menu, point to Windows, and then click Locals.

e. In your application window, click Run.

f. Step through your code, a line at a time, by clicking the Step Over
button, or by pressing F10.

g. Examine the Locals and Autos windows to check that your
application assigns values correctly.

h. Stop debugging by clicking the Close button in the application that
you are debugging or by pressing SHIFT+F5.

i. Repeat this task and alter the input values to the application, so
that the execution follows a different path.

6. Save your application, and then
quit Visual Studio .NET.

a. Save your application.

b. Quit Visual Studio .NET.

42 Module 2: Understanding C# Language Fundamentals

Lesson: Creating Iteration Statements

� How to Use a for Loop

� How to Use a while Loop

� How to Use a do Loop

*****************************ILLEGAL FOR NON-TRAINER USE******************************

C# provides several looping mechanisms, which enable you to execute a block
of code repeatedly until a certain condition is met. In each case, a statement is
executed until a Boolean expression returns true. By using these looping
mechanisms, you can avoid typing the same line of code over and over.

After completing this lesson, you will be able to:

� Write a for loop.
� Write a while loop.
� Write a do loop.

This lesson includes the following topics and activity:

� How to Use a for Loop
� How to Use a while Loop
� How to Use a do Loop
� Practice: Using Iteration Statements

Introduction

Lesson objectives

Lesson agenda

 Module 2: Understanding C# Language Fundamentals 43

How to Use a for Loop

� Use when you know how many times you want to
repeat the execution of the code

for (int i = 0; i < 10; i++) {

Console.WriteLine("i = {0}",i);

}

for (int j = 100; j > 0; j -= 10) {

Console.WriteLine("j = {0}", j);

}

for (int i = 0; i < 10; i++) {

Console.WriteLine("i = {0}",i);

}

for (int j = 100; j > 0; j -= 10) {

Console.WriteLine("j = {0}", j);

}

for (initializer; condition; iterator) {

statements;

}

for (initializer; condition; iterator) {

statements;

}

ExampleExampleExample

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A for loop is used to execute a statement block a set number of times. A for
loop is a commonly-used way of executing a block of statements several times.
The for loop evaluates a given condition, and while the condition is true, it
executes a block of statements.

The for loop is called a pretest loop because the loop condition is evaluated
before the loop statements are executed. If the loop condition tests false, the
statements are not executed.

You use a for loop when you know in advance the number of times that you
want to repeat execution of your code statement.

For example, suppose that you are designing an application to calculate the
amount of money that you will have in your savings account after 10 years with
a given starting balance, and you want to display the total that you will have at
the end of each year. One way that you can write this code is to write a
statement like balance *= interestRate in your code ten times, or you can
simply write a for loop.

Introduction

Example

44 Module 2: Understanding C# Language Fundamentals

The syntax for declaring a for loop is:

for (initializer; condition; iterator) {
 statement-block
}

for (int i = 0; i < 10; i++) {
 Console.WriteLine("i = {0}",i);
}

for (int j = 100; j > 0; j -= 10) {
 Console.WriteLine("j = {0}", j);
}

This for structure is very flexible. For example, the loop counter can be
incremented or decremented for each loop. In this case, you must know the
number of loops before you write the loop.

In the following example, i has decrementing values from 10 through 1:

for (int i = 10; i > 0; i--) {
 loop statements;
}

In the following example, i has values of 0 to 100, in incrementing steps of 10:

for (int i = 0; i <= 100; i = i+10) {
 loop statements;
}

The initializer and iterator statements can contain more than one local variable
declaration, as shown in the following example:

for (int i = 0, j = 100; i < 100; i++, j--) {
 Console.WriteLine("{0}, {1}", i, j);
}

This sample would produce the following output:

0, 100
1, 99
2, 98
.
.
.
99, 1

Syntax

Example

Example of a
decrementing loop

Example of an
incrementing loop

Declaring multiple
variables

 Module 2: Understanding C# Language Fundamentals 45

How to Use a while Loop

� A Boolean test runs at the start of the loop and if it
tests as False, the loop is never executed

� The loop executes until the condition becomes false

� continue, break

bool readingFile;

// . . .

while (readingFile == true) {
GetNextLine();

}

bool readingFile;

// . . .

while (readingFile == true) {
GetNextLine();

}

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Similar to the for loop, the while loop is a pretest loop, which means that if the
first test evaluates false, the statement does not execute. This is useful when
you want to make sure that something is true before executing the code in your
loop. You also use a while loop when you do not know exactly how many times
you must execute the loop statements.

