
The Official
InstallShield® for
Windows® Installer
Developer’s Guide

Bob Baker

M&T Books
An imprint of IDG Books Worldwide, Inc.

Foster City, CA ● Chicago, IL ● Indianapolis, IN ● New York, NY

4723-2 FM.f.qc 1/16/01 11:57 AM Page iii

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND AUTHOR HAVE USED THEIR BEST
EFFORTS IN PREPARING THIS BOOK. THE PUBLISHER AND AUTHOR MAKE NO REPRESENTATIONS OR
WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS BOOK AND
SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. THERE ARE NO WARRANTIES WHICH EXTEND BEYOND THE DESCRIPTIONS CONTAINED IN THIS
PARAGRAPH. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES REPRESENTATIVES OR WRITTEN
SALES MATERIALS. THE ACCURACY AND COMPLETENESS OF THE INFORMATION PROVIDED HEREIN AND THE
OPINIONS STATED HEREIN ARE NOT GUARANTEED OR WARRANTED TO PRODUCE ANY PARTICULAR RESULTS,
AND THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY INDIVIDUAL.
NEITHER THE PUBLISHER NOR AUTHOR SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER
COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR
OTHER DAMAGES.

Trademarks: All brand names and product names used in this book are trade names, service marks, trademarks, or
registered trademarks of their respective owners. IDG Books Worldwide is not associated with any product or vendor
mentioned in this book.

is a registered trademark or trademark
under exclusive license to IDG Books Worldwide, Inc.
from International Data Group, Inc. in the
United States and/or other countries.

The Official InstallShield® for Windows® Installer
Developer’s Guide
Published by
M&T Books
An imprint of IDG Books Worldwide, Inc.
919 E. Hillsdale Blvd., Suite 400
Foster City, CA 94404
www.idgbooks.com (IDG Books Worldwide Web site)
Copyright © 2001 IDG Books Worldwide, Inc. All rights
reserved. No part of this book, including interior design,
cover design, and icons, may be reproduced or
transmitted in any form, by any means (electronic,
photocopying, recording, or otherwise) without the prior
written permission of the publisher.
ISBN: 0-7645-4723-2
Printed in the United States of America
10 9 8 7 6 5 4 3 2 1
1B/QS/QS/QR/FC
Distributed in the United States by IDG Books
Worldwide, Inc.
Distributed by CDG Books Canada Inc. for Canada; by
Transworld Publishers Limited in the United Kingdom;
by IDG Norge Books for Norway; by IDG Sweden Books
for Sweden; by IDG Books Australia Publishing
Corporation Pty. Ltd. for Australia and New Zealand; by
TransQuest Publishers Pte Ltd. for Singapore, Malaysia,
Thailand, Indonesia, and Hong Kong; by Gotop
Information Inc. for Taiwan; by ICG Muse, Inc. for
Japan; by Intersoft for South Africa; by Eyrolles for
France; by International Thomson Publishing for
Germany, Austria, and Switzerland; by Distribuidora
Cuspide for Argentina; by LR International for Brazil;
by Galileo Libros for Chile; by Ediciones ZETA S.C.R.
Ltda. for Peru; by WS Computer Publishing Corporation,
Inc., for the Philippines; by Contemporanea de Ediciones
for Venezuela; by Express Computer Distributors for the
Caribbean and West Indies; by Micronesia Media
Distributor, Inc. for Micronesia; by Chips Computadoras
S.A. de C.V. for Mexico; by Editorial Norma de Panama
S.A. for Panama; by American Bookshops for Finland.
For general information on IDG Books Worldwide’s
books in the U.S., please call our Consumer Customer

Service department at 800-762-2974. For reseller
information, including discounts and premium sales,
please call our Reseller Customer Service department
at 800-434-3422.
For information on where to purchase IDG Books
Worldwide’s books outside the U.S., please contact our
International Sales department at 317-572-3993 or fax
317-572-4002.
For consumer information on foreign language
translations, please contact our Customer Service
department at 800-434-3422, fax 317-572-4002, or
e-mail rights@idgbooks.com.
For information on licensing foreign or domestic rights,
please phone +1-650-653-7098.
For sales inquiries and special prices for bulk quantities,
please contact our Order Services department at
800-434-3422 or write to the address above.
For information on using IDG Books Worldwide’s books
in the classroom or for ordering examination copies,
please contact our Educational Sales department at
800-434-2086 or fax 317-572-4005.
For press review copies, author interviews, or other
publicity information, please contact our Public Relations
department at 650-653-7000 or fax 650-653-7500.
For authorization to photocopy items for corporate,
personal, or educational use, please contact Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, or fax 978-750-4470.
Library of Congress Cataloging-in-Publication Data
Baker, Bob, 1939 Aug. 4-

The official Installshield professional: Window
installer edition developer’s guide /
Bob Baker.

p. cm.
ISBN 0-7645-4723-2 (alk. paper)
1. Application software--Development.
2. Installshield Professional. 3. Microsoft Windows

(Computer file) I. Title.
QA76.76.A65 B34 2000
005.26’9--dc21 00-051571

is a trademark of
IDG Books Worldwide, Inc.

4723-2 FM.f.qc 1/16/01 11:57 AM Page iv

Eleventh Annual
Computer Press
Awards 1995Tenth Annual

Computer Press
Awards 1994

Eighth Annual
Computer Press
Awards 1992 Ninth Annual

Computer Press
Awards 1993

IDG is the world’s leading IT media, research and exposition company. Founded in 1964, IDG had 1997 revenues of $2.05
billion and has more than 9,000 employees worldwide. IDG offers the widest range of media options that reach IT buyers
in 75 countries representing 95% of worldwide IT spending. IDG’s diverse product and services portfolio spans six key areas
including print publishing, online publishing, expositions and conferences, market research, education and training, and
global marketing services. More than 90 million people read one or more of IDG’s 290 magazines and newspapers, including
IDG’s leading global brands — Computerworld, PC World, Network World, Macworld and the Channel World family of
publications. IDG Books Worldwide is one of the fastest-growing computer book publishers in the world, with more than
700 titles in 36 languages. The “...For Dummies®” series alone has more than 50 million copies in print. IDG offers online
users the largest network of technology-specific Web sites around the world through IDG.net (http://www.idg.net), which
comprises more than 225 targeted Web sites in 55 countries worldwide. International Data Corporation (IDC) is the world’s
largest provider of information technology data, analysis and consulting, with research centers in over 41 countries and more
than 400 research analysts worldwide. IDG World Expo is a leading producer of more than 168 globally branded conferences
and expositions in 35 countries including E3 (Electronic Entertainment Expo), Macworld Expo, ComNet, Windows World
Expo, ICE (Internet Commerce Expo), Agenda, DEMO, and Spotlight. IDG’s training subsidiary, ExecuTrain, is the world’s
largest computer training company, with more than 230 locations worldwide and 785 training courses. IDG Marketing
Services helps industry-leading IT companies build international brand recognition by developing global integrated marketing
programs via IDG’s print, online and exposition products worldwide. Further information about the company can be found
at www.idg.com. 1/26/00

Welcome to the world of IDG Books Worldwide.

IDG Books Worldwide, Inc., is a subsidiary of International Data Group, the world’s largest publisher of
computer-related information and the leading global provider of information services on information technology.
IDG was founded more than 30 years ago by Patrick J. McGovern and now employs more than 9,000 people
worldwide. IDG publishes more than 290 computer publications in over 75 countries. More than 90 million
people read one or more IDG publications each month.

Launched in 1990, IDG Books Worldwide is today the #1 publisher of best-selling computer books in the
United States. We are proud to have received eight awards from the Computer Press Association in recognition
of editorial excellence and three from Computer Currents’ First Annual Readers’ Choice Awards. Our best-
selling ...For Dummies® series has more than 50 million copies in print with translations in 31 languages. IDG
Books Worldwide, through a joint venture with IDG’s Hi-Tech Beijing, became the first U.S. publisher to
publish a computer book in the People’s Republic of China. In record time, IDG Books Worldwide has become
the first choice for millions of readers around the world who want to learn how to better manage their
businesses.

Our mission is simple: Every one of our books is designed to bring extra value and skill-building instructions
to the reader. Our books are written by experts who understand and care about our readers. The knowledge
base of our editorial staff comes from years of experience in publishing, education, and journalism —
experience we use to produce books to carry us into the new millennium. In short, we care about books, so
we attract the best people. We devote special attention to details such as audience, interior design, use of
icons, and illustrations. And because we use an efficient process of authoring, editing, and desktop publishing
our books electronically, we can spend more time ensuring superior content and less time on the technicalities
of making books.

You can count on our commitment to deliver high-quality books at competitive prices on topics you want
to read about. At IDG Books Worldwide, we continue in the IDG tradition of delivering quality for more than
30 years. You’ll find no better book on a subject than one from IDG Books Worldwide.

John Kilcullen
Chairman and CEO
IDG Books Worldwide, Inc.

4723-2 FM.f.qc 1/16/01 11:57 AM Page v

About the Author
Bob Baker is a technical trainer at InstallShield Software Corporation, concentrating
on the tools that deal with the Windows Installer service. Bob joined InstallShield at
the beginning of 1995 as the program manager for the InstallShield 3 product. Bob
has an M.S. degree in computer science, which he received while working as a struc-
tural engineer in the power industry prior to joining InstallShield.

Credits

ACQUISITIONS EDITOR
Grace Buechlein

PROJECT EDITOR
Barbra Guerra

TECHNICAL EDITORS
Jim Masson
Rajesh Ramachandran
Alaks Sevugan

COPY EDITORS
S. B. Kleinman
Jerelind Charles

PROJECT COORDINATORS
Louigene A. Santos
Danette Nurse

BOOK DESIGNER
Jim Donohue

PROOFREADING AND INDEXING
York Production Services

COVER IMAGE
® Noma/Images.com

GRAPHICS AND PRODUCTION
SPECIALISTS

Robert Bihlmayer
Rolly Delrosario
Jude Levinson
Michael Lewis
Victor Peréz-Varela
Ramses Ramirez

QUALITY CONTROL TECHNICIAN
Dina F Quan

SENIOR PERMISSIONS EDITOR
Carmen Krikorian

MEDIA DEVELOPMENT SPECIALIST
Travis Silvers

MEDIA DEVELOPMENT COORDINATOR
Marisa Pearman

ILLUSTRATORS
Gabriele McCann
Karl Brandt

4723-2 FM.f.qc 1/16/01 11:57 AM Page vi

To Rhonda
With patience and grace, you have borne my continued absences when I’ve had
to conduct training and then on returning home disappeared into the office to
work on this book. Without your understanding this book would never have

been written.

To my students
I appreciate the many hard questions you have asked. You have spurred me to
continue to learn and to never be satisfied with my present level of knowledge.

4723-2 FM.f.qc 1/16/01 11:57 AM Page vii

4723-2 FM.f.qc 1/16/01 11:57 AM Page viii

Foreword
The Windows Installer is one of the cornerstones of Microsoft’s desktop manage-
ment efforts. It is a core component of Windows 2000 — as well as being available
for Windows 95, Windows 98, and Windows NT 4.0. The installer is clearly some-
thing that Microsoft considers important. It is, indeed, a requirement for building
an application that is certified for Windows 2000. The Windows Installer is also
something Microsoft’s customers consider important — system administrators, in
particular. Administrators have been asking for a standard installation technology
for a long time, but they can’t reap the benefits without the help of software devel-
opers. This is where it becomes important for software developers to take advantage
of this technology in their applications.

The premise of the installer is simple: Give administrators a consistent way to
install the applications that are needed in their environments. By providing a stan-
dard installation engine, the installer enables administrators to leverage a single set
of tools, and a core set of knowledge and experience, and apply that to the many
different applications that they deploy. In addition to standardization, applications
that use the installer automatically provide administrators facilities for unattended
installations, customization of installs, self-healing applications, and deployment
in locked-down environments. The Windows Installer can be used with a variety of
software distribution tools — everything from homegrown solutions to large-scale
commercial products, such as Microsoft Systems Management Server. The installer
is also used in the IntelliMirror feature set of Windows 2000. Using the installer is
a key part of making an application easy to deploy in a wide variety of environ-
ments, which ultimately reduces the effective cost of the application to customers.

In order to do this, most developers will choose a high level tool like
InstallShield for Windows Installer to help them create their installer package. One
of the great things about a high-level tool like InstallShield for Windows Installer is
that it can hide and abstract away many of the mundane details and complexity
that creating an installer package entails. It can put a friendly face on top of the
underlying structures of the package, making it possible to very rapidly build
installations. This works well for simple packages, but when you want to really
exploit the Windows Installer, you not only need to understand the tool you are
using, you also need to understand the installation engine itself.

In this book, Bob Baker gives software developers the information that they need
to successfully use the Windows Installer in their applications. Bob starts off with a
detailed discussion of the Windows Installer engine, giving developers the techno-
logical background needed to understand how the installer works, and how the dif-
ferent elements of a Windows Installer package relate to one another. This
discussion includes the basics of designing features and components and then goes
into more advanced topics such as custom actions. Bob then takes the discussion to
the next level, showing how developers can leverage InstallShield for Windows
Installer to create these packages. He walks developers through the features of the ix

4723-2 FM.f.qc 1/16/01 11:57 AM Page ix

tool and demonstrates how the concepts presented in the tool map relate to the
underlying implementation of the Windows Installer.

The Windows Installer is one part of a larger system of tools and technologies,
and in order to fully leverage it, it is important to understand not only the installer
engine but also the tools that you use to create packages, and how the tools lever-
age the engine. Developers who read this book will gain an understanding of both
the Windows Installer engine, and the InstallShield for Windows Installer tool,
enabling them to fully exploit the capabilities of both.

Jim Masson
Windows Installer Program Manager
Microsoft Corporation

x Foreword

4723-2 FM.f.qc 1/16/01 11:57 AM Page x

Preface
This book can be viewed as a record of my exploration of the new Windows
Installer technology from Microsoft. Software installation on a computer running
the Windows operating system has always been a challenging technical effort. I
cannot think of a better way to learn about a new technology for installing soft-
ware than to write a book about it. The writing of this book has been a high-
powered learning experience for me, and every day seemed to bring a new
epiphany. In the chapters of this book, I have tried to pass on the understanding
that I have gained. I have also tried to put emphasis on those subjects with which
the students in my classes have had the most trouble.

Please note this book focuses on version 1.52 of the InstallShield for Windows

Installer product. Although version 1.52, which was recently released, has

many similarities, some of the implementation details and other product fea-

tures will be different. Please refer to www.installshield.com for information

about version 2.01.

Who Is This Book For?
The concept of this book is to lead the reader from today’s world of script-based
installation programs to the new environment ushered in with Windows 2000. As
such, this book is best suited for setup developers who already know what is
entailed in the creation of an installation program. This does not mean that you
need to be knowledgeable about the creation of installation scripts using
InstallScript; a number of chapters are devoted to this language. However, you do
need to know about the Windows operating system particularly with respect to
Windows NT 4.0 and/or Windows 2000. You also are expected to know about the
registry and the basic information that is written to this database. Except for
InstallScript, which is covered in detail, you are expected to know at least one pro-
gramming language such as C++ or VBScript. Examples have been provided in all
three of these programming languages, but how to program in either C++ or
VBScript is not covered.

The Organization of This Book
This book is divided into five parts and a set of appendixes with the general flow
being from the general to the specific. Most chapters discuss the Windows Installer

NOTE

xi

4723-2 FM.f.qc 1/16/01 11:57 AM Page xi

technology followed by a discussion of how to use the InstallShield for Windows
Installer authoring tool to manipulate this new technology. The appendixes cover
some specific technical subjects that did not fit easily into the main body of the book.

Part I: Introduction to the Windows Installer
In this part I show you where we have been with regard to the installation of soft-
ware followed by a description of the deployment architecture that has been built
into Windows 2000. The prime reason that you will want to use the Windows
Installer technology for your installation programs is to be able to make your appli-
cations compatible with the new deployment architecture of Windows 2000. In
subsequent chapters, I provide an in-depth overview of the Windows Installer tech-
nology and show what it takes to create a simple installation without the use of an
authoring tool such as InstallShield for Windows Installer.

Part II: Basic Package Creation with
Installshield for Windows Installer
The four chapters in this part introduce the InstallShield for Windows Installer
authoring tool. Even though these chapters focus on the use of this product, they
also cover many important items with regard to the operation of the Windows
Installer. These chapters take a detailed walk through the InstallShield for Windows
Installer product, pointing out all the features that are available (the actual use of
these various features is covered in later chapters of the book); re-create the instal-
lation package created in earlier chapters using InstallShield for Windows Installer;
get into the details of how you can use InstallShield for Windows Installer to con-
trol the operations performed during an installation; and show you how to create
the user interface that is displayed during an installation.

Part III: Extending the Windows
Installer Functionality
As with any technology, the Windows Installer cannot possibly handle all installation
scenarios. Because of this, Microsoft allows you to extend the built-in functionality
through the use of what are called custom actions. The beginning chapters in this part
discuss the details of custom actions and show how to create custom actions using
programming languages such as C++ and VBScript.

Part IV: Advanced Concepts
The early chapters provide a complete tutorial on the InstallScript programming lan-
guage and how to use it to create custom actions. InstallScript is a powerful script-
ing language created by InstallShield Software Corporation specifically for the
creation of Installation programs. The last two chapters in this part are concerned
with some of the core functionality of the Windows Installer. The first of these

xii Preface

4723-2 FM.f.qc 1/16/01 11:57 AM Page xii

discusses the creation and use of components. Components are the basic units of any
application, and you need to understand components in order to create installations
correctly. The final chapter in Part IV discusses transforms, a critical component of
the Windows Installer technology. Transforms modify a setup package during an
installation, and you can also use them to make permanent changes to a setup pack-
age during build time.

Part V: Solving Real-World Problems
This part also contains only two chapters. These chapters tell you how to create
localized installations and how to implement the upgrade capabilities that have
been designed into the Windows Installer. The first chapter talks about how the
Windows Installer handles different languages and how you can use InstallShield
for Windows Installer to create various types of localized install packages. The next
chapter shows you all the ins and outs of the three types of upgrades that are sup-
ported by the Windows Installer.

Appendixes
Four technical appendixes provide you a reference to various subjects that did not
fit easily into the main sections of the book. Appendix A gives a detailed descrip-
tion with examples of the command line switches for msiexec.exe, which is the
Windows Installer engine. Appendix B provides a handy reference for the proper-
ties in the Summary Information Stream found in all windows Installer packages.
Appendix C provides you a behind-the-scenes look at the InstallScript run-time
architecture, and Appendix D describes the system reboot functionality of the
Windows Installer. Appendix E describes the content of the CD-ROM that you can
find at the back of the book. On this CD you will find a number of evaluation copies
of InstallShield products. You will also find the source code and sample applica-
tions that have been described through out the book.

Conventions Used in This Book
From time to time in this book, you’ll see icons in the left margin. These are
intended to call attention to points that are particularly important.

The Note icons tell you that something is important — perhaps a fundamen-

tal concept or something that will build your understanding of subsequent

material.

NOTE

Preface xiii

4723-2 FM.f.qc 1/16/01 11:57 AM Page xiii

Tip icons indicate a good idea or more efficient way of doing something

that may not be obvious.

These icons indicate that an example file is on the companion CD-ROM (see

the appendix “What’s on the CD-ROM?”). The CD is invaluable, containing

code and sample applications that I discuss in the book.

The Caution icons let you know when there’s a potential problem if you’re

not careful.

The Cross-Reference icons refer you to other chapters or other sections in

the book where you can find more information on a subject.

More Information
For updates and information related to this book, I am maintaining a special Web
site. Check out www.installshield.com/books/iswidg.

XREF

Caution

ON THE CD

Tip

xiv Preface

4723-2 FM.f.qc 1/16/01 11:57 AM Page xiv

Acknowledgments
First, I need to thank Viresh Bhatia, CEO of InstallShield Software Corporation. It was
Viresh who gave me the opportunity to write this book. Secondly I need to express
my gratitude to the Microsoft Windows Installer development team members who
willingly provided so much indepth information. These persons are Jim Masson, Ben
Chamberlain, Tracy Ferrier, Chetan Parulekar, Carolyn Napier, Chris Gouge, Eugen
Daroczy, and John Delo. At InstallShield I had many valuable discussions about how
the Windows Installer works with David Thornley and Alaks Sevugan. It was demon-
strated time and again that discussing technical concepts with another person pro-
motes understanding much better and faster than when you try to do gain this
understanding on your own. I also want to thank Rajesh Ramachandran, the creator
of the InstallScript compiler, for the time he spent with me so that I could properly
describe the use of the InstallScript language. I need to thank Robert Dickau, the cre-
ator of all our training manuals, for the inspiration that I gained for many of the
examples that I have used for this book. Finally, I want to thank the IDG staff for their
patience with a first time author.

xv

4723-2 FM.f.qc 1/16/01 11:57 AM Page xv

Contents at a Glance

Foreword . ix

Preface . xi

Acknowledgments . xv

Part I Introduction to the Windows Installer

Chapter 1 Software Installation, Yesterday, Today, and
Tomorrow . 3

Chapter 2 The Windows 2000 Deployment Architecture 15
Chapter 3 Design and Implementation of the Windows Installer

Service . 47
Chapter 4 Direct Creation of an MSI Package 109
Chapter 5 Adding the User Interface to Our Installation 157

Part II Basic Package Creation with ISWI

Chapter 6 Overview of the ISWI Authoring Tool 201
Chapter 7 Basic Installation Package Creation with ISWI . . . 241
Chapter 8 Controlling the Installation 297
Chapter 9 Creating the Installation User Interface 335

Part III Extending the Windows Installer Functionality

Chapter 10 Extensibility Through Custom Actions 377
Chapter 11 Creating and Using Custom Actions 419
Chapter 12 The ISWI Scripting Environment 485
Chapter 13 Introduction to the InstallScript Language 523

Part IV Advanced Concepts

Chapter 14 Advanced InstallScript . 585
Chapter 15 InstallScript and COM . 631
Chapter 16 Using InstallScript to Create Custom Actions 649
Chapter 17 Creating and Sharing Components 687
Chapter 18 The Creation and Use of Transforms 755

4723-2 FM.f.qc 1/16/01 11:57 AM Page xvi

Part V Solving Real-World Problems

Chapter 19 Localizing an Installation 783
Chapter 20 Handling Updates and Upgrades of a Product 811

Appendix A: MsiExec Command Line Options . . . 859

Appendix B: Summary Information
Stream Reference 871

Appendix C: InstallScript Run-Time
Architecture 887

Appendix D: System Reboots 899

Appendix E: What’s on the CD-ROM 905

Index . 909

End-User License Agreement . 951

CD-ROM Installation Instructions 956

4723-2 FM.f.qc 1/16/01 11:57 AM Page xvii

4723-2 FM.f.qc 1/16/01 11:57 AM Page xviii

Contents

Foreword . ix

Preface. xi

Acknowledgments . xv

Part I Introduction to the Windows Installer

Chapter 1 Software Installation, Yesterday, Today, and
Tomorrow. 3
The Many Faces of Software Installation 3

The end-user viewpoint . 4

The system administrator’s viewpoint . 4

The setup developer’s viewpoint. 5

The basic operations when installing software 5

Installing Software in the World of DOS. 6
The Environment of 16-Bit Windows 6
The 32-Bit Evolution . 8
The Battle for the Corporate Nervous System 10
Defining the New Windows Installer Technology 11
The Future Is Now . 13

Chapter 2 The Windows 2000 Deployment Architecture 15
Overview of the Windows 2000 Family 15

Windows 2000 Professional . 16

Windows 2000 Server . 16

Windows 2000 Advanced Server . 16

Windows 2000 Datacenter Server . 17

The Windows 2000 Architecture. 17
The Windows 2000 system components . 17

Windows 2000 process management . 21

Windows 2000 memory management . 23

Windows 2000 Management Services. 24
Infrastructure management . 24

Storage management . 28

Desktop Change and Configuration Management 29
IntelliMirror . 30

User data management . 31

Software installation and maintenance . 31

User settings management . 33

Remote OS Installation . 34

4723-2 FM.f.qc 1/16/01 11:57 AM Page xix

The Key Technologies Used to Implement Change and
Configuration Management . 35
Active Directory . 35

Group Policy . 38

Windows Installer Service . 40

The Supporting Technologies Used to Implement Change and
Configuration Management . 41
Folder redirection and offline folders . 41

Synchronization Manager . 42

Disk quotas . 42

Roaming user profiles . 42

Dynamic Host Configuration Protocol (DHCP) and Domain Name

Service (DNS) . 42

Remote Installation Services (RIS) . 43

Windows Shell enhancements . 44

Add/Remove Programs applet . 44

System Management Server (SMS) . 44
Chapter 3 Design and Implementation of the Windows Installer

Service . 47
The Design Requirements . 48
How the Windows Installer Service Works 49
The Enhanced Installation Environment 52

Resiliency. 53

Advertisement . 53

Products, Features, Components, and Resources 54
Products and features. 54

Components and resources. 55

Choosing features to install . 58

Installation Package Overview . 59
The Summary Information Stream . 61

The installation database . 61

Application source files . 63

Other Types of Windows Installer Packages 63
Transforms . 64

Merge modules. 64

Patch packages. 65

More about Components. 66
Component management . 66

Isolated components. 67

System components . 67

Qualified components. 68

Miscellaneous components. 68

Getting Ready to Create an Installer Package 69
More about the Summary Information Stream. 69

The Installer database core . 72

xx Contents

4723-2 FM.f.qc 1/16/01 11:57 AM Page xx

Sequences, actions, and properties . 81

File-related operations . 91

The user interface. 99

A Word or Two About Package Validation 106
Chapter 4 Direct Creation of an MSI Package 109

The Product to Be Installed . 109
Planning the Installation . 110

Defining the product in Windows Installer terms 111

Copying application resources to the computer. 111

Exposing the product to the environment. 112

Structuring the installation. 112

Creating the user interface . 112

Validating the installation package. 112

Getting Started . 113
Using Orca . 113

Defining the Product . 114
Copying application resources to the computer 122

Handling files and manipulating the file system 122

Initializing the default installation location 130

Working with COM–related registry input 132

Exposing the Product to the Environment 136
Creating a shortcut for the application. 136

Creating a file association for the application 140

Creating a per-application path . 143

Structuring the Installation. 145
Creating the installation execute sequence tables. 145

Adding the summary information . 150

Populating the user-interface sequence tables 151

Validating the Installation Package. 151
Running the Installation and the Application 154

Chapter 5 Adding the User Interface to Our Installation. 157
Creating the User Interface . 157

Creating the user interface for a new installation. 158

Creating the user interface to handle a user-initiated exit 190

Populating the user interface sequence tables 194

Validation of the Package . 197
Running the Installation with the User Interface 197

Part II Basic Package Creation with ISWI

Overview of the ISWI Authoring Tool . 201
What Is InstallShield for Windows Installer? 201
Installing ISWI . 202
A First Look at ISWI . 203
The InstallShield Today View . 204

Contents xxi

4723-2 FM.f.qc 1/16/01 11:57 AM Page xxi

The Help View. 207
The InstallShield for Windows Installer Help Library 207

The Setup Map . 208

The Project Wizard Tutorial . 209

The ZAW Tutorial . 210

The Globalization Tutorial . 211

The demos. 211

The Windows Installer Programmer’s Reference 212

Help Updates . 212

The Best Practices View . 212
The Basic Menus and Toolbar . 213

The File menu. 213

The Edit menu . 214

The Build menu . 216

The Go menu . 217

The Tools menu . 218

The Help menu . 220

The Toolbar . 220

The Project Workspace . 221
Installation project workspace . 222

Merge Module workspace. 223

Project Creation Wizards and Tools 224
The wizards . 224

The tools . 236

Chapter 7 Basic Installation Package Creation with ISWI 241
The Product to be Installed . 241
Creating the Initial Project with the Project Wizard 242
Completing the Installation Project in the IDE 256

The Project view. 256

The Setup Design view . 272

Using the Power Editor. 286

Building the MSI Package. 288
Validating the Installation Package. 295

Chapter 8 Controlling the Installation 297
Basic Concepts . 297
The Built-in Actions . 301

Windows Installer data store . 303

File searching . 306

File costing. 307

File installation . 308

Registry and configuration settings . 312

Installation configuration. 317

Sequencing the Actions. 321
Working with Properties . 323

Public and private properties . 324

Properties defined by the Windows Installer 324

xxii Contents

4723-2 FM.f.qc 1/16/01 11:57 AM Page xxii

Creating your own properties . 327

The default properties. 328

Using Conditions to Add Control . 331
Introduction to Custom Actions . 333

Chapter 9 Creating the Installation User Interface 335
The Windows Installer User Interface 335
Control Events and Subscription. 336
Looking at the ISWI Built-In Dialogs in Detail 337

The User Interface view . 337

The Sequences view . 339

The InstallWelcome dialog sequence . 343

The MaintenanceWelcome dialog sequence 347

The SetupResume dialog sequence . 349

The PatchWelcome dialog sequence . 350

The AdminWelcome dialog sequence . 350

The Dialog Editor . 351
The controls toolbar . 352

Editing the dialog design . 356

Modifying an Existing Dialog. 359
Creating a New Dialog . 362

The basic dialog design . 364

Constructing the radio button functionality 367

Creating the navigational controls . 370

Part III Extending the Windows Installer Functionality

Chapter 10 Extensibility Through Custom Actions 377
Custom Action Basics . 377
The Windows Installer Mechanism 379
Custom Action Categories . 382

Immediate execution custom actions . 382

Deferred execution custom actions. 382

The Custom Action Database Tables 385
Custom Action Types . 392

Custom actions implemented in an executable file. 392

Custom actions implemented in a dynamic link library 393

Custom actions implemented in script . 394

Custom actions implemented as formatted text 394

Custom actions that display error messages 395

Custom actions that perform nested installations 395

Basic Custom Action Implementation 396
Storing custom actions in the binary table. 396

Copying custom actions to the system during installation 397

Identifying the custom action via the directory table 401

Identifying the custom action via the property table 402

Storing custom actions as strings in the database 402

Performing nested installations . 403

Contents xxiii

4723-2 FM.f.qc 1/16/01 11:57 AM Page xxiii

The Processing of Custom Actions 404
Scheduling custom actions. 404

Invoking custom actions . 409

Processing the return values from custom actions 411

Telling the Windows Installer how to process a custom action. . . 412

Example Custom Action . 413
Advanced Issues . 416

Context information for deferred custom actions 416

Nested installation custom actions . 416

Disabling rollback and its impact on custom actions 416

Debugging custom actions . 416

Adding temporary data to the database . 416

Chapter 11 Creating and Using Custom Actions 419
Preliminaries . 419

Custom action return values. 419

Windows Installer SQL . 422

Accessing the current Installer session . 430

Working with the MSI database at install time. 432

An alternate way to look at actions in the sequence tables 435

Introduction to the ISWI Custom Action Wizard. 436
Working with Properties . 448

The MsiGetProperty and MsiSetProperty APIs 448

An example custom action using the Property table 450

Creating and Using Custom Tables 454
Custom Actions and the User Interface 455

Using the DoAction control event . 455

Dynamically populating a combo box during an install. 458

Deferred Custom Actions . 464
Running Secondary Installations within a

Main Installation . 468
Miscellaneous Custom Actions . 473

Using formatted text custom actions . 473

The error message custom action (Type 19) 478

Calling functions in a standard dynamic-link library. 479

Debugging Custom Actions. 481
Chapter 12 The ISWI Scripting Environment 485

What Is InstallScript? . 485
Creating and Compiling Scripts . 486

The script editor . 490

The compiler . 503

The debugger . 514

Chapter 13 Introduction to the InstallScript Language 523
Setting up an Environment for Testing the InstallScript

Language . 523
The SprintfBox script function . 528

xxiv Contents

4723-2 FM.f.qc 1/16/01 11:57 AM Page xxiv

The InstallScript Data Types . 529
Symbolic constants and variables. 531

Scripting conventions . 533

The pointer data types . 535

The BOOL data type . 536

The CHAR data type . 537

The integer data types . 538

The STRING data type . 539

The VARIANT data type . 542

The LIST data type . 544

The array data type . 547

The structure data type. 549

Expressions. 552
Arithmetic operators . 552

Relational and logical operators . 553

The SizeOf and Resize operators. 557

The Bitwise Operators. 559

Operator precedence. 562

Statements . 563
The if and if-else statements . 564

The switch statement . 566

The for loop statement . 568

The while statement . 570

The repeat statement . 572

The goto statement. 573

The return, exit, and abort statements . 574

Functions . 574
The built-in functions . 575

User-defined functions . 575

Functions in a dynamic-linked library . 580

Event-handler functions. 582

Part IV Advanced Concepts

Chapter 14 Advanced InstallScript . 585
Working with Strings . 585

Strings as strings . 585

Strings as paths . 591

Passing strings to functions . 594

Working with Lists and Arrays . 601
An example of sorting and searching a list 601

The implementation of arrays in InstallScript 611

Implementing the QuickSort algorithm . 611

Passing an array to a DLL function . 613

Working with Structures . 616

Contents xxv

4723-2 FM.f.qc 1/16/01 11:57 AM Page xxv

Exception Handling . 619
The traditional approach . 619

The modern approach. 620

Chapter 15 InstallScript and COM . 631
Accessing COM . 631
Accessing the Windows Installer Automation Interface . . . 632
Using the Capabilities of the Scripting Objects 636

Overview of the FileSystemObject Objects 637

Creating a Drives collection iterator . 641

Capabilities of the WSH Objects . 646
Chapter 16 Using InstallScript to Create Custom Actions 649

Preliminaries. 649
Initialization and Clean-Up. 650
Retrieving and Adding Data to the Property Table 657

Working with the Property table . 657

An example custom action for setting the CCP_DRIVE property . 658

An example custom action for setting the ARPINSTALLLOCATION

property. 660

Creating a custom action to view the contents of the

Property table . 662

Custom Actions and the User Interface 669
Dynamically populating a list box during an installation. 670

Working with Dynamic Link Libraries 680
Chapter 17 Creating and Sharing Components 687

Component Sharing and the Operating System. 687
How the OS handles a dynamic-link library. 688

What causes DLL Hell?. 689

How new versions of are changing things 690

The Componentization Rules. 691
Creating new components . 692

Modifying a component . 693

What happens if the rules are broken. 695

Special issues relating to component creation 696

Creating Components in ISWI. 699
Creating components directly in the ISWI IDE 700

Using the component wizard . 718

Delivering Components to the Application 728
Merging MSI databases . 729

The structure of a merge module . 730

Creating a merge module . 732

Installing Shared Components . 746
How the system keeps track of installed components 746

Installing Win32 and COM DLLs . 747

Isolating a component . 748

Creating an array of components . 750

xxvi Contents

4723-2 FM.f.qc 1/16/01 11:57 AM Page xxvi

Chapter 18 The Creation and Use of Transforms 755
What Are Transforms? . 755
The Structure of a Transform File . 756

The transform Summary Information Stream. 757

The Types of Transforms. 760
Creating and Applying Transforms 762

Creating a transform using ISWI . 762

Applying transforms at run time . 767

Applying a transform at design time using ISWI 771

Using a Transform to Add Resources 773
Viewing the Contents of a Transform 774
Editing a Transform . 776
Embedding a Transform in an MSI Package 778

Part V Solving Real-World Problems

Chapter 19 Localizing an Installation 783
The Issues of Globalization and Localization 783
Windows 2000 Language Support 784
Language-Specific Installation Scenarios 786

Installing a single-language product . 786

Installing a product whose language is set during installation. . . 786

Installing a product whose language is set when the

product is run . 787

The Localization of a Windows Installer Database 787
Basics of Windows 2000 national language support 787

Localizing a Windows Installer package. 791

The Localization Features of ISWI 798
The string table . 798

The Dialog Editor . 799

Filtering components on language association. 799

Multilingual installations . 801

Using the Localization Features of ISWI 804
Creating an installation for a single localized product 804

Creating an Installation for a Set of Localized Products. 806

Creating an installation for a product that ships

multiple-language resources . 806

Adding a New Language . 807
Chapter 20 Handling Updates and Upgrades of a Product. 811

Description of the Example Products. 811
Types of Updates and Upgrades . 813

The small update . 813

Upgrading a product. 814

Summary of valid upgrade methods. 817

Contents xxvii

4723-2 FM.f.qc 1/16/01 11:57 AM Page xxvii

Updating or Upgrading a Product by Reinstallation 819
A minor upgrade example by using the reinstallation approach . 820

Performing a Major Upgrade by Using the Upgrade Table . 821
The FindRelatedProducts action . 822

The MigrateFeatureStates action . 823

The RemoveExistingProducts action. 824

An example using the Upgrade table approach to

perform a major upgrade. 824

Preventing the Downgrading of a Higher Version with a Lower
Version . 825
Running the example . 828

Patching . 829
The structure of a patch package . 829

Patch creation basics . 831

Applying a patch package . 843

How transforms affect patching . 845

Using the ISWI Patch Creation Wizard . 846

The Handling of Operating System Upgrades 857

Appendix A: MsiExec Command Line Options 859

Appendix B: Summary Information
Stream Reference. 871

Appendix C: InstallScript Run-Time
Architecture. 887

Appendix D: System Reboots. 899

Appendix E: What’s on the CD-ROM 905

Index . 909

End-User License Agreement. 951

CD-ROM Installation Instructions 956

xxviii Contents

4723-2 FM.f.qc 1/16/01 11:57 AM Page xxviii

Chapter 1

Software Installation,
Yesterday, Today, and
Tomorrow

IN THIS CHAPTER

◆ Defining software installation and deployment

◆ Software installation as it was under DOS and 16-bit Windows

◆ Installing software under 32-bit operating systems

◆ Problems that have arisen with the complexity of operating systems

◆ Microsoft’s initiative to reduce the total cost of ownership (TCO) of the
desktop PC

IN THIS CHAPTER we look at the basics that comprise software installation and show
how over time this development activity is getting more complex with each release
of the Windows operating system. We will take a little look at the history of the
challenges that setup developers have had to face over the years. This is in no way
a comprehensive treatment of software installation through the ages but just an
attempt to put everyone in the right frame of mind to take the next step. This next
step is to understand the Windows Installer service and how to use it properly to
enable the installation of software. The Windows Installer service is part of the
Windows 2000 operating system. We will discuss the Windows 2000 deployment
architecture in Chapter 2 and then get into the real subject of this book, the
Windows Installer service, in Chapters 3, 4, and 5.

The Many Faces of
Software Installation
Installing an application can be thought of as integrating it with the operating sys-
tem. The files of an application are copied to the local system, registry entries are
made, and the application is exposed to the end-user through the use of shortcuts
or other entry points. Software installation can be viewed differently depending on

3

4723-2 ch01.f.qc 1/16/01 11:06 AM Page 3

who is involved. The end-user sees software installation through different eyes than
does the system administrator. The setup developer has a different viewpoint than
either the end-user or the system administrator.

The end-user viewpoint
Most end-users find the installation process long and complex since they tend not
to be computer experts. The installation process, in many cases, asks the end-user
to answer questions that he or she do not know the answer. These questions con-
cern what features should be installed, whether the features should be installed
locally or be run from the source media, where the application is to be installed,
and so forth. It is now possible to install software from the Internet and this pro-
vides a whole new environment with which the end-user needs to contend. It is not
uncommon that an end-user has to contend with a failed installation that leaves
the computer in an unknown state where inexplicably applications that used to
work no longer work properly if at all.

Modifying or removing an application is part of what is called the maintenance
process. During the maintenance process, an original installation of an application
has already been made and the end-user wants to modify this installation in some
fashion. This mode normally allows the end user to perform the following listed
operations:

◆ Reinstalling all of the components of the application that were installed
during the original installation. This might be necessary if necessary files
were deleted by mistake or some of the files have been corrupted.

◆ Installing additional components that were not installed originally.

◆ Removing components that are no longer needed. This is normally done
to free up hard-drive space on the local hard drive.

◆ Uninstalling the complete application.

Performing a maintenance activity can also be prone to error just as the original
installation is. The ideal situation from the end-users standpoint would be for an
application to install itself and not require any interaction.

The system administrator’s viewpoint
The main challenge facing the system administrator is the mass deployment of soft-
ware to users in a complex network environment. The problem that is faced is the fact
that in many companies the user of the application does not have administrator priv-
ileges on their local machine and most installations will fail if they cannot write to
certain parts of the registry and/or copy files to certain protected locations on the
hard drive. Another challenge that faces the system administrator is the fact that most
installations packages are black boxes and cannot be examined or modified except by

4 Part I: Introduction to the Windows Installer

4723-2 ch01.f.qc 1/16/01 11:06 AM Page 4

the original developer. This situation makes it impossible for the system administra-
tor to restrict the features of an application that the end user can access once the
installation is complete. Just as with the end-user’s situation described in the previ-
ous section, the failure of an installation or any maintenance activity leaves the local
machine in an unknown state. Because of this the system administrator needs to visit
the local machine itself to try and correct the situation. This is not very efficient and
contributes greatly to the cost of maintaining the machines in the network.

The setup developer’s viewpoint
The main problem that is faced by the setup developer is that the creation of the
installation for an application is normally left to the last minute just before the prod-
uct has to ship. This is because setup is not considered part of the development pro-
cess. Most complex installations are script-based and the logic that is embedded in
the installation script suffers the same fate as the code used to develop the applica-
tion. This dearth of comment statements means the script tends to get handed from
one setup developer to another— thus complicating the process of creating and main-
taining the installation through the normal upgrade of the application functionality.
Due to the different vendors that provide tools for the setup developer there is no
standard set of rules that are followed when creating the installation for an applica-
tion. Because of this an end-user can see different types of installations depending on
the tool that was used to create the install. The ideal situation would be for all instal-
lations to look the same thus fostering and expectation in the end-user of what to
expect with an installation in the same fashion that the Windows operating system as
given users since its inception.

The basic operations when installing software
Regardless of the mode or the system on which you’re installing software, a certain
set of actions has to take place. These actions are listed below:

◆ Provide an installation wizard to guide the user in the installation process.

◆ Determine the user’s hardware and software configuration and available
disk space.

◆ Copy files to the specified directories on the system.

◆ Set up the execution environment for the application by modifying exist-
ing files and making entries in the registry.

◆ Expose the application to the user so that it can be easily launched.

◆ Provide for changing the install of the application (add/remove features).

◆ Provide for uninstalling the application when the user no longer needs it
so that no artifacts are left behind on the system.

Chapter 1: Software Installation, Yesterday, Today, and Tomorrow 5

4723-2 ch01.f.qc 1/16/01 11:06 AM Page 5

Installing Software in the
World of DOS
To look back on the time when everyone was developing software for the DOS
operating system is to envision a much simpler world. Since then software has
become much more complicated and installing it has become equally so.

In the DOS days all applications were monolithic as was DOS itself. Each appli-
cation consisted of an executable that was the result of compiling a linking source
code. The file system was the operating system and there was no such thing as hav-
ing multiple processes running at the same time where the sharing of information
was performed.

Installing software in this type of environment consisted mainly of copying files
and making entries into the AUTOEXEC.BAT and CONFIG.SYS files. Many install
programs were just a collection of DOS commands inside a batch file. Users only
encountered an installation problem in those rare instances when they needed to
install a device driver. For those companies that created something more than a
batch file to do their installations the biggest challenge was creating a user inter-
face for the install program. User interfaces for DOS programs sometimes just con-
sisted of a different-colored background and some “windows” made of boxes in
which the user was asked to enter certain information. Boxes also displayed the
progress of the installation. For larger applications the user interface was more
elaborate, with actual pictures drawn on the screen. This is probably where the first
use of what we now call billboards was implemented.

Then came Microsoft Windows 3.0 . . .

The Environment of 16-Bit Windows
In the PC world, Microsoft Windows 3.0 ushered in a revolution in the area of soft-
ware application development. We will discuss here only those details of 16-bit
Windows that have an impact on the installation of software.

Windows 3.0 introduced the concept of dynamic linking to the majority of PC
programmers. With dynamic linking, a program gets a large part of its functional-
ity from other files that export this functionality. These other files are called
dynamic linked libraries (DLLs) because they are only accessed at run time and not
at compile time. With the advent of dynamic linking, instead of being a monolith,
an application would consist of many different files, thus creating a more compli-
cated installation. In addition, much of the functionality incorporated into an
application came from the dynamic linked libraries that comprised the operating
system itself.

With dynamic linking came the use of what were termed initialization files.
These came in two types: those that came with and were used by the operating sys-
tem and those that were used by the application to store information. The operating
system initialization files were SYSTEM.INI and WIN.INI. The initialization files

6 Part I: Introduction to the Windows Installer

4723-2 ch01.f.qc 1/16/01 11:06 AM Page 6

used by an application were termed private .ini files and the information contained
in them was of use only to the application itself. The installation program for a
software application frequently had to make entries into both the system and the
private initialization files.

Windows 3.0 also ushered in the concept of exposing an application to the envi-
ronment. This meant using icons in the Windows user interface to allow the user to
launch an application without the user having to specifically go and find the appli-
cation’s executable. The user could also create an association between a file exten-
sion and the application’s executable that would know how to interpret a file with
that extension. This was made possible by the registration database. The registra-
tion database on Windows 3.0 was the forerunner of the registry that is found with
32-bit operating systems. It was used to provide basic OLE functionality and to pro-
vide file associations. The installation program for an application would now be
able to set up the registration database association between a file extension and
what is called the file extension server.

The creation of installations for software now became an important element of
the development process, even though it was often done at the end of a develop-
ment cycle and thus became a critical path item for shipment. This means that it
was often the case that the creation of the installation program for an application
delayed the actual release of the software due to the problems that were encoun-
tered during its development. At the beginning of the 1990s InstallShield Software
Corporation shipped its first version of the now-famous development tool for help-
ing developers to create installation programs for their applications. Microsoft also
shipped the Setup Toolkit as part of the Windows 3.1 SDK. The purpose of both
these products was to provide a standard approach that would make it easier to cre-
ate installation programs.

The primary challenges that faced the setup developer in the new world of Win-
dows were handling of shared files and creating the user interface for the installa-
tion. There is no doubt that Windows provided a much richer graphics capability
than was ever possible with DOS. Microsoft launched its Windows Logo Program as
part of the introduction of Windows. The Logo Program was an attempt to get
developers to create applications that would run successfully under Windows. When
first introduced, this program had only the following set of requirements:

◆ The application had to be written to the Windows API.

◆ There had to be a Windows-based automated installation program.

◆ The application had to be tested on Windows, Windows for Workgroups,
and Windows NT.

◆ The application had to pass the Windows Compatibility Survey.

In the year or so before Windows 95 was released, Microsoft added a new wrin-
kle to the creation of installations for Windows programs: it released a subset of the
32-bit Windows API called Win32s. This was a set of DLLs that exported this API,
and applications that used this API could be run under Windows 3.1. Implementing

Chapter 1: Software Installation, Yesterday, Today, and Tomorrow 7

4723-2 ch01.f.qc 1/16/01 11:06 AM Page 7

Win32s was somewhat problematic and it made the creation of an installation pro-
gram more complex since now it was necessary to find out if these DLLs were
already on the system, and if they were not they had to be installed.

The purpose of Win32s was to get developers prepared for a fully functional 32-bit
operating system. This 32-bit operating system came in the form of Windows 95. Of
course Windows NT was already out there, but it was in its infancy and most users
were using Windows 3.1.

The 32-Bit Evolution
The move to a 32-bit operating system started with the release of Windows 95 in
the summer of 1995. Windows 95 helped to ease the pain of software development
but it also added more complexity to the installation scene. In the late summer of
1996 Windows NT 4.0 was released with the new shell pioneered by Windows 95.
Windows NT had always been 32-bit on the backend but until the release of version
4.0 the shell was only 16-bit.

Windows 95 brought with it the Windows 95 registry, which was a unified data-
base for storing system and application data. With the Windows 95 registry it was
no longer necessary to store configuration settings in startup configuration and ini-
tialization files. In Windows 95 most of the configuration options in SYSTEM.INI
were moved to the registry as well as a number of other entries that had always
been included in this system initialization file. For WIN.INI all the font and desktop
information was moved to the Registry. Both SYSTEM.INI and WIN.INI still existed
for the main purpose of compatibility with 16-bit applications, which still ran
under Windows 95 but had no access to the Registry since that required the use of
the Win32 API.

In Windows 95 the AUTOEXEC.BAT and CONFIG.SYS still existed for compati-
bility with real-mode system components and to allow users to change certain
default system settings, such as the PATH environment variable.

Windows 95 also ushered in the new 32-bit Windows shell, which was COM
enabled. It permitted drag-and-drop, the concept of folders, shortcuts, and so forth.
Also introduced was the concept of an installable file system that supported file
names of up to 260 characters. All these innovations made creating an installation
program more difficult.

Prior to the release of Windows 95 Microsoft developed a white paper entitled
“Windows 95 Application Setup Guidelines for Independent Software Vendors.”
The purpose of this paper was to standardize the creation of installation programs.
This paper introduced the concept that each installation program should not only
provide the capability to install the application but should also provide a method
for removing the application from the machine. But providing this capability intro-
duced a new problem: the unintended removal of system files, which could cripple
all or part of the operating system.

8 Part I: Introduction to the Windows Installer

4723-2 ch01.f.qc 1/16/01 11:06 AM Page 8

The potential to remove a system file by accident during an uninstallation was
not the only problem that arose. There was also potential to remove files that more
than one application needed for it to be able to run. This problem gave rise to the
practice of reference counting shareable files in the Registry and not uninstalling
them if the shared reference count was greater than zero.

The setup guidelines mentioned above became the forerunner of what became
known as the Microsoft Windows 95 Logo requirements. The Logo requirements
concerned more than installation and uninstallation, although these were at its
core. The basic purpose of the Logo guidelines was to force independent software
vendors (ISVs) to create applications that were robust, worked well with the operat-
ing system, and was not subject to indiscriminate failure. Such failures greatly
increased the cost of managing a corporate network since it forced system person-
nel to visit the desktop where the problems were occurring.

Microsoft has always had a focus on the desktop computer environment, but
during the time when Windows 95 was introduced they were facing a competing

Chapter 1: Software Installation, Yesterday, Today, and Tomorrow 9

What Are Installable File Systems?
With MS-DOS, the operating system is the file system and that is all you have. There
is no other way to manage files. MS-DOS uses the functions associated with Interrupt
21h to manage files. The MS-DOS file system uses the File Allocation Table (FAT)
approach to locating files on the disk. For hard drives it uses what was called the
FAT16 implementation and for floppy disks it uses the FAT12 implementation. Since
Windows 3.x is tied to MS-DOS, it has the same restrictions as MS-DOS itself.

Windows 95 changes all of this by bringing to the table what is called the Installable
File System (IFS) Manager. The IFS Manager uses a form of device driver called a file
system driver in order to implement diverse file systems such as FAT, VFAT, CDFS, and so
on. FAT is our friend from the MS-DOS days, VFAT is the implementation of a file system
that can handle long file names, and CDFS is the CD-ROM file system. Different file
system drivers that communicate with the appropriate device drivers for the target I/O
hardware implement each of these file systems. VFAT uses a 16-bit addressing scheme
to locate files on the hard drive.

By necessity FAT16 is supported by Windows 95/98 and by Windows NT. This is because
of backward compatibility issues. However, until Windows 2000 Windows, NT did not
support the FAT32 file system; therefore, on multi-boot machines the only way for
Windows 95/98 and Windows NT to share drive space is for all drives to be formatted
for FAT16. Now that Windows 2000 supports the 32-bit addressing scheme of FAT32
dual-boot machines can share a much more efficient file system.

Writing a file system driver is a complicated process requiring a lot of code. This is
probably why it has taken so long for Windows NT/2000 to be able to support the
FAT32 addressing scheme.

4723-2 ch01.f.qc 1/16/01 11:06 AM Page 9

concept. This concept came about because of the introduction of the Java program-
ming language. Even though the logo requirements were a step in the right direc-
tion, Microsoft recognized that it was not enough for the long term. Microsoft had
to keep moving ahead with its technology if it was going to be able to maintain the
desktop environment on which its future depended.

The Battle for the Corporate
Nervous System
Corporations today continue to fight the age-old battle to increase their return on
investment (ROI). With personal computers becoming more prevalent in organiza-
tions than ever, a prime sector for reducing costs is the corporate computer network.
The term that is used today to identify this cost is total cost of ownership (TCO).
There are two camps that have formed, both of which promise to lead organizations
to this promised land of lower IT costs. Naturally one of these camps is comprised of
Microsoft and Intel, which have produced what is called the Wintel model. The other
camp is made up of Sun, Oracle, IBM, and others whose approach is based on the use
of Java. Both of these camps are sticking to the three-tiered client/server architec-
ture but with different approaches to its future implementation.

The Java-only approach being pushed by Sun and others is the Network Computer
(NC). The NC architecture is a three-tiered model of computing wherein data is on
database servers, applications are run from application servers, and thin clients run
on the NC. The NC is a stateless machine that serves as a terminal in order to run
applications and access data on a network. The NC enables the use of any different
number of microprocessors since Java is a programming language that is not specific
to a particular platform. The stateless nature of this machine means that that no data
remain on the client after it is powered down. The data stay on the centralized servers
in order to maintain the security of this data and to make the data easier to manage.
The idea is that all applications that run on the NC would be developed using the Java
API that would come as part of the JavaOS. Both the Java application and the JavaOS
would be downloaded to the NC on demand. The main concept here is that the client
is very thin and as such the administrative cost of this type of three-tiered
client/server system is centered on the server side only with no administrative cost for
any deployed client.

The Wintel model proposes some form of the Microsoft Windows operating sys-
tem running on an Intel CPU. This model comprises a wide range of client models
depending on the needs of the customer. The client strategy involves six different
devices that go from handheld PCs to high-end workstations. The client model in
direct competition with the network computer described above is the network PC.
Even though this client will be running the Windows operating system locally it will
have a sealed case to prevent the user from modifying the hardware, and the soft-
ware will be managed remotely from a central IT department. As you can see, the
effort to reduce TCO is also focused on the client side of the three-tiered client/server

10 Part I: Introduction to the Windows Installer

4723-2 ch01.f.qc 1/16/01 11:06 AM Page 10

architecture. This effort is comprised of two parts, the development of the network
PC specification and the Zero Administration Windows (ZAW) initiative.

The key capabilities that Microsoft’s ZAW initiative implements are as follows:

◆ Automatic system update and application installation.

◆ Persistent caching of data and configuration information.

◆ Central administration and system lock.

◆ Application flexibility to design the best solutions.

These capabilities are part of Windows 2000 Server–run networks, but prior to
the release of Windows 2000 Microsoft created the Zero Administration Kit (ZAK),
which provides for some of this functionality to be used in networks that are run
using Windows NT 4.0 Server.

Defining the New Windows
Installer Technology
In support of the ZAW initiative Microsoft has developed a new technology for man-
aging the installation of applications on its 32-bit Windows operating systems.
Deploying software has typically been a large source of administrative costs for orga-
nizations. Traditional installation programs can cause problems that can normally be
solved only by a member of the IT department. Some of these problems include:

Version conflicts Microsoft Logo requirements dictate that if a setup pro-
gram contains a more current version of a shared resource
(such as a DLL, OCX, and so on) than is presently on the
machine, the installation program should always over-
write the existing shared resource with the more current
version. This dictate takes for granted that the newer ver-
sion of the shared resource will work correctly with all
other using applications on the system, which may not
always be the case. Also, there is the possibility of over-
writing the file with an older version and potentially dis-
abling other applications on the system.

Failed installations A failed installation could leave fragments (files, registry
entries, and so on) behind, possibly leaving the system
in an unstable or unusable state. In traditional setup
programs, there were no standardized rollback features
for a failed installation.

Broken applications Users could delete key files (such as DLLs) required by
an application and render the application inoperable.

Chapter 1: Software Installation, Yesterday, Today, and Tomorrow 11

4723-2 ch01.f.qc 1/16/01 11:06 AM Page 11

Uninstall problems Traditional uninstallers might leave fragments of an
application behind. Installations were generally applica-
tion-centric and did not allow for uninstallation of just
one portion of the application, such as a thesaurus fea-
ture. Moreover, shared files and registry data could be
used by multiple applications. This often caused prob-
lems when one application uninstalled another applica-
tion’s shared files or data, rendering the remaining
application inoperable.

Administration Often it was difficult to distribute applications to large
numbers of client machines. Administrators had to
physically visit each machine. There was no standardized
method for creating applications to be distributed by
administrators over a LAN. Unless the user account run-
ning the installer had administrator privileges, there was
no guarantee that the installer could correctly update the
registry, access network resources, and so on. This often
caused installations to leave partially installed applica-
tions on the system or fail outright.

Beginning with Windows 2000, the installer service will be a native part of the
operating system. Microsoft also provides a system update that allows Windows
NT 4, Windows 98, and Windows 95 to use the Windows Installer service capabili-
ties. Microsoft does not intend to make this service available for the Windows 3.x
or Windows NT 3.51 operating systems.

Built on top of the Windows installer technology is a deployment architecture
that will go a long way toward lowering the TCO for the networked organization.
This deployment architecture will greatly facilitate the rollout of new software to the
network client machines as well as make it easier to install application or operating
system upgrades. This new deployment architecture will be mostly automated, which
means it will be a lot less work than the present networked environment. The one
drawback is that this deployment capability that comes with the Windows 2000
Server supports only desktop machines running Windows 2000 Professional.

To address the problems listed above Microsoft has created a technology that
provides the capability by which installation programs can be created that avoid
these problems. All ISVs can use this technology, so you won’t need a homegrown
installation program that might or might not perform the installation correctly.
Using this technology all ISVs can be consistent and at the same time permit the
new application deployment capabilities of Windows 2000 Server to implement
automated software distribution within the corporate network.

12 Part I: Introduction to the Windows Installer

4723-2 ch01.f.qc 1/16/01 11:06 AM Page 12

The Future Is Now
Microsoft introduced ZAW with the promise that it would enable companies to sig-
nificantly reduce the cost of owning PCs while maintaining their existing invest-
ments in industry-standard hardware and software. The idea is to help companies
automate PC management and deploy the widest choice of applications in an orga-
nized manner.

Microsoft’s implementation of ZAW includes a new installation architecture
called the Windows installer service. Microsoft’s Windows Installer service is a key
feature of ZAW because it provides developers with system services for creating
more intelligent, flexible, and manageable installations. The Windows Installer ser-
vice will be a native service of Windows 2000 (formerly known as Windows NT 5).
It is also available as an add-on service for Windows NT 4.0, Windows 98, and
Windows 95. It will not be offered for Windows NT 3.51 or Windows 3.x.

Summary
In this chapter we have seen that the environment in which software is installed is
changing, making installation much more complex than it used to be. In the corpo-
ration the environment is becoming much more controlled so that individuals do
not have free reign over their desktop systems. However, the basic act of installing
software is not really changing; it is just being performed differently. The same
basic steps are still required.

Chapter 1: Software Installation, Yesterday, Today, and Tomorrow 13

4723-2 ch01.f.qc 1/16/01 11:06 AM Page 13

4723-2 ch01.f.qc 1/16/01 11:06 AM Page 14

Chapter 2

The Windows 2000
Deployment Architecture

IN THIS CHAPTER

◆ Windows 2000 family of operating systems

◆ Windows 2000 architecture

◆ Windows 2000 management services

◆ IntelliMirror

◆ The key technologies used to implement change and configuration man-
agement

◆ System management server

THIS CHAPTER FOCUSES IN on the deployment aspects of Windows 2000 and those in
a Windows 2000 network. We will take a look at Windows 2000 and then investi-
gate the architecture of this newest member of the Windows family. Most of the
chapter will be devoted to taking a high-level look at the change and configuration
management capabilities of Windows 2000. It is important to understand where the
Windows Installer fits into the grand plan that Microsoft has for managing the
desktop computer in the corporate enterprise.

Overview of the Windows 2000
Family
The foundation of Windows 2000 is the Windows NT 4.0 architecture. Parts of this
architecture are being extended and there are new features being added, but over-
all the core of Windows 2000 is the same as Windows NT 4.0. This approach to cre-
ating Windows 2000 — building off of Windows NT 4.0 — imparts a great deal of
stability to this new operating system.

The main focus of the enhancements and added features incorporated into the
Windows 2000 family of operating systems is to significantly reduce the total cost
of ownership (TCO). The Windows 2000 family consists of four separate versions, 15

4723-2 ch02.f.qc 1/16/01 11:06 AM Page 15

which are designed to serve companies of specific sizes, and specific types of appli-
cations. These versions are listed below:

◆ Windows 2000 Professional

◆ Windows 2000 Server

◆ Windows 2000 Advanced Server

◆ Windows 2000 Datacenter Server

Each is discussed in the following subsections.

Windows 2000 Professional
This version of Windows 2000 replaces Windows NT 4.0 Workstation. It is the net-
work client and desktop operating system intended for use by companies of all
sizes. This version of Windows 2000 contains the best features of Windows 98 and
at the same time has retained and extended the capabilities of Windows NT 4.0
Workstation. Windows 2000 Professional supports up to two microprocessors with
up to a total of 4 GB of physical memory.

Microsoft has tried to make this operating system easier to use than any of the
past versions. It has created a much simpler installation process for the operating
system with a robust plug-and-play capability that essentially does away with the
past problems of the operating system not recognizing certain pieces of hardware.
The desktop has also become more customizable with such features as personalized
menus, an enhanced AutoComplete functionality, better help, and more detailed
error messages that actually tell you how to fix the problem instead of just telling
you that something is wrong.

Windows 2000 Server
The main use of this version of Windows 2000 is as a file, print, application, or Web
server for small to medium-sized companies. Windows 2000 Server supports symmet-
ric multiprocessing (SMP) on computers with up to four microprocessors and 4 GB of
physical memory. The new features of this operating system are support for Active
Directory, Windows Management Tools, Kerberos and Public Key Infrastructure (PKI)
security, Windows Terminal Services, COM+ component services, and enhanced
Internet and Web services.

Windows 2000 Advanced Server
Windows 2000 Advanced Server is the equivalent of what used to be called
Windows NT 4.0 Server Enterprise Edition. This operating system does everything

16 Part I: Introduction to the Windows Installer

4723-2 ch02.f.qc 1/16/01 11:06 AM Page 16

that Windows 2000 Server can do, with the addition of enhanced network and
Internet capabilities. It is designed to be primarily a database server and it provides
network and component load balancing. It has a complete clustering infrastructure
to enable high availability and scalability.

Windows 2000 Advanced Server supports symmetric multiprocessing for up to
eight microprocessors and it can access up to 8 GB of physical memory.

Windows 2000 Datacenter Server
Windows 2000 Datacenter Server is the top end of the line and it is meant for large
enterprise operations. It is most appropriate for data warehouse operations or where
complex calculations are necessary, such as for econometric analyses and science
and engineering simulations. This is the first time that Microsoft is releasing such a
powerful operating system. It supports symmetric multiprocessing for up to 32
microprocessors and it can access up to 64 GB of physical memory.

The Windows 2000 Architecture
This section talks about how Windows 2000 works. In particular it will cover the
basic layout of the system architecture and will then explain how Windows 2000
manages processes and the memory model that it uses. This will just be a quick
overview.

There have been many models used for developing operating systems since the
advent of the computer. Four of the more important of these models are the mono-
lithic system, the virtual machine, the layered system, and the client/server model.
There is one principle that is common among all these modern operating system
models and that is the principle of preventing user programs from accessing the
computer hardware in any direct fashion. Based on the design of the central pro-
cessing unit hardware the programmer can implement two or more privilege levels
in an operating system. In the Windows operating systems there are two privilege
levels called user mode and kernel mode. User mode is where application programs
run and kernel mode is where operating-system services run. The terminology may
vary among operating systems but the meaning is the same. Sometimes kernel
mode is called supervisor mode.

The Windows 2000 System Components
The architecture of Windows 2000 is a layered system of modules. Figure 2-1
shows a block diagram of this system.

Chapter 2: The Windows 2000 Deployment Architecture 17

4723-2 ch02.f.qc 1/16/01 11:06 AM Page 17

Figure 2-1: Windows 2000 component block diagram

KERNEL MODE COMPONENTS
At the lowest level in the operating system we have the Hardware Abstraction
Layer (HAL), which abstracts the motherboard. The HAL is a small layer of software
written by the hardware platform manufacturer. It provides the system with a
generic function-call hardware interface and does away with the need to write a
new operating system for each platform. The abstraction provided by the HAL is
binary compatibility of device drivers across different motherboards as long as they
have the same CPU architecture. The HAL enables the Windows 2000 operating
system to run on either single or multiprocessor computers and allows higher-level
device drivers to format data for different kinds of video monitors. In particular the
HAL provides an abstraction for off-chip caches, timers, device registers, and inter-
rupt controllers, and is implemented as HAL.DLL.

Hardware

MicroKernel

Hardware Abstraction Layer (HAL)

File System

Motherboard CPU

Object Manager

Device Drivers

Graphics
Device
Drivers

Kernel Mode

User Mode

System Threads

NTDLL.DLL

• Service Controller
System Processes

• WinLogon
• Session Manager

• Replicator
Services

• RPC
• Alerter
• Event Logger

• POSIX
Applications

• OS/2
• Win32

Environment
Subsystems

• User Applications

I/O
Manager

Reference
Monitor

IPC
Manager

Memory
Manager

Process
Manager

Plug &
Manager

Power
Manager

Window
Manager

18 Part I: Introduction to the Windows Installer

4723-2 ch02.f.qc 1/16/01 11:06 AM Page 18

Similarly, the MicroKernel abstracts the CPU of the computer. This abstraction
provides source-code compatibility of drivers across different CPU types. The
MicroKernel manages two types of objects, the dispatcher objects and the control
objects. Dispatcher objects control dispatching and synchronization of system oper-
ations, which include events, mutants, mutexes, semaphores, threads, and timers.
Control objects are used to control the operation of the MicroKernel where dis-
patching is not involved. Control objects include asynchronous procedure calls,
deferred procedure calls, interrupts, processes, and profiles.

In the previous paragraph you will see the terms mutant and mutex. Mutexes

are used only in kernel mode and mutants are used in the Win32 subsystem

to implement Win32 API mutexes.

There is a block to the right side of the previous figure called graphics device
drivers. This block represents hardware-dependent graphics display drivers, printer
drivers, and miniport drivers. Above the MicroKernel and the Device Driver blocks
are the Object Manager and the File System blocks. The Object Manager creates,
manages, and deletes objects that represent operating-system resources. These
resources are such things as processes, threads, and data structures. The Object
Manager creates object handles, which consist of access control information and a
pointer to the object. The Object Manager also tracks the creation and use of objects
and manages the global namespace for Windows 2000.

To the left of the Object Manager block is a special block called File Systems.
This represents a special type of device drivers, which are either file system drivers
or filter drivers. A file system driver is a driver that takes a file-oriented request and
translates it into an I/O request that is bound for a particular input-output hardware
device. A filter driver is a driver that intercepts an I/O request and adds value to the
request before it is passed on to the I/O device.

The next layer up in our figure is the Executive. The Executive is responsible for
implementing operating system functions and for providing a set of common ser-
vices to all the environment subsystems. The environment subsystems run in user
mode. The functionality of the Executive is contained in the file NTOSKRNL.EXE.
There are two versions of this file, one for a single-processor machine and one for
a multiprocessor machine. The Executive consists of a number of modules, as
shown in the previous figure. The following list provides a short description of the
function of each of these modules:

I/O Manager Manages input to and output from different
devices. It is made up of the file system, device
driver, and cache manager components.

Security Reference Enforces security policies on the local computer
Monitor by validating access to objects and checking user

privileges. It also generates audit messages.

Tip

Chapter 2: The Windows 2000 Deployment Architecture 19

4723-2 ch02.f.qc 1/16/01 11:06 AM Page 19

IPC Manager Manages the communication between clients and
servers. It consists of the Local Procedure Call (LPC)
facility and the Remote Procedure Call (RPC) facil-
ity. The LPC facility manages communication
between clients and servers on the same computer
and the RPC facility manages communications
between clients and servers on different computers.

Memory Manager Implements and controls virtual memory. It is a
memory-management system that provides a pri-
vate address space for each process and protects
this address space from incursion by other pro-
cesses. This module also implements demand pag-
ing where disk space is used as a storage area
when code and data need to be moved out of
physical RAM.

Process Manager Creates, terminates, and manages processes and
threads. These management duties involve sus-
pending and restoring threads as well as retriev-
ing information about processes and threads.

Plug and Play Manager Coordinates the adding and removal of hardware
devices. It maintains control of the central Plug &
Play process by communicating with these device
drivers for these devices and instructing them to
add and start the devices.

Power Manager Implements power-management policy through
the control of the power-management APIs. It
coordinates power events and generates power-
management requests.

Window Manager Combines the windowing functionality of the
operating system with functions required for
drawing on these windows. The Window Manager
is implemented by a single device driver imple-
mented in the file WIN32K.SYS. Controlling the
windowing capability of Windows 2000 consists
of managing screen output and receiving input
from devices such as the keyboard and the mouse.
Input from these devices is passed as messages to
applications.

The last item to be discussed as far as kernel mode implementation is concerned
is the block in our figure called System Threads. These are special threads that run
only in kernel mode and are housed in the system process. Many of the modules
described above use system threads to perform their functions. System threads do

20 Part I: Introduction to the Windows Installer

4723-2 ch02.f.qc 1/16/01 11:06 AM Page 20

not have a user-process address space and therefore must allocate any dynamic
memory from the operating-system memory heap. These threads do, however, have
all the attributes and contexts of a regular user-mode thread but they only execute
code that is loaded into system space.

USER-MODE COMPONENTS
Figure 2-1 shows four basic types of user-mode processes. It also shows a block
called NTDLL.DLL. NTDLL.DLL is a special file that provides support for the subsys-
tem DLLs. This file contains functions that are stubs to the Windows 2000 executive
system services, and some internal support functions that are used by the subsys-
tem DLLs.

Above the block showing NTDLL.DLL and to the left side there is a block entitled
System Processes. The processes shown here are special system processes that run
in user mode. These include the WINLOGON.EXE process, which implements the
interactive logon functionality, SERVICES.EXE, which is called the Service Control
Manager and manages all user mode NT services, and SMSS.EXE, which is the ses-
sion manager.

The block labeled Services refers to all the NT services that are running on the
system. The ones shown in the block are those NT services that come with the oper-
ating system, but there could be any number of add-on server applications running
as well. Good examples of add-on server applications are Microsoft SQL Server and
Microsoft Exchange Server.

The Environment Subsystems block denotes an implementation that exposes
some subset of the Windows 2000 executive system services to application pro-
grams. This block is combined with the Applications block, which enables applica-
tions to run on Windows 2000 even if they were written to run on a different
operating system. Windows 2000 supports applications written for Win32, Windows
3.1, MS-DOS, POSIX, or OS/2. Applications can only call those APIs that have been
exported by the particular environment subsystem that they are using. For Windows
2000 to run, the Win32 subsystem must always be running. This subsystem is imple-
mented in the file CSRSS.EXE. The OS/2 and the POSIX subsystems are only started
if an application needs them in order to run.

Windows 2000 process management
Windows 2000 is a multithreaded, multitasking operating system that is designed to
use more than one microprocessor. The Windows 2000 setup detects whether the tar-
get system has one or more than one processor. Depending on the situation there are
two files that are different even though they will end of with the same name after
they get copied to the System32 directory. There will of course be the specific ver-
sion of HAL.DLL required for the motherboard in the computer and there will be the
correct version of NTOSKRNL.EXE. On the Windows 2000 CD-ROM there are two
versions of this file, which provides the executive and kernel functionality. There is
NTOSKRNL.EXE, which gets copied as is if the machine only has one processor; and

Chapter 2: The Windows 2000 Deployment Architecture 21

4723-2 ch02.f.qc 1/16/01 11:06 AM Page 21

there is NTKRNLMP.EXE, which gets copied and renamed NTOSKRNL.EXE if the
machine has more than one processor.

When we talk about process management in Windows 2000, we need to talk
about both processes and threads. We don’t need to talk about programs since a
program is just a static set of bits on a disk somewhere. A process is a dynamic
entity that can be considered a set of resources that is reserved for the threads that
are executing inside the process. A process can be considered to consist of the fol-
lowing items:

◆ The initial code and data of the program that is being executed.

◆ A private virtual address space that is only available to the threads in the
process unless another process makes part of its address space available
through the use of a shred memory section.

◆ A set of resources that the operating system makes available to the
process. These resources can be things such as files, ports, windows
resources, and so forth.

◆ A minimum of one thread of execution running in the process space.

◆ A unique process ID that defines the process to the operating system.

A process needs to have at least one thread of execution; otherwise the process
does not exist. It is a thread that Windows 2000 will schedule for execution. Each
thread runs within a process and shares the virtual memory space of the process.
Every thread in a process consists of the following components:

◆ The contents of the registers that represent the state of the processor.

◆ A stack for the thread to use when executing in user mode.

◆ A stack for the thread to use when executing in kernel mode.

◆ A private storage space to be used by subsystems, runtime libraries, and
dynamic link libraries.

◆ A thread ID that uniquely defines the thread to the system and to the
process.

Just as a process can contain a group of threads, a job object can contain a
group of processes. The basic function of a job object is to permit a group of
processes to be manipulated and managed as a single entity. The job object also
keeps track of all information for the processes that are or have been associated
with the job.

Because Windows 2000 is a multitasking operating system, a process can have
more than one thread running at the same time. When there is more than one
thread active, the operating system needs to handle which thread gets access to the

22 Part I: Introduction to the Windows Installer

4723-2 ch02.f.qc 1/16/01 11:06 AM Page 22

CPU and how long the thread can execute before another thread gets access. The
same is true when there is more than one process being executed by the operating
system. The kernel is responsible for scheduling access to the CPU and it does this
through a system of priority levels that are assigned to both processes and threads.

There are 32 different priority levels, numbered 0 to 31, with higher numbers
indicating higher priority. Priority levels 0–5 are used for processes and threads
running in user mode and levels 15–31 are used for processes and threads running
in kernel mode. The Windows 2000 kernel assigns each process a base priority level
and a separate base priority level for each thread that is executing within the
process. The base priority level of the process stays constant but the level for a
thread can range from two levels above to two levels below the base priority level
of the process. Depending on the activity that a thread is performing the kernel can
raise or lower its priority level.

When there is more than one processor in a computer on which Windows 2000
is running, Windows 2000 uses Symmetric Multiprocessing (SMP). This is consid-
ered a more efficient way to implement parallel processing than Asynchronous
Multiprocessing (ASMP).

Windows 2000 memory management
Windows 2000 uses a virtual memory management system model, which is based
on a flat 32-bit address space. A 32-bit address space permits up to 4 GB of mem-
ory addresses. Because almost no PC can have as much as 4 GB of physical mem-
ory, Windows 2000 uses a virtual memory management system.

Implementing virtual memory management is the function of the Virtual
Memory Manager (VMM) and it involves two primary activities as listed below:

◆ Mapping a process’s virtual address space through the use of a memory-
mapping table so as to keep track of what virtual memory address
requested by a thread corresponds to what physical memory address.
When a thread requests access to memory, it uses a virtual memory
address and this gets translated into a physical memory address before
data or code is moved.

◆ Moving code or data to disk when it has to be moved out of physical
memory because another thread or process needs that physical location.
This activity is normally called paging.

Even though there are 4 GB of virtual memory, because of the 32-bit addressing
scheme of Windows 2000 only 2 GB of this are available to user-mode processes.
The other 2 GB of virtual memory are reserved for use by kernel-mode threads. The
lower 2 GB of memory addresses are used by both user-mode and kernel-mode
processes and the upper 2 GB of virtual memory addresses are reserved for kernel-
mode threads.

Chapter 2: The Windows 2000 Deployment Architecture 23

4723-2 ch02.f.qc 1/16/01 11:06 AM Page 23

Windows 2000 Management
Services
Since this book concerns the installation of software we need to focus on those
aspects of a Windows 2000 network that deal with this subject. This brings us to a
discussion of the management services that are part of Windows 2000. The man-
agement services provide the tools that enable the network administrator to main-
tain servers and networked users from a central location. They can be broken down
into the following categories:

◆ Infrastructure management

◆ Desktop change and configuration management

◆ Storage management

Of these three, change and configuration management interests us the most. I
will provide a brief overview of the other two categories here and then address
change and configuration management in the next section.

Infrastructure management
There are fifteen components that can be considered to comprise the infrastructure
management capability of the Windows 2000 server. This capability enables a LAN
administrator to manage, from a central location, collections of users, computers,
applications, and network resources. These components are discussed briefly in the
following subsections.

ADVANCED SYSTEM RECOVERY (ASR)
ASR facilitates disaster recovery. It integrates the various components of backup,
restore, repair, and recovery into a unified whole. When using ASR, a user can save
the complete state of his or her system so that it can be restored in the event of a
disaster.

DISK DUPLICATION
This capability enables you to clone a machine’s hard drive onto other machines
that have the same hardware and domain configurations. This is much easier and
more efficient than setting up a lot of machines individually. This is of value to
original equipment manufacturers (OEMs), value-added resellers (VARs), and sys-
tem administrators.

KERBEROS AUTHENTICATION
This capability fully supports the Kerberos Version 5 authentication protocol, which
replaces the Windows NT LAN Manager (NTLM) protocol used in Windows NT 4.0.
Kerberos is the primary security protocol for gaining access to all the resources

24 Part I: Introduction to the Windows Installer

4723-2 ch02.f.qc 1/16/01 11:06 AM Page 24

within and across a Windows 2000 Server domain. It provides fast, single login to
these resources.

MICROSOFT MANAGEMENT CONSOLE (MMC)
The Microsoft Management Console (MMC) provides a framework that you can
extend by creating snap-ins. These snap-ins provide the management functionality
of the console; MMC does not provide any management functionality of its own.
Snap-ins are management components integrated into a common host, the
Microsoft Management Console. Each snap-in provides one unit of management
behavior and snap-ins can be combined to provide a custom management tool.

MMC is a core part of the Microsoft strategy for managing the corporate net-
work. It simplifies the day-to-day tasks required for system management. The
Microsoft Management Console enables the system administrator to create special
tools in order to delegate specific administrative tasks to users or groups.

PUBLIC KEY INFRASTRUCTURE (PKI)
The purpose of the Public Key Infrastructure (PKI) in Windows 2000 is to make it
easy for e-commerce, intranets, extranets, and Web-enabled applications to use
public-key cryptography. Public-key cryptography provides three capabilities that
are essential for applications that require distributed security — that is, security in
which the participants are not part of the same network and have no common secu-
rity credentials.

Public-key cryptography provides privacy for data, allows authentication of users
and machines, and can prove that a particular user took a particular action. These
capabilities can be used to encrypt e-mails, verify visitors to a corporate intranet,
and sign legally binding electronic contracts.

PKI is a set of operating-system and application services that makes it easy and
convenient to use public-key cryptography. In particular, PKI enables you to do the
following:

◆ Issue new keys

◆ Review and/or revoke existing keys

◆ Manage the trust level attached to keys from different issuers

◆ Locate and retrieve public keys

◆ Determine whether a specific key is valid or not

◆ Provide an easy-to-use method for users to use keys

The Windows 2000 PKI is comprised of four main components: Certificate
Services; Active Directory; PKI-enabled applications such as Internet Explorer,
Internet Information Server, Outlook, and Outlook Express; and the Exchange Key
Management Service (KMS).

Certificate Services is a core operating system service that enables businesses
to act as their own certificate authority so that they can issue and manage digital

Chapter 2: The Windows 2000 Deployment Architecture 25

4723-2 ch02.f.qc 1/16/01 11:06 AM Page 25

certificates. The Active Directory directory service is also a core operating system
service that provides a single place to find network resources. With respect to PKI it
serves as the publication service. A more complete discussion of Active Directory is
provided in a later section of this chapter. The Exchange Key Management Service
is a component of Microsoft Exchange that allows for the archiving and retrieval of
keys used to encrypt e-mail.

REPAIR COMMAND CONSOLE
This capability is encapsulated in a utility that enables an authorized user to
read/write NTFS volumes using the Windows 2000 Server boot floppies. In this
mode you can copy files, start and stop services, and repair the system. You can
also repair the master boot record, boot sector, and format disk volumes, and repar-
tition volumes using fdisk. This new capability in Windows 2000 obviates the need
to perform a parallel or repair installation of the operating system, which saves you
considerable time.

SAFE MODE BOOT
Windows 2000 Server supports a safe-mode options screen that you can access
from the initial boot loader by pressing F8. It enables a user to prevent the operat-
ing system from becoming unbootable after a “badly behaved” driver or an appli-
cation that uses kernel mode drivers has been installed. If a computer will not start
because of this bad driver, the user can start the operating system with minimal ser-
vices. These minimal services are mouse, monitor, keyboard, mass storage, base
video, and default system services. There is no network support provided in this
mode. From this mode the user can either change the default settings or remove the
installed driver that is causing the problem.

SECURITY CONFIGURATION MANAGER
The Security Configuration Manager is a “define once, apply many times” technol-
ogy that allows network administrators to define security configurations as a tem-
plate, which can then be applied to selected computers all in one operation. This
can be considered as a one-stop security configuration and analysis tool for
Windows 2000 Server. It permits the configuration of various security-sensitive
registry settings, access controls on files and registry keys, and security configura-
tion of system services.

SECURITY SERVICES
This capability relates to those security mechanisms that are integrated with the
Active Directory. The purpose of this integration is to make security policy easy to
configure. It makes controlling the permissions and access rights for large numbers
of people fairly simple. Through these services a network administrator can dele-
gate down to the organizational unit (OU) level the rights to manage user and
group accounts. The section in this chapter on the Group Policy Editor will talk
more about the concept of organizational units.

26 Part I: Introduction to the Windows Installer

4723-2 ch02.f.qc 1/16/01 11:06 AM Page 26

SERVER CONFIGURATION WIZARD
Windows 2000 Server has a configuration wizard that simplifies the configuration of
the various components of the operating system. You can use it to automatically con-
figure Active Directory Server, Networking Server, File Server, Print Server, Web
Server, and Clustering Server. These are called scenarios and the configuration wizard
will only install the relevant services that are required for the scenario in question.

TASK SCHEDULER
The Task Scheduler automatically invokes a script or application at a specified time.
It is a user interface that is fully integrated into the operating system. The Task
Scheduler provides a common and fully programmable set of interfaces, which are
COM-based. The purpose of the Task Scheduler is to unify a set of disparate tools
and enable developers to build their applications automatically. It also enables
them to add scheduling services to their applications.

TERMINAL SERVICES
The Terminal Services feature of Windows 2000 Server allows low-end client
machines to run Windows applications using terminal emulation. With Terminal
Services running on Windows 2000 Server, application execution, data processing,
and data storage occur on the server and not on the client desktop. Terminal
Services is an implementation of thin-client technology where only an applica-
tion’s user interface is transmitted to the client. Each user who logs on to this ser-
vice will see only his or her particular session of the application being accessed on
the server. Even though this is a thin-client technology, a normal PC (fat client) can
also run in this mode for some applications and in the normal mode for other appli-
cations. The normal mode for a PC is to have the application execution, data pro-
cessing, and data storage occurring on the PC itself.

Terminal Services centralizes the management of computing resources for all the
clients connected in terminal emulation mode to the server. Using these services
enables a faster migration of the desktop to the Windows 2000 environment. It also
centralizes the deployment of applications and provides the system administrator
with the ability to remotely administer each member of the Windows 2000 family
of operating systems. The system administrator can do this from a client machine
over a wide area network or via a dial-up connection.

UNATTENDED SETUP
This capability enables original equipment manufacturers (OEMs), value-added
resellers (VARs), and system administrators to install Windows 2000 Server without
the need for any interaction with the computer. It can also include the unattended
setup of scenarios such as Active Directory and Clustering. Using Unattended Setup
is faster and easier than having to customize and install each operating system
individually.

Chapter 2: The Windows 2000 Deployment Architecture 27

4723-2 ch02.f.qc 1/16/01 11:06 AM Page 27

WINDOWS MANAGEMENT INSTRUMENTATION (WMI)
Windows Management Instrumentation is the Microsoft implementation of the
Web-based Enterprise Management (WBEM) standard. WBEM is an industry initia-
tive to develop a standardized and non-proprietary means for accessing and shar-
ing management information in an enterprise network. WBEM specifies standards
for a unifying architecture that allows access to data from a variety of underlying
technologies and platforms. This data is presented consistently so that management
applications can use it to create solutions that reduce the maintenance and life-
cycle costs of managing a company’s network. WBEM is based on the Common
Information Model (CIM) schema, which is an industry standard developed under
the auspices of the Desktop Management Task Force (DMTF).

Windows 2000 supports the Windows Management Instrumentation standard.
WMI lets management applications from different sources manage all of an organi-
zation’s devices, drivers, services, and applications consistently.

WINDOWS SCRIPT HOST (WSH)
The Windows Script Host provides a rich capability for creating scripts that can
replace the older command or batch file language. WSH enables system adminis-
trators to automate tasks such as creating shortcuts or connecting to a network
server. The Windows Script Host comes native with scripting engines that support
VBScript and JScript. Other scripting languages can be supported if the user pro-
vides the necessary scripting engine to support the IActiveScriptParse COM inter-
face. Third-party engines are already available for Perl, TCL, and REXX. We will
discuss this in more detail when we discuss creating custom actions using either
VBScript or JScript.

Storage management
There are three components that can be considered to comprise the storage man-
agement capability of Windows 2000 Server. These components are discussed in
the following subsections.

HIERARCHICAL STORAGE MANAGEMENT (HSM)
Hierarchical Storage Management is a new concept that is being introduced as an
enhancement to NTFS5. You can use it to keep frequently accessed files readily
available and hold down overall storage costs at the same time. HSM does this by
keeping the most frequently used files on local storage while moving less fre-
quently used files to slower and less expensive media such as optical drives or tape.
HSM works with what are called reparse points. A reparse point in this regard is
used as a surrogate for a file that is being kept on a remote storage device. The
information about the file that is being stored remotely is provided in a stub file
that contains the reparse point. This information points to the device where the file
is actually located. The NTFS5 file system uses this information to retrieve the file.
File retrieval is facilitated through the use of the Remote Storage Service.

28 Part I: Introduction to the Windows Installer

4723-2 ch02.f.qc 1/16/01 11:06 AM Page 28

REMOVABLE STORAGE MANGER (RSM)
The Removable Storage Manager provides a means for enumerating all removable
media in the system except for floppy disks and other low-capacity media. The
removable media can be stored off line on a shelf or on line in some type of robotic
library. RSM provides a common interface to the removable media through a single
set of APIs. It uses media pools, which organize the media. Media pools control the
selection of media and media type and enable the user to share the media across
applications. Media pools also enable the user to track which applications are doing
the sharing.

BACKUP UTILITY
The Backup Utility is a set of wizards that enables the system administrator to pre-
pare for disaster recovery. The first task in preparing for disaster recovery is to use
the Backup wizard to create a backup for the entire server. The second task is to use
the Disaster Recovery Preparation wizard to prepare a set of disaster recovery disks
that can be used to fully recover a failed system. Finally the Recovery wizard takes
the user through all the steps required to actually recover the system. All these wiz-
ards are part of the new Backup Utility.

Desktop Change and Configuration
Management
We are now inching closer to the real subject of this book, which is software instal-
lation. We are now going to focus on those aspects of the Windows 2000 environ-
ment that deal with the deployment of software. What we are talking about here is
the management of the desktops that are in the network. The term “change and
configuration” represents the reality in today’s corporate network. Both hardware
and software keep changing and people’s needs for these resources also keep
changing. Managing this continual change, making sure that the desktops are con-
figured correctly, and doing it all from a central location are the objectives of
Change and Configuration Management. Being able to do these things correctly can
greatly reduce the total cost of ownership of the network.

Following are the advantages you can get from the proper use of the Change and
Configuration Management features in Windows 2000.

◆ Computing environment settings can be set from a central location. The
system administrator can set the computing environment settings to affect
groups of computers as well as groups of people. He or she can then be
sure that the settings will be enforced as planned.

◆ When a desktop computer fails and has to be taken out of service, it can
be quickly replaced with an identical environment. This means that all
data, applications, preferences, and administrative policies are set up on
the new desktop.

Chapter 2: The Windows 2000 Deployment Architecture 29

4723-2 ch02.f.qc 1/16/01 11:06 AM Page 29

◆ Users in a workgroup are able to roam among other computers in the
same workgroup, and when they sign onto the network they will be pre-
sented with all their data, applications, and preferences.

◆ Through the process of automatic synchronization between the desktop
and the network users can work offline if the network connection is lost.
This is because the files that are on the network are cached locally.

◆ Administrators can manage the installation, upgrade, or removal of soft-
ware from a central vantage point. This eliminates the need for the end user
to intervene with the management of the locally installed software. As we
discussed in Chapter 1, improper software installation is one of the major
contributors to increasing the total cost of ownership. This is because when-
ever a desktop computer is left in an unknown state because of a failed
installation or uninstallation, system personnel have to visit the machine
in order to solve the problem. Windows 2000 circumvents this problem.

◆ You can upgrade or automatically install the desktop operating system
from a remote server. This greatly increases the stability of the operating
system. There are now prescribed methods you can use to upgrade the
operating system and installations will no longer be able to change sys-
tem files in the System32 directory.

The Change and Configuration Management capabilities of Windows 2000 are
implemented through IntelliMirror, Remote OS Installation, and Microsoft Systems
Management Server (SMS). (Microsoft considers SMS to be a value-added solution
and not part of the core functionality of Change and Configuration Management.)
The important technologies that support these capabilities are Active Directory,
Group Policy, and the Windows Installer Service. We discuss these technologies in
the following sections. Of course, the remainder of the book is devoted to an in-
depth discussion of the Windows Installer Service, so we will not go into any detail
about that technology in this chapter.

IntelliMirror
The purpose of IntelliMirror is to enable a user’s environment to follow wherever he
or she goes. IntelliMirror enables users to roam between machines by mirroring a
user’s desktop data, applications, and settings on a network server. This keeps the
user from having any down time, which in turn enhances the productivity of the
entire workgroup. This enhances the productivity of both the user and the adminis-
trator; it helps the administrator because this capability can be implemented from a
centralized location.

30 Part I: Introduction to the Windows Installer

4723-2 ch02.f.qc 1/16/01 11:06 AM Page 30

IntelliMirror has three main features: user data management, software installa-
tion and maintenance, and user settings management. These features can be used
individually or all together, depending on the needs of the organization. We discuss
these features in the following subsections.

User data management
User data is, as you might expect, contained in files. When you are implementing
this feature of IntelliMirror, user data is stored in specified network locations, but it
will appear to the user that this data is stored on the local machine. In this respect
it can be said that the user’s data will follow the user, which is the objective in what
is called a roaming environment. You can enable the user’s data to roam with the
user in three different ways. You can configure the roaming environment manually,
set it up on a per-user basis, or use the Group Policy Editor to configure it.

Having a network location look as if it were on the local machine is imple-
mented through what is called folder redirection. Folder redirection is discussed
later in this chapter.

Software installation and maintenance
This feature of IntelliMirror deals with making software available to the desktops in
a controlled way and from a central location. In the controlled environment of a
Windows 2000 network the end user cannot install software unless it has been
determined that his or her job requires it, or it is otherwise approved for use in the
corporation. In addition to being able to centrally manage the installation of appli-
cations to be used on the desktop you can also distribute upgrades to these applica-
tions using the same centralized management model. The major technologies you
can use to implement this feature of IntelliMirror are Group Policy, and the Windows
Installer Service. We discuss each of these technologies in its own separate section
later in this chapter.

You, the system administrator, have two options as regards deploying software
in a Windows 2000 network: you can either publish the software or assign it. When
you assign software, you can make it available to everyone who uses a particular
computer or you can make it available to only a specific user. You would typically
publish software for those applications that are not necessarily required for a per-
son’s job but which might be found useful. An example of an application that
would be published is a file compression utility. This allows each person to decide
if he or she wants the software and, if so, to install it. If a person required a specific
application, then you would assign it instead of publishing it. Table 2-1 provides a
complete description of the various software deployment options that you can
implement in a Windows 2000 network.

Chapter 2: The Windows 2000 Deployment Architecture 31

4723-2 ch02.f.qc 1/16/01 11:06 AM Page 31

TABLE 2-1 SOFTWARE DEPLOYMENT OPTIONS IN A WINDOWS 2000 NETWORK

Deployment Option Description Implementation

Publish Installation The user installs the software by going to the
Add/Remove Programs applet and initiating
the installation. If the user tries to open a
file that requires this software, the software
will be installed if it is not already there.

Uninstallation The user uninstalls the software by going
to the Add/Remove Programs applet and
initiating the uninstallation. The software
will still be available for reinstallation in
the future.

Supported The installation is described in a Windows
Format Installer Package or in a ZAP file. A ZAP file

is a text file that describes how the software
is to be installed.

Assign to a user Installation The software will be available for installation
the next time the user logs onto the network.
The user will initiate the installation either
from the icon on the Start\Programs menu
or from the Add/Remove Programs applet. If
the user tries to open a file that requires this
software, the software will be installed if it
is not already there.

Uninstallation The user uninstalls the software by going
to the Add/Remove Programs applet and
initiating the uninstallation. The software
will still be available for reinstallation after
the next logon: the reinstallation will be
performed like the original installation.

Supported The installation needs to be described in a
Format Windows Installer Package.

Assign to a computer Installation The software will be automatically installed
the next time the computer is booted.

Uninstallation The only person who can uninstall the
software is the person who has local
administrator privileges. However, normal
users can perform a repair operation on
the software.

32 Part I: Introduction to the Windows Installer

4723-2 ch02.f.qc 1/16/01 11:06 AM Page 32

Deployment Option Description Implementation

Supported The installation needs to be described in a
Format Windows Installer Package.

As shown in the above table, it is possible to publish software even if that soft-
ware does not have a Windows Installer package. These applications that do not use
the Windows Installer will be installed using their own setup routines but before
Software Installation and Maintenance feature can use them the installation needs
to be described in a ZAW applications package (.zap) file. A .zap file is a text file
that contains information on the required command line to be used, the name, ver-
sion, and language of the application, and the application entry points that need to
be entered into the registry. These entry points are file extension, CLSID, and
ProgID, and they are the items that would trigger an installation of the application.

When software that does not use the Windows Installer service for its installa-
tion is deployed, there are a number of features of deployment that you won’t be
able to use. You will not be able to use elevated privileges in order to conduct the
installation: essentially this means that the end user will have to have administra-
tive privileges on the local system. You will also not be able to assign the software
so that it is installed on first use, and you will not be able to have first-use instal-
lation of a feature. Finally, you will not be able to instigate a complete rollback of
a failed installation or uninstallation. There are other features of the Windows
Installer Service that you will also not be able to take advantage of but these are the
most significant. The message here is that you should recreate or migrate your
installation packages so that they can be compatible with the Windows Installer.

User settings management
A number of items comprise a user’s settings. There are four categories of these set-
tings, as shown in Table 2-2.

TABLE 2-2 CATEGORIES OF USER SETTINGS

Category Description

User-initiated settings These are settings that the user might change, such as the
icons on the desktop, the wallpaper, and the color scheme to
be used. These settings will follow roaming users regardless of
what machine they are using since the settings are saved on
the network server.

Continued

Chapter 2: The Windows 2000 Deployment Architecture 33

4723-2 ch02.f.qc 1/16/01 11:06 AM Page 33

TABLE 2-2 CATEGORIES OF USER SETTINGS (Continued)

Category Description

Administrative settings Administrators can customize and control a user’s computing
environment and actually restrict those preferences that a
user can personalize. These restricted settings will follow
roaming users to any machine.

Temporary information Temporary information stays with the machine on settings
which it was generated and does not roam with the user.

Local computer settings Local computer information stays with the machine
on which it was generated and does not roam with
the user.

The concept behind the user settings management feature of IntelliMirror is that
users’ settings will follow them when they roam from machine to machine. This
does not mean that all the settings described above will roam with the user, as that
would create unnecessary overhead in the system. Only the vital user and adminis-
trative settings roam with the user; the temporary and local settings will not. The
temporary and local settings are regenerated as necessary.

This capability is made possible through the use of Active Directory, group pol-
icy, offline folders/files, roaming user profiles, and the enhancements that have
been made to the Windows shell. We discuss each of these technologies briefly later
in this chapter.

Remote OS Installation
Remote OS installation is a feature of Windows 2000 that permits the systems
administrator to deploy an operating system throughout an enterprise without hav-
ing to actually visit each machine. This goes a long way toward Microsoft’s goal of
minimizing the cost of administering large networks. Combining this capability for
remote installation with the features found in IntelliMirror you have the ability to
perform machine replacement in the enterprise from a centralized location. By
machine replacement I mean that a machine can be rebuilt from the bottom up with
regard to the OS, the required applications, and a user’s data and settings. This not
only helps in setting up new machines but can also reduce the cost of disaster
recovery operations.

Active Directory, Group Policy, Dynamic Host Configuration Protocol (DHCP),
Remote Installation Services, and Domain Name Services (DNS) all combine to enable

34 Part I: Introduction to the Windows Installer

4723-2 ch02.f.qc 1/16/01 11:06 AM Page 34

you to remotely install operating systems. Each of these technologies is briefly
described in the following two sections.

The Application Specification for Microsoft Windows 2000 for desktop appli-

cations provides an excellent source of information for making your applica-

tion compatible with the requirements of IntelliMirror.This specification can

be downloaded form the Microsoft Web site.

The Key Technologies Used to
Implement Change and
Configuration Management
There are three major technologies underlying the deployment capabilities in a
Windows 2000 network: Active Directory, Group Policy, and of course the Windows
Installer Service. There are also ten minor technologies involved. We discuss the
three major technologies in this section and the ten minor ones in the next section.

Active Directory
The computing world of today is distributed and I do not think that anyone would
argue with that. To use the resources in a distributed environment we have to be
able to find them. This is where a directory service comes into the picture. A direc-
tory service provides a means of storing information about the resources that com-
prise a network and the various entities that are using these resources. A directory
service also provides a mechanism to name, describe, locate, access, manage, and
secure the information about these resources and entities. When we refer to the
resources in a distributed environment, we are talking about things like applica-
tions, files, printers, and so forth. When we refer to entities, we are talking about
people, workgroups, organizational units (OU), and so forth.

With all the resources and entities in a modern distributed network there must be
something that handles the relationships between them. Once again this is a direc-
tory service. A directory enables the system administrator to manage resources and
entities. It also works with the security mechanism of the operating system to
maintain and strengthen the security of the distributed environment. You need
security management for the desktop, remote dial-up users, and external customers
that come in to the system via the Internet. Finally, a directory service has to be
able to handle synchronization and interoperation with other directory services.

Enter Active Directory, the Windows 2000 Server implementation of a directory
service that is used to manage the domains in a Windows 2000 network. Active

XREF

Chapter 2: The Windows 2000 Deployment Architecture 35

4723-2 ch02.f.qc 1/16/01 11:06 AM Page 35

Directory provides all users in the distributed environment with access to all the
resources in a domain via a single network logon. It also provides a system admin-
istrator with a centralized point for administering all the resources and entities on
the network. Because we are now in the object-oriented world all resources and
entities that make up the distributed environment are called objects and that is how
we will refer to them from now on.

Microsoft considers Active Directory to be the first enterprise-class directory ser-
vice that is scalable, built from the ground up using Internet-standard technologies,
and fully integrated with the operating system. Active Directory is hierarchical in
nature and is object-oriented. It organizes information about the objects in a tree-
like structure that has containers and objects and looks a lot like the directories and
files in a file system. Figure 2-2 shows how this might look for a particular company.

Figure 2-2: Active Directory tree structure defining the containers and objects in a domain

All network objects exist inside a domain and as such the domain is the basic unit
of Active Directory. A single domain in Active Directory can span multiple physical
locations and to simplify administration Microsoft recommends that system admin-
istrators create large domains — if possible, only one domain for the enterprise.
When more than one domain is needed, you create what are called domain trees. A
domain tree consists of two or more domains that share a common schema and con-
figuration and form a contiguous namespace. (I’ll define the term namespace later in
this section.) The domains in a tree are linked together by what are called trust rela-
tionships. A trust relationship is a relationship established between two domains

InstallShield

Training

Computers Devices SoftwareUsers

= Container

= Object

Consulting

36 Part I: Introduction to the Windows Installer

4723-2 ch02.f.qc 1/16/01 11:06 AM Page 36

that allows users in one domain to be recognized by a domain controller in the other
domain. Trusts let users access resources in the other domain and also let adminis-
trators administer user rights for users in the other domain.

We can also have what is called a domain forest, where there are two or more
domain trees that do not form a contiguous namespace. However, all trees in the for-
est share a common schema, configuration, and global catalog.

Through the global catalog for a domain, domain tree, or domain forest users
and administrators can find and access any object on the network. Through clients
that support the interfaces to Active Directory users can query the global catalog to
find the information they need. You can find a user on the network, for example,
by initiating a query on first name, last name, e-mail alias, office location, or any
other attribute that might be stored for that user’s account.

The global catalog is a service and a store that is the repository of all informa-
tion from all the domains in the enterprise. As described above, the purpose of the
global catalog is to serve as the target of any query that is trying to find an object
on the network. The global catalog is kept on the domain controllers in the system.

The namespace system used by Active Directory is one that closely adheres to
the Domain Naming System (DNS) set of protocols and services used by the Internet
and TCP/IP networks. A typical DNS namespace looks like www.installshield.
com: this standard format allows domain and computers to be given hierarchically
friendly names. An example of this is shown in Figure 2-3.

Figure 2-3: A hierarchy of domain and computer names using the DNS naming convention

Since this is supposed to be a brief overview of Active Directory we should not
get into any more detail on this subject. However, it is probably important to at
least list a few of the other important aspects of this technology.

Win2KTest.com

ProfServices.Win2KTest.com

WKS02.ProfServices.Win2KTest.com

Chapter 2: The Windows 2000 Deployment Architecture 37

4723-2 ch02.f.qc 1/16/01 11:06 AM Page 37

Security You control which users can view and access objects in
the Active Directory through an Access Control List (ACL).
You can grant access on an attribute-by-attribute basis.
The security functionality of Active Directory supports
both the inheritance and the delegation of authority.
With inheritance all the children of an object will have
the same security permissions as their parent object. With
delegation an administrator can grant administrative
rights to other individuals and groups.

Replication In order to improve fault tolerance, load balancing, and
performance, you can replicate the directory to each
domain controller in the network that is running Active
Directory. If information is changed on one copy of the
directory, this information is forwarded to all other
domain controllers that are hosting the Active Directory.

Interoperability Active Directory supports other industry standards so
as to allow for interaction between it and other directory
services. In particular Active Directory supports the
Lightweight Directory Access Protocol (LDAP). It also
supports the Name Service Provider Interface (NSPI) and
Hypertext Transfer Protocol (HTTP).

Now that we have an idea of what the Active Directory is all about we can pro-
ceed to a discussion of Group Policy. Group Policy is heavily dependent on the
Active Directory.

Group Policy
When Microsoft Windows NT 4.0 was released, system administrators were intro-
duced to a new tool called the System Policy Editor. This tool enabled the adminis-
trator to specify Windows NT registry–based policy for both user and computer
configurations. You can create system policy in the following ways:

◆ Create default settings for the computer and user policy for the domain.

◆ Create custom settings that apply to individual users, groups of users, or
individual computers.

◆ Specify the location from which to download policy and the way in which
it will be downloaded for all or some users.

With the System Policy Editor you can set such user policies as access to the
control panel, the wallpaper that can be used on the desktop, what can appear on
the desktop, and so forth. For instance, a user can have access disabled to such
items as the Run and Find commands as well as the registry editors REGEDT32.EXE
and REGEDIT.EXE. Computer properties you can set with the System Policy Editor
relate to access to system resources such as printers, servers, and so forth.

38 Part I: Introduction to the Windows Installer

4723-2 ch02.f.qc 1/16/01 11:06 AM Page 38

Windows 2000 brings an extension to the functionality of the System Policy
Editor. This enhancement takes the form of the Group Policy Editor that is a snap-in
to the Microsoft Management Console (MMC). The Group Policy Editor snap-in
enables you to set Group Policy options for registry-based policy, security settings,
software installation, scripts, and folder redirection. These items are described at the
end of this section. Group Policy settings are contained in what is called a Group
Policy Object, which is associated with particular Active Directory directory system
containers such as domains and organizational units (OUs). Table 2-3 provides a
brief comparison between the System Policy Editor and the Group Policy Editor.

TABLE 2-3 COMPARISON BETWEEN THE SYSTEM POLICY AND THE GROUP
POLICY EDITORS

Feature System Policy Editor Group Policy Editor

Control Policies are applied to domains or Policies can be applied to sites,
domain groups only. Policies can domains, and organization units.
be further controlled by user A site is defined as one or more
membership in security groups. TCP/IP subnets. Policies can be

further controlled by user
membership in security groups.
These policies affect all users and
computers in the specified Active
Directory container.

Security Policies are not secure, because Policies are secure, because they
they are contained in the registry. are contained inside Group Policy

Objects.

Scope Policies that can be set are Policies can be used for enhancing
limited to those related to desktop lockdown and for
desktop lockdown. enhancing the user’s computing

environment. Enhancements
include software installation,
scripts, and folder redirection.

Change Because policies set with this A Group Policy Object contains a
Management tool are registry-based, only description of the policies that

these policies will tend to have been set and is thus able to
persist even after a user’s automatically clean up the registry
group membership is changed. when that attributes of the object
The only way to circumvent are changed.
this is to manually reverse
the specified policy or to
have the user edit the registry.

Chapter 2: The Windows 2000 Deployment Architecture 39

4723-2 ch02.f.qc 1/16/01 11:06 AM Page 39

The various policy areas that the Group Policy Editor can set are actually snap-in
extensions to the Group Policy Editor snap-in. These extensions are Administrative
Templates, Security Settings, Software Installation, Scripts, and Folder Redirection,
which are briefly described below:

Administrative Templates The Administrative Templates are primarily
focused on setting registry-based policy. These
are the same as described above for the System
Policy Editor. In addition, however, these tem-
plates also include the capability for setting Disk
Quotas and Remote Installation options. These
are described in the next section on the support-
ing technologies.

Security Settings This extension is used to define the security con-
figuration for all the computers defined within a
Group Policy Object. You can define computer,
domain, and network security settings with this
functionality.

Software Installation You can use this extension to centrally manage
the deployment of software within the organiza-
tion. This is where the capability to publish
and assign applications to groups of users is
implemented.

Scripts Scripts automate the startup and shutdown of
computers. You can also automate the network
logon and logoff activities. You can write scripts
in VBScript or JScript, because the Windows
Script Host that comes with Windows 2000
natively supports these script languages.

Folder Redirection This permits the redirection of special folders on
the desktop so that they point to the network. I
describe this in more detail in the next section
on the supporting technologies.

We now move onto a short discussion of the third key technology that supports the
Change and Configuration Management functionality of a Windows 2000 network.

Windows Installer Service
This is the subject of the remainder of this book so this is just an introduction. The
Windows Installer Service is a native operating system–resident service that comes
with Windows 2000. This service runs on the desktop and provides the capability
that IntelliMirror and the Group Policy Editor require to deploy software to the

40 Part I: Introduction to the Windows Installer

4723-2 ch02.f.qc 1/16/01 11:06 AM Page 40

client machines in the network. You can also install Windows Installer on machines
running Windows NT 4.0, Windows 95, and Windows 98. The Windows Installer is
not supported on any Windows NT platform earlier than version 4.0 and it is not
supported on any 16-bit version of Windows.

The Windows Installer concept originated with the Microsoft Office team, which
was trying to create an approach to installing Office that was better than the pre-
sent in-house tools. The team wanted to get away from having to write installation
scripts and therefore created a data-driven concept. This approach started to look
so promising that the concept was taken out of the Office team’s scope and given a
life of its own. What has evolved is this installation service, which is part of the
operating system that defines a standard format for creating installations and also
provides some serious additional functionality to applications through the imple-
mentation of a management API function set.

This new installation functionality consists of the description of the product and
how it should be installed. This information is contained in a database that the
Installer engine knows how to interpret.

Chapter 3 provides a much deeper discussion of this subject even though it

does not cover everything that makes up this new technology. When you

reach the end of this book, you will know everything about this new

approach to installing software.

The Supporting Technologies
Used to Implement Change and
Configuration Management
In the previous discussion of the three key technologies that are critical to imple-
menting the deployment capabilities of Windows 2000, I mentioned other tech-
nologies that are part of this capability. This section provides a brief description of
what these supporting technologies are and how they work.

Folder redirection and offline folders
Folder redirection is a feature in Windows 2000 that enables users and administrators
to redirect the path of a folder to a new location. This new location can be another
folder on the local machine or it can be a directory on a shared network drive.

As an example, let’s assume that the My Documents folder has been redirected to
a network location. When the user saves a file to this folder, the file is actually being
saved in the network location the file is then being stored on the local computer
through the process of synchronization. Synchronization occurs in the background

XREF

Chapter 2: The Windows 2000 Deployment Architecture 41

4723-2 ch02.f.qc 1/16/01 11:06 AM Page 41

and is transparent to the user. If the user is disconnected from the network — either
intentionally or unintentionally — he or she can continue to work as if nothing hap-
pened. What is actually going on is that the user is working with the synchronized
copy of the file that is on the local machine. When the network connection is
restored, the network copy is synchronized with the local copy automatically. If both
the network copy of the file and the local copy of the file have changed during the
time that there was no network connection, the user is prompted as to whether to
save both copies or to synchronize one copy with the other.

Synchronization Manager
The Synchronization Manager performs the synchronization operation described
above. The Synchronization Manager (SyncMgr) is an operating system infrastruc-
ture that provides connectivity functions, system event notification services, and
client-side caching. It provides a standard technology for applications to cache and
synchronize network resources for local use.

Disk quotas
With Windows 2000 a system administrator can define the amount of data a user
can store on an NTFS volume. This new ability comes as part of NTFS version 5.0.
At the discretion of the administrator the system can be configured to log an event
when a user gets close to the quota that has been set. In addition, the system can be
configured to deny further disk space to any user that exceeds the quota. This fea-
ture can generate reports and use the event monitor to track quota issues.

Roaming user profiles
The roaming user profile is key to permitting users to roam among machines and to
have their customizations available to them regardless of what machine they log on
to within the corporate network. In order to be a roaming user, the user must be
defined as such by the system administrator. Once this is done and the user logs
onto a computer, configures it, and logs off, the profile is copied to a server that has
been designated for this purpose. From then on, any time the user logs onto a
machine in the network all the profile information will be downloaded to the local
computer and the user will see his or her customizations as if he or she were work-
ing on the original computer.

Dynamic Host Configuration Protocol (DHCP) and
Domain Name Service (DNS)
In Windows 2000 DHCP has been enhanced with a number of new features.
However, the only feature that we want to cover in this discussion is the integration
of DHCP with DNS.

42 Part I: Introduction to the Windows Installer

4723-2 ch02.f.qc 1/16/01 11:06 AM Page 42

The Dynamic Host Configuration Protocol (DHCP) is an industry standard that
simplifies the administration of TCP/IP networks. In a TCP/IP network each con-
nected computer must have a unique IP address and DHCP keeps the system admin-
istrator from having to configure all these computers by hand. The mechanism for
implementing this functionality is that the desktop computer (DHCP Client) leases
an IP address from the DHCP Server for a period of time. At the end of each IP
address lease period the desktop machine can find itself with a new IP address.

DNS maintains the information about the mapping between a computer’s Fully
Qualified Domain Name (FQDN) and its IP address. A FQDN is a user-friendly name
in the format of server.division.organization.com. The information needed to
perform this mapping is maintained in a distributed database that contains two
types of resource records (RR) called A and PTR. The A resource record contains the
mapping from the FQDN to the IP address, and the PTR resource record contains
the mapping from the IP address to the FQDN.

The problem is that DHCP does not provide any mechanism to update the A and
PTR resource records in the DNS–distributed database when a new IP address is
assigned to a DHCP Client. This means that the mapping between FQDNs and IP
addresses will be incorrect in a very short time. This is where the integration of
DHCP and DNS via the implementation of the Dynamic DNS Update protocol comes
into play in a Windows 2000 network. The integration of these two technologies
means that when a DHCP Client with a particular FQDN acquires an IP address from
the DHCP server the A resource record with the FQDN is updated to reflect the new
IP address. Likewise, when an IP address is assigned to a DHCP Client with a par-
ticular FQDN, the PTR resource record associated with this address is updated to
reflect the new FQDN.

Remote Installation Services (RIS)
We have already discussed remotely installing the Windows 2000 operating system.
It is the Remote Installation Services that enables you to do this. This service
requires three other services that we have already discussed.

◆ The Active Directory directory service

◆ The Domain Name Service (DNS) Server

◆ The Dynamic Host Configuration Protocol (DHCP) Server

Remote installation of the operating system relies on DNS for locating both the
directory service and the client machine accounts. RIS also requires a DHCP server
to be on the network so that the remote boot-enabled client computers can receive
an IP address prior to contacting the remote installation service. RIS depends on the
Active Directory directory service for locating existing client machines and for
locating any existing RIS servers.

Chapter 2: The Windows 2000 Deployment Architecture 43

4723-2 ch02.f.qc 1/16/01 11:06 AM Page 43

Windows Shell enhancements
The Windows Shell enhancements that have been implemented all relate to the
capability to advertise an application on the Start\Programs menu so that it will
appear that it is installed when it is not. Launching the application from the icon on
this menu will then install the application. In order to be able to advertise an appli-
cation so that it will get installed on first use, the version of SHELL32.DLL found in
the Sytem32 folder needs to be greater than or equal to 4.72.3110.0.

Add/Remove Programs applet
The Add/Remove Programs applet in the Windows 2000 Control Panel has been
dramatically enhanced. You can now install, repair, or remove an application from
this applet. It now supports publishing software as discussed in the section on
IntelliMirror. There is now a comprehensive list of information that can be dis-
played about any piece of installed or published software.

In the Add/Remove Programs implementation found on Windows NT 4.0 the
only information provided was a display name for the application. In Windows
2000 there is a complete list of information such as help for using the application,
the name of the manufacturer of the application, and so forth. Also, the applet
shows the time the application was last used and the size of the installed image,
and it also allows you to sort the list of applications on the machine according to
name, size, frequency of use, or date last used.

System Management Server (SMS)
Microsoft sees System Management Server (SMS) as an add-on to the Change and
Configuration Management capabilities that come with a Windows 2000 network.
When you have a strict Windows 2000 network where all the desktops are running
Windows 2000 Professional and all the servers are running Windows 2000 Server,
the native management capabilities are all that is required. However, when the
enterprise gets more distributed and complex, and the client machines are running
other operating systems than Windows 2000, then SMS comes into the picture.
With Systems Management Server you can support desktops that are running any
of the 16-bit or 32-bit versions of the Windows operating system. SMS also sup-
ports environments, whether they are running Windows NT 3.51/4.0 or some ver-
sion of NetWare.

Systems Management Server provides the following set of capabilities:

Hardware and Software Using Windows Management Instrumentation and
Inventory software scanners, SMS can upload detailed hard-

ware and software inventory information into a
SQL Server–based repository. You can also check
this inventory to make sure it meets your criteria.

44 Part I: Introduction to the Windows Installer

4723-2 ch02.f.qc 1/16/01 11:06 AM Page 44

Software Distribution Software deployment in SMS is rule-based — that
and Installation is, integrated with inventory functionality to

allow sophisticated targeting. When deploying
software, SMS first performs a query of software
inventory and collection information and then
targets the audience based on rules that have
been defined by the system administrator. It then
proceeds with the deployment of the software.

Software Metering SMS enables administrators to track software
usage by users, groups, computers, time, or license
quota. It can monitor, analyze, and control the use
of applications on servers and workstations.

Diagnostics and SMS provides a suite of diagnostic tools, which
Troubleshooting include the capability to monitor and analyze

network conditions and performance. It also
provides the capability to track critical perform-
ance information on a Windows NT server and
Microsoft BackOffice.

To put everything into perspective Table 2-4 provides guidelines about when to
use IntelliMirror, SMS, or both.

TABLE 2-4 COMPARISON OF INTELLIMIRROR VERSUS SYSTEMS
MANAGEMENT SERVER

Usage SMS IntelliMirror Both

Distribution Yes No Yes

Targeting Collection Active Directory Collection
of group

Platform All platforms Windows 2000 All

Installation SMS or Windows Windows Installer All
Installer

Additional Yes No Yes
management
support

Chapter 2: The Windows 2000 Deployment Architecture 45

4723-2 ch02.f.qc 1/16/01 11:06 AM Page 45

Summary
This chapter has been an overview of the architecture of Windows 2000, with a spe-
cial emphasis on how it has been designed to facilitate software deployment in the
enterprise. What we have seen in this chapter is that with Windows 2000 networks
we are entering a whole new world of how software will be managed in the corpo-
rate network. The main focus of this new environment is central control of the desk-
top and the ability to lock down this desktop so that the normal user will not be able
to do much damage. This deployment architecture is a major step forward in
Microsoft’s goal of truly reducing the Total Cost of Ownership of the desktop com-
puter for corporate America.

46 Part I: Introduction to the Windows Installer

4723-2 ch02.f.qc 1/16/01 11:06 AM Page 46

Chapter 3

Design and
Implementation of the
Windows Installer Service

IN THIS CHAPTER

◆ The design requirements

◆ Installation and operation of the Windows Installer Service

◆ The enhanced installation environment

◆ Products, features, and components

◆ Installation package overview

◆ Other types of installer packages

◆ More about components

◆ Getting ready to create an Installer package

◆ A word or two about package validation

IN THIS CHAPTER WE delve into the Windows Installer technology and cover the
information that you’ll need to move on to Chapter 4. This chapter and Chapter 4
provide the background information about this new technology, which you’ll need
in order to understand the material covered in the remainder of the book.

We begin with a discussion of the design requirements for this new installation
technology and then move into an overview of the basic functionality and how it
was implemented. We then take a brief look at some of the more advanced features
of the Windows Installer before we start to drill down into those subjects that will be
essential for moving into Chapter 4. In particular we discuss the important database
tables that comprise a Windows Installer package. We also go into some detail about
how the installation user interface is implemented in an MSI database. We finish the
chapter by talking about the various methods that are available for ensuring that
the installation package has been constructed properly.

47

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 47

The Design Requirements
In Chapter 1 you were regaled with a litany of problems with the installation process
in use today. It is pretty easy to guess what the design requirements were for the
Windows Installer functionality by looking at the functionality that has been devel-
oped. In any case let’s list the design requirements so we will be able to assess how
well the goals set for this new technology have been met.

◆ First and foremost the new technology was to provide a robust capability
to install and uninstall software. It had to be able to keep the machine out
of an unknown state if the installation or uninstallation failed because of
an error or because the user canceled the operation.

◆ It was to allow for the control of the desktop, enabling the user to install
approved applications but preventing the installation of software that
could be potentially harmful. This type of functionality would allow the
network administrator to lock down the desktops in the organization.
The designers of the Windows Installer felt that this would be a big step
toward reducing the total cost of ownership (TCO).

◆ It was to provide an open architecture so that setup would no longer
be a black box to network administrators. With an open architecture the
administrator could know in advance what installing a piece of software
would do to the system.

◆ It was to provide the end user with a consistent install experience. It is
the Windows tradition to have every Windows application present the
same functionality in the same way. For instance, everyone knows that
to create a new document or to close an application you go to the File
pulldown menu.

◆ It was to provide a consistent set of installation rules that all setup develop-
ers would have to follow. This would help guarantee that all installs created
under the new system would operate pretty much in the same way.

◆ Any new system for installing software had to be able to protect the
operating system from having its primary functionality degraded or
destroyed. This meant keeping certain operating system components
from being replaced with incompatible versions. (This is not a capability
that the Windows Installer could implement on its own, but it could
be designed to support such functionality once it was added to the
operating system.)

◆ It was to be able to manage all shared resources on the machine. In particu-
lar, it needed to be able to identify the clients of all components installed.
This capability is critical in preventing one application from disabling
another application through an uninstallation action.

48 Part I: Introduction to the Windows Installer

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 48

◆ In order for applications to participate in the management of the environ-
ment in which they would be operating, there was to be a set of API
(Application Programming Interface) functions through which applications
could access the necessary functionality of the installation service.

◆ Last but not least, the Windows Installer was to support all efforts to reduce
and eventually eliminate version conflicts between components— sometimes
called “DLL Hell.” (This is another functionality that had to start with
changes in the operating system design.)

This laundry list provides a clear definition of the goals that formed the basis for
the development of this new software installation technology. It is now time to take
a look at what was actually created out of these requirements.

How the Windows Installer
Service Works
The Microsoft Windows Installer comes as an integral part of the Windows 2000
operating system. In addition there is a Unicode version that can be installed on
Windows NT 4.0 and an ANSI version that can be installed on Windows 95/98. For
the non-Windows 2000 operating systems the Installer engine is distributed via a
file with the name InstMsiA.exe or InstMsiW.exe, depending on whether it is the
ANSI or the Unicode version. Attempting to install the ANSI version on Windows
NT 4.0 or the Unicode version on Windows 95/98 will generate the error message
“Wrong OS or OS version for application.”

When you’re installing the installer service, a number of new and/or updated files
are added to the System32 directory. On Windows NT 4.0 a hidden directory named
Installer is added to the C:\WINNT directory. It is in this hidden directory that the
installation packages for an application are cached after the installation is completed.
After uninstallation, these cached packages are marked for removal on the next
reboot of the system. Also stored in this location, in special sub-folders, is the file or
files that contain the icons used for advertising the product on the Start\Programs
menu. We discuss what the term advertising means when we discuss what software
installation means. On Windows 95/98 this hidden directory is not created until you
run the first Windows Installer–based installation.

During the installation of the installer service two file extensions are registered:
.msi and .msp. The extension server for both of these file types is msiexec.exe. The
.msi extension designates an installation package file and the .msp extension denotes
a patch package file. We discuss both types of files in more detail later in this chap-
ter. On Windows NT/2000, msiexec.exe is registered as a service where the image
requires the option /V to run as a service. This service is set to have a manual start,

Chapter 3: Design and Implementation of the Windows Installer Service 49

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 49

which happens the first time that an installation is launched. Thereafter the service
continues to run until the machine is shut down. On Windows 95/98 there is, of
course, no service functionality, so msiexec.exe runs as a standard process only.

Figure 3-1 provides a simplified picture of how the Windows Installer service
operates. You can initiate installation of a product that uses the Windows Installer
technology in several ways. First, you can launch it via the command line by run-
ning msiexec.exe with the /i option followed by the name of the .msi package file:

msiexec /i <package file name.msi>

You can also launch it by double-clicking the MSI package in Windows
Explorer, or by accessing the .msi file from the Add/Remove Programs applet. The
normal method for launching an MSI-based installation for an application is to use
a method called bootstrapping. Bootstrapping is the use of a separate application to
launch another application.

To provide bootstrapping functionality a setup.exe application must fulfill a
number of expectations. First it is called setup.exe because that is what the user is
expecting as the way of launching an installation. setup.exe needs to first check to
make sure that the Windows Installer service has been installed. If the Windows
Installer service has not been installed, setup.exe needs to launch the installation of
the correct version of instMsi.exe. It also needs to capture any return codes from the
installation of the Windows Installer so that it can handle any reboots necessary
because of this installation. If the correct version of the Windows Installer is already
present on the system, then setup.exe needs to make sure that there is no other
installer-based installation in process. Because there can only be one installation
running at a time, setup.exe would need to provide a message and then end the
recently initiated installation if there was another one already running. If the correct
version of the Windows Installer is present on the system, then setup.exe would
launch msiexec.exe with /i option (or call the MsiInstallProduct() API in msi.dll) and
then pass the MSI package to it.

Implementing the Windows Installer on Windows NT/2000 as a service allows an
installation to run with elevated privileges even if the user performing the installation
does not have administrative privileges on the machine. This does not mean that an
installation can be performed regardless of a user’s privilege level. The Windows
Installer service will operate at the privilege level of the user unless a system admin-
istrator has advertised the application by using the Group Policy Editor (GPE). What
this all adds up to is this: If the user has administrative privileges, then he or she can
perform an installation; otherwise the system administrator will have to set the per-
missions for that particular user and application so that the installation can still take
place. This is an implementation of the desktop lockdown functionality.

50 Part I: Introduction to the Windows Installer

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 50

A Windows Installer package file has an .msi file extension and this file contains
all the information required by the Installer to install or uninstall an application or
product. We discuss the contents of the installation package file in more depth in a
later section.

Figure 3-1: Overview of the Windows Installer mechanism

When an installation is launched, the Windows Installer goes into what is called
the acquisition phase or the operation that is done at user privileges (as is shown in
Figure 3-1). First, a copy of the .msi file is made in the %TEMP% directory on the
local system. This copy is made regardless of whether the original .msi package is
already on the local machine, on a CD-ROM, or on the network. The copy of the
package is given a name unique on the local system. If the original installer pack-
age file has the source files compressed inside, the MSI database — along with the
source files — is copied to the %TEMP% directory. If the source files are external to
the .msi file, then the source files are left in the original location and only the .msi
file is copied to the %TEMP% directory.

The acquisition phase, as shown in Figure 3-1, begins with Step 1, where the
MSI database is loaded into memory. The process continues with the gathering of
input through the end user responding to the queries presented by the installation
user interface. This user interface is presented to the user by the msiexec.exe client
process displaying the dialogs defined in the MSI database. The user’s responses are
captured in the database contained in the .msi package file. This corresponds to

Load MSI
Database into

Memory

User Privileges Elevated Privileges
(Client Process) (Service Process)

Gather User
Input

Launch Install
Execution

Create
Rollback
Script

Create Install
Execution

Script

Execute Install
Script

2 3 4 5

61

Chapter 3: Design and Implementation of the Windows Installer Service 51

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 51

Step 2. The final step performed at user privileges, Step 3, is for the client process
to launch the installation execution in the process with elevated privileges.

When the service process is launched, it first gathers a little more information
from the system. It then creates the script that will be used to process the installation
itself. This is Step 4. The script created in the hidden %WINDIR%\Installer folder is
binary. Step 5 is the actual execution of this script. At the same time the script
is being executed, another script is being created. That script is called the rollback
script and is used to return the system to the state it was in prior to the start of the
installation, if the installation does not complete successfully for some reason.

In the rollback phase all files, Registry entries, and so forth are restored to the
state they were in prior to the start of the installation. You only have this rollback
capability during the actual install sequence. After a successful installation, it is not
possible to restore the machine to the pre-installation state through rollback. To
return to the previous machine state requires the uninstallation of the application
that was installed and the re-installation of any applications that might have been
changed during the installation in question.

The process that I’ve just discussed is called the INSTALL top-level action of the
Windows Installer. There are two other top-level actions: ADMIN and ADVERTISE.
The ADMIN action is the installation of a source image of an application on a net-
work server. Users who have access to this administrative image can then install the
product from this source. If users choose to run from source during the installation,
most of the application files will be used from the network. The ADVERTISE top-
level action refers to the Windows Installer’s ability to provide the loading and
launching interfaces for an application without physically installing any of the
application’s files. The actual installation of the files occurs only when a user acti-
vates one of the interfaces that has been made available through the ADVERTISE
action. Each of these top-level actions is exclusive, meaning that in any one session
only one of these actions can be implemented.

We will be talking more about these top-level actions later in this chapter but
now we need to take a quick look at some of the functionality that has been added
to the Windows Installer.

The Enhanced Installation
Environment
We just discussed the basic install and uninstall functionality of the Windows
Installer. There is a lot more to this technology than just a basic install and unin-
stall. This section is a high-level overview of the functionalities that makes this new
environment much more robust than the present installation environment. They
will all be covered in much more detail throughout the rest of the book.

52 Part I: Introduction to the Windows Installer

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 52

Resiliency
To be resilient is to be able to recover one’s strength quickly. The Windows Installer
service is resilient in a number of ways, but they all involve the ability to recover
gracefully from errors without presenting the user with error messages. Windows
Installer can diagnose problems in its operation and then repair these problems
without any action being required from the user. This is called runtime resource
resiliency. If the Windows Installer service needs to access the source media after
the initial installation, it can look for alternative locations where the application
source files may be available if the original media is not present. This is called
source resiliency. The rollback functionality we discussed in the last section is
another form of resiliency.

Advertisement
Advertisement is one of the major new capabilities that the Windows Installer ser-
vice brings to the managed environment envisioned by the Zero Administrative
Windows (ZAW) initiative. Advertising is the capability of the Windows Installer to
make the interfaces available without actually installing the application. There are
two types of advertising: assigning and publishing. Advertisement is made possible
through the Installation-On-Demand functionality built into the Installer.

When an application or a feature of an application is advertised, it appears to the
user as if that functionality were already installed. For instance, if an application
has been advertised, shortcuts and icons have been added to the Start menu, file
associations have been made in the Registry, and any Registry entries required by
the application have also been added. When a user tries to start an advertised appli-
cation for the first time, the Windows Installer installs the files for that application.
Up until that time the application has only appeared as if it were installed while in
actuality it was not consuming any hard drive space. This type of advertisement is
called product level advertisement. It can be made to a user or to a machine.
Typically a network administrator makes the decision to advertise the application
based on whether a user needs that application to perform a particular function
within the organization.

A second type of advertising is feature level advertising. Feature level advertising
allows a feature of an application to appear to be available to the user from a toolbar
or a menu even though it has not actually been installed. The first time the user tries
to make use of that feature, the feature is installed. This type of advertising is imple-
mented by the application itself through access to the Windows Installer API. Because
of this it does not require any direct support from the operating system.

Chapter 3: Design and Implementation of the Windows Installer Service 53

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 53

Before we get into the details of the Windows Installer package file and associated
file types it is important to cover some key concepts around which the installer func-
tionality is constructed. These concepts deal with how an application is designed.

Products, Features, Components, and
Resources
Microsoft developed the Component Object Model (COM) as the standard approach
for product development. This approach centers on the idea that assembling pre-
built components into one package is the most efficient method for creating the
desired functionality for the user. The Windows Installer is designed according to a
similar philosophy.

Products and features
A product is defined as a three-level hierarchy with the top level being the product
itself. The product is considered to consist of a number of features and each feature
is made up of one or more components. The component is the atomic unit from
which the features are built. The user installing the product sees only the features
that have been defined and does not interact directly with the components in any
way. It could be said that the feature set of a product is the end user’s view and the
components that make up these features are the developer’s view of the product.
Figure 3-2 shows an example of what this hierarchy might look like for a family of
graphics programs that share a component.

54 Part I: Introduction to the Windows Installer

How Windows 2000 Uses Advertising to Implement
Assigned and Published Applications
In Windows 2000, you can assign and publish applications using IntelliMirror software
installation. This technology makes use of the Windows Installer advertising feature.

An assigned application is advertised for the user at logon so that it appears to be
installed. It is also advertised into Active Directory so that the OS can look it up based
on what entry points (that is, file associations) it supports.

A published application is only advertised in Active Directory, so users do not see it on
their machines. It is still advertised in active directory so the OS can find it when users
go to Add/Remove programs or click a document supported by that application.

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 54

Figure 3-2: Diagram of a typical product, feature, and component hierarchy

Components and resources
A component is a collection of installable resources or just resources. A resource is a
file, Registry entry, shortcut, type library, or the like. When a component is installed,
everything that comprises the component is installed. When a component is unin-
stalled, everything that comprises it is uninstalled. Each component has to be unique
and is therefore assigned a component code that is a Globally Unique Identifier
(GUID). The Windows Installer looks for a component’s keypath in order to ascertain
whether the component is properly installed. A keypath is normally one of the files
that comprise the component but it can also be one of the Registry entries associated
with the component. The keypath defines the location of the component on the sys-
tem. If the keypath for a component is missing, the Windows Installer treats that
component as broken and tries to take the necessary action to repair it.

In addition to installable resources, components may also have entry points. An
entry point determines how a component is activated. An entry point for a COM
server would be the CLSID of the desired interface and the entry point for a main
executable would be a shortcut or a registered file extension. The Windows Installer

Product 1
Draw 3D
(GUID)

Feature 1
Draw 3D

Resource
(Draw3d.exe)

Feature 2
Help Tutorial

Sub-Feature 1
Solids Library

Sub-Feature 1
Shapes Library

Resource
(Registry Key)

Entry Point
(Shortcut)

Entry Point
(.dwg)

Component 1
Main

Program
(GUID)

Resource
(Library.dll)

Resource
(Registry Key)

Entry Point
(CLSID)

Component 2
Graphics
Library
(GUID)

Sub-Feature 2
Wire Frame

Library

Product 2
Draw 2D
(GUID)

Feature 2
Help

Feature 1
Draw 2D

Resource
(Draw2d.exe)

Resource
(Registry Key)

Entry Point
(Shortcut)

Entry Point
(.dwg)

Component 5
Main

Program
(GUID)

Resource
(Tutorial.dll)

Resource
(Registry Key)

Entry Point
(CLSID)

Component 3
Multimedia

Help
(GUID)

Resource
(Lib2d.dll)

Resource
(Registry Key)

Entry Point
(CLSID)

Component 4
2D Library

(GUID)

Chapter 3: Design and Implementation of the Windows Installer Service 55

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 55

treats entry points specially so that it can support advertising. You can think of
advertising as an install that installs only the entry points for your application.

56 Part I: Introduction to the Windows Installer

Globally Unique Identifiers
It’s fairly easy to generate a unique identifier for a stand-alone machine. All you
need to do is create a random number and combine it with a date and time from the
system itself. However, when you talk about creating an identifier that will be unique
across a network — such as is found with the Internet — then the task becomes much
more difficult.

The current method of creating unique identifiers comes from the Open Software
Foundation’s (OSF) Distributed Computing Environment (DCE) specification. This
specification defines the format for creating what is known as a Universally Unique
Identifier (UUID), which in the world of COM has come to be known as the Globally
Unique Identifier (GUID). A UUID or GUID is 128 bits long and, if it is generated
according to the specification mentioned above, it is guaranteed to be different from
all other identifiers generated across space and time up until the year 3400 A.D.
The UUID/GUID generation algorithm could create 10 million GUIDs per machine per
second and still maintain uniqueness. This is possible because the method for getting
time from the system uses the FILETIME structure. This is a structure that returns the
present time and date as a 64-bit value and it represents the number of 100 nanosecond
intervals that have occurred since January 1, 1601. If you do the math you will see that
there are 10 million such intervals in each second. This is the reason that the present
algorithm will not work past the year 3400 A.D.

A complete discussion of the algorithm for creating the various types of unique
identifiers, along with sample C code for generating them, can be found at the
following URL:

http://www.opengroup.org/dce/

The most significant 80 bits of a UUID/GUID form the time/date stamp part of an
identifier. Multiplexed with the time/date stamp portion of the UUID/GUID are
information (called the variant) that defines how the bits in the identifier are to
be interpreted, and version information that defines how the UUID/GUID was
created. There are four possible variants with a UUID/GUID:

◆ Reserved for Network Computing System (NCS) backward compatibility

◆ Present standard definition

◆ Reserved for Microsoft Corporation backward compatibility

◆ Reserved for future definition

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 56

Components are reference counted similarly, as has been done up to now with
files that might be shared. Now, however, everything that makes up the component
is essentially refcounted together, so no longer will a file be removed during unin-
stallation and leave the applicable Registry entries still on the system. This refcount
is presently kept in the Registry as a list of product codes associated with each com-
ponent that are also GUIDs. Only when no installed product shows that it is using a
component will the component be uninstalled. Figure 3-2 illustrates most of these
concepts and shows that a component can be shared across features, across prod-
ucts, and even across companies. This is all possible because of the uniqueness of
every component.

There are a number of strict rules you must follow when creating the components.
Following these rules ensures that the uninstallation of an application does not cripple
some other application that is still on the system. In addition, proper componentiza-
tion guarantees that all resources that define a component are removed with no
orphaned resources left behind. These rules are listed below:

◆ All files in a component must be installed into the same directory. There
can be no subdirectories. You install files in a sub-directory by putting
them into a different component.

Chapter 3: Design and Implementation of the Windows Installer Service 57

There are also four versions of a UUID/GUID:

◆ Time-based version (the normal version of a UUID/GUID)

◆ DCE reserved version

◆ Name-based version

◆ Randomly generated version

The last 48 bits serve to provide spatial uniqueness. When the computer has a network
card, this part of the identifier comes from the IEEE 802 address of the device. If there
is no network card, then a randomly generated value is used where the multicast bit is
set so as to avoid the possibility of conflict with addresses generated from network
cards. The multicast bit is the highest-order bit in the last 48 bits. This bit is never set
by an IEEE 802 address, so setting it to 1 will never conflict with a UUID/GUID set on a
machine without a network card.

A UUID/GUID has the following human readable form, which is the string
representation of this identifier.

{7bc70bd5-6635-11d3-8b29-b87f44000000}

This is given hexadecimal format with the standard display using lowercase letters for
the hexadecimal numbers. For the Windows Installer to use a UUID/GUID for a valid
product, package, or component code all the lowercase letters need to be changed
to uppercase.

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 57

◆ Every component must have only one keypath, which can be either a file
or Registry key, or the folder in which the component lives (this is the
default if you leave the keypath column blank).

◆ Every .exe, .dll, .ocx, .hlp, and .chm file should be in its own component
and these files should be the keypath for the component.

◆ There can be only one file that is a target for a Start Menu or Desktop
shortcut in each component. This means that every file that serves as
the target of a shortcut has to be in its own component.

◆ No file can ever be included in more than one component. This rule applies
across applications, products, product versions, and companies. Change the
file name if the information must go into a different component.

◆ No registry entry, shortcut, or other resource can ever be included in more
than one component. Change the name if the information must go into a
different component.

◆ Every component that is not backward compatible with previous versions
of the component must have a unique component GUID. If the backward
compatibility of the component has not been tested, the component GUID
should be changed.

It should be noted that there is a close relationship between a component’s GUID
and the names of a component’s resources. If the GUID for a component is changed,
then the names of every file, registry key, shortcut, and any other resources in the
component must be changed. Conversely, if the name of a resource is changed then
the names of all other resources also have to be changed and a new GUID assigned
to the component.

Choosing features to install
As I mentioned above, features are the pieces of the product that the end user can
choose to install. The end user makes this choice through the Setup Type dialog.
With the Windows Installer the end user will be faced with four possible choices
when choosing what features to install. A feature can be in one of the following
four states:

◆ Installed to run locally

◆ Installed to run from source

◆ To be installed on first use

◆ Not to be installed

58 Part I: Introduction to the Windows Installer

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 58

Features can have sub-features and it is up to the developer to determine how
granular to make the product. Large applications could easily include many levels
of features in order to allow the optimum installation. Features do not have to be
globally unique and therefore are not assigned a GUID or feature code.

Installation Package Overview
The installation package is the basic entity that the Windows Installer service uses
to obtain the information required to perform an installation or uninstallation. This
package contains all the information required to install or uninstall an application,
including the source files for the application.

At the center of the installation package is the .msi file that is organized as COM
Structured Storage. There are two required parts of this file and there are two
optional parts. Every .msi file must have a Summary Information Stream and an
installation database. The two optional parts of this file are the source files or
pointers to these files that make up all or part of the application, and the transforms
that are used to modify the installation database at runtime.

Chapter 3: Design and Implementation of the Windows Installer Service 59

COM Structured Storage
In the early days of computers there was no such thing as a file system. Every
computer was created to run a single application and it stored data on a drum, tape,
or disk. As computers matured, it became necessary to develop the concept of the file
system since now more than one application could to use the computer and there had
to be a method for sharing space on a single device for saving data. Thus was born the
concept of directories and files, wherein directories could contain directories and files
in a hierarchical structure. Applications could view a file as a stream of contiguous
bytes without being concerned with where these bytes were physically stored on the
disk. In reality these bytes were normally in non-contiguous sectors on the disk.

The file-system concept has served the computer industry well for a long time
but recently the world of component software development has forced a further
refinement. The solution to today’s need for a more robust method for saving
(or persisting) data is called COM Structured Storage (earlier on it was called OLE
Structured Storage). What this approach boils down to is a file system within a file.

With this new approach we get storages and streams. A storage is the equivalent of a
directory in a normal file system and a stream is the equivalent of a file. The following
figure depicts the concept of this new type of file.

Continued

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 59

The complete collection of the items described above constitutes what is called
the installation package. When all the application source files are included inside
the .msi file the package consists of just this file. We discuss each of the compo-
nents of the installation package is discussed in the following sections. We also

60 Part I: Introduction to the Windows Installer

COM Structured Storage (Continued)

A storage is normally referred to as a storage object and a stream is referred to as a
stream object. The root storage in a COM structured storage file maps to a filename in
the file system in which the structured storage file exists. One of the major advantages
of this type of file is that the hierarchy of storage and stream objects is a standard
format. Because of this standard format COM is able to provide standard services that
allow any application that is properly constructed to browse the hierarchy of such
a file. This does not mean that another application can read the information in this
file because the format of the stream objects themselves is still only known to the
application that actually created the file in the first place.

There is one exception to this rule, which is that along with the definition of the COM
Structured Storage file comes one stream that has a known format. The information
contained therein can be read by other applications. This special stream object is
called the Summary Information Stream and it is located directly of the root storage.
The name of this summary information stream object is \005SummaryInformation.
It is made up of a standard common property set and the \005 prefix indicates that it
is a property set that is shareable among applications.

You can see the values for the properties that make up this shareable stream object
from Windows Explorer when you right-click one of these files and choose Properties
from the popup menu. Each property in the standard property set has a name but this
name does not necessarily correspond to the type of information that is actually being
stored in that property.

Root Storage

Substorage Substorage

SubstorageSubstorage Substorage

Stream

Stream

Stream

Stream

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 60

discuss other components of the Windows Installer environment that interface with
the installation package.

The Summary Information Stream
There are two purposes for the information stored in the Summary Information
Stream. First, it provides information that can be viewed in the Windows Explorer.
If you right-click on an .msi file and bring up the Properties dialog, you will see the
values that have been authored into the Summary Information Stream.

The second purpose of the Summary Information stream is to provide certain
information to the Windows Installer service that it needs to install an .msi pack-
age. There are 17 properties that can be set with four of these being required. There
are currently four storage formats in use by the Windows Installer: installation
packages, merge modules, transforms, and patch packages. Installation packages
have the .msi extension, merge modules have the .msm extension, transforms have
the .mst extension, and patch packages have the .msp extension. Depending on the
storage format, the value of the property in the Summary Information Stream can
mean different things.

In the section entitled “Getting Ready to Create an Installer Package” we dis-

cuss the Summary Information Stream properties and what they mean

when it comes to creating an MSI package.

Now on to a discussion of the mechanism for recording all the information
required for performing an installation. This is the installation database.

The installation database
The installation database is a set of relational tables that are linked to each other
through the data in the various primary and foreign keys. The data contained in
these tables defines the process information, application data, and actions required
for the installation of an application or group of applications. There are 79 native
tables defined for an MSI database. A few of these tables are temporary, which
means they are not persisted with the installation database. An additional four
tables can end up in an installation database if components have been added
through the mechanism of merge modules. The setup developer can also add cus-
tom tables to the database using SQL.

The tables in the installation database can be considered to fall into 10 related
groups, as defined in Table 3-1. Some tables fall into more than one group so as to
provide a link between groups. You’ll note that the work involved in creating an
installation database for even a simple application can be overwhelming. That is
why there is a need for an authoring tool such as InstallShield Professional —
Windows Installer Edition.

XREF

Chapter 3: Design and Implementation of the Windows Installer Service 61

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 61

TABLE 3-1 INSTALLATION DATABASE TABLE GROUPS

Group Name Description Number of Tables

Core Tables Describe the fundamental 7
features and components
of the application for which
the installation package is
being created.

File Tables Define all the files that 18
comprise the application,
actions to be taken
relative to these files,
and items such as icon
files and .ini files that
need special attention.

Registry Tables Contain all the information 16
for making the various
types of Registry entries
by COM components, file
extensions, MIME types,
DCOM/COM+ Application
Ids, ProgIDs, and so forth.

System Tables Track the tables, columns, 6
and information in
the other tables of the
installation database.

Locator Tables Contain the information 6
needed to locate files
and applications.

Program Contain information 5
Information that is required during
Tables the installation of

an application.

Installation Contain the information 13
Procedure that is required to control
Tables the tasks performed

during the installation.

62 Part I: Introduction to the Windows Installer

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 62

Group Name Description Number of Tables

User Interface Hold that data that is 14
Tables used to create the user

interface displayed
during an installation,
maintenance operation,
or uninstallation.

ODBC Tables Define all the information 5
required to install ODBC
on a system.

NT Services Define the parameters 2
Tables required for both installing

and controlling NT services.

Application source files
As I stated previously, the source files for the application to be installed are consid-
ered part of the installation package. This is true whether the source files are
included inside the .msi file or are external to it. The source files can be included
inside the .msi file in either a compressed form (cabinet file) or uncompressed form.
They can also be included in compressed or uncompressed form external to the .msi
file and there can be a mixture of both compressed and uncompressed files either
inside or external to the .msi file. Regardless of the scenario, there are detailed rules
to be followed.

Compressed files are inserted into a standard Cabinet file of the type created by
the Makecab.exe cabinet file creation tool. The Windows Installer also recognizes
cabinet files created in the older Diamond cabinet file structure such as is created
by the Cabarc.exe utility.

Other Types of Windows
Installer Packages
There are a number of different types of Windows Installer files. All of these files
are COM structured storage files but not all of them have the .msi database package
format and thus not all of them can be viewed by the normal database editing tools.
We briefly discuss other types of Windows Installer in the following subsections.
We will cover them in much more detail in later chapters.

Chapter 3: Design and Implementation of the Windows Installer Service 63

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 63

Transforms
A transform is a template of the differences between two installer databases. A
transform can add or replace information in the target database. A transform can be
applied at run time to the installation database and essentially change the package
only in memory, thus not disturbing the original database. A transform can also be
applied at build time and this will permanently change the original database.

A transform might typically be used to create a localized version of an upgraded
application. You would do this by first creating a transform of the differences
between a base language product and its upgrade, and then applying this transform
to the various specific language versions of the product in order to obtain their
upgraded versions. For example, say that you presently have a base product in
English and it has been localized into German and Japanese. Now assume that a new
version of the English product is developed. To use a transform to create the upgrade
versions of the German and Japanese products you would create a transform repre-
senting the difference between the original and upgraded English versions and apply
this transform to the original .msi packages for the German and Japanese products.
In this way you have generated the upgrade of the localized products. This is a case
of applying a transform at build time.

A good example of applying a transform at install time is the situation where the
end user can pick the language in which the installation is to run. In this scenario
the transform that is applied is chosen from an initial dialog box and does not per-
manently change the base installation database since the transform is applied
in memory.

Transforms can also be used to modify installations launched from an administra-
tive image on a network drive. In this type of scenario a network administrator might
want certain workgroups to get specific configurations of a product. The administra-
tor would distribute the right configurations by creating the appropriate transform so
that the product is configured appropriately when an installation is launched. This is
another run-time use of transforms. Transforms are also used in patch packages and
can be used in merge modules as we discuss a little later in this chapter.

Merge modules
It is possible to merge two installer databases together. An administrator usually
does this with a utility that calls the MsiDatabaseMerge database management
function exported by msi.dll that is part of the Windows Installer service. Merging
two databases in this way only adds information and does not replace any infor-
mation. The merging will fail if the schemas of the two databases are different.
Even if the schemas of the two databases are the same there is the possibility for a
row merge conflict. A row merge conflict occurs when for the same table in both
databases there are two rows, one in each database, that have the same primary key
but different data. When the schemas of the two databases are different, no changes
are made in the target database and the merge fails. When there is a row conflict,
the merge proceeds and the conflicts are reported in another table that is created for
that particular purpose.

64 Part I: Introduction to the Windows Installer

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 64

There is a special application of the capability to merge two databases and that is
the use of merge modules. A merge module is a simplified form of an installation
package and is used to distribute shared code or components to an installation. Merge
modules cannot be run separately and are only used to add information to an instal-
lation package at design time. After the merge is complete all the information in the
merge module is incorporated in the installation package file and the merge module
is no longer required for the installation to proceed.

MERGING WITHOUT CONFLICT
Merge modules are used most often in packaging of components that are to be used
by many different applications. In fact a merge module cannot define a feature but
can only define components. Merge modules can be very useful in allowing develop-
ment teams to work on their own on different parts of an application and to create
merge modules for these parts which can then be combined together to provide the
final product. Merge modules also allow for third parties to create redistributable
components that other software developers can easily include in their products,
knowing that the installation of the component will be performed correctly.

A merge module has the same basic format of an .msi, containing a relational
database, a summary information stream, and a cabinet file stored as a stream. The
name of this cabinet file is MergeModule.CABinet. Each merge module has a unique
identifier that is a GUID. The GUID that uniquely identifies a merge module is also
used to create unique names for the primary keys in the tables of the relational data-
base. This circumvents conflicts that can occur when two databases are merged.

MULTIPLE LANGUAGE MERGE MODULES
When a merge module is used to deliver a language dependent component to an
installer database, it is sometimes necessary to have language transforms embedded in
the merge module. This is sometimes necessary when the default language of the
merge module is different from the default language in the target database. The pur-
pose of the language transforms is to provide the capability to change the language of
the merge module so that it is compatible with the default language of the target
installation database. If the merge module’s default language cannot be made com-
patible, the merge operation will fail.

Multiple language transforms can be embedded in a merge module so that it is
compatible with more than one specific installation database. A language transform
in a merge module has to follow specific rules as to the naming convention used and
the language related database attributes it needs to change.

Patch packages
This is the fourth type of Windows Installer file. This type of file does not contain
database tables like an installation package or a merge module. Instead a minimal
patch package contains two transforms, a summary information stream, and a cabi-
net file. Patch packages provide the Windows Installer service with a mechanism for

Chapter 3: Design and Implementation of the Windows Installer Service 65

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 65

implementing updates and upgrades of installed applications. These applications, of
course, must have been installed by the installer service originally.

A patch package is used to provide a small update or minor upgrade to either an
administrative image on a network server or a local stand-alone installation. In a
small update minor changes are made to one or more application files. A minor
upgrade is similar to a small update but here the changes are substantial enough to
force a change in the product version. In a major upgrade both the product version
and the product code have to be changed.

More about Components
In a previous section we learned that components are the atomic unit of an installa-
tion and that there are certain rules you must follow when defining them. In this
section we explore components in more detail and look at the various types of spe-
cial components that you can create. Before we get to that, however, we will take a
deeper look at how components can be managed. This is essentially an introduction
to some of the important functions available in the Windows Installer API set.

Component management
You can think of the Windows Installer both as a setup service and as a component
management system. Component management relates to the use of the API set
exported by the Windows Installer service. This API set is provided by msi.dll, which
is part of the Windows Installer and can be found in the %SYSTEM% directory. When
talking about the management of components we will, of necessity, need to talk
about features, since features are nothing but collections of components. As I men-
tioned in a previous section, the Windows Installer caches a copy of the installation
database on the system after the successful completion of the install. This cached
package contains the following information:

◆ The components each feature requires

◆ The files that comprise each component

◆ The installation location of each file

◆ The location of each resource in a component

This readily available information enables a developer to incorporate into an
application the capability for self-repair. In other words, if a file contained within a
component is either missing or corrupted, the application can automatically initiate
actions that will reinstall the file so that the application can function properly. This
can all be done without the end user knowing that anything is amiss as long as the
application can make use of the source files without the need to ask the user for a
CD-ROM or other type of media. In a networked environment it is normal for an
application to be installed from an administrative image on a network drive and as

66 Part I: Introduction to the Windows Installer

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 66

long as the network connection is active then this can all happen without any notifi-
cation to the end user. This cached installation database also provides the application
with the necessary information to implement feature level installation-on-demand.

Isolated components
Sharing components among various applications has been one of the major features
of Microsoft Windows since introduction. However, the ever-increasing number of
applications requiring special versions of these shared components has created a
condition known as DLL Hell. This describes a situation where different applications
need different versions of the same component. The original concept of shared com-
ponents was that each component would be completely compatible with previous
versions and as such a newer version of a component would never cause an appli-
cation dependent on an earlier version to fail. In practice this is not often the case:
there are many instances of a newer component version breaking an application that
was successfully using the earlier version. A typical scenario is a newer version of a
component fixing a bug in a previous version, thus causing problems for applica-
tions that have come to depend on the side effects that were created by this bug.

Windows 2000 and Windows 98 Second Edition have a new functionality that
allows different versions of the same component to reside in memory at the same
time. This enables what is called side-by-side sharing and is a major step toward
eliminating DLL Hell. This new approach to component sharing applies to both COM
DLLs and Win32 DLLs. In order to make this new method of sharing work you must
author these components correctly. Then they must be installed to the application’s
installation directory and not to some global location such as the system directory.

The new functionality of Windows 2000 and Windows 98 Second Edition, which
permits an application to have a private copy of a COM component, has been imple-
mented in the system loader. The system loader looks for a file with the extension
.LOCAL in the Applications folder and if it finds this file it alters its search logic to
prefer DLLs that are located in the same folder as the application.

System components
The creators of Windows 2000 have implemented a mechanism whereby system files
can no longer be installed when an application is being installed. This mechanism is
called Windows File Protection (WFP). It prevents the replacement of critical system
files and is considered to be a step toward curing the DLL Hell prevalent on PCs
today. If an installation attempts to replace one of the protected system files, the file
is replaced and the user is notified that such an attempt was made.

The System File Protection list is comprised of all the .sys, .dll, .exe, .ocx, .ttf,
and .fon files that ship on the Windows 2000 CD-ROM. There are approximately
2700 files that fall under this definition. When one of these protected files is over-
written, it is replaced from either the DllCache directory in the System32 folder or
the distribution media. On Windows 2000 Professional, the default size of the
DllCache directory is 50 MB, but on Windows 2000 Server, Advanced Server, and
Data Center Server, all the protected files are cached in DllCache.