The syntax for declaring a while loop is:

while (true-condition) {
 statement-block
}

while (readingFile == true) {
 GetNextLine();
}

You can use the continue keyword to start the next loop iteration without
executing any remaining statements. The following example reads a set of
commands from a file. GetNextLine gets a line of text; there is one command
per line.

while (readingFile == true) {
 string command = GetNextLine();
 if (command == "Comment") {
 continue;
 }
 if (command == "Set") {
 // do other processing
 }
}

When the command is a comment, there is no need to process the rest of the
line, so the continue keyword is used to start the loop again.

Introduction

Syntax

Example

Using the continue
keyword

46 Module 2: Understanding C# Language Fundamentals

You can also break out of a loop. When the break keyword is encountered, the
loop is terminated, and execution continues at the statement that follows the
loop statement.

while (readingFile == true) {
 string command = GetNextLine();
 if (command == "Exit") {
 break;
 }
 if (command == "Set") {
 // do other processing
 }
}

The break keyword

 Module 2: Understanding C# Language Fundamentals 47

How to Use a do Loop

� Executes the code in the loop and then performs a
Boolean test. If the expression tests as True then the
loop repeats until the expression tests as False.
do {

// something that is always going to happen
//at least once

} while (test is true);

do {
// something that is always going to happen
//at least once

} while (test is true);

int i = 1;
do {

Console.WriteLine ("{0}", i++);
} while (i <= 10);

int i = 1;
do {

Console.WriteLine ("{0}", i++);
} while (i <= 10);

ExampleExampleExample

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In a do loop, the statement is executed, a condition is tested, and then the
statement is executed again. This process repeats for as long as the condition
tests true. This is known as a post-test loop. The do loop is useful when you
want to execute a statement at least once.

The syntax for a do loop is:

do {
 statements
} while (boolean-expression);

The semicolon after the statement is required.

In the following example, a do loop is used to write out the numbers from 1 to
10 in a column:

int i = 1;
do {
 Console.WriteLine("{0}", i++);
} while (i <= 10);

In this example, the increment operator is used to increment the value of i after
the statement is written to the screen for the first time.

Introduction

Syntax

Note

Example

48 Module 2: Understanding C# Language Fundamentals

Practice: Using Iteration Statements

� In this practice, you will use a for loop
to calculate the sum of the integers from
1 to 1000

� In this practice, you will use a for loop
to calculate the sum of the integers from
1 to 1000

Hands-on PracticeHandsHands--on Practiceon Practice

10 min

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this practice, you will use a for loop to calculate the sum of the integers from 1 to 1000.

If time permits, perform the same calculation using a while loop and a do loop.

The solution code for this practice is located in install_folder\Practices\Mod02\Loops_Solution
\Loops.sln. Start a new instance of Visual Studio .NET before opening the solution.

Tasks Detailed steps

1. Start Visual Studio .NET,
and then open install_folder\
Practices\Mod02
\Loops\Loops.sln.

a. Start a new instance of Visual Studio .NET.

b. On the Start Page, click Open Project.

c. In the Open Project dialog box, browse to install_folder\Practices
\Mod02\Loops, click Loops.sln, and then click Open.

d. In Solution Explorer, click Form1.cs, and then press F7 to open the
Code Editor.

2. Locate the task TODO 1:
writing loops.

a. On the View menu, point to Show Tasks, and then click All.

b. In the Task List, double-click TODO 1: writing loops.

3. Use a for loop to add all of
the integers from 1 to 1000.

a. Write a for loop to add all of the integers from 1 to 1000.

b. Place the result in an integer variable named total.

4. Display the result using the
code shown in the right
column.

� Display the result by using the following code:

Output("result: " + total);

5. (Optional) Repeat steps 3
and 4, using a while loop
instead of a for loop.

� (Optional) Repeat steps 3 and 4, using a while loop instead of a for
loop.

 Module 2: Understanding C# Language Fundamentals 49

Tasks Detailed steps

6. (Optional) Repeat steps 3
and 4, using a do loop
instead of a for loop.

� (Optional) Repeat steps 3 and 4, using a do loop instead of a for loop.