Chapter 3: Design and Implementation of the Windows Installer Service 67

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 67

There are now only five supported mechanisms for replacing protected system files:

◆ Windows 2000 service pack installation (UPDATE.EXE)

◆ Hotfix distributions (HOTFIX.EXE)

◆ Operating system upgrades (WINNT32.EXE)

◆ Windows Update

◆ Windows 2000 device driver installer

This new functionality in Windows 2000 replaces the present concept of Core
Components, which plays a large part in the rules for obtaining the “Designed for
Windows NT 4 and Windows 98” logo. Core Components are the EXEs, DLLs, and
OCXs that populate the System32 folder on pre-Windows 2000 operating systems.
The basic rule was that you could install these files but they were never to be unin-
stalled. The Microsoft MSDN Web site maintains a list of these Core Components,
which is now a static list and is being made available for dealing with legacy issues.

Qualified components
Qualified components are a scheme for creating what might be termed a collection
of components. In a system that does not implement indirection in any explicit
way, qualified components are a method of indirection when it comes to pointing
at a particular component by first pointing to the collection of components to
which it belongs. The primary function of qualified components is to group
together components that share a similar functionality.

As you might expect, each grouping of components is identified by what is called
a category GUID. Inside a particular collection of components, a qualifier identifies a
particular component. A qualifier is a unique text string that can easily be generated
when you’re searching for a particular component. You only have to maintain the
uniqueness of the qualifier within the confines of the component collection.

A typical situation in which you would use qualified components is one in
which an application needs to ship a set of resource DLLs. Each of these DLLs is in
a different language and only one of these DLLs is needed for any particular local-
ized version of the operating system. These DLLs would be grouped together under
one category GUID and the locale identifiers (LCID) would be used as the qualifiers
for distinguishing one DLL form the other.

Miscellaneous components
To round off this discussion of components we will discuss several minor component
types. These minor components are transitive components and permanent components.

Transitive components are used to prepare an application to gracefully reinstall
during an upgrade from a pre-Windows 2000 operating system to Windows 2000.
Assume that an end user upgrades the operating system from Windows 98 to
Windows 2000. When the reinstall of the application is implemented, the installer

68 Part I: Introduction to the Windows Installer

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 68

removes the Windows 98 components and installs the Windows 2000 components.
This makes it possible to reinstall part of the application instead of all of it.

If you want to install a file, font, or Registry key so that it will not be removed
during an uninstallation, then you need to make permanent the component of
which these are resources. Setting a certain attribute in the Component table will
accomplish this. In addition you need to make a special provision in order to pre-
vent the removal of an empty Registry key. You can do this by writing a dummy
value under the key that is not to be removed and entering a plus sign (+) in the
name column of the Registry table.

Getting Ready to Create an
Installer Package
In the following sections we delve deeper into the makeup of an installation in
order to get ready to create a package using a basic database-editing tool. The
actual implementation of this MSI package is the subject of Chapter 4. The remain-
der of this chapter provides you with the basic knowledge to successfully complete
the creation of this MSI package.

More about the Summary Information Stream
The Summary Information stream in the .msi file is located off the root storage and
contains information about the MSI database that is used for the two purposes dis-
cussed earlier in this chapter. Several of the standard properties in the Summary
Information property set are not used by the Windows Installer and thus are not
authored into the database. These are the Total Editing Time and Thumbnail proper-
ties. There is also one property in an Installer Summary Information Stream that is
not in the standard property set and that is the Codepage property. This particular
property is used to display the other property values in the correct language within
Windows Explorer.

The Windows Installer recognizes four different types of databases and the val-
ues of the properties that comprise the Summary Information stream can take on
different meanings depending on the particular database type that is being created.
Table 3-2 describes the meaning of the properties for the Summary Information
Stream found in the standard .msi database. It is these properties that you will have
to set when you create an installation package for a small application.

For a complete description of the standard properties for all four types of

Windows Installer databases see Appendix B.

XREF

Chapter 3: Design and Implementation of the Windows Installer Service 69

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 69

The properties in Table 3-2 below are listed in ascending order of their Property
ID (PID).

TABLE 3-2 MSI DATABASE SUMMARY INFORMATION PROPERTY SET

Property Name Property Description

Codepage Set to the numeric value of the ANSI code page that is to be
(PID = 1) used for any strings that are stored in the Summary Information

Stream. This property identifies the code page to be used when
displaying the Summary Information in the property sheet in
Windows Explorer. It is also used to translate the strings in
the Summary Information Stream into Unicode when calling the
Unicode API functions. You must set this property before setting
any of the string properties in the Summary Information Stream.

Title A short description of the type of Windows Installer package
(PID = 2) in which this Summary Information Stream resides. For an

installation database this string would be something such
as “Installation Database.” This will inform users about the
purpose of the file.

Subject The name of the application being installed and is normally set
(PID = 3) from the Windows Installer ProductName property in the

Property table.

Author The name of the company that created the product being
(PID = 4) installed and is normally set from the Windows Installer

Manufacturer property in the Property table.

Keywords File browsers, such as Windows Explorer, use these values to
(PID = 5) perform keyword searches for a file. When you enter more than

one keyword, separate them by commas. In addition, you can
use product-specific keywords here and you can also use this
location to perform versioning on the MSI package during
development.

Comments Conveys the general purpose of the installer database. By
(PID = 6) convention it is set to “This installer database contains the

logic and data required to install <product name>.”

Template Specifies both the platform and the language versions
(PID = 7) supported by the installer database. For a package that is

to be used on an Intel platform and is in English this property
would be set as Intel;1033.

70 Part I: Introduction to the Windows Installer

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 70

Property Name Property Description

Last Saved By The Windows Installer sets this value to the name of the user
(PID = 8) logged onto the system during an administrative installation.

The Windows Installer never uses this property and it should
always be NULL in a database that is being shipped. You can
use this property while constructing the MSI package to keep
track of the last person to modify the database.

Revision Number The value of this property is the package code of the Installer
(PID = 9) package. This code is a GUID.

Total Editing Time Not supported by the Windows Installer service but I mention it
(PID = 10) here since it is part of the standard set of Summary Information

Stream properties.

Last Printed A date and time that you can set during an administrative
(PID = 11) installation to record when the administrative image was

created. For a normal installation this property is the same
as the Create Time/Date property defined next.

Create Time/Date Records the time and date when the .msi database was created.
(PID = 12)

Last Save Time/Date Specifies the last time the .msi database was modified (saved).
(PID = 13) This property is updated every time the database is changed.

When the database is created, this value is set to NULL to
indicate that no modifications have taken place.

Page Count Contains the minimum version of the Windows Installer
(PID = 14) required for running the installation database. This is stored

as the major version times 100 plus the minor version. For
Windows Installer 1.1 this value would be 1 times 100 + 10,
which equals 110.

Word Count A bit field that indicates the type of source file image. This
(PID = 15) value provides information to the Windows Installer about

whether long or short file names are being used, whether
the source files are compressed or uncompressed, and
whether the source files are from the original media or
from an administrative image on a network drive.

Character Count Not used for installation packages and must be set to NULL.
(PID = 16)

Continued

Chapter 3: Design and Implementation of the Windows Installer Service 71

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 71

TABLE 3-2 MSI DATABASE SUMMARY INFORMATION PROPERTY SET (Continued)

Property Name Property Description

Thumbnail Not supported by the Windows Installer service but I mention
(PID = 17) it here because it is part of the standard set of Summary

Information Stream properties.

Creating Application The name of the application used to author the installation
(PID = 18) database.

Security Identifies how the package should be opened. If the value
(PID = 19) is 0, there is no restriction; if the value is 2, read-only is

recommended; and if the value is 4, read-only is enforced.
For installation packages the property value should be set
to 2.

The Installer database core
There are in excess of 80 tables in an Installer database but a majority of these have
special purposes. There is, however, a core of tables that are used in almost any
installation, and these are the ones that we discuss in this section. These are the tables
that you will need to populate for the installation package that you will create in
Chapter 4. The application for which you are going to create an installation has very
few files but one of those files is an ActiveX control and therefore you will need to
perform some minimal registration for it to work. This does not make the installation
much more complex but it does make it somewhat more realistic than if you were just
doing an installation for Notepad. Installing most real-world applications these days
involves COM registration.

In order to look at the tables that will be necessary for your installation you need
to break them down into several distinct categories. These are different from the
table groupings we discussed earlier in this chapter:

Feature-centric tables Tables that have foreign keys into the Feature table.
This group consists of the FeatureComponents,
Extension, Class, TypeLib, and Condition tables.
Figure 3-3 shows the entity-relationship diagram
for this grouping of tables.

Component-centric tables Tables that have foreign keys into the Component
table. This group consists of the FeatureComponents,
File, Shortcut, Registry, Extension, Class, TypeLib,
and CreateFolder tables. Figure 3-4 shows the entity-
relationship diagram for this grouping of tables.

72 Part I: Introduction to the Windows Installer

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 72

There are many more tables than shown in this
diagram that have foreign keys into the Component
table but they are not important to the installation
that you are going to create.

Directory-centric tables Tables that have foreign keys into the Directory
table. This group consists of the Feature, Component,
TypeLib, CreateFolder, and Shortcut tables. The
entity-relationship diagram for this grouping of
tables is shown in Figure 3-5.

Icon-centric tables Tables that have foreign keys into the Icon table.
This group consists of the ProgId, Class, and Shortcut
tables. The entity-relationship diagram for this
grouping of tables is shown in Figure 3-6.

Miscellaneous tables group Tables that do not fit into any of the above categories.
These tables are those that have foreign keys into the
ProgId, Extension, and Verb tables. There is also the
Media table, which is stand-alone for the installation
that you will be creating. Figure 3-7 shows the entity-
relationship diagram for this grouping of tables.

Entry point tables group Tables that make up this group are contained in the
other table groups described above but it is important
to realize that many tables can be part of more than
one group. The tables in this particular group define
the various types of entry points that an application
can have. This group is comprised of the Shortcut,
Extension, Class, PublishComponent, and TypeLib
tables. Except for the PublishComponent table all
the tables in this group are described as part of the
other tables groups. The PublishComponent table is
a method of creating an array of components and it
is discussed in Chapter 17. The entity-relationship
diagrams (seen in Figures 3-3 through Figure 3-7)
show the tables as the entities with each of the table
attribute names listed along with the data type of
the attribute. The attributes shown in the top section
of each block comprise the primary key for that
particular table. Attribute names of which the last
character is an underscore (_) are foreign keys into
the table of that name.

The following sections provide a brief discussion of each of these table groups.
We discuss each of the tables in detail in Chapter 4 when you will need to enter
actual values.

Chapter 3: Design and Implementation of the Windows Installer Service 73

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 73

THE FEATURE-CENTRIC TABLES GROUP
As I described previously, an application is made up of features, which are in turn
made up of components. In Figure 3-3 the Feature table is at the center of the dia-
gram. Since there is a many-to-many relationship between features and components
there is a need for an additional table so that this relationship can be broken into two
one-to-many relationships. The table that fulfills this need is the FeatureComponents
table. You can see in this figure that the Feature table refers to itself. That is because
features can have sub-features and as such there can be a one-to-many relationship
between a feature and its sub-features. In Windows NT 4.0 and Windows 2000 there
can be a maximum of 1600 components associated with any one feature. In Windows
95/98 800 components are the maximum allowed per feature.

Figure 3-3: The entity-relationship diagram for the Feature Centric table group

The Extension table contains the required information about the file name
extension servers. Each row in the Extension table provides the information to the
Windows Installer so that a set of registry keys and values can be generated. The
reference to the Feature table is necessary since it is a feature providing the service

FeatureComponents Table

Feature_ (Identifier)
Component_ (Identifier)

Feature (Identifier)

Condition (Condition)

(Identifier)
(Text)
(Text)
(Integer)
(Integer)
(Identifier)
(Integer)

Feature_Parent
Title
Description
Display
Level
Directory_
Attributes

Feature Table

(Integer)Level
Feature_ (Identifier)

Condition Table

Progld_ (Text)

(Identifier)Component_
Extension (Text)

Extension Table

Component_ (Identifier)
(Identifier)Context
(GUID)CLSID

(Text)
(Text)
(GUID)
(Text)
(Identifier)
(Integer)
(Filename)

Progld_Default
Description
Appld_
FileTypeMask
Icon_
IconIndex
DeflnprocHandler

(Formatted)
(Identifier)
(Integer)

Argument
Feature_
Attributes

Class Table

Component_ (Identifier)
(Integer)Language
(GUID)Libld

(Integer)
(Text)
(Identifier)
(Identifier)
(DoubleInteger)

Version
Description
Directory_

(Text)
(Identifier)

MIME_
Feature_

Feature_
Cost

TypeLib Table

74 Part I: Introduction to the Windows Installer

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 74

and not just a component by itself. Similarly, the Class and TypeLib tables refer to
the Feature table because it is necessary to know the feature that is providing the
COM server or type library for the proper registry keys and values to be created.

The Condition table provides a different functionality from that provided by the
other tables that relate to the Feature table. This table is used to modify the selec-
tion state of a feature based on the evaluation of the condition in the Condition
table entry for that feature. Keep in mind that the end user of your application will
be deciding on what is installed and what isn’t, based on the selections made dur-
ing the installation. The user typically does this through what is known as the
Setup Type dialog, which is one of the dialogs offered as part of the installation’s
user interface. To understand how this all works under the Windows Installer you
need to become familiar with the concept of Install Level.

Every installation has a default Install Level. The value of this Install Level is an
integer value that can range from 0 to 215 – 1 (32,767) and is set in the Property table
as the INSTALLLEVEL property. A value of 0 (zero) for an Install Level will hide that
feature and not permit it to be installed or even selected. We will be discussing prop-
erties in the next section. A feature is installed if its particular Level value is equal to
or less than the value of the INSTALLLEVEL property in the Property table. In the
Condition table the feature specified in any particular row will have its Level attribute
set to the value of Level in the Condition table if the condition for that row evaluates
to TRUE. Using the functionality offered by the INSTALLLEVEL property and the
Condition table there are a number of ways to manipulate whether a particular fea-
ture gets installed or not and under what conditions.

Imagine that an installation offers the end-user the installation options Complete,
Typical, and Custom with the default for the Custom installation option being the
same as that for the Typical option. Let’s assume that we have an application made
up of four features and that a Typical install would be for feature 1 and feature 3 to
be installed and with feature 2 and feature 4 remaining uninstalled. We could set
this up by initially setting the INSTALLLEVEL property in the Property table to a
value of 50. This would mean that only those features with a Level attribute of 50 or
less would be installed. We would also set the Level attribute for features 1 and 3 to
a value of 50 and the Level attribute for features 2 and 4 to a value of 100. Now, if
the end user selects a Typical installation, then we don’t have to do anything
because we have already set everything up for this option to be the default. For a
Complete installation, we would set the INSTALLLEVEL property in the Property
table to a value of 100, thus ensuring that all features would be installed. For the
Custom setup installation option, another dialog box would be presented, allowing
the end user to determine which features to install. In a Custom setup dialog the end
user, by making selections, manipulates the Level attribute in the Feature table so
that it is equal to or less than the INSTALLLEVEL property if the feature is to be
installed or greater than this property if the feature is not to be installed.

Chapter 3: Design and Implementation of the Windows Installer Service 75

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 75

The Condition table provides further functionality relative to the Install Level of a
feature. The Level attribute of a feature can be based on a condition. This condition
can be based on the CPU of the target machine, the operating system, the security
privileges of the end user, a property in the Property table, and so forth. Let’s assume
that instead of an application with four features we have an application with eight
features where four of the features are available for installation if the operating sys-
tem is Windows NT 4.0 or Windows 2000 and the other four features are available
for installation if the operating system is Windows 95/98. In the Condition table we
would define conditions to set to 0 the Level attribute of those particular features
that are not to be installed on a particular operating system. Then, based on the
installation option chosen by the end user, we would select the features to be
installed by setting the appropriate value for the INSTALLLEVEL property in the
Property table. Since some of the features would have an Install Level of 0 they
could not be installed or even selected in a Custom selection dialog box.

THE COMPONENT-CENTRIC TABLES GROUP
After we define the features that describe the end user’s view of our application we
need to define the composition of these features in terms that we as developers under-
stand. This means that we have to define the files, registry entries, and other resources
that make up the features. These assemblages of resources are called components and
they are the atomic units of an application. Figure 3-4 shows an entity-relationship
diagram for the tables of interest for the application for which you will create an
installation in Chapter 4. There are an additional 15 tables that have foreign keys that
reference the Component table, but they are specialized tables that need not concern
us at this time.

As already mentioned in the above section on the Feature Centric table group,
the FeatureComponents table handles the many-to-many relationship between fea-
tures and components. The File, Shortcut, Registry, Extension, Class, and TypeLib
tables shown in Figure 3-4 represent the resources that you will need to specify in
your components when you create your installation in Chapter 4.

The CreateFolder table contains references to a folder that must be created for a
particular component. Folders defined here are not folders that will be created as
the normal outcome of installing an application; these are folders that must be cre-
ated during the installation, and generally these are empty folders that would be
used by an application. A typical action you will perform in the installation that
you are going to create is to create an empty folder for the purpose of saving user
data after the application is installed.

76 Part I: Introduction to the Windows Installer

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 76

Figure 3-4: The entity-relationship diagram for the Component Centric table group

THE DIRECTORY CENTRIC TABLES GROUP
This group of tables defines both the source of and target for the files to be copied
or created during the installation. Figure 3-5 shows the entity-relationship diagram
for this group of tables. Several tables that have foreign keys into the Directory
table are not shown here because they are specialized tables that do not apply to
the installation you are going to create in Chapter 4.

The entry in the Directory table that is referenced from the Feature table is the
name of a directory that the end user can configure in a Selection dialog box.
Setting a property in the Property table through the selection dialog box typically
is how this is accomplished. The entry in the Directory table that is referenced from
the Component table is normally the name of the folder where the component is
going to be installed under the root target location for the application.

FeatureComponents Table

Feature_ (Identifier)
Component_ (Identifier)

Component (Identifier)

(GUID)
(Identifier)
(Integer)
(Condition)
(Identifier)

ComponentID
Directory_
Attributes
Condition
KeyPath

CreateFolder Table

Directory_ (Identifier)
Component_ (Identifier)

Component Table

Registry (Identifier)

(Integer)
(RegPath)
(Formatted)
(Formatted)
(Identifier)

Root
Key
Name
Value
Component_

Registry Table

File (Identifier)

(Identifier)
(Filename)
(DoubleInteger)
(Version)
(Language)

Component_
FileName
FileSize
Version
Language

(Integer)
(Integer)

Attributes
Sequence

File Table

Shortcut (Identifier)

(Identifier)
(Filename)
(Identifier)
(Shortcut)
(Formatted)

Directory_
Name
Component_
Target
Arguments

(Text)
(Integer)

Description
Hotkey

(Identifier)
(Integer)

Icon_
IconIndex

(Integer)
(Identifier)

ShowCmd
WkDir

Shortcut Table

Progld_ (Text)

(Identifier)Component_
Extension (Text)

Extension Table

Component_ (Identifier)
(Identifier)Context
(GUID)CLSID

(Text)
(Text)
(GUID)
(Text)
(Identifier)
(Integer)
(Filename)

Progld_Default
Description
Appld_
FileTypeMask
Icon_
IconIndex
DeflnprocHandler

(Formatted)
(Identifier)
(Integer)

Argument
Feature_
Attributes

Class Table

Component_ (Identifier)
(Integer)Language
(GUID)Libld

(Integer)
(Text)
(Identifier)
(Identifier)
(DoubleInteger)

Version
Description
Directory_

(Text)
(Identifier)

MIME_
Feature_

Feature_
Cost

TypeLib Table

Chapter 3: Design and Implementation of the Windows Installer Service 77

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 77

Figure 3-5: The entity-relationship diagram for the Directory Centric table group

For the TypeLib table the Directory table defines the location of the help file for
that particular type library. For the Shortcut table the Directory table defines the
location where the shortcut file is to be created. For the CreateFolder table the
Directory table defines where a particular folder is to be created during the instal-
lation. As I mentioned earlier, this is normally an empty folder where, for example,
the application data files will be saved by default.

The Directory table itself requires a lot of discussion. We start that discussion here
and continue it in the next chapter. The function of the Directory table is to define
the complete layout of the installation. This layout definition is relevant to both the
location of the source files and the location where these source files are to end up on
the target machine. Each row in the Directory table defines both a source location
and a target location. When the end user sets the final location for the installation of
the application, all the entries in column one of the Directory table become proper-
ties in the Property table. The value of each of these properties is a directory path.
The Windows Installer also sets a number of properties to system-defined folder
paths. This is all done at run time so the persistent version of the database is not
changed. The database is only changed in memory. We cover the Directory table in
much more detail in Chapter 4.

Feature (Identifier)

(Identifier)
(Text)
(Text)
(Integer)
(Integer)
(Identifier)
(Integer)

Feature_Parent
Title
Description
Display

(Integer)
(Condition)
(Identifier)

Attributes
Condition
KeyPath

Level
Directory_
Attributes

Feature Table

Directory (Identifier)

(Identifier)
(DefaultDir)

Directory_Parent
DefaultDir

Directory Table

Component (Identifier)

(GUID)
(Identifier)

ComponentID
Directory_

Component Table

(Identifier)
(Shortcut)
(Formatted)

Component_
Target
Arguments

Shortcut (Identifier)

(Identifier)
(Filename)

Directory_
Name

(Integer)
(Identifier)
(Integer)

Hotkey
Icon_
IconIndex

(Integer)
(Identifier)

ShowCmd
WkDir

(Text)Description

Shortcut Table

Component_ (Identifier)
(Integer)Language
(GUID)Libld

(Integer)
(Text)
(Identifier)
(Identifier)
(DoubleInteger)

Version
Description
Directory_
Feature_
Cost

TypeLib Table

CreateFolder Table

Directory_ (Identifier)
Component_ (Identifier)

78 Part I: Introduction to the Windows Installer

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 78

THE ICON CENTRIC TABLES GROUP
Because of advertisement it is necessary for the icons used on the Start\Programs
menu to be contained in separate files. The Icon table contains these icon files. The
Shortcut table references the Icon table for the icon to be used when a shortcut is
created. The ProgId table references the Icon table for the icon file to be used with a
particular ProgId. This is the mechanism that associates a small icon with a particu-
lar file extension. For a version-independent ProgId there would be no reference into
the Icon table. The Class table references the Icon table for the file to use in con-
junction with a particular CLSID. The entity-relationship diagram for this table
group is shown below in Figure 3-6.

Figure 3-6: The entity-relationship diagram for the Icon Centric table group

The Icon table actually holds the icons in question as binary data. There are spe-
cific rules as to how these icon files, and the extensions on these files that are to be
used for supplying the icon, are to be created. Icons must be stored in a separate file
or files because of the need to be able to advertise a product, file extension, or the

Progld (Text)

(Text)
(GUID)
(Text)
(Identifier)
(Integer)

Progld_Parent
Class_
Description
Icon_
IconIndex

Progld Table

Shortcut (Identifier)

(Identifier)
(Filename)
(Identifier)
(Shortcut)
(Formatted)

Directory_
Name
Component_
Target
Arguments

(Text)
(Integer)
(Identifier)
(Integer)

Description
Hotkey
Icon_
IconIndex

(Integer)
(Identifier)

ShowCmd
WkDir

Shortcut Table

Name (Identifier)

Data (Binary)

Icon Table

Component_ (Identifier)
(Identifier)Context
(GUID)CLSID

(Text)
(Text)
(GUID)
(Text)
(Identifier)
(Integer)
(Filename)

Progld_Default
Description
Appld_
FileTypeMask
Icon_
IconIndex
DeflnprocHandler

(Formatted)
(Identifier)
(Integer)

Argument
Feature_
Attributes

Class Table

Chapter 3: Design and Implementation of the Windows Installer Service 79

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 79

like. If the icon came from a resource inside the actual product executable or exten-
sion server, there would be no way to show the icon if the main file were not also on
the machine. This would invalidate the concept of advertisement, which depends on
the idea that only the icon will be displayed without any of the associated product
files needing to be on the machine.

Icon files associated strictly with file extensions or CLSIDs can have any exten-
sion, such as .ico. Icon files associated with shortcuts must be included as a resource
in a file with the Portable Executable (PE) format. This means that the container file
for the icon must be either an executable (.exe) or a dynamic link library (.dll) file. In
addition, the extension of this icon container file must agree with the extension of
the shortcut target. For example, if you have the icon contained as a resource in a
dynamic link library but the target of your shortcut is an executable, then all you
have to do is change the .dll extension on the icon container file to .exe.

THE MISCELLANEOUS TABLES GROUP
This table grouping describes those table relationships that were too small to rate a
separate category of their own. The entity-relationship diagram for this group of
tables is shown in Figure 3-7. Except for the Media table all the other tables shown
in this diagram have already been discussed as part of the other table groups.

Figure 3-7: The entity-relationship diagram for the Miscellaneous tables group

Progld (Text)

(Text)
(GUID)
(Text)
(Identifier)
(Integer)

Progld_Parent
Class_
Description
Icon_
IconIndex

Progld Table

Diskld (Integer)

(Integer)
(Text)
(Cabinet)
(Text)
(Property)

LastSequence
DiskPrompt
Cabinet
VolumeLabel
Source

Media Table

Component_ (Identifier)
(Identifier)Context
(GUID)CLSID

(Text)
(Text)
(GUID)
(Text)
(Identifier)
(Integer)
(Filename)

Progld_Default
Description
Appld_
FileTypeMask
Icon_
IconIndex
DeflnprocHandler

(Formatted)
(Identifier)
(Integer)

Argument
Feature_
Attributes

Class Table

(Identifier)Component_
(Text)Extension

(Text)
(Text)
(Identifier)

Progld_
MIME_
Feature_

Extension Table

(Text)Verb
(Text)Extension_

(Integer)
(Formatted)
(Formatted)

Sequence
Command
Argument

Verb Table

80 Part I: Introduction to the Windows Installer

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 80

The function of the Media table is to describe the set of disks that comprise
the source media for the installation. Normally a CD-ROM medium is used and as long
as the source does not span to a second CD then there will be only one entry in this
table. If a floppy-disk distribution is required, there will be as many entries in this
table as there are floppy disks in the installation. Each disk will also have to have a
volume label that corresponds to the entries in the VolumeLabel attribute of this table.

This table is also used to identify compressed CAB files that contain files needed
for an install. These CABs can be embedded in the MSI file, or they can be external.

We have now covered what can be considered the core set of database tables that
you need to populate in order to make a simple installation. In the next section we
discuss how the information in these core database tables is used to make the
installation happen.

Sequences, actions, and properties
We have just discussed the various tables required for defining the information for
the installation of a simple application. All these tables did, however, was define
what had to be done to the system during the installation. They did nothing toward
specifying how the installation itself was to take place. That type of information is
defined by actions, which you schedule by placing them in what are called
sequence tables. An action occurs or does not occur based on the evaluation of a
conditional expression. When an action is executed, it uses the information in the
database tables (discussed in the previous section) to implement the action. You can
think of actions as function calls and the data in the database tables as the argu-
ments to these function calls. A conditional expression is formed from properties,
environment variables, and other sources of information. If the conditional expres-
sion evaluates to TRUE, the action will take place; otherwise the action does not
take place.

Now we need to look at this concept much more closely. In the following sec-
tions we take a close look at the sequence tables that you need in an installation
database, the types of actions that your simple installation will need to execute,
and how properties work. When you finish with this section, you will have a much
clearer idea of how this whole technology works. After this you will only have to
master some details to be able to implement more sophisticated installations.

SEQUENCING AN INSTALLATION
The sequence of actions that takes place during an installation is specified in
sequence tables. In fact there are three pairs of sequence tables, only one of which
is active during any installation. The pair of sequence tables that is active is
dependent on the top-level action that is initiated. There are three top-level actions
or installation modes supported by the Windows Installer service. They are a sim-
ple installation, an administrative installation, and an advertisement installation.
For each of these installation modes there is a user interface sequence table and an

Chapter 3: Design and Implementation of the Windows Installer Service 81

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 81

execution sequence table. The actual names of all six of the possible sequence
tables are:

◆ InstallUISequence

◆ InstallExecuteSequence

◆ AdminUISequence

◆ AdminExecuteSequence

◆ AdvtUISequence (Even though this table forms a part of the database
schema, it is not used, as the advertisement of an application would
not display a user interface)

◆ AdvtExecuteSequence

Executing the following command launches a simple installation:

msiexec.exe /i <Fully qualified path to the MSI Package>

This command is the command string for the open verb for the .msi file exten-
sion. When this command is executed, the Windows Installer issues the INSTALL
top-level action and the actions listed in either the InstallUISequence table or the
InstallExecuteSequence table are implemented. The specific sequence that is first
implemented depends on the user interface level the user has chosen. There are four
user-interface levels: full, reduced, basic, and silent. If the user-interface level is
either full or reduced, then the actions listed in the InstallUISequence table are
implemented first, followed by the actions listed in the InstallExecuteSequence
table. If the user-interface level is basic or silent, then only the actions in the
InstallExecuteSequence are executed, and the actions in the InstallUISequence table
are skipped.

The same process applies to the other two modes of installation. To launch an
administrative installation, run the following from the command line:

msiexec.exe /a <Fully qualified path to the MSI Package>

A network administrator normally performs this type of installation in order to
place an installable image of the application onto a network drive. When the above
command is executed, the Windows Installer issues the ADMIN top-level action.
Subsequently one or both of the administrative sequence tables are implemented,
depending on the user interface level that was chosen.

To advertise an application, use the following command line:

msiexec.exe /j [u | m] <Fully qualified path to the MSI Package>

82 Part I: Introduction to the Windows Installer

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 82

In the above command line the u in conjunction with the /j switch means to
advertise the application only for the current user and the m means to advertise the
application for all users of the machine.

Advertising is always done with no UI so that only the AdvtExecuteSequence is
executed.

To set the user interface to something other than a full interface you need to use the
following command-line switches and place them after the path to the MSI package:

/qr To run the installation with a reduced user interface level

/qb To run the installation with the basic user interface level

/qn To run the installation silently

Table 3-3 provides a description of the four user-interface levels mentioned above.

TABLE 3-3 DESCRIPTION OF THE WINDOWS INSTALLER USER INTERFACE LEVELS

User Interface Level Description

Full UI All authored dialog boxes are displayed. This means that both
modal and modeless dialogs are presented to the user. This user
interface runs as a wizard and requests that the user provide
input that is captured by the Windows Installer. Even if the all
the defaults are selected the user still has to click the Next
button on the wizard panels. The user must interact with the
wizard for the installation to continue.

Reduced UI Only the authored modeless dialog boxes are displayed.
Since a modeless dialog box requires no action from the
user the installation runs without any interaction. Normally
this would just be a progress dialog showing the progress of
the installation. The UI Sequence is still executed because the
modeless dialog(s) that are displayed have been authored into
the installation by the setup developer.

Also displayed are any of the built-in modal error message dialog
boxes. These dialogs come directly from the Windows Installer
and not the installation package.

Basic UI At this user interface level no authored dialog boxes are
displayed. Only the built-in modeless dialog boxes that show
progress messages are displayed. They will normally be much
smaller than authored dialog boxes.

Silent There is no user interface displayed for this UI level.

Chapter 3: Design and Implementation of the Windows Installer Service 83

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 83

All of the sequence tables have the same structure, described in Table 3-4 below.

TABLE 3-4 SEQUENCE TABLE STRUCTURE DESCRIPTION

Column Name Data Type Key Description

Action Identifier Yes This is the name of the action to be
conditionally executed based on the
results of the condition evaluation. This
action can be one of the standard built-in
actions, a custom action authored by the
setup developer, a single dialog box, or
a user interface sequence such as the
installation wizard displayed during an
installation when using a Full UI user
interface level. We discuss standard
actions later in this section, and custom
actions take up several chapters later
in the book.

Condition Condition This column contains a conditional statement
that must evaluate to either TRUE or FALSE.
If it evaluates to FALSE, the action is skipped.
If the expression syntax is incorrect, the
sequence is terminated.

A property by itself is commonly used to
define a conditional expression. If the
property is not defined in the Property
table, the condition evaluates to FALSE. If
the condition column is NULL, the action
is always executed.

Sequence Integer The value in this column defines the position
of the action in the sequence. Except for a
few special instances these numbers must be
positive. The action with the lowest positive
sequence number is executed first,
depending on the evaluation of the condition
statement. The sequence of actions
continues in ascending order of the sequence
number until the Windows Installer returns a
termination flag.

84 Part I: Introduction to the Windows Installer

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 84

Column Name Data Type Key Description

Sequence Integer The Windows Installer returns four termination
(Continued) codes, which are the only negative numbers

permitted in the sequence column. These
termination codes are listed below:

–1 Successful completion
–2 User termination
–3 Fatal termination
–4 Installation is suspended

Any of these termination codes will display a
dialog box, which tells the end user what has
occurred. Any other negative number, a zero,
or a NULL value as a sequence number
means that the action is never executed.

You have seen how the various actions that make up an installation are
sequenced so that they are executed in the proper order. It is now time to take a
closer look at these actions to see what makes them tick.

ACTIONS: THE FUNCTIONS OF THE WINDOWS INSTALLER
As I mentioned before, an action is the equivalent in the Windows Installer world
of a function in a normal programming environment. The arguments to these
Windows Installer functions are the data in the database tables associated with a
certain action. There are two types of actions recognized by the Windows Installer:
those that are built-in and those that are authored by the setup developer. The
built-in actions are called standard actions and those authored by the setup devel-
oper are called custom actions. We will only be talking about standard actions in
this section. Custom actions are a totally different ball game and require several
chapters later in this book.

There are approximately 76 standard actions built into the Windows Installer. A
small number of these can be placed anywhere in a sequence but the large majority
have definite sequencing restrictions. This means that they must occupy a pre-
scribed location in a sequence relative to other actions. In this section you will get
your feet wet by looking at the some of the important actions that you will have to

Chapter 3: Design and Implementation of the Windows Installer Service 85

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 85

deal with when creating your first installation in Chapter 4. Since we talk about
various operations relating to the copying of files in the next section we discuss
those actions relating to this subject then. Our discussion here involves two differ-
ent groups of actions: those that define the beginning and end of a sequence of
actions that change the system, and those that deal with writing to the Registry.

The InstallInitialize action and the InstallFinalize action mark the beginning and
end of a transaction, respectively. The InstallInitialize action then must be sequenced
in the sequence table before any actions that change the system. The actions that
would normally come before this action are those that are either validating the
installation or are completing the task of determining whether there is enough disk
space to complete the installation. The actions that would be sequenced to occur
after the InstallInitialize action are those that copy files, write to the Registry, and so
forth. The InstallFinalize action marks the end of a transaction and when this action
is reached in the sequence table there are typically no more actions to execute. Also,
it signals that the installation was successful and accordingly the rollback script and
the cached files, registry entries, and so forth are removed from the system since
there is no more need to be able to roll back the installation.

As shown in Figure 3-1 the actions that make changes to the system are first writ-
ten into an execution script and then executed when the Windows Installer runs this
script. The InstallInitialize and the InstallFinalize actions define the beginning and
end of the creation of the execution script. It is only the actions that are placed
between InstallInitialize and InstallFinalize that are added to the execution script. It is
the InstallFinalize action that causes the Windows Installer to execute this script.

The InstallFinalize action also executes a series of spooled operations in order to
clean up the system at the end of the installation. These spooled operations include
caching the MSI database in the %Windir%\Installer directory, placing the icon
container file in the same location, and deleting the MSI package and source files
from their temporary location on the system. If the particular installation scenario
that was carried out was a complete removal of the product, the InstallFinalize
action automatically removes the Add/Remove Control Panel information, unregis-
ters and unpublishes the product, and marks the cached local .msi database for
removal at the time of the next system reboot.

Neither the InstallInitialize action nor the InstallFinalize action uses information
from any of the database tables. These actions could be thought of as functions
with a NULL argument list.

Table 3-5 defines the group of actions related to writing values to the Registry
for the application you will install in Chapter 4. This table describes the functional-
ity of the Registry-related actions as well as the sequencing restrictions that you
must follow for the actions.

86 Part I: Introduction to the Windows Installer

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 86

TABLE 3-5 REGISTRY-RELATED ACTIONS FOR THE CHAPTER 4
INSTALLATION EXERCISE

Action Name Description Sequence Restrictions

WriteRegistryValues Writes an application’s Must come after both the
registry information InstallValidate action and the
based on the components InstallInitialize action. This
that are to be installed sequencing is necessary because
either locally or from there must be knowledge of what
source. If a component components are going to be
is not to be installed, installed on the system before
then the registry writing to the Registry. The
information will not InstallValidate action confirms
be written. This action that there is room on the target
uses the data in the machine for the installation to
Registry table to write proceed. The InstallInitialize
the registry values. action must come before any

action that changes the system.

RegisterClassInfo Manages the registration Must come after the InstallFiles
of COM class information action and also after the
with the system. It uses following actions if they occur
the Class table as the in the sequence table:
source of data for
performing this function. UnregisterClassInfo
If the system is running UnregisterExtensionInfo
Windows 2000, then UnregisterProgIdInfo
this action will register UnregisterMIMEInfo
all COM classes listed This action must also come
in the Class table if the before the following actions:
associated feature is RegisterExtensionInfo
selected to be either RegisterProgIdInfo
installed or advertised. RegisterMIMEInfo
Otherwise this action
will only register those
COM classes associated
with features that
have been selected
for installation.

Continued

Chapter 3: Design and Implementation of the Windows Installer Service 87

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 87

TABLE 3-5 REGISTRY-RELATED ACTIONS FOR THE CHAPTER 4
INSTALLATION EXERCISE (Continued)

Action Name Description Sequence Restrictions

Register Manages the registration Must come after the InstallFiles
ExtensionInfo of extension server action and also after the

information. It uses the following actions if they occur
Extension table as its in the sequence table:
source of data. If the
system is running an UnregisterClassInfo
operating system where UnregisterExtensionInfo
SHELL32.DLL has a UnregisterProgIdInfo
version >= 4.72.3110.0, UnregisterMIMEInfo
then this action will RegisterClassInfo
register all extension This action must also come
servers listed in the before the following actions:
Extension table if the RegisterProgIdInfo
associated feature is RegisterMIMEInfo
selected to be either
installed or advertised.
Otherwise this action
will only register those
extension servers
associated with features
that have been selected
for installation.

RegisterProgIdInfo Manages the registration Must come after the InstallFiles
of ProgId information action and also after the
with the system. This following actions if they occur
action will register all in the sequence table:
ProgId information for
servers specified in the UnregisterClassInfo
ProgId table as long as UnregisterExtensionInfo
the feature for the UnregisterProgIdInfo
corresponding class or UnregisterMIMEInfo
extension server has RegisterClassInfo
been selected for RegisterExtensionInfo
installation. This action must also come

before the following action:
RegisterMIMEInfo

88 Part I: Introduction to the Windows Installer

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 88

Action Name Description Sequence Restrictions

RegisterType Manages the registration Must come after the
Libraries of type libraries with the InstallFiles action.

system. This action uses
the TypeLib table for its
source of data and it will
register every type library
associated with a feature
that has been selected
for installation.

The last subject we have to discuss in this section is properties. We then move
onto how the Windows Installer actually handles copying files from the source
media to the target machine.

PROPERTIES: THE GLOBAL VARIABLES OF THE
WINDOWS INSTALLER
If actions are the functions of the Windows Installer and the data in database tables
are the arguments for these functions, then properties are the global variables.
There are three broad categories of properties: public, private, and restricted public
properties. They are all listed in the Property table. These property categories are
described below:

◆ Public properties: Public properties are those properties that you can set
at the command line, through the user interface, through the application
of a transform, by using a standard or custom action, or by authoring it
into the database at design time. The names of public properties appear
entirely in upper case in the Property table. The INSTALLLEVEL property
discussed in a previous section is a public property and would be set at
the command line as follows:

msiexec.exe /i <path to MSI package> INSTALLLEVEL=100

You also need to note that on Windows NT and 2000, only public proper-
ties can be passed from the client to the service, so anything that the
user set needs to be expressed in public properties by the time you get
to InstallExecute in the UI sequence.

Chapter 3: Design and Implementation of the Windows Installer Service 89

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 89

◆ Private properties: Private properties are not available to the end user
and must be defined either by the setup developer at design time or by
the Windows Installer at run time. The name of a private property must
contain lowercase letters so that the Windows Installer recognizes
the property as being private. The only way a user can interact with
a private property is through a control event in the user interface.

◆ Restricted public properties: There are times when you might want to
restrict the number of public properties the end user can set. This is the
case in a managed environment. (We discuss this type of property in
more detail in Chapter 14.)

There are certain restrictions on the creation of property names. A property
name is a text string that can contain only letters, numbers, the underscore (_)
character, or a period. Every property name can only begin with a letter or a num-
ber and cannot begin with an underscore or a period. You can initialize properties
at design time by putting them into the Property table with an initial value.
Properties built into the Windows Installer do not have to be entered into the
Property table with an initial value. This also applies to properties for which a NULL
value is acceptable.

The Windows Installer has a defined precedence order for setting properties. The
following list gives this order, in descending order of precedence:

1. Properties specified by the operating environment. These are properties
such as the operating system version, user privileges, and so on.

2. Properties set from the command line. These, by definition, are public
properties.

3. Public properties listed by the AdminProperties property and set during an
administrative installation. The AdminProperties property is a semicolon-
delimited list of both public and private properties that are set at the time of
an administrative installation. Installing from the resulting administrative
image uses this set of properties instead of those in the Property table in
the .msi database.

4. Public or private properties that are set during the application of
a transform.

5. Public or private properties that are set by the setup developer when
authoring the Property table in the MSI database.

We meet up with properties again and again throughout the rest of the book.
They are very useful in condition statements and are critical for obtaining func-

90 Part I: Introduction to the Windows Installer

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 90

tionality in the user interface. It is now time to proceed to the discussion about how
files are copied under the Windows Installer environment.

File-related operations
When people think of software installation, they normally think of copying files to
their local hard drive. Even though this is only one of the actions that must take
place during an installation, it is the action that takes the most time and uses the
most space on the target machine. In order to copy files in the Windows Installer
environment you must first determine whether the target machine has enough
space to hold all the files that will be copied. Then you actually copy the files. You
can perform other file-related actions in addition to copying files to the target
machine, actions such as creating empty directories, moving files, duplicating files,
searching for files, and creating shortcut files. We first discuss the actions that go
into installing files, and then we touch on how these other actions are handled by
the Windows Installer. However, we need to first discuss how files are versioned and
the rules used by the Windows Installer for comparing files with the same name.

FILE VERSIONING
The Windows Installer uses the version, date, and language properties in deciding
whether a file on the target machine should be overwritten with a file in the instal-
lation package. There is a specific format for the version string for a file. This format
is as follows:

xxxxx.xxxxx.xxxxx.xxxxx

Each x represents a digit and the maximum version string allowed is 65535.
65535.65535.65535. A version number can be anything less than this and it does
not have to have four fields. The number 1 by itself is a valid version number, but
none of the fields can exceed five digits and there cannot be more than four fields
in the version string.

The Windows Installer uses the following rules for deciding if a file in the instal-
lation should replace a file of the same name that is already on the system:

◆ Highest version wins: With all other things being equal the file with the
highest version will either be left on the machine or copied to the machine
to replace the file that is already there.

◆ Versioned file wins: With all other things being equal a file with a version
will always replace a file without a version.

Chapter 3: Design and Implementation of the Windows Installer Service 91

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 91

◆ Favor product language: All other things being equal, if the file being
installed has a different language from the file on the machine, the file that
matches the language of the product being installed will be the file that is
either left on the machine or copied to the machine. A language-neutral
file is treated just like a file in any other language, so if the product lan-
guage is also neutral then the file that is language-neutral will win.

◆ Mismatched multiple languages: With all other things being equal in the
situation where the file on the system supports a different set of languages
from the file being installed, the file that will end up on the machine
is the file that best supports the needs of the language of the product
being installed.

◆ Preserve superset languages: With all other things being equal the file that
gets to be on the machine is the file that supports multiple languages.

◆ Non-versioned files and user data: With all other things being equal, if
the modified date of the file on the machine is later than the create date,
the file will not be overwritten since it is assumed that user modifications
would be destroyed. If the modified and create dates are the same for the
file on the machine, the file will be replaced with the file in the installa-
tion. If the create date is later than the modified date for the file on the
machine, the file will be replaced since it is assumed that the file has
not been modified.

◆ Non-versioned files using companion files: With all other things being
equal, a non-versioned file that is a companion to a versioned file will
follow the rules for a versioned file. The one exception to this rule is that
if the versioned file on the machine and the versioned file being installed
have the same version and language but the companion file is not on the
machine, the companion file being installed is used even though the
versioned file on the machine is not replaced.

In the previous list of versioning rules a particular type of file was mentioned. That
was a companion file that is a special link, defined in the File table, where the com-
panion file does not depend on its own file version information but on the version of
the file to which it is linked. A companion file is defined by using the primary key
of the parent file in the version column of the companion file. This links these two
files together as companion and parent. (You will not be using this mechanism in the
installation that is the subject of Chapter 4.)

The preceding rules are global and apply to all files equally. This does not mean,
however, that you cannot override these rules. To override these rules you need to
use the REINSTALLMODE property. Even though its name contains the word rein-
stall you should actually use this property whenever you are installing, reinstalling,
or repairing a file. We look at how to use this property to modify the file versioning
rules later in the book.

92 Part I: Introduction to the Windows Installer

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 92

FILE COSTING OR, HOW MUCH SPACE DO I NEED?
Nothing is more annoying when installing software than to get almost through the
install and to run out of hard-drive space — or to be told up front that you do not
have enough space when you know you do because you are just replacing files and
not adding files. Before you copy files you must make sure you have enough space.
In the past you could do this with only marginal accuracy. Now the Windows
Installer is better able to accurately assess the space needs of the application and to
dynamically keep the space needs current based on changes in user selection of
features and changes in destination location.

The mechanism used by the Windows Installer for determining the disk space
requirements for an installation is called file costing. The file costing operation
includes in its calculations the disk space required for both installing and removing
files, making and deleting registry entries, creating shortcut and other miscella-
neous files, and calculating the impact of overwriting files that are already on the
system and taking up space. Also included in the file cost calculations are the clus-
tered file sizes as determined by the volume to which the files are to be copied. If
the end user changes the location of the installation to another volume, the costs of
the installation are recalculated.

The file cost functionality is implemented by the CostInitialize, FileCost, and
CostFinalize standard actions, which are entered into both the user interface and exe-
cute sequence tables for all installation modes. In addition there is an action that
is entered only into the execute sequence table. This is the InstallValidate action.
Table 3-6 describes the actions that implement the file costing functionality of the
Windows Installer.

TABLE 3-6 THE WINDOWS INSTALLER FILE COSTING IMPLEMENTATION

Action Name Description Sequence Restrictions

CostInitialize Initiates the file costing Comes before the FileCost and the
process by loading the CostFinalize actions. It also comes
Component and before any user interface is presented
the Feature tables in the UI sequence tables.
into memory.

FileCost Initiates the dynamic Must come after the CostInitialize
costing for the action and before the CostFinalize
installation. It evaluates action.
the cost for every file
listed in the File table
on a per-component basis.

Continued

Chapter 3: Design and Implementation of the Windows Installer Service 93

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 93

TABLE 3-6 THE WINDOWS INSTALLER FILE COSTING IMPLEMENTATION (Continued)

Action Name Description Sequence Restrictions

CostFinalize Ends the internal Must come after the FileCost action
installation costing and before any user interface sequence
process that was started that permits the user to modify
by the CostInitialize action. the feature selections and target
It queries the Condition directories.
table to determine which
features are scheduled to
be installed and it verifies
that all the target
directories are writable
before allowing the
installation to continue.

InstallValidate Verifies that all volumes Must come after the CostFinalize
to which cost has been action and any user interface sequence
assigned have sufficient that permits the end user to change
disk space to accommodate the features that will be installed
the installation. This action or change the destination for
will end the installation if the installation.
any volume is short of disk
space. This action also
notifies the user if one or
more files to be overwritten
or removed are in use by an
active process.

FILE INSTALLATION
Once the InstallValidate action has been executed in either the InstallExecute
Sequence or the AdminExecuteSequence, we are ready to transfer files. There is only
one action that is involved in the transfer of files and that is the InstallFiles action.
There are other actions that manipulate files but the InstallFiles action is the only
action that copies files from the source media to the target location.

For a file to actually be copied, it is first necessary that the associated component
be identified as the one to be installed to the local hard drive. This is determined
during the costing process. Which files are transferred depends on the evaluation by
the Windows Installer of the file versioning rules.

94 Part I: Introduction to the Windows Installer

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 94

For files to be transferred, the InstallFiles action must process the File, Component,
Directory, and Media tables (shown in the entity-relationship diagrams presented ear-
lier). First the File table is accessed and from this table the associated component in
the Component table is identified. Also from the File table the sequence number of
the file is specified. This tells the InstallFiles action which disk of the media the file is
to be found on. The Media table provides media information. (In a later section I dis-
cuss the connection between the Files table and the Media table using the sequence
number attribute in the Files table.) From the Component table the source and target
locations for the file are obtained through the foreign key into the Directory table.
The use of the Directory table is rather involved so a later section is devoted to
discussing this subject in detail.

DETERMINING THE LOCATION OF FILES ON THE MEDIA The location of a file on
the media is determined through the Sequence attribute in the File table and the
LastSequence attribute in the Media table. The Sequence attribute in the File table
specifies the sequence position of the file on the media. If the files are compressed
inside a cabinet file, the sequence numbers in the file table must match the sequence
of the files inside the cabinet file. These sequence numbers do not have to be equal
to the sequence numbers used inside the cabinet file; they just have to specify the
same sequence order as the files in the cabinet.

In the Media table the LastSequence attribute identifies the sequence number of
the last file that is available on the particular media defined by this row. Each
source media disk contains all the files whose sequence numbers, as specified in the
File table, are equal to or less than the value in the LastSequence column of the
Media table and greater than the LastSequence value of the previous row in this
table. If this is the first entry into the Media table, then the first media disk contains
all files that had a sequence number greater than 0 and less than or equal to the
value specified in the LastSequence column.

Since your exercise in Chapter 4 will not require you to deal with anything more
complex than this, we will not delve into this subject any more deeply. Just be
aware that there is more complexity in this business when there is a combination of
compressed and uncompressed files that make up the source.

THE FORMAT OF THE DIRECTORY TABLE The Directory table defines the layout
of an installation. Each row in the table specifies both a source and a target loca-
tion, and their being in the same row creates a relationship between the source and
the target. When a file must be installed in a target folder, the source folder from
the same row of the directory table is used to find it. The Directory table has the
columns shown in Table 3-7.

Chapter 3: Design and Implementation of the Windows Installer Service 95

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 95

TABLE 3-7 THE LAYOUT OF THE DIRECTORY TABLE

Column Data Type Key Nullable

Directory Identifier Y N

Directory_Parent Identifier Y

DefaultDir DefaultDir N

Table 3-8 describes in detail the purpose of each column in this table and how to
use it properly. This tends to be a confusing topic so the explanations are fairly
extensive and are followed by an example.

TABLE 3-8 DESCRIPTION OF THE DIRECTORY TABLE ATTRIBUTES

Column Name Description

Directory A unique name for a directory or directory path, or it is the name
of a property. In the parlance of MSI, an identifier is any text string
that may contain letters, digits, underscores, or periods. However,
an identifier must start with a letter or an underscore. This column
is the primary key for the Directory table and cannot be NULL.

Directory_Parent Either defines the parent of the directory being defined or it
indicates that this row is a root directory. For this attribute to
define a root directory the value has to be NULL. This column
also has the same data type as the Directory column but it is
allowed to be NULL.

There can only be one root directory defined in the Directory table
and there is a standard format for making this definition. Set the
Directory column to the TARGETDIR property, leave this column
NULL, and set the DefaultDir column to the SourceDir property.

DefaultDir Defines the name of the directory under the parent directory
defined in the Directory_Parent column. By default this defines
both the target and source directories. In this context the term
source refers to the location of the files on the installation media.
To define different target and source locations you would use the
following format: targetname:sourcename.

96 Part I: Introduction to the Windows Installer

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 96

Column Name Description

If the value of the Directory_Parent column is NULL or has
the same value as the Directory column then the value in the
DefaultDir column defines the name of the root source directory.
If either the target location or the source location is to be the
parent directory location without a sub-folder, place a period in
this column. In addition, you can format directory names specified
in this column as short filename and long filename pairs by using
the pipe symbol (|) to separate these filename formats.

This column cannot be NULL and it uses the special DefaultDir
data type. The DefaultDir data type is a text string that is either
a valid filename or a valid identifier. If the Directory_Parent
column is NULL, then the DefaultDir data type has to be an
identifier; otherwise it has to be a filename or a filename pair.
It can also be a period or a period and colon combination (.:.).
The DefaultDir data type is only defined for the Directory table.

The above table may have left you more confused about Directory table attributes
than you were when you started. So an example is probably appropriate. The example
below is taken from the installation for the training application used in the ISWI
course. It is only a small extract from the Directory table created during the develop-
ment of the installation for the ISWI Training App.

Table 3-10 describes how the Windows Installer would resolve the Directory
table entries shown in Table 3-9.

TABLE 3-9 EXAMPLE ENTRIES FOR THE DIRECTORY TABLE

Directory Directory_Parent DefaultDir

TARGETDIR SourceDir

ProgramFilesFolder TARGETDIR PROGRA~1\Program Files

MyDir ProgramFilesFolder MYCOMP~1\My Company

INSTALLDIR MyDir MYAPPL~1\My Application

Chapter 3: Design and Implementation of the Windows Installer Service 97

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 97

TABLE 3-10 DIRECTORY TABLE TARGET AND SOURCE PATH RESOLUTION

Directory Table Record Path Resolution

TARGETDIR Target The TARGETDIR property is not defined in the
Property table so this value defaults to the
value of the ROOTDRIVE property if it is defined.
If the ROOTDRIVE property is not defined on
the command line or it is not set in the in the
Property table, the Windows Installer sets this
property. The property will be set, for a non-
administrative installation, to the local drive that
has the largest free space. This local drive also
has to be one to which the system can write.

Source The source root path defaults by the Windows
Installer to the location of the MSI package.

ProgramFilesFolder Target This is a property set by the Windows Installer at
initialization. The target directory takes on this full
path as defined in the property table. The values in
the other two columns have no relevance with
regard to the target location path.

Source The source location resolves to the following:

[MSI Package Location]\Program Files

MyDir Target This location resolves to the following:

[ProgramFilesFolder]\My Company

Source This location resolves to the following:

[MSI Package Location]\Program Files\
My Company

INSTALLDIR Target This location resolves to the following:

[ProgramFilesFolder]\My Company\
My Application

Source This location resolves to the following:

[MSI Package Location]\Program Files\
My Company\ My Application

98 Part I: Introduction to the Windows Installer

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 98

You will have to implement the Directory table when doing the example instal-
lation in Chapter 4. Now we move on to the final major aspect of creating an
installation: developing the user interface.

The user interface
So far we have spent a lot of time discussing how to create an installation database
so that we can install files, make registry entries, create shortcuts, and so forth. I
have mentioned in passing that there is a user interface and that something called
the user interface level helps to determine which sequence table with its actions
gets executed when an installation is first started. It is now time to get into the
details of how to create a simple user interface in the Windows Installer world. In
the past, creating a resource dynamic link library generated a user interface for
conducting an installation. The dialog boxes, as well as bitmaps and possibly other
items that were shown during the installation, came from this DLL. There was typ-
ically a parent window that was also part of the user interface and that displayed a
full-screen background. AVI files could be displayed on this background, .wav files
could be played, and the background itself tiled with a bitmap.

In the new world of the Windows Installer all this is gone and what we have as a
user interface is an Install wizard, which is a set of panels that provides information
and/or requests information from the end user. There is no resource DLL required and
you no longer have a full screen background on which to display your marketing
material or entertain the user with music or videos. The Windows Installer creates the
user interface out of the entries made in various database tables. Our installation
example in Chapter 4 will not require a complicated user interface so I will only
address those specific points it requires.

To discuss how to construct a user interface that is recognized by the Windows
Installer I will break the various database tables into three groups. These are the
Dialog Centric, Binary Centric, and Miscellaneous UI table groups. For each of these
table groups, as with the other table groups above, I will present an entity-relationship
diagram to give you an overview of how the various tables interact.

THE DIALOG CENTRIC TABLES GROUP
This group of tables encompasses a large part of the user interface functionality
offered by the Windows installer. At the center of this group of tables is of course the
Dialog table. Relating to this table are the Control, ControlEvent, ControlCondition,
and EventMapping tables. Figure 3-8 shows the entity-relationship diagram for this
group of tables.

This group of tables represents the metaphor of a dialog box as a container for
controls. These controls can trigger events subject to certain conditions, and can
also be triggered by other controls based on what is called event mapping. As you
can see in Figure 3-8, both dialogs and controls have their dimensions defined in the
tables. These dimensions, however, are not dialog units but what are called installer
units. An installer unit is defined as being equal to one-twelfth of the height of the
system font.

Chapter 3: Design and Implementation of the Windows Installer Service 99

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 99

Figure 3-8: The entity-relationship diagram for the Dialog Centric table group

The Windows Installer requires that five dialog boxes be authored into any
installation. Two of these required dialog boxes have reserved names and as such
do not have to be placed into any of the UI sequence tables. They do, however, have
to be entered into the Dialog table. The reserved names and descriptions of these
two dialogs are as follows:

FilesInUse Alerts the user that some of the files that are to be copied to the target
machine, moved, or deleted as part of the installation are being used
by another process. This gives the end user the opportunity to shut
down these processes to avoid a reboot at the end of the installation.

FirstRun Collects user name, company name, and product ID information. It
does not typically do this during the installation but the first time the
application is used. Then it makes a function call to the cached MSI
package and the user fills in the information. This highlights the fact
that you should build all security into the application itself, because
with the Windows Installer there is no licensing enforcement during
the installation.

Attribute (Identifier)

Dialog (Identifier)

(Integer)
(Integer)
(Integer)
(Integer)
(DoubleInteger)
(Formatted)
(Identifier)

HCentering
VCentering
Width
Height
Attributes
Title
Control_First

(Identifier)
(Identifier)

Control_Default
Control_Cancel

Dialog Table

Type (Identifier)

(Identifier)Control
Dialog_ (Identifier)

Control Table

(Integer)
(Integer)

X
Y

(Integer)
(Integer)

Width
Height

(DoubleInteger)
(Identifier)

Attributes
Property

(Formatted)
(Identifier)

Text
Control_Next

(Text)Help

Action (Text)
(Identifier)Control_

Condition (Condition)

(Identifier)Dialog_

ControlCondition Table

Event (Identifier)
(Identifier)Control_
(Identifier)Dialog_

EventMapping Table

Ordering (Integer)

Event (Formatted)
(Identifier)Control_

Argument (Formatted)
Condition (Condition)

(Identifier)Dialog_

ControlEvent Table

100 Part I: Introduction to the Windows Installer

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 100

There are no restrictions on the names that you can use in the Dialog table for
the three other required dialogs that you need to author into the installation, but
you do have to use special sequence numbers in the UI sequence tables. These three
dialogs report to the end user the reason for any of the possible termination events
that can occur during an installation. Table 3-11 lists the criteria that you must use
to create these three dialog boxes.

TABLE 3-11 REQUIRED TERMINATION DIALOG BOXES

Event Type Sequence # Description

Fatal error -3 A modal dialog that will be displayed at the end of an
installation if that installation was terminated because
of a fatal error. This dialog must describe the situation
and have one pushbutton control that allows the user
to dismiss the dialog box.

User exit -2 A modal dialog that will be displayed if the end user
cancels the installation. This dialog must describe the
situation and have one pushbutton control that allows
the user to dismiss the dialog box.

Success -1 A modal dialog box that will be displayed at the
completion of a successful installation. This dialog
must describe the situation and have one pushbutton
control that allows the user to dismiss the dialog box.

There are other dialogs that typically form the core of an installation’s user
interface, but these are all optional. These dialogs are as follows:

Disk cost dialog Appears when an installation is being targeted at a vol-
ume that does not have enough space to complete the
install. This type of dialog can also be launched as a
child dialog from a selection dialog showing the end
user the amount of space that will be used by the instal-
lation. This is a modal dialog that contains a pushbutton
that returns the user to the previous dialog box.

Browse dialog Allows the user to select and create directories. There
are typically a number of combo box and pushbutton
controls the user can use to enable the functionality
of the Browse dialog box. This is a modal dialog that
must have a pushbutton that will dismiss it and return
the user to the previous dialog.

Chapter 3: Design and Implementation of the Windows Installer Service 101

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 101

Cancel dialog Confirms that the user actually wants to terminate the
installation. This is a modal dialog box that contains a
text message and two pushbuttons that permit the user
to either confirm the termination or continue with the
installation.

License agreement dialog Displays the license agreement and enables the user to
either accept or not accept the terms, typically by push-
ing one of a pair of radio buttons. If the user accepts,
the Next button is enabled so that the user can proceed
with the installation. If the user does not accept the
agreement, the installation is terminated and the dialog
used for ending the installation is presented.

Selection dialog Allows the user to make selections from a tree control.
It implements the custom setup type of functionality.
The features that comprise the application are presented
in this selection tree. This permits the user to configure
the installation of the application. There is normally a
button on this dialog that launches the browse type of
dialog, which allows the user to change the install
location of the application.

There are other dialogs that make up a sophisticated user interface but you don’t
have to worry about these niceties for your installation example in Chapter 4. You
do, however, need to know about the controls you can use to populate a dialog box.
There are 22 different types of controls you can use to construct a functioning dia-
log box. Table 3-12 lists these controls along with a short description of each one.
Many controls are associated with a property and the action of the control can
change the property. A small group of controls have their own tables because the
individual controls act as a group, as is the case with radio buttons. This small
group of controls is the subject of the next two sections.

TABLE 3-12 CONTROLS SUPPORTED BY THE WINDOWS INSTALLER

Control Name Description

BillBoard Part of a dialog that dynamically changes on progress or
through action data messages. This control is not associated
with a property. It is a special type of control because it can
display other controls as long as they also are not associated
with a property. This means that a BillBoard control can
display Text, Bitmap, Icon, and other controls of this type.

102 Part I: Introduction to the Windows Installer

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 102

Control Name Description

Bitmap Displays a static picture of a bitmap. The bitmap displayed is
stored in the Binary table. This control is not associated with
a property.

CheckBox A two-state control. It is associated with a property and is
discussed in more detail later in this chapter.

ComboBox Displays a dropdown list of predefined values and it also has
an edit field where the user can enter values. This control is
associated with a property.

DirectoryCombo Displays a part of the path that is currently displayed in the
PathEdit control. It does not show the last segment of the path
because it is displayed in the DirectoryList control. This control
is associated with the same property associated with the
PathEdit and DirectoryList controls.

DirectoryList Displays a part of the path that is currently displayed in the
PathEdit control. It displays those folders below the directory
currently displayed by the DirectoryCombo control. It is
associated with the same property associated with the
DirectoryCombo and PathEdit controls.

Edit An edit field that is associated with either a string or integer
value property.

GroupBox A static control that consists of a rectangle and an optional
caption. It serves to group controls together on the dialog
and it is not associated with a property.

Icon Displays a static picture of an icon that can be stored in the
Binary table. It is not associated with a property.

Line A horizontal line. It is not associated with a property.

ListBox A regular list box that allows the user to make a single
selection from a list of predefined values. It is associated with
a property and is discussed in more detail later in this chapter.

ListView Displays a single column of values, each of which can have an
icon associated with it. The user can make a single selection
from this list. This control is associated with a property and is
discussed in more detail later in this chapter.

Continued

Chapter 3: Design and Implementation of the Windows Installer Service 103

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 103

TABLE 3-12 CONTROLS SUPPORTED BY THE WINDOWS INSTALLER (Continued)

Control Name Description

MaskedEdit An edit field that contains a mask in the text field. You can use
it to create a template wherein a user can enter information,
such as a product ID. This control is associated with a property.

PathEdit Displays an edit field that enables a user to select the tail-end
section of a path. It is associated with the same property as
the DirectoryCombo and DirectoryList controls.

ProgressBar Displays a bar that changes length as it receives progress
messages. This control is not associated with a property.

PushButton Displays a basic pushbutton. It is not associated with
a property.

RadioButtonGroup A group of radio buttons that work together to make a single
selection. It is associated with a property and is discussed in
more detail later in this chapter.

ScrollableText Displays a long string of text such as is found in a license
agreement. It is not associated with a property.

SelectionTree Use in a custom setup-type box that enables the user to
change the selection state of a feature. It is associated
with a property.

Text Displays static text that can use a predefined text style.
This control is not associated with a property.

VolumeCostList Presents information about the space required for an
installation and the volumes where this space is needed.
It is not associated with a property.

VolumeSelectCombo Enables the user to select a volume from an alphabetical list.
It is associated with a property.

The CheckBox, ComboBox, ListBox, ListView, and RadioButton controls each
have their own table into which you have to add information in addition to listing
them in the Control table. These particular controls require entries into special
tables because they are of a type of control that has a multiple selection capability.
This group can be broken into two groups: the Binary Centric table group and the
Miscellaneous UI table group.

104 Part I: Introduction to the Windows Installer

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 104

THE BINARY CENTRIC TABLE GROUP
This group consists of the Binary, ListView, and RadioButton tables. The ListView
and RadioButton controls are linked to the Binary table because they can display
icons. The icons to be displayed in these controls must be stored in the Binary table.
Figure 3-9 shows the entity-relationship diagram for this particular table group.

Figure 3-9: The entity-relationship diagram for the Binary Centric table group

Note that one of the attributes that form the primary key in the ListView and
RadioButton tables is a property identifier. This is the same property identifier entered
for this control in the Control table. In the case of the RadioButton control, every
entry in the RadioButton table that has the same property is tied into the
RadioButtonGroup, which is identified in the Control table with this same property.
For the ListView control every item in the ListView table becomes a member of the
same list view if it is assigned to the same property that is identified with this control
in the Control table.

THE MISCELLANEOUS UI TABLE GROUP
We now move on to the last of the database tables that is important for the next
chapter. This set of miscellaneous tables consists of three tables that deal with group
controls in much the same way as the controls discussed in the previous section;
additionally, there are two tables that handle text and text styles for the user inter-
face. Figure 3-10 shows the entity-relationship diagram for this group of tables. In
this case the term entity-relationship is something of a misnomer since these tables
have no direct connection to each other.

Name (Identifier)

Data (Binary)

Binary Table

Value (Formatted)

(Integer)Order
Property (Identifier)

ListView Table

(Formatted)
(Identifier)

Text
Binary_

Value (Formatted)

(Integer)Order
Property (Identifier)

RadioButton Table

(Integer)
(Integer)

X
Y

(Integer)
(Integer)

Width
Height

(Formatted)
(Text)

Text
Help

Chapter 3: Design and Implementation of the Windows Installer Service 105

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 105

Figure 3-10: The entity-relationship diagram for the Miscellaneous UI table group

The ListBox and ComboBox tables operate in conjunction with the ListBox and
ComboBox controls in the same way that the ListView table and the ListView con-
trol do. The only difference is that the ListView control can display an icon beside
each item in the list and the ListBox control cannot.

The CheckBox table and the CheckBox control are a slightly different proposition.
A check box is a two-state control: it is either checked or unchecked. When this con-
trol is checked, it sets the value of the property to the formatted string of the Value
attribute in the CheckBox table. You have to define the property identifier for this
control in the Control table. If there is no value specified in the CheckBox table or if
the CheckBox table has not been created, the value of the property is set to the initial
value of the property as specified in the Property table. If the property does not have
an initial value, the checked state sets the property value to 1. In all the above cases
the unchecked state of the control sets the property value to NULL.

A Word or Two About
Package Validation
Microsoft strongly recommends that setup developers perform a validation on
every new package that they create and on every package they modify. Performing
a validation on a package involves three separate activities: internal validation,
string-pool validation, and internal consistency evaluation. I only introduce the

Property (Identifier)

Value (Formatted)

CheckBox Table

Key (Identifier)

Text (Text)

UIText Table

Value (Formatted)

(Integer)Order
Property (Identifier)

ComboBox Table

(Text)Text
Value (Formatted)

(Integer)Order
Property (Identifier)

ListBox Table

(Formatted)Text

Size (Integer)

TextStyle (Identifier)

TextStyle Table

(DoubleInteger)
(Integer)

Color

FaceName (Text)

StyleBits

106 Part I: Introduction to the Windows Installer

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 106

subject here because you will be performing a validation on the package that we
create in Chapter 4.

Chapter 18 provides a complete discussion of package validation.

In Chapter 4 the only validation that you need to worry about is that which
checks on the internal consistency among the various tables. This is the only type
of validation required by the Windows 2000 Application for desktop applications.
This specification gives the rules you need to follow in order to get the Microsoft
Windows 2000 logo. Internal consistency evaluators, also called ICEs, are custom
actions written in VBScript, JScript, or as a DLL or EXE. When these custom actions
are executed, they scan the database for entries in database records that are valid
when examined individually but that may cause problems in the context of the
whole database. For example, the Component table may list several components
that are all valid when tested individually; however, an internal validation would
not catch the error when two components use the same GUID as their component
code. This type of package validation is called an internal consistency evaluation.

Summary
We have slogged our way through a fair amount of detail in this chapter. You now
know that the Windows installer uses a complicated database to describe the infor-
mation needed to run an installation. Windows Installer performs an installation by
executing an acquisition phase in order to gather information from the user and to
turn the information in the installation database into a script. This script is then exe-
cuted in an execution phase by the service-side process. The service-side process can
have elevated privileges if the network administrator grants them; otherwise the ser-
vice side will run with user privileges. This is okay if the user has administrative or
power-user privileges, but an installation will fail otherwise.

You learned that products are made up of features and components, components
being the developer’s view of the application and features the end user’s view.
Features are what the end user is allowed to select or deselect through the custom
setup–type dialog box. Components are the atomic unit of an installation and they
consist not only of files but of registry entries, shortcuts, and other information
required for their proper functioning on the target system.

You also now know the basic concepts involved in constructing an installation
package. In particular I have shown you how the important database tables work
together to provide the information necessary for performing an installation. Making
entries into database tables also creates the user interface for the installation. There is
no more use of resource DLLs to create the dialog boxes in an installation wizard.

XREF

Chapter 3: Design and Implementation of the Windows Installer Service 107

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 107

4723-2 ch03.f.qc 1/16/01 11:06 AM Page 108

Chapter 4

Direct Creation of an
MSI Package

IN THIS CHAPTER

◆ Planning the installation

◆ How to define the product in terms of its features and components

◆ How to integrate the product with the operating system

◆ Exposing the product to the end user

◆ Structuring the order in which the installation is implemented

◆ Performing the validation of the installation package

NOW THAT YOU’VE GOTTEN an overview of the Windows Installer in Chapter 3, you
are going to create an actual installation package for one of the sample applica-
tions created for this book. In order to cement what you learned in Chapter 3, you
will create this installation package by directly editing an empty database. You will
do this using a special tool that comes with the MSI SDK found on the CD-ROM at
the back of the book.

Actually, in this chapter you are going to do only half the job: install the sample
application. What you create will not have a user interface for the installation. You
will add the user interface in Chapter 5.

The combination of Chapters 3, 4, and 5 gives you a foundation that will enable
you to learn about the InstallShield for Windows Installer authoring tool and how
to use this tool to solve real-world installation problems. You will also see after this
chapter and the next why an authoring tool is necessary for any real software-
installation development efforts.

The Product to Be Installed
You can find the files that comprise the application to be installed in this example
on the accompanying CD-ROM, along with the source code from which these files
were generated. This application is called ISWI Artist. It is a basic application that
uses COM as one of its components. ISWI Artist draws text or objects on the screen 109

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 109

at the location of the cursor when the left mouse button is clicked. The functional-
ity of this application is somewhat trivial but it will demonstrate the complexity of
creating an installation without the use of an authoring tool.

Figure 4-1 shows the feature and component layout for this application. This fig-
ure shows two top-level features and one sub-feature. The sub-feature is a child of
Feature 1. Each of the features is comprised of one component. Feature 1 is the main
application and Feature 2 provides the on-line help in the form of an HTML page.
Feature 2 is implemented as a standard dynamic-link library that launches Internet
Explorer to display the HTML help page. The sub-feature of Feature 1 provides
graphics functionality to the product that allows the display of various graphics
primitives, shown in different colors. This functionality is implemented as a COM
DLL to make it necessary for the user to make the entries in the COM-related tables.

Figure 4-1: Feature and component layout of the example product

Planning the Installation
The installation that you will create will be a Windows Installer package with all the
application’s files uncompressed and external to the package. This means that the

Feature 1
"Hello ISWI" Text

Wheel

Sub-Feature 1
"Hello ISWI"

Shapes

Feature 2
Help

Component 2
ISWI Artist Help.dll

ISWI Artist Help.html

Component 1
ISWI Artist.exe

Product
ISWI Artist

Compnent 3
ShapeArtist.dll

110 Part I: Introduction to the Windows Installer

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 110

source files will not be streamed into the package. Creating the installation for the
ISWI Artist application is broken down into the following activities, which we will
discuss briefly here and in more detail in the remaining sections of this chapter:

◆ Defining the product in Windows Installer terms

◆ Integrating the product with the operating system

◆ Exposing the product to the environment

◆ Structuring the installation

◆ Creating the installation user interface

◆ Validating the installation package

A brief description of each of these operations is provided in the following sub-
sections.

Defining the product in Windows Installer terms
Defining a product means describing the features and components that comprise
the product. After doing this you must then identify which components go with
which features. (Refer to Figure 3-2 in Chapter 3 for an idea of how a product is
defined in the world of Windows Installer.) In addition to specifying the features
and components that make up the application, you must identify both the product
and the components uniquely by giving each a GUID. Features, you will remember,
are not unique and thus do not get GUIDs.

Copying application resources to the computer
“Integrating the product with the operating system” means that you copy files to

particular locations, create any necessary directories, and make entries in the reg-
istry as required by any COM components being installed. None of these actions is
explicitly exposed to the end user. For the ISWI Artist application the Windows
Installer package you create will perform the following actions:

1. Identify the files that need to be copied.

2. Define the locations to where the files are to be copied.

3. Define the policy to be used when files are to be overwritten.

4. Define the default install action for each component.

5. Create an empty folder where the application’s data is to be stored. This
empty folder is placed in a different location from where the application.

6. Specify the necessary COM-related registry entries for the COM component.

Chapter 4: Direct Creation of an MSI Package 111

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 111

Exposing the product to the environment
When we expose the application to the environment we are allowing the end user
to access the application through various means. The most common method for
allowing access to the application is to put an icon on the Start\Programs menu. In
addition, however, you will also create an association between the application and
a particular file extension and enable the user to launch the application by entering
the application’s name in the Run dialog found on the Start menu. Finally you need
to provide the information which will be exposed in the Add/Remove programs
applet on Windows 2000. Unlike on previous versions of the 32-bit operating sys-
tems this particular applet now exposes much more information than just the name
of the application that performs an uninstallation. It can now provide technical
support contact points and enable the end user to perform repair and reinstall oper-
ations as well as uninstallation.

Structuring the installation
At this point you have generated all the information required by the product to run
correctly on the target machine and enable the end user to access it. What you need
to do now is define the sequence of actions necessary to actually get this informa-
tion onto the computer.

Creating the user interface
The purpose of a user interface for an installation is to solicit input from the end
user and provide feedback as to the status of the installation. It is not absolutely
necessary to have a user interface if the default values that have been defined are
all that is required to get the product onto the target computer successfully.
Creating the user interface from scratch using a database-editing tool is a lot of
work. To explain the table entries required to author a user interface would take a
book by itself. Instead, this book provides a separate .msi file that contains most of
the user interface required. In Chapter 5, I will explain how to add those few miss-
ing parts; by doing this you should come to understand the low-level details of how
a user interface is created in the Windows Installer environment. I encourage you
to work through this part of the exercise so that you can appreciate how different
creating the user interface for the Windows Installer environment is from what you
may be used to in the non-Windows Installer world. For those of you who want a
user interface but do not want to go through the effort of creating one from scratch,
you can use the basic UI provided in the MSI SDK.

Validating the installation package
The last action that we need to take in this exercise, other than running the instal-
lation and the application to see if it works, is to validate the package we have cre-
ated. You will do this using the tools provided by Microsoft on the MSI SDK, which
can be found on the CD-ROM at the back of the book.

112 Part I: Introduction to the Windows Installer

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 112

Getting Started
The first question you face is how to get started. You certainly do not want to have
to create the database tables before you start to enter the necessary data into these
tables. You are saved from having to do this by having an empty database created
for you by Microsoft. This database, called schema.msi, is provided in the MSI SDK.
It provides the latest database schema for creating a valid MSI package. You will
want to rename a copy of this file to ISWIArtist.msi.

To create this MSI package you will also need a database-editing tool called
Orca, also available on the MSI SDK. Orca will need to be installed and its installa-
tion is contained in an MSI package. To add the property values to the Summary
Information Stream you will need to get the MsiInfo.exe utility. This utility is also
available on the MSI SDK.

One additional tool that you will need to create the installation database is one
that will allow you to create the necessary GUIDs to uniquely identify the product,
components, and other entities contained in the MSI package. The tool you will use
to do this is GUIDGEN.EXE, which is available with Visual Studio. GUIDGEN.EXE
creates GUIDs in one of four different formats. You will be using the fourth option,
the registry format where the GUID is in the following form:

{xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx }.

When you get to the part of the exercise that deals with creating the user inter-
face you will need to get a special .msi file off the CD-ROM in the back of the book.
This file is named ISWIArtistUI.msi and it contains a partially complete installation
user interface for the ISWI Artist application. You will need to merge this file with
the installation package you are creating. To perform this merge you will need to
obtain the MsiMerge.exe utility from the MSI SDK. This utility allows you to merge
two databases. You will be completing the user interface using the Orca database-
editing tool. We discuss all this in detail in Chapter 5.

Using Orca
Orca is a very easy tool to use. You will be starting with a blank database that has
tables without any rows. To add a row to a table you first need to highlight the table
in the left-hand panel and then double-click the right-hand panel. A dialog box will
appear, enabling you to enter the values required for the row you are adding. You
can also add a row from the Tables pulldown menu or by right-clicking the right-
hand panel and choosing the Add Row command on the Context menu. To modify
an entry in a table row that already exists all you need to do is double-click the
appropriate column and perform the edit. You will only see a dialog box when edit-
ing an existing entry if the entry is binary data.

I encourage you to experiment with the other functionality in Orca such as
adding tables, exporting tables, importing tables, and so on. You will not be using
these other capabilities in this example, but you will be using some of them in other
places in the book.

Chapter 4: Direct Creation of an MSI Package 113

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 113

Now that you have all the tools you need to create an installation package and
have described the product for which the installation is to be performed, you are
ready to begin the exercise. You start by defining the product as shown in Figure 4-1.

Defining the Product
As you might expect, features are defined in the Features table and components are
defined in the Components table. Features and components are connected through
the FeatureComponents table. These two tables are related to many others, but they
are the main tables required for this particular activity.

Refer to Figure 3-3 and Figure 3-4 in the preceding chapter for a complete

description of the other tables that are related with these three tables.

There is one additional table into which you will enter data for all the parts of
this exercise: the Property table. When it comes to defining the product you will be
entering information into this table, which identifies the product itself.

Since you are going to build the installation for this product from the top down
you start with the creation of the first entries of the Property table. The Property
table has two columns and neither is nullable. The following table shows the values
that you want to enter into these columns. The values that you enter at this stage of
the process define the product-related information. You will set many other proper-
ties in this table that deal with other aspects of the installation.

You are required to set five properties for defining a product and there is one
property that is highly recommended. Table 4-1 defines the properties and the val-
ues that need to be set for the ISWI Artist product. Wherever a GUID is shown as a
value you should generate your own instance using GUIDGEN.EXE instead of
copying the one shown in the book.

TABLE 4-1 REQUIRED PROPERTY TABLE ENTRIES FOR DEFINING THE PRODUCT

Property Name Property Value

Manufacturer ISWI Art Company

ProductCode {EA6F96C0-9480-11d3-8196-204C4F4F5020}

ProductLanguage 1033

ProductName ISWI Artist

XREF

114 Part I: Introduction to the Windows Installer

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 114

Property Name Property Value

ProductVersion 1.0

UpgradeCode {EA6F96C1-9480-11d3-8196-204C4F4F5020}

INSTALLLEVEL 100

Descriptions of these five required properties is given below:
Manufacturer is the property that specifies the name of the company that is pro-

ducing the software. This is a required property.
ProductCode is the GUID that uniquely identifies a particular product release.

You will need to change the value of this property whenever the product is given a
major upgrade (where a product is enhanced with new features and/or compo-
nents). This is a required property.

Chapter 20 provides a full description of how to upgrade a product.

ProductLanguage indicates the language that the Windows Installer is to use for
any strings in the user interface that are not authored into the database. This prop-
erty is the language identifier for the language and it must be one of the languages
listed as one of the values for the Template property that is one of the members of
the Summary Information Stream property set. An example of a user-interface
string that would not be authored into the database is an error message built into
the Windows Installer. This is a required property.

ProductNameindicates the name of the product being installed. This is a required
property.

ProductVersion is the product version provided as a string. The standard format
for this string is major version followed by minor version and then (if necessary)
build number. The major and minor version numbers must be less than 0xFF (deci-
mal 255) and the build number must be less than 0xFFFF (decimal 65535). This is a
required property.

UpgradeCode is another GUID that is used when you create a Windows Installer
package that will perform a major upgrade to the product. This property value does
not have to be unique among products as long as those products can all be
upgraded with the same upgrade package. This is not a required property Microsoft
strongly recommends that you assign every product an upgrade code. Otherwise
you will not be able to use the upgrade functionality provided by the Windows
Installer.

XREF

Chapter 4: Direct Creation of an MSI Package 115

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 115

Entering these properties is all you have to do as far as defining the product
properties is concerned. You will see the Property table again when you enter val-
ues concerning other aspects of the installation.

We now move on to the next task in defining the product. First, you have to
identify the features that form the end user’s view of the product — the features that
the end user can select or deselect through the custom setup type dialog box. Table
4-2 provides the information you need to enter into the Feature table for each of
the three features that comprise the ISWI Artist product. Each feature is defined by
one row in the Feature table. The Feature table has eight attributes that you need to
enter with three of these attributes being non-nullable. As I did with the Property
table, I will describe these attributes to show how the Windows Installer uses each
during the installation.

TABLE 4-2 FEATURE TABLE ENTRIES REQUIRED TO DEFINE THE ISWIARTIST
FEATURE SET

Row # Column Name Attribute Value

1 Feature Main_Feature

Feature_Parent

Title Text Wheel

Description This is the main feature of the application and
allows the user to draw a wheel with the string
“Hello ISWI.”

Display 5

Level 100

Directory_ TARGETDIR

Attributes 24

2 Feature ShapeDraw_Feature

Feature_Parent Main_Feature

Title Shape Drawing

Description This feature allows the user to draw the “Hello
ISWI” string inside various geometric shapes.

Display 8

Level 100

Directory_ TARGETDIR

116 Part I: Introduction to the Windows Installer

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 116

Row # Column Name Attribute Value

2 Attributes 8

3 Feature Help_Feature

Feature_Parent

Title Help Docs

Description This feature provides the help for the ISWI Artist
application.

Display 12

Level 100

Directory_ TARGETDIR

Attributes 8

A description of the columns in the Feature table is given below:
The Feature column is the primary key for this table and it is an identifier that

uniquely names a feature. This identifier is a text string that can contain letters,
digits, underscores (_), and periods (.). The scope of the uniqueness of this identi-
fier is only for the product and it is enforced by the fact that a database table can-
not contain duplicate primary keys.

The Feature_Parent column designates that the feature being defined by this row
is a child feature. This identifier is a key into the primary key of this table and
points to the row in this table that defines the parent feature to this feature. If a fea-
ture is a root feature then this column has to be null. In the operation of the
Windows Installer no child feature can be installed if its parent feature is not
installed. The value you enter into this column must have the same format as that
of the value entered into the Feature column.

Title is a short description that will be displayed in the feature selection tree that
the end user will see when performing a custom setup. If this column is null then
the Windows Installer will use the identifier for the feature found in the Feature
column. Since this is not normally a user-friendly name it is best to enter a better
name in this column.

Description is a more complete description of a particular feature that is also
displayed when the end user is performing a custom setup. This description is dis-
played in a text control whenever this feature is highlighted in the feature tree
found in the custom setup type dialog.

The entry in the Display field is an integer that defines the order in which
the features for the product are to be displayed in the feature selection tree found in
the custom setup type dialog box. The features with the lowest number will be at

Chapter 4: Direct Creation of an MSI Package 117

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 117

the top of the tree or sub-tree. If the number is even then the tree for that feature is
initially shown collapsed; if the number is odd then the tree is initially shown
expanded. This has no meaning in the case of a feature that is a leaf node in the
tree. If the number is 0 or there is no entry in this column then the feature will be
hidden and not displayed in the feature tree.

Level is an integer value that defines the install level for this feature. You use it
to configure the feature set that will be installed for any predefined setup type
options such as Typical, Compact, or Complete. The Windows Installer compares
this value with the public INSTALLLEVEL property in the Property table to deter-
mine if a feature should be installed or not. If the value entered in this column for
the feature is equal to or less than the value of the INSTALLLEVEL property the fea-
ture will be installed. Otherwise the feature will not be installed. The user can
change this value through the custom setup dialog and either select a feature for
installation or change it so that it is not installed. The value you enter into this col-
umn can be any number from 1 to 32767. A value of 0 will disable the feature and
prevent it from being displayed in a custom setup type feature selection tree.

The Directory_ column contains the name of a root directory into which this fea-
ture will be installed; the end user can change it with a location selection dialog
box. Normally a property is used here; it must be a public property so that it can be
set from the command line. This value is a foreign key into the Directory table, so
any value entered here must also exist in this table.

The Attributes column is where you define the default state of the feature. You
also design the feature states that the user can set through the custom setup feature
tree. There are four feature states: installed to run locally, installed to run from
source, advertised, or absent.

A number of pertinent remarks about the entries you are making in the Feature
table are provided in the following list. These remarks give some of the background
about these entries:

◆ The values used for the Display attribute in the Feature table provide
a feature selection tree where the main feature is at the top of the tree.
Since it has a child feature it is initially expanded. This is the effect of
using an odd number for this table attribute. The help feature is not
expanded since it does not have a child feature, so its display value is
an even number.

◆ The level attribute value of 100 used in this example is the same as
the value for the INSTALLLEVEL property that was used earlier in this
example.

◆ The value used for the key into the Directory table is a property that will
be set by a custom action that you are going to add later in this example.
This is a special property that can be reset from within the custom setup
type dialog box.

118 Part I: Introduction to the Windows Installer

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 118

◆ The Help_Feature feature and the ShapeDraw_Feature feature are both
given an attribute value of 8. This means that it is not possible to set these
features to be installed on first use. You need to disallow advertisement for
these two features because the ISWIArtist application has not been designed
to take advantage of feature-level install on demand. The Main_Feature fea-
ture has an attribute value of 24, which means that it cannot be set for
installation on first use but also that the user cannot select for this feature
not to be installed. The value of 24 comes from the sum of the attribute
value of 8 and the attribute value of 16.

The next thing that you have to do is identify the components that form the end
developer’s view of the product. The end user does not see the components, which are
atomic units of the installation. Table 4-3 below provides the information you need to
enter into the Component table for each of the three components that make up the
ISWI Artist product. Each component is defined by one row in the Component table.
The Component table has six attributes that you need to supply, three of these attrib-
utes being non-nullable. I will describe the attributes after the presentation of the
actual values in order to show how the Windows Installer uses each of these attrib-
utes during the installation.

TABLE 4-3 COMPONENT TABLE ENTRIES REQUIRED TO DEFINE THE ATOMIC
UNITS THAT COMPRISE ISWIARTIST

Row # Column Name Attribute Value

1 Component Help_Component

ComponentId {5774E1F8-939D-11D3-8195-204C4F4F5020}

Directory_ TARGETDIR

Attributes 0

Condition

KeyPath ISWIArtistHelp.dll

2 Component MainExe_Component

ComponentId {5774E1F7-939D-11D3-8195-204C4F4F5020}

Directory_ TARGETDIR

Attributes 0

Condition

KeyPath ISWIArtist.exe

Continued

Chapter 4: Direct Creation of an MSI Package 119

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 119

TABLE 4-3 COMPONENT TABLE ENTRIES REQUIRED TO DEFINE THE ATOMIC
UNITS THAT COMPRISE ISWIARTIST (Continued)

Row # Column Name Attribute Value

3 Component ShapeDraw_Component

ComponentId {5774E1FA-939D-11D3-8195-204C4F4F5020}

Directory_ TARGETDIR

Attributes 0

Condition

KeyPath ShapeArtist.dll

A description of the columns in the Component table is given below:
Component is the primary key for the table and is an identifier that must be

unique for the product.
ComponentId is a GUID, which by definition must be unique. This value is used

by the Windows Installer to register the component in the registry. If it is null then
the component will not be registered and the Windows Installer will not be able to
either remove or repair it. Notice that all the letters in the above values are upper-
case letters. This is necessary for the component ID to be valid. The GUIDGEN util-
ity generates GUIDs that can have some lowercase letters; you must change these
letters to uppercase before using them in this table.

Directory_ is a foreign key into the Directory table. The value in the Directory
table is a property that contains the path to where the component is to be installed.

The value in the Attributes column is defines how components are to be handled
by the Windows Installer. It can be used to define whether a component can or can-
not be run from source or whether this functionality is optional. You can also set
other components, such as whether a component is permanent or transitive.

Condition is an expression that evaluates to TRUE or FALSE. If the result of a
condition is TRUE, the component will be installed; otherwise it will not be
installed. If this column is null, then the result will be the same as if the condition
had evaluated to TRUE.

The value in the KeyPath column is used by the Windows Installer to detect the
existence of the component. Normally this value is what is called the key file of the
component but it can also be a registry entry. If this column is null, then the value
in the Directory_ column is used as the key path.

The following remarks provide background about the entries you are making in
the Component table.

120 Part I: Introduction to the Windows Installer

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 120

◆ It might seem strange that the ComponentID is not the primary key for
this table since it is unique. The scope of this table is only for the product
but the scope of the ComponentID has to be across time and space. Since
this column can be null it cannot be used as the primary key for the table.
When this value is null the Windows Installer will not register the compo-
nent and it cannot be removed or repaired.

◆ For the value of the Attribute column in this example we are using zero0,
which means that these components can only be run if installed locally.

◆ In this example we are using the file names as the key paths for the com-
ponents. In a much larger installation you would want to use some
method of making sure that all the file names are unique since in this par-
ticular case this column is a foreign key into the File table. InstallShield
for Windows Installer will automatically add a unique string to the front
of all file names to make sure they are unique identifiers.

Finally, you have to identify which components go with which features. Table
4-4 below provides the information that you need to enter into the Feature
Components table for each of the three features and three components that make up
the ISWI Artist product. The FeatureComponents table has two attributes that must
be supplied, and neither of these attributes is non-nullable. I describe the attributes
after the presentation of the actual values in order to show how the Windows
Installer uses each of these attributes during the installation.

TABLE 4-4 FEATURECOMPONENTS TABLE ENTRIES REQUIRED TO DEFINE THE
RELATIONSHIP BETWEEN FEATURES AND COMPONENTS

Row # Column Name Attribute Value

1 Feature_ Help_Feature

Component_ Help_Component

2 Feature_ Main_Feature

Component_ MainExe_Component

3 Feature_ ShapeDraw_Feature

Component_ ShapeDraw_Component

The meaning of the two columns in this table is as follows:
Feature_ is a foreign key into the Feature table.
Component_ is a foreign key into the Component table.

Chapter 4: Direct Creation of an MSI Package 121

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 121

Since there is a many-to-many relationship between features and components
there must be an additional table in order to create the one-to-many relationship
between these two types of entities.

Copying application resources to the computer
It is in this part of the installation creation process that you define the major part
of the work that the Windows Installer has to perform in order to get the applica-
tion onto the target system. You will be defining how to copy files, where to copy
them, making the associated registry entries, and making other changes to the sys-
tem as necessary. To specify all this information for the ISWI Artist application you
will need to use six tables. These are the Class, CreateFolder, Directory, File, Media,
and ProgId tables. I cover this material in two separate sections, one on handling
files and the file system and the other on working with the registry aspects of COM.

Handling files and manipulating the file system
For this you will need to work with four of the six tables. These will be the File,
Directory, CreateFolder, and Media tables. Start with the necessary File table
entries. The File table has eight attributes, five of them non-nullable. Table 4-5
shows the entries required for the installation of the ISWI Artist application. There
are four files in this application and each file requires a row in the table.

TABLE 4-5 FILE TABLE ENTRIES REQUIRED TO DEFINE THE FILES THAT
COMPRISE ISWIARTIST

Row # Column Name Attribute Value

1 File ISWIArtistHelp.htm

Component_ Help_Component

FileName ISWIAr~1.htm|ISWIArtistHelp.htm

FileSize 2161

Version

Language

Attributes 8192 (The particular constant used here is
msidbFileAttributesNoncompressed which
means that the source file is uncompressed)

Sequence 1

122 Part I: Introduction to the Windows Installer

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 122

Row # Column Name Attribute Value

2 File ISWIArtistHelp.dll

Component_ Help_Component

FileName ISWIAr~1.dll|ISWIArtistHelp.dll

FileSize 28672

Version

Language

Attributes 8192

Sequence 2

3 File ShapeArtist.dll

Component_ ShapeDraw_Component

FileName ShapeA~1.dll|ShapeArtist.dll

FileSize 36864

Version 1.0.0.1

Language 1033

Attributes 8192

Sequence 3

4 File ISWIArtist.exe

Component_ MainExe_Component

FileName ISWIAr~1.exe|ISWIArtist.exe

FileSize 36864

Version 1.0.0.1

Language 1033

Attributes 8192

Sequence 4

The meanings of the eight columns in the File table are described in the follow-
ing list:

File is a unique identifier for the file being described. It can be the filename or
the filename modified with some additional identifier to ensure that it is unique.

Chapter 4: Direct Creation of an MSI Package 123

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 123

This uniqueness needs only to be across the product. This column is the primary
key for the File table.

Component_ is a foreign key into the Component table and is the name of the
component that controls the file.

The FileName column identifies the actual name of the file that is to be installed.
FileSize indicates the size of the file in bytes.
If the file to be installed has a version, you must enter it in the Version column.

If the file has no version, leave this column blank.
If the file has a version resource, the Language column is a comma-delimited list

of the language IDs to be found in this resource. If no language is specified, leave
this column blank.

The Attributes column provides a number that defines the file’s attributes, such
as whether the file is read only, whether it is compressed, and so forth.

The Sequence column defines the position of the file on the media image. This
number specifies the order of installation of the files as well as the source media
where the file is to be found.

The following remarks provide background about the entries you are making in
the File table:

◆ In the filename column you are using a special format by which you can
specify both the short filename format (8.3) and the long filename format
to specify the file. Make sure to use the correct case when giving the file
names, not to put spaces between the filenames, and to use the vertical
bar to delimit the two filename formats.

◆ To find out what value to enter into the FileSize, Version, and Language
columns right-click on each of these files in Windows Explorer and select
Properties from the popup menu. From the General tab on the Properties
dialog you get the size in bytes and from the Version tab you get the ver-
sion number and the name of the language. Knowing the name of the
language you can get the Language ID. In our case the Language ID for
English (United States) is 1033. If the file has no version resource then
the Properties dialog will not have a Version tab and the Version and
Language columns will be left blank.

◆ In the Attribute column you should use the value of 8192 for all files. This
means that the source file image is uncompressed. If you do not set the
attribute value, you could make the same specification using the Word
Count property in the Summary Information Stream.

Before moving on to specifying where the files are to be found and installed you
need to define the empty folder that will be created during installation. This empty
folder will eventually be used to cache an application preference file for the compo-
nent that installs the primary executable of the application. To define an empty

124 Part I: Introduction to the Windows Installer

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 124

folder you need to make use of the CreateFolder table. You need to enter one row as
shown in Table 4-6. There are only two attributes in this table and neither of them
can be null.

TABLE 4-6 CREATEFOLDER TABLE ENTRIES REQUIRED TO DEFINE AN EMPTY
FOLDER

Row # Column Name Attribute Value

1 Directory_ EmptyFolder

Component_ MainExe_Component

The following is a description of the two columns in this table.
Directory_ is a foreign key into the Directory table. In the Directory table you

define the location where this folder is to be created.
Component_ is a foreign key into the Component table. The folder is created

when this component is installed. If this folder is empty when the associated com-
ponent is either moved to run from source or uninstalled, it will be removed.

The following remarks provide background about the entries you are making in
the CreateFolder table:

◆ In this example you are using the component containing the main exe-
cutable of the ISWIArtist application to house the creation of this empty
folder. You could also create a separate component for the sole purpose
of creating this empty folder. I mention this to point out the fact that
components do not have to contain files.

◆ You are using this method to create this empty folder because the
Windows Installer will delete empty folders not listed in this table. This
ensures that this table will only be removed if it is empty at the time the
associated component is uninstalled or moved so that it runs from source.

◆ If a component can be installed to run from source but you still want
an empty folder created on the local system, you need to create a special
component that is not allowed to run from source to create the empty
folder.

You need to make an entry in the RemoveFile table so that the empty folder will
be uninstalled if it is empty during an uninstallation of the product. Table 4-7
defines the entries that you need to make in this table in order to implement this
functionality.

Chapter 4: Direct Creation of an MSI Package 125

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 125

TABLE 4-7 REMOVEFILE TABLE ENTRIES REQUIRED TO DEFINE THE
REMOVAL OF AN EMPTY FOLDER

Row # Column Name Attribute Value

1 FileKey EmptyFolder

Component_ MainExe_Component

FileName

DirProperty EmptyFolder

InstallMode 2

A description of the five columns in this table is given below:
FileKey is the primary key for this table and is a unique identifier for this entry

in the table.
Component_ is a foreign key into the Component table and refers to the compo-

nent that controls the file or folder to be removed.
FileName provides the name of the file to be removed. If a folder is to be removed,

this column is NULL.
DirProperty is the name of a property that will resolve to the full path of the file

or folder that is to be removed.
InstallMode defines the whether the removal of the file or folder is to occur when

the associated component is being installed, when it is being uninstalled, or both.
The following remarks provide background about the entries you are making in

the RemoveFile table:

◆ The folder that you want to remove if it is empty is associated with the
main component, so you have entered the name of this component in the
Component_ column and the name of the directory in the Directory table.

◆ Since you are removing a folder you leave the FileName column empty.

◆ Since you want this folder to be removed you specify the value of the
InstallMode attribute as 2.

You are now ready to define where the Windows Installer will find the files that
are to be installed as well as where they should be copied during the installation.
You do all this using the Directory table. Using the Directory table can be confus-
ing, so you may want to reread the section on this subject that can be found in
Chapter 3.

The Directory table has three attributes, two of which cannot be null. You need
to populate four rows of this table, as shown in Table 4-8.

126 Part I: Introduction to the Windows Installer

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 126

TABLE 4-8 DIRECTORY TABLE ENTRIES REQUIRED TO DEFINE THE SOURCE AND
DESTINATION LOCATIONS FOR THE ISWIARTIST APPLICATION

Row # Column Name Attribute Value

1 Directory TARGETDIR

Directory_Parent

DefaultDir SourceDir

2 Directory AppDataFolder

Directory_Parent TARGETDIR

DefaultDir .:APPLIC~1|Application Data

3 Directory EmptyFolder

Directory_Parent AppDataFolder

DefaultDir ARTIST~1|ArtistData

4 Directory ProgramMenuFolder

Directory_Parent TARGETDIR

DefaultDir .:Programs

Information concerning the columns of the Directory table follows:
The Directory column contains an identifier that defines a directory or a direc-

tory path. This column can also contain the name of a property, which would need
to be set to the full path of a location on the target system. If this value is a prop-
erty, the Directory_Parent and DefaultDir columns only define the source location.
If the value is not a property, then the Directory_Parent and DefaultDir columns
define the value of both the target location and the source location.

The entry in the Directory_Parent column is the parent directory of the entry in
the DefaultDir column. It is also a key into the Directory column. You resolve a
directory path by following the values in this column up the tree until you get to a
row where the column is either null or equal to the value in the Directory column.
When you reach that point then you have arrived at the root of the directory path.
You define both the target and the source locations for the application’s files this
way, with the target location being different if the Directory column contains a
property as described in the previous paragraph.

DefaultDir contains the directory name that appears under the directory defined
in the Directory_Parent column. If there is only one value in this column, it then
defines both the target and the source directory location. To specify different source
and target locations delimit these two values with a colon (:), putting the target

Chapter 4: Direct Creation of an MSI Package 127

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 127

directory on the left and the source directory on the right. You could replace either
of these directories with a period (.), which would indicate that that directory is the
same as the directory location defined by the value in the Directory_Parent column.
If the value in the Directory_Parent column is null or equal to the value in the
Directory column, then the value in this column defines the root source location.

In the following remarks I will go through each of the values entered into the
Directory table shown in Table 4-8 and explain what they mean.

◆ In Row #1 you are defining the root locations for the target of the installa-
tion and the source location of the files that comprise the application. You
can identify the root by the fact that the directory column is null. In our
example the TARGETDIR property will be initialized by a custom action.
In this chapter you will just use this custom action without explanation.
The entry in the DefaultDir column is a property name that is set by the
Windows Installer when the installation is initialized. The value of this
property is the location of the cabinet file containing the source files or, if
the source files are uncompressed, the root location of the source file tree.

◆ In Row #2 you are defining the location of the Application Data folder for
the current user. AppDataFolder is a property set by the Windows Installer
when an installation is initialized. Since this is a property, the target loca-
tion is set to this value. This has no meaning with regard to the source
of the application files since no files are located here but you have made
entries into the Directory_Parent and the DefaultDir columns in order to
avoid errors when doing the package validation.

◆ In Row #3 you are defining where we want to create the empty folder
where the application’s data files will be stored. You do this by defining
an identifier named EmptyFolder and then defining this value to mean
a folder called ArtistData that is created in the location defined by the
AppDataFolder property in Row #2. The Windows Installer will resolve
this entry in the Directory table by first taking the entry of ArtistData
in the DefaultDir column and seeing that it has a parent directory called
AppDataFolder. It will then look for AppDataFolder in the Directory
column and find that it is the full path to the Application Data location
defined in the Property table. Because it is an entry in the Property table
the resolution process stops and the location where the empty folder is
created is:

[AppDataFolder] ArtistData

◆ In Row #4 you are defining the location where the shortcut for ISWIArtist.
exe will reside. ProgramsMenuFolder is a property set by the Windows
Installer during initialization, but you have made entries into the
Directory_Parent and the DefaultDir columns in order to avoid errors
during the package validation.

128 Part I: Introduction to the Windows Installer

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 128

To finish this part of the exercise you need to make an entry into the Media
table. You use the Media table to tell the Windows Installer about the disk set that
makes up the media for the installation.

The Media table has six attributes, two of which are not allowed to be null. You
need to add just one row to this table since you have a small application and do not
intend to put this installation onto floppy disks. Table 4-9 shows the input that you
need to enter into this table.

TABLE 4-9 MEDIA TABLE ENTRIES REQUIRED TO DEFINE THE INSTALLATION MEDIA

Row # Column Name Attribute Value

1 DiskId 1

LastSequence 4

DiskPrompt 1

Cabinet

VolumeLabel Disk1

Source

A description of the six columns in the Media table is provided below:
DiskId identifies what disk this is in the set of disks. Normally with a CD-ROM

this would be the only entry in this table since most software fits onto one CD-ROM.
LastSequence is the sequence number for the last file that will be found on this

particular disk. This sequence number comes from the File table. The sequence num-
bers of the files on any particular disk will have sequence numbers equal to or less
than this value given in this column and greater than the LastSequence value on any
preceding disk. It is through the value in this column that the Windows Installer
knows which files are on which disk when there is a multi-disk installation.

The DiskPrompt entry is combined with the text value of the DiskPrompt prop-
erty. During the InstallFiles action this value is substituted into the placeholder that
is part of the DiskPrompt property. The final message displayed in the message box
is the template string associated with Error 1302, which has a placeholder for the
DiskPrompt property. The template string is “Please insert the disk: [2]” where [2] is
the placeholder for the DiskPrompt property. For a single disk installation such as is
found with a CD-ROM this field is normally not used.

The Cabinet field contains the name of the cabinet file in which the source files
are compressed. If the files are not compressed then leave this field blank.

The VolumeLabel field is the volume label of the media on which the associated
files reside. Windows Installer uses it to make sure that the proper disk is in the
drive before proceeding with the installation. If there is only one disk, this field can

Chapter 4: Direct Creation of an MSI Package 129

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 129

be null. If this column has an entry and there is only one disk, this entry will have
no meaning to the Windows Installer.

The purpose of the Source column is to support patching and it is left blank for
all other scenarios.

In the following remarks, I explain the background for the entries that you are
making in the Media table.

◆ Since you have only one disk the value of the DiskId column, which is the
primary key for this table, is set to 1.

◆ You set the LastSequence column to 4 since there are only four files in our
example.

◆ The DiskPrompt column is set to 1 but you do not really need to set it
since you will not be presented with a prompt for a disk.

◆ You gave the VolumeLabel column the value of Disk1 but again this is not
really required for our small application.

Now, if you have entered the above information into the ISWIArtist.msi file
using Orca, you are ready to address the table entries you need in order to properly
register the one COM component in this application.

Initializing the default installation location
One of the things that Windows Installer does not set without some special effort
on the part of the setup developer is the default location where the application will
be installed. It is this default location that the user can change through the custom
setup type dialog box. Microsoft’s logo requirements have for a long while identi-
fied the ProgramFiles folder as the default location for installing a product. The
directory tree under this folder should be the company name followed by the name
of the application. This default location for our example application would be
something like C:\Program Files\ISWI Art Company\ISWI Artist.

File SETTARGETDIR.DLL (on the CD-ROM at the back of the book under the
Chapter04 folder) contains what is called a custom action. You can use this custom
action to create the default value for the property TARGETDIR and it is at the location
you specify that the application will be installed. To add this custom action to your
installation package you need to define it in the CustomAction table and put the file
into the Binary table as a binary stream. You will deliver the custom action to the sys-
tem through the use of the Binary table so that the Windows Installer can execute it.
Table 4-10 shows the entries that you need to make into the CustomAction table
and Table 4-11 shows the entries that you need to make into the Binary table.

130 Part I: Introduction to the Windows Installer

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 130

You will want to copy the SetTargetDir.dll file to the folder in which you are

creating your installation package.This will make it much easier to enter the

data into the Binary table, since you will only have to enter the filename

instead of the complete path to the file.

TABLE 4-10 CUSTOMACTION TABLE ENTRIES REQUIRED TO DEFINE THE DEFAULT
INSTALLATION LOCATION

Row # Column Name Attribute Value

1 Action DefaultDest

Type 257

Source DefaultDestCA

Target SetDefaultTarget

The purpose of each of the four columns in the CustomAction table are described
below:

Action is an identifier that uniquely defines the custom action in this table. This
is the primary key for this table.

The value entered in the Type column identifies to the Windows Installer how it
should process this particular custom action.

The Source column tells the Windows Installer where to find the custom action.
The Target column tells the Windows Installer how to execute the custom action.
In the following remarks I provide some background on the actual entries that

you are making in the CustomAction table:

◆ The 257 in the Type column tells the Windows Installer that this custom
action is being implemented in a dynamic link library and that it should
execute the action immediately upon encountering it in the sequence
table. However, if this custom action is in both the UI sequence table and
the execute sequence table then Installer should only implement it the
first time Installer encounters it.

◆ The value entered in the Source column is a foreign key into the Binary
table and it is the data identified by this value that the Windows Installer
will stream out of this table into a temporary file and execute.

Tip

Chapter 4: Direct Creation of an MSI Package 131

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 131

◆ The value entered into the Target column is the name of the exported
function in the dynamic link library that will perform the custom action.

We will take a look at the particular custom action that you are using to ini-

tialize the TARGETDIR property at the end of Chapter 10.

TABLE 4-11 BINARY TABLE ENTRIES REQUIRED TO DEFINE THE DEFAULT
INSTALLATION LOCATION

Row # Column Name Attribute Value

1 Name DefaultDestCA

Data [BinaryData]

The purpose of the columns in the Bianry table are described below:
The Name column is the primary key for this table and is a unique identifier for

the data that have been streamed into the second field.
The Data column holds the streamed-in-binary data that can be any type of file

from bitmaps to executable files. These data are unformatted.
The following remarks provide background on the entries that you have made in

the above table:

◆ The value you enter into the Name column is the same value you enter in
the Source column of the CustomAction table.

◆ The value shown in Table 4-11 for the Data column just indicates that
there is binary data in this column. Do not enter this into the table; Orca
will ask you for the name of the file that is to be streamed in.

Working with COM–related registry input
To provide the necessary COM information for use by the Windows Installer you need
only to concern yourself with two tables: the Class table and the ProgId table. We will
come back to the ProgId table again in the next section when you create a file asso-
ciation for the default file extension for the data files created by ISWIArtist.exe.

XREF

132 Part I: Introduction to the Windows Installer

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 132

The Class table has 13 attributes and only four of these cannot be null. For your
COM component you need to enter only one row. Table 4-12 shows the values for
this one row.

TABLE 4-12 CLASS TABLE ENTRIES REQUIRED TO DEFINE THE COM CLASS
INFORMATION

Row # Column Name Attribute Value

1 CLSID {3EECB2C0-90AA-11D3-8191-204C4F4F5020}

Context InprocServer32

Component_ ShapeDraw_Component

ProgId_Default ISWIArt.ShapeArtist.1

Description Shape Artist Component

AppId_

FileTypeMask

Icon_

IconIndex

DefInprocHandler

Argument

Feature_ ShapeDraw_Feature

Attributes

The columns that comprise the Class table are described below:
CLSID is the class identifier of the COM server.
Context identifies the context in which the COM server will run. This can be

LocalServer, LocalServer32, InprocServer, or InprocServer32.
Component_ is a foreign key into the Component table and it identifies the com-

ponent in which this COM server is the key file.
ProgId_Default defines the ProgID associated with this COM class.
Description provides the description that the Windows Installer will enter into

the registry against this class ID and ProgID.
AppId_ is a foreign key into the AppId table and is required if the component is

a DCOM–enabled component.

Chapter 4: Direct Creation of an MSI Package 133

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 133

The FileTypeMask field contains information for the HKCR\CLSID registry key.
Icon_ is a foreign key into the Icon table that can be associated with this COM

class.
IconIndex indicates the icon to be used in conjunction with this COM class.
The DefInprocHandler column defines the default in-process handler to be used

in the processing of a compound document to provide the required in-process
implementation for an out-of-process content object.

Use the Argument column when the context of the COM server is LocalServer or
LocalServer32. The formatted text string in this column is registered against the
OLE server and used by OLE for invoking the server.

Feature_ is a foreign key into the Feature table and identifies the feature provid-
ing the COM server.

The Attributes value indicates that the COM server is not to be registered by its
absolute path but only its relative path to the client that is going to use it. This is
how isolated components are handled.

The following remarks provide you further information about the values that
you have entered in to the Class table:

◆ You must enter exactly the CLSID and other information provided in this
table; otherwise this COM DLL will not be registered properly.

◆ You left the Icon and IconIndex columns null since you are not interested
in having an icon associated with this CLSID.

◆ You left the DefInprocHandler and Argument columns null since there
isn’t any inter-process communication going on in this application.

◆ You left the Attributes column null since you are not dealing with isolated
(side-by-side) components in this application.

I provide a more detailed discussion of isolated (side-by-side) components

in Chapter 17.

In the ProgId table you need to create two rows. The ProgId table has six attrib-
utes, only one of which cannot be null. Table 4-13 shows the two rows you need
to enter.

The following provides a discussion of the columns that comprise the ProgId
table:

The ProgId column is the primary key of this table and contains the version-
dependent or version-independent Program ID.

XREF

134 Part I: Introduction to the Windows Installer

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 134

TABLE 4-13 PROGID TABLE ENTRIES REQUIRED TO DEFINE THE COM
PROGRAM ID INFORMATION

Row # Column Name Attribute Value

1 ProgId ISWIArt.ShapeArtist.1

ProgId_Parent

Class_ {3EECB2C0-90AA-11d3-8191-204C4F4F5020}

Description Shape Artist Component

Icon_

IconIndex

2 ProgId ISWIArt.ShapeArtist

ProgId_Parent ISWIArt.ShapeArtist.1

Class_

Description

Icon_

IconIndex

The ProgId_Parent column is only used when a version-independent Program ID
has been defined in column 1. This is a key into the first column where you defined
the version-dependent Program ID.

The Class_ column is a foreign key into the Class table for a version-dependent
Program ID that identifies a COM class. For a version-independent Program ID this
column has to be null.

The Description column provides a description of the associated Program ID.
This column should be localized so that it conforms to the language of the target
operating system if it is a non-English system.

Icon_ is a foreign key into the Icon table that defines the icon associated with
this Program ID. Only use this field if you are making an icon association and it
must be null for a version-independent Program ID.

If you give the previous column a value then the IconIndex column will specify
the index of the icon that is to be used.

The following remarks discuss in more detail the entries that you have made in
the ProgId table:

◆ In Row #1 you are defining the version-dependent Program ID. The CLSID
you enter into the third column is the same one that you entered into the
Class table.

Chapter 4: Direct Creation of an MSI Package 135

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 135

◆ In Row #2 you define the version-independent Program ID and in the sec-
ond column provide a key into the first column of Row #1 in order to
associate the version-independent Program ID with the version-dependent
Program ID.

You have now completed entries required by the Windows Installer to put the
application onto the target system. Now you have to provide the information the
Windows Installer requires in order to expose the application to the end user for
launching.

Exposing the Product to the
Environment
You are going to use three different approaches to making the ISWI Artist applica-
tion available to the end user. First you will create a shortcut; then you will associ-
ate the .isa file extension with the main executable; and finally you will provide a
per-application path for this product. The following three sub-sections describe the
entries you need to make in the database in order to achieve these goals.

Creating a shortcut for the application
You are going to create a Windows Installer shortcut for the ISWI Artist applica-
tion, and not a normal shortcut. A Windows Installer shortcut supports installation-
on-demand and advertisement whereas a normal shortcut does not. However, you
cannot edit the properties of a Windows Installer shortcut as you can edit the prop-
erties of a normal shortcut. To create a Windows Installer shortcut you will need to
make entries into the Shortcut table and the Icon table. You will start with the
Shortcut table.

The Shortcut table contains 12 attributes, five of which cannot be null. Since
you are only creating one shortcut you need to enter only one row into this table.
Table 4-14 shows the values that you need to enter into this table.

TABLE 4-14 SHORTCUT TABLE ENTRIES REQUIRED TO DEFINE A SHORTCUT FOR
ISWIARTIST

Row # Column Name Attribute Value

1 Shortcut Shortcut0

Directory_ ProgramMenuFolder

Name ISWIAR~1|ISWIArtist

136 Part I: Introduction to the Windows Installer

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 136

Row # Column Name Attribute Value

Component_ MainExe_Component

Target Main_Feature

Arguments

Description This shortcut launches the ISWI Artist application.

Hotkey

Icon_ ISWIArtist.ico

IconIndex

ShowCmd 1

WkDir EmptyFolder

The columns of the Shortcut table are described below:
Shortcut is an identifier that serves as the primary key for this table.
Directory_ is a foreign key into the Directory table that defines the location in

which the shortcut file will be created.
Name indicates the name of the shortcut file that will be used to launch the

application. This is a name that can be localized and it is the name of the .lnk file.
Component_ is a foreign key into the Component table that identifies the com-

ponent with which the target file of the shortcut is associated. The installation state
of this component determines whether the shortcut is created or removed and this
component must have a key path defined by the shortcut’s target file.

Target is a foreign key into the Feature table and this feature is the one that
installs the associated component defined in the Component_ column. When this is
a key into the Feature table it is what is called an MSI shortcut, which means that
it is the type of shortcut that can be advertised. If this is not to be an advertisable
shortcut then this is a foreign key into the Property table and this property is
expanded into the filename or folder name that is the target of the shortcut. The
entry in this column can also use what is called a formatted text string. If you enter
[#filekey] where “filekey” is a key into the File table, you will have pointed at the
file that you want to be the target of a shortcut. We will be discussing formatted
text strings throughout the book.

The Arguments column contains a formatted string that defines the arguments
you need to use when you activate the shortcut.

Description provides a description of the shortcut that will appear in the prop-
erty page for this shortcut on a Windows 2000 machine.

The Hotkey column defines the hotkey for activating this shortcut.

Chapter 4: Direct Creation of an MSI Package 137

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 137

Icon_ is a foreign key into the Icon table that defines the icon to be used on the
Start\Programs menu with the shortcut.

IconIndex is the index for the icon to be associated with this shortcut.
The ShowCmd column defines in what state the application’s main window is to

appear when it is first launched.
The WkDir column defines the working directory for the shortcut. This is the

default location for the File\Open and the File\Save As... commands. It can be a for-
eign key into the Directory table or, if the value entered is enclosed in square brack-
ets, a foreign key into the Property table.

In the following remarks, I discuss in more detail the actual entries that you have
made in the Shortcut table:

◆ In the Shortcut column you just create a string that will uniquely identify
this row in the table.

◆ In the Directory_ column you enter the location for the shortcut. This
key into the Directory table identifies an entry, which is the property
ProgramMenuFolder, and this defines the location where the shortcut is
to be created.

◆ In the Name column you identify the name of the executable file to be
launched with this shortcut. You are using both the short filename and the
long filename just in case the SHORTFILENAME property is set from the
command line.

◆ In the Component_ and the Target columns you identify, respectively,
the component and feature that contain the file that is the target for the
shortcut.

◆ In the Icon_ column you identify the icon to be used for the shortcut.
This icon file is an .ico file and is stored in a binary stream in the Icon
table for use during the installation. You have not set an index for this
icon because you are using an .ico file and not a file in which the icon
is embedded as a resource.

◆ In the ShowCmd column you place the number 1 so that the application
will be launched using a normal window.

◆ In the WkDir column you have identified a value from the Directory table
that defines the location of the empty folder you are creating to hold
data files.

The other table necessary to the creation of a Windows Installer shortcut is the
Icon table. In order to create a Windows Installer shortcut you need to store the
icons for such shortcuts in separate files so that you can implement advertisement.
Advertisement of an application is where there is an icon on the Start\Programs

138 Part I: Introduction to the Windows Installer

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 138

menu but none of the files for the application have been installed. For the icon to
be shown, however, there does need to be a file containing the icon available on the
system.

The Icon table has only two attributes and neither of them can be null. You need
to enter one row into this table; Table 4-15 shows the values for this row.

To make things easier you will want to copy the ISWIArtist.ico file to the

folder in which you are creating your installation package. Otherwise you

will need to enter the full path to this file in Orca.

TABLE 4-15 ICON TABLE ENTRIES REQUIRED TO DEFINE AN ICON FOR A SHORTCUT

Row # Column Name Attribute Value

1 Name ISWIArtist.ico

Data ISWIArtist.ico

The following describes the two columns that comprise the Icon table.
Name is the primary key to this table and is normally the name of the file that

provides the icon.
Data is a binary stream that contains the file that provides the referenced icon.
In the following remarks I explained in more detail the entries you have made in

the Icon table:

◆ In the Name column you have entered the name of the icon file.

◆ In the Data column you have entered a filename with an extension .ibd.
This extension stands for Installer binary data and it is only shown so that
you know that there is a binary stream of data in this column. When you
use Orca to enter this data you will be asked to provide the name of the
file that is to be streamed in. What you will actually see in Orca in this
column is the string “[BinaryData].”

Making these entries into the tables will allow you to advertise this product. You
will experiment with this when you finish creating the installation package. Let’s
now move on to the creation of a file association between the main executable and
the .isa file extension.

Tip

Chapter 4: Direct Creation of an MSI Package 139

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 139

Creating a file association for the application
When you double-click a file created by your ISWI Artist application you want to
launch the application and have that particular file loaded into it. You can do this
by making the appropriate entries in the Extension, ProgId, and Verb tables. You
will start with the entries required in the ProgId table.

You have already entered several rows into the ProgId table when describing the
COM component to the Windows Installer. You now have to add one more row to
this table as shown in Table 4-16.

TABLE 4-16 PROGID TABLE ENTRIES REQUIRED TO DEFINE A FILE
EXTENSION PROGID

Row # Column Name Attribute Value

1 ProgId isafile

ProgId_Parent

Class_

Description ISWI Artist Document

Icon_

IconIndex

Since you have already made entries in the ProgId table the following remarks
explain in more detail just those new entries that you need to make in order create
a file association:

◆ In this table you enter a value for the ProgId column in what can be con-
sidered a standard format for Program IDs associated with file extensions.

◆ In the Description column you enter a short string that tells someone
looking in the registry that this ProgId is associated with an application
called ISWIArtist.

The Extension table has five attributes, three of which cannot be null. You need
to enter only one row into this table; Table 4-17 shows the values.

The purpose of each of the five columns in the Extension table is discussed in
the following:

Extension refers to the extension being registered. You need to enter it without
the preceding period.

140 Part I: Introduction to the Windows Installer

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 140

TABLE 4-17 EXTENSION TABLE ENTRIES REQUIRED TO DEFINE A FILE
EXTENSION SERVER

Row # Column Name Attribute Value

1 Extension isa

Component_ MainExe_Component

ProgId_ isafile

MIME_

Feature_ Main_Feature

Component_ is a foreign key into the Component table and designates the com-
ponent that defines the registry entries used to register the extension. This and the
Extension column make up the primary key for this table.

The ProgId_ column is a foreign key into the ProgId table and defines the
Program ID associated with this extension.

MIME_ is a foreign key into the MIME table and defines the information you
must enter in the registry to register a file extension and make it known to a Web
browser.

Feature_ is a foreign key into the Feature table and defines the feature that pro-
vides the extension server.

In the following remarks I explain in more detail the entries you have made in
the Extension table:

◆ In the Extension column you enter the .isa extension without the preced-
ing period.

◆ In the Component_ and the Feature_ columns you enter, respectively, the
names of the component and feature that contain the extension server.

◆ In the ProgId_ column you enter the associated Program ID associated
with the .isa extension. You have already entered this into the ProgId
table.

The last thing you need to do in order to create this file association is to define
the Open verb that will be used to open the .isa file on which you will be double-
clicking in Windows Explorer. You create this definition in the Verb table.

The Verb table has five attributes of which two cannot be null. You need to enter
only one row into this table; Table 4-18 shows the values for this row.

Chapter 4: Direct Creation of an MSI Package 141

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 141

TABLE 4-18 VERB TABLE ENTRIES REQUIRED TO DEFINE A COMMAND VERB

Row # Column Name Attribute Value

1 Extension_ isa

Verb open

Sequence 0

Command

Argument “%1”

The purpose of each of the five columns in the Verb table is explained below:
The Extension_ column is a foreign key into the Extension table and identifies

the extension for which this verb is associated.
Verb defines the verb associated with the extension defined in the first column.

This column and the Extension_ column make up the primary key for this table.
The Sequence entry defines the order in which the commands associated with

this extension are displayed on the context menu the user obtains by right-clicking
a file with this extension in Windows Explorer. The command with the lowest num-
ber becomes the default verb. The default verb is shown in bold text at the top of
the context menu and is the command executed when the user double-clicks the
file in Windows Explorer.

The Command column provides the text that will appear on the context menu. If
this column is null, then the verb will be displayed on the context menu. This string
is localizable.

The Argument column specifies the argument to be used on the command line
when the command is executed.

In the following remarks I discuss in more detail the entries that you have made
in the Verb table:

◆ In the Verb column you have entered one of the standard verbs associated
with Windows Explorer. The standard commands are Open, Print, Find,
and Explore.

◆ The sequence number you set is 0 since you want the Open command to
be the default for this extension.

◆ In the Argument column you have entered “%1” which serves as a place-
holder for the file on which you double-click. You need to include the
quotes since you need to be able to handle long filenames.

Having made these entries in the ISWIArtist.msi database you have described a
file association between your main executable and the file extension .isa. You now

142 Part I: Introduction to the Windows Installer

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 142

have only one more activity to perform in order to complete the three methods of
allowing the end user to access this application.

Creating a per-application path
To create a per-application path you need to make an entry in the registry. The
concept of a per-application path came with Windows 95 back in 1995; it enables
the end user to enter the name of the application’s main executable into the
Start\Run dialog, and if it is not in the current path the system will be able to find
where this application has been installed and launch it. Even more important, if
your installation program registers a path, Windows sets the PATH environment to
be the registered path when it starts your application. This allows your application
executable to find any DLLs that it needs to load without having to have an
absolute path to these DLLs. To provide the necessary information to the Windows
Installer for creating the proper registry entries you need to use the Registry table.

The Registry table has six attributes, four of which cannot be null. You need to
add two rows to this table Table 4-19 shows the values you need to enter.

TABLE 4-19 REGISTRY TABLE ENTRIES REQUIRED TO CREATE A PER-APPLICATION
PATH

Row # Column Name Attribute Value

1 Registry Registry0

Root 2

Key Software\Microsoft\Windows\CurrentVersion\App
Paths\ISWIArtist.exe

Name

Value [TARGETDIR]ISWIArtist.exe

Component_ MainExe_Component

2 Registry Registry1

Root 2

Key Software\Microsoft\Windows\CurrentVersion\App
Paths\ISWIArtist.exe

Name Path

Value [TARGETDIR]

Component_ MainExe_Component

Chapter 4: Direct Creation of an MSI Package 143

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 143

A description of each of the six columns that make up the Registry table is given
below:

Registry is the primary key for the table and is an identifier that must be unique
within the table.

Root is an integer that defines the root key under which the registry entries will
be made.

The Key column contains the key under which any values will be written by the
Windows Installer during installation or uninstallation..

The Name column specifies the value name of the location where the value is to
be written. If this column is null then the value is written under the default name.

The Value column contains the data that is to be written against the value name
specified in the previous column.

Component_ is a foreign key into the Component table. This entry points to the
component that contains the information that is to be written to the registry.

Refer to the MSI SDK Help included on the CD-ROM for more information on

the format of the information to be included in the Root, Name, and Value

columns.

In the following remarks I have elaborated on the entries that you have made in
the Registry table:

◆ For both rows the value in the Key column is the same since you are
going to write all your values under this key. This is the App Paths key,
which is one of the standard keys to which an installation will write
information.

◆ In Row #2 you are specifying a value name called Path that is the location
where an application would look to find its DLLs.

◆ The entries into the Value column are the path to the ISWIArtist executable
and the folder where the ISWIArtist application files are to be installed,
respectively.

Now that you’ve entered these values you have completed the information the
Windows Installer needs in order to make the changes to the target system. The
next thing you have to do is tell the Windows Installer what actions it needs to per-
form in order to make these system changes and it should perform them.

XREF

144 Part I: Introduction to the Windows Installer

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 144

Structuring the Installation
You have three separate efforts to perform here. One is to create and populate the
execute sequence tables, another is to provide the information in the Summary
Information Stream that the Windows Installer needs to work properly, and the
third is to populate the user interface sequence tables even though you are not
going to display any dialog boxes.

Creating the installation execute sequence tables
You inform the Windows Installer of the actions it needs to execute during an
installation by authoring various sequence tables. In these sequence tables you
determine when an action will occur by assigning it a sequence number. You can
also define a condition so that an action will only be executed under certain cir-
cumstances. For this installation of the ISWI Artist application you will be creating
all the sequence tables based on the sequences suggested by Microsoft.

There are three sets of sequence tables and which one is executed depends on the
top-level action being initiated. Each set of sequence tables has one table associated
with the user-interface sequence and one table associated with the execution of the
installation. With the INSTALL top-level action, the Windows Installer first processes
the actions in the InstallUISequence table and then processes the actions in the
InstallExecuteSequence table. With the ADVERTISE top-level action, the Windows
Installer always uses a basic or a silent user interface and then processes the actions
in the AdvtExecuteSequence table. Even though there is an AdvtUISequence table in
the database schema, it is never used. With the ADMIN top-level action, the
Windows Installer first processes the actions in the AdminUISequence table and then
processes the actions in the AdminExecuteSequence table. I’ll address the user-inter-
face sequence tables after you enter the data into the Summary Information Stream.

Refer to Chapter 3, particularly the section “Sequencing an installation,” for a

more detailed discussion of the functionality of the Windows Installer.

Every sequence table has a standard schema, comprised of the same three
attributes:

◆ The name of a standard action, custom action, or a dialog box or wizard
sequence

◆ An optional condition that determines whether the action gets executed
or not

XREF

Chapter 4: Direct Creation of an MSI Package 145

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 145

◆ A sequence number that specifies where in the sequence the action is
evaluated for execution

Many standard actions are restricted as to where they can appear in one of the
sequence tables, and depending on the type of custom action there may be other
restrictions as to where you can place them in the sequence. For now we will not
concern ourselves with the ins and outs of proper sequencing. We will follow the
recommended Microsoft sequence for the standard actions (there are no custom
actions in this example).

The following tables define the values you need to enter into the sequence tables
of the ISWIArtist.msi database. You will begin with the execute sequence table
associated with the INSTALL top-level action. Each table is followed by a set of
remarks that explains some of the more important entries being made in these
tables. Each row in the following tables corresponds to a row you need to enter into
the appropriate database tables.

TABLE 4-20 ENTRIES FOR THE INSTALLEXECUTESEQUENCE TABLE

Action Condition Sequence

LaunchConditions 100

DefaultDest NOT Installed 150

CostInitialize 200

FileCost 250

CostFinalize 300

InstallValidate 350

InstallInitialize 400

AllocateRegistrySpace NOT Installed 450

ProcessComponents 500

UnpublishFeatures 550

UnregisterClassInfo 600

UnregisterExtensionInfo 650

UnregisterProgIdInfo 700

RemoveShortcuts 750

RemoveFiles 800

RemoveFolders 850

146 Part I: Introduction to the Windows Installer

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 146

Action Condition Sequence

CreateFolders 900

InstallFiles 950

CreateShortcuts 1000

RegisterClassInfo 1050

RegisterExtensionInfo 1100

RegisterProgIdInfo 1150

WriteRegistryValues 1200

RegisterUser 1250

RegisterProduct 1300

PublishFeatures 1350

PublishProduct 1400

InstallFinalize 1450

In the following remarks I discuss in more detail entries that are shown in the
above table:

◆ Actions in a sequence table will run on install as well as uninstall unless
prevented by an appropriate condition. However, even if you provide an
uninstall-related action in the sequence table without a condition it will
be a no-op because the state of the feature(s) being installed are ABSENT
and thus no action will be taken.

◆ Many actions have sequence restrictions in that some cannot be placed
before other actions. The Windows Installer SDK Documentation, found
on the CD-ROM at the back of the book, provides the full details of these
restrictions.

◆ The custom action you are using to set the default location for the public
property TARGETDIR is the second action in the execute sequence table.
You are placing this action before the CostInitialize action because you
must define this property in order for file costing to be performed prop-
erly. There is condition set on this custom action, so it will not be exe-
cuted during an uninstallation.

You need to make some entries in the AdminExecuteSequence table in case
someone wants to create an administrative image of your sample application on a

Chapter 4: Direct Creation of an MSI Package 147

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 147

network drive. You need to launch this type of installation from the command line
and it does not actually install the files so that you can run the application. In the
creation of an administrative image all source files compressed in a CAB file are
uncompressed and laid out in a directory tree structure as defined by the DefaultDir
column in the Directory table. Table 4-21 shows the entries in this sequence table.

TABLE 4-21 ENTRIES FOR THE ADMINEXECUTESEQUENCE TABLE

Action Condition Sequence

CostInitialize 50

FileCost 100

CostFinalize 150

InstallValidate 200

InstallInitialize 250

InstallAdminPackage 300

InstallFiles 350

InstallFinalize 400

The following remarks provide additional information for the entries in the
above table:

◆ You have not included your custom action in this sequence table because
the target location for an administrative installation is a network drive.
The proper way to set the install location for an administrative image
when there is no user interface is to set the value of TARGETDIR on the
command line.

◆ The important entry here is the InstallAdminPackage action that copies
the MSI database to the location specified by the TARGETDIR property
and streams any CAB files that might be embedded out of the database.
This action also updates the Summary Information Stream by setting the
Last Saved By and the Last Printed properties.

◆ As can be seen the Condition column is empty. This is because for this
example there is no need to place a condition on any of the actions.

The last execute sequence table you need to make entries in is the AdvtExecute
Sequence table. This table identifies the actions to be executed by the Windows
Installer when you’re advertising a product.

148 Part I: Introduction to the Windows Installer

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 148

TABLE 4-22 ENTRIES FOR THE ADVTEXECUTESEQUENCE TABLE

Action Condition Sequence

CostInitialize 50

CostFinalize 100

InstallValidate 150

InstallInitialize 200

CreateShortcuts 250

RegisterClassInfo 300

RegisterExtensionInfo 350

RegisterProgIdInfo 400

PublishFeatures 450

PublishProduct 500

InstallFinalize 550

In the following remarks more detail is provided about the entries made in the
above table:

◆ The first thing to notice is that there is no LaunchCondition action in this
table. This is because you perform advertisement from a server down to
the desktop and it is the responsibility of the person advertising the appli-
cation not to push it down to a desktop where it cannot be installed. Also,
when the end user finally installs the application the LaunchCondition
action in the InstallExecuteSequence table will still be executed.

◆ The second thing to notice about the entries in this table is that the
InstallFiles action is missing. This is because files are not installed when
an application is advertised.

◆ The last thing to notice is that the actions CreateShortcuts, RegisterClassInfo,
RegisterExtensionInfo, and RegisterProgIdInfo are in this table. This is
because these are the items that do get added to the target system when the
application is advertised.

◆ As can be seen the Condition column is empty. This is because for this
example there is no need to place a condition on any of the actions.

Chapter 4: Direct Creation of an MSI Package 149

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 149

Adding the summary information
At the time of this writing, Microsoft is still reviewing those properties that it will
require you to set in the Summary Information Stream. Therefore we are going to
assume that all settable properties are required. The properties you are going to set
are the Template, Revision Number, Page Count, Word Count, Title, Subject,
Keywords, Author, Comments, Creating Application, Security, Codepage, and Create
Time/Date properties. You will use the MsiInfo.exe to add this information to the
Summary Information Stream. You will find the MsiInfo.exe tool that comes with the
Windows Installer SDK on the CD-ROM at the back of the book. The basic command
line for using this tool is as follows:

msiinfo ISWIArtist.msi {option} {data}

The following table defines the entries that you need to make into the Summary
Information Stream for the ISWIArtist.msi installation package, as well as the
option you should use with the MsiInfo.exe utility for placing that entry into the
Summary Information Stream.

The following remarks provide additional information about some of the entries
that your making in the Summary Information stream:

◆ For the Revision Number property you should enter your own number by
having a utility such as GUIDGEN.EXE create it for you. You should not
use the one shown here in the book because every package must be
unique.

◆ The value for the Create Time/Date property shown in Table 4-23 is only
the format to be used for this property. You should enter your own values
based on the system date and time when you created this package.

TABLE 4-23 SUMMARY INFORMATION STREAM ENTRIES

Property Name Option Property Value

Template -P Intel;1033

Revision Number -V {932B9342-A9E7-11d3-81AE-
204C4F4F5020}

Page Count -G 110

Word Count -W 0

Title -T Installation Database

Subject -J ISWI Artist

150 Part I: Introduction to the Windows Installer

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 150

Property Name Option Property Value

Keywords -K Installer, MSI, Database

Author -A ISWI Art Company

Comments -O This installer database contains the logic
and data required to install ISWI Artist.

Creating Application -N Orca

Security -U 0

Codepage -C 1252

Create Time/Date -R yyyy/mm/dd hh:mm:ss

Chapter 3 provides an introduction to the Summary Information Stream

properties and Appendix B gives a complete description of these properties

for all four of the different types of MSI-related files that comprise the

Summary Information Stream.

Populating the user-interface sequence tables
We do not have to make entries in the any of the user interface tables since when
they are empty the Windows Installer will just use a basic user interface level and
display a built-in progress dialog box. Chapter 5 discusses in detail the creation of
a true user interface for this sample application.

Validating the Installation Package
After completing an MSI package you should always validate it as I mentioned at
the end of Chapter 3. The Windows Installer SDK provides you with the Msival2.exe
tool for performing just such a validation. Along with Msival2.exe you need the file
darice.cub. This .cub file comes along when you run the installation for Msival2.exe,
which is contained in the MSI package MsiVal2.msi. The darice.cub file is an inter-
nal consistency evaluator (ICE) database, which in actual structure is a standard MSI
database that contains only ICEs and their required tables. A .cub file cannot be
installed and is only used to store and provide access to ICE custom actions.

To perform a validation of your installation package you must have a special
table in the database. This table is the _Validation table and it contains the column
names and column values for all the tables in the database. You need it to validate

XREF

Chapter 4: Direct Creation of an MSI Package 151

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 151

your installation package because it ensures that all the columns are accounted for
and have the correct values. Luckily, this table comes with the schema.msi file that
you used as the starting point for your ISWIArtist.msi package. You can delete this
table from the database prior to shipping an application since its only purpose is to
perform the internal validation.

To run the validation of the MSI package that you have just created, run msival2.
exe using the following command line:

msival2 ISWIArtist.msi darice.cub -L validation.log

When running this command line you will get a log file that contains both infor-
mational, warning, and error messages based on the internal consistency evaluators
authored by Microsoft into the darice.cub validation library. If you want to elimi-
nate the informational messages, use the following command line:

msival2 ISWIArtist.msi darice.cub -F -L validation.log

The –F switch tells the MsiVal2.exe utility not to display any informational mes-
sages. You can also use the –I switch followed by a list of the ICEs that you want
to run and only that list of ICEs will be used to validate the specified MSI package.

When you run the validation of the package you have created, assuming you are
not suppressing informational messages, you should get something that looks like
the following. This is only a small part of the log file that is created when validat-
ing an installation package.

ICE01 INFO ICE01 - Simple ICE that doesn’t test anything
ICE01 INFO Created 04/29/1998. Last Modified 08/17/1998.
ICE01 INFO Called at 16:24:27.
ICE02 INFO ICE02 - ICE to test circular references in
File and Component tables
ICE02 INFO Created 05/18/1998. Last Modified 10/12/1998.
ICE03 INFO ICE03 - ICE to perform data validation and
foreign key references
ICE03 INFO Created 05/19/1998. Last Modified 03/30/1999.
ICE04 INFO ICE04 - ICE to validate File table sequences
according to Media table
ICE04 INFO Created 05/19/1998. Last Modified 09/24/1998.
ICE04 INFO Max Sequence in Media Table is 1
ICE05 INFO ICE05 - ICE to validate that required data
exists in certain tables.
ICE05 INFO Created 05/20/1998. Last Modified 01/26/1999.
ICE06 INFO ICE06 - ICE that looks for missing columns in
database tables
ICE06 INFO Created 05/20/1998. Last Modified 02/18/1999.
ICE07 INFO ICE07 - ICE that ensures that fonts are

152 Part I: Introduction to the Windows Installer

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 152

installed to the fonts folder. Only checked if you have a Font table
ICE07 INFO Created 05/21/1998. Last Modified 02/18/1999.
ICE08 INFO ICE08 - Checks for duplicate GUIDs in
Component table
ICE08 INFO Created 05/21/98. Last Modified 10/08/98.
ICE09 INFO ICE09 - Checks for components whose Directory
is the System directory but aren’t set as system components
ICE09 INFO Created 05/21/98. Last Modified 1/26/99.
ICE10 INFO ICE10 - ICE that ensures that advertise
states of feature childs and parents match
ICE10 INFO Created 05/22/1998. Last Modified 08/17/1998.
ICE11 INFO ICE11 - ICE that validates the Product Code
of a nested install (advertised MSI) custom action type
ICE11 INFO Created 05/22/1998. Last Modified 08/17/1998.
ICE12 INFO ICE12 - ICE that validates the Property type
custom actions
ICE12 INFO Created 05/29/1998. Last Modified 12/01/1998.
ICE13 INFO ICE13 - ICE that validates that no dialogs
are listed

As you can see by looking through the entire validation.log file, there are no
warnings or errors listed against your package. However, if we had actually placed
actions into the user interface tables we would have received the nine errors shown
below.

ICE20 ERROR Standard Dialog: ‘FilesInUse’ not found in
Dialog table
ICE20 ERROR ErrorDialog Property not specified in
Property table. Required property for determining the name of your
ErrorDialog
ICE20 ERROR FatalError dialog/action not found in
‘InstallUISequence’ Sequence Table.
ICE20 ERROR FatalError dialog/action not found in
‘AdminUISequence’ Sequence Table.
ICE20 ERROR UserExit dialog/action not found in
‘InstallUISequence’ Sequence Table.
ICE20 ERROR UserExit dialog/action not found in
‘AdminUISequence’ Sequence Table.
ICE20 ERROR Exit dialog/action not found in
‘InstallUISequence’ Sequence Table.
ICE20 ERROR Exit dialog/action not found in
‘AdminUISequence’ Sequence Table.
ICE31 ERROR The ‘DefaultUIFont’ Property must be set to a
valid TextStyle in the Property table.

You are now ready to run the installation and see how the product works.

Chapter 4: Direct Creation of an MSI Package 153

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 153

Running the Installation and the
Application
In the previous section you made sure that the MSI package contains no validation
errors. The final test is to run the install and see if the product works. You probably
also want to experiment a little with another installation option to see what hap-
pens when you advertise the product. I encourage you to investigate further and
refer you to Appendix A, which contains a complete description of the various
command-line options that are available with the Windows Installer.

First, however, you should install the package and make sure that the application
runs. Before you can do this you need to collect the source files for the application
into the same folder where you put your installation package. These files are
ISWIArtist.exe, ShapeArtist.dll, ISWIArtistHelp.dll, and ISWIArtistHelp.htm. Since
you have no authored user interface in this package you want to run the installa-
tion from the command line and log the events so that you can see what happened
during the installation. You can run the installation of ISWIArtist using the follow-
ing command line:

msiexec /i ISWIArtist.msi /l*v install.log

Below is a small part of the log file created by the Windows installer when using
the /l*v switch on the command line shown above.

=== Logging started: 12/17/99 16:15:23 ===
MSI (s) (65:51): User policy value ‘DisableRollback’ is 0
MSI (s) (65:51): Doing action: INSTALL
Action start 16:15:23: INSTALL.
MSI (s) (65:51): Running ExecuteSequence
MSI (s) (65:51): Doing action: LaunchConditions
Action start 16:15:23: LaunchConditions.
MSI (s) (65:51): Note: 1: 2262 2: LaunchCondition 3: -2147287038
Action ended 16:15:23: LaunchConditions. Return value 1.
MSI (s) (65:51): Doing action: CostInitialize
Action start 16:15:23: CostInitialize.
MSI (s) (65:51): Searching for item
Products\3F1E4775D9393D11185902C4F4F40502 in per-user managed key
MSI (s) (65:51): Searching for item
Products\3F1E4775D9393D11185902C4F4F40502 in per-user non-managed
key
MSI (s) (65:51): Searching for item
Products\3F1E4775D9393D11185902C4F4F40502 in per-machine key
MSI (s) (65:51): Did not find item
Products\3F1E4775D9393D11185902C4F4F40502

154 Part I: Introduction to the Windows Installer

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 154

Action ended 16:15:23: CostInitialize. Return value 1.
MSI (s) (65:51): Doing action: FileCost
Action start 16:15:23: FileCost.

To uninstall this application you would need to run the following command line:

msiexec /x ISWIArtist.msi

You have to do this by command line because you do not have a user interface
authored into the installation package at this time.

When you run the above command lines you should see a small progress dialog
and then nothing. This dialog is a built-in dialog provided by the Windows
Installer. Also, when you uninstall the application you are presented with a Yes/No
message box asking you if you really want to uninstall the application. This mes-
sage box is also built into the Windows Installer. These dialogs cannot be coming
from the database since you have not authored any user interface. Authoring the
user interface is the subject of the next chapter.

Summary
In this chapter you experienced first-hand what it takes to directly author an instal-
lation database for an application that contains only four files. You have, however,
created a robust installation for this application, making sure to include all the
items that a real-world installation needs.

We have really only scratched the surface here of what you can accomplish with
the Windows Installer. As you might imagine, there is a lot more to learn. In fact,
the next thing you need to learn is how to add a user interface to the installation
you have just created. We will take a look at this process in the next chapter and see
how to create a user interface inside a database.

Chapter 4: Direct Creation of an MSI Package 155

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 155

4723-2 ch04.f.qc 1/16/01 11:06 AM Page 156

Chapter 5

Adding the User Interface
to Our Installation

IN THIS CHAPTER

◆ How to create a user interface

◆ The user interface for a first time installation

◆ The user interface for a maintenance operation

◆ Handling installation errors

◆ When a user cancels the installation

◆ Package validation

◆ Running the user interface

THIS CHAPTER BRINGS to a close the investigation of the Windows Installer technol-
ogy that began with Chapter 3. Here you will add one of the most important com-
ponents of an installation, the User Interface Wizard that guides the user through
the installation process. In this chapter you will see how making entries in database
can create a user interface. You will have the opportunity to learn about this new
approach to defining dialog boxes through actually adding new dialogs to the UI.
You will gain a further appreciation of what an authoring tool can do for you. In
the next chapter we will take a look at the InstallShield for Windows Installer
authoring tool and you’ll start to see how it can relieve the tedium of some aspects
of using this new technology.

Creating the User Interface
This section will take you through the generation of several components of a user
interface using the Orca database-editing tool. On the CD-ROM at the back of the
book is an .msi file named BaseUI.msi, which provides a partial installation user
interface for this application. Before you begin to add the missing components of
the user interface you will need to merge this database with the ISWIArtist.msi

157

4723-2 ch05.f.qc 1/16/01 11:06 AM Page 157

database you have been working on. You can do this using the MsiDb.exe utility
with the following command line:

msidb -d iswiartist.msi –m baseui.msi

After you have completed the user interface using Orca, use the UI preview capa-
bility of this tool to see what you have actually created. This enables you to verify
that all controls have been placed in the proper location and that everything works
properly.

When designing a user interface for installing a product, you have to consider a
number of scenarios. The dialogs you need for a new installation are different from
those you need for a maintenance type of installation. With a maintenance type of
installation, an end user might choose to modify the present installation, repair it,
or uninstall the application. In addition, a user interface must be prepared to han-
dle both installation errors and end-user exits. In all there are five categories of
user interface design you need to consider when creating an installation package:

◆ New installations

◆ Maintenance installations

◆ Installation errors

◆ User initiated exits or suspensions

◆ Administrative installs

The following two subsections cover the first and fourth items. You will be adding
a total of four new dialogs to what is already available in the file ISWIArtistUI.msi.
Three will be in the new installation category and one in the user initiated exits cat-
egory. Implementing these four dialogs will also require you to add controls to some
of the other dialogs that are in ISWIArtistUI.msi. These additional controls will enable
you to navigate to the dialogs you are creating.

Creating the user interface for a new installation
The three dialog boxes you are going to add to the user interface in this section are as
follows: a dialog that welcomes the user to the installation, a dialog that asks the end
user to provide some input, and a dialog that enables the end user to browse for a
location to install the application. These dialogs will provide you with an opportunity
to learn to handle Edit and Pushbutton controls, and to understand control events
and event mapping. You will also learn how to insert a user interface sequence into a
sequence table, as well as how to insert a dialog into a user interface sequence.

The first dialog you are going to create will be named WelcomeDlg. This is the
dialog that welcomes the user to the installation of a product. To define this dialog
you will need to make entries into three separate tables: the Dialog, Control, and

158 Part I: Introduction to the Windows Installer

4723-2 ch05.f.qc 1/16/01 11:06 AM Page 158

ControlEvent tables. Table 5-1, Table 5-2, and Table 5-3 show the entries you have
to make.

The entries in the Dialog table, as you might expect, define the basic properties
of a dialog such as its size, positioning on the screen, and title. Figure 5-1 gives a
picture of the welcome dialog you are going to create.

Figure 5-1: The WelcomeDlg dialog box

TABLE 5-1 DIALOG TABLE ATTRIBUTE VALUES FOR THE WELCOMEDLG DIALOG

Row # Column Name Attribute Value

1 Dialog WelcomeDlg
Hcentering 50
Vcentering 50
Width 370
Height 270
Attributes 3
Title [ProductName] [Setup]
Control_First Next
Control_Default Next
Control_Cancel Cancel

Dialog: This is the primary key in the Dialog table and it is a unique identifier for
the dialog being defined in a row. The required uniqueness is only for the product.

HCentering: This defines where the center of the dialog box is to be located hor-
izontally on the screen. This value can be from 0 to 100.

Chapter 5: Adding the User Interface to Our Installation 159

4723-2 ch05.f.qc 1/16/01 11:06 AM Page 159

VCentering: This defines where the center of the dialog box is to be located ver-
tically on the screen. This value can be from 0 to 100.

Width: This specifies the width of the dialog box in pixels.
Height: This specifies the height of the dialog box in pixels.
Attributes: This specifies the style to be used for this dialog box. Typically this

attribute defines whether a dialog is modal or modeless. There are a number of
other style bits that can be set and for a complete list of these you are referred to
the Dialog Style Bits topic in the Windows Installer help file that comes with the
SDK found on the CD-ROM at the back of the book.

Title: This is the name to be displayed in the title bar of the dialog box.
Control_First: This is a foreign key into the second column of the Control table

and along with the name of the dialog it defines a unique control. This control
receives the focus when the dialog is first displayed.

Control_Default: This is a foreign key into the second column of the Control
table and along with the name of the dialog it defines a unique control, which
responds to the Return key. This column can be blank and if it is then no action will
be taken when the user hits the Return key.

Control_Cancel: This is a foreign key into the second column of the Control table
and along with the name of the dialog it defines a unique control. Identifying a
control in this column enables the System close button in the upper left-hand cor-
ner of the dialog box and the close button in the upper right-hand corner. It also
makes hitting the Escape key equivalent to clicking on the Cancel button.

The following remarks provide more detail about the entries that are shown in
Table 5-1:

◆ You centered all dialogs on the screen by entering 50 into the HCentering
and VCentering columns.

◆ You entered a value of 3 into the Attributes column. This means that
this dialog is to be visible and that it is a modal dialog, which means
that the dialog keeps control of the process until the user dismisses it.
If dismissing the dialog displays another modal dialog, then the dialog
sequence maintains control until the last modal dialog in the sequence
is dismissed.

◆ In the Title column you entered the names of two properties surrounded
by square brackets. This will cause the Windows Installer to substitute the
value of those properties for the name of the property that is inside the
square brackets when the dialog is displayed. When this replacement of
the property name for the property value takes place, the square brackets
are also removed. In Chapter 4 you defined the value of the ProductName
property in the Property table to be the string ISWI Artist. In the BaseUI.
msi file you merged with the ISWIArtist.msi installation package you cre-
ated in Chapter 4 the value of the Setup property was already defined as
the string Setup.

160 Part I: Introduction to the Windows Installer

4723-2 ch05.f.qc 1/16/01 11:06 AM Page 160

◆ In the Control_First column you defined in the dialog box which control
gets the focus first when the dialog is displayed. When this control is
described in the Control table, it will point in most instances to another
control in the same dialog. You must define all active controls so that the
tab order forms a complete cycle. This control defines the first control in
that tab order cycle. The remaining controls that comprise the tab order
cycle for the WelcomeDlg dialog are defined in Table 5-2.

You must also define seven controls that will populate the WelcomeDlg dialog
box. These controls range from pushbutton controls to bitmaps. Table 5-2 shows the
entries you need in order to define these seven controls in the Control database table.

TABLE 5-2 CONTROL TABLE ATTRIBUTE VALUES FOR THE WELCOMEDLG DIALOG

Row # Column Name Attribute Value

1 Dialog_ WelcomeDlg
Control Back
Type PushButton
X 180
Y 243
Width 56
Height 17
Attributes 1
Property
Text < &Back
Control_Next Next
Help

2 Dialog_ WelcomeDlg
Control Bitmap
Type Bitmap
X 0
Y 0
Width 370
Height 234
Attributes 1
Property
Text [DialogBitmap]
Control_Next Back
Help

Continued

Chapter 5: Adding the User Interface to Our Installation 161

4723-2 ch05.f.qc 1/16/01 11:06 AM Page 161

TABLE 5-2 CONTROL TABLE ATTRIBUTE VALUES FOR THE WELCOMEDLG DIALOG
(Continued)

Row # Column Name Attribute Value

3 Dialog_ WelcomeDlg
Control BottomLine
Type Line
X 0
Y 234
Width 374
Height 0
Attributes 1
Property
Text
Control_Next
Help

4 Dialog_ WelcomeDlg
Control Cancel
Type PushButton
X 304
Y 243
Width 56
Height 17
Attributes 3
Property
Text &Cancel
Control_Next Bitmap
Help

5 Dialog_ WelcomeDlg
Control Description
Type Text
X 135
Y 70
Width 220
Height 30
Attributes 196611
Property
Text The [Wizard] will install [ProductName] on your

computer. Click Next to continue or Cancel to exit
the [Wizard].