7. Press F5 to build and run
your application.

� In your application window, click Run, and verify that the output is
correct.

8. Save your application and
quit Visual Studio .NET.

a. Save your application.

b. Quit Visual Studio .NET.

50 Module 2: Understanding C# Language Fundamentals

Review

� Understanding the Fundamentals of a C# Program

� Using C# Predefined Types

� Writing Expressions

� Creating Conditional Statements

� Creating Iteration Statements

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. What symbol indicates a single-line comment in your code?
Two forward slashes (//)

2. True or false: You end a statement with a closing brace and a semicolon.
False. You do not need to include a semicolon after braces because the
braces themselves indicate a complete block of code.

3. What is the largest value that can fit in a byte?
255

4. In the following expression, what is the value of y?
int x = 50;
int y = ++x;
y==51 because x is incremented before the value is assigned to y.

 Module 2: Understanding C# Language Fundamentals 51

5. Fill in the blank: A ____________ statement allows you to control the flow
of your application by selecting the statement that is executed, based on the
value of a Boolean expression.
Conditional

6. True or False: The while loop is a pre-test loop.
True

52 Module 2: Understanding C# Language Fundamentals

Lab 2.1: Writing a Savings Account Calculator

� Exercise #1: Writing a Savings Calculator

� Exercise #2: Extending the Savings
Calculator

� Exercise #1: Writing a Savings Calculator

� Exercise #2: Extending the Savings
Calculator

Hands-on LabHandsHands--on Labon Lab

1 hour

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will be able to:

� Declare variables and assign values to them.
� Convert between types.
� Write looping statements.
� Write conditional statements.

This lab focuses on the concepts in this module and as a result may not
comply with Microsoft security recommendations.

Before working on this lab, you must have:

� Knowledge of C# pre-defined types.
� The ability to write looping statements in C#.
� The ability to write conditional statements in C#.

Objectives

Note

Prerequisites

Estimated time to
complete this lab:
60 minutes

 Module 2: Understanding C# Language Fundamentals 53

Exercise 0
Lab Setup

The Lab Setup section lists the tasks that you must perform before you begin the lab.

Task Detailed steps

� Log on to
Microsoft Windows® as
Student with a password of
P@ssw0rd.

� Log on to Windows with the following account.

• User name: Student

• Password: P@ssw0rd

Note that the 0 in the password is a zero.

Note that by default the install_folder is C:\Program Files\Msdntrain\2609.

54 Module 2: Understanding C# Language Fundamentals

Exercise 1
Write a Savings Calculator

Scenario
Your bank wants to provide a simple savings calculator for account holders.

Details
In this exercise, you will write the code to complete a simple compound interest savings calculator.
The user interface portion of the application is complete, but the code that performs the calculation
is not written.

The application is shown in the following illustration:

Users enter the values, and when they click the Calculate button, the total is displayed in the Total
Savings line.

To illustrate the logic of the program, three usage examples are described, each followed by a
description of the logic.

Example 1:

The customer makes an initial payment of 1000, the annual interest rate for the account is 2%, and
the calculation is for 5 years. The interest is calculated monthly and the extra money is added to the
account.

This scenario requires that the application calculates the monthly interest rate by dividing the
annual rate by 12, and then increases the account balance by the monthly interest every month for
the period of the calculation.

 Module 2: Understanding C# Language Fundamentals 55

Example 2:

The customer makes an initial payment of 2000, the annual interest rate for the account is 2.5%,
and the calculation is for 10 years. The interest is calculated monthly and an extra monthly payment
of 10 is added to the account.

This scenario requires an extra step of adding the extra monthly payment to the new monthly
balance. Add this payment after the interest has been added to the balance. This will result in a total
of 3929.10 (rounded to two decimal places).

Example 3:

Initial Amount = 5000, interest rate = 6%, years = 15, interest calculated monthly, monthly
payments made of 100. Total is 41352.34.

Tasks Detailed steps

1. Start Microsoft Visual
Studio .NET, and then open
install_folder\
Labfiles\Lab02_1
\Exercise1\Saving.sln .

a. Start a new instance of Visual Studio .NET.

b. On the Start Page, click Open Project.

c. In the Open Project dialog box, browse to install_folder\
Labfiles\Lab02_1\Exercise1, click Saving.sln, and then click Open.