Control_Next
Help

162 Part I: Introduction to the Windows Installer

4723-2 ch05.f.qc 1/16/01 11:06 AM Page 162

Row # Column Name Attribute Value

6 Dialog_ WelcomeDlg
Control Next
Type PushButton
X 236
Y 243
Width 56
Height 17
Attributes 3
Property
Text &Next >
Control_Next Cancel
Help

7 Dialog_ WelcomeDlg
Control Title
Type Text
X 135
Y 20
Width 220
Height 40
Attributes 196611
Property
Text {\VerdanaBold13}Welcome to the [ProductName]

[Wizard]
Control_Next
Help

Dialog_: A foreign key into the Dialog table. This entry is the name of the dialog
on which the control is being placed. This also forms part of the primary key in this
table.

Control: An identifier for the control. It has to be a unique name within the
scope of the dialog box and it completes the primary key for this table.

Type: The type of the control. There are presently 22 types of controls supported
by the Windows Installer.

X: The horizontal location in pixels of the upper left-hand corner of a rectangu-
lar box that bounds this control.

Y: The vertical location in pixels of the upper left-hand corner of a rectangular
box that bounds this control.

Width: The width in pixels of the bounding rectangular box for this control.
Height: The height in pixels of the bounding rectangular box for this control.

Chapter 5: Adding the User Interface to Our Installation 163

4723-2 ch05.f.qc 1/16/01 11:06 AM Page 163

Attributes: Specifies the bit flags that apply to the control in question. For exam-
ple, this value can specify that a text field have a transparent background or that
an edit field have a sunken (3D) look. Not all attributes apply to all controls.

Property: A property in the Property table that is linked to this control. For exam-
ple, it is through being linked with a property that all radio buttons can act together
as a group.

Text: The text string that will appear on the control. It is localizable.
Control_Next: The control on the dialog that is next in the tab order. The tab

order in the dialog has to make a complete cycle.
Help: A text string that provides both ToolTip text and context-sensitive help.

The two types of help text must be separated by the pipe (|) symbol.
In the following remarks, I provide more detail about the entries shown in

Table 5-2:

◆ In the Dialog table, you defined the Next button to receive the focus when
the dialog is first displayed. With the entries in the Control table as shown
in Table 5-2 the tab order would be Next→Cancel →Bitmap →Back →Next.

◆ In row #1 you have entered a value of 1 in the Attribute column for the
Back button. An attribute value of 1 means that this button is visible but
disabled, which is appropriate for a dialog that is the starting point for a
wizard sequence.

◆ In rows #2 and #3 you have a bitmap and a line control, respectively, that
both have a value of 1 in the Attribute column. This means that these two
graphics items are visible.

◆ For the pushbuttons defined in row #4 and row #6 the value of 3 in the
Attribute column means that these controls are both visible and enabled.
This means that you must associate a control event with each of these
controls. You can do this using the ControlEvent table, which we’ll cover
in Table 5-3.

◆ In rows #5 and #7 you have entered a value of 196611 in the Attribute
column. This value is made up of the following components:

■ 65536 makes the background of the text control transparent

■ 131072 makes an & appear as is and does not cause the following char-
acter to be displayed with an underline

■ 2 enables the text control so that it is not grayed out

■ 1 makes the text control visible

■ Adding the above numbers together gives you 196611 that you have
entered as the value in the Attribute column.

164 Part I: Introduction to the Windows Installer

4723-2 ch05.f.qc 1/16/01 11:06 AM Page 164

◆ In row #7 in the Text column you entered a string beginning with
{\VerdanaBold13}. This modifies the font style of the text that follows.
The string VerdanaBold13 is an entry in the TextStyle table and this will
display the text in a bolded 13-point Verdana font.

On the WelcomeDlg dialog box there are two active controls. These are the Next
and Cancel pushbuttons. When the user clicks these buttons, something must hap-
pen. That something is defined by what is called a control event.

Control events are analogous to Microsoft Windows messages in Win32-based
applications. However, rather than creating a callback function to receive Windows
messages and sending Windows messages with the SendMessage function, Win-
dows Installer controls send control events specified in the ControlEvent table and
receive control events specified in the EventMapping table.

To add working controls to dialog boxes, the author of the user interface first
selects which control events to use and then associates these with the controls. When
a user triggers a control with a control event tied to it, that control event is published
to the installer and all controls in the dialog box. If the installer subscribes to the con-
trol event, then the publication of the control event results in the installer’s executing
an action. If any controls in the dialog box subscribe to the control event, then the
publication of the control event results in a change in the attributes of these controls,
as long as the Windows Installer defines that there is an action to be taken on the
subscriber.

The events that you need to define in the ControlEvent table and the required
values for the controls in this dialog are given in Table 5-3.

TABLE 5-3 CONTROLEVENT TABLE ATTRIBUTE VALUES FOR THE ACTIVE CONTROLS
IN THE WELCOMEDLG DIALOG

Row # Column Name Attribute Value

1 Dialog_ WelcomeDlg
Control_ Cancel
Event SpawnDialog
Argument CancelDlg
Condition 1
Ordering

2 Dialog_ WelcomeDlg
Control_ Next
Event NewDialog
Argument LicenseAgreementDlg
Condition 1
Ordering

Chapter 5: Adding the User Interface to Our Installation 165

4723-2 ch05.f.qc 1/16/01 11:06 AM Page 165

Dialog_: This is a foreign key into the Dialog table and in conjunction with the
next column defines a unique control in a dialog box.

Control_: This is a foreign key into the Control table and along with the value in
the first column defines a unique control in a dialog box.

Event: This is the event that is to be triggered when the user interacts with this
control. Events can be such actions as launching a new dialog box, selecting a path,
and so forth.

Argument: This is a modifier to the event specified in the previous column. For
example, if the event specified is NewDialog then this argument will be the name of
the dialog that is to be displayed.

Condition: This is an expression that evaluates to TRUE or FALSE and determines
whether the event associated with this control will be executed.

Ordering: This is a value that orders the events if more than one event is associ-
ated with the same control.

In the following remarks, I provide more detail about the entries that are shown
in Table 5-3:

◆ In row #1 the event specified in the Event column is SpawnDialog and its
argument is CancelDlg. This means that when the Cancel button is clicked
the CancelDlg dialog will be launched as a child of the WelcomeDlg dialog.
Since the Condition column has a value of 1, this event will always occur.

◆ In row #2 the event specified in the Event column is NewDialog and its
argument is LicenseAgreementDlg. This means that when the Next button
is clicked the LicenseAgreementDlg dialog will be launched as the next
panel in the Installation Wizard sequence. Since the Condition column has
a value of 1, this event will always occur.

The next dialog you’ll create is one that that will collect information about the
user and ask for a CD Key. Name this dialog UserRegistrationDlg. Figure 5-2 shows
what this dialog will look like and Table 5-4 gives the values you need to enter into
the Dialog database table to define the basic attributes of this dialog.

In the following remarks, I provide more detail about the entries shown in
Table 5-4:

◆ The Attribute column has a value of 3, which means that this dialog is
visible and modal.

◆ In the Control_First column you are defining a text control to take the
focus when the dialog is first displayed. I’ll explain the reason for this in
the remarks section of Table 5-5.

166 Part I: Introduction to the Windows Installer

4723-2 ch05.f.qc 1/16/01 11:06 AM Page 166

Figure 5-2: The UserRegistrationDlg dialog box

TABLE 5-4 DIALOG TABLE ATTRIBUTE VALUES FOR THE
USERREGISTRATIONDLG DIALOG

Row # Column Name Attribute Value

1 Dialog UserRegistrationDlg
Hcentering 50
Vcentering 50
Width 370
Height 270
Attributes 3
Title [ProductName] [Setup]
Control_First NameLabel
Control_Default Next
Control_Cancel Cancel

You’ll define 14 controls to populate the UserRegistrationDlg dialog box. As you
can see from Figure 5-2 this is a much more complicated dialog than the WelcomeDlg
dialog. Table 5-5 gives the entries you need to make in order to define these 14 con-
trols in the Control database table.

Chapter 5: Adding the User Interface to Our Installation 167

4723-2 ch05.f.qc 1/16/01 11:06 AM Page 167

TABLE 5-5 CONTROL TABLE ATTRIBUTE VALUES FOR THE USERREGISTRATIONDLG
DIALOG

Row # Column Name Attribute Value

1 Dialog_ UserRegistrationDlg
Control Back
Type PushButton
X 180
Y 243
Width 56
Height 17
Attributes 3
Property
Text < &Back
Control_Next Next
Help

2 Dialog_ UserRegistrationDlg
Control BannerBitmap
Type Bitmap
X 0
Y 0
Width 374
Height 44
Attributes 1
Property
Text [BannerBitmap]
Control_Next NameLabel
Help

3 Dialog_ UserRegistrationDlg
Control BannerLine
Type Line
X 0
Y 44
Width 374
Height 0
Attributes 1
Property
Text
Control_Next
Help

168 Part I: Introduction to the Windows Installer

4723-2 ch05.f.qc 1/16/01 11:06 AM Page 168

Row # Column Name Attribute Value

4 Dialog_ UserRegistrationDlg
Control BottomLine
Type Line
X 0
Y 234
Width 374
Height 0
Attributes 1
Property
Text
Control_Next
Help

5 Dialog_ UserRegistrationDlg
Control Cancel
Type PushButton
X 304
Y 243
Width 56
Height 17
Attributes 3
Property
Text &Cancel
Control_Next BannerBitmap
Help

6 Dialog_ UserRegistrationDlg
Control CDKeyEdit
Type MaskedEdit
X 45
Y 159
Width 250
Height 16
Attributes 3
Property PIDKEY
Text [PIDTemplate]
Control_Next Back
Help

Continued

Chapter 5: Adding the User Interface to Our Installation 169

4723-2 ch05.f.qc 1/16/01 11:06 AM Page 169

TABLE 5-5 CONTROL TABLE ATTRIBUTE VALUES FOR THE USERREGISTRATIONDLG
DIALOG (Continued)

Row # Column Name Attribute Value

7 Dialog_ UserRegistrationDlg
Control CDKeyLabel
Type Text
X 45
Y 145
Width 50
Height 15
Attributes 3
Property
Text CD &Key:
Control_Next CDKeyEdit
Help

8 Dialog_ UserRegistrationDlg
Control Description
Type Text
X 25
Y 23
Width 280
Height 15
Attributes 196611
Property
Text Please enter your customer information.
Control_Next
Help

9 Dialog_ UserRegistrationDlg
Control NameEdit
Type Edit
X 45
Y 85
Width 220
Height 18
Attributes 3
Property USERNAME
Text {80}
Control_Next OrganizationLabel
Help

170 Part I: Introduction to the Windows Installer

4723-2 ch05.f.qc 1/16/01 11:06 AM Page 170

Row # Column Name Attribute Value

10 Dialog_ UserRegistrationDlg
Control NameLabel
Type Text
X 45
Y 73
Width 100
Height 15
Attributes 3
Property
Text &User Name:
Control_Next NameEdit
Help

11 Dialog_ UserRegistrationDlg
Control Next
Type PushButton
X 236
Y 243
Width 56
Height 17
Attributes 3
Property
Text &Next >
Control_Next Cancel
Help

12 Dialog_ UserRegistrationDlg
Control OrganizationEdit
Type Edit
X 45
Y 122
Width 220
Height 18
Attributes 3
Property COMPANYNAME
Text {80}
Control_Next CDKeyLabel
Help

Continued

Chapter 5: Adding the User Interface to Our Installation 171

4723-2 ch05.f.qc 1/16/01 11:06 AM Page 171

TABLE 5-5 CONTROL TABLE ATTRIBUTE VALUES FOR THE USERREGISTRATIONDLG
DIALOG (Continued)

13 Dialog_ UserRegistrationDlg
Control OrganizationLabel
Type Text
X 45
Y 110
Width 100
Height 15
Attributes 3
Property
Text &Organization:
Control_Next OrganizationEdit
Help

14 Dialog_ UserRegistrationDlg
Control Title
Type Text
X 15
Y 6
Width 200
Height 15
Attributes 196611
Property
Text [DlgTitleFont]Customer Information
Control_Next
Help

In the following remarks, I provide more detail about the entries shown in
Table 5-5:

◆ In this dialog you can see that there is a different tab order approach
because you are including three text controls in this tab order. These text
fields are the labels used to identify the three edit fields where the user
is able to enter information. You include these particular text controls in
the tab order to enable the accessibility functionality required by what are
called screen readers. (See the sidebar for more about what a screen reader
is.) In the Dialog table you set the control that will get the focus when the
dialog is first displayed as the NameLabel text control. This is the label
that sits just on top of the edit control where users are asked to enter
their names. The tab order in this dialog is NameLabel→NameEdit →
OrganizationLabel →OrganizationEdit →CDKeyLabel →CDKeyEdit →
Back →Next →Cancel →BannerBitmap →NameLabel.

172 Part I: Introduction to the Windows Installer

4723-2 ch05.f.qc 1/16/01 11:06 AM Page 172

◆ In rows #9 and #12 you placed the string {80} in the Text column. Since
these two rows define the edit fields for a user’s name and organization
this entry into the Text column defines the length of the string that the
edit control will accept.

◆ In row #14 is an example of the type of redirection that is possible with
the Windows Installer. In the Text column you entered the property name
[DlgTitleFont] which when replaced with the value of the property becomes
{\DlgFontBold8}. This in turn is a foreign key into the TextStyle table that
then defines the font to be used for displaying the rest of the text in this
column.

◆ In row #6 you defined a special type of edit control, the MaskedEdit con-
trol. This control provides a measure of security during installation. The
format of the CDKeyEdit control is defined by the entry made in the Text
column. This is a property name that sets the number and length of the
fields in the CDKeyEdit control. The name of the property in the Property
field is set to the value entered in this control. As I will describe in the
Remarks section after Table 5-6, the ValidateProductID control event then
sets the ProductID property to a combination of the [PIDTemplate] mask
and the PIDKEY property. In a real-world scenario, you will use a custom
action to check to see if the ProductID property has the correct value.

On the UserRegistrationDlg dialog box are three active controls: the Back, Next,
and Cancel pushbuttons. When the user clicks these buttons, something must hap-
pen. That something is defined by what a control event. For this particular dialog
you need to make three control event entries for the Next pushbutton. These events
are defined in the ControlEvent table and the required values for the controls in this
dialog are given in Table 5-6.

TABLE 5-6 CONTROLEVENT TABLE ATTRIBUTE VALUES FOR THE ACTIVE CONTROLS
IN THE USERREGISTRATIONDLG DIALOG

Row # Column Name Attribute Value

1 Dialog_ UserRegistrationDlg
Control_ Back
Event NewDialog
Argument LicenseAgreementDlg
Condition 1
Ordering

Continued

Chapter 5: Adding the User Interface to Our Installation 173

4723-2 ch05.f.qc 1/16/01 11:06 AM Page 173

TABLE 5-6 CONTROLEVENT TABLE ATTRIBUTE VALUES FOR THE ACTIVE CONTROLS
IN THE USERREGISTRATIONDLG DIALOG (Continued)

Row # Column Name Attribute Value

2 Dialog_ UserRegistrationDlg
Control_ Cancel
Event SpawnDialog
Argument CancelDlg
Condition 1
Ordering

3 Dialog_ UserRegistrationDlg
Control_ Next
Event NewDialog
Argument SetupTypeDlg
Condition ProductID
Ordering 3

4 Dialog_ UserRegistrationDlg
Control_ Next
Event SpawnWaitDialog
Argument WaitForCostingDlg
Condition CostingComplete=1
Ordering 2

5 Dialog_ UserRegistrationDlg
Control_ Next
Event ValidateProductID
Argument 0
Condition 0
Ordering 1

In the following remarks, I provide more detail about the entries shown in
Table 5-6:

◆ In rows #1 and #3 you see an example of how this new dialog box is
going to be inserted into the installation user-interface sequence. You’re
doing this by directing the Back button at the LicenseAgreementDlg dia-
log and the Next button at the SetupTypeDlg dialog. This, of course, is
only part of the operation. You still need to redirect the Next button on
the LicenseAgreementDlg dialog at this dialog and likewise with the Back
button on the SetupTypeDlg dialog

174 Part I: Introduction to the Windows Installer

4723-2 ch05.f.qc 1/16/01 11:06 AM Page 174

◆ In rows #3, #4, and #5 you see that the Next button has three control
events tied to it, and that as a result you have to fill in the Ordering col-
umn. The values in the Ordering column define the order in which the
conditions on the control events are evaluated. If more than one control
event has a condition that evaluates to TRUE and they conflict in that
they cannot be executed at the same time, then the control event with
the highest ordering value will be executed.

◆ In row #5 you set a value of 0 in the Condition column, so this control
event will never be executed. You should do this because you have not
set up a format for the CD Key that can be validated.

◆ In row #4 you launch a child dialog if the costing operation has not been
completed before you click the Next button. Since the next dialog is the
SetupTypeDlg dialog, which it enables the user to change the destination
location for the installation, the Windows Installer must finish the initial
costing operation before the user is allowed to do this. With your small
application the end user will never get the chance to see this dialog
because of the small amount of hard drive space it requires.

◆ In row #3 is the NewDialog control event, which has as its argument the
SetupTypeDlg dialog. This is what you will always see for this small appli-
cation. In Chapter 9, you will actually implement a validation process for
checking a CD Key entered by the user.

Chapter 5: Adding the User Interface to Our Installation 175

What Is a Screen Reader?
A screen reader is an accessibility aid for people who cannot use the visual information
displayed on a computer monitor. This information can to some extent be transmitted to
the user in other ways. A screen reader takes the displayed information on the screen
and redirects it through some alternate medium, such as synthesized speech or a
refreshable Braille display. Screen readers are sometimes referred to as screen review
utilities or speech access utilities.

A screen reader only presents textual information. To do this it must determine
text labels or descriptions for graphical screen elements. It must also track a user’s
activities and provide descriptive information about what the user is doing. A screen
reader will often monitor system interfaces that support the drawing of the graphical
elements on the screen and build an off-screen database of the objects on the screen,
presenting some of this information to the user as the screen changes and some only
when the user asks for it. Screen readers often include support for configuration files,
which are sometimes referred to as set files or profiles. These are created by the
creator of the application for the purpose of providing accessibility to users with
visual disabilities.

4723-2 ch05.f.qc 1/16/01 11:06 AM Page 175

The next dialog you’ll create is a dialog that will enable the user to browse for
the location in which to install the product. The name you will give to this dialog is
BrowseDlg. Figure 5-3 shows what this dialog will look like and Table 5-7 gives the
values you need to enter into the Dialog database table to define the basic attributes
of this dialog.

Figure 5-3: The BrowseDlg dialog box

TABLE 5-7 DIALOG TABLE ATTRIBUTE VALUES FOR THE BROWSEDLG DIALOG

Row # Column Name Attribute Value

1 Dialog BrowseDlg
Hcentering 50
Vcentering 50
Width 370
Height 270
Attributes 3
Title [ProductName] [Setup]
Control_First PathLabel
Control_Default OK
Control_Cancel Cancel

In the following remarks, I provide more detail about the entries shown in
Table 5-7:

◆ The value of 3 in the Attributes column defines that this is a modal dialog
box and that it is visible.

176 Part I: Introduction to the Windows Installer

4723-2 ch05.f.qc 1/16/01 11:06 AM Page 176

◆ The value in the Control_First column is the label for the PathEdit control.
The label for this control is used as the first control to receive the focus;
this is because screen readers must be able to tell the user what control
has the focus.

You’ll want to define 14 controls to populate the BrowseDlg dialog box. As you
can see in Figure 5-3, this is also a much more complicated dialog than the
WelcomeDlg dialog. Table 5-8 lists the entries required to define these 14 controls
in the Control database table.

TABLE 5-8 CONTROL TABLE ATTRIBUTE VALUES FOR THE BROWSEDLG DIALOG

Row # Column Name Attribute Value

1 Dialog_ BrowseDlg
Control BannerBitmap
Type Bitmap
X 0
Y 0
Width 374
Height 44
Attributes 1
Property
Text [BannerBitmap]
Control_Next PathLabel
Help

2 Dialog_ BrowseDlg
Control BannerLine
Type Line
X 0
Y 44
Width 374
Height 0
Attributes 1
Property
Text
Control_Next
Help

Continued

Chapter 5: Adding the User Interface to Our Installation 177

4723-2 ch05.f.qc 1/16/01 11:06 AM Page 177

TABLE 5-8 CONTROL TABLE ATTRIBUTE VALUES FOR THE BROWSEDLG DIALOG
(Continued)

Row # Column Name Attribute Value

3 Dialog_ BrowseDlg
Control BottomLine
Type Line
X 0
Y 234
Width 374
Height 0
Attributes 1
Property
Text
Control_Next
Help

4 Dialog_ BrowseDlg
Control Cancel
Type PushButton
X 240
Y 243
Width 56
Height 17
Attributes 3
Property
Text &Cancel
Control_Next ComboLabel
Help

5 Dialog_ BrowseDlg
Control ComboLabel
Type Text
X 25
Y 58
Width 44
Height 15
Attributes 3
Property
Text &Look in:
Control_Next DirectoryCombo
Help

178 Part I: Introduction to the Windows Installer

4723-2 ch05.f.qc 1/16/01 11:06 AM Page 178

Row # Column Name Attribute Value

6 Dialog_ BrowseDlg
Control Description
Type Text
X 25
Y 23
Width 280
Height 15
Attributes 196611
Property
Text Browse to the destination folder
Control_Next
Help

7 Dialog_ BrowseDlg
Control DirectoryCombo
Type DirectoryCombo
X 70
Y 55
Width 220
Height 80
Attributes 393227
Property BrowseProperty
Text
Control_Next Up
Help

8 Dialog_ BrowseDlg
Control DirectoryList
Type DirectoryList
X 25
Y 83
Width 320
Height 110
Attributes 15
Property BrowseProperty
Text
Control_Next BannerBitmap
Help

Continued

Chapter 5: Adding the User Interface to Our Installation 179

4723-2 ch05.f.qc 1/16/01 11:06 AM Page 179

TABLE 5-8 CONTROL TABLE ATTRIBUTE VALUES FOR THE BROWSEDLG DIALOG
(Continued)

Row # Column Name Attribute Value

9 Dialog_ BrowseDlg
Control NewFolder
Type PushButton
X 325
Y 55
Width 19
Height 19
Attributes 3670019
Property
Text New
Control_Next DirectoryList
Help Create A New Folder|

10 Dialog_ BrowseDlg
Control OK
Type PushButton
X 304
Y 243
Width 56
Height 17
Attributes 3
Property
Text OK
Control_Next Cancel
Help

11 Dialog_ BrowseDlg
Control PathEdit
Type PathEdit
X 93
Y 202
Width 252
Height 18
Attributes 11
Property BrowseProperty
Text
Control_Next OK
Help

180 Part I: Introduction to the Windows Installer

4723-2 ch05.f.qc 1/16/01 11:06 AM Page 180

Row # Column Name Attribute Value

12 Dialog_ BrowseDlg
Control PathLabel
Type Text
X 25
Y 205
Width 68
Height 15
Attributes 3
Property
Text &Folder name:
Control_Next PathEdit
Help

13 Dialog_ BrowseDlg
Control Title
Type Text
X 15
Y 6
Width 200
Height 15
Attributes 196611
Property
Text [DlgTitleFont]Change current destination folder
Control_Next
Help

14 Dialog_ BrowseDlg
Control Up
Type PushButton
X 298
Y 55
Width 19
Height 19
Attributes 3670019
Property
Text Up
Control_Next NewFolder
Help Up One Level|

Chapter 5: Adding the User Interface to Our Installation 181

4723-2 ch05.f.qc 1/16/01 11:06 AM Page 181

The following remarks provide more detail about the entries shown in Table 5-8:

◆ In rows #6 and #13 the value of 19661 in the Attributes column has the
same meaning as described in the Remarks section following Table 5-2.

◆ The tab order in the BrowseDlg dialog box is PathLabel →PathEdit →
OK →Cancel →ComboLabel →DirectoryCombo →Up →NewFolder →
DirectoryList →BannerBitmap →PathLabel. You include the labels for
the PathEdit and the DirectoryCombo controls in the tab order in order
to enable accessibility functionality through a screen reader.

◆ In rows #9 and #14 you added text to the Help column. This text provides a
ToolTip functionality to these two pushbuttons since icons and not text are
displayed on these buttons. A screen reader can also use this help text to
provide information to visually disabled users. Notice that there is pipe
symbol (|) at the end of the text string. This separates the ToolTip text from
the context-sensitive help. You did not enter anything to the right of this
vertical bar because context-sensitive help has not yet been implemented.

◆ The value 3670019 in the Attribute column of rows #9 and #14 is com-
prised of the bit flag components in the following list. These components
specify how the buttons defined in these two rows handle the display of
icons instead of text.

■ The bit flag 524288 is the Icon control attribute and it specifies that the
entry in the Text column is a foreign key into the Binary table and not
a text string to be placed on the button.

■ The bit flag 2097152 is the IconSize control attribute and it defines that
the icon that is to be loaded is the 16x16 image found in the icon file.

■ The bit flag 1048576 is the FixedSize control attribute and it specifies
that the picture is to be centered in the control and that it will be
cropped to fit without changing its shape or size.

■ The bit flag 2 is the Enabled control attribute and it specifies that this
control will be active.

■ The bit flag 1 is the Visible control attribute and it specifies that this
control will be visible.

◆ In row #7 you entered a value of 393227 for the DirectoryCombo control.
This value is comprised of the bit flag components described in the fol-
lowing list:

■ The bit flag 131072 is the FixedVolume control attribute and it specifies
that all volumes involved in the current installation and all the fixed
internal hard drives will be shown in the combo box.

182 Part I: Introduction to the Windows Installer

4723-2 ch05.f.qc 1/16/01 11:06 AM Page 182

■ The bit flag 262144 is the RemoteVolume control attribute and it speci-
fies that all the volumes involved in the current installation and all the
remote volumes will be shown in the combo box.

■ The bit flag 8 is the Indirect control attribute and it specifies that the
control displays or changes the value of the property that has its iden-
tifier listed in the Property column.

■ The bit flag 2 is the Enabled control attribute and it specifies that this
control will be active.

■ The bit flag 1 is the Visible control attribute and it specifies that this
control will be visible.

◆ In row #8 you entered a value of 15 for the DirectoryList control. This
value has the following effect:

■ The Indirect control attribute that specifies that the control displays or
changes the value of the property that has its identifier listed in the
Property column (8)

■ The Sunken control attribute that specifies that the control will appear
with a sunken, 3D look (4)

■ The Enabled control attribute that specifies that this control is active (2)

■ The Visible control attribute that specifies that this control is visible (1)

◆ In row #11 you entered a value of 11 for the PathEdit control. This value
has the following effect:

■ The Indirect control attribute that specifies that the control displays or
changes the value of the property that has its identifier listed in the
Property column (8)

■ The Enabled control attribute that specifies that this control is active (2)

■ The Visible control attribute that specifies that this control is visible (1)

◆ In rows #7, #8, and #11 you entered a value of BrowseProperty in the
Property column. This is the name of the property that ties together the
DirectoryCombo, DirectoryList, and PathEdit controls. When one of these
controls changes this property, the other controls will reflect this change.
This property will be used to modify the TARGETDIR property if the user
decides to change the default location for the installation.

On the BrowseDlg dialog box are four active controls. These are the Cancel, OK,
NewFolder, and Up pushbuttons. For this particular dialog you need to make two
Control Event entries for the Cancel pushbutton and the OK pushbutton. I will
explain the reason for this will be explained in the remarks section following Table
5-9. These events are defined in the ControlEvent table and the required values for
the controls in this dialog are given in Table 5-9.

Chapter 5: Adding the User Interface to Our Installation 183

4723-2 ch05.f.qc 1/16/01 11:06 AM Page 183

TABLE 5-9 CONTROLEVENT TABLE ATTRIBUTE VALUES FOR THE ACTIVE CONTROLS
IN THE BROWSEDLG DIALOG

Row # Column Name Attribute Value

1 Dialog_ BrowseDlg
Control_ Cancel
Event EndDialog
Argument Return
Condition 1
Ordering 2

2 Dialog_ BrowseDlg
Control_ Cancel
Event Reset
Argument 0
Condition 1
Ordering 1

3 Dialog_ BrowseDlg
Control_ NewFolder
Event DirectoryListNew
Argument 0
Condition 1
Ordering

4 Dialog_ BrowseDlg
Control_ OK
Event EndDialog
Argument Return
Condition 1
Ordering 2

5 Dialog_ BrowseDlg
Control_ OK
Event SetTargetPath
Argument [BrowseProperty]
Condition 1
Ordering 1

6 Dialog_ BrowseDlg
Control_ Up
Event DirectoryListUp
Argument 0
Condition 1
Ordering

184 Part I: Introduction to the Windows Installer

4723-2 ch05.f.qc 1/16/01 11:06 AM Page 184

In the following remarks, I provide more detail about the entries shown in
Table 5-9:

◆ In rows #1 and #2 you tied two events to the Cancel button. These are
the Reset and the EndDialog control events. The Reset control event forces
all controls on the dialog to undo any property changes they might have
performed. All properties are returned to the value they had when the dia-
log was first created. The EndDialog control event with the Return argu-
ment acts to destroy the present dialog. It returns control to the dialog
that launched it (its parent). Note that the Reset event is executed before
the EndDialog event is launched. The condition on both of these control
events is set to 1, which ensures that they both will occur.

◆ In row #3 you defined the DirectoryListNew control event for the
NewFolder button. This control event notifies the DirectoryList control
that a new folder is to be created, creates a new folder, and then puts
the focus on the name field so that the user can name the new folder.

◆ In row #4 you tied the OK button to the EndDialog control event using
the Return argument. This returns control to the parent dialog and, unlike
with the Cancel button, retains the property values that you have set or
changed.

◆ In row #5 you also tied the SetTargetPath control event to the OK button.
The main reason to use this control event is to notify the Windows Instal-
ler to check the validity of the path in the value of the BrowseProperty
property. You insert the value of the property by surrounding the property
name with square brackets like this: [BrowseProperty]. If the target is valid,
the SetTargetPath control event will change the value of the TARGETDIR
property.

◆ In row #6 you tied the Up button to the DirectoryListUp control event. This
event notifies the DirectoryList control that the user wants to select the par-
ent of the present directory. The selected directory now becomes the parent
unless the present selection is already a volume.

For the BrowseDlg dialog box there is one additional database table you need to
use. This is the EventMapping table, which lists those controls that subscribe to an
event. I’ll explain what this means in the remarks section that follows Table 5-10,
which lists the attributes you need to enter into this table.

Chapter 5: Adding the User Interface to Our Installation 185

4723-2 ch05.f.qc 1/16/01 11:06 AM Page 185

TABLE 5-10 EVENTMAPPING TABLE ATTRIBUTE VALUES FOR THE
BROWSEDLG DIALOG

Row # Column Name Attribute Value

1 Dialog_ BrowseDlg
Control_ DirectoryCombo
Event IgnoreChange
Attribute IgnoreChange

Dialog_: This is a foreign key into the first column of the Dialog table and forms
part of the primary key for this table.

Control_: This is a foreign key into the second column of the Control table and
along with the value in the first column identifies a specific control on the dialog.

Event: This is an identifier for the event to which the control is being subscribed.
This field, along with the first two columns, forms the primary key for this table.

Attribute: This is the name of the control attribute when the event in the Event
column is received by the control.

In the following remarks, I provide more detail about the entries shown in
Table 5-10:

◆ The EventMapping table defines those control events that are published
by some other control or by the Windows Installer and that have an
impact on the control subscribing to that control event. Here you have
the DirectoryCombo control subscribing to the IgnoreChange control
event published by the DirectoryList control.

◆ The effect of subscribing the DirectoryCombo control to the IgnoreChange
control event is that the user can highlight a folder in the DirectoryList
control and have that highlighted folder reflected in the DirectoryCombo
control. This enables the user to change the BrowseProperty property
without having to actually open the folder in the DirectoryList control.

In order to integrate the new dialog boxes you just created you need to make some
additions and changes to data already in the BaseUI.msi database. You have to add
several buttons, change and/or remove some Control Events, and add what is called a
control condition to the ControlCondition table. In Table 5-11 you are adding push-
buttons to the CustomizeDlg dialog in order to be able to launch the BrowseDlg dia-
log. You are also adding a pushbutton to the LicenseAgreementDlg dialog so that you
can return to the WelcomeDlg dialog.

Adding new controls to an existing dialog requires a small change to the tab
order in order to maintain the circular sequence between controls. The two neces-
sary changes are shown in Table 5-12.

186 Part I: Introduction to the Windows Installer

4723-2 ch05.f.qc 1/16/01 11:06 AM Page 186

TABLE 5-11 CONTROL TABLE ATTRIBUTE VALUES TO BE ADDED TO
EXISTING DIALOGS

Row # Column Name Attribute Value

1 Dialog_ CustomizeDlg
Control Browse
Type PushButton
X 304
Y 200
Width 56
Height 17
Attributes 3
Property
Text &Browse
Control_Next Reset
Help

2 Dialog_ LicenseAgreementDlg
Control Back
Type PushButton
X 180
Y 243
Width 56
Height 17
Attributes 3
Property
Text < &Back
Control_Next Buttons
Help

TABLE 5-12 CONTROL TABLE ATTRIBUTE VALUES TO BE MODIFIED FOR
EXISTING DIALOGS

Old New
Dialog Name Control Control_Next Control_Next

CustomizeDlg Tree Reset Browse

LicenseAgreementDlg AgreementText Buttons Back

Chapter 5: Adding the User Interface to Our Installation 187

4723-2 ch05.f.qc 1/16/01 11:06 AM Page 187

In order to insert the new UserRegistrationDlg dialog into the installation UI
sequence you need to make some changes in the ControlEvent table so that the Next
button on the LicenseAgreementDlg dialog and the Back button on the SetupTypeDlg
dialog will both point at this new dialog. Table 5-13 shows the changes you need
to make.

TABLE 5-13 CONTROLEVENT TABLE ATTRIBUTE VALUES TO BE MODIFIED FOR
EXISTING DIALOGS

Old Event New Event
Dialog Name Control Argument Argument

LicenseAgreementDlg Next SetupTypeDlg UserRegistrationDlg

SetupTypeDlg Back LicenseAgreementDlg UserRegistrationDlg

You need to identify control events for each of the two new controls you just
added to the existing CustomizeDlg and LicenseAgreementDlg dialogs. These con-
trol events are listed in Table 5-14.

TABLE 5-14 CONTROLEVENT TABLE ATTRIBUTE VALUES FOR THE ADDED CONTROLS

Row # Column Name Attribute Value

1 Dialog_ CustomizeDlg
Control_ Browse
Event SelectionBrowse
Argument BrowseDlg
Condition 1
Ordering

2 Dialog_ LicenseAgreementDlg
Control_ Back
Event NewDialog
Argument WelcomeDlg
Condition 1
Ordering

In the following remarks, I have provided more detail about the entries shown in
Table 5-14:

188 Part I: Introduction to the Windows Installer

4723-2 ch05.f.qc 1/16/01 11:06 AM Page 188

◆ In the CustomizeDlg dialog the Browse pushbutton is being tied to a special
control event associated with the SelectionTree control. Even though the
Browse pushbutton is in the CustomizeDlg dialog it is the SelectionTree
spawning the BrowseDlg dialog as a child dialog. The SelectionBrowse
control event permits the BrowseDlg dialog to modify the path of the
item selected in the SelectionTree control.

◆ The SelectionTree control is used primarily in a dialog that enables the
user to select or deselect the features to be installed. The BrowseDlg dialog
then enables the user to change the install location of the feature.

Now that you have added the ability to modify the installation location of a fea-
ture by adding the BrowseDlg dialog to the user-interface sequence and have added
the Browse pushbutton to the CustomizeDlg dialog you need to apply a condition to
this Browse pushbutton. The user can launch the CustomizeDlg dialog during the
new installation mode or during the maintenance mode, but during the maintenance
mode can only select or deselect features to be added to or removed from an appli-
cation’s current installation; the user cannot change the installation location of any
of these features. Therefore it is necessary to hide the Browse pushbutton during a
maintenance operation. This is what you are going to accomplish by adding a row to
the ControlCondition table, as shown in Table 5-15.

TABLE 5-15 CONTROLCONDITION TABLE ATTRIBUTE VALUES FOR THE
CUSTOMIZEDLG DIALOG

Row # Column Name Attribute Value

1 Dialog_ CustomizeDlg
Control_ Browse
Action Hide
Condition Installed

Dialog_: This is a foreign key into the Dialog table and, along with the entry in the
Control_ column, identifies a unique control in the dialog box.

Control_: This is a foreign key into the second column of the Control table.
Action: This is the name of the action that will be implemented on the control,

depending on the results of the condition defined in the Condition column. Five
specific actions are permitted:

Default Sets a control to be the default control in the dialog box.

Disable Disables the control.

Enable Enables the control.

Chapter 5: Adding the User Interface to Our Installation 189

4723-2 ch05.f.qc 1/16/01 11:06 AM Page 189

Hide Hides the control.

Show Displays the control.

Condition: This is a conditional statement that specifies the circumstances under
which the action defined in the Action column will take place.

In Table 5-15 is shown the one and only action you are defining and that is for
the Browse pushbutton to be hidden if the installation is in maintenance mode. An
installation is in maintenance mode if the installed state of the application evalu-
ates to TRUE. You define the condition simply by placing the term Installed in the
Condition column. Installed is a property that gets set by the Windows Installer if it
detects that the application has already been installed.

Creating the user interface to handle a
user-initiated exit
You are going to create a dialog that is one of the finish dialogs that is given a
negative sequence number. The Windows Installer displays this dialog when a user
cancels an installation by clicking a Cancel button in one of the modal dialog in the
Installation Wizard. This dialog is called UserExitDlg and Figure 5-4 shows what it
will look like after you create it. The Windows Installer does not mandate what the
name of this dialog is, only that it must have a sequence number of –2 in the
sequence tables wherein it is used. Tables 5-16, 5-17, and 5-18 show the values you
need to enter to create the UserExitDlg dialog box.

You need to define the eight controls that will populate this dialog box. Table
5-17 shows the values you use to create these eight controls. Only one of these con-
trols, however, is active, because before this dialog is displayed the user has already
confirmed that the installation is to be canceled.

TABLE 5-16 DIALOG TABLE ATTRIBUTE VALUES FOR THE USEREXITDLG DIALOG

Row # Column Name Attribute Value

1 Dialog UserExitDlg
Hcentering 50
Vcentering 50
Width 370
Height 270
Attributes 3
Title [ProductName] [Setup]
Control_First Finish
Control_Default Finish
Control_Cancel Finish

190 Part I: Introduction to the Windows Installer

4723-2 ch05.f.qc 1/16/01 11:06 AM Page 190

Figure 5-4: The UserExitDlg dialog box

TABLE 5-17 CONTROL TABLE ATTRIBUTE VALUES FOR THE USEREXITDLG DIALOG

Row # Column Name Attribute Value

1 Dialog_ UserExitDlg
Control Back
Type PushButton
X 180
Y 243
Width 56
Height 17
Attributes 1
Property
Text < &Back
Control_Next Finish
Help

2 Dialog_ UserExitDlg
Control Bitmap
Type Bitmap
X 0
Y 0
Width 370
Height 234
Attributes 1
Property
Text [DialogBitmap]
Control_Next Back
Help

Continued

Chapter 5: Adding the User Interface to Our Installation 191

4723-2 ch05.f.qc 1/16/01 11:06 AM Page 191

TABLE 5-17 CONTROL TABLE ATTRIBUTE VALUES FOR THE USEREXITDLG DIALOG
(Continued)

Row # Column Name Attribute Value

3 Dialog_ UserExitDlg
Control BottomLine
Type Line
X 0
Y 234
Width 374
Height 0
Attributes 1
Property
Text
Control_Next
Help

4 Dialog_ UserExitDlg
Control Cancel
Type PushButton
X 304
Y 243
Width 56
Height 17
Attributes 1
Property
Text &Cancel
Control_Next Bitmap
Help

5 Dialog_ UserExitDlg
Control Description1
Type Text
X 135
Y 70
Width 220
Height 40
Attributes 196611
Property
Text [ProductName] setup was interrupted. Your system

has not been modified. To install this program at a
later time, please run the installation again.

Control_Next
Help

192 Part I: Introduction to the Windows Installer

4723-2 ch05.f.qc 1/16/01 11:06 AM Page 192

Row # Column Name Attribute Value

6 Dialog_ UserExitDlg
Control Description2
Type Text
X 135
Y 115
Width 220
Height 20
Attributes 196611
Property
Text Click the Finish button to exit the [Wizard].
Control_Next
Help

7 Dialog_ UserExitDlg
Control Finish
Type PushButton
X 236
Y 243
Width 56
Height 17
Attributes 3
Property
Text &Finish
Control_Next Cancel
Help

8 Dialog_ UserExitDlg
Control Title
Type Text
X 135
Y 20
Width 220
Height 40
Attributes 196611
Property
Text {\VerdanaBold13}[ProductName] [Wizard] was

interrupted
Control_Next
Help

Chapter 5: Adding the User Interface to Our Installation 193

4723-2 ch05.f.qc 1/16/01 11:06 AM Page 193

In the following remarks, I provide more detail about the entries shown in
Table 5-17:

◆ In rows #1 and #4 you defined two pushbuttons and specified that the
value in the Attribute column is 1. This value means that these two push-
buttons are disabled, which means that although they are still visible their
text is grayed out.

◆ I explained the value in the Attribute column for rows #5, #6, and #8 in
the Remarks section following Table 5-2.

On the UserExitDlg dialog there is only one pushbutton control for which you
have to define control events; all the other pushbuttons are disabled.

TABLE 5-18 CONTROLEVENT TABLE ATTRIBUTE VALUES FOR THE
USEREXITDLG DIALOG

Row # Column Name Attribute Value

1 Dialog_ UserExitDlg
Control_ Finish
Event EndDialog
Argument Exit
Condition 1
Ordering

The entry in Table 5-18 shows you how to tie the Finish pushbutton to the
EndDialog control event using the Exit argument. The Exit argument specifies that
the installation process is to be terminated by the Windows Installer.

Populating the user interface sequence tables
Now that you have created the additional dialog boxes for the various wizards you
need to make them available by placing them into a sequence table. The particular
sequence tables of interest here are the InstallUISequence and AdminUISequence
tables. You will notice that I make no mention of populating an AdvtUISequence
table. That is because Microsoft recommends that no user interface be displayed to
the end user when a product is being advertised. Since in Chapter 4 you did not add
any actions to the user interface tables you will now add them at the same time, as
shown in Table 5-19.

194 Part I: Introduction to the Windows Installer

4723-2 ch05.f.qc 1/16/01 11:06 AM Page 194

TABLE 5-19 ENTRIES FOR THE INSTALLUISEQUENCE TABLE

Action Condition Sequence

FatalErrorDlg -3

UserExitDlg -2

ExitDlg -1

LaunchConditions 100

PrepareDlg 125

DefaultDest Not Installed 150

CostInitialize 800

FileCost 900

CostFinalize 100

WelcomeDlg Not Installed 1050

ResumeDlg Installed And (RESUME Or Preselected) 1100

MaintenanceWelcomeDlg Installed And Not RESUME And Not 1150
Preselected

ProgressDlg 1200

ExecuteAction 1300

In the following remarks, I give more detail about the entries shown in
Table 5-19:

◆ Note the three dialog actions that have the negative sequence numbers. The
Windows Installer displays one of them, depending on the reason for the
termination of the installation. The name of the action is not important,
only the sequence number assigned to the dialog action. The FatalErrorDlg
dialog is displayed if there is a Windows Installer run-time error. The
UserExitDlg dialog is displayed if the user cancels the installation, and
the ExitDlg dialog is displayed if the installation completes successfully.

◆ Notice that in this table the actions LaunchConditions, DefaultDest,
CostInitialize, FileCost, and CostFinalize are the same actions you
entered in the top of the InstallExecuteSequence table in Chapter 4.
This is because when the installation is being run with a full or
reduced user interface option, this table is the first one that is parsed.

Chapter 5: Adding the User Interface to Our Installation 195

4723-2 ch05.f.qc 1/16/01 11:06 AM Page 195

Therefore we need to make sure that we check for any launch conditions
and that we set the value of TARGETDIR with our custom action.

◆ The PrepareDlg dialog is a modeless dialog that displays the progress of
the initialization of the installation.

◆ The WelcomeDlg, MaintenanceWelcomeDlg, and ResumeDlg dialogs each
start what is known as a user-interface sequence. The WelcomeDlg dialog
commences a UI sequence for a new installation if the product does not
have an installed state of TRUE. The MaintenanceWelcomeDlg dialog
begins the UI sequence that enables the user to repair, modify, or remove
a product that has already been installed. This A maintenance installation
begins whenever the product has an installed state of TRUE and the previ-
ous installation was not suspended before it completed. The ResumeDlg
begins a UI sequence that completes an installation that was suspended
before it completed.

◆ The ProgressDlg dialog is a modeless dialog that receives the progress
information of the installation and displays it to the user.

◆ The function of the ExecuteAction is to notify the Windows Installer to
run the actions in the InstallExecuteSequence table.

The final table you need to populate to complete the user interface for your
installation is the AdminUISequence table. Table 5-20 shows the new rows you need
to add to this table.

TABLE 5-20 ENTRIES FOR THE ADMINUISEQUENCE TABLE

Action Condition Sequence

FatalErrorDlg -3

UserExitDlg -2

ExitDlg -1

PrepareDlg 125

CostInitialize 800

FileCost 900

CostFinalize 1000

AdminWelcomeDlg 1100

ProgressDlg 1200

ExecuteAction 1300

196 Part I: Introduction to the Windows Installer

4723-2 ch05.f.qc 1/16/01 11:06 AM Page 196

In the following remarks, I provide more detail about the entries shown in
Table 5-20:

◆ The three dialog actions with negative sequence numbers are the same as
the dialogs with negative numbers in the InstallUISequence table.

◆ The file costing actions are required to make sure that the target location
for the administrative installation has enough space to hold the files that
comprise the application.

◆ The AdminWelcomeDlg begins the UI sequence that creates an administra-
tive image on a network drive. This sequence consists of this welcome
dialog, a dialog that requests the input of a CD Key, and finally a dialog
that asks the user to specify the location of the network drive and folder
where the administrative image is to be created. In this UI sequence the
user cannot define the features to be installed, because this is not a real
installation but only an image from which other users can initiate an
installation on their local machines.

◆ The function of the ExecuteAction is to notify the Windows Installer to
run the actions in the AdminExecuteSequence table.

Validation of the Package
If you remember from Chapter 4, there were a number of errors in the package
when you ran the validation, all of which related to the user interface. Now it is
time to make sure that they are gone. Using the same command line you used in
Chapter 4 run a validation on your installation package to see if it validates cor-
rectly. Use the following command line:

msival2 iswiartist.msi darice.cub –F –L validation.log

If you did everything shown in this chapter, you should get a log file that has no
warnings or errors.

Running the Installation with the
User Interface
The final test of your revised installation package is to run the install and test to see
if the user interface works in all possible modes of operation. It’s particularly
important to see if using the BrowseDlg you added in this exercise can change the

Chapter 5: Adding the User Interface to Our Installation 197

4723-2 ch05.f.qc 1/16/01 11:06 AM Page 197

installation location. I encourage you to investigate further and also to look at
Appendix A, which contains a complete description of the various command-line
options available to you with the Windows Installer.

Summary
You created dialog boxes and the defined the controls that populate these dialogs.
You now have an acquaintance with control events and how controls can subscribe
to these control events. In the case of the BrowseDlg dialog you saw how separate
controls can be connected through the use of a common property. You will be see-
ing a lot more about creating and manipulating the user interface when you get to
Chapter 9.

198 Part I: Introduction to the Windows Installer

4723-2 ch05.f.qc 1/16/01 11:06 AM Page 198

Chapter 6

Overview of the ISWI
Authoring Tool

IN THIS CHAPTER

◆ The basic design of ISWI

◆ The resources in ISWI that will help you understand how to create
installation packages

◆ The menus and toolbar options available for activating the features
of ISWI

◆ The wizards and tools that provide an efficient means for creating
installation packages

IN CHAPTERS 4 AND 5 you saw how much work it was to create, by directly editing
an MSI database, the installation package for a simple application consisting of
only four files. In this chapter I introduce the InstallShield for Windows Installer
tool that will make it much easier for you to create installation packages. In partic-
ular in this chapter we take a brief look at the various features of ISWI that help in
creating installation packages.

What Is InstallShield for Windows
Installer?
In Chapters 4 and 5 you worked your way through the creation of an MSI installa-
tion package by directly editing a template database. You did this with the Orca tool
that comes with the Windows Installer SDK. It turned out to be a lot of work even
though the sample application for which you were creating the installation con-
sisted of only four files. In a real-world environment it would take far too long to
create installation packages this way. This approach to creating an installation
database also creates many opportunities for error. The real-world solution to the
problem of creating installation packages, then, is to have a tool that abstracts the
information required in the installation database and presents it understandably.
This is the role that InstallShield for Windows Installer plays in the creation of
Windows Installer installation packages. 201

4723-2 ch06.f.qc 1/16/01 11:07 AM Page 201

InstallShield for Windows Installer (ISWI) is an authoring tool that removes the
setup developer from the raw database by several levels. ISWI provides a develop-
ment environment wherein the setup developer is asked to enter information that
that ISWI requests in a user-friendly way. This abstraction of the information you
need to enter into a Windows Installer database greatly reduces the time required to
develop a working installation package. The installation package that you created
in chapters 4 and 5 for the sample application probably took you more than an
hour — even when all the database table entries were already identified. You will see
in the next chapter that with ISWI this same installation package can be generated
in about five minutes.

ISWI is a project-based development tool. This means that it creates an interme-
diate project file containing all the information required to generate an MSI instal-
lation package. The installation package is created only when the setup developer
specifically requests that a build be performed. This project approach permits a high
level of product management because installation packages for various products
can be created from one project file. This is called SKU management — for Stock
Keeping Unit.

So now let’s move on to ISWI and see what it offers you in the way of Windows
Installer package creation.

Installing ISWI
This book — in particular this chapter and the next three — is focused on the func-
tionality found in version 1.5 of InstallShield for Windows Installer. An evaluation
copy of this version of ISWI can be found on the CD-ROM at the back of the book.
An evaluation copy will only let you run installations on the machine on which the
installation package was created. All screenshots in this book have been taken
using the full retail version of ISWI with the East and West language packs
installed. There are a few differences between the release wizard in the evaluation
copy and the full retail version. If you have access to it, you should use the full ver-
sion instead of the evaluation version.

To initiate the installation of the evaluation version of ISWI double-click the file
SETUP.EXE. If you are installing the full retail version from a CD-ROM (not the
CD-ROM at the back of the book), you will be presented with a browser interface
enabling you to click a button to perform the installation. Regardless of whether
you are installing the evaluation or the full retail version you need to follow the
instructions provided in the installation wizard. By default you will get a complete
installation of the product and that is what you want. If for some reason the
Windows Installer is not already on the target machine, then the ISWI setup will
first install the Windows Installer for you and then prompt you to reboot the sys-
tem. After the reboot the installation of ISWI will continue automatically. You can
take all the default settings offered in the installation wizard.

202 Part II: Basic Package Creation with ISWI

4723-2 ch06.f.qc 1/16/01 11:07 AM Page 202

If there is a previous version of ISWI on your machine, the installation of ver-
sion 1.5 will appropriately delete and/or update this prior version. Once you have
installed ISWI you will want to launch it from the Start →Programs menu.

A First Look at ISWI
A tremendous amount of information must be collected in order to create an MSI
package. The user interface for ISWI is modeled after the user interface used by
Microsoft for its Outlook product. Figure 6-1 shows the basic design of this user
interface. On the far left of the screen is the view panel where you can choose the
basic type of information to be manipulated. To the right of the view panel there is
a tree control that allows you to select subcategories of the main view, and on the
right-hand side of the screen you can see the various default properties and where
you can modify them. In some circumstances the right-hand side of the screen is
divided horizontally, the top displaying the property sheet and the bottom display-
ing additional functionality for setting the properties.

Figure 6-1: The basic user-interface design of ISWI

View bar

View icon View title bar

Property screen

Sub-view icons

Chapter 6: Overview of the ISWI Authoring Tool 203

4723-2 ch06.f.qc 1/16/01 11:07 AM Page 203

When you launch ISWI you will be presented with a user interface that enables
you to choose various views and screens that provide access to the features of the
product. When you launch ISWI without any project association, the left-hand
panel icons enable you to choose one of three views: InstallShield Today, Help, and
Best Practices. I discuss each of these views in one of the following sections.

The InstallShield Today View
Figure 6-2 shows the default view you see when you first launch ISWI from the
Start →Programs menu. This default view is the Welcome screen of the InstallShield
Today view. In the screen selection panel are three other screens you can select:
Create a new project... and Open a project... and InstallShield on the Web...

Figure 6-2: The default InstallShield Today screen of ISWI

The Welcome screen provides links to a number of information resources about
ISWI, the Windows Installer service, and the requirements for obtaining the
“Certified for Windows” logo. These links will take you to other parts of the prod-
uct or to an associated Web site. In the Welcome screen the Windows Installer ser-
vice link takes you to the associated topic in the InstallShield for Windows Installer
Help Library. The Windows 2000 Application Specification link takes you to the
part of the Microsoft Web site where you can download this specification. Of
course, to use this link you must have Internet access. This specification lists all the

204 Part II: Basic Package Creation with ISWI

4723-2 ch06.f.qc 1/16/01 11:07 AM Page 204

requirements you need to meet in order to obtain the “Certified for Windows” logo.
The Setup Map link launches an interactive tour of ISWI. The Help View link takes
you to the Help View and the Getting Started Guide link takes you to the Getting
Started topic in the InstallShield for Windows Installer Help Library.

Figure 6-3 shows the Create a new project... screen. From this screen you can
create either a regular installation project or a merge module project. To create a
regular installation project, double-click the Project icon or the Blank Setup Project
icon. To create a Merge Module project double-click on the Blank Merge Module
Project icon. You can also create these projects by first highlighting the appropriate
icon and then clicking the Create pushbutton.

Figure 6-3: The Create a new project... screen of the InstallShield Today view

In this screen there is an edit field you use to set the name and location of the
project you are going to create. This edit field is disabled when you have the Project
Wizard icon highlighted. This is because the Project Wizard will request that you
enter the name of the project you want to create. When creating a new setup pro-
ject or a merge module project you should first highlight the appropriate icon and
then go to the Project Name and Location field and enter the location where you
want the project to be created and the name of the project file. Project files always
have an .ism file extension so ISWI will add it automatically. After entering this
information you can either click the Create pushbutton or double-click the high-
lighted icon.

Chapter 6: Overview of the ISWI Authoring Tool 205

4723-2 ch06.f.qc 1/16/01 11:07 AM Page 205

Chapter 17 goes into more detail about the creation and use of merge

modules.

Clicking the Open a project... link in the screen selection panel will take you to the
associated screen, as shown in Figure 6-4. This screen will present you with icons for
all the projects you have created and give you ready access to these projects.

Figure 6-4: The Open a project... screen of the InstallShield Today view

This view shows the projects as large icons, but you can choose a detailed view
by clicking the right mouse button and choosing the Details option from the result-
ing popup menu. In the detailed view you see the name of the project file and the
location of this file. Using the same popup menu, you can open the highlighted
project or remove it from the screen. You can also browse for another project by
choosing the Browse... option on the context menu. If you check the Make this my
default InstallShield Today screen option at the bottom of the Open a project...
screen, this screen will be the one that appears every time you launch ISWI instead
of the Welcome screen. At the bottom of the Open a project... screen there is an
Open button and a Browse button. These two buttons provide the same functional-
ity as the same options on the context menu.

XREF

206 Part II: Basic Package Creation with ISWI

4723-2 ch06.f.qc 1/16/01 11:07 AM Page 206

The fourth and final screen of the InstallShield Today view is the InstallShield on
the Web... screen. This screen provides a number of Web links to various locations
on the InstallShield Software Corporation Web site. Of course, you need to have
Internet access for these links to work.

The Help View
You can display the Help view by clicking the Help icon in the view selection panel.
This icon is directly under the InstallShield Today icon. In this view there is no
screen selection panel as with the InstallShield Today view. Here you are presented
with a number of help-related icons that link you to various types of help
resources, as shown in Figure 6-5.

Figure 6-5: The ISWI Help view

In the following subsections I discuss resources you can access from the eight
icons provided in this view.

The InstallShield for Windows Installer
Help Library
There are three top-level topics in the ISWI Help Library: Getting Started, Getting
Results, and the InstallShield IDE Reference. Figure 6-6 shows the opening page of
the Help Library.

Chapter 6: Overview of the ISWI Authoring Tool 207

4723-2 ch06.f.qc 1/16/01 11:07 AM Page 207

Figure 6-6: The ISWI Help Library welcome page

The Getting Started topic contains information that will help you begin creating
a setup project. It teaches you more about the Windows Installer (or MSI) technol-
ogy, introduces you to InstallShield, and gives you more detailed help about using
the powerful features of the installation development environment, or IDE. Of par-
ticular note are the tutorial and demo areas, which contain sample projects that
introduce you to the IDE and quickly get you creating your first setup packages.

The Getting Results topic goes into more depth about using InstallShield, detail-
ing the framework, views, and properties for various aspects of setup creation. This
section will serve as a reference for every area of the product.

The InstallShield IDE Reference topic contains comprehensive context-sensitive
help for each of the dialog boxes and wizard panels in the InstallShield IDE. For
expanded (less task-oriented) help, follow the links and the See Also topics in the
dialog descriptions.

In addition to these three topics the Help Library welcome page provides three
important InstallShield Web site links: Feedback, Documentation Update, and
Knowledge Base.

The Setup Map
The Setup Map is an interactive tour of the InstallShield for Windows Installer. This
interactive tour briefly discusses many of the subjects we examine in this and the
next three chapters. Figure 6-7 shows the introductory panel to this interactive tour
of ISWI.

208 Part II: Basic Package Creation with ISWI

4723-2 ch06.f.qc 1/16/01 11:07 AM Page 208

Figure 6-7: The Setup Map overview screen

As you can see in this figure, the Setup Map covers seven topics. The first one,
entitled Understand Setups, covers the difference between legacy installations and
installations created for the Windows Installer Service. In particular it discusses
how features are the end user’s view of an application and components are the
developer’s view of the same application. The Maneuver Through the IDE topic
gives an overview of the subject that this chapter is discussing in detail. The Design
Your Setup topic discusses how to create features, components, and how to associ-
ate the two. The Customize Your Setup topic outlines the steps that follow the cre-
ation of features and components. Here you are shown how to add files, define
registry entries, create shortcuts, and define advanced settings for the installation.
The fifth topic, Control Your Setup, discusses the use of sequence tables for con-
trolling how an installation will function. The Define End-User Dialogs topic dis-
cusses the creation of dialog boxes and the various options for configuring the user
interface. Finally, the Create a Release topic discusses the use of the Release Wizard
to create an MSI package. The Setup Map is an excellent tool for getting acquainted
with the high-level features of the ISWI product.

The Project Wizard Tutorial
This Project Tutorial introduces the Project Wizard, which you will make use of in
the next chapter to create the initial project for the ISWI Artist application. This
tutorial steps you through the creation of a sample application named Othello that
comes with ISWI. In addition to the source files for the Othello game application a
project file (.ism) is also shipped with ISWI as an example of what a simple project
should look like.

The 11 steps in this tutorial match the 11 panels that comprise the Project
Wizard. In each step you are provided an explanation of the information that the
Project Wizard is requesting. The Summary part of the tutorial explains the actions
that you need to take after creating the initial project. (See Figure 6-8.)

Chapter 6: Overview of the ISWI Authoring Tool 209

4723-2 ch06.f.qc 1/16/01 11:07 AM Page 209

Figure 6-8: The Project Wizard Tutorial overview screen

The ZAW Tutorial
The ZAW Tutorial is a step-by-step process that shows you how to create an instal-
lation through the IDE without using the Project Wizard. Figure 6-9 shows the
Overview screen for this tutorial.

Figure 6-9: The ZAW Tutorial Overview screen

The application installed in this tutorial also comes with ISWI and it consists of
a COM client and a COM server. The COM server is a local server and so is an exe-
cutable, as is the client. This application provides a good example of how to the
Component Wizard to create a component for the COM server that demonstrates
how to extract COM information so that you can place it in the appropriate tables.
It emphasizes the fact that even though the Windows Installer allows the self-
registration of COM servers it is better to extract the registration information and

210 Part II: Basic Package Creation with ISWI

4723-2 ch06.f.qc 1/16/01 11:07 AM Page 210

place it in tables so that the Windows Installer knows what is taking place. Self-
registration is considered a black box since the Windows Installer cannot know
what changes have been made to the system if you use self-registration for a COM
server and thus does not know how to properly rollback or uninstall what has been
done through the use of self-registration.

The Globalization Tutorial
The Globalization Tutorial provides an introduction to the capabilities in ISWI that
enable you to create localized installations. Figure 6-10 shows the Overview panel
of this tutorial.

Figure 6-10: The Globalization Tutorial Overview screen

This tutorial addresses four specific issues related to localizing an installation.
The first of these issues is the creation of a multilingual installation where the end
user can choose the language in which the installation is to be run. The second
issue is the creation of different MSI packages based on filtering the components
according to language. The filtering process would create different packages for
different languages. The third issue is the setting of conditions on the installation
of components based on the language of the operating system. A product could be
made to install different language versions based on the conditions set on the var-
ious components. The final main subject is the use of string tables and how they
simplify the creation of multilingual installations.

The demos
There are a number of demos sprinkled throughout the Help Library and the IDE
that will walk you through some of the more difficult tasks associated with creating
a setup project. If you are looking for information on a certain topic, or you just
want to browse the demos, you can launch them from the demos page.

Chapter 6: Overview of the ISWI Authoring Tool 211

4723-2 ch06.f.qc 1/16/01 11:07 AM Page 211

The Windows Installer Programmer’s Reference
The Windows Installer Programmer’s Reference is shipped with ISWI and you can
launch it from the Help view or from the Help pulldown menu. This help file provides
the detailed information that an advanced user needs to understand how the
Windows Installer works. You can also get the latest Windows Installer Programmer’s
Reference by downloading the MSI SDK from the Microsoft Web site at http://
msdn.microsoft.com/.

When you get to this site all you need to do is follow the download links for
SDKs to the Platform SDK and from there to the Windows Installer SDK. I recom-
mend that you check this site regularly for the latest information on the Windows
Installer.

Help Updates
The Help Updates link in the Help view takes you to the InstallShield Web site
where you can download the latest versions of the ISWI help files. I recommend
that you update these files regularly.

The Best Practices View
The purpose of the Best Practices view is to define the rules that comprise best prac-
tices for a Windows Installer setup. Best practices relate to creating components so
that you get the most out of the Windows Installer.

The term best practices was used by the draft versions of the Certified for

Windows 2000 Application Specification for Desktop Applications, but when

this specification was finally released, the term was changed to componenti-

zation rules. ISWI, however, has continued to use the earlier term.

The Best Practices view describes the rules for creating components, both those
checked by the Best Practices Wizard and those not directly checked.

Chapter 17 deals with the subject of components and how they are created,

ref counted, and shared. Dealing with components is one of the trickiest

things about creating Windows Installer packages.XREF

NOTE

212 Part II: Basic Package Creation with ISWI

4723-2 ch06.f.qc 1/16/01 11:07 AM Page 212

The Basic Menus and Toolbar
There are six pulldown menus and a basic toolbar in ISWI. Most of the items on
these menus and toolbar are disabled unless an active project is open. In the
descriptions in the rest of this chapter I assume that there is such a project open.
Let’s begin with the commands on the File pulldown menu.

The File menu
The File pulldown menu contains 10 command options, described in Table 6-1.

TABLE 6-1 THE FILE MENU OPTIONS

Menu Keyboard
Command Shortcuts Description

Project Wizard One of the three methods you can use to
launch the Project Wizard.

New Project Ctrl+N Takes you to the Create a New Project... screen
in the InstallShield Today view.

Open Project Ctrl+O Launches a File Open dialog that defaults to
the location where your projects are being
created. You specify this location in the
Options dialog, which we discuss later in this
chapter.

Close Project Closes the currently open project. If the
project contains unsaved changes, you will
be prompted to save them.

Save Project Ctrl+S Saves the currently open project. Only enabled
if the project actually has unsaved changes
and is disabled otherwise.

Save Project As... Allows you to save a project under another
name. The original project is still available.

Print Ctrl+P Prints the text of the script file that is loaded
in the Script Editor. Only applicable to the
Script Editor and is only enabled when the
focus is in this editor. You can use the Script
Editor to create Custom Actions using
InstallScript.

Continued

Chapter 6: Overview of the ISWI Authoring Tool 213

4723-2 ch06.f.qc 1/16/01 11:07 AM Page 213

TABLE 6-1 THE FILE MENU OPTIONS (Continued)

Menu Keyboard
Command Shortcuts Description

Print Setup... Launches the Printer Setup dialog where you
can set the print orientation, etc. Enabled only
when the focus is in the Script Editor and
there is an active printer to which the host
machine is connected.

Print Preview Lets you see what the printed page will look
like. Enabled only when the focus is in the
Script Editor and there is an active printer to
which the host machine is connected.

Exit Closes the ISWI application prompting you to
save changes.

As you can see, the commands in the File menu are somewhat standard for all
Windows applications. Now let’s move on to the Edit menu.

The Edit menu
On the Edit pulldown menu there are 10 command options and one sub-menu that
contains two command options. Table 6-2 describes these commands.

TABLE 6-2 THE EDIT MENU OPTIONS

Menu Keyboard
Command Shortcuts Description

Undo Ctrl+Z Only applicable to actions that have been
performed in the Script Editor. Undoes actions
(such as cut, copy, or paste) that have been
previously performed.

Redo Ctrl+Y Only active when the focus is in the Script
Editor; it reverses an Undo action in a script.

Delete Del Only active in the Dialog Editor; deletes a
selected control or group of controls. (In the
Script Editor the Delete key will delete any
highlighted portion of a script.)

214 Part II: Basic Package Creation with ISWI

4723-2 ch06.f.qc 1/16/01 11:07 AM Page 214

Menu Keyboard
Command Shortcuts Description

Cut Ctrl+X Active when you have highlighted text in the
Script Editor or selected a control or group of
controls in the Dialog Editor. Copies text or
controls to the clipboard and then deletes
the original.

Copy Ctrl+C Active when you have highlighted text in the
Script Editor or selected a control or group of
controls in the Dialog Editor. Copies text or
controls to the clipboard.

Paste Ctrl+V Active when you have copied text in the Script
Editor to the clipboard or when you have
copied a control or group of controls to the
clipboard in the Dialog Editor. Places text or
controls from the clipboard into a script in
the Script Editor or onto a dialog box in the
Dialog Editor.

Find... Ctrl+F Only active when the focus is in the Script
Editor. Launches a dialog that enables you
to search for a text string in a script.

Replace... Ctrl+H Only active when the focus is in the Script
Editor. Launches a dialog that enables you
to search for a text string in a script and to
replace it with another string.

GoTo... Ctrl+G Only active when the focus is in the Script
Editor. Launches a dialog that enables you to
immediately jump to a designated line number.

Repeat... Only active when the focus is in the Script
Editor. Launches a dialog that enables you
to define how many times to repeat the
next action.

Insert Only active when the focus is in the Script
Editor. It has two options on a sub-menu. The
first sub-menu option launches the InstallScript
Function Wizard, which enables you to insert
one of the supported InstallScript functions
into the script.

Continued

Chapter 6: Overview of the ISWI Authoring Tool 215

4723-2 ch06.f.qc 1/16/01 11:07 AM Page 215

TABLE 6-2 THE EDIT MENU OPTIONS (Continued)

Menu Keyboard
Command Shortcuts Description

The other sub-menu function enables you
to insert a string ID into a script so that the
script can use directly the text associated
with that string ID.

The next pulldown menu we need to discuss is the Build menu.

The Build menu
The Build menu contains those commands used to turn an ISWI project file (.ism)
into an MSI package. It also contains commands related to the use of InstallScript
to create custom actions. Table 6-3 describes these commands.

TABLE 6-3 THE BUILD MENU OPTIONS

Menu Keyboard
Command Shortcuts Description

Release Wizard Launches the Release Wizard used to build
new releases.

Compile Ctrl+F7 Compiles an InstallScript that is being used to
implement a custom action.

Build F7 Rebuilds the present build that was originally
created with the Release Wizard. If there is
no active release then this will create a new
release using default values.

Batch Build... Launches a dialog that enables you to choose
a set of Release labels to be built in sequence.

Stop Build Ctrl+Break Stops a build in progress.

Test Ctrl+T Tests the user interface of the current build
and release.

Debug F5 Debugs the InstallScript custom actions of the
current build and release.

216 Part II: Basic Package Creation with ISWI

4723-2 ch06.f.qc 1/16/01 11:07 AM Page 216

Menu Keyboard
Command Shortcuts Description

Run Ctrl+F5 Runs the installation for the current build and
release.

Compiler Settings... Launches a dialog that enables you to define
certain settings for the InstallScript compiler.

The next section addresses the Go menu.

The Go menu
The Go menu provides a set of navigational commands that enable you to move
around the IDE efficiently. Table 6-4 describes these navigational commands.

TABLE 6-4 THE GO MENU OPTIONS

Menu Command Description

InstallShield Today Takes you to the InstallShield Today view, described
earlier in the section of the same name.

Help/Support Takes you to the Help view, described earlier in the
section of the same name.

Best Practices Takes you to the Best Practices view, described earlier
in the section of the same name.

Project Only available when there is an open project. Takes
you to the Project view where the basic properties
that relate to the whole project and product are set.

Setup Design-Global Takes you to the Global sub-view of the Setup
Design view. In this view you can see all features,
components and merge modules that comprise the
design of the product.

Setup Design-Features Takes you to the Features sub-view of the Setup
Design view. In this view you can see only the
features that are part of the product design.

Continued

Chapter 6: Overview of the ISWI Authoring Tool 217

4723-2 ch06.f.qc 1/16/01 11:07 AM Page 217

TABLE 6-4 THE GO MENU OPTIONS (Continued)

Setup Design-Components Takes you to the Components sub-view of the Setup
Design view. In this view you can see only the
components that are part of the product design.

Setup Design-Merge Modules Takes you to the Merge Modules sub-view of the
Setup Design view. In this view you can see only the
merge modules that are part of the product design.

Setup Design-Destination Displays all the parts of the product design according
to the defined target destination.

Sequences Takes you to the Sequences view where you can
control the operation of the installation.

Actions/Scripts Takes you to the Actions/Scripts view where you can
create both standard and InstallScript-based custom
actions.

User Interface Takes you to the User Interface view where you can
design and modify the user interface to be used in
the installation.

Release Takes you to the Releases view where you can create
new builds or releases, or rerun builds and releases
that have already been created.

You can also access the Go menu commands through the View bar at the far left
of the IDE. You can access the sub-views of the Setup Design view from the icons
in the top title bar of the view. These icons are on the far right of this title bar when
you are in the Setup Design view.

The Tools menu
The Tools menu contains nine command options; seven of these options launch
wizards that help to create various parts of an installation project. Table 6-5 briefly
describes these commands. Later sections describe the wizards in more detail.

The majority of the tables in an MSI database are abstracted in one form or
another in the IDE. This means that by entering the properties through the IDE you
are defining the entries that are to be made in the various database tables when a
build is run. However, there are certain tables not exposed through the IDE; to make
entries in these tables you need another mechanism. This mechanism is the Power
Editor. It appears to make entries directly into the database, but actually it makes
additional entries into the project file, which are turned into database entries at
build time.

218 Part II: Basic Package Creation with ISWI

4723-2 ch06.f.qc 1/16/01 11:07 AM Page 218

TABLE 6-5 THE TOOLS MENU OPTIONS

Menu Command Description

Power Editor Launches an editor that enables you to make entries
into various tables that have not been exposed
through other parts of the IDE.

Import Visual Basic Project... Launches a wizard that enables you to import a Visual
Basic project and create an ISWI project.

Validate Project... Performs a validation against the project file much as
an MSI package is validated by Microsoft’s Msival2
utility.

Convert Source Paths... Launches a wizard that helps you convert absolute
paths in your project to path variables.

Create/Apply Transforms... Launches a wizard that enables you to generate
and/or apply a transform.

Add New Language... Enabled only when there is no project open. Creates a
new language and adds it to the languages that will
be available in future projects.

Create Patch... Launches a wizard that enables you to create a
patch package you can use to update one or more
installations.

DemoShield Designer... Launches the DemoShield designer that you can use to
create a browser for your product’s installation.

Options... Launches a dialog in which you can set various global
options for the projects you create.

The Options dialog launched with the Options... command on the Tools menu
enables you to define certain global functionality for all projects you create. The
Options dialog has four tabs: General, File Locations, Path Variables, and Dialog
Editor.

The General tab enables you to have the Best Practices Wizard on whenever you
create a project. It also enables you to always have the help file on top and the
SETUP.EXE launcher always created. On the File Locations panel you can define the
default locations for both installation projects and where Merge Modules will be
copied after they are created. On the Path Variables panel you can define whether
you want to be prompted for a path variable or not while working with paths for
source files. On the Dialog Editor panel you can choose to be prompted to save
unsaved changes in the Dialog Editor upon exiting.

Chapter 6: Overview of the ISWI Authoring Tool 219

4723-2 ch06.f.qc 1/16/01 11:07 AM Page 219

The Help menu
The Help pulldown menu supplies you with a set of commands that provide support
in using ISWI as well as keeping it up to date. Table 6-6 describes the commands in
this menu.

TABLE 6-6 THE HELP MENU OPTIONS

Menu Command Description

Help View Takes you to the Help view where you have direct access to
all the tutorials.

Help Library Launches the ISWI Help library.

MSI Help Library Launches the MSI Help library.

Setup Map Takes you to the Setup Map that provides a guide through
the ISWI IDE.

Readme Launches the release notes for the present version of ISWI.

InstallShield on the Web Takes you to the InstallShield Web site. (You need an
Internet connection for this command to work.)

Update... Gives you access to a sub-menu where you can take
advantage of the capabilities of Web Update. The two
commands on the sub-menu enable you to configure the
product to be updated over the Web and to perform this
update.

About InstallShield Launches the About box for the current version of ISWI.

The Toolbar
Many of the commands on the pulldown menus are mimicked on the Toolbar. The
Toolbar provides you with faster and more efficient access to these commands,
described in Table 6-7.

TABLE 6-7 BASIC TOOLBAR FUNCTIONALITY

Tool Icon Tool Name Description

Project Wizard Launches the Project Wizard.

220 Part II: Basic Package Creation with ISWI

4723-2 ch06.f.qc 1/16/01 11:07 AM Page 220

Tool Icon Tool Name Description

New Blank Setup Project Creates a blank setup project.

Open Project Opens an existing project.

Save Project Saves a project after changes have
been made.

Insert InstallScript Launches the InstallScript Function
Function Wizard.

Release Wizard Launches the Release Wizard.

Compile Compiles an InstallScript that has been
created to implement custom actions.

Build Initiates a re-build on an existing project.

Stop Build Stops a build in process.

Test Runs a test of the user interface of the
present install package.

Debug Launches the debugger for an installation
that includes a custom action created
with InstallScript.

Run Runs the current installation.

DemoShield Designer Launches the DemoShield Designer.
(DemoShield must be installed on the
computer for this command to work.)

InstallShield Home Page Takes you to the InstallShield Web site
if you have an Internet connection.

Now that we have examined all the menu and toolbar items we need to investi-
gate the various parts of a project workspace.

The Project Workspace
You can create two types of projects in ISWI: main installation projects and Merge
Module projects. These two types of projects are similar in many ways, but because of

Chapter 6: Overview of the ISWI Authoring Tool 221

4723-2 ch06.f.qc 1/16/01 11:07 AM Page 221

the nature of an MSI package and a Merge Module there are significant differences as
well. In the following sections we briefly discuss the workspaces for both a main
installation project and a Merge Module project.

Installation project workspace
The installation project workspace has six views that give you access to the prop-
erty screens by means of which you can create a main installation project. These
are the Project, Setup Design, Sequences, Actions/Scripts, User Interface, and
Release views. You can access them by clicking the icons in the left viewbar. Figure
6-11 shows the Project view of the Installation Project Workspace.

Figure 6-11: The Install Project Workspace

You can use the Project view to define properties that impact the global opera-
tion of the installation as well as the build environment. The Setup Design view is
where you put together the product design, which you define by creating features
and components. The Sequences and Actions/Scripts views are where you can exert
control over the installation process. The User Interface view enables you to define
the user interface to be used during the installation and the Release view enables
you to control the build process used to create the installation package.

222 Part II: Basic Package Creation with ISWI

4723-2 ch06.f.qc 1/16/01 11:07 AM Page 222

Chapters 7, 8, and 9 address the Project Workspace in detail.

Merge Module workspace
The other type of workspace in ISWI is the one in which you create and build a
Merge Module project. In this workspace there are five views, which you can access
from the icons in the viewbar on the left of the screen. Figure 6-12 shows the
Project view of the Merge Module workspace.

Figure 6-12: The Merge Module Workspace

The available views in the Merge Module workspace perform like the analogous
views in the Installation Project workspace, with the single exception that there is
no Sequences view in the Merge Module workspace.

Chapter 17, where we discuss the concept of shared components, covers

Merge Module creation in detail.

XREF

XREF

Chapter 6: Overview of the ISWI Authoring Tool 223

4723-2 ch06.f.qc 1/16/01 11:07 AM Page 223

Project Creation Wizards and Tools
ISWI contains many wizards and tools to help you create installation projects. This
section provides an overview of each of these wizards and tools, most of which
you’ll use throughout the book to create actual projects.

The wizards
A wizard is series of dialog boxes linked together to provide you with step-by-step
instructions that lead us through performing a given activity. Some wizards consist
of only one or two dialogs; others consist of many dialogs. The length of the wiz-
ards depends on the complexity of the task. However, even though a wizard will
give you step-by-step instructions, it does not do away with the need to know the
underlying technology. Wizards ask many questions and the only way you can
answer these questions is by knowing what the wizard is trying to accomplish. Now
let’s take a look at each of the available wizards and see the purpose of each.

THE PROJECT WIZARD
The Project wizard creates an InstallShield setup project by prompting you for
information about the application and providing us with smart defaults, such as
suggested features and components, and standard dialogs. You can also open an
existing project in the Project wizard in order to edit it.

You can launch the Project wizard by doing any of the following:

◆ Clicking the Project Wizard button on the toolbar

◆ Selecting the Project Wizard option from the File pulldown menu

◆ Clicking the InstallShield Today shortcut on the viewbar to open the
InstallShield Today view and then clicking the Use the Project Wizard
option

◆ Selecting the New Project option from the File menu and then double-
clicking the Project Wizard icon

The Welcome dialog of the Project Wizard is shown in Figure 6-13. In this first
dialog of the Project Wizard are listed all the dialogs that comprise this wizard. By
placing the mouse cursor over the name of any of the dialogs in you will get a
description of the purpose of the dialog. Once you have run through the wizard,
you can save the project or build the first release. The project will then open in the
IDE so you can add the additional project properties that you couldn’t enter in the
Project Wizard.

224 Part II: Basic Package Creation with ISWI

4723-2 ch06.f.qc 1/16/01 11:07 AM Page 224

Figure 6-13: The Project Wizard Welcome Dialog

THE RELEASE WIZARD
The Release wizard provides an easy way for you to build a release for a product
and specify the settings particular to that release.

You can launch the Release Wizard by doing any of the following:

◆ Clicking the Release Wizard button on the toolbar

◆ Selecting the Release Wizard option from the Build pulldown menu

◆ Right-clicking the Release icon in the Release view and selecting the
Release Wizard option from the Context menu

◆ Highlighting a build label in the Release view and then clicking on the
Release Wizard action item in the right-hand panel

◆ Right-clicking a release label in the Release view and selecting the Release
Wizard option from the context menu

The Welcome dialog of the Release Wizard is shown in Figure 6-14. There is also
a build option that builds the release highlighted in the Release view. This option
will also build a product’s first release using default settings. Any of the following
will access the rebuild functionality:

◆ Clicking the Build button on the toolbar

◆ Selecting the Build option from the Build pulldown menu

Chapter 6: Overview of the ISWI Authoring Tool 225

4723-2 ch06.f.qc 1/16/01 11:07 AM Page 225

◆ Right-clicking on a release label in the Release view and selecting the
Build option from the context menu

All builds performed in the IDE will provide output in an output window at the
bottom of the screen. The output window will show any errors or warnings gener-
ated during the build. An alternative to using the Release Wizard or the rebuild
function is to perform builds from the command line. Using the command-line
options to build a release can help automate the build process.

Figure 6-14: The Release Wizard Welcome Dialog

THE BEST PRACTICES WIZARD
This wizard is invoked whenever you violate Setup Best Practices while adding files
to a component — that is, whenever you have broken one of the rules associated
with creating components. The wizard tells you which Best Practices you are not
adhering to and prompts you for a correction. The wizard is only enabled if you
have activated it through either the Best Practices check box in the Options dialog
or the Welcome panel of the Project Wizard.

The Best Practices Wizard monitors three componentization rules:

◆ Every .exe, .dll, .ocx, .hlp, and .chm file has to reside in its own component.

◆ No component should ship a file with the same name as the name of a file
in another component.

◆ No component should contain a file that is also available in a Merge
Module.

226 Part II: Basic Package Creation with ISWI

4723-2 ch06.f.qc 1/16/01 11:07 AM Page 226

The Welcome dialog of the Best Practices Wizard is shown in Figure 6-15. Using
the Welcome dialog of the Best Practices Wizard, you can turn off the Best Practices
Wizard for all future file-add operations.

Figure 6-15: The Best Practices Wizard Welcome Dialog

THE OPEN PROJECT WIZARD
The Open Project Wizard enables you to import an InstallShield Professional pro-
ject (version 5.5 or later) into InstallShield for Windows Installer. Most of the infor-
mation in the Professional project can be migrated over, but some of the
information is either not supported by the Windows Installer service or supported
differently.

When this wizard has completed, you will have a new InstallShield for Windows
Installer project that contains all of the settings and files and much of the logic in
the InstallShield Professional project.

You can launch the Open Project Wizard by following these steps:

1. Click the Open File button on the toolbar or select Open Project from the
File menu.

2. In the dialog that appears, select InstallShield Professional Projects (*.ipr)
from the Files of Type option.

3. Navigate to the Professional project that you want to open and click Open.

The Welcome dialog of the Open Project Wizard is shown in Figure 6-16.

Chapter 6: Overview of the ISWI Authoring Tool 227

4723-2 ch06.f.qc 1/16/01 11:07 AM Page 227

Figure 6-16: The Open Project Wizard Welcome Dialog

THE OPEN MSI/MSM WIZARD
The Open MSI/MSM Wizard enables you to import setup packages and merge mod-
ules into ISWI. The wizard walks you through importing an .msi or an .msm file.

You can launch the Open MSI/MSM Wizard by following these steps:

1. Select the Open Project button on the toolbar and browse to the location
of the .msi or .msm file.

2. Select either Windows Installer Packages (*.msi) or Windows Installer
Modules (*.msm) from the Files of Type list provided in the browse dialog.

3. Select the MSI package or Merge Module you want to open and click the
Open button.

The Welcome dialog of the Open MSI/MSM Wizard is shown in Figure 6-17.
Once the desired Windows Installer database is selected the Open MSI/MSM wizard
gathers the options for converting the file and then tells you if it has been success-
ful in creating the setup or merge module project.

THE COMPONENT WIZARD
The Component Wizard provides two options for creating components. You can
create components using Best Practices or you can select a component type and
define the component properties yourself.

228 Part II: Basic Package Creation with ISWI

4723-2 ch06.f.qc 1/16/01 11:07 AM Page 228

Figure 6-17: The Open MSI/MSM Wizard Welcome Dialog

When you create components using Best Practices you give the wizard all of
your application’s files and have it create all the necessary components according
to the Setup Best Practices. With the second option you select a specific component
type and then define the special treatment required for the component during
installation and uninstallation. The special types of components you can create
with this option are:

◆ COM server

◆ Install NT services

◆ Control NT service

◆ Fonts

◆ ODBC resources

The Welcome dialog of the Component Wizard is shown in Figure 6-18. The
Component Wizard is not intended for modifying existing components. Once you
create a component using the Component Wizard you need to do any further edit-
ing of the properties, files, advanced settings, and the like in the Setup Design view.

Chapter 6: Overview of the ISWI Authoring Tool 229

4723-2 ch06.f.qc 1/16/01 11:07 AM Page 229

Figure 6-18: The Component Wizard Welcome Dialog

THE IMPORT REG FILE WIZARD
InstallShield enables you to import an existing REG file that you obtained from
other setup projects or created outside the IDE. To import a REG file into a compo-
nent you need to launch the Import REG File Wizard by following these steps:

1. In the Setup Design view, click a component’s Registry Data icon to dis-
play its visual registry editor.

2. Right-click Registry Data icon in the registry editor and select the Import
REG File option from the context menu.

The Welcome dialog of the Import REG File Wizard is shown in Figure 6-19.
When you import a REG file into a component, that registry data will be added to
the component’s registry data and written to the end user’s system when the com-
ponent is installed.

THE EXPORT REG FILE WIZARD
InstallShield also enables you to export to a REG file the existing registry data that
has been defined for a component. To export a REG file from a component you
need to launch the Export REG File Wizard by following these steps:

1. In the Setup Design view, click a component’s Registry Data icon to dis-
play its visual registry editor.

2. Right-click the Registry Data icon in the registry editor and select the
Export REG File option from the Context menu.

The Welcome dialog of the Export REG File Wizard is shown in Figure 6-20.

230 Part II: Basic Package Creation with ISWI

4723-2 ch06.f.qc 1/16/01 11:07 AM Page 230

Figure 6-19: The Import REG File Wizard Welcome Dialog

Figure 6-20: The Export REG File Wizard Welcome Dialog

THE MERGE MODULE WIZARD
The Merge Module Wizard associates merge modules with one or more of the fea-
tures defined in an application. When running this wizard you are presented with a
gallery of all the merge modules that have been saved to the Merge Module loca-
tions defined on the File Locations tab of the Options dialog. To launch the Merge
Module Wizard, follow these steps:

1. Go to the Global sub-view of the Setup Design view.

2. Right-click an existing feature or subfeature and select the Merge Module
Wizard option on the context menu.

Chapter 6: Overview of the ISWI Authoring Tool 231

4723-2 ch06.f.qc 1/16/01 11:08 AM Page 231

The Welcome dialog of the Merge Module Wizard is shown in Figure 6-21.

Figure 6-21: The Merge Module Wizard Welcome Dialog

THE CUSTOM ACTION WIZARD
The Custom Action Wizard enables you to define custom actions to be used during
the running of the installation package. Custom actions are the means by which
you can extend the built-in capabilities of the Windows Installer. To launch the
Custom Action Wizard, follow these steps:

1. Open the Actions/Scripts view.

2. Right-click the Custom Action icon in the Actions/Scripts view and select
the Custom Action Wizard option from the Context menu.

The Welcome dialog of the Custom Action Wizard is shown in Figure 6-22. When
you complete the definition of a custom action you need to go to the Sequences
view and put this custom action where it will be executed by the Windows Installer.

THE VISUAL BASIC WIZARD
The Visual Basic Wizard enables you to import Visual Basic projects into an
InstallShield setup. The wizard scans the Visual Basic project and determines all file
dependencies. It then displays the results of the scan, showing the files that it will
add to the ISWI project. You can also create a new setup project by scanning a
Visual Basic project when there is no setup project open in ISWI. The Visual Basic
Wizard requires that Visual Basic be installed on the build system. Selecting the
Import Visual Basic Project option from the Tools menu launches the Visual Basic
wizard. The Welcome dialog of the Visual Basic Wizard is shown in Figure 6-23.

232 Part II: Basic Package Creation with ISWI

4723-2 ch06.f.qc 1/16/01 11:08 AM Page 232

Figure 6-22: The Custom Action Wizard Welcome Dialog

Figure 6-23: The Visual Basic Wizard Welcome Dialog

THE VALIDATE PROJECT WIZARD
The Validate Project Wizard performs an internal consistency evaluation on an
InstallShield project (.ism) file. This wizard scans the ISWI project file for compli-
ance with a set of rules modeled after the internal consistency evaluators developed
by Microsoft for validating an actual MSI database. Selecting the Validate Project
option from the Tools menu launches the Validate Project wizard. After the wizard
has completed the validation process, it generates a report alerting you to any
instances of noncompliance with the rules. The Welcome dialog for the Validate
Project Wizard is shown in Figure 6-24.

Chapter 6: Overview of the ISWI Authoring Tool 233

4723-2 ch06.f.qc 1/16/01 11:08 AM Page 233

Figure 6-24: The Validate Project Wizard Welcome Dialog

THE CONVERT SOURCE PATHS WIZARD
The Convert Source Paths Wizard enables you to convert existing hard-coded paths
into path variables. By creating path variables for locating the source files of an
application you can enhance the portability of a setup project. Selecting the
Convert Source Paths option from the Tools menu launches the Convert Source
Paths wizard. The Welcome dialog of the Convert Source Paths Wizard is shown in
Figure 6-25.

Figure 6-25: The Convert Source Paths Wizard Welcome Dialog

234 Part II: Basic Package Creation with ISWI

4723-2 ch06.f.qc 1/16/01 11:08 AM Page 234

THE ADD NEW LANGUAGE WIZARD
If you need your setup to run in languages that aren’t supported by InstallShield’s
international versions, or would like to create your own translations for some of the
supported languages, you can add support for those languages with the New
Language Wizard. This wizard enables you to select the languages you would like to
support and the projects to which you would like to add these languages. It then
adds the languages you have chosen to the list of available languages for the setup.
Selecting the Add New Language option from the Tools menu launches the New
Language Wizard, which is only enabled when there are no open projects in the IDE.
The Welcome dialog of the Add New Language Wizard is shown in Figure 6-26.

Figure 6-26: The Add New Language Wizard Welcome Dialog

THE TRANSFORM WIZARD
The Transform Wizard walks you through the steps involved in creating and apply-
ing transforms. Transforms represent the difference between two MSI databases.
When you apply a transform to an MSI database you are permanently changing the
target MSI database.

Selecting the Create/Apply Transform option on the Tools menu launches the
Transform Wizard. After launching the Transform Wizard, you can choose whether
to create a transform or to apply a transform in the Welcome dialog. The Welcome
dialog of the Transform Wizard is shown in Figure 6-27.

THE PATCH WIZARD
The Patch Creation Wizard builds a patch package (.msp) file capable of updating
earlier versions of an installed product. Specifically, you can use a patch package to
update or upgrade an installed image for an earlier version of a product. Selecting
Create Patch from the Tools menu launches the Patch Wizard. The Welcome dialog
of the Patch Wizard is shown in Figure 6-28.

Chapter 6: Overview of the ISWI Authoring Tool 235

4723-2 ch06.f.qc 1/16/01 11:08 AM Page 235

Figure 6-27: The Transform Wizard Welcome Dialog

The wizard is independent of any setup or merge module projects that may be
open in the IDE. It does not affect the current project, and you can create a patch
for a completely different release from the current one. All settings for creating the
patch package are stored in a patch creation project (.pcp) file, which is completely
separate from any ISWI project (.ism) file.

Figure 6-28: The Patch Wizard Welcome Dialog

The tools
In addition to the wizards that help you create installation projects, ISWI also pro-
vides you with various tools for the same purpose. These tools do not run as wiz-
ards and as such fall into another category. This section provides a brief overview
of each of these tools.

236 Part II: Basic Package Creation with ISWI

4723-2 ch06.f.qc 1/16/01 11:08 AM Page 236

THE DIALOG EDITOR
The Dialog Editor is a visual resource editor similar to the one in Visual C++ or
Visual Basic. Using the ISWI Dialog Editor you can create a new dialog box or
modify an existing dialog by editing its properties and controls. You get to the
Dialog Editor through the User Interface view in the IDE.

The User Interface explorer manages versions of the dialog for each of a project’s
supported languages. To edit an existing dialog you need to select a language-
specific version of the dialog. The different language versions of a dialog remain
identical except for any changes to a control’s size.

There are two toolbars associated with the Dialog Editor: the alignment and siz-
ing toolbar, and the controls toolbar. Enable them by entering the Dialog Editor.

In Chapter 9 we take a detailed look at the Dialog Editor and how you can

use it to modify existing dialogs as well as create new ones.

THE SCRIPT EDITOR
The ISWI installation development environment (IDE) includes a full-featured text
editor that is activated automatically whenever you open a script file for the pur-
pose of implementing a custom action. The InstallShield script editor operates much
like other standard Windows editors. The script editor includes the following func-
tionality:

Over 120 separate edit More than 120 separate edit commands can be
commands assigned to keystrokes that you can invoke when

developing scripts.

Keystroke macros You can record a series of keystrokes as a macro
and run the macro to play back the keystrokes
whenever desired. You can record up to 10 macros.

Drag-and-drop text You can drag and drop highlighted text among
manipulation any windows supporting OLE text drag-and-drop.

You may copy or move text.

Multiple split views You can create up to four separate views of
the same edit buffer and scroll each view
independently.

Unlimited undo/redo All edit actions are fully undoable and redoable,
though you can set a limit on the number of edit
actions that may be undone.

XREF

Chapter 6: Overview of the ISWI Authoring Tool 237

4723-2 ch06.f.qc 1/16/01 11:08 AM Page 237

Auto indentation As you enter code, the editor automatically indents
lines to follow the rules you have chosen.

Column selection and You can select columns of text with the mouse
manipulation and then manipulate them. You can select empty

columns (columns with a width of zero characters),
causing subsequent typing and deletion to occur
over multiple lines at the same time.

Microsoft IntelliMouse With the Microsoft IntelliMouse you can easily
support scroll as well as select lines or words.

DEMOSHIELD DESIGNER
This tool is actually a separate product that you can launch from the ISWI IDE, pro-
vided you have ISWI installed. You can use the DemoShield Designer to create a
browser front end for an installation package. Discussing how to create browsers
using DemoShield is unfortunately beyond the scope of this book.

SPY
NetInstall Spy is an application that will track a target system and produce a list of
changes. You can then open InstallShield for Windows Installer to create a setup
project based on those changes.

Although you can run Spy and ISWI on the same machine, it is not recom-

mended. Spy will provide a much more accurate snapshot of the changes to

the system if it is run on a clean machine.

More specifically, Spy will evaluate all the files, registry entries, shortcuts, ser-
vices, and system settings, and just about anything else that is part of an installa-
tion. Once it has completed this initial system evaluation, you can run any
installation that you would like to capture. If you want to bundle multiple installa-
tions, just run them one after the other. Finally, you need to run Spy again, this
time to check for changes in the system since the last time you ran Spy. When Spy
has completed, it will create an .inc file, which contains references to all the
changes that took place. You can then open this .inc file with InstallShield for
Windows Installer to create a new setup project based on the changes.

WEB UPDATE
Web Update enables you to distribute the latest versions of all of your applications
to any customers who have bought your software before. When an end user installs
any of your Web Update–enabled applications, the Web Update Client is also
installed, and enabling the user to see if a newer version of the application is cur-
rently available for download. When an end user checks for updated versions of

Tip

238 Part II: Basic Package Creation with ISWI

4723-2 ch06.f.qc 1/16/01 11:08 AM Page 238

your applications, the Web Update client compares the latest version of the appli-
cation available on your Web server to the version installed on the customer’s com-
puter. If the version on the Web server is newer, the end user can install it.

Summary
In this chapter we have looked into every corner of the InstallShield for Windows
Installer product, albeit briefly. In the next three chapters you’ll get much closer to
ISWI as you create an actual installation and learn how to work with all the capa-
bilities of ISWI.

Chapter 6: Overview of the ISWI Authoring Tool 239

4723-2 ch06.f.qc 1/16/01 11:08 AM Page 239

4723-2 ch06.f.qc 1/16/01 11:08 AM Page 240

Chapter 7

Basic Installation Package
Creation with ISWI

IN THIS CHAPTER

◆ Using the Project Wizard

◆ Modifying the String Table Editor to create new string IDs

◆ Adding additional feature and component properties using the IDE

◆ Modifying the shortcut properties in the IDE

◆ Creating a file extension association for the application

◆ Using the Release Wizard to create an installation package

THIS CHAPTER INTRODUCES YOU to creating a basic installation package using Install
Shield for Windows Installer. Essentially you will be repeating the work that you
did in chapters 4 and 5.

The Product to be Installed
You can find the files that comprise the application you’ll install in this example on
the accompanying CD-ROM, along with the source code from which these files were
generated. The name of this application is ISWI Artist. It is a basic application that
uses a COM DLL for one of its components. The functionality of this application is
somewhat trivial but it will demonstrate the complexity of creating an installation
without an authoring tool. This application draws certain text or objects on the
screen at the location of the cursor when the left mouse button is clicked. Figure 7-1
shows the feature and component layout for this application.

241

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 241

Figure 7-1: Feature and component layout of the example product

Figure 7-1 shows two top-level features and one sub-feature. The sub-feature is a
child of Feature 1. All the features are comprised of one component each. Feature 1
is the main application and Feature 2 provides the on-line help in the form of an
HTML page. Feature 2 is implemented as a standard dynamic-link library that
launches Internet Explorer to display the HTML help page. The sub-feature of
Feature 1 provides more graphics functionality to the product that enables you to
display various graphics primitives. These graphics primitives are shown in different
colors when this sample application is run. This functionality is implemented as a
COM DLL to necessitate making the entries in the COM-related tables.

Creating the Initial Project with the
Project Wizard
You are going to create the initial cut of the project using the Project Wizard, and
then finish off the project using some of the wizards available by making entries
directly in some of the property screens in the IDE. By the time you finish creating
and building this project you will have used many of the various features in ISWI.

Product
ISWI Artist

Feature 2
Help

Feature 1
"Hello ISWI" Text

Wheel

Component 1
ISWI Artist.exe

Sub-Feature 1
"Hello ISWI"

Shapes

Component 2
ISWI Artist Help.dll

ISWI Artist Help.html

Component 3
ShapeArtist.dll

242 Part II: Basic Package Creation with ISWI

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 242

Get started by launching the Project Wizard. You can do this by double-clicking
the Project Wizard icon in the Create a new project... screen of the InstallShield
Today view. You can also access the Project Wizard from the File pulldown menu or
by clicking the Project Wizard icon in the toolbar. When you launch the Project
Wizard, you will see the Welcome panel of the wizard as shown in Figure 7-2.

Figure 7-2: The Project Wizard Welcome dialog

This first panel of the Project Wizard provides a list of all the panels in the wiz-
ard. As you can see, there are a total of 11 panels in this wizard. If you place your
cursor over the name of any of these panels, you will see a description of the pur-
pose of the panel. At the bottom of this first panel you can see a check box with the
caption Ignore Best Practices violations. This enables you to have ISWI warn you of
any violations of what are called Best Practices.

Best Practices are explained in the Best Practices view. They relate to the rules you
need to follow when creating components to be installed by the Windows Installer. In
essence, when creating components you need a separate component for every file
that has an .exe, .dll, .ocx, .hlp, or .chm extension. Each of these files must also be the
key path for its component. In addition, no component can be the target for more
than one shortcut and all files in any component must have the same destination.

The term Best Practices refers to what the draft versions of the “Certified for

Windows 2000” requirements called the rules for creating components.

When these requirements were finally released, the requirements used this

term for something else, but in ISWI it stuck around and still relates to the

rules for creating components.

Tip

Chapter 7: Basic Installation Package Creation with ISWI 243

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 243

The Options... command is at the bottom of the Tools pulldown menu. On the
General tab of the resulting dialog box there is an option for setting the default
approach used to handle Best Practices violations. If you uncheck this box in the
Options dialog, every time you launch the Project Wizard the check box at the bot-
tom of panel 1 will be checked. For this exercise you should have ISWI warn you of
any violations of the Best Practices rules so you will want to have the Enforce Setup
Best Practices checkbox checked in the Options dialog.

Let’s click the Next button and go to the second wizard panel. This is where you
will enter the name of the project to be created. Enter the project name ISWI Artist
as shown in Figure 7-3.

Figure 7-3: Entering the project name in the second dialog of the Project Wizard

From this panel you can create a new project or open a recently created project.
You also can browse for a project in another location by choosing the third option
on this panel.

Clicking the Next button takes you to the third panel in the Project Wizard. On
this panel you make entries that set certain properties that will be entered into the
Property table at build time. This wizard panel is shown in Figure 7-4.

You need to make the entries shown in this figure. The Project Wizard will not
let you leave any of these properties empty. The top three entries in this panel are
part of the set of five required properties that every MSI package must contain. The
Default Destination Folder edit field is where you set the initial value of the
INSTALLDIR Directory table entry. In Chapter 4 you used a custom action to set the
default value for the TARGETDIR Now INSTALLDIR is being used to serve the same
function as TARGETDIR did in Chapter 4. The difference is that you do not have to
use a custom action to set the default value of INSTALLDIR.

244 Part II: Basic Package Creation with ISWI

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 244

Figure 7-4: Providing basic property values in the Application Information dialog

The setting of the default destination of a product comes from the format required
by the “Certified for Windows” application specification. The general format for the
installation location for an application is the program files folder followed by a
folder with the name of the company that creates the application and finally a folder
with the name of the application being installed. Since the location of the Program
Files folder depends on where the operating system is installed this location is
treated as a project path variable. As you will notice, the Default Destination Folder
is filled in automatically when you enter the values in the Application Name and
Company Name edit fields.

In the Help Telephone edit field you need to enter the telephone number that the
user can call for technical support for the product being installed. The entry made
here sets the value of the ARPHELPTELEPHONE public property. The value of this
property is displayed in the Add/Remove Programs Applet in Windows 2000. The
final edit field on this wizard panel is the URL of the company or the product. This
entry sets the value of the ARPURLINFOABOUT public property, which is also dis-
played in the Add/Remove Programs Applet in Windows 2000.

Chapter 8 discusses properties and the types of properties you can find in

an MSI database.

Now let’s move on to the next panel. Click on the Next button to get the panel
shown in Figure 7-5.

XREF

Chapter 7: Basic Installation Package Creation with ISWI 245

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 245

Figure 7-5: Selecting the languages in the Setup Languages dialog

In this panel you can choose additional languages in which to run your setup.
The appropriate language packs must be installed for this functionality to work. If
you do not have the appropriate language pack and you try to select a language,
you will be given an error message box containing a link to the InstallShield Web
site where the language packs are sold. For this example application you will create
an installation in English, which is the default language.

Chapter 19 discusses how to localize an installation.

Now let’s move on to the next panel in the Project Wizard. This panel, the
Application Features panel, is where you start to actually design the structure of the
application. This panel is shown in Figure 7-6.

When this panel is first displayed, you are presented with three default feature
names. For your example application you will change these default features to the
ones shown in Figure 7-6. You need to make sure to make the ShapeDraw_Feature
feature a child of the Main_Feature feature. You can use the Add, Delete, and
Rename buttons to add, delete, and rename the features shown in the Features
panel. You can also right-click a feature and get a context menu that enables you
to do the same thing. On this context menu you also get options that enable you to
restructure the feature tree. You can move a feature up or down and this changes

XREF

246 Part II: Basic Package Creation with ISWI

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 246

things in the Features panel. It will also change the order of how these features
appear in the custom setup type dialog in the user interface. You can also change
the relationship between features by choosing the Move Left or Move Right options
on the context menu. Use the Move Up or Move Down options to position a feature
relative to another in order to then change the relationship by using the Move Left
or the Move Right options.

Figure 7-6: Defining the application features in the Application Features dialog

When you create a feature name, you cannot use spaces or any other characters
you can’t include in the name of a feature in the Feature table. The names that you
create are used as the names of the features in the Feature table. A feature name
can be any string that contains letters, digits, periods (.), or the underscore (_), as
long as it begins with an underscore or a letter.

After you generate the feature structure for your application you need to define
the components that make up the application. You can do this in the next panel of
the Project Wizard, shown in Figure 7-7.

When this panel is first displayed, it contains four default components. Delete
these and create new components with the names shown in Figure 7-7. Instead of
deleting all four default components you could delete just one of them and give the
remaining components to the names that we want. When naming components in this
panel, you need to follow the same rules you followed when naming the features in
the previous panel.

You can click the right mouse button on a selected component and get a context
menu that enables you to either delete or rename the component. If you right-click
the topmost item in the Components panel, you are given the option to create a

Chapter 7: Basic Installation Package Creation with ISWI 247

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 247

new component; you can also either have the components sorted in this view or
have them displayed in the order in which they are created. Except for toggling the
sorting of the components in the Components panel, you can perform all the same
actions using the buttons at the bottom of the Components panel.

Figure 7-7: Defining the application components in the Application Components dialog

When you highlight a component in the Components panel of the Application
Components dialog, the Component Destination Folder edit field, the Standard
Destination Folders combo box, and the Files are self-registering check box are all
enabled. By default, the destination of any component is set to be the same as pre-
scribed by the INSTALLDIR variable. You can change this destination by adding a
sub-folder to the default using the following format: <INSTALLDIR>\Docs. Doing
this forces the creation of a folder named Docs under the root installation location
of the application. You can also choose a Windows Installer–defined location by
choosing a different install location from the Standard Destination Folders drop-
down combo box. Doing this forces the component to a specific location defined by
the operating system. The component goes to this location regardless of the final
install location for the feature that contains the component.

In the Application Components dialog you can define a component as being self-
registering. Do this by checking the check box located below the Standard Destination
Folders combo box. When you have identified a component as self-registering, the
Windows Installer will call the exported function DllRegisterServer, which will per-
form all the registration of the COM server DLL. Similarly, on uninstallation the
Windows Installer will call the function DllUnregisterServer to remove the registry
information for the COM component.

248 Part II: Basic Package Creation with ISWI

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 248

I strongly recommend that installation package authors not use self-registration.
Instead they should register modules by authoring one or more of the other tables
provided by the installer for this purpose. Using the component wizard in ISWI
makes it easy to extract the COM information from a COM server. Many of the ben-
efits of having a central installer service are lost with self-registration because self-
registration routines tend to hide critical configuration information. The following
list shows the reasons why you do not to use the self-registration for COM servers:

◆ You cannot safely roll back installation done with self-registered modules
using DllUnregisterServer because there is no way to tell if the self-registered
keys are being used by another feature or application.

◆ Your ability to use advertisement is reduced if class or extension server
registration is performed within self-registration routines.

◆ The installer automatically handles HKCR keys in the registry tables for
both per-user and per-machine installations. DllRegisterServer routines
currently do not support the notion of a per-user HKCR key.

◆ If multiple users are attempting to use a self-registered application on
a computer, each one will have to install the application on first run
because the installer cannot easily determine that the proper HKCU
registry keys exist for that user.

◆ The DLLRegisterServer can be denied access to network resources such
as type libraries if a component is both specified as run-from-source and
listed in the SelfReg table. This can cause an administrative installation
to fail.

◆ Self-registering DLLs are more susceptible to coding errors because the
new code required for DllRegisterServer is often different for each DLL.
Instead, use the registry-related tables in the database to take advantage
of existing code provided by the installer.

◆ Self-registering DLLs can sometimes link to auxiliary DLLs that are not
present or are the wrong version. In contrast, the installer doesn’t need
to depend on the current state of the system to register the DLLs using
the registry-related tables.

In this example application you have one COM server DLL but do not want it to
be identified as self-registering. Therefore you do not check the check box.

Now that you have finished creating the components that comprise your appli-
cation you need to associate these components with the proper features. You do this
in the next dialog box in the Project Wizard, shown in Figure 7-8.

Chapter 7: Basic Installation Package Creation with ISWI 249

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 249

Figure 7-8: Finalizing the setup design by associating components with features in the Setup
Design dialog

When you highlight a feature in the Setup Design panel of this dialog, you get a
list of all the components in the Components panel that have not already been
associated with the highlighted feature. You need to remember that components
can be shared among features within an application or between the features of two
separate products. This is why you will always get a list of all components not used
by the feature in question. You need to make the feature/component association
shown in Figure 7-8.

Next you have to add files to each of the components you have created. When
you click the Next button on the Setup Design dialog, you are taken to the dialog
shown in Figure 7-9. In this dialog you are given a dropdown combo box that con-
tains a list of all the components that have been created in the project. For each of
the components in the list you can add files by using the Add Files... button on the
right of the dialog, by right-clicking in the Files panel and choosing the Add...
option, or by dragging files from a Windows Explorer view and dropping them into
the Files panel of this dialog.

When you add files to a component from a location not defined by one of the
preset path locations, you are presented with a dialog that asks you to define a path
variable for this location or to use the absolute path of the file to include it in the
build process. It’s a good idea to define path variables for all an application’s files
because you can then change the location this path variable points to. This makes
it easy to change the location on the build system where the application files are
located. The dialog that is presented is shown in Figure 7-10.

250 Part II: Basic Package Creation with ISWI

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 250

Figure 7-9: Adding files to the components using the Application Files dialog

Figure 7-10: The Path Variable Recommendation dialog

You can delete files from the component in the Application Files dialog by using
the push button to the right of the Files panel, or you can right-click the file you
want to delete and choose the Delete option on the context menu. When you add
files to a component, you need to remember to set one of the files as the key file for
the component. You can do this by highlighting the file to be set as the key file and
then clicking the Set Key File button to the right of the Files panel. You can also
clear a file as the key file by using the Clear Key File button. If you try to set a file
as a key file when there is already a key file, you get a message box asking whether
you want to change the present key file. Table 7-1 shows the files you must add for
each of the components you have created.

Chapter 7: Basic Installation Package Creation with ISWI 251

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 251

TABLE 7-1 COMPONENT AND FILE ASSOCIATION FOR THE ISWI ARTIST
APPLICATION

Component Associated Files

Help_Component ISWIArtistHelp.dll

ISWIArtistHelp.htm

MainExe_Component ISWIArtist.exe

ShapeDraw_Component shapeartist.dll

If you highlight a file in the Files panel and click the Properties... button, you get
the dialog shown in Figure 7-11. This dialog enables you to set the attributes of the
highlighted file that will be in effect when the file is installed.

Figure 7-11: The File Properties dialog

By default a file included in an installation will be installed with the same attrib-
utes it has on the build system. Unchecking the Use System Settings check box will
enable you to change the default attribute settings. At the bottom of the File
Properties dialog is a set of four check boxes that enable you to set the individual
attributes of the highlighted file. Read-only, Hidden, and System are the standard
file attributes with which everyone is familiar. The other attribute, Vital, is a special
attribute used by the Windows Installer to determine whether a file missing from a
component can safely be ignored or whether the installation must be terminated
because the file is not available.

If the Vital attribute is set and the component to which the file belongs is
selected for installation, the installer must be able to install this file for the instal-
lation to be completed successfully. If the installer is unable to install the file for

252 Part II: Basic Package Creation with ISWI

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 252

some reason (for example, if the source file cannot be located within the source
image), an error dialog box will appear with the options Retry and Cancel. For a file
for which this attribute is not set, the options in case of an install error will be
Abort, Retry, and Ignore (that is, the user can complete the install successfully with-
out installing that file).

In the File Properties dialog are two edit fields — Languages and Font Title. The
Languages edit field enables you to enter a comma-delimited list of language iden-
tifiers that indicate the languages supported by the highlighted file. The Font Title
edit file enables you to identify a font title for font files that do not have an embed-
ded font title. TrueType Fonts (.ttf) and TrueType Collections (.ttc) have embedded
font titles; you should not specify a font title for these types of files in this edit
field. For a standard font file (.fon) you will need to specify the font title in the Font
Title edit field.

Before we move on to the next dialog in the Project Wizard there is one last but-
ton we should discuss. This is the Details... button, which under most circumstances is
disabled. If you violate the rules for creating components, the offending file will be
indicated with a warning icon in the Files panel and when you select this file the
Details... button will become enabled. Clicking this button will display a message box
that describes the error generated when you added the file to the component. For
example, if you add a file to a particular component that is already part of another
component the error message will tell you that the file is already part of another com-
ponent.

Now that you have added files to your components and set any properties that you
want the files to have when they are installed, we move on to the next dialog in the
Project Wizard. The next dialog is where you create a shortcut for your application.
This dialog is shown in Figure 7-12.

Figure 7-12: Creating a shortcut in the Create Shortcuts dialog

Chapter 7: Basic Installation Package Creation with ISWI 253

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 253

When creating a shortcut, you need to decide whether you want a shortcut that
can be advertised or a standard shortcut only. A shortcut that can be advertised is
often referred to as an MSI shortcut. To create an MSI shortcut for the ISWI Artist
application, first select the component with which the shortcut is to be associated.
You can do this using the Components combo box where all the components that
have been created are listed. To associate the shortcut with the main executable select
the MainExe_Component and then create the name of the shortcut under the
Programs Menu icon in the Shortcuts panel of the Create Shortcuts dialog. Because
this component is to be installed wherever the <INSTALLDIR> variable points you do
not have to make any changes in the Standard Destination Folders combo box.
However, you do have to identify the source of the icon that is to be used to on the
Start →Programs menu. You can do this by browsing to the ISWIArtist.exe file using
the Browse button next to the Icon edit field. Since you want the first icon in
ISWIArtist.exe, leave the icon index at the default value of 0.

Do not identify a target for the shortcut because the key file for the MainExe_
Component will automatically be used as the target for the MSI shortcut. If you
wanted to create a standard shortcut, you would now identify a specific target for the
shortcut; then only a standard shortcut would be created. An MSI shortcut is one that
can be advertised because it contains extra information to implement this functional-
ity. Once installed an MSI shortcut cannot be edited and will be approximately three
times the size of a standard shortcut. If you right-click an MSI shortcut and select the
Properties option, you will see that on the Shortcut tab of the Properties dialog all
the edit fields are disabled so that you cannot change any of the shortcut attributes.

After completing the input required to create the shortcut for the ISWI Artist
application, go to the next dialog in the Project Wizard. This dialog enables you to
import a .reg file for each of the components you have created. This dialog is shown
in Figure 7-13.

Figure 7-13: Importing registry data using the Registry Data dialog

254 Part II: Basic Package Creation with ISWI

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 254

In the Components combo box you get a list of all the components that have been
created for the application. For each of these components you can browse to a .reg
file and import the information it contains. The information in the .reg file becomes
a permanent part of the project file when it is imported. For the ISWI Artist applica-
tion you do not have any need to import registry information, so you can just move
on to the next dialog in the Project Wizard. This dialog enables you to determine the
dialogs to be displayed when the application is installed. This is the Dialogs dialog
and it is shown in Figure 7-14.

Figure 7-14: Modifying the Installation Wizard using the Dialogs dialog

In the Dialogs panel is a list of five dialogs that you can decide to include or
exclude from the installation wizard sequence. You can highlight each of the dialogs
in the list and see the design of that particular dialog along with a description of
its purpose. For the installation of the ISWI Artist application you will deselect the
License Agreement dialog. This dialog requires an .rtf file and displays the End User
License Agreement (EULA) for the application. Because you do not have a EULA for
the application, you do not need to include this dialog in the installation you are
creating.

The last dialog in the Project Wizard is the Wizard Summary dialog where all the
input you made in the other wizard dialogs is summarized. In this final dialog you
can save the project and make an initial build of the installation package, or you can
just save the project. Choose to just save the project because you need to input more
information before completing the project. The Wizard Summary dialog is shown in
Figure 7-15.

Chapter 7: Basic Installation Package Creation with ISWI 255

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 255

Figure 7-15: The Wizard Summary dialog of the Project Wizard

Completing the Installation
Project in the IDE
You have generated the initial installation project using the Project Wizard. To fin-
ish this project off you need to go into the IDE and finalize a number of settings.
You will work down through all the views in the IDE making entries in each of the
property pages.

The Project view
In the Project view you need to set a number of properties that configure the over-
all project and the installation package. Let’s start with the Project Properties page.

PROJECT PROPERTIES
For the Author Name property enter the name of the setup developer creating the
setup package; in the Comments property enter a general string that identifies the gen-
eral purpose of the setup project. You do not have to do anything with the Setup
Languages property because you have already identified in the Project Wizard that the
setup language is to be English. Table 7-2 provides a description of the three proper-
ties that can be set for the project. The picture following Table 7-2 shows these three
properties in the ISWI IDE.

256 Part II: Basic Package Creation with ISWI

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 256

TABLE 7-2 PROJECT PROPERTIES IN THE PROJECT VIEW

Property Value Discussion

Setup Author Name Bob Baker Saved in the project file only;
does not make its way into
the MSI package.

Setup Languages English (United States) In the international editions of ISWI
you will be able to select additional
languages. For each language
selected a string table is generated
under the String Table Editor.

Authoring Comments This project Saved in the project file only;
demonstrates the does not make its way into the
creation of an MSI MSI package.
installation package
using both the Project
Wizard and the IDE.

SUMMARY INFORMATION STREAM PROPERTIES
Moving on to the Summary Information Stream properties, you need to enter val-
ues for some of the properties that were not covered by the Project Wizard input.
You need to modify the entries as shown in Table 7-3. The properties that you enter
here are used to create the Summary Information Stream in the Windows Installer
package when you build your project. The figure following Table 7-3 shows the
Summary Information Stream properties as they appear in the ISWI IDE.

Chapter 7: Basic Installation Package Creation with ISWI 257

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 257

TABLE 7-3 SUMMARY INFORMATION STREAM PROPERTIES IN THE PROJECT VIEW

Property Value Discussion

Title Installation Database Describes the type of package being
for ISWI Artist created. Other types of packages

would be merge modules, transforms,
and patches.

Subject ISWI Artist Provides to Windows Explorer the name
of the product that will be installed
with the MSI package. This is not the
same as the ProductName property in
the Property table.

Author ISWI Art Company Provides to a file browser the name
of the company that created the
MSI package. This is not the same
as the Manufacturer property in
the Property table.

Keywords Installer;MSI; Windows Explorer can be used to
Database perform a search for files containing

the keywords that are specified here.

Package Code {051F5172-1586- The unique identifier for the package;
11D4-823A-204C4 it must be different for every package
F4F5020} created. Stored in the Revision Number

property of the Summary Information
Stream.

Template Summary Defines both the CPU and the language
supported by the MSI package. Since
you have not entered any value here
ISWI will provide a default string of
Intel;1033, which means that the
package is for an Intel processor and
the supported language is English.

Comment Contains the logic This string, displayable in a file browser,
and data required to should convey the general purpose of
install ISWI Artist. the MSI package. By convention it reads

“This installer database contains the
logic and data required to install
<product name>.”

258 Part II: Basic Package Creation with ISWI

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 258

When you enter strings in the Summary Information Stream properties, you will
see that ISWI adds a default string ID in the form of {NEW_STRING1}. This will
happen every time you enter a string that the end user can see during the installa-
tion of the product. These strings are localized when you develop installations in
other languages. String IDs enable you to create localized installations. One of the
things you will do before completing this project is change these default string IDs
into something more readable.

WINDOWS 2000 PROPERTIES
In Windows 2000 there is a much more robust Add/Remove Programs applet than
you have seen in Windows NT 4.0 and Windows 9x. The properties that you enter
here are displayed in this new Windows 2000 feature. When you used the Project
Wizard, you already entered two of these properties, but you have to make other
entries directly in the IDE. All the properties you need to set in the Windows 2000
property page are described in Table 7-4. The figure following this table shows the
properties as they appear in the ISWI IDE.

TABLE 7-4 WINDOWS 2000 PROPERTIES IN THE PROJECT VIEW

Property Value Discussion

Display Icon <ArtistSources> The location of the icon that will
\ISWIArtist.ico be shown beside the product name

in the Add/Remove Programs applet in
Windows 2000. This must be an icon
and not a file from which an icon
is to be extracted. This sets the
ARPPRODUCTICON property in the
Property table, which is a foreign key
into the Icon table into which this
icon is streamed.

Continued

Chapter 7: Basic Installation Package Creation with ISWI 259

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 259

TABLE 7-4 WINDOWS 2000 PROPERTIES IN THE PROJECT VIEW (Continued)

Property Value Discussion

Disable Change No Disables the Change button in the
Button Add/Remove Programs applet in

Windows 2000 if set to Yes. When
set to Yes, it sets the ARPNOMODIFY
property in the Property table to
a value of 1.

Disable Remove No Disables the Remove button in the
Button Add/Remove Programs applet in

Windows 2000 if set to Yes. When
set to Yes, it sets the ARPNOREMOVE
property in the Property table to
a value of 1.

Disable Repair No Hides the Repair button in the Add/
Button Remove Programs applet in Windows

2000 if set to Yes. You can find this
button in the Support Info dialog. When
set to Yes, it sets the ARPNOREPAIR
property in the Property table to a
value of 1.

Publisher ISWI Art Sets the value of the Manufacturer
Company property in the Property table.

Publisher/ http://www. Sets the value of the
Product URL installshield. ARPURLINFOABOUT property

com in the Property table.

Product Version 1.00.0000 Sets the value of the ProductVersion
property in the Property table.

Support Contact Bob Baker Sets the value of the ARPCONTACT
property in the Property table.

Support URL http://www. Sets the value of the ARPHELPLINK
installshield. property in the Property table.
com

Support Phone 847-619-7017 Sets the value of the
Number ARPHELPTELEPHONE property

in the Property table.

260 Part II: Basic Package Creation with ISWI

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 260

Property Value Discussion

Read Me Sets the value of the ARPREADME
property in the Property table. This
information is displayed in the Support
Info dialog. If the readme file is being
installed with the product and you
want to show the location of this file,
you need to use a custom action to set
this property. ISWI provides a custom
action for this purpose that we will
discuss in Chapter 11. No value is
entered here for the ISWI Artist
application since the help file is
triggered from within the product.

Product Update http://www. Sets the value of the
URL installshield. ARPURLUPDATEINFO property

com in the Property table. Here users
can find update information about
the product.

Comments All problems with Sets the value of the ARPCOMMENTS
the ISWI Artist property in the Property table. These
application should comments are shown in the Support
be e-mailed to Info dialog of the Add/Remove
Bob Baker at Programs applet.
robertb@
installshield.
com.

Chapter 7: Basic Installation Package Creation with ISWI 261

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 261

Except for the Change and Remove buttons all information in the Windows

2000 Add/Remove Programs applet is shown in the Support Info dialog box.

PRODUCT PROPERTIES
The Project Wizard has created all the necessary entries on the Product Properties
page, but you do not want to use the Product Code and the Upgrade Code proper-
ties that have been created for you. If you have already created an installation for
ISWI Artist using the steps outlined in chapters 4 and 5, you need to use the
Product Code and Upgrade Code you used in that installation package. Table 7-5
shows the correct Product Code and Upgrade Code values and also describes the
other product properties.

TABLE 7-5 PRODUCT PROPERTIES IN THE PROJECT VIEW

Property Value Discussion

Product Name ISWI Artist Sets the value of the ProductName
property in the Property table.

Product Version 1.00.0000 Sets the value of the ProductVersion
is property in the Property table. This
the same value that was set in the
Windows 2000 property sheet
described in Table 7-4.

Product Type Internet Not used at this time. Leave it at the
Application value provided by default by ISWI.

Product Code {EA6F96C0- Sets the value of the ProductCode
11D3-8196- property in the Property table. You
204C4F4F5020} to use the same value you used in want

Chapter 4, so do not use the value
that ISWI generated for you when
you created the project using the
Project Wizard.

Upgrade Code {EA6F96C1- Sets the value of the UpgradeCode
11D3-8196- property in the Property table. You
204C4F4F5020} want to use the same value you used

in Chapter 4, so do not use the value
that ISWI generated for you when
you created the project using the
Project Wizard.

Tip

262 Part II: Basic Package Creation with ISWI

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 262

Property Value Discussion

Install Condition 0 conditions(s) If you want to specify any conditions
for the LaunchCondition table, enter
them here. Chapter 8 discusses launch
conditions.

Destination Folder <ProgramFilesFolder> Sets the value for the INSTALLDIR
\ISWI Art Company\ variable.This is where the application
ISWI Artist will be installed if the end user does not

specifically change the location in the
Custom Setup dialog box in the
Installation wizard.

PATH VARIABLES
Path variables enable you to find the source files for creating your build without
having to use hard-coded paths. You can then change the location of the source
files on your build system and just modify the value of your path variable and the
build will still be able to locate the files it needs to make the build. This is much
more convenient than having to go and reset the build location of each file in your
setup project. Path variables are also useful if we want to move the project to a dif-
ferent machine and build the project just by changing the value of the path variable
instead of changing the source location of each file in the project.

Every project you create has six predefined path variables that are set based on
the configuration of the build machine on which ISWI is installed. The values of
these predefined path variables cannot be altered. You can create and modify addi-
tional path variables as necessary. When creating the initial project using the Project
Wizard, you were asked to define a path variable when we first added a file to a
component. Thereafter, all files added from the same location used this same path
variable. The path variable you created when running the Project Wizard appears in
the Path Variable property page and you can edit it as required. Table 7-5 describes
the predefined path variables that come with each project you create.

Chapter 7: Basic Installation Package Creation with ISWI 263

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 263

TABLE 7-5 PREDEFINED PATH VARIABLE PROPERTIES IN THE PROJECT VIEW

Predefined Path Variable Description

ProgramFilesFolder The location of the Program Files folder on the build machine

WindowsFolder The location of the Windows folder on the build machine

SystemFolder The location of the System32 folder on the build machine

CommonFilesFolder The location of the Common Files folder on the build machine

ISProjectFolder The location of the folder on the build machine where the
current project can be found

ISProductFolder The location of the folder on the build machine where
ISWI is installed

You can create path variables of three different types: Standard, Environment,
and Registry. Selecting one of the three types in the Type column of the Path
Variables property page sets the type of the path variable. This column is the one
farthest to the right in the property page. When you were adding files to the ISWI
Artist components, you were presented with the Path Variable Recommendation
dialog shown in Figure 7-10. The ArtistSources path variable you created in this
dialog shows up as a Standard path variable in the Path Variables property sheet.

STANDARD PATH VARIABLES You can use the Predefined path variables to con-
struct Standard path variables. To do this, enclose the Predefined path variable in
angle brackets (<>) and use it as the first part of the value definition for the path
variable. For example, if you wanted to move the source files for the ISWI Artist
application into the directory where the project file is found you would create the
following definition for the ArtistSources path variable:

<ISProjectFolder>\Setup Sources\ISWI Artist

264 Part II: Basic Package Creation with ISWI

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 264

In the Current Value column you would see the value of the absolute path to
where the source files are on the build machine.

ENVIRONMENT VARIABLE–BASED PATH VARIABLES To create a path variable of
the Environment type you first need to create the environment variable using the
System applet in the Control Panel. In Windows 2000 the Environment Variables
dialog is launched from the Advanced tab of this applet. After you have created the
environment variable, enter the name of the path variable in the Name column and
the name of the environment variable in the Defined Value column. In the Type
column, set the type to Environment. When entering the name of the environment
variable in the Defined Value column, do not enclose this name in angle brackets.
Path variables of the Environment type can be useful when you’re performing
builds on different machines on different nights and the source files are in a differ-
ent location depending on the machine. You can use a batch file to set the value of
the environment variable to depend on the machine that is being used.

REGISTRY-BASED PATH VARIABLES You can also define a registry key where the
location of the source files for an application is specified. The first step in creating
the Registry type of path variable is to create a key in the registry. The best place to
do this is under the HKEY_LOCAL_MACHINE \SOFTWARE key, even though you
can use the HKEY_CURRENT_USER\SOFTWARE key as well. After creating the key,
either specify the location for the source files as the data for the default Value Name
of the key or create a specific Value Name and specify the location of the source
files as the Value Data for this Value Name. How you construct the registry key and
associated data determines how you will enter the information in the Defined Value
column in the Path Variables property sheet.

For example, assume there are the following entries in the registry:

[HKEY_LOCAL_MACHINE\SOFTWARE\Sources]
@=”D:\\Installation Projects\\Setup Sources\\ISWI Artist”
“Sources”=”C:\\Installation Projects\\Setup Sources\\ISWI Artist”

If you set the type of your ArtistSources path variable to be Registry and enter
HKEY_LOCAL_MACHINE\SOFTWARE\Sources in the Defined Value column of the
Path Variable property sheet, the Current Value of the ArtistSources path variable
will be set as follows:

D:\Installation Projects\Setup Sources\ISWI Artist.

This becomes the definition of the ArtistSources path variable, because the last
item of the entry you made in the Defined Value column is the name of a key; there-
fore the Current Value for the path variable is set to the default value for that key.

Chapter 7: Basic Installation Package Creation with ISWI 265

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 265

If instead you enter HKEY_LOCAL_MACHINE\SOFTWARE\Sources\Sources in the
Defined Value column of the Path Variable property sheet, the ArtistSources path
variable is set to

HKEY_LOCAL_MACHINE\SOFTWARE\Sources\Sources.

This is because the last item you made in the Defined Value column is a Value
Name; therefore the Current Value shown in the path variable property sheet for the
ArtistSources path variable becomes the Value Data of that Value Name.

When entering path locations in the registry, do not use quotes even if you

are specifying a long path name.

TEST VALUES For any particular build you can override the location specified by
the environment variable or the registry entry by setting a test value in the Test
Value column. The value you enter in this column needs to be a hard-coded path to
a location that contains a copy of the source files you used to make the build. You
can set the test value of a path variable prior to setting either the environment or
registry values for a path variable.

Even though you can enter a location in the Test Value column for a

Standard path variable, test values will only work for path variables of the

Environment and Registry types.

CONVERTING SOURCE PATHS TO PATH VARIABLES If you decide to use absolute
paths for some or all of the files in our project, you can later convert them all to
path variables with the Convert Source Paths Wizard, which is launched from the
Tools pulldown menu. This wizard will scan the project file and find all locations
where an absolute path is being used to access a source file. When it finds such a
location, it recommends the name of a path variable you can use, but also enables
you to change this name if you wish. Once you have either accepted the recom-
mendations or made your own path variable names the Convert Source Paths
Wizard re-links all source files using these path variables.

PROPERTY MANAGER
The Property Manager is the feature that enables you to modify or add new properties
that will be built into the Property table in the MSI database. The Property Manager
and the properties included by default with a new project are shown in Figure 7-16.

Caution

Caution

266 Part II: Basic Package Creation with ISWI

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 266

Figure 7-16: The Property Manager in the Project view

You need to do one thing in the Property Manager: delete the ARPNOREPAIR
property value. This will prevent this property from being built into the Property
table. You should do this to make sure that the Repair button is enabled in the
Windows 2000 Add/Remove Programs Applet. Just setting this property to 0 will not
enable this particular button. Table 7-6 shows all the default properties in the
Property Manager. We will eventually discuss each of these properties; for now you
need to look at only a few of these properties as they relate to creating the installa-
tion for the ISWI Artist application. Table 7-6 includes this discussion.

TABLE 7-6 THE DEFAULT INSTALLER PROPERTIES IN A NEW PROJECT

Property Value

_IsMaintenance Change

_IsSetupTypeMin Typical

AgreeToLicense No

ApplicationUsers AllUsers

ARPAUTHORIZEDCDFPREFIX

Continued

Chapter 7: Basic Installation Package Creation with ISWI 267

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 267

Property Value

ARPINSTALLLOCATION

ARPNOMODIFY 0

ARPNOREMOVE 0

ARPNOREPAIR

ARPPRODUCTICON <ArtistSources>\ISWIArtist.ico

ARPSIZE

ARPSYSTEMCOMPONENT

DefaultUIFont Tahoma8

DialogCaption InstallShield for Windows Installer

DiskPrompt [1]

DiskSerial 1234-5678

Display_IsBitmapDlg 1

ErrorDialog SetupError

InstallChoice AR

INSTALLLEVEL 100

PIDTemplate 12345<###-%%%%%%%>@@@@@

ProductCode {EA6F96C0-9480-11D3-8196-204C4F4F5020}

ProgressType0 install

ProgressType1 Installing

ProgressType2 installed

ProgressType3 installs

RebootYesNo Yes

Registration No

ReinstallFileVersion o

ReinstallModeText omus

ReinstallRepair r

SetupType Typical

UpgradeCode {EA6F96C1-9480-11D3-8196-204C4F4F5020}

268 Part II: Basic Package Creation with ISWI

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 268

The following remarks describe in more detail the entries shown in Table 7-6:

◆ When you build the MSI database, any property without a defined value
(like ARPINSTALLLOCATION) will not be built into the database.

◆ As I mentioned earlier, you need to delete the ARPNOREPAIR property
value so that it will not be built into the Property table.

◆ The INSTALLLEVEL property defines the global installation level of
the MSI package; it is the determining factor by which any particular
feature will get installed. Each feature in an application is assigned its
own install level and if this value is equal to or less than the value of the
INSTALLLEVEL property then that feature will be installed. If the feature
install level value is greater than the value of the INSTALLLEVEL property,
then that feature will not be installed unless the end user goes to the
Custom Setup dialog and selects that feature.

◆ Note that the changes you made to the Product Code and the Upgrade
Code in the Product Properties property page have been reflected in the
Property Manager.

Most of the properties shown in the Property Manager relate to the function

of the user-interface dialogs; these properties will be covered in Chapter 9. A

full description of all these properties is provided in Chapter 8.

STRING TABLES
The last thing you need to deal with in the Project view is the String Tables editor.
In the other property pages you have entered a number of strings that are consid-
ered localizable into other languages. This means that when you created these
strings ISWI assigned them a default string identifier or string ID. The function of a
string table is to provide a single identifier that can reference different language
strings, which is a functionality you need when you want to translate a string into
a number of languages. Through one string ID you can reference any of the various
translations of a particular string.

When ISWI creates a default string ID, it is in the form of NEW_STRINGX where
X is a sequential number. This default string ID is not very informative; you need to
change it so it will give you an idea of where it is being used. You can modify these
string IDs in the String Tables editor. Figure 7-17 shows the state of the string table
after you have made all the entries in all the other Project view property sheets.

Before you start creating new string IDs you should first develop a standard for-
mat. I suggest that you begin every string name with the prefix IWA_ followed by the
name of the property page and the name of the property. For example, NEW_STRING1
refers to the Subject property in the Summary Information Stream property page.
Using my suggested format the string ID for this particular string would be IWA_SIS_
SUBJECT. The renamed default string IDs are shown in Figure 7-18.

XREF

Chapter 7: Basic Installation Package Creation with ISWI 269

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 269

Figure 7-17: The String Tables editor

Figure 7-18: The modified default string IDs of the localizable strings in the Project view

270 Part II: Basic Package Creation with ISWI

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 270

It is interesting to note that every time you create or modify a string ID the
String Tables editor records the date and time of the action. This information is
stored in the Modified column, which is the column farthest to the right in the
String Tables editor.

With the String Tables editor you can also create new string IDs and use them
later in other views in the IDE. Before we move on to the Setup Design view you
should create the strings that you will use for the feature, shortcut, and file type
display names and descriptions. You will use these string IDs when finalizing the
input for the three features in the ISWI Artist application and the one shortcut that
launches the application. Table 7-7 shows the string IDs for the feature, shortcut,
and file type display names and descriptions.

TABLE 7-7 STRING IDS FOR FEATURE, SHORTCUT, AND FILE TYPE DISPLAY NAMES
AND DESCRIPTIONS

String ID String

IWA_MAIN_DESC The main feature of the application; enables the
user to draw a wheel with the string “Hello ISWI”

IWA_MAIN_DISP Text Wheel

IWA_HELP_DESC Provides the help for the ISWI Artist application

IWA_HELP_DISP Help Docs

IWA_SHAPEDRAW_DESC Enables the user of the application to draw the
“Hello ISWI” string inside various geometric
shapes

IWA_SHAPEDRAW_DISP Shape Drawing

IWA_SHORTCUT_DISP ISWI Artist

IWA_SHORTCUT_DESC Launches the ISWI Artist application.

IWA_FILETYPE_PROGID_DESC ISWI Artist File

IWA_FILETYPE_OPENCOMMAND_DISP Open with ISWI Artist

You can create these strings in the string table by clicking the right mouse but-
ton and selecting the Create & Set... option on the resulting context menu. This
option will give you a dialog box where you can enter both the string ID and the
string itself. If you want you can also provide a comment for the string ID that lets
you identify more clearly where the string will be used. A string table has a
Modified column that is updated with the date and time that a string has been

Chapter 7: Basic Installation Package Creation with ISWI 271

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 271

entered and/or modified. The default strings that come with each project do not get
an entry in this column. You can sort on this column so that you get all the strings
that have been modified or created in one location. After you have finished creat-
ing these entries into the string table you can move on to the Setup Design view
where you will complete the input for the features and the components that you
created in the Project Wizard.

The Setup Design view
In the Setup Design view you will be making the necessary changes and additions
to finalize the features and components. As I mentioned in Chapter 6 the Setup
Design view is the only major view that has sub-views. For our purposes you need
to work only in the global view, where you can see both features and components
at the same time.

FINALIZING THE FEATURE PROPERTIES
There are a number of feature properties that you need to either modify or add.
These properties relate to the display of a feature in the Custom Setup dialog. The
first thing you should do is select the strings you created in the String Tables editor
for the display name and description of each of the features. Figure 7-19 shows
how to select strings for the Main_Feature feature.

Figure 7-19: Selecting strings with identifiers into a feature property

272 Part II: Basic Package Creation with ISWI

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 272

The first thing to do when selecting a string into a localizable property is to make
sure that the string table is visible by clicking on the String Table tab at the bottom
of the property page. Once the String Table is visible, first left-click on the property
into which you want to select the string and then right-click on the string ID you
want to select. You get a context menu of which the top option is Select string.
Choosing this option selects the string as the value of the property you first clicked
with the left mouse button. Perform this operation for each feature so that both the
display name and description are tied to a string with a string ID.

For the Main_Feature feature you need to modify three of the default property
values that were set for you by the Project Wizard. You should change the Display
property to Visible and Expanded, the Advertisement property to Disallow Advertise,
and the Required property to Yes. For the ShapeDraw_Feature and the Help_Feature
you need only change the Advertisement property to Disallow Advertise. You should
do this because the ISWI Artist application is not designed to perform a feature-level
installation on demand. Table 7-8 describes the properties for a feature.

TABLE 7-8 PROPERTY VALUES FOR THE FEATURES

Property Value Description

Display Name Main_Feature: Defines the text string that will
The text associated with the be inserted into the Title field
IWA_MAIN_DISP string ID of the Feature table. This is the
ShapeDraw_Feature: text displayed in the feature
The text associated with the selection tree in the Custom
IWA_SHAPEDRAW_DISP Setup dialog.
string ID
Help_Feature:
The text associated with the
IWA_HELP_DISP string ID

Description Main_Feature: Defines the text string that will
The text associated with the be inserted into the Description
IWA_MAIN_DESC string ID field of the Feature table. This
ShapeDraw_Feature: is the string displayed in the
The text associated with the Custom Setup dialog when a
IWA_SHAPEDRAW_DESC user highlights the feature in
string ID the selection tree.
Help_Feature:
The text associated with the
IWA_HELP_DESC string ID

Continued

Chapter 7: Basic Installation Package Creation with ISWI 273

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 273

TABLE 7-8 PROPERTY VALUES FOR THE FEATURES (Continued)

Property Value Description

Remote Installation All Features: Sets one of the bit flags in the
Favor Local Attributes field of the Feature

table. This specifically defines
the default state of the feature
to be installed on the local
machine.

Destination All Features: The configurable destination
<INSTALLDIR> property that the end user can

change in the Custom Setup
dialog. This property sets the
value of the Directory_ field
in the Feature table.

Install Level All Features: The feature installation level
100 compared with the INSTALLLEVEL

property to determine if the
feature is to be installed by
default. If this value is greater
than the value of the
INSTALLLEVEL property, the
feature will not be installed
unless the end user goes to the
Custom Setup dialog and selects
to have the feature installed. This
property sets the value of the
Level field in the Feature table.

Display Main_Feature: Sets the value of the Display
Visible and Expanded field of the Feature table. If the
This setting has no meaning numeric value in this field is
for the other features, odd, the feature tree is initially
because they do not have expanded in the Custom Setup
sub-features. dialog. If the value is even, the

feature tree is initially collapsed
if it has sub-features.

Advertisement All Features: Sets another bit-flag in the
Disallow Advertise Attributes field of the Feature

table. This prevents the end
user from selecting to install
the feature on first use.

274 Part II: Basic Package Creation with ISWI

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 274

Property Value Description

Required Main_Feature: Sets another bit-flag in the
Yes Attributes field of the Feature
ShapeDraw_Feature: table. If you choose Yes for this
No property, the end user will not
Help_Feature: be able to deselect the feature in
No the Custom Setup dialog.

Release Flags All Features: Not related to the MSI database.
Leave null This enables you to make builds

that only include features with
certain release flags. The Release
Wizard provides a dialog you
can use to insert the release
flags that identify the features
you want in the build. Of course
any feature not identified with a
release flag will be included in
all builds.

Condition All Features: Enables you to make entries into
Leave as default, which is the Condition table where you
0 condition(s) can change the value of the

Level property in the Feature
table to another value based
on whether the associated
condition evaluates to true
or false. When you click in this
property, you are provided with
a Condition property editor
that enables you to define the
conditions that will be built
into the Condition table.

Comments All Features: An internal comment that is only
None required inserted into the project file and

never built into the MSI database.

Chapter 7: Basic Installation Package Creation with ISWI 275

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 275

Once you have made these changes you are ready to finalize the component
properties.

FINALIZING THE COMPONENT PROPERTIES
You have only one property to change for the ShapeDraw_Component: the
Registration property. The ShapeDraaw_Component is a COM DLL and you need to
extract the COM information so the build process will populate the proper tables in
the Windows Installer package. There are three choices for the Registration property:
Use Advanced Settings, Extract at Build, and Self-Register. When you created the
ShapeDraw_Component with the Project Wizard, it did not enable you to extract the
COM registration information; therefore you have to extract this information at
build time. Select the Extract at Build option for the Registration property. You could
delete the component and recreate it using the Component Wizard. This wizard
would put the COM information in the Advanced Settings; you would then need to
select the Use Advanced Settings option for the Registration property.

For a look at the tables that will be created when you extract the COM infor-

mation at build time you need to look back at Chapter 4 and the section

entitled “Working with COM-Related Registry Input.” You need only two

tables for your COM component: the Class and ProgId tables.

None of the other components is a COM component so you do not have any reg-
istration issues with them. Since this is a new application you do not have any
legacy installation issues and so we can leave the Shared property with its default
value of No. For all the components you want to use the Component Codes you
used in the Chapter 4 exercise. This is because the components you are creating
here are the same as the components you created in Chapter 4, and they need to
have the same Component Codes.

XREF

276 Part II: Basic Package Creation with ISWI

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 276

We discuss the creation of components and when Component Codes

should change in Chapter 17.

The properties for a component are described in Table 7-9.

TABLE 7-9 PROPERTY VALUES FOR THE COMPONENTS

Property Value Description

Destination All Components: Sets the value of the Directory_
<INSTALLDIR> field in the Component table. You
Here you make all the can add hard-coded folders to be
files in each component beneath this location, which the
go to the root install end user can configure through the
location of the product. Custom Setup dialog.

Registration MainExe_Component: Relates to COM servers and how
Use Advanced Settings the server is to be registered at the
ShapeDraw_Component: time of installation. For components
Extract at Build that are not COM servers this
Help_Component: setting is meaningless. In your
Use Advanced Settings installation project you have chosen

to have the COM information
extracted when you create the
Windows Installer package.

Component Code MainExe_Component: The GUID that makes each
{5774E1F7-939D- component unique. The GUIDs
11D3-8195- shown here are the ones that you
204C4F4F5020} used to create these same
ShapeDraw_ components in Chapter 4. These
Component: GUIDs are not the same GUIDS you
{5774E1FA-939D- used to define COM class IDs. This
11D3-8195- property sets the value of the
204C4F4F5020} ComponentId field of the
Help_Component: Component table.
{5774E1F8-939D-
11D3-8195-
204C4F4F5020}

Continued

XREF

Chapter 7: Basic Installation Package Creation with ISWI 277

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 277

TABLE 7-9 PROPERTY VALUES FOR THE COMPONENTS (Continued)

Property Value Description

Shared All Components: Sets a bit flag in the Attributes
No field of the Component Table.

The purpose of this bit flag is to
maintain compatibility with legacy
applications that may be installing
the same files that make up this
component. This compatibility is
maintained in the SharedDLL key
in the registry that keeps count
of all the applications that use
the same shared file.

Permanent All Components: Sets another bit flag in the
No Attributes field of the Component

table that determines whether this
component will be uninstalled or
left on the machine.

Condition All Components: Controls whether a component is
Leave null installed or not. This property sets

the value of the Condition field in
the Component table.

Remote Installation All Components: Sets another bit flag in the
Favor Local Attributes field of the Component

table that determines whether
this component can be run from
source, run locally, or both.

Languages All Components: Relates to the build environment of
Language Independent ISWI wherein it is possible to filter

components based on the language
set here. A build can be made
to bring in only components
identified with a set of languages.
Components designated as
Language Independent will
be included in all builds.

278 Part II: Basic Package Creation with ISWI

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 278

Property Value Description

Reevaluate Condition All Components: Sets another bit flag in the
No Attributes field of the Component

table that determines whether the
condition in the Condition field of
the Component table is reevaluated
on a reinstallation of the
application. Primarily used when
the OS has been upgraded and
the component originally installed
must be switched out with another
component. Setting this property
to Yes identifies the component
as transitive. If this bit flag is not
set, the condition statement will
not be reevaluated during
the reinstallation.

Never Overwrite All Components: Sets another bit flag in the
No Attributes field of the Component

table that determines whether this
component will be overwritten
during an installation or
a reinstallation.

Source Location All Components: An ISWI-specific property that
Leave null enables you to configure the media

layout to be different from the
layout of folders of the installed
product. By default the media
layout of files will be the same
as what you’ll see after installing
the product.

Comments All Components: An internal comment only inserted
Leave null into the project file and never built

into the MSI database.

Chapter 7: Basic Installation Package Creation with ISWI 279

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 279

Under each component name in the Setup Design view is a tree of icons where
you can create additional input related to that particular component. You need to
set the properties for several of these property types that relate to the MainExe_
Component component.

For the MainExe_Component you need to go to the Shortcut property page and
add a display name and description. Since you have already created string IDs for
the two strings that you want you can use the same process for selecting the short-
cut display name and description that you used for the feature display names and
descriptions. Click the Shortcuts icon under the MainExe_Component and expand
the tree under the Programs Menu icon. Click the shortcut name you created in the
Project Wizard to display the Shortcut property page. Click the Display Name prop-
erty in this property page to show a String Table tab at the bottom of the screen,
and click on this tab to display the string table. Using the same process you used
before, left-click the property value into which you want to select the string and
then go to the string table, right-click the appropriate string, and choose the Select
String option. Also, for the shortcut you need to add <EmptyFolder> as the value
for the Working Directory property of the shortcut. (You need to include the angle
brackets as part of the string that you enter.) You will be creating this particular
property in the next section using the Power Editor. The property settings for a
shortcut are shown in Table 7-10.

TABLE 7-10 PROPERTY VALUES FOR THE SHORTCUT ASSOCIATED WITH THE
MAINEXE_COMPONENT COMPONENT

Property Value Discussion

Display Name The string identified by the Shown on the Start →Programs
IWA_SHORTCUT_DISP string ID menu. This property sets the

value of the Name field in
the Shortcut table.

Description The string identified by the Shown as the comment in the
IWA_SHORTCUT_DESC string ID Properties dialog when you

right-click the shortcut
in Windows Explorer. This
property sets the value of
the Description field in the
Shortcut table.

Arguments Leave null Identifies any command line
argument that the target of
the shortcut is to use when it
is launched. This property sets
the value of Arguments field
of the Shortcut table

280 Part II: Basic Package Creation with ISWI

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 280

Property Value Discussion

Target Leave null Identifies the target of the
shortcut if the shortcut is not
to be a standard shortcut (that
is, not able to be advertised).
In this case you are creating
what is called a MSI shortcut
so the implementation
automatically uses the key
file of the component as the
target of the shortcut.

Icon File <ArtistSources>\ISWIArtist.exe Identifies the file from which
the icon for the shortcut is
to be extracted. The icon is
extracted and streamed into
the Icon table. This sets the
value of the Icon_ field of
the Shortcut table. You need
a separate icon if a shortcut is
to be advertised.

Icon Index 0 Identifies the index of the icon
used for the shortcut and sets
the value of the IconIndex field
in the Shortcut table.

Run Normal Window Can be either Normal Window,
Maximized Window, or
Minimized Window. These
define the size of the window
when the application is
launched. They also set the
value of the ShowCmd field
in the Shortcut table.

Working Directory <EmptyFolder> Sets the value of the current
directory. This is the location
the Open and Save As... dialogs
will default to when first
launched.

Continued

Chapter 7: Basic Installation Package Creation with ISWI 281

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 281

TABLE 7-10 PROPERTY VALUES FOR THE SHORTCUT ASSOCIATED WITH THE
MAINEXE_COMPONENT COMPONENT (Continued)

Property Value Discussion

Hot Key 0 Where the hotkey is defined
if one is needed for launching
the shortcut. Generally used
only to implement accessibility
functionality. This property sets
the value of the Hotkey field in
the Shortcut table.

Comments Null For internal use only; only
saved in the project file
and never built into the
MSI database.

The property sheet for the shortcut is shown in Figure 7-20.

Figure 7-20: The shortcut property sheet for ISWI Artist

282 Part II: Basic Package Creation with ISWI

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 282

For the MainExe_Component you will also want to create a per-application path
and a file type for the files created by the ISWI Artist application. You can create both
of these by clicking on the Application Paths icon under Advanced Settings for the
MainExe_Component. In the property page you need to identify the file for which the
application path is to be created. Under the File column in the property page you get
a dropdown list of all the files in the component; select the one you want. Of course
in your case there is only one file, so select ISWIArtist.exe. In the Application Path
column you can enter search paths and use them to find any DLLs that the application
needs; you can also select from the dropdown menu any of the standard locations
known to the operating system or you can select the destination directory of the
application as defined by the INSTALLDIR property. The Application Paths property
sheet is shown in Figure 7-21.

Figure 7-21: The Application Paths property sheet

To create a file association click on the File Types icon under Advanced Settings.
The file association will also be created for the component installing ISWIArtist.exe.
You want to register the .isa file extension so that it shows up in Windows Explorer
with an appropriate icon a description telling you what application created it. Also,

Chapter 7: Basic Installation Package Creation with ISWI 283

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 283

when you right-click this type of file you’ll want to be able to open the file without
first identifying an application to open it. You should also be able to double-click the
file and have the application automatically open it.

To make all this happen you need to first create a ProgID and enter all its prop-
erties. Then you need to create a file extension and fill in all its properties. When
you clicked the File Types icon under Advanced Settings, you saw two icons on the
right, one labeled ProgIDs and the other labeled Extensions. To create a new ProgID
right-click the icon labeled ProgIDs and select the New ProgID option. Enter the
ProgID isafile as the name of this new ProgID. When you click this ProgID you can
see that you need to enter five properties in the property sheet. The values of the
properties are shown in Table 7-11.

TABLE 7-11 FILE TYPE PROGID PROPERTY VALUES

Property Value Description

COM Class Leave null Not associated with a COM class.

Description ISWI Artist File Describes files with the associated
extension that will be displayed in Windows
Explorer. You created this string earlier
using the String Table editor, so all you have
to do is select that string as you did the
display names of the features.

Icon File Path to ISWIArtist. The file from which the icon will be
exe in the build extracted. This icon will be displayed in
environment Windows Explorer beside files with the

.isa extension.

Icon Index 0 Identifies that the first icon in the Icon
File is to be used.

Icon Extraction Yes Extracting the icon from the Icon File
makes the icon available so that a product
that is advertised and not actually
installed will still be able to show the
proper icon in Windows Explorer beside
files with the .isa file extension.

284 Part II: Basic Package Creation with ISWI

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 284

When you’ve entered these properties for the ProgID, you’ve completed the first
part of creating the registration information for defining a file type. Now let’s move
on to the Extensions icon: right-click this icon and select the New Extension
option. When you create an extension, you do not include the period, so you need
to enter isa as the extension and not .isa. When you create an extension the canon-
ical open verb is automatically generated for you under the extension you created.
You need to associate the extension itself in the property sheet with the ProgID you
have created. Click in the Value field beside the ProgID property name and from the
dropdown list of all the ProgIDs you have created in the project select the appro-
priate ProgID to link the extension and ProgID together. Now you need to select the
open verb and enter the three properties associated with this verb. The properties
are shown in Table 7-12.

TABLE 7-12 FILE EXTENSION OPEN VERB PROPERTY VALUES

Property Value Description

Command Sequence 0 The default value. Defines where on
the right-click context menu the
command will be displayed. A value of
0 makes the open verb the default
command; it will be shown in bold
text at the top of the context menu.

Display Name Open with ISWI Artist Displayed on the context menu. You
created this string earlier using the
String Tables editor, so all you have to
do is select that string as you did the
display names of the features.

Argument “%1” The placeholder for the file that will
be launched by ISWI Artist when you
choose the Open command on the
context menu or double-click the file
in Windows Explorer.

The three property sheets you have just dealt with are shown in Figure 7-22.

Chapter 7: Basic Installation Package Creation with ISWI 285

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 285

Figure 7-22: The File Types property sheets

Using the Power Editor
One of the things you’ll want to do is to create a folder in which to save the data
files created with the ISWI Artist application. After you create this empty folder you
will make it the working directory of the shortcut. This will cause the Open and
Save As... options on the File pulldown menu to default to this location. To create
this folder you need to make one entry in each of the Directory, CreateFolder, and
RemoveFile tables using the Power Editor. These entries are shown in Table 7-13.