2. View the code of Form1.cs,
and review the tasks to be
performed in this exercise.

a. In Solution Explorer, click Form1.cs, and then press F7 to open the
Code Editor.

b. On the View menu, point to Show Tasks, and then click All.

c. In the Task List, double-click TODO: calculate the value of the
account.

3. Using the information
provided in the introduction
to this lab, write code that
calculates the value of the
savings account.

� Note the following:

• The variable startAmount contains the initial amount.

• The variable rate contains the selected interest rate.

• The variable years contains the number of years.

• The variable calcFrequency is a variable of enumeration type
Compound. This is defined at the top of the code file. It has one
possible value—Compound.Monthly.

• The variable additional contains the additional amount that the
customer plans to save every month.

• Assign your calculated total to the variable totalValue to have it
displayed on the Windows form.

56 Module 2: Understanding C# Language Fundamentals

Tasks Detailed steps

4. Test your application. � Use the following values to check if your solution is correct (be sure to
set the value of Calculated to Monthly):

• Initial Amount: 1000; Interest Rate 2%; Years: 5; Calculated:
Monthly; Monthly Payment 0. Total Savings: 1105.08.

• Initial Amount: 3500; Interest Rate 3.3%; Years: 7; Calculated:
Monthly; Monthly Payment 50. Total Savings: 9125.56.

• Initial Amount: 5000; Interest Rate 6.25%; Years: 10; Calculated:
Monthly; Monthly Payment 250. Total Savings: 50856.56.

5. Save your application, and
then quit Visual Studio
.NET.

a. Save your application.

b. Quit Visual Studio .NET.

 Module 2: Understanding C# Language Fundamentals 57

Exercise 2
Extending the Savings Calculator
In this exercise, you will add an option for quarterly interest calculations to the savings calculator.
If you want to continue to use the application that you developed in Exercise 1, skip step 1.

When the quarterly interest option is selected, the interest is calculated per quarter, starting from the
third month following the initial deposit. Any additional deposits are added to the balance after the
interest for that month has been added.

The solution code for this lab is located at install_folder\Labfiles\Lab02_1\Exercise2
\Solution_Code\Saving.sln. Start a new instance of Visual Studio .NET before opening the solution.

Tasks Detailed steps

1. Start Microsoft Visual
Studio .NET and then open
install_folder\
Labfiles\Lab02_1
\Exercise2\Saving.sln.

a. Start a new instance of Visual Studio .NET.

b. On the Start Page, click Open Project.

c. In the Open Project dialog box, browse to the folder install_folder\
Labfiles\Lab02_1\Exercise2, click Saving.sln, and then click Open.

2. Add a new value called
Quarterly to the
enumeration type
Compound.

a. In Solution Explorer, click Form1.cs, and then press F7 to open the
Code Editor.

b. Locate the enumeration Compound, at the top of the Code Editor.

c. Add a new value Quarterly to the enumeration.

3. Follow the steps on the
right to add the
enumeration to the
calculationFrequency
combo box on the form.

a. Locate the following line of code:

calculationFrequency.Items.Add(Compound.Monthly);

b. Immediately after this line, add the following code:

calculationFrequency.Items.Add(Compound.Quarterly);

Note that t his code assumes that you have named your new enumeration
value as described in step 2.

This code adds the enumeration value to the combo box on the main form.

4. Using the information
provided in the
introduction to this lab,
write code that calculates
the value of the savings
account when interest is
computed quarterly.

� Note the following:

• The variable calcFrequency is a variable of enumeration type
Compound, and when the user selects Quarterly from the menu,
calcFrequency will have the value Quarterly, as defined in step 2.

58 Module 2: Understanding C# Language Fundamentals

Tasks Detailed steps

5. Test your solution. � Use the following values to check if your solution is correct:

• Initial Amount: 1000; Interest Rate 2%; Years: 5; Calculated:
Quarterly; Monthly Payment 0. Total Savings: 1104.90.

• Initial Amount: 3500; Interest Rate 3.3%; Years: 7; Calculated:
Quarterly; Monthly Payment 50. Total Savings: 9134.21.

• Initial Amount: 5000; Interest Rate 6.25%; Years: 10; Calculated:
Quarterly; Monthly Payment 250. Total Savings: 50969.31.

6. Save your application, and
then quit Visual Studio
.NET.

a. Save your application.

b. Quit Visual Studio .NET.