TABLE 7-13 REQUIRED POWER EDITOR ENTRIES

Table Column Name Attribute Value

CreateFolder Directory_ EmptyFolder
Component_ MainExe_Component

Directory Directory EmptyFolder
Directory_Parent AppDataFolder
DefaultDir Artist~1 | ArtistData

RemoveFile FileKey EmptyFolder
Component_ MainExe_Component
FileName
DirProperty EmptyFolder
InstallMode 2

286 Part II: Basic Package Creation with ISWI

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 286

The following remarks describe in more detail the entries that you have made
using the Power Editor:

◆ In the CreateFolder table you enter the foreign key into the Directory table
that defines the location and name of the folder to be created. You also
identify the component that will create the folder when the component is
installed. This is a foreign key into the Component table.

◆ In the Directory table you identify the folder to be created by entering an
appropriate identifier in the Directory column. You then define the location
of this folder by specifying the parent and child directories in the second
and third columns respectively. These entries will resolve correctly because
the Windows Installer sets the location of AppDataFolder at install time.
This is a standard location associated with the install location of the oper-
ating system. The entry in the DefaultDir column is the name of the folder
that will be created; and you have defined it using both a short and a long
filename format.

◆ In the first column of the RemoveFile table you enter a unique identifier.
In this example we are using the same identifier we used in the Directory
table, but you don’t have to use this identifier. The second column is
again a foreign key into the Component table indicating the component
that, when it is uninstalled, will also remove the data folder if it is empty.
Leave the third column null to indicate that it is a folder and not a file
to be removed. The fourth column identifies the name of the property to
be created that contains the value of the full path to the folder to be
removed. This is a property because all entries in the Directory table
become properties when the Directory table is resolved at the end of
the file costing–related actions. The fifth column just tells the Windows
Installer that the folder is to be removed only when the associated compo-
nent is being removed. You can remove a folder during the installation
of a component during both installation and uninstallation.

The entries described above now make the <EmptyFolder> name, which you used
as the working directory for the shortcut, a valid project property. The location of the
EmptyFolder entry in the Directory table will be resolved at run time to the location
of the AppDataFolder Windows Installer with the sub-directory named ArtistData.

You have now completed all the input required to create a valid installation
package for the ISWI Artist application. Next you’ll perform the build using the
Release Wizard.

Chapter 7: Basic Installation Package Creation with ISWI 287

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 287

Building the MSI Package
To build the project you have just created you need to use the Release Wizard. This is
because you did not make a build after you completed the pass through the Project
Wizard, but instead just saved the project file. You can access the Release Wizard
from the toolbar or from the Build pulldown menu. The first dialog you see is the
Welcome dialog, and the next dialog is the Build Label dialog shown in Figure 7-23.

Figure 7-23: The Build Label panel of the Release Wizard

In this panel you define the top level in a two-tier release hierarchy by providing
what is called a build label. If you had already created previous builds, you would
have the option to make a new release of a previous build. Call your first build Build
1 as in Figure 7-23.

The next dialog in the Release Wizard is where you specify a release name that
will become the next level in the release hierarchy. As with build labels you can
also select a previously created release if any has been generated. The Release Label
dialog is shown in Figure 7-24. Call this first release Release-1.

The next dialog in the Release Wizard is where you can filter the particular
release you are making and only include features that have been assigned a certain
set of release flags. This is one of the feature properties that you can set in the fea-
ture property sheet. If you assign release flags to your features, you can provide a
comma-delimited list of the flags and the release will only include those features
whose flags match what you enter in this dialog. It will also include all the features
without a release flag. This dialog is shown in Figure 7-25.

288 Part II: Basic Package Creation with ISWI

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 288

Figure 7-24: The Release Label panel of the Release Wizard

Figure 7-25: The Filtering Settings panel of the Release Wizard

You can also filter components based on language. To designate language-based
filtering of components select the second radio button and then check off the lan-
guages you want to include in the release. The release will include all components
whose language property matches any of the selected languages, and all compo-
nents designated as language independent.

Chapter 7: Basic Installation Package Creation with ISWI 289

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 289

The next dialog is the Media Type & Patch Optimization dialog where you spec-
ify the size of the media image you are going to create. This dialog is shown in
Figure 7-26.

Figure 7-26: The Media Type & Patch Optimization panel of the Release Wizard

In the Media Type dropdown combo box you are given a selection of different
sizes of media that you can create. Except for the Network image option the release
will be broken into the number of disks required to hold the complete installation
image. The Network image option is an unlimited size and therefore would never
occupy more than one disk. For the release you are creating, take the default media
type of Network image.

We will discuss the use of the Patch Optimization edit field in Chapter 20

where we will also discuss upgrading a product that is already installed.

The next dialog is where you can choose whether you want the source files to be
compressed, uncompressed, or some combination of both. When source files are com-
pressed, they are compressed into a Microsoft cabinet (CAB) file structure that the
Windows Installer knows how to unpack at installation time. If the media type cho-
sen is a Network image, the compressed files will be stored inside the MSI package.
Otherwise the compressed CAB files will be kept separate from the MSI package. This
dialog is shown in Figure 7-27.

XREF

290 Part II: Basic Package Creation with ISWI

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 290

Figure 7-27: The Release Configuration panel of the Release Wizard

For the release you are creating, leave the files uncompressed and separate from
the MSI package. This is the default option for this dialog.

The next dialog is the Setup Languages panel. This dialog is used when you want
to create a multilingual installation wherein you can give the end user the option to
select the language in which the installation user interface is to be displayed. This
dialog is shown in Figure 7-28.

Figure 7-28: The Setup Languages panel of the Release Wizard

Chapter 7: Basic Installation Package Creation with ISWI 291

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 291

Since you are only creating an installation in English you have nothing to select
in this dialog.

We will take a close look at how to use this dialog when we discuss creating

international installations in Chapter 19.

The next dialog is the Advanced Settings panel and here you have a lot of
choices. The first thing you can do is change the release location for this particular
build. This does not change the default location but only the location where the
present release will be saved. This dialog is shown in Figure 7-29.

Figure 7-29: The Advanced Settings panel of the Release Wizard

Along with setting the release location for this particular build we have the
option of specifying four other items as listed below:

Use long filenames You can choose to have the media built
using long or short filenames. Most
of the time you will probably use the
default option of long filenames but
there may be instances where you
want to create an installation that will
be installed on a system that does not
support long file naming; then you
would need to use the short filenames
in creating the media image.

XREF

292 Part II: Basic Package Creation with ISWI

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 292

Use path variable test values If you select this option, the Release
Wizard will look for the source files in
the location specified by the Test Value
specified against an Environment or
Registry type path variable in the Path
Variable property sheet. The location of
to where the Test Value points can be
found in the Project View and was
discussed earlier in this chapter when
I talked about the creation of path
variables.

Generate Package Definition File (PDF) If you select this option, the build will
include a PDF file you can use when
deploying the package using Microsoft’s
System Management Server (SMS).

Generate Autorun.inf If you select this option, the build
will include a file named Autorun.inf.
This file automatically launches the
installation of the application from a
CD-ROM when the CD-ROM is inserted.

At the bottom of the Advanced Settings dialog you can specify certain launcher
settings. Here you can add a Setup.exe file to the build. Setup.exe performs a
bootstrapping function in that when it is launched it will in turn launch the MSI
installation. If you also choose to have the MSI engines included in the build,
Setup.exe will also install the Windows Installer service on any system on which it
is not already installed. There are two versions of the Windows Installer engine, one
for Windows 95/98 systems and one for Windows NT 4.0 systems. The Windows
Installer comes as part of the Windows 2000 operating system.

Take the default settings as presented in Figure 7-29. The final dialog in the
Release Wizard is the Summary panel. Here you can review all the selections you
made while running the wizard, and if necessary go back and make changes before
clicking on the Build pushbutton. This dialog is shown in Figure 7-30.

When you build the project, there is an output window at the bottom of the
screen that provides feedback on the progress of the build. After the build com-
pletes successfully, install the application to see if everything works. During the
installation, if we go to the Custom Setup dialog by choosing the Custom option in
the Setup Type dialog you will see something like what is shown in Figure 7-31.

When you look at the selection tree in this dialog, you can see that the tree is
expanded, as you wanted it to be. Also, if you click on the Text Wheel feature you
can see that this feature cannot be deselected like the other features. You’ll also notice
that these features can only be installed to the local hard drive. This is because for
each component you selected the Favor Local value for the Remote Installation prop-
erty. When you highlight a feature in the selection tree, the description of that feature

Chapter 7: Basic Installation Package Creation with ISWI 293

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 293

appears in the static text field on the right side of the Custom Setup dialog. At the
bottom of the Custom Setup dialog you’ll see that you can change the installation
location of the application. When you make changes here, you are modifying the
value of the INSTALLDIR property.

Figure 7-30: The Summary panel of the Release Wizard

Figure 7-31: The Custom Setup dialog in the Installation Wizard for the ISWI Artist
application

Once you complete the installation you should run the application to make sure
that it works. Essentially this is the same installation you created in chapters 4 and
5 using the Orca database-editing tool. Finally, check your installation package to
see if it validates correctly.

294 Part II: Basic Package Creation with ISWI

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 294

Validating the Installation Package
To validate the MSI package you have just created, run msival2.exe using the fol-
lowing command line:

msival2 ISWIArtist.msi darice.cub -L validation.log

When running this command line, you will get a log file that contains both infor-
mational, warning, and error messages based on the internal consistency evaluators
authored by Microsoft into the darice.cub validation library. If you wanted to elimi-
nate the informational messages, you would use the following command line:

msival2 ISWIArtist.msi darice.cub -F -L validation.log

The –F switch tells the MsiVal2.exe utility not to display any informational mes-
sages. You can also use the –I switch followed by a list of the ICEs that you want run,
and only that list of ICEs will be used to validate the specified MSI package.

When you run the validation of the package using the –F switch you have created,
you should get a package that shows you have no errors.

Summary
In this chapter you took a fairly extensive look at much of the IDE. In addition, you
learned how to kick off a project using the Project Wizard. You also saw that there are
many other areas of the ISWI IDE that you still need to investigate. The main thing
you learned is the importance of an MSI package-authoring tool that relieves you
from having to work directly with the database using a tool such as Orca. You are
now ready to move on to manipulating the user interface using the Dialog Editor.
This is the subject of the next chapter.

Chapter 7: Basic Installation Package Creation with ISWI 295

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 295

4723-2 ch07.f.qc 1/16/01 11:08 AM Page 296

Chapter 8

Controlling the Installation
IN THIS CHAPTER

◆ The relationship between the old and the new installation technologies

◆ The built-in actions provided by the Windows Installer

◆ Sequencing actions

◆ The properties provided and set by the Windows Installer

◆ Creating conditions

◆ Creating custom actions

THE PURPOSE OF this chapter is to show the mechanism by which you can make a
Windows Installer–based installation do what you want it to do. In particular we
take a look at properties, actions, and sequence tables.

Basic Concepts
Before the Windows Installer came along, installations were essentially program-
ming implementations wherein the lines of a script were executed in sequential
order to perform the activities required of the installation. As in all programming
environments calls were made to various functions and the values of global vari-
ables were set and read. These functions of course were passed arguments, which
carried out the function.

The Windows Installer, as you have seen, is a database technology: on the sur-
face, it would appear to have done away with the need to write scripts. Even though
no explicit scripts are now required, except those needed to implement custom
actions, the operation of the Windows Installer closely parallels the execution of a
script. Table 8-1 shows the relationship between the items that comprise a Windows
Installer database and those involved in the legacy approach of implementing an
installation via writing a script.

297

4723-2 ch08.f.qc 1/16/01 11:08 AM Page 297

TABLE 8-1 THE RELATIONSHIP BETWEEN A SCRIPT-DRIVEN INSTALLATION AND A
WINDOWS INSTALLER DATABASE

Script-Driven
Installation Windows Installer Database

Global variables A Windows Installer database has properties, which are
stored in the Property table. Properties are so important
that there are two special functions in Windows Installer
API that set and get properties from the Property table.
These two functions are MsiSetProperty and MsiGetProperty.
You will use these two functions a lot when you create
custom actions.

Built-in functions Windows Installer has Standard Actions. Now instead of
using built-in functions or calling ComponentMoveData
you can use the Standard Action called InstallFiles.

User-defined functions With any script-based tool you can create your own
functions. This enables you to extend the basic functionality
of the tool. In the Windows Installer environment you can
create Custom Actions, which enable you to extend the
functionality of the Windows Installer. Chapters 10 through
16 focus on the many ways to create Custom Actions.

Function arguments In Windows Installer the arguments to your Standard or
Custom Actions come from the data you author into the
various database tables that comprise the MSI package.

Procedural execution In a scripting environment you order the progress of an
of lines of script installation by writing your script so that certain tasks are

performed before others. With Windows Installer–based
installations you order the way an installation executes
by placing your Standard and Custom actions in special
database tables called sequence tables. You also display
end-user dialogs by placing them into the appropriate
sequence tables. Actions are executed and dialogs displayed
according to the sequence number they have been assigned.

As you can see, the old approach and the new approach to creating an installa-
tion package have a lot in common. The packages look different on the outside but
underneath the operation is almost the same.

In this chapter we are going to concern ourselves with the Sequences view and the
Actions/Scripts view in the InstallShield for Windows Installer IDE. In the Actions/
Scripts view you can manipulate or create the actions available for use in generating

298 Part II: Basic Package Creation with ISWI

4723-2 ch08.f.qc 1/16/01 11:08 AM Page 298

an installation package. Of course, even though you cannot add new standard actions
to those already shown in this view you can add comments to these actions. These
comments are stored only in the project file and can be considered equivalent to the
comment statements in a script that describe the purpose of a function. Standard
actions are those that are built in to the Windows Installer and cannot be modified
except by the developers of the Windows Installer. Figure 8-1 shows the Actions/
Scripts view.

Figure 8-1: The Actions/Scripts view in the ISWI IDE

In this view you can see a tree of three folders, the top folder being Standard
Actions. If you expand this folder, you get a list of all the standard actions built
into version 1.1 of the Windows Installer. The only thing that you can do with the
standard actions in this view is to provide comments. Also in this view there are
two folders that pertain to the creation of custom actions.

We take a quick look at custom actions later in this chapter and then dig into

them in much more detail in Chapters 10 through 16.

The other view we are concerned with in this chapter is the Sequences view. It is
in this view that you can schedule when actions are executed during the installa-
tion process. Figure 8-2 shows this view.

XREF

Chapter 8: Controlling the Installation 299

4723-2 ch08.f.qc 1/16/01 11:08 AM Page 299

Figure 8-2: The Sequences view in the ISWI IDE

In this view there is a tree of three top-level folders, each of which has two sub-
folders. The three top-level folders correspond to the three top-level actions that are
part of the Windows Installer: the INSTALL, ADVERTISE, and ADMIN top-level
actions. You may remember from the discussion in Chapter 3 that each of the three
top-level actions has two associated sequence tables. One of these sequence tables
is where the user interface of the installation is run and the other sequence table is
where the actions that actually change the target system are executed.

If you expand one of these subfolders under the Installation folder, such as the
one labeled User Interface, and click one of the actions in this sequence, you get
something like what is shown in Figure 8-3.

In the panel to the right of the sequence tree you can see a property sheet that
carries the title of the action you have clicked. In this panel you can see that the
action has a sequence number; you can place a condition on this standard action as
well as create an internal comment statement for it. The sequence number tells the
Windows Installer when a particular action is to be executed relative to all the other
actions in any particular sequence table.

If you look closely at Figure 8-3, you will see that the User Interface sequence
shows more than one style of icon. Some of these icons look like miniature dialog
boxes and that is what they actually represent. In fact, in the User Interface sequence
you can insert standard actions, custom actions, and dialog boxes. In the Execute
sequence you can only insert standard actions and custom actions.

300 Part II: Basic Package Creation with ISWI

4723-2 ch08.f.qc 1/16/01 11:08 AM Page 300

Figure 8-3: The User Interface sequence under the Installation top-level action

Keep in mind that you are dealing with a relational database when you are

dealing with the Windows Installer. Because of this you can’t enter more

than one row with the same primary key. In the case of the sequence tables

the name of the action that has been entered into the sequence table is the

primary key for these tables. Therefore no action or dialog can ever appear

more than once in the same sequence table.

The Built-in Actions
There are numerous standard actions built in to the Windows Installer. These stan-
dard actions give you many options when you perform the most common types of
installation-related functions. It is possible to group most of the built-in actions
into one of six categories. These categories are listed below:

Windows Installer data store The actions in this category write into the
registry information about the Product,
Features, and Components. When these
actions are executed, components are identi-
fied with features and products, and feature
states are recorded.

Tip

Chapter 8: Controlling the Installation 301

4723-2 ch08.f.qc 1/16/01 11:08 AM Page 301

File searching File searching consists of looking for a par-
ticular file on a system. You search for a file
primarily to determine whether an installa-
tion should proceed or be terminated.

File costing The purpose of the file costing actions is to
determine the total disk space required for an
installation. File costing in Windows Instal-
ler is a fairly sophisticated operation in that
it considers the space required not only for
new files being added to the system but also
shortcuts, registry entries, and files that are
to be overwritten or removed.

File installation The actions in this category relate to the
duplication, movement, and installation of
files, the creation of folders not related to
installing files, and the removal of files and
folders.

Registry and configuration settings These actions create all registry entries
required for the components and files that
are installed. They can remove registry
entries that an installation no longer needs.
They also work with initialization files and
environment variables.

Installation configuration This category of actions covers all actions
that do not fit into the previous categories.
These actions control reboots of the system,
handle qualified components, identify the
start and end of the actions to be included
into the execution script, and so on.

There are restrictions on where most of these built-in actions can be placed. The
restrictions are on where they can be placed relative to other actions. We look more
closely at most of these built-in actions in the following sections. (There are a few
miscellaneous actions that we do not cover.)

The help file for the Windows Installer that comes with the Windows Installer

SDK provides detailed descriptions for all the standard actions that are sup-

ported.The Windows Installer SDK can be found on the CD-ROM that comes

with this book.

XREF

302 Part II: Basic Package Creation with ISWI

4723-2 ch08.f.qc 1/16/01 11:08 AM Page 302

Windows Installer data store
When a product is installed using the Windows Installer service, there are a number
of entries that are made in the Registry by the Windows Installer during installation
so that the Windows Installer can manage the application. The Windows Installer
API functions use many of these entries to perform programmatic actions. We can
divide the associated Standard Actions in to three sub-categories according to the
various types of information that is placed into the Registry: general product and
user data, component information, and product and feature state information. Each
of these is discussed in the following subsections.

GENERAL PRODUCT AND USER DATA
There are two standard actions that are of concern here: the RegisterProduct and
RegisterUser actions. The main location in the Registry to which these two actions
write is in the following key:

HKLM\Software\Microsoft\Windows\CurrentVersion\Uninstall\

The RegisterProduct action creates a key under this location that uses the
ProductCode as the name of the key. Under this key this action writes all the values
and data displayed in the Add/Remove Programs applet on Windows 2000. The
RegisterProduct action also identifies where the cached MSI package is installed
and gives the name the Windows Installer has created for this package. This infor-
mation is written to the following Registry key:

HKLM\Software\Microsoft\Windows\CurrentVersion\Installer\
LocalPackages\

Under this key the Windows Installer generates a key using a packed version of
the ProductCode. A packed GUID is one from which the surrounding curly braces
and the dash separators have been dropped. Then the resulting value is rearranged
by the Windows Installer in order to make searching more efficient. The value name
is the machine ID or the User SID depending on whether it was a per-machine or a
per-user installation, and value data is the path to the cached MSI package.

The RegisterUser action adds the data for the ProductID, RegOwner, and
RegCompany value names under the Uninstall key I referred to previously. Both the
value names and data are created by this action.

There are no sequence restrictions for either of these actions. However, they
should be in the InstallExecuteSequence table and placed near to the end of that
sequence, as is the case with any project created in ISWI. These two actions use
data from the Property table in order to write the data into the registry.

COMPONENT INFORMATION
In this sub-category we are dealing with three Standard Actions: the ProcessCom-
ponents, PublishComponents, and UnpublishComponents actions. The ProcessCompo-
nents action provides a reference count for all components that have been installed to

Chapter 8: Controlling the Installation 303

4723-2 ch08.f.qc 1/16/01 11:08 AM Page 303

either run from source or run locally. This action also identifies the name and location
of the key path for each installed component. This information is stored under the fol-
lowing key in the Registry:

HKLM\Software\Microsoft\Windows\CurrentVersion\Installer\Components\

Under this registry key is a key generated from the packed component codes of
every component installed on the machine. The value names created for this reg-
istry key are the packed product codes of every product using that component. The
data for each of these value names is the definition of the key path for the compo-
nent. If a value name is comprised of all zeros, then that particular component has
been made permanent: the reference count for the component will still be decre-
mented on an uninstallation but the component itself will never be uninstalled.

The PublishComponents and UnpublishComponents actions deal with the Registry
entries needed to implement qualified components. A qualified component is a
method of grouping components with the same functionality into categories. It can
be thought of as a method of single-level indirection somewhat similar to a pointer.
The information with regard to qualified components is entered under one of two
Registry keys, depending on whether the installation is being performed for the cur-
rent user or for the machine. The registry key for an installation for the current user
is as follows:

HKCU\Software\Microsoft\Installer\Components\

The registry key for an installation being performed for the machine is as follows:

HKLM\Software\Classes\Installer\Components\

The PublishComponent table provides the information for generating the sub-
keys, value names, and data. The sub-keys are the ComponentIds from this table in
packed form, as I explained earlier. The value names are the qualifiers associated with
this particular ComponentId and the data is something called a Darwin Descriptor
followed by the information from the AppData column of the PublishComponent
table. A Darwin Descriptor is a compressed string comprised of the product code, fea-
ture name, and component code. The UnpublishComponents action just removes the
described registry entries for all features selected for uninstallation.

There are no sequence restrictions imposed on these actions, but they should be
in the InstallExecuteSequence table and located between the InstallInitialize and
InstallFinalize actions so that they are included in the execution script created by the
Windows Installer. The ProcessComponents action queries the Component table to get
the information it needs to write the values to the registry. The PublishComponents
and the UnpublishComponents actions query the PublishComponent table to get the
information needed to write values to the registry.

304 Part II: Basic Package Creation with ISWI

4723-2 ch08.f.qc 1/16/01 11:08 AM Page 304

PRODUCT AND FEATURE STATE INFORMATION
The actions that we need to investigate relative to the generation of feature and prod-
uct information are the PublishFeatures, PublishProduct, and UnpublishFeatures
actions. The purpose of these actions is to identify the state of the feature or product.
Also, for features a mapping of parent feature to sub-feature is provided.

The PublishFeatures action writes the selection state of each feature into the reg-
istry in one of two locations, depending on whether the installation is being per-
formed for the current user or for the machine as a whole. If the installation is
being performed for the current user, the registry location that is being written is as
follows:

HKCU\Software\Microsoft\Installer\Features\

If the installation is being performed for the machine as a whole, the registry key
is as follows:

HKLM\Software\Classes\Installer\Features\

The sub-keys created under this location are packed Product Codes for all prod-
ucts that have been installed per-user. The value names are the names of all fea-
tures with a selection state of absent, advertised, local, or run-from-source. The
data for each value name is the parent feature of the feature given in the value
name. If the feature has no parent, the value data is a null string.

The PublishFeatures action also provides a mapping between the features and
components of all features that have been installed. The location of this registry key
is as follows:

HKLM\software\Microsoft\Windows\CurrentVersion\Installer\Features\

The sub-keys under this location are packed Product Codes with features that
have been installed either locally or to run from source. The value names are the
names of the features, and the data is a concatenated list of compressed Component
Codes that are contained in the feature. A compressed Component Code is one in
which the GUID is compressed into an unreadable form for the sake of saving space
in the registry. At the end of the list of compressed Component Codes are a delim-
iter and the name of the parent feature of the feature named in the value name. If
the feature has no parent, the delimiter and the parent name are omitted.

The PublishProduct action writes the state of a product into the registry in one
of two locations. If the product is being installed for the current user, the registry
key is as follows:

HKCU\Software\Microsoft\Installer\Products\

Chapter 8: Controlling the Installation 305

4723-2 ch08.f.qc 1/16/01 11:08 AM Page 305

If the product is being installed for the machine as a whole, the registry key
where the information is written is as follows:

HKLM\Software\Classes\Installer\Products\

For each product that has been installed or advertised there will be a sub-key
consisting of the packed Product Code. Under this key will be a sub-key called
SourceList, and if the product has one or more patches associated with it there will
be a Patches sub-key as well.

The values, names, and data associated with each product sub-key identify basic
information about the product and its install state. The SourceList sub-key identi-
fies the various locations where the Windows Installer can find the MSI package
that installs the product.

Unlike with the other actions we discuss in this section, with these actions you
have to follow some sequence restrictions. The PublishFeatures action has to come
before the PublishProduct action. The UnpublishFeatures action can be placed any-
where in the sequence. However, since all these actions make changes to the tar-
get system they must be in the execute sequence and positioned between the
InstallInitialize and the InstallFinalize actions so that they are written into the exe-
cution script created by the Windows Installer when the installation is run. As
shown in the ISWI Sequences view, the UnpublishFeatures action is placed early in
the sequence and the PublishFeatures and PublishProduct actions are placed late
in the sequence.

The PublishFeatures action queries the Feature, Component, and FeatureCompo-
nents tables to obtain the information for writing values to the registry. The
UnpublishFeatures action queries the FeatureComponents table to remove the values
written to the registry. The reminder of the information required to perform the
removal is found in the registry itself. The PublishProduct action gets all the informa-
tion it needs from the information written by PublishFeatures action in the registry.

File searching
There are three Standard Actions that pertain to searching for applications that are
already installed on the target system. The basic approach for searching for an
application is for you to provide a number of signatures that identify the applica-
tion. If the Windows Installer finds the application, the value of a public property is
set with the path to the defined signature. You can use this property in a condition
to prevent some action from happening if the property is not set.

You can use the AppSearch action to search for existing versions of products
that might be on the system. This action uses the information entered into the
AppSearch and Signature tables. In addition, you can use the CompLocator,
IniLocator, RegLocator, and DrLocator tables to provide additional information for
the search process. There are no restrictions identified in the Windows Installer help
on where in the sequence you can place the AppSearch action. However, if you
place the AppSearch action after the CostInitialize action then your Windows

306 Part II: Basic Package Creation with ISWI

4723-2 ch08.f.qc 1/16/01 11:08 AM Page 306

Installer package will fail validation. This means that you will want to place this
action early in the sequence table.

The other two actions that deal with searching for a file are the CCPSearch and
the RMCCPSearch actions. These actions search for qualifying products that will
enable you to install the product. You can use these actions when you’re shipping a
competitive upgrade version of a product and you want to see if the end user pos-
sesses the competing product. CCP stands for compliance checking program and
RMCCP stands for removable media compliance checking program.

The CCPSearch action uses the information in the CCPSearch, Signature,
CompLocator, RegLocator, IniLocator, and DrLocator tables to conduct its search.
You must place this action before the RMCCPSearch action in the sequence table.
The RMCCPSearch action uses the information in the CCPSearch, Signature, and
DrLocator tables to conduct its search. If these actions are successful, they set a pre-
defined property to 1; you can use this property in condition statements to prevent
the installation if the qualifying product is not found.

The CCPSearch action, as with the AppSearch action, needs to be placed

prior to the CostInitialize action in order to avoid a failed package validation.

File costing
File costing is the determination of how much space an application will require on
the local hard drive. The five Standard Actions described in Table 8-2 implement
the file costing activity that takes place during an installation. These actions are
shown in the order in which they should be sequenced. (ISWI sequences these
actions in this order.)

TABLE 8-2 FILE COSTING ACTIONS

Action Description Tables Used

CostInitialize Initiates the costing activity. Interfaces with the Feature
and Component tables.

FileCost Conducts an analysis of each file Queries the File, Component,
to be installed locally and deter- ReserveCost, DuplicateFile,
mines its space requirements. and MoveFile tables.
Takes into account files that
already exist on the target system.

Continued

Caution

Chapter 8: Controlling the Installation 307

4723-2 ch08.f.qc 1/16/01 11:08 AM Page 307

TABLE 8-2 FILE COSTING ACTIONS (Continued)

Action Description Tables Used

IsolateComponents Identifies all files to be copied Queries the
to a private location in addition IsolatedComponent table.
to a shared location.

CostFinalize Ends the costing process initiated Queries theCondition and
by the CostInitialize action. Component tables.

InstallValidate Verifies that all volumes to which Does not query any table in
a cost has been attributed have the database.
enough space for the installation.
Also identifies any files to be over-
written that are also in use
at the time of the installation.

File costing is carried out in both the UI sequence and the execute sequence.
Costing is performed in the UI sequence based on the default feature selection states
built into the installation package. The costing in the execute sequence finalizes the
costing based on any changes the end user may have made using the custom setup
dialog.

File installation
There are 17 Standard Actions that can be considered related to the actual installa-
tion of files on the target system. To discuss these adequately we need to define four
different categories of actions based on their specific purpose. The first category
consists of those actions that perform the standard actions of copying files, deleting
files, creating folders, and so forth. The second category consists of those actions
related specifically to the installation and uninstallation of ODBC. The third category
consists of those actions that install and control NT Services. The final category is a
special action that populates the Import Address Table for imported DLLs. Each of
these categories is the subject of one of the following subsections.

STANDARD FILE MANIPULATION
There are ten Standard Actions included in this category, each of which is restricted
with regards to where it can be placed in the sequence. These actions can only be in
the InstallExecuteSequence table and they have to be between the InstallInitialize
and the InstallFinalize actions so that they are written into the execution script cre-
ated by the Windows Installer. These actions are shown in the Table 8-3 in the rel-
ative order in which they must be placed in the sequence table.

308 Part II: Basic Package Creation with ISWI

4723-2 ch08.f.qc 1/16/01 11:08 AM Page 308

TABLE 8-3 STANDARD FILE MANIPULATION ACTIONS

Action Description Tables Used

RemoveShortcuts Handles the removal of an adver- Queries the Shortcut table.
tised shortcut for a feature that
will be uninstalled. Also manages
the removal of a non-advertised
shortcut where the associated
component will be uninstalled.

RemoveDuplicateFiles Deletes files created using the Queries the DuplicateFile
DuplicateFiles action. table.

RemoveFiles Removes files installed with the Queries the File table and
InstallFiles action. Can also be the Component table.
used to remove folders.

RemoveFolders Removes empty folders. Queries the CreateFolder
table and the Component
table.

CreateFolders Creates empty folders for Queries the CreateFolder
components to be installed on table and the Component
the local hard drive. table.

MoveFiles Locates files on the target Queries the MoveFile table.
machine and moves or copies
those files to a new location.
(Files moved or copied with this
action are not deleted during
an uninstallation.)

InstallFiles Performs the basic file copy Queries the File table and
during an installation. Files are the Component table.
only copied if the associated
component is to be run locally
and not from source.

PatchFiles Applies all appropriate patches Queries the Patch table.
and also performs the byte-wise
patching of files.

DuplicateFiles Duplicates files installed with Queries the DuplicateFile
the InstallFiles action. table.

CreateShortcuts Manages the creation of both Queries the Shortcut table.
standard shortcuts and MSI
shortcuts.

Chapter 8: Controlling the Installation 309

4723-2 ch08.f.qc 1/16/01 11:08 AM Page 309

The default sequence that you get with a new project in ISWI has the

DuplicateFiles action before the PatchFiles action. You need to move the

PatchFiles action so that it comes before the DuplicateFiles action. This pre-

vents the duplication of unpatched files.

HANDLING ODBC
There are only two basic actions in the Windows Installer for handling the installa-
tion of ODBC. The Windows Installer does nothing with ODBC except turn over the
responsibility of the installation and uninstallation to the ODBC Driver Manager.
Table 8-4 shows the two actions that work with ODBC.

TABLE 8-4 ODBC-RELATED ACTIONS

Action Description Tables Used

RemoveODBC Removes the data sources, Queries the ODBCDataSource,
translators, and drivers ODBCTranslator, and ODBCDriver
listed for removal during tables.
an installation.

InstallODBC Installs the data sources, Queries the ODBCDataSource,
translators, and drivers ODBCTranslator, and ODBCDriver
listed for removal during tables.
an installation.

There is no sequence restriction on the placement of the RemoveODBC action, but
typically it is placed early in the execute sequence after the InstallInitialize action.
The InstallODBC action must be placed after the InstallFiles action, because this
action does not copy files but only passes on the necessary information to the ODBC
Driver Manager.

INSTALLING AND CONTROLLING NT SERVICES
Windows Installer provides four actions for working with NT services. Three of these
actions are related to the control of a service and one action actually installs the ser-
vice. These actions are shown in Table 8-5 in the relative position in which they must
be placed in the sequence table. These actions must be in the InstallExecuteSequence
table between the InstallInitialize and InstallFinalize actions.

Caution

310 Part II: Basic Package Creation with ISWI

4723-2 ch08.f.qc 1/16/01 11:08 AM Page 310

TABLE 8-5 ACTIONS FOR INSTALLING AND CONTROLLING NT SERVICES

Action Description Tables Used

StopServices Stops a service running on the Queries the ServiceControl
target system. table.

DeleteServices Deletes a service on the target Queries the ServiceControl
system. table.

InstallServices Registers a service on the system. Queries the ServiceInstall
(It does not actually copy any
files to the system.)table.

StartServices Starts a service installed on the Queries the ServiceControl
target system. table.

Since none of these actions actually transfers files to the target system, you must
include one of the file manipulation actions between the DeleteServices and Install-
Services actions in the sequence table. It is recommended that you also sequence
the StartServices action just before the RegisterUser action.

All of these actions require that the end user be an administrator, that the installa-
tion have elevated privileges with permission to control services, or that the instal-
lation be a managed application on a Windows 2000 network.

IMAGE BINDING
The action that implements image binding is the BindImage action. This action
speeds up the loading of an executable image when it depends on a number of
other DLLs. Binding an image consists of computing the virtual address of each
imported function, which is then saved in the importing image’s Import Address
Table (IAT). As a result, the image is loaded much faster than it would otherwise be,
particularly if it uses many DLLs, because the system loader does not have to com-
pute the address of each of the imported functions.

For more information on this subject you are referred to descriptions of the

BindImage, BindImageEx, and StatusRoutine APIs that are described in the

MSDN Library.

The BindImage action must come after the InstallFiles action. This action queries
the BindImage table.

XREF

Chapter 8: Controlling the Installation 311

4723-2 ch08.f.qc 1/16/01 11:08 AM Page 311

Registry and configuration settings
The Standard Actions that fall into this category create and remove registry entries,
create and remove entries in initialization files, and set and delete environment vari-
ables. There are 22 actions in this category. In order to explain these actions, I create
a number of subcategories that relate specifically to implementation: creating basic
COM information, creating COM+ information, registering type libraries, implement-
ing self-registration of COM modules, registering fonts, creating standard registry
entries, creating entries in .ini files, and creating or modifying environment variables.
Each of these subcategories is the subject of one of the following subsections.

COM REGISTRATION
Eight Standard Actions work to generate or remove COM information in the reg-
istry. You must use these actions in a specific relative sequence, shown in Table 8-6.
You must place all of these actions in the InstallExecuteSequence table between the
InstallInitialize and InstallFinalize actions.

TABLE 8-6 BASIC COM REGISTRATION ACTIONS

Action Description Tables Used

UnregisterClassInfo Removes COM class Queries the Class table.
information from the
registry.

UnregisterExtensionInfo Removes extension- Queries the Extension
related information table.
from the registry.

UnregisterProgIdInfo Removes ProgId infor- Queries the ProgId,
mation from the registry. Extension, and Class

tables.

UnregisterMIMEInfo Removes MIME-related Queries the MIME table.
information from the
registry.

RegisterClassInfo Removes COM class Queries the Class table.
information from the
registry.

RegisterExtensionInfo Removes extension- Queries the Extension
related information table.
from the registry.

312 Part II: Basic Package Creation with ISWI

4723-2 ch08.f.qc 1/16/01 11:08 AM Page 312

Action Description Tables Used

RegisterProgIdInfo Registers COM class Queries the ProgId table.
information in the
registry.

RegisterMIMEInfo Registers COM class Queries the MIME table.
information in the
registry.

In addition to the relative positioning of these actions, there are a few other
sequence restrictions that you should keep in mind. The RemoveRegistryValues
action must be placed before any of the actions that unregister information from
the registry. As you might expect, all the actions that add information to the reg-
istry must come after the InstallFiles action.

COM+ REGISTRATION
There are two Standard Actions for managing the registration of COM+ applica-
tions. As with all the remaining actions that we discuss in this chapter this is a pair
of actions, one for removing registration information from and one for adding reg-
istration information to the registry. Table 8-7 shows these actions in the order in
which they are to appear in the InstallExecuteSequence table. As with all the other
actions that make changes to the system, you must place these actions between the
InstallInitialize and InstallFinalize actions.

TABLE 8-7 COM+ REGISTRATION ACTIONS

Action Description Tables Used

UnregisterComPlus Removes all COM+ .infor- Queries the Complus table.
mation from the registry

RegisterComPlus Adds COM+ information Queries the Complus table.
to the registry.

The RegisterComPlus action must come after the InstallFiles action.

TYPE LIBRARY REGISTRATION
These two actions remove and register type libraries. Table 8-8 shows them in the
order in which they are to appear in the InstallExecuteSequence table. As with all

Chapter 8: Controlling the Installation 313

4723-2 ch08.f.qc 1/16/01 11:08 AM Page 313

the other actions that make changes to the system, you must place these actions
between the InstallInitialize and InstallFinalize actions.

TABLE 8-8 TYPE LIBRARY REGISTRATION ACTIONS

Action Description Tables Used

UnregisterTypeLibraries Removes the registration for Queries the
type libraries from the registry. TypeLib table.

RegisterTypeLibraries Adds the registration for type Queries the
libraries to the registry. TypeLib table.

The UnregisterTypeLibraries action must be placed before the RemoveFiles action
and the RegisterTypeLibraries action must be placed after the InstallFiles action.

SELF-REGISTRATION OF COM SERVERS
These two actions unregister and register self-registering COM servers. Table 8-9
shows them in the order in which they are to appear in the InstallExecuteSequence
table. As with all the other actions that make changes to the system you must place
these actions between the InstallInitialize and InstallFinalize actions.

TABLE 8-9 SELF-REGISTRATION ACTIONS

Action Description Tables Used

SelfUnregModules Unregisters all self-registering Queries the
modules that are scheduled for SelfReg table.
uninstallation.

SelfRegModules Registers all self-registering Queries the
modules that have been installed. SelfReg table.

The SelfUnregModules action must be placed before the RemoveFiles action and
the SelfRegModules action must be placed after the InstallFiles action. Because the
self-registration of COM servers is a black box to the Windows Installer it is not
recommended that these tables be used. The COM registration information needs to
be placed in the tables as described earlier. Using self-registration breaks the roll-
back functionality of the Windows Installer and tends to reduce other Windows
Installer capabilities such as advertisement.

314 Part II: Basic Package Creation with ISWI

4723-2 ch08.f.qc 1/16/01 11:08 AM Page 314

FONT REGISTRATION
These two actions unregister and register font files. Table 8-10 shows them in the
order in which they are to appear in the InstallExecuteSequence table. As with all the
other actions that make changes to the system, you must place these actions between
the InstallInitialize and InstallFinalize actions.

TABLE 8-10 FONT REGISTRATION ACTIONS

Action Description Tables Used

UnregisterFonts Removes registration informa- Queries the Font table.
tion about installed fonts from
the registry.

RegisterFonts Adds registration information Queries the Font table.
about installed fonts to the registry.

The UnregisterFonts action must be placed before the RemoveFiles action and
the RegisterFonts action must be placed after the InstallFiles action.

BASIC REGISTRY MANIPULATION
These two actions unregister and register normal registry entries. Table 8-11 shows
them in the order in which they are to appear in the InstallExecuteSequence table.
As with all the other actions that make changes to the system, you must place these
actions between the InstallInitialize and InstallFinalize actions.

TABLE 8-11 BASIC REGISTRY MANIPULATION ACTIONS

Action Description Tables Used

RemoveRegistryValues Removes an application’s Queries the
specific information from Registry table.
the registry

WriteRegistryValues Adds an application’s specific Queries the
information to the registry Registry table.

The RemoveRegistryValues action must be placed before the UnregisterProgIdInfo
and UnregisterMIMEInfo actions.

Chapter 8: Controlling the Installation 315

4723-2 ch08.f.qc 1/16/01 11:08 AM Page 315

WORKING WITH INITIALIZATION FILES
These two actions remove information from and add information to initialization
files. Table 8-12 shows them in the order in which they are to appear in the Install
ExecuteSequence table. As with all the other actions that make changes to the sys-
tem, you must place these actions between the InstallInitialize and InstallFinalize
actions.

TABLE 8-12 INITIALIZATION FILE ACTIONS

Action Description Tables Used

RemoveIniValues Removes information in Queries the RemoveIniFile
an initialization file during table.
either an installation or
an uninstallation of the
associated component.

WriteIniValues Writes information to an Queries the IniFile table.
initialization file during
an installation when the
associated component is
set to be installed locally
or from source.

There are no other sequence restrictions on these actions.

WORKING WITH ENVIRONMENT VARIABLES
These two actions, shown in Table 8-13, modify environment variables. Unlike with
the other actions in this chapter, there are no restrictions as to where you can place
these actions relative to each other in the sequence table. However, as with all the
other actions that make changes to the system, you must place them between the
InstallInitialize and InstallFinalize actions.

TABLE 8-13 ENVIRONMENT VARIABLE ACTIONS

Action Description Tables Used

RemoveEnvironmentStrings Modifies the value of an Queries the
environment variable Environment table.
during an uninstallation.

316 Part II: Basic Package Creation with ISWI

4723-2 ch08.f.qc 1/16/01 11:08 AM Page 316

Action Description Tables Used

WriteEnvironmentStrings Modifies the value of an Queries the
environment variable Environment table.
during an installation.

The only sequence restriction on these actions is that they must come after the
InstallValidate action.

Installation configuration
There are 14 Standard Actions that you can use to configure the overall installation.
For discussion purposes we can break these 14 actions down into four subcategories:
the actions used to configure a basic installation process, the actions that provide
verification that the installation should continue, the actions that control the initia-
tion of system reboots, and the actions used to control an upgrade installation. Each
of these subcategories is the subject of one of the following subsections.

BASIC INSTALLATION CONFIGURATION
Six Standard Actions fall under this category. One difference between these actions
and most of the other Standard Actions is that they do not query any of the data-
base tables. There are a few sequence restrictions for a few of these actions; they
are given in Table 8-14. The order of appearance in Table 8-14 represents the nor-
mal or default relative sequence of these actions.

TABLE 8-14 INSTALLATION CONFIGURATION ACTIONS

Action Description Sequence Restrictions

ExecuteAction Initiates the implementation Is normally placed at the
of the execute sequence. end of the user-interface
Passes the value of all public sequence after all user
properties from the user input has been collected.
interface sequence to the
execute sequence.

InstallInitialize Marks where the Windows Comes before any action
Installer will start to generate that will make changes
the execution script. to the target system.

Continued

Chapter 8: Controlling the Installation 317

4723-2 ch08.f.qc 1/16/01 11:08 AM Page 317

TABLE 8-14 INSTALLATION CONFIGURATION ACTIONS (Continued)

Action Description Sequence Restrictions

InstallExecute Runs all actions that placed Must be placed between
into the execution script up the InstallInitialize and
to the point where this action InstallFinalize actions.
is encountered. Does not
terminate the installation
process that continues after
the Windows Installer returns
from executing the script.
A new script is started at
this point.

InstallExecuteAgain Has the same function as the Must be placed between
InstallExecute action, which the InstallInitialize and
allows for two of these types InstallFinalize actions.
of operations to occur in the
same sequence table.

SEQUENCE Executes a custom sequence None.
table named with the
SEQUENCE property. The
custom sequence table must
have the same schema as the
built-in sequence tables.

InstallFinalize Forces the execution of the Must come after the
execution script and marks InstallInitialize action.
the end of the transaction
that began with the
InstallInitialize action.

You should keep in mind that you are dealing with a relational database and that
you cannot have duplicate primary keys in any of these tables. This is why there are
two actions that do the same thing but have different names— InstallExecute and
InstallExecuteAgain. The name of the action in a sequence table is the primary key
for that table and thus you cannot repeat the name of any action in a sequence table.

VERIFICATION
Two actions determine whether an installation should proceed or not. One of these
actions validates that the environment on the target system is correct and the other

318 Part II: Basic Package Creation with ISWI

4723-2 ch08.f.qc 1/16/01 11:08 AM Page 318

validates that the user has the rights to install the product. These actions are shown
in Table 8-15.

TABLE 8-15 INSTALLATION VALIDATION ACTIONS

Action Description Tables Used

LaunchCondition Evaluates all the conditions in the Queries the
LaunchCondition table and termi- LaunchCondition
nates the installation with an table.
error message if any of these
conditions evaluates to false.

ValidateProductID Sets the value of the ProductID Works with the
property if the user enters the Property table.
correct product identifier.

You should place both of these actions in both the user interface and execute
sequence tables, normally near or at the top of each sequence. To add conditions to
the LaunchCondition table in ISWI, go to the Product Properties icon in the Project
View and click the Install Condition property. When you do this, ISWI enables you
to enter both the condition and the associated message, as shown in Figure 8-4.

Figure 8-4: Setting conditions in the LaunchCondition table

Chapter 8: Controlling the Installation 319

4723-2 ch08.f.qc 1/16/01 11:08 AM Page 319

You must provide a message for each condition you define. If you do not, you
will get a build error. There are only two columns in the LaunchCondition table and
neither of these columns can be null. If you click the Condition Builder tab at the
bottom of the screen, you get a view that helps you create conditions from some of
the important properties set by the Windows Installer. You also get a list of all the
allowed operators from which you can create more elaborate conditions.

When using the Condition Builder, make sure that you add a space between

the property name and the operator; otherwise the Windows Installer will

not be able to parse the condition properly.

SYSTEM REBOOTS
There are two actions that control whether a system reboot should occur at the end
of an installation or in the middle. These actions are shown in Table 8-16.

TABLE 8-16 SYSTEM REBOOT ACTIONS

Action Description Tables Used

ScheduleReboot Initiates a prompt for a system Does not query any of
reboot at the end of the the database tables.
installation.

ForceReboot Forces a reboot in the middle of Does not query any of
an installation. the database tables.

The ScheduleReboot action is typically placed at the end of the execute
sequence, but you can place it anywhere because it is not subject to any sequenc-
ing restrictions. The ForceReboot action must be placed between the InstallInitialize

Tip

320 Part II: Basic Package Creation with ISWI

4723-2 ch08.f.qc 1/16/01 11:08 AM Page 320

and InstallFinalize actions. It is highly recommended that you place it after the
RegisterProduct action; otherwise the Windows Installer will require the source of
the installation package to continue with the installation.

CONFIGURING AN UPGRADE INSTALLATION
There are four actions that relate to performing an upgrade installation. These
actions are shown in Table 8-17.

TABLE 8-17 UPGRADE INSTALLATION ACTIONS

Action Description Tables Used

FindRelatedProducts Based on the entries in the Queries the
Upgrade table, finds all products Upgrade table.
installed on the system that match
the criteria in this table.

PreventInstall Prevents an upgrade installation Works with the
based on the existence of certain Property table.
conditions.

MigrateFeatureStates Retains feature states when an Queries the
upgrade installation is performed. Upgrade table.

RemoveExistingProducts Removes all products found by the Queries the
FindRelatedProducts action. Upgrade table.

You need to place the FindRelatedProducts action in both the user interface
sequence and the execute sequence. You must place this action before the
MigrateFeatureStates and RemoveExistingProducts actions. You need to place
the MigrateFeatureStates action in both the user interface sequence and the execute
sequence tables. You can place the RemoveExistingProducts action only in the exe-
cute sequence table, normally after the InstallFinalize action.

Sequencing the Actions
Now that you know what built-in actions are and that there are restrictions on
where most of them can be placed in a sequence table, let’s look at how to manip-
ulate the placement of these actions in a sequence. As you saw in Figure 8-3, many
of the built-in actions have already been placed in the various sequences. The
default sequences that you get when you create a new project are based on the rec-
ommended sequences documented in the Windows Installer SDK help. However,

Chapter 8: Controlling the Installation 321

4723-2 ch08.f.qc 1/16/01 11:08 AM Page 321

these recommended sequences do not always do what you want; you need to be
able to modify them, either by removing actions you don’t need, inserting new
actions, or modifying the present placement of actions.

To manipulate the default sequences go to the Sequences view, as shown in Figure
8-3, and highlight an action. Then click the right mouse button to get a context menu
with four options. These options enable you to insert a new action after the high-
lighted action, remove the highlighted action, or move the highlighted action up or
down in the sequence. The Insert... option on the context menu launches the Insert
Action dialog box, shown in Figure 8-5.

Figure 8-5: The Insert Action dialog box

At the top of this dialog is a combo box from which you can select the type of
action you want to insert into the sequence. When you are in the user-interface,
you can select any of the following actions:

Standard actions Built-in actions (discussed in the preceding
section).

Custom actions User-defined actions created in the base instal-
lation project to extend the functionality of the
Windows Installer. These custom actions are
listed in the CustomAction table of the base
installation package.

Merge module custom actions User-defined actions created by the Merge
Module author and merged into the base
installation package.

322 Part II: Basic Package Creation with ISWI

4723-2 ch08.f.qc 1/16/01 11:08 AM Page 322

Dialogs Dialogs available within the base installation
project.

Merge module dialogs Dialogs created by the Merge Module author
and merged into the base installation project.

In the execute sequence you can insert the actions but not the dialogs. This is
only reasonable, because the user is not supposed to interact with the Windows
Installer in the execute sequence.

In the list box below the combo box is a list of all the actions or dialogs not
already inserted into the sequence. Remember that there can only be one instance of
an action or a dialog in any particular sequence because the name of the action or
dialog is the primary key for the sequence tables.

Below the list box are two edit fields. The upper edit field enables you to place a
condition on the action or dialog you are inserting into the sequence. (A condition
is an expression that evaluates to the value of true or false.) You do not have to
enter a condition; if you leave this field empty the action or dialog will always be
executed. We talk about conditions in more detail later in this chapter. The lower
edit field is where you can enter a comment that will be inserted into the project file
but does not find its way into the final MSI package. This comment is only for the
setup developer’s use.

For the purpose of this discussion we have really been looking at the actions that
make up the Installation top-level action. There are two other top-level actions you
can manipulate. As with the Installation default sequence, the default sequences for
the Advertisement and the Administration top-level actions are also those that are
recommended in the Windows Installer SDK documentation. It is interesting to note
that there are no actions or dialogs in the user-interface sequence of the
Advertisement top-level action.

The Insert Action dialog allows you to insert an action or dialog anywhere in

a sequence, which means that it will not stop you from making the insertion

in the wrong place.

Working with Properties
Before we discuss the creation of conditions, which are so important in controlling
the actions that implement an installation, we need to discuss properties, which act
as the global variables for an installation. Properties fall into two major categories:
properties authored into the installation database and properties set at run time.
The properties set at run time are not persisted in the database and as such are only
set in memory. All authored properties are set in the Property table and all run-time
properties are set in the run-time version of the Property table. Properties are piv-
otal in the creation of conditions.

Caution

Chapter 8: Controlling the Installation 323

4723-2 ch08.f.qc 1/16/01 11:09 AM Page 323

Public and private properties
Windows Installer has defined many properties. You can also create properties of
your own. Properties come in two styles, private and public. You can tell a public
property because its name will be in all uppercase letters. The names of private
properties are rendered in a mixture of uppercase and lowercase letters. A property
name can consist of letters, numbers, periods, and underscores; the first character
in the property name must be either a letter or an underscore.

Only a public property can be set from the command line. Also, only public
properties can be sent across the process boundaries when the Windows Installer
switches from the user-interface sequence to the execute sequence. This, of course,
is meaningful only in Windows NT 4.0 and Windows 2000, where there is both a
client process and a service process. On Windows 95/98 only one process is run-
ning and this transfer of public properties has no meaning. The following is an
example of how to set a public property at the command line:

msiexec /i C:\Temp\MyApp.msi INSTALLLEVEL=50

This command line sets the installation install level to 50.
In the case of a managed installation you may need — or simply want — to

restrict the number of public properties that can be passed to the service process via
the ExecuteAction action. You would do this in order to maintain a secure environ-
ment when an application is being installed in a managed environment. If the fol-
lowing conditions are all met, the list of public properties that the user can change
at the command line defaults to a list of restricted public properties.

◆ The system is Windows NT 4.0 or Windows 2000

◆ The user is not a system administrator

◆ The application being installed is using elevated privileges

The number of public properties that are on the default list of restricted public
properties is a small subset of all public properties that are defined by the Windows
Installer.

Properties defined by the Windows Installer
The built-in properties, both public and private, can be divided into 11 categories.
These categories are as follows:

Component location properties Defines the root location of the source files
on the media and the location of the installa-
tion package location after the execution of
an administrative install. There are only two
properties in this category.

324 Part II: Basic Package Creation with ISWI

4723-2 ch08.f.qc 1/16/01 11:09 AM Page 324

Configuration properties Relates to those items that enable you to
configure the installation. These properties
include the ability to configure the user-
interface level to be used during the installa-
tion, the ability control any system reboots
that may be necessary, and so forth. There
are 39 properties in this category.

Date, time properties Set by the Windows Installer at run time to
be the system date and time.

Feature installation options Thirteen properties that define the features
properties and components and how they will be

installed — locally, advertised, run-from-
source, and so forth.

Hardware properties Eleven properties set by the Windows Instal-
ler at run time with the physical values relat-
ing to such items as screen height and width,
processor type, text dimensions, and so forth.

Installation status properties Eighteen properties that define the status of
the installation by determining whether the
product is already installed, whether there
is sufficient disk space to accommodate the
installation, the user interface level being
used, and so forth.

Operating system properties Seventeen properties that define such things
as the type and version of the operating sys-
tem, the computer name of the target system,
the service pack that has been installed, and
so forth.

Product information properties Eleven properties that provide information
such as the product name, product version,
technical support contact information, and
so forth.

Summary information update Three properties that relate to the updating
properties of the summary information stream of an

administrative image.

System folder properties When an operating system is installed, it
defines the location of a set of standard folders
on the computer. This set of properties contains
the location of these folders and the Windows
Installer sets these properties at run time. There
are 21 of these predefined locations.

Chapter 8: Controlling the Installation 325

4723-2 ch08.f.qc 1/16/01 11:09 AM Page 325

User information properties Six properties that contain information such
as the name of the user, the name of the com-
pany where the user works, the default lan-
guage of the user, and so forth.

The complete definition of these built-in properties is provided in the MSI

Help file that can be found on the CD-ROM at the back of the book.

REQUIRED PROPERTIES
All MSI packages must have the five properties described in Table 8-18.

TABLE 8-18 REQUIRED PROPERTIES

Property Name Description

ProductCode A unique identifier in the form of a GUID that makes this product
distinguishable from all other products installed by the Windows
Installer.

ProductLanguage A numeric language identifier that identifies to the Windows
Installer the language it should use for all strings that have not
been authored into the database.

Manufacturer The name of the company that developed the application being
installed.

ProductVersion The version of the product provided as a string. The format of this
string is AA.BB.CCCC where the first field is the major version, the
second field is the minor version, and the third field is the build
number.

ProductName The name of the product being installed.

The ProductCode, ProductVersion, and ProductLanguage properties are vital to
the implementation of upgrades using the Upgrade table. The ProductName prop-
erty identifies the product in the Add/Remove Programs applet.

ON THE CD

326 Part II: Basic Package Creation with ISWI

4723-2 ch08.f.qc 1/16/01 11:09 AM Page 326

PROPERTY PRECEDENCE
The installer sets properties using the following order of precedence. A property
value in this list can override a value that comes after it and be overridden by a
value coming before it in the list.

◆ Properties specified by the operating environment

◆ Public properties set on the command line

◆ Public properties listed by the AdminProperties property set during an
administrative installation

◆ Public or private properties set during the application of a transform

◆ Public or private property that you set by authoring the Property table of
the MSI package

Creating your own properties
When you want to author a property into the Property table using ISWI, you need
to use the Property Manager in the Project view. Go to the Project view and click
the Project icon under the Property Manager folder. You will see the default set of
properties that you get with every new project, as shown in Figure 8-6. These are
not the only properties that are built into the MSI database. There are other sources
for some of the properties, such as the entries made under the Product Properties
screen in the Project view.

Figure 8-6: The ISWI Property Manager

Chapter 8: Controlling the Installation 327

4723-2 ch08.f.qc 1/16/01 11:09 AM Page 327

To add a new property you need to double-click the line at the bottom of the
Property Manager screen and then type in your property name and the initial value
you want to associate with this property. A property without a value will not be
built into the MSI database. The Windows Installer treats both the property name
and the property value as strings. The property name should be 72 characters or
less but there is no limit to the length of the property value.

The default properties
When you create an installation and do not author any additional properties, you
get a set of default properties in the MSI database, as described in Table 8-19.

TABLE 8-19 DEFAULT PROPERTIES CREATED BY ISWI

Property Name Property Value Description

_IsMaintenance Change Tied to the radio-button group in
the Maintenance Type dialog. It
makes the radio button labeled
Modify the default in this group.

_IsSetupTypeMin Typical Tied to the radio button group in the
Setup Type dialog. It makes the radio
button labeled Complete the default
in this group.

AgreeToLicense No Tied to the radio button group in the
License Agreement dialog. It makes
the radio button labeled “No, I do
not agree” the default for this
group.

ApplicationUsers AllUsers Tied to the radio button group in
the Customer Information dialog.
It makes the radio button labeled
“Install this application for all
users” the default for this group.

ARPAUTHORIZEDCDFPREFIX Windows Installer public property
that you can set to the URL of the
update channel for the application
being installed.

328 Part II: Basic Package Creation with ISWI

4723-2 ch08.f.qc 1/16/01 11:09 AM Page 328

Property Name Property Value Description

ARPINSTALLLOCATION Windows Installer public property
that you can set to the full path to
the primary folder of the application
being installed.

ARPNOMODIFY 0 Windows Installer public property
that if set disables the Modify
button for the product in the
Add/Remove Programs applet
on Windows 2000.

ARPNOREMOVE 0 Windows Installer public property
that if set disables the Remove
button for the product in the
Add/Remove Programs applet
on Windows 2000.

ARPNOREPAIR 0 Windows Installer public property
that if set to 1 disables the Repair
button for the product in the
Add/Remove Programs applet
on Windows 2000.

ARPPRODUCTICON Windows Installer public property
that specifies the foreign key to the
Icon table that will be used as the
primary icon for the install package.

ARPSIZE Windows Installer public property
that represents the estimated size
of the application in kilobytes.

ARPSYSTEMCOMPONENT Windows Installer public property
that if set to 1 prevents the product
from being displayed in the Add/
Remove Programs applet.

DefaultUIFont Tahoma8 Windows Installer private property
that sets the default font style for
controls in dialog boxes.

DialogCaption InstallShield This is a custom property in ISWI
for Windows and is not presently used.
Installer

Continued

Chapter 8: Controlling the Installation 329

4723-2 ch08.f.qc 1/16/01 11:09 AM Page 329

TABLE 8-19 DEFAULT PROPERTIES CREATED BY ISWI (Continued)

Property Name Property Value Description

DiskPrompt [1] Windows Installer private property
that holds a string displayed in a
dialog that prompts the user to
insert a disk.

Display_IsBitmapDlg 1 Used as a condition on the back
button on the InstallWelcome and
PatchWelcome dialogs that enables
the user to go back to the splash
bitmap. By default the back button
on these two dialogs is disabled.

ErrorDialog SetupError Windows Installer property that
defines the dialog that is to be used
to display error messages.

INSTALLLEVEL 100 Windows Installer public property
that is set to a default value of 100
and represents the installation level
for the installation package.

PIDTemplate 12345<###- Windows Installer private property
%%%%%%%> that sets the format of the
@@@@@ MaskedEdit control when you use

one to enter a serial number or
other product-security code. It is
against this value that a user’s
input is validated.

ProductCode GUID A GUID generated when a new
project is created. This is one of
the properties that every Windows
Installer package must have.

ProgressType0 install Displays a certain static control
during an installation-related
action.

ProgressType1 Installing Displays a certain static control
during an installation-related action.

330 Part II: Basic Package Creation with ISWI

4723-2 ch08.f.qc 1/16/01 11:09 AM Page 330

Property Name Property Value Description

ProgressType2 installed Displays a certain static control
during an installation-related action.

ProgressType3 installs Displays a certain static control
during an installation-related action.

RebootYesNo Yes A custom property that is not
presently used by ISWI.

Registration No A custom property that is not
presently used by ISWI.

ReinstallModeText omus Sets the REINSTALLMODE property
when the end user selects the Repair
option in the Maintenance Type
dialog.

SetupType Typical A custom property that is not
presently used by ISWI.

UpgradeCode GUID Generated when a new project
is created. This is not one of the
required properties but you’ll need it
if you want to implement upgrades.

If a property in the Property Manager is not given a value, it will not appear in
the Property table of the resulting MSI package when the database is built. We dis-
cuss the one exception to this rule in Chapter 9 when you add the serial-number
functionality to the installation for the ISWI Artist application.

Using Conditions to Add Control
There are ten tables in an MSI database that have columns where you can enter a
condition in order to add another level of control to the functionality of an instal-
lation. Of these ten tables, six are the sequence tables. Table 8-20 describes the
tables where you can enter conditions.

Chapter 8: Controlling the Installation 331

4723-2 ch08.f.qc 1/16/01 11:09 AM Page 331

TABLE 8-20 TABLES WITH COLUMNS FOR SETTING A CONDITION

Table Name Description

Condition Uses a condition to modify the selection state of a feature
by modifying its install-level value. A feature with an install-
level value greater than the value of the INSTALLLEVEL
property will have a state of Absent. An install level of 0
disables and hides the feature.

ControlCondition Determines whether a control in a dialog box can be
hidden, shown, disabled, or enabled.

ControlEvent Determines whether a particular control event tied to a
control in a dialog box will be triggered or not.

LaunchCondition Read by the LaunchConditions action; if any of the
conditions returns a value of false the installation is
terminated.

InstallUISequence If the condition entered into this table evaluates to false,
the Windows Installer will not execute it.

InstallExecuteSequence If the condition entered into this table evaluates to false,
the Windows Installer will not execute it.

AdminUISequence If the condition entered into this table evaluates to false,
the Windows Installer will not execute it.

AdminExecuteSequence If the condition entered into this table evaluates to false,
the Windows Installer will not execute it.

AdvtUISequence If the condition entered into this table evaluates to false,
the Windows Installer will not execute it.

AdvtExecuteSequence If the condition entered into this table evaluates to false,
the Windows Installer will not execute it.

You can see that a condition is an expression that evaluates to either true or
false. You can create condition statements from properties, environment variables,
component action states, component install states, feature action states, and feature
install states. The following list summarizes the syntax requirements of a condition
statement:

◆ Case-sensitive symbol names and values

◆ Case-insensitive environment variable names

332 Part II: Basic Package Creation with ISWI

4723-2 ch08.f.qc 1/16/01 11:09 AM Page 332

◆ Literal text enclosed between quotation marks (“text”)

◆ Non-existent property values treated as empty strings

◆ No floating-point numeric values

◆ Operators and precedence the same as in the BASIC and SQL languages

◆ Arithmetic operators are not supported

◆ Parentheses to override operator precedence

◆ Case-insensitive operators

◆ For string comparisons, a tilde ~ prefixed to the operator performs a case-
insensitive comparison

◆ Comparison of an integer with a string or property value that cannot be
converted to an integer always false, except for the comparison operator
<>, which returns true.

For a complete description of the conditional statement I refer you to the

topic “Condition Statement Syntax”that can be found in the MSI Help on the

CD-ROM at the back of the book.

Introduction to Custom Actions
A custom action enables you to extend the built-in functionality of the Windows
Installer. Even though many of the chapters in this book are devoted solely to cus-
tom actions it is a good idea to take a quick look at them now. Figure 8-1 showed
the Actions/Scripts view. In this view, under the Actions/Scripts folder, there is an
icon with a Custom Actions label. If you highlight this icon and click the right
mouse button, you get a context menu with two options, New and Custom Action
Wizard... If you choose the latter, you are launched into a wizard that leads you
through the creation of a custom action. If you click the Welcome panel of this wiz-
ard, you get the panel shown in Figure 8-7.

In the Basic Information panel of the Custom Action Wizard you enter the name
of the custom action and provide internal comments to describe it. In the remain-
ing panels you will be asked to define the type of custom action, the location where
the Windows Installer can find the implementation of the custom action, and other
information about how the custom action is to be executed.

Once you have created a custom action you have to insert it into one of the
sequences so that it will be executed. You can also put a condition on the custom
action so that it will be executed only under certain circumstances.

XREF

Chapter 8: Controlling the Installation 333

4723-2 ch08.f.qc 1/16/01 11:09 AM Page 333

Figure 8-7: The Basic Information panel of the Custom Action Wizard

Part III of this book is devoted solely to the description and creation of all the

types of custom actions you can use.

Summary
In this chapter you have seen that under the covers there are many similarities
between the current script-based installations and the new Windows Installer
approach. Actions serve the same purpose as functions and read the various data-
base tables to get the information they need. You can create a procedure for per-
forming an installation by placing actions in sequence tables. You can also put a
higher level of control on these actions by creating specific conditions under which
they will be executed. Finally you learned to extend the built-in functionality pro-
vided by the Windows Installer by creating custom actions.

XREF

334 Part II: Basic Package Creation with ISWI

4723-2 ch08.f.qc 1/16/01 11:09 AM Page 334

Chapter 9

Creating the Installation
User Interface

IN THIS CHAPTER

◆ Understanding the user interface in the Windows Installer Service

◆ Investigating the dialog boxes that come with ISWI

◆ Using the Dialog Editor in InstallShield for Windows Installer

◆ Modifying an existing dialog using the Dialog Editor

◆ Creating a new dialog with the Dialog Editor and inserting it into a
wizard sequence

WE ARE GOING TO EXTEND our knowledge of package creation using ISWI in this
chapter by taking a close look at how to manipulate the user interface.

The Windows Installer User Interface
In Chapter 3 we discussed the user interface in Windows Installer in a fair amount
of detail. The important thing to keep in mind is that just like all other aspects of an
MSI package the user interface is authored into the database tables. Unlike with
legacy applications you no longer have full-screen backgrounds with your bill-
boards, AVI files, or WAV files playing to keep you entertained while the installa-
tion proceeds. All you have is a wizard sequence and a final setup progress dialog
that lets you know how the installation is proceeding.

Take a look at Chapter 3 for a complete discussion on the subject of user-

interface levels. User-interface levels are important relative to what the user

will see during an installation.

There are three components that make up the user interface in a Windows Installer
database. These are dialog boxes, controls, and control events. The definition of each

XREF

335

4723-2 ch09.f.qc 1/16/01 11:09 AM Page 335

of these entities is contained in the Dialog, Control, and ControlEvent database tables
respectively. There are seven database tables that supplement the information in the
Control table. These are the BBControl, Billboard, CheckBox, ListBox, ListView,
ComboBox and RadioButton tables. The main purpose of most of these supplemental
tables is to populate the respective controls with values or other information. For
instance, the ListBox table has a separate row in it for each row that is to be displayed
in the list box control. Except for the BBControl and the Billboard tables all these
tables tie the control to a particular property in the Property table. An action on the
control will set the specified property to a particular value.

There are two other tables that are important with respect to the user interface:
these are the EventMapping and ControlCondition tables. The EventMapping table
defines those actions to which a certain control is subscribed and the Control
Condition table defines the conditions under which a particular control is to be
enabled, disabled, made visible, hidden or made the default control of a dialog.
Through the Dialog Editor you will be seeing the impact of each of these tables by
creating certain types of dialogs and controls. It is important, however, to discuss in
more detail this business of control events and subscription.

Control Events and Subscription
Control events are analogous to Microsoft Windows messages in Win32-based
applications. However, rather than creating a callback function to receive Windows
messages and sending Windows messages with the SendMessage function,
Windows Installer controls send control events specified in the ControlEvent table
and receive control events specified in the EventMapping table.

To add working controls to dialog boxes, the author of the user interface first
selects which control events to use and then associates these with the controls.
When a user triggers a control with a control event tied to it, that control event is
published to the installer and all controls in the dialog box. If the installer subscribes
to the control event, the publication of the control event results in the installer’s
executing an action. If any controls in the dialog box subscribe to the control event,
then the publication of the control event results in a change in the attributes of these
controls as long as the Windows Installer defines that there is an action to be taken
on the subscriber.

For example, consider a dialog that contains a progress bar and a text control
that needs to display a description of the actions that are taking place during an
installation. To implement this you would need to subscribe the text control to the
ActionText. You would also need to make string entries in the ActionText table so
that when a certain action is being executed the text string from the ActionText
table describing that action is displayed in the text control. Each control event is
published either by the installer or one of the controls in a dialog box. You author
this type of functionality into the dialog box by listing the control together with the
name of the control event in the ControlEvent table.

336 Part II: Basic Package Creation with ISWI

4723-2 ch09.f.qc 1/16/01 11:09 AM Page 336

Although only the installer or a single control publishes a control event, the
installer and controls can subscribe to multiple control events. This is accomplished
by listing the control together with the control event in the EventMapping table.
The value in the Attribute column of this table is the control attribute that is set
when the subscribing control receives the control event. However, for the majority
of control events no action is taken on controls that subscribe to these events. The
main use of subscription is either during the selection of features in the custom
setup type dialog or in the dialog that shows the progress of an installation.

If a control subscribes to a control event that is not published by the installer or
a control in the same dialog box, an error may result. For a more information about
particular control events, see the list of standard control events in MSI Help file.

Looking at the ISWI Built-In
Dialogs in Detail
When you look at the built-in dialogs that come with ISWI you need to look at both
the basic dialogs themselves and the wizard sequences into which they have been
organized. The basic dialogs themselves are displayed in the User Interface view
and you can see how they are used in the Sequences view.

The User Interface view
If you go to the User Interface view in the ISWI IDE you will see a complete list of
the dialogs that come with your installation of ISWI. These dialogs are listed in
alphabetical order and this does not tell you anything about the sequence of the
dialogs in any particular wizard. The User Interface view is shown in Figure 9-1.

In this view under the All Dialogs icon you can see an alphabetical list of dialogs
that have either come with ISWI or been imported in one way or another. If you
highlight the All Dialogs icon or the User Interface icon above it and right-click,
you get a context menu with four options. These options are New Dialog..., Import
Dialog..., Import Dialogs from Resource DLL..., and Export Dialogs to Resource
Script... Each of these options is the subject of one of the following subsections.

THE NEW DIALOG OPTION
Selecting this option launches a dialog that displays a gallery, which presents a
selection of available dialogs including a blank dialog. You can use the blank dia-
log to build new dialogs from scratch. You can also use any of the other dialogs in
the dialog gallery as a starting point for constructing a new dialog. Other than the
blank dialog form all the other dialogs that appear in the dialog gallery come from
dialogs exported from a project. If you click a dialog other than the blank dialog
form and a dialog with the same name is already in the project, the dialog name
will be changed before it is imported. The new name will be the same as the name
of the existing dialog except that a number will be appended to it.

Chapter 9: Creating the Installation User Interface 337

4723-2 ch09.f.qc 1/16/01 11:09 AM Page 337

Figure 9-1: The User Interface view in the ISWI IDE

THE IMPORT DIALOG OPTION
When you select this option you are presented with a file open dialog that gives
you a list of .isd files. An .isd file contains the description of a dialog stored in a
proprietary binary format that can only be read by ISWI. Unlike with the dialog
gallery you get with the New Dialog option, with this dialog you can browse for a
.isd file anywhere on the system. Also, using this option will prevent you from
importing a dialog if there is already a dialog with the same name in the project.
This dialog enables you to add dialogs and not templates that can be used for cre-
ating new dialogs.

For each string displayed in a dialog created by ISWI a string ID is used to
uniquely identify the string for the purposes of easy localization. When you import
a dialog that contains a string ID that is being used by another dialog, the dialog
importing mechanism warns you of this and lets you decide how to handle the
clash of string Ids.

IMPORTING DIALOGS FROM A DYNAMIC LINK LIBRARY
You can also import dialogs defined as resources in a DLL. For best results you need
to make sure that the dialogs in the resource DLL consist only of those controls that
are supported by the Windows Installer.

338 Part II: Basic Package Creation with ISWI

4723-2 ch09.f.qc 1/16/01 11:09 AM Page 338

EXPORTING DIALOGS TO A RESOURCE SCRIPT
All dialogs that have been defined in a project can be exported to a resource script.
This is a file that has an .rc extension and can be added to a Visual C++ project and
compiled into a DLL. To see how all this works, export all the dialogs in a standard
project to an .rc file. Then create a simple DLL project in Visual C++, add this .rc file
to the project, and compile the DLL. If you open this DLL as a resource in Visual C++,
you will see all the dialogs that were in the ISWI project. Next, delete all the dialogs
in your project and then import them again from the DLL that you just created.

WORKING WITH INDIVIDUAL DIALOGS
When you highlight an individual dialog in the User Interface view and right-click
you have three options that affect only the highlighted dialog. One, you can export
the dialog as an .isd file. This file will be saved in a Dialogs folder that is created
in the root directory where all the project files are being saved. Two, you can delete
the dialog, or three, you can rename it. You can also delete a dialog by pressing the
Delete key. When you delete a dialog entered in one of the sequence tables this dia-
log is deleted from the sequence as well.

The Sequences view
If you look at the Sequences view and expand the Installation User Interface tree,
you will see only a few of the dialogs that you see in the User Interface. If you
expand the Administration User Interface view, you will see the same thing, except
that there will be much fewer dialogs in this sequence. The question is, How do all
the other dialogs get displayed if you don’t put them into the any of the sequence
tables?

In general, inserting the first dialog in the wizard sequence into the sequence
table starts a wizard sequence. Then the remaining dialogs in any sequence are dis-
played via the control events assigned to the pushbuttons in each dialog. In a sim-
ple wizard sequence the Next pushbutton will trigger a NewDialog control event
that displays the next dialog in the sequence. The Back pushbutton will trigger a
NewDialog control event that displays the previous dialog. You can think of a wiz-
ard sequence as being similar to a doubly linked list.

Before taking a closer look at each of the wizard sequences you need to look at
each of the dialogs in the sequence tables and understand why they are there. You
also need to look at the conditions that have been set to control whether these
dialogs even get displayed. Table 9-1 explains the dialogs in the Installation/User
Interface tree in greater detail.

Chapter 9: Creating the Installation User Interface 339

4723-2 ch09.f.qc 1/16/01 11:09 AM Page 339

TABLE 9-1 DIALOG BOXES IN THE INSTALLATION USER INTERFACE

Dialog Name Condition Description

SetupCompleteError The dialog that the Windows
Installer launches when it detects
an error during the installation
and has to terminate the process.
The Windows Installer knows to
launch this particular dialog
because it has a -3 sequence
number. This is a modal dialog.

SetupInterrupted The dialog that the Windows
Installer launches when the user
decides to cancel the installation.
The Windows Installer knows to
launch this particular dialog
because it has a -2 sequence
number. This is a modal dialog.

SetupCompleteSuccess The dialog that the Windows
Installer launches when the
installation completes success-
fully. The Windows Installer knows
to launch this particular dialog
because it has a -1 sequence
number. This is a modal dialog.

SetupInitialization The first dialog that is displayed,
and it stays active while the
Windows Installer is performing
its up-front actions (file costing,
searching for files, and so on). In
other words, all actions that
precede the display of the starting
dialog for one of the wizard
sequences are performed while
this dialog is on the screen. This
is a modeless dialog so that other
actions can occur while it is on
the screen.

340 Part II: Basic Package Creation with ISWI

4723-2 ch09.f.qc 1/16/01 11:09 AM Page 340

Dialog Name Condition Description

PatchWelcome PATCH The welcome panel to the start of
an operation designed to update
or upgrade a product through the
use of a patch package. This
wizard sequence will be launched
if the PATCH public property is
set. This is a modal dialog.

InstallWelcome Not Installed And The welcome panel for the start of
Not PATCH an installation wizard sequence.

This wizard sequence will be
launched if the PATCH public
property is not set and the
Windows Installer has not found
the product already registered on
the machine. This is a modal
dialog and all the other dialogs in
the sequence will be displayed
based on the control events
associated with the Next and
Back buttons.

SetupResume Installed And The welcome panel for the start
(RESUME Or of an installation being resumed
Preselected) after suspension.
And Not PATCH

MaintenanceWelcome Installed And Not The welcome panel for the start of
RESUME And Not a maintenance installation wizard
Preselected And sequence. This wizard sequence
Not PATCH will be launched if the PATCH

public property is not set and the
Windows Installer has found the
product already registered on the
machine, provided that this is not
the resumption of a suspended
installation. This is a modal dialog
and all the other dialogs in the
sequence will be displayed based
on the control events associated
with the Next and Back buttons.

Continued

Chapter 9: Creating the Installation User Interface 341

4723-2 ch09.f.qc 1/16/01 11:09 AM Page 341

TABLE 9-1 DIALOG BOXES IN THE INSTALLATION USER INTERFACE (Continued)

Dialog Name Condition Description

SetupProgress A modeless dialog that contains
a progress bar control. This
progress bar control receives
the information that allows it
to display the progress of the
installation.

There are four wizard sequences in the Installation/User Interface tree in the
Sequences view. These are the sequences that start with either the InstallWelcome,
the MaintenanceWelcome, the PatchWelcome or the SetupResume dialogs. All the
other dialogs in this sequence table are individual dialogs only and do not start a
wizard sequence.

In the Administration/User Interface tree in the Sequences view, you will find the
dialogs you can use when performing an administrative installation. Table 9-2
describes the dialogs in this sequence.

TABLE 9-2 DIALOG BOXES IN THE ADMINISTRATION USER INTERFACE

Dialog Name Condition Discussion

SetupCompleteError See Table 9-1.

SetupInterrupted See Table 9-1.

SetupCompleteSuccess See Table 9-1.

SetupInitialization See Table 9-1.

AdminWelcome The welcome panel for the start of
an administrative installation wizard
sequence. This wizard sequence will
be launched if the top-level action has
been set to ADMIN. This is a modal
dialog and all the other dialogs in the
sequence will be displayed based on
the control events associated with the
Next and Back buttons.

SetupProgress See Table 9-1.

342 Part II: Basic Package Creation with ISWI

4723-2 ch09.f.qc 1/16/01 11:09 AM Page 342

In the Administration/User Interface tree of the User Interface view there is only
one wizard sequence, the one starting with the AdminWelcome dialog.

As described in Chapter 3 there is a tabled named AdvtUISequence in the data-
base schema, but this table is not used since there is no need to have a user inter-
face for performing the advertisement of an application. When an application is
advertised there is no information that is needed from the end user. Since no files
are being installed there is no need to select features and there is no destination
location that needs to be configured. The only thing that happens during advertise-
ment is that registry entries are made and shortcuts are created on the Start/
Programs menu

In the next five sections you will look at the four wizard sequences that arer pos-
sible in the InstallUISequence table and the one wizard sequence that is possible in
the AdminUISequence table. The description of each of these wizard sequences is
accompanied by a figure that shows the dialog at which the Next and Back buttons
are pointed. Also shown is the condition on the NewDialog control event that
determines which new dialog will be displayed. The name of the dialog that will be
displayed is given in the rectangle. You need to remember that only the first dialog
of a wizard sequence is inserted into the sequence table and all other dialogs in the
wizard sequence are displayed through the use of the NewDialog control event,
which takes as its argument the name of the new dialog to be displayed. Now let’s
take a look at the individual wizard sequences and how they are constructed, start-
ing with the InstallWelcome sequence.

The InstallWelcome dialog sequence
Figure 9-2 is a flow chart that shows the dialogs in the main wizard sequence that
begins with the InstallWelcome dialog. I’ll explain the design of each of the dialogs
in the sequence. Some of the dialogs in this sequence can spawn other dialogs that
are not part of the main sequence, and I’ll explain each of these internal sequences
as part of the discussion of the dialog that initiates it.

This is the most complicated of the wizard sequences. It is also the one most fre-
quently used. Because of this I will explain each of the dialogs in this sequence in
detail since many of the actions you perform in this sequence you will repeat in the
other sequences. We’ll begin with the InstallWelcome dialog box.

THE INSTALLWELCOME DIALOG
This is a simple dialog with no functionality other than that implemented by the
Next and Cancel buttons. Figure 9-2 shows that you can get to the SplashBitmap
panel by clicking the Back button. The Back button is disabled by default so this
will not work unless you go into the Dialog Editor and enable this button.

The condition on the Back button’s NewDialog control event is the existence of
the Display_IsBitmapDlg property. This property is set by default in the Property
Manager of the Project view. The SplashBitmap dialog has only a basic bitmap on
it and if you want to display this dialog you should exchange this bitmap for some-
thing relevant to the product you are installing.

Chapter 9: Creating the Installation User Interface 343

4723-2 ch09.f.qc 1/16/01 11:09 AM Page 343

Figure 9-2: The main Installation Wizard sequence

The Cancel button on the InstallWelcome dialog spawns a child dialog that asks
for confirmation before terminating the installation. This is the CancelSetup dialog.
This dialog will either terminate the installation or return the user to the parent dia-
log. The Cancel buttons on all dialogs function in the same way.

THE LICENSEAGREEMENT DIALOG
This dialog prevents a user from continuing with the installation unless he or she
specifically agrees to the End User License Agreement (EULA) that is displayed. The
EULA is displayed in a Scrollable Text control, which requires a text string in Rich
Text Format (RTF). In the ISWI Dialog Editor this text string must be provided as an
RTF file.The user accepts the EULA through a RadioButtonGroup control associated
with the AgreeToLicense property. The default value of this property in the Property
Manager is No. The condition on the NewDialog control event tied to the Next but-
ton is AgreeToLicense = “Yes.” Unless the end user selects the I agree radio button
the Next button will not launch the next dialog in the wizard sequence.

THE CUSTOMERINFORMATION DIALOG
This dialog contains two edit fields and a radio button group. The edit fields are tied
to the USERNAME and COMPANYNAME public properties. If these two properties

SplashBitmap

InstallWelcome CancelSetup

Typical
Sequence Start

Not Installed And Not PATCH

_IsSetupTypeMin <> "Typical" _IsSetupTypeMin <> "Typical"

OutOfNoRbDiskSpace = 1

LicenseAgreement SetupInterrupted

CustomerInformation

SetupType

CustomSetup

Next
Back No

OK

Next Cancel

Install

Yes
Back

Next
Back

Next

Next Install

Install

OutOfNoRbDiskSpace = 1

Back

Back

BackBack

Next Next

Return to the next dialog
in the InstallUISequence

ReadyToInstall

Return to the next
dialog in the
InstallUISequence

ReadyToInstall

OutOfSpace

344 Part II: Basic Package Creation with ISWI

4723-2 ch09.f.qc 1/16/01 11:09 AM Page 344

are not authored into the Property table or set from the command line, the Windows
Installer will set these properties using information from the registry. Entering infor-
mation into these edit fields will change the values of these two properties.

The RadioButtonGroup control enables the end user to choose whether to install
the product for everyone who uses the machine or just for the current user. Under cer-
tain circumstances, however, the RadioButtonGroup control is hidden and the user is
not given the choice. The control is hidden under any of the following circumstances:

◆ When the ProductState property has a value greater than 0. This will be
the case if the product has been advertised but not installed, installed for
a different user, or installed for the current user previously. The last situa-
tion would launch the maintenance dialog sequence so the user would
never see the CustomerInformation dialog.

◆ When the user does not have administrative privileges on the target
machine. Under these circumstances the HKEY_LOCAL_MACHINE registry
hive cannot be written and therefore only an installation for the current
user is possible.

◆ When the target operating system is Windows 95/98. On these two systems
there are no such concepts as a per-user or a per-machine installation.

The RadioButtonGroup control is associated with the ApplicationUsers property,
which is set to an initial value of AllUsers in the Property Manger. This forces the
default selection to be an installation for all users of the machine. If the Application
Users property is set to AllUsers and the user has administrative privileges, then the
Next button will set the ALLUSERS public property to a value of 1. This will cause
the Windows Installer to perform a per-machine installation. If the ALLUSERS pub-
lic property is not set because of a certain set of conditions then the Windows
Installer will perform an installation for the current user.

THE SETUPTYPE DIALOG
The setup type dialog that comes with ISWI enables the user to select either a com-
plete install or a custom setup. This functionality is implemented with a RadioButton
Group control that is associated with the _IsSetupTypeMin property defined in the
Property Manager. The default value of this property is Typical, which makes the
default setup type a complete installation. The Next button has two control events
defined that will launch either the ReadyToInstall dialog or the CustomSetup dialog
depending on the radio button selected by the user.

THE CUSTOMSETUP DIALOG
This dialog enables the end user to change the default selection of the features to be
installed. The visible features to be installed are displayed in the SelectionTree con-
trol. The remote installation and advertisement properties set for a feature and the
remote installation property set for the components that are associated with a fea-
ture define the possible action states for a feature. The end user would then be able

Chapter 9: Creating the Installation User Interface 345

4723-2 ch09.f.qc 1/16/01 11:09 AM Page 345

to select one of these action states in the CustomSetup dialog or could decide to
accept the default action state.

The user can also change the installation location for each of the features in the
SelectionTree control. This functionality is implemented by the Change button,
which uses the SelectionBrowse control event to launch the InstallChangeFolder
dialog. Using this dialog the user can browse to a new location and create new
folders. The location defined with the InstallChangeFolder dialog becomes the new
install location for the feature highlighted in the SelectionTree control.

In addition to the standard Back, Next, and Cancel buttons, there are several
others that provide information to the user. The Help button spawns a dialog that
displays the various types and meanings of the icons that are used for features in
the SelectionTree control. There is also the button with the label Space launches the
DiskSpaceRequirements dialog that contains a VolumeCostList control. This control
displays all the volumes involved in the current installation and will highlight any
volumes that do not have enough space to accommodate the selected features.

The Next button on the CustomSetup dialog is tied to two NewDialog control
events, which you condition using the OutOfNoRbDiskSpace private property. If the
value of this property is False, the Next button will launch the ReadyToInstall dia-
log, where the user initiates the installation. If the value of this property is True, the
Next button will launch the OutOfSpace dialog, which is described in a later sec-
tion. The Windows Installer sets the OutOfNoRbDiskSpace property to True if any of
the target volumes do not have enough disk space for the selected features.

When setting the value of the OutOfNoRbDiskSpace property the Windows
Installer does not take into account the space that is required for caching files and
other information required for implementing rollback. It is the OutOfDiskSpace
property that takes into account the impact of caching files for rollback purposes.
The OutOfNoRbDiskSpace property is dynamically updated any time the total
install cost is reevaluated.

THE READYTOINSTALL DIALOG
This dialog launches the installation with the Install button and is the last dialog in
the InstallWelcome wizard sequence. The Install button is tied to the EndDialog
control event with the Return argument. This control event returns control to the
Windows Installer and the next action or dialog in the InstallUISequence table is
executed. Under normal circumstances the modeless SetupProgress dialog will be
launched and then the ExecuteAction action will be executed. The ExecuteAction
action initiates the executionof the actions listed in the InstallExecuteSequence
table. In addition to launching the installation clicking the Install button sets a
series of three properties that are used later to define conditions that will either hide
or display text in the SetupProgress dialog and in the SetupCompleteSuccess dia-
log. These properties are ProgressType1, ProgressType2, and ProgressType3, and
they are defined with default values in the Property Manager.

THE OUTOFSPACE DIALOG
This dialog is exactly like the DiskSpaceRequirements dialog except for the posi-
tioning of the text control. It is displayed when the OutOfNoRbDiskSpace property

346 Part II: Basic Package Creation with ISWI

4723-2 ch09.f.qc 1/16/01 11:09 AM Page 346

is set to True. This dialog provides feedback through the VolumeCostList control
about what volumes do not have enough space to accommodate the current selec-
tion of features and their target locations. When users click the OK button, they are
returned to the CustomSetup dialog where they can reconfigure the installation to
complete successfully.

The MaintenanceWelcome dialog sequence
In Figure 9-3 is a flow chart that shows the dialogs in the main wizard sequence that
begins with the MaintenanceWelcome dialog. I’ll discuss the design of each of the
dialogs in this sequence separately — I’ve already discussed some of them in their
roles as part of the InstallWelcome wizard sequence. It is interesting to note that a
number of the dialogs you see in the User Interface view are used in more than one
sequence. Displaying a dialog in more than one wizard sequence is accomplished by
placing different conditions on the pushbutton control events. Depending on how
these dialogs are launched, they can have slightly different functionalities.

Figure 9-3: The Maintenance Wizard sequence

MaintenanceWelcome CancelSetup
Sequence Start

Installed And Not RESUME
And Not Preselected And Not PATCH

_I
sM

ai
nt

en
an

ce
 =

 "
Ch

ar
ge

"

_IsMaintenance = "Remove"

OutOfNoRbDiskSpace = 1 OutOfNoRbDiskSpace = 1

OutOfNoRbDiskSpace <> 1OutOfNoRbDiskSpace <> 1

SetupInterrupted

No

Next

Next

Cancel

Yes

Back

MaintenanceType

CustomSetup

Next

Back

ReadyToRemove

Back

_IsMaintenance = "Reinstall"Next

ReadyToInstall

Back
Back

Next

O
ut

O
fN

oR
bD

is
kS

pa
ce

 =
 1

OutOfSpace

NextRemove

Return to the next action or
dialog in the InstallUISequence.

Return to the next action or
dialog in the InstallUISequence.

Install

OK

Chapter 9: Creating the Installation User Interface 347

4723-2 ch09.f.qc 1/16/01 11:09 AM Page 347

THE MAINTENANCEWELCOME DIALOG
This dialog is almost the same as the InstallWelcome dialog except that it displays
different text and it does not have the Back button pointing at the SplashBitmap
dialog. The Next button launches the MaintenanceType dialog using the NewDialog
control event.

THE MAINTENANCETYPE DIALOG
In this dialog the user is presented with three options for performing a maintenance
type of operation. These three options are presented in a RadioButtonGroup control
associated with the _IsMaintenance property. The default value for this property as
set in the Property Manager is Change, which makes the radio button with the
Modify label the default when the dialog is first displayed. The three options that the
user has in this dialog are Modify, Repair, and Remove. When the Modify option is
selected the _IsMaintenance property is set to Change; when the Repair option
is selected the property is set to Reinstall; and when the Remove option is selected
the property is set to Remove. The _IsMaintenance property is used in a condition
statement on the NewDialog control event associated with the Next button. Based on
the value of the _IsMaintenance property one of three dialogs is displayed: ReadyTo
Remove, CustomSetup, or ReadyToInstall.

When the user selects the Repair option the ReinstallMode control event is also
executed, with the argument being the value of the ReinstallModeText property as
defined in the Property Manager. This control event specifies the modes to be used
during the reinstall operation based on the text string used as an argument to this
control event. The value of the ReinstallModeText property is omus. Each of the let-
ters in this string specifies a certain operation to be carried out with regard to files,
registry entries, and shortcuts. A complete list of all the possible values is provided
in the MSI Help for the REINSTALLMODE public property.

THE READYTOREMOVE DIALOG
This dialog is the last dialog in the MaintenanceWelcome wizard sequence. The user
initiates the uninstallation of the product by clicking on the Remove button. A num-
ber of control events are associated with the Remove button on this dialog, the most
important being the Remove control event that has an argument that consists of the
string ALL. This defines that all installed features are to be uninstalled. There is also
an EndDialog control event with the Return argument. This control event returns
control to the Windows Installer. The Windows Installer then displays the modeless
SetupProgress dialog and then executes the ExecuteAction action. The ExecuteAction
action initiates the execution of the actions in the InstallExecuteSequence table and
these actions actually perform the uninstallation operation.

THE CUSTOMSETUP DIALOG
We have already looked at this dialog in the section on the InstallWelcome wizard
sequence. The possible sequence of events is the same as described in that section, the
only difference being that the Back button will take the user to the MaintenanceType
dialog instead of to the SetupType dialog. The condition that controls this functionality

348 Part II: Basic Package Creation with ISWI

4723-2 ch09.f.qc 1/16/01 11:09 AM Page 348

is the value of the Installed property. The Windows Installer sets this property when an
operation is first launched and the product has already been installed.

THE READYTOINSTALL DIALOG
This is another dialog that has the same type of functionality as described in the
section on the InstallWelcome wizard sequence. The main difference here is that if
this dialog is launched from either the MaintenanceType dialog or the CustomSetup
dialog, pressing the Back button returns the user to the dialog from which the
ReadyToInstall dialog was launched.

The SetupResume dialog sequence
This sequence is one that you will very rarely see. This sequence normally appears
only if an installation is interrupted by some event not initiated by the user. You
might see it, for instance, if you are doing an installation from a network server
and the connection gets lost during the installation. Figure 9-4 shows the wizard
sequence for a resumed installation.

Figure 9-4: The Installation Resume Wizard sequence

THE SETUPRESUME DIALOG
This dialog is the only one in the default sequence for the resumption of a sus-
pended installation. The only time there will be more dialogs displayed in this
sequence is when the OutOfNoRbDiskSpace property has been set by the Windows

SetupResume

Return to the next action or
dialog in the InstallUISequence.

CancelSetup
Sequence Start

Installed And (RESUME Or Preselected)
And Not PATCH

OutOfNoRbDiskSpace = 1

OutOfNoRbDiskSpace = 1

OutOfNoRbDiskSpace <> 1

SetupInterrupted

OutOfSpace

No

Next Typical
Cancel

Next Install

Yes

O
ut

O
fN

oR
bD

is
kS

pa
ce

 =
 1

CustomSetup

OK

Next

ReadyToInstall

Chapter 9: Creating the Installation User Interface 349

4723-2 ch09.f.qc 1/16/01 11:09 AM Page 349

Installer. When this occurs then the OutOfSpace and CustomSetup dialogs come
into play just as described in the section on the InstallWelcome wizard sequence.

The PatchWelcome dialog sequence
The PatchWelcome Dialog is the only dialog in this sequence. As in the Install
Welcome dialog, the Back button is pointed at the SplashBitmap dialog and this
button is also disabled (See Figure 9-5).

Figure 9-5: The Installation Resume Wizard sequence

The AdminWelcome dialog sequence
The final wizard sequence we’ll look at is the one you use when performing an
administrative installation to a network drive. In this type of installation no files
are actually installed. All that happens is that any source files compressed into CAB
files are uncompressed into a source directory structure as dictated by the Directory
table. Figure 9-6 shows this sequence.

THE ADMINWELCOME DIALOG
This dialog is the same as all the other welcome dialogs that kick off wizard
sequences. The text displayed is different according to the objective of the sequence
and the Next button points to different dialogs, but they’re all basically the same.
In this case the Next button points at the AdminNetworkLocation dialog.

THE ADMINNETWORKLOCATION DIALOG
This dialog provides browse functionality for the purpose of finding a location
where a network image is to be located. The browse functionality is implemented by
the AdminChangeFolder dialog, which is the same as the InstallChangeFolder dialog.
I discussed the InstallChangeFolder dialog in the section on the InstallWelcome wiz-
ard sequence.

PatchWelcome CancelSetup

Typical

SplashBitmap

Return to the next action or
dialog in the InstallUISequence.

SetupInterrupted

Sequence Start
PATCH

YesBack
Next

Next
Cancel

No

350 Part II: Basic Package Creation with ISWI

4723-2 ch09.f.qc 1/16/01 11:09 AM Page 350

Figure 9-6: The Administrative Installation Wizard sequence

When the Install button is clicked two control events that are implemented if the
space requirements for the image can be accommodated by the network drive. The
first control event is the SetTargetPath event that sets the value of the TARGETDIR
public property. This property contains the location of the installation package for
the network image. The other control event just returns control to the Windows
Installer so that the installation can be implemented. If the OutOfNoRbDiskSpace
property is set to True then clicking the Install button will take the user to the
OutOfSpace dialog. This is the same dialog displayed whenever the target volume
lacks sufficient space for the installation to take place. Clicking the OK button on
the OutOfSpace dialog returns the user to the AdminNetworkLocation dialog, where
he or she can find a new location for the installation.

The Dialog Editor
A visual resource editor is part of the User Interface view shown in Figure 9-1. This
editor is used to create and modify the dialog boxes used in an installation. Figure
9-7 shows the dialog editor with a blank form for creating a new dialog. You can
generate this view by first creating a new dialog as described in the first section of
this chapter, dragging the splitter bar to the left as far as you can, and finally drag-
ging the alignment toolbar to the left and the control toolbox toolbar down and to
the left.

AdminWelcome

OutOfSpace Return to the next action or
dialog in the InstallUISequence.

CancelSetup

Typical

AdminNetworkLocation

SetupInterrupted

Sequence Start
Yes

Back
Next

Install

OK

OutOfNoRbDiskSpace = 1

ACTION = "ADMIN"

Cancel

No

OutOfNoRbDiskSpace <> 1

Chapter 9: Creating the Installation User Interface 351

4723-2 ch09.f.qc 1/16/01 11:09 AM Page 351

Figure 9-7: The Dialog Editor with a blank form

The controls toolbar
On the controls toolbar are 24 icons representing the functionality that you can add
to a dialog box. There are actually 23 controls and one selection tool. All of these
controls have properties and most of these properties are given default values when
you first place them on a dialog. You will have to change many of these default
properties in order to obtain the desired functionality. You will be working with a
number of these controls when you modify or create dialogs at the end of this
chapter. A complete description of all the properties pertaining to a particular con-
trol can be found in the MSI Help, available from the ISWI Help pulldown menu.
Table 9-2 describes the tools, listed as they appear from left to right on the toolbar.

This table shows those controls that are supported by the Windows Installer. The
Windows Installer does not support all the standard controls found in Windows.
Also, you cannot create custom controls since the Windows Installer will not rec-
ognize them.

352 Part II: Basic Package Creation with ISWI

4723-2 ch09.f.qc 1/16/01 11:09 AM Page 352

TABLE 9-2 WINDOWS INSTALLER CONTROLS AND THE CONTROL TOOLBAR

Control Icon Control Name Description

Select Tool Used to select, move, and size controls
that have been placed on the dialog.
You can also use this tool to select
multiple controls by holding down the
left mouse button and fencing in the
controls to be selected.

CheckBox A two-state check box that you can
use to implement an on-and-off
functionality. An operation on this
control sets or unsets the value of
a property.

PushButton A typical command button. One of
the few controls that can be used to
execute a control event.

Edit Enables the end user to input text.
Associated with a property that is set to
the value entered into the control. This
control can be either single or multi-
line. There is no change notification
issued by this control so there’s no way
to know if something has been entered
or not.

ComboBox Displays a dropdown list of predefined
values and an edit field into which the
user can enter a value. Associated with
a property that is set to the value in
the control selected by the user. The
Windows Installer does not support
scroll bars for this control.

Text Displays static text. Can be subscribed
to various control events and display
action data and action text messages.

Continued

Chapter 9: Creating the Installation User Interface 353

4723-2 ch09.f.qc 1/16/01 11:09 AM Page 353

TABLE 9-2 WINDOWS INSTALLER CONTROLS AND THE CONTROL TOOLBAR
(Continued)

Control Icon Control Name Description

ListBox A regular list box that enables the user
to make a single selection from a list
of predetermined values. Displays the
values that have been entered into
the Listbox table. Each ListBox control
is associated with a specific public
property and it is this property that
defines which values in the ListBox
table are displayed in any particular
ListBox control.

RadioButton Not actually a separate control but
considered to be part of a RadioButton
Group. To define a RadioButton control
you must define it in the RadioButton
table and associate it with a group
through the defined property for the
group.

Bitmap Similar to the Text control except that it
displays a static bitmap image instead
of static text.

GroupBox Displays a rectangle around a group of
controls and can optionally have a text
description.

Billboard Used to display other controls that can
be added and removed from the dialog
box by control events. Only controls
that do not have associated properties
can be placed on a billboard control.
Controls that would typically be placed
on a Billboard control are Text, Bitmap,
and Icon controls.

Line You can’t make this anything but a
horizontal line.

354 Part II: Basic Package Creation with ISWI

4723-2 ch09.f.qc 1/16/01 11:09 AM Page 354

Control Icon Control Name Description

RadioButtonGroup Consists of a group of radio buttons
from which a user will set the value of
the property associated with the radio
button group. A RadioButtonGroup
control can only set a property value; it
cannot be used to send a control event.

SelectionTree Enables a user to change the selection
state of features. Normally used in a
custom setup dialog. Associated with a
property that the user can set through
a browse dialog.

ProgressBar Displays a bar graph that changes length
as it receives progress messages.
Subscribes to the SetProgress control
event so that it receives the information
related to the progress of the installation
via the change in the Progress attribute.

ListView A standard ListView control that
displays a single column of values with
an icon next to each item. Displays the
values in the ListView table that are
associated with specific properties.

ScrollableText Displays a long string of text in Rich
Text Format (RTF). Often used to display
an End User License Agreement (EULA).

Icon Displays a static picture of an icon
where the background of the image
is transparent.

DirectoryList Displays a part of the path currently
displayed in the PathEdit control, and
the folders below the directory currently
displayed by the DirectoryCombo
control. The PathEdit, DirectoryCombo,
and DirectoryList controls are tied
together through the use of a string-
valued property. This property defines
the path selected by the user.

Continued

Chapter 9: Creating the Installation User Interface 355

4723-2 ch09.f.qc 1/16/01 11:09 AM Page 355

TABLE 9-2 WINDOWS INSTALLER CONTROLS AND THE CONTROL TOOLBAR
(Continued)

Control Icon Control Name Description

DirectoryCombo Displays all the available volumes in
alphabetical order and the all the levels
of the current path. This control, along
with the PathEdit and DirectoryList
controls, is designed to be used in a
browse dialog where the user can
change the install location for the
product.

VolumeCostList Presents information about the cost
associated with the selection of
features for installation. Shows all
the volumes involved in the current
installation, and can also be used to
show all other volumes. If the required
disk space exceeds the amount
available, the volume is highlighted.

VolumeSelectCombo Enables the user to select a volume
from an alphabetical list of volumes.
You can control the types of volumes
displayed by changing the properties
that define this control.

MaskedEdit An edit field that you can configure
by using a mask. Associated with a
property, the value of which is set to
the text entered in this control.

PathEdit Used to display an edit field that
enables a user to select the tail-end
section of a path or enter a path using
either a logical drive letter or (if a drive
has no drive letter) a Universal Naming
Convention (UNC) path.

Editing the dialog design
After you place controls on the dialog you can manipulate these controls in a num-
ber of different ways. You can copy and paste controls, align controls with each

356 Part II: Basic Package Creation with ISWI

4723-2 ch09.f.qc 1/16/01 11:09 AM Page 356

other, center them in the dialog, and so forth. The editing functionality in the Dialog
Editor is contained in the Alignment and Sizing toolbar and the Edit pulldown
menu. There is also a context menu you get when you right-click in the dialog.

THE ALIGNMENT AND SIZING TOOLBAR
On the Alignment and Sizing toolbar are 14 options for manipulating the controls
that you place on a dialog. Table 9-3 describes these options, listed as they appear
from left to right on the toolbar.

TABLE 9-3 OPTIONS AVAILABLE ON THE ALIGNMENT AND SIZING TOOLBAR

Tool Icon Tool Name Description

Align Left Enabled when more than one control has
been selected. All the selected controls will
be lined up on their left edge with the left
edge of the last control selected.

Align Right Enabled when more than one control has
been selected. All the selected controls will
be lined up on their right edge with the left
edge of the last control selected.

Align Top Enabled when more than one control has
been selected. All the selected controls will
be lined up on their top edge with the left
edge of the last control selected.

Align Bottom Enabled when more than one control has
been selected. All the selected controls will
be lined up on their bottom edge with the
left edge of the last control selected.

Center Vertical Centers a control vertically in the dialog box.

Center Horizontal Centers a control horizontally in the
dialog box.

Space Across Enabled when more than one control has
been selected. All the selected controls
will be evenly spaced between the control
farthest to the left and the one farthest
to the right.

Continued

Chapter 9: Creating the Installation User Interface 357

4723-2 ch09.f.qc 1/16/01 11:09 AM Page 357

TABLE 9-3 OPTIONS AVAILABLE ON THE ALIGNMENT AND SIZING TOOLBAR
(Continued)

Tool Icon Tool Name Description

Space Down Enabled when more than one control has
been selected. All the selected controls will
be evenly spaced between the control that is
closest to the top and the one closest to the
bottom.

Make Same Width Enabled when more than one control has
been selected. All the selected controls will
be made the same width as the last control
selected.

Make Same Height Enabled when more than one control has
been selected. All the selected controls will
be made the same height as the last control
selected.

Make Same Size Enabled when more than one control has
been selected. All the selected controls will
be made the same height and width as the
last control selected.

Bring To Front An authoring help when you’re working on
overlapping controls. Brings a control that is
behind another control to the top. Has no
effect on the order in which controls are
painted at run time.

Send To Back An authoring help when you’re working on
overlapping controls. Sends a control in front
of another control to the back. Has no effect
on the order in which controls are painted
at run time.

Toggle Grid Turns a grid on the base form of the dialog on
or off. When the grid is turned on it provides
a snap-to functionality, making all controls
drawn on the grid align with it along all edges.
Controls drawn before the grid is turned on do
not snap to the grid unless they are moved.
Then they will change size so that all edges
align with the grid.

358 Part II: Basic Package Creation with ISWI

4723-2 ch09.f.qc 1/16/01 11:09 AM Page 358

These alignment tools constitute the standard set of tools found in all visual
resource editors. Knowing how to use these tools will enable you to efficiently cre-
ate professional-looking dialogs.

USING THE EDIT AND CONTEXT MENUS
On the Edit pulldown menu you have access to the typical Delete, Cut, Copy, and
Paste options. The keyboard shortcuts for these options are also the standard ones
for any Windows-based application. You can copy and paste controls on the same
dialog box and you can also copy controls from one dialog to another. At this time
you cannot undo or redo any of these actions but the next version will provide the
ability to undo changes made in the Dialog Editor.

On the context menu you will see the Copy, Cut, and Paste options and also
Bring to Front and Send to Back options, which are the same as the options on the
Alignment and Sizing toolbar. The only new option in this context menu is one that
enables you to select all controls on the dialog.

When you use the copy option to duplicate a particular control such as a

pushbutton, the paste operations will put the copy of the control directly on

top of the control that was copied. All you need to do is to drag the control

that was pasted off the original control.

Modifying an Existing Dialog
Before you get into the business of creating a new dialog using the Dialog Editor,
you should get some experience by modifying one of the standard dialogs. As an
example, add a check box to the SetupCompleteSuccess dialog. When this check
box is checked and the Finish button is clicked, the Windows Installer will launch
another dialog. You will find that doing this is not as easy as it may sound.

In this example you will use the state of the check box to decide whether the
Windows Installer will spawn the CancelSetup dialog or not when the user clicks
the Finish button in the SetupCompleteSuccess dialog. In Chapter 11, which covers
custom actions you will be able to see that this type of functionality could be used
to launch a Web site or a readme file. The modified dialog box will look like what
is shown in Figure 9-8.

Most of the effort will be related to setting properties and defining control events
and conditions. Before we proceed you need to know how to place controls on top
of a bitmap, which you will have to do in this example. If you do not do things
exactly so, the check box will cover this control and it will not be visible when the
dialog is launched.

Tip

Chapter 9: Creating the Installation User Interface 359

4723-2 ch09.f.qc 1/16/01 11:09 AM Page 359

Figure 9-8: The Modified SetupCompleteSuccess dialog

The Windows Installer paints controls in a certain order, starting with the con-
trol that is designated in the Dialog table as the Control_First attribute. This will be
the first control painted, after which each control in the tab order will be painted in
sequence. The key to making a control appear on top of a bitmap is to make sure
that the controls on top of the bitmap have a higher tab order than the bitmap.
There are two basic rules:

◆ The bitmap must be earlier in the tab order than any of the controls to be
placed on the bitmap. You can arrange this using the Tab Index property.
In the case of the SetupCompleteSuccess dialog the easiest solution is to
give the bitmap control a Tab Index of 0.

◆ All controls plus the bitmap must have their Tab Stop properties set to True.

Following these two rules you need to make modifications to the Image (Bitmap)
control that forms the background to this dialog. The Tab Index property must be
set to 0 and the Tab Stop property must be set to True. After you have done this,
add the check box control on top of the bitmap. In addition to the check box con-
trol you must also add a static text control beside it in order to display the usage of
the check box. Do not use the text property of the check box itself: it does not have
a Transparent property and would appear as the same color as the dialog form
itself. The text control does have a Transparent property, which you can set so that

360 Part II: Basic Package Creation with ISWI

4723-2 ch09.f.qc 1/16/01 11:09 AM Page 360

the bitmap color will show through. Table 9-4 shows the non-default values for the
properties for the check box and text controls.

TABLE 9-4 NON-DEFAULT PROPERTIES FOR THE CHECK BOX AND TEXT CONTROLS

Control Name & Type Property Value

LaunchCheckBox (CheckBox) Height 10
Left 146
Property LaunchDialog
Sunken False
Tab Index 1
Top 125

LaunchCheckBox (CheckBox) Value Yes
Width 10

CheckBoxText (Text) Height 11
Left 164
Tab Index 2
Text Launch CancelSetup Dialog?
Top 125
Transparent True
Width 135

The following remarks provide more detail on the entries described in Table 9-4:

◆ You have associated the LaunchDialog property with the check box con-
trol. We have not defined any default value in the Property Manager
for this property, so when the check box is not checked the value of the
property will be null. This way the property name itself can be used as a
condition.

◆ For the check box control you have turned off the Sunken property in
order to hide the fact that this control has a gray background. Since there
is no transparent property to be set this is the only way to get rid of this
background when placing the control on top of a bitmap. You have also
made the control square so that the text portion of the control is hidden.

◆ In order to provide a caption beside the check box you have used a static
text field, the Transparent property of which you can set to True so that
the color of the bitmap can show through.

Chapter 9: Creating the Installation User Interface 361

4723-2 ch09.f.qc 1/16/01 11:09 AM Page 361

Now you have to click on the Behavior icon for this dialog in order to add some
functionality to your check box. All the Windows Installer is going to do is launch
the CancelSetup dialog if the check box is checked and the user clicks on the Finish
button. You can do this by adding another control event to the Finish button, as
shown in Figure 9-9.

Figure 9-9: Adding a control event to the Finish button

As you can see, you condition the SpawnDialog control event based on whether
the LaunchDialog property has been set or not. This is the property you have asso-
ciated with the check box control. When the check box is not checked then the
value of the LaunchDialog property will be null; when the check box is checked the
value of LaunchDialog will be Yes.

You should do one more thing in order to modify the standard behavior of your
modified dialog: hide the two new controls when an uninstallation is being per-
formed. To do this you need to click on the Conditions tab at the bottom of the
Behavior screen. In this screen you can assign an action and a condition on that
action that will be applied to the highlighted control. The actions available to you
are Enable, Disable, Hide, or Show. The action you are interested in is the Hide
action, which you want to be executed when the Installed property is set. Set this
condition on the LaunchCheckBox and CheckBoxText controls. This will cause
these controls to be hidden when the SetupCompleteSuccess dialog is displayed at
the end of an uninstallation.

Creating a New Dialog
A useful exercise in creating a new dialog box is to create a setup type dialog that
has three options instead of just the two provided with the built-in SetupType dia-
log. In this example you will enable the user to choose a Typical, Complete, or
Custom setup. Since the main point of this example is for you to learn how to cre-
ate a new dialog, you should first create an installation that has a number of fea-
tures that can be configured for a Typical and a Complete install. This installation
package only has to copy files, so that you can see that the functionality you cre-
ate actually works as designed.

362 Part II: Basic Package Creation with ISWI

4723-2 ch09.f.qc 1/16/01 11:09 AM Page 362

You should create a setup that has at least four features, each of which should
have at least one component with at least one file to be installed. Set the Typical
installation scenario to be that features one and three are installed. You can do this
by setting the install level property for features two and four to be 101. Since the
INSTALLLEVEL property is set by default to 100, features two and four will not be
installed unless the INSTALLLEVEL property is reset to 101 or the end user goes to
the custom setup dialog and specifically chooses to install those two features. Once
you have created the basic install package, you are ready to create the new setup
type dialog box and then to insert it into the installation wizard sequence.

To create your new dialog box you need to go to the User Interface view, select
the All Dialogs icon, and right-click the mouse. From the resulting context menu
select the New Dialog... option. This launches the Dialog Gallery from which you
should choose the Blank Dialog icon. Double-clicking this icon will give you an
entry in the User Interface view with the title NewDialog1, which you should
rename SetupType3. Now that you have created a blank dialog form you can start
to populate it with controls. Figure 9-10 shows the final dialog that you will create.

Figure 9-10: The three-way setup type dialog box

You are going to place a total of 21 controls on this blank form to create the
SetupType3 dialog box. You can break these controls into three categories: creating
the basic design, constructing the radio button functionality, and creating the navi-
gational controls. Each of these categories will be described in more detail later in the
chapter, but the first thing you need to do is add a caption to the dialog itself. You

Chapter 9: Creating the Installation User Interface 363

4723-2 ch09.f.qc 1/16/01 11:09 AM Page 363

define the caption for the dialog by entering a value for the Caption dialog property.
To enter the string for the dialog caption, click in the value field for the Caption prop-
erty and then click on the small button with the ellipsis on the right side of this field.
This button takes you to a String Table Editor, where you can add a new string ID
with which to associate the caption text. Since you will be associating all the text you
enter into this dialog with string IDs you should create a standard format for creating
a set of uniform IDs. A format that works is one that has the following format:

IUI_<CONTROL NAME OR PROPERTY NAME>_SETUPTYPE3

For the caption property use the string ID IUI_CAPTION_SETUPTYPE3. Associated
with this string ID would be the text string [ProductName] – InstallShield Wizard.
The part of the string enclosed in square brackets indicates that the value of the
ProductName property will be inserted at that location at the time of installation.
For the dialog this is the only property that you need to enter; for all the other
properties we can accept the default values.

Now you need to get in and start adding the controls to this dialog. The entries
you need to make are described in the following subsections. Only those properties
that you need to alter are described.

The basic dialog design
The controls associated with the basic design of the dialog box are those that pro-
vide general text relating to the overall purpose of the dialog, placement of bitmaps
that make the dialog more pleasant to view, and the branding of the dialog that
ensures that everyone knows that InstallShield was used to create the installation
package. Table 9-5 shows the property values for the controls to be added to create
the basic dialog design.

TABLE 9-5 BASIC DESIGN CONTROLS AND NON-DEFAULT PROPERTY VALUES

Control Name & Type Property Value

Banner (Bitmap) Enabled False
File Name <GraphicSources>\Banner.bmp
Height 44
Left 0
Tab Stop False
Top 0
Width 374

DlgLine (Line) Enabled False
Height 0
Left 0

364 Part II: Basic Package Creation with ISWI

4723-2 ch09.f.qc 1/16/01 11:09 AM Page 364

Control Name & Type Property Value

DlgLine (Line) Top 44
Width 374

DlgTitle (Text) Base Text Style MSSansBold8
Height 15
Left 13
Tab Stop False
Text Setup Type
Top 6
Transparent True
Width 292

DlgDesc (Text) Base Text Style Tahoma8
Height 14
Left 21
Tab Stop False
Text Choose the setup type that best

suits your needs.
Top 23
Transparent True
Width 292

DlgText (Text) Base Text Style Tahoma8
Height 10
Left 21
Tab Stop False
Text Please select a setup type.

DlgText (Text) Top 51
Width 326

Branding1 (Text) Base Text Style MSSWhiteSerif8
Height 13
Left 4
Tab Stop False
Text InstallShield
Top 229
Width 50

Continued

Chapter 9: Creating the Installation User Interface 365

4723-2 ch09.f.qc 1/16/01 11:09 AM Page 365

TABLE 9-5 BASIC DESIGN CONTROLS AND NON-DEFAULT PROPERTY VALUES
(Continued)

Control Name & Type Property Value

Branding2 (Text) Base Text Style Tahoma8
Height 13
Left 3
Tab Stop False
Text InstallShield
Top 228
Transparent True
Width 50

BrandingLine (Line) Enabled False
Height 0
Left 48
Top 234
Width 326

In the following remarks more detail is provided with regard to the entries
shown in Table 9-5:

The file Banner.bmp can be found on the CD-ROM at the back of the book.

◆ Banner.bmp can also be found as an .ibd file in C:\Program Files\
InstallShield\InstallShield for Windows Installer\Redist\Language
Independent\OS Independent\IsDialogBanner.ibd. An .ibd file is the
type of file you get when you use Orca to export the Binary table.
You can open this file using Visual C++ and resave it as a .bmp file.

◆ In creating the InstallShield branding you should note that the Branding1
text control where the text style was MSSWhiteSerif8 kept the Transpar-
ent property as False. The Branding2 text control changed the Transparent
property to True and moved the left coordinate one unit to the left. This
is how the sunken look was created.

ON THE CD

366 Part II: Basic Package Creation with ISWI

4723-2 ch09.f.qc 1/16/01 11:09 AM Page 366

Constructing the radio button functionality
The main functionality of this dialog resides in the radio button group that you will
create. As is the case with all active controls, a radio button group is associated
with a property in the Property table. The value of this property is set depending on
the specific radio button in the group that is selected. There are 10 specific controls
you need to add to the dialog box in order to complete the radio button functional-
ity. Table 9-6 describes the values of the properties for which you are not going to
use the defaults provided.

TABLE 9-6 RADIO BUTTON–RELATED CONTROLS AND NON-DEFAULT
PROPERTY VALUES

Control Name & Type Property Value

SetupType3RBG Has Border False
(RadioButtonGroup) Height 160

Left 22
Property SetupType3RBG

SetupType3RBG Top 65
(RadioButtonGroup) Width 286

SetupType3RBG1 Base Text Style MSSansBold8

(RadioButton) Height 15
Left 31
Order 1
Text Typical
Top 65
Value Typical
Width 276

SetupType3RBG2 Base Text Style MSSansBold8
(RadioButton) Height 15

Left 31
Order 2
Text Complete
Top 117
Value Complete
Width 276

Continued

Chapter 9: Creating the Installation User Interface 367

4723-2 ch09.f.qc 1/16/01 11:09 AM Page 367

TABLE 9-6 RADIO BUTTON–RELATED CONTROLS AND NON-DEFAULT
PROPERTY VALUES (Continued)

Control Name & Type Property Value

SetupType3RBG3 Base Text Style MSSansBold8
(RadioButton) Height 15

Left 31
Order 1
Text Custom
Top 172
Value Custom
Width 276

Typical (Icon) Enabled False
File Name <GraphicSources>\Typical.ico
Height 26
Left 21
Tab Stop False
Top 80
Width 26

Complete (Icon) Enabled False
File Name <GraphicSources>\Complete.ico
Height 26
Left 21
Tab Stop False
Top 133
Width 26

Custom (Icon) Enabled False
File Name <GraphicSources>\Custom.ico
Height 26
Left 21
Tab Stop False
Top 186
Width 26

TypicalText (Text) Base Text Style Tahoma8
Height 31
Left 86
Tab Stop False
Text This will install the most

commonly used features.

368 Part II: Basic Package Creation with ISWI

4723-2 ch09.f.qc 1/16/01 11:09 AM Page 368

Control Name & Type Property Value

TypicalText (Text) Top 81
Width 245

CompleteText (Text) Base Text Style Tahoma8
Height 31
Left 86
Tab Stop False
Text All program features will be

installed. (Requires the most
disk space.)

Top 136
Width 245

CustomText (Text) Base Text Style Tahoma8
Height 31
Left 86
Tab Stop False
Text Choose which program features

you want installed and where they
will be installed. Recommended
for advanced users.

Top 188
Width 245

The following remarks provide additional information about the entries shown
in Table 9-6:

The icon files Typical.ico, Complete.ico, and Custom.ico can be found on the

CD-ROM at the back of the book.

◆ In the Windows Installer there is only a RadioButtonGroup control with
no separate RadioButton control. You create radio buttons by making
entries in the RadioButton table and associating the entries in the table to
a group through the use of a common property name. The fact that there
is a separate radio button on the control toolbar in the Dialog Editor is
just a visual mechanism for creating the entries in the RadioButton table.

◆ The order of the three radio buttons corresponds to the order of their cre-
ation. Since you created them from top to bottom the order is from top to
bottom.

ON THE CD

Chapter 9: Creating the Installation User Interface 369

4723-2 ch09.f.qc 1/16/01 11:09 AM Page 369

◆ The entry for the Value property is what the SetupType3RBG property is
set to when the user selects that particular radio button. In order to have a
default selection when the end user launches the SetupType3 dialog box
you author the SetupType3RBG into the Property table with an initial
value of Typical. You can do this using the Property Manager. Actually,
when you created the RadioButtonGroup control you specified a property
of which the name was entered into the Property Manager; all we have to
do is give it an initial value.

Creating the navigational controls
There are three navigational controls you need to place on the dialog box: Next,
Back, and Cancel. Unlike with the other controls you have placed on this dialog you
not only have to place them in the dialog, but you also have to assign them a cer-
tain behavior. To make a control perform a particular action, click on the Behavior
icon under the dialog name in the User Interface view. Here you are provided with
a list of all the controls in the dialog, and you can select a control and assign a con-
trol event to it. First you need to add the pushbuttons to the dialog: Table 9-7
shows the values of the properties for these buttons.

TABLE 9-7 NAVIGATION-RELATED CONTROLS AND NON-DEFAULT
PROPERTY VALUES

Control Name & Type Property Value

Cancel (PushButton) Base Text Style Tahoma8
Cancel True
Height 17
Left 301
Text Cancel

Cancel (PushButton) Top 243
Width 66

Next (PushButton) Base Text Style Tahoma8
Default True
Height 17
Left 230
Text &Next >
Top 243
Width 66

370 Part II: Basic Package Creation with ISWI

4723-2 ch09.f.qc 1/16/01 11:09 AM Page 370

Control Name & Type Property Value

Back (PushButton) Base Text Style Tahoma8
Height 17
Left 164
Text < &Back
Top 243
Width 66

The following remarks provide additional information for creating the Next and
Cancel buttons on the dialog.

◆ For the Cancel button you need to set the Cancel button to True. This
enables the Close title-bar button on the dialog so that clicking on this
button or hitting the Escape key performs the same function as clicking
the Cancel button itself.

◆ For the Next button, set the Default property to True. Setting this property
makes the Next button the default; as a result, hitting the Enter key has
the same effect as clicking the Next button.

You now have to assign the proper control events to these push buttons that you
have added to the dialog. Also, in order to insert this new dialog into the installa-
tion wizard sequence in place of the standard SetupType dialog you need to make
changes to the control events on the upstream and downstream dialogs in the wiz-
ard sequence. First you should set the control events for the new dialog.

For the Cancel button you have only one control event to define: for the Cancel
button to launch a child dialog that asks the user if he or she really wants to termi-
nate the installation. Figure 9-11 shows this control event.

Figure 9-11: The control event for the Cancel button

Chapter 9: Creating the Installation User Interface 371

4723-2 ch09.f.qc 1/16/01 11:09 AM Page 371

The control event is the SpawnDialog event and the argument is the name of the
child dialog to be launched. The name of the standard child dialog is CancelSetup
and the condition you place on this control event is 1, which means that this event
will always happen when the user clicks the Cancel button.

You need to define a number of control events for the Next button because
the action of this button will depend on which radio button the end user selects.
Figure 9-12 shows the three control events you need to define.

Figure 9-12: The three control events for the Next button

For all of these control events you define conditions based on the value of the
SetupType3RBG property. The value of this property is set according to the radio
button selected by the end user. If the user opts to do a complete installation then
the value of the SetupType3RBG property is set to Complete. In this case you use
the SetInstallLevel control event to change the value of the INSTALLLEVEL prop-
erty to 101, thus ensuring that all features will be installed. Remember that you set
the install level property for features two and four to 101 to prevent their installa-
tion during a Typical installation.

When clicking the Next button you go to the ReadyToInstall dialog if the user
has not chosen to perform a Custom installation and to the CustomSetup dialog if a
custom install is selected. The condition placed on the launching of a new dialog
determines which dialog is displayed, as shown in Figure 9-12.

You need to define only one control event for the Back button. This is simply to
return to the CustomerInformation dialog if the user clicks this button. Figure 9-13
show this control condition.

Figure 9-13: The control event for the Back button

372 Part II: Basic Package Creation with ISWI

4723-2 ch09.f.qc 1/16/01 11:09 AM Page 372

The condition placed on this control event ensures that it will always take place
when the Back button is clicked.

In order to put this new dialog into the installation wizard sequence you need to
adjust the control events on three other dialogs: CustomerInformation, ReadyTo
Install, and CustomSetup. For the CustomerInformation dialog you need to set the
argument of the NewDialog control event associated with the Next button to be
SetupType3. You need to perform a similar operation for the Back buttons on the
other two dialogs. These Back buttons must also point at the SetupType3 dialog
through the NewDialog control event. Then there is one final action you need to take,
to modify a control event associated with the Next button in the CustomSetup dialog.
You need to change the [_IsSetupTypeMin] control event to [SetupType3RBG]. The
argument must be changed to Custom. The condition for this control event will
remain the same as before. The purpose of this control event is to ensure that the if the
CustomSetup dialog is entered from a dialog that is not the SetupType3 dialog, the
value of the property will be set to Custom.

Once you have completed these actions we have successfully inserted the new
dialog box into the installation wizard sequence and all you have to do is test this
sequence to make sure everything is working.

Summary
In this chapter you have taken a close look at the user interface implemented by the
Windows Installer. You have investigated the user interface functionality from the
viewpoint of ISWI. In particular you have seen the Dialog Editor implemented in
ISWI, and have used it to modify one of the standard dialogs that come with ISWI.
You have also used the Dialog Editor to create a new dialog and have inserted this
new dialog into the InstallWelcome wizard sequence. You have gained some knowl-
edge about how the user interface is implemented in the Windows Installer. This
information will come in handy in later chapters when you implement real-world
solutions that involve the user interface.

Chapter 9: Creating the Installation User Interface 373

4723-2 ch09.f.qc 1/16/01 11:09 AM Page 373

4723-2 ch09.f.qc 1/16/01 11:09 AM Page 374

Chapter 10

Extensibility Through
Custom Actions

IN THIS CHAPTER

◆ Custom action basics

◆ The Windows Installer mechanism

◆ The categories of custom actions

◆ The types of custom actions

◆ How custom actions are processed

◆ Advanced issues with the use of custom actions

THIS CHAPTER PROVIDES an introduction to extending the built-in functionality of
the Windows Installer. You can do this by using what are called custom actions.
This chapter prepares you to move forward to Chapters 11 and 16 where you will
learn how to create custom actions that solve real-world problems. In this chapter
you will learn about the various types of custom actions you can create and how to
specify the options that define how the Windows Installer is to invoke them.

Custom Action Basics
When you as a setup developer find that a certain functionality is not offered by
the Windows Installer as a standard action, you have the option of creating a cus-
tom action. Custom actions are the means that Microsoft has created to enable
you to extend the capabilities built into the installer. Here are some ways to use
custom actions:

◆ To determine if a reboot is necessary based on whether a particular
file was replaced or a particular component was installed

◆ To perform license verification

◆ To clean up temporary files created during an installation

◆ To remove an old product that used a legacy install 377

4723-2 ch10.f.qc 1/16/01 11:09 AM Page 377

◆ To enable or disable a component after the CostFinalize action
has completed

◆ To validate a serial number entered during an installation

◆ To initiate a custom sequence that contains actions that change
the system

◆ To set the value of a property to be equal to the value of another property

◆ To sequence the order of self-registration of COM servers

◆ To set the ARPINSTALLLOCATION property to the full path of the
application’s primary folder

◆ To set the CCP_DRIVE property to the full path to the removable volume

◆ To create internal consistency evaluators for database validation

◆ To display an error message and then terminate an installation

◆ To run a nested installation

Custom actions are identified in the CustomAction table and it is through this
table that you integrate the custom code and data into the installation. Custom
action code can be in the form of an executable, a dynamic link library, a script, or
a formatted text string.

Every custom action is a separate thread from the main installation thread being
run by the Windows Installer, and some types are run in a separate process. A cus-
tom action thread can be run synchronously or asynchronously. When a custom
action is run synchronously the main installation process thread waits for the cus-
tom action to complete before it continues. When it is run asynchronously, the
main installation process thread continues simultaneously with the custom action
execution. There is no way to synchronize an asynchronous custom action and the
main installation thread. You can see that you should not run a custom action
asynchronously if its function is to perform actions on the results of which other
custom or standard actions would depend.

With one exception custom actions only run with user privileges and as such
they will have only limited access to the system if the user is not an administrator.
The one exception is when a custom action is allowed to run in the system context
and thus does not impersonate the user. When the user does not have administrator
privileges then the only way for you to create a custom action that will make
changes that require elevated privileges is to tap into the Windows Installer
through manipulation of the database tables. You would do this by inserting tem-
porary rows into the appropriate database tables to be used as input to standard
actions specified in the sequence tables.

Custom actions are sequenced like standard actions. That is, the name of the cus-
tom action is placed in a sequence table and given a sequence number that tells the
Windows Installer when the action is to be executed relative to other actions. There
are six sequence tables in the Windows Installer database schema but only four of

378 Part III: Extending the Windows Installer Functionality

4723-2 ch10.f.qc 1/16/01 11:09 AM Page 378

these sequence tables can legitimately have custom actions. These four sequence
tables define the INSTALL and ADMIN top-level actions. Also, just as with standard
actions, you can place a condition on a custom action and it will be executed only
if that condition evaluates to TRUE.

You can use four methods to invoke a custom action. As I mentioned just now, the
most common invocation method is to insert the name of the custom action into a
sequence table. There are two functions that can be called from a custom action that
will invoke another standard or custom action and then there is a control event that
will call a custom action from a control in a dialog box. We’ll discuss these in more
detail later in this chapter and give some actual examples in Chapters 11and 16.

Before we go any further in this discussion of custom actions, we need to revisit the
discussion in Chapter 3 about the mechanism used by the Windows Installer to per-
form installations. In the next section, I will go into this subject in more detail because
you’ll need this background in order to truly understand how custom actions operate.

The Windows Installer Mechanism
In Chapter 3 we discussed in detail the mechanism that the Windows Installer uses
to perform a standard installation. To completely understand the operation of vari-
ous custom actions you need to have a deeper understanding of the details of this
mechanism. Figure 10-1 shows a more detailed picture of the Windows Installer
run-time architecture.

Instead of dividing user privileges from elevated privileges as in Figure 3-1, here
the line divides the picture between the client process and the server process. There are
five important concepts that you should understand about the run-time environment
of the Windows Installer on Windows NT and Windows 2000. These can have a major
impact on how you use custom actions:

◆ The client process initiates the total mechanism of the Windows Installer.

◆ The user-interface level you specify when initiating a top-level action has
a major impact on how the Windows Installer proceeds with executing
that action.

◆ The Windows Installer database is open in both processes.

◆ Only public properties are carried across from the client-side database to
the service-side database.

◆ At the end of the execution of any top-level action control is always
passed back to the client side. This happens regardless of success or
failure of the operation.

Chapter 10: Extensibility Through Custom Actions 379

4723-2 ch10.f.qc 1/16/01 11:09 AM Page 379

Figure 10-1: Details of the Windows Installer run-time architecture

(InstallUISequence Table)

Client Process Service Process

No

Yes

(InstallExecuteSequence Table)

A top level action is
initiated either

manually or
programatically

Full or Reduced UI
specified?

The Client Process loads
the MSI database into
memory and performs
initialization activities

The Service Process loads
the MSI database into
memory based on the

DATABASE property value

Start sequential
execution of the actions
in the UI sequence table

Perform all required checks to
ascertain a valid installation

environment

Perform the initial file
costing activity

Launch the user
interface and collect

user input

Launch the modeless
installation progress

dialog box

Through the
ExecuteAction action

pass all public properties
and control to the

Service Process

Execute any actions that
follow the ExecuteAction
action and then display

the dialog that has the -1
sequence number in order

to signify that the
installation was completed

successfully

Start sequential
execution of the

actions in the
execute sequence

Check for a valid
installation
environment

Perform the final file
costing activity

Generate an installation
script for all actions

that will change
the system

Begin creation of the
installation script with the

Install Initialize action

Execute the installation
script with the Install

Initialize action and create
a Rollback script

Execute any actions that
come after the

Install Initialize action

Return control back to
the Client process

The Client Process performs
initialization activities, Starts

the Service Process, and passes any
public properties set at the

command line.

At any time that the user cancels the installation the Windows
Installer will display the dialog that has the -2 sequence number
and if there is a Windows Installer error the dialog with the -3

sequence number will be displayed.

380 Part III: Extending the Windows Installer Functionality

4723-2 ch10.f.qc 1/16/01 11:09 AM Page 380

The focus of this book is Windows 2000 and you need to understand that

the Windows Installer operates in a different mode on a Win 9x machine. On

Win 9x both the user interface sequence and execute sequence are run in

the same (client) process.This means that both private and public properties

are available in both sequence tables since there is only one copy of the

database that is being used.

Caution

Chapter 10: Extensibility Through Custom Actions 381

User Impersonation and the Windows Installer Service
As we discuss in Chapter 3 and again in this chapter the Windows Installer is a
client/server operation with the main functionality of an installation being carried
out on the server side as an NT service. When the Windows Installer is installed on
Windows NT 4.0 or it comes natively with Windows 2000, its access token is the token
of the local system. This means that the service process can do anything that a local
administrator can do.

Now this can be a problem because when a user without administrator privileges
initiates an installation it is possible for the service side to do a lot more on the
systems than the user could do. This is definitely not what you want to happen,
because it would completely destroy the objective of being able to lock down the
desktop except for authorized applications. What you really want is for the service
process to operate as if it had the same access to the system resources as the user
has — unless some higher authority overrides this default security mechanism of
custom actions. In this case the higher authority is the system administrator using
the system Policy Editor or the Group Policy Editor, depending on whether we are
talking about a Windows NT 4.0 or Windows 2000 network. The question is how is
such functionality implemented?

The service process uses the access token of the client process to try to access the
resources necessary to perform the installation. The security mechanism in Windows
NT/2000 operates so as to compare the access token of the client with the security
descriptor of the resources being accessed. This authentication and authorization
process is part of the basic security infrastructure of Windows NT/2000. This act of
the service process pretending to be the client is called user impersonation.

It is important to understand that when an application is installed for the machine, then
the install is elevated for all users of the machine. So if you have a system administrator
install an application for a particular machine, all users of the machine — even those
who do not have administrative privileges — can perform maintenance mode operations
for the application. This means that non-admin users of the machine can perform repair,
change, and/or remove operations.

4723-2 ch10.f.qc 1/16/01 11:09 AM Page 381

Custom Action Categories
Custom actions can be categorized according to when and in which process of the
installation they are executed. You can run custom actions during the UI sequence
and/or the execute sequence. They can be executed as the install script is being cre-
ated, they can be executed when the install script is being executed, they can be
executed during a rollback operation, and they can be executed after the successful
completion of the installation. There are two major categories of custom actions:
immediate and deferred. The deferred category is made up of four subcategories:
install, rollback, commit, and system context. Each of these categories and subcate-
gories is the subject of one of the following subsections.

Immediate execution custom actions
An immediate custom action is executed as soon as the Windows Installer encounters
it when processing the sequence tables. Immediate is the default category for custom
actions. Custom actions in this category can be placed in any sequence, except for
advertise execute. There are a few sequencing restrictions on where certain types of
immediate custom actions can be used. These restrictions are discussed in the section
“Custom Action Types” later in this chapter. In general, you can use immediate cate-
gory custom actions to set properties, feature states, component states, and target
directories by manipulating the rows in various database tables. You can also use them
to schedule system operations by inserting rows into the sequence tables or run and
schedule other actions directly by using the MsiDoAction() API. You should not use
them to make changes directly to the system or to call any system services directly.
You should schedule these types of actions to occur when the install script is actually
executed; we discuss deferred execution custom actions in the next subsection.

To summarize, you should only use immediate custom actions to modify the MSI
database, and other aspects of the install session like setting properties, and not to
perform any direct action on the system. The Windows Installer will then use the
database entries created by immediate custom actions to make the required changes
to the system. Remember that immediate custom actions only execute with user
privileges and can have only limited access to the system. The Windows Installer
can have elevated privileges in cases where the user does not have administrative
privileges. The installer can therefore make changes to the system if those changes
have been identified in the database.

Deferred execution custom actions
A deferred custom action is one whose execution is delayed until the install script
is itself executed. This type of action differs from the immediate custom action in
the previous section; that type of custom action is executed as soon as the Windows
Installer encounters it in the sequence table. A deferred custom action is created so
as to make direct changes to the system. Because a deferred custom action is writ-
ten into the execution script, the database has already been processed and the

382 Part III: Extending the Windows Installer Functionality

4723-2 ch10.f.qc 1/16/01 11:09 AM Page 382

install script generated before it is executed. A deferred custom action allows the
setup developer to specify system operations to be carried out at a particular point
during the installation.

INSTALL CUSTOM ACTIONS
Because you have to write this category of custom action into the install script, you
can only sequence it in the execute sequence table. There you must place it in that
portion of the execute sequence that is the target of script generation. This section is
bounded by the InstallInitialize and InstallFinalize actions: therefore deferred cus-
tom actions must come after the InstallInitialize action and before the InstallFinalize
action. Placing them in any other location will generate a Windows Installer error
during the installation process.

Deferred custom actions can be particularly challenging depending on the type of
deferred custom action. This is because of the possibility that an installation script,
under certain circumstances, can be executed outside the installation session in
which it was written. This creates a problem for the type of deferred custom action
that requires a handle to the session object. I’ll address this particular problem with
deferred custom actions in the section on advanced issues later in this chapter.

ROLLBACK CUSTOM ACTIONS
As I already described, the Windows Installer creates a rollback script as it is process-
ing the installation script. At the same time, it is caching all the files it deletes from
the system as part of the installation. This makes it possible to return the system back
to its original state if the installation fails or is canceled by the user. Once the instal-
lation is completed successfully the rollback script and the cached files are deleted
from the system. In the previous section you learned that deferred custom actions are
those that change the system directly and do not work through the Windows Installer
by changing the database. System changes made by this category of custom action
cannot be automatically rolled back by the Windows Installer because the Installer
does not know what those system changes were. Because of this, there must be a way
to reverse these changes during the rollback action.

You use the rollback category of custom action to reverse the system changes
made by a normal custom action during the installation process. A rollback custom
action is a type of deferred custom action in that it is not executed when the
Windows Installer encounters it in the execute sequence table. The Windows Installer
copies this type of custom action into the rollback script, and the action is only exe-
cuted if a rollback becomes necessary.

COMMIT CUSTOM ACTIONS
Commit custom actions are the complement of rollback custom actions. They are
executed upon successful completion of the installation script. This means that they
are run after the completion of the InstallFinalize action. Since they are executed
only after a successful installation these are only temporary changes made by other
custom actions — for example rollback related data that is now no longer needed.

Chapter 10: Extensibility Through Custom Actions 383

4723-2 ch10.f.qc 1/16/01 11:09 AM Page 383

Commit custom actions are the complement of rollback custom actions. When
rollback is disabled, neither commit nor rollback custom actions are executed. By
default, rollback is enabled but there is a public property that can be set at the com-
mand line to disable this functionality. When rollback is disabled, the Windows
Installer sets the RollbackDisabled property. If an installation cannot be completed
successfully with rollback disabled, then the RollbackDisabled property must be used
in a condition to prevent the installation from proceeding. The proper place for this
condition is in the LaunchCondition table. You need to create the condition in the
LaunchCondition table and to set a condition on the LaunchConditions action so that
this action is executed when rollback has been disabled.

Now that I have described the four categories of custom actions we need to get into
the details of the various types of custom actions and how they are actually invoked.
This is the subject of the next two sections. The types of custom actions are explained
in the next section and then the processing of custom actions is discussed in the sec-
tion after that. Later on we will get into actually creating custom actions of all types.

SYSTEM CONTEXT CUSTOM ACTIONS
By default the Windows Installer runs a custom action at the privilege level of the
user who is doing the installation. This will be the case even if the user who does not
have administrative privileges is granted elevated privileges by the system adminis-
trator. This default functionality can be changed if a custom action is defined to run
in the system context. Running in the system context is considered to be running
the custom action without any user impersonation. The most common cases where
elevated privileges are granted are as follows:

◆ A per-machine installation of an application that is performed by an
administrator is then elevated for all users of the machine so that they
can perform maintenance operations on the application.

◆ A per-user installation of an application is performed using the assignment
and publishing capabilities of IntelliMirror. IntelliMirror was discussed
extensively in Chapter 2.

◆ A per-user installation of an application is performed after an administrator
has set the per-user and per-machine AlwaysInstallElevated system policy.

Running a custom action in the system context is the way to get around the
default security model for custom actions. If a user has administrative privileges on
his or her local machine, a system context custom action has no meaning, because
all custom actions will run in the system context. However, if the user only has user
privileges then a system context custom action will only run at elevated privileges
if the user has been granted elevated privileges by the system administrator. Of
course, this only has meaning on Windows NT/2000 since Windows 95/98 do not
have privilege levels.

384 Part III: Extending the Windows Installer Functionality

4723-2 ch10.f.qc 1/16/01 11:09 AM Page 384

On Windows NT 4.0 for a system context custom action to run in the system con-
text the system policy AlwaysInstallElevated (Per-User) and the AlwaysInstallElevated
(Per-Machine) must both be set to 1. You can set them using the System Policy Editor
found in a Windows NT 4.0 Server–run network. The registry key under which the
per-user value is defined is as follows:

HKEY_CURRENT_USER\Software\Policies\Microsoft\Windows\Installer

The registry key under which the per-machine value is defined is as follows:

HKEY_LOCAL_MACHINE\Software\Policies\Microsoft\Windows\Installer

On Windows 2000 the execution of system context custom actions is pretty much
the same functionality as just described for Windows NT 4.0. If an application is
managed in a Windows 2000 network and a user not included in the authorized
group of people who have been designated to have this application installs this appli-
cation, a system context custom action will still only run with user privileges and not
in the system context. However, this is a difference that has no real meaning because
even if an application itself would only need to write to the HKEY_CURRENT_USER
registry key the Windows Installer still needs to write to the HKEY_LOCAL_MACHINE
registry key in order to enter the data that it stores with regard to what products are
using which components, and so forth.

Basically, if you have a system context custom action and you only have user
privileges then you will not be able to run the installation unless the system admin-
istrator has granted you permission. In this scenario the system context custom
action will run with elevated privileges and all other types of custom actions will run
with user privileges. If you have administrative privileges, then all custom actions
will run in the system context regardless of their type. This will be true on either
Windows NT 4.0 or Windows 2000.

The Custom Action Database Tables
There are ten database tables involved with custom actions. They are the
CustomAction, Binary, Directory, Error, File, InstallUISequence, InstallExecute
Sequence, AdminUISequence, AdminExecuteSequence, and Property tables. The
CustomAction table is the central point in all this functionality and it provides the
means by which custom actions and data are integrated into an installation. It is
this table that uses the other tables listed for identifying the location of the source
of the code that implements the custom action. Figure 10-2 provides the schema for
six of these database tables used in defining custom actions. The sequence tables
are not shown in the schema since they serve only to define when a custom action
is to be executed.

Chapter 10: Extensibility Through Custom Actions 385

4723-2 ch10.f.qc 1/16/01 11:09 AM Page 385

Figure 10-2: Schema of the custom action related database tables

Since the CustomAction table is the controlling entity for the custom action func-
tionality, we are going to look at this table in detail. Table 10-1 defines the various
columns in this table.

TABLE 10-1 ATTRIBUTE DESCRIPTION FOR THE CUSTOMACTION TABLE

Column Name Data Type Description

Action Identifier Specifies the name of the action, which is entered
into the first column of the applicable sequence
table. If this custom action was only called by
another custom action, the name of the custom
action will still be entered in this table but will
not be entered into the sequence table.

Name

Data

Binary Table

(Identifier)

(Binary)

Action

Custom ActionTable

(Identifier)

Error

Message

Error Table

Property Table Directory Table
DirectoryProperty

Value

(Integer)

(Template)

(Identifier)

(Text)

(Identifier)

File

File Table

(Identifier)

(Identifier)
(FileName)

Component_
FileName

(Identifier)Directory_Parent
DefaultDir (DefaultDir)

(DoubleInteger)

Target

(Integer)
(CustomSource)

Type
Source

(Formatted)

(Version)
FileSize
Version

(Language)
(Integer)
(Integer)

Language
Attributes
Sequence

386 Part III: Extending the Windows Installer Functionality

4723-2 ch10.f.qc 1/16/01 11:10 AM Page 386

Column Name Data Type Description

When the Windows Installer encounters a name
in the sequence table, it first looks for a standard
action of that name and then looks for a custom
action specified in this table. If the name provided
in this table is the same as the name of a standard
action, then the custom action will never be called.

Type Integer Defines the type of custom action as well as the
options to be used in processing this custom
action. The options specified with this value are
how the Windows Installer is to treat the return
value from a custom action; how the custom
action is to be scheduled to run and in which
process; and the category of the custom action
as defined earlier in this chapter.

Source CustomSource Specifies the location of the custom action code. In
most cases this field is a foreign key into the Binary,
Directory, Property, or File table where the location
of the source code is defined. For some types of
custom actions the code for the custom action is
given in the Target field of the CustomAction table
and in these cases this field is NULL.

The full details of the parameters used in this
column are given in the following subsections.

Target Formatted Normally the definition of the calling parameters
for the custom action code. For example, if the
custom action is a DLL this field would specify the
DLL entry point.

The full details of the parameters used in this
column are given in the following subsections.

Streaming the files that implement custom actions into the Binary table is the
most convenient method of delivering a custom action to the system so that it can
be executed. It is the method used by Microsoft for handling the custom actions
that comprise the validation .cub files. Table 10-2 describes the two columns that
comprise this table.

Chapter 10: Extensibility Through Custom Actions 387

4723-2 ch10.f.qc 1/16/01 11:10 AM Page 387

TABLE 10-2 DESCRIPTION OF THE BINARY TABLE ATTRIBUTES AS THEY RELATE TO
CUSTOM ACTIONS

Column Name Data Type Description

Name Identifier The primary key for the table and a unique identifier
for accessing the binary data being stored in the
table. When the file implementing the custom action
is being stored in the Binary table, this value is used
in the Source column of the CustomAction table to
identify the file.

Data Binary Contains a binary stream that comprises the bits
that make up the file that is to implement the
custom action. Using the MsiRecordSetStream and
the MsiViewModify database functions creates the
binary data stream.

If the file containing the implementation of the custom action is to be installed
with the application, you must make an entry in the File table. Table 10-3 describes
the columns of this table and how they relate to custom actions.

TABLE 10-3 DESCRIPTION OF THE FILE TABLE ATTRIBUTES AS THEY RELATE TO
CUSTOM ACTIONS

Column Name Data Type Description

File Identifier The primary key for this table and a unique
identifier. When the file implementing the custom
action is being installed with the installation,
this value is used in the Source column of the
CustomAction table to identify the file.

Component_ Identifier A foreign key into the Component table that
identifies the component controlling the file
that will implement the custom action.

FileName Filename The actual name of the file being used to
implement the custom action.

388 Part III: Extending the Windows Installer Functionality

4723-2 ch10.f.qc 1/16/01 11:10 AM Page 388

Column Name Data Type Description

FileSize DoubleInteger The size of the file in bytes. This is the same value
you see when looking at the properties of the file
using the right-click context menu in Windows
Explorer.

Version Version The version number of the file. This is the same
value you see when looking at the properties of
the file using the right-click context menu in
Windows Explorer.

Language Language The language of the file. This is the same value
you see when looking at the properties of the file
using the right-click context menu in Windows
Explorer.

Attributes Integer Identifies the properties of the file. These
properties include Read Only, Hidden, System,
and so on.

Sequence Integer Identifies the position of the file on the
media image.

The Directory table comes into play in two different ways when it comes to custom
actions. You can use it to identify where the Windows Installer can find the file that
is implementing the custom action, and it can be the target of the custom action.
When the Directory table is the target of a custom action, then the custom action is
acting on this table to make an entry in it.

When using a Directory table–based custom action, you need to make sure

that it is not inserted into the sequence prior to the table’s initialization. If

you insert it before this, you will get a 2732 run-time error saying that the

Directory Manager is not initialized. This will happen if the costing actions

have not been completed.

Table 10-4 provides a description of the Directory table columns and how to use
them when implementing custom actions.

Tip

Chapter 10: Extensibility Through Custom Actions 389

4723-2 ch10.f.qc 1/16/01 11:10 AM Page 389

TABLE 10-4 DESCRIPTION OF THE DIRECTORY TABLE ATTRIBUTES AS THEY RELATE
TO CUSTOM ACTIONS

Column Name Data Type Description

Directory Identifier Either a unique name for a directory or directory
path or the name of a property. This column is the
primary key for this table. This identifier is used in
the Source column of the CustomAction table for
two different types of custom actions:

To identify a directory that provides the working
location of an executable that is to implement the
custom action

To identify a directory whose location will be set
using a formatted text string entered into the
Target column of the CustomAction table.

Directory_Parent Identifier Defines the parent of the directory being defined or
indicates that this row is a root directory. A NULL
value in this column indicates a root directory.

DefaultDir DefaultDir Defines the name of the directory under the parent
directory defined in the Directory_Parent column.
By default this column defines both the target and
source directories.

The Property table comes into play with three types of custom actions. You can
use it to provide a location where the Windows Installer can find the file that is
implementing the custom action; you can use it to contain the actual script imple-
menting the custom action; or you can make it the target of a special type of custom
action to set a property using a formatted text string. You need to understand that
there are two versions of the Property table, the one that is persisted in the Windows
Installer database and the one that gets created in-memory when at the start of an
installation. The one that is created in-memory at run-time goes by a different name
that is not documented. When you enter properties into the Property table during
the creation of an installation package, you are entering them into the persisted ver-
sion of the Property table. When you create properties during the running of an
installation, you are making these entries only in the in-memory version of the
Property table. Table 10-5 provides a description of the columns of the Property
table and how they are used to implement custom actions.

390 Part III: Extending the Windows Installer Functionality

4723-2 ch10.f.qc 1/16/01 11:10 AM Page 390

TABLE 10-5 DESCRIPTION OF THE PROPERTY TABLE ATTRIBUTES AS THEY RELATE
TO CUSTOM ACTIONS

Column Name Data Type Description

Property Identifier The primary key for this table; a unique identifier.
Used in the Source column of the CustomAction
table for three different types of custom actions:

To identify a property whose value gives the complete
path to an executable that is to implement the
custom action

To identify a property whose value contains the
complete script text for either a VBScript– or a
JScript–implemented custom action

To identify a property whose value will be set using a
formatted text string entered into the Target column
of the CustomAction table

Value Text The value of the property, which can either be the
path to an executable implementing a custom action
or contain the script text that implements a custom
action. You can set this value using a formatted string
in the Target column of the CustomAction table.

Table 10-6 describes the columns in the Error table and how they are used to
implement custom actions. The Error table is used to implement a special type of
custom action. This is a custom action that displays an error message and then ter-
minates the installation.

The Binary table contains the source for the custom actions contained in files.
The advantage of using the Binary table is that the file containing the custom
action functionality is always available. This is not the case when you use the File
table to identify the location of the custom action, because in this case you have to
install the file first before the custom action can be executed. The Directory and
Property tables define the location of the custom action that is to be run. In two
cases these tables have a value set by a particular type of custom action. The Error
table is used for a special type of custom action that just displays an error message.

We are now ready to delve into the details of each type of custom action. In this
discussion we’ll look at particular groupings of the custom action types. Most of these
groupings will be based on the format by which the custom action is implemented.

Chapter 10: Extensibility Through Custom Actions 391

4723-2 ch10.f.qc 1/16/01 11:10 AM Page 391

TABLE 10-6 DESCRIPTION OF THE ERROR TABLE ATTRIBUTES AS THEY RELATE TO
CUSTOM ACTIONS

Column Name Data Type Description

Error Integer Contains the error number and is the primary key for
this table. A special type of custom action will display
an error message based on an entry in the Target
column of the CustomAction table. If the formatted
string in the Target column evaluates to an integer,
then the error message associated with that integer
in the Error table will be displayed. Error numbers
from 25000 to 30000 are reserved for this type of
custom action.

Message Template The error message template that will be displayed if
a custom action references the error number in the
Error column.

Custom Action Types
There are six distinct types of custom actions documented in the Windows Installer
help. An additional type of custom action is provided by InstallShield for Windows
Installer. This type of custom action is the subject of Chapters 12 and 13. For now we
will only discuss what might be termed the native custom action types. The types are
defined by the mechanism used to implement their functionality. These custom action
types are listed in the following sections.

Custom actions implemented in an executable file
The actions to be performed are implemented in an .exe file. Four subtypes com-
prise this custom action type. The subtypes are defined by the source used to locate
the applicable executable file. The executable file custom action is the only type of
custom action for which the code can already reside on the machine that is the tar-
get of the installation. In all other types of custom actions the implementation code
must either be installed as part of the installation or be incorporated into one of the
database tables shown in Figure 10-2.

If the category of custom action is immediate, the executable that implements
the custom action is created with the CreateProcessAsUser() API. This function is
passed the security token of the user so that the custom action will only run with
user privileges. This is also how the install, rollback, and commit subcategories of
deferred custom actions are launched. However, if the custom action is the system
context subcategory of deferred custom action then it will be launched with the

392 Part III: Extending the Windows Installer Functionality

4723-2 ch10.f.qc 1/16/01 11:10 AM Page 392

CreateProcess() API function if the user has been granted elevated privileges. If the
user tries to install a managed application without authorization, the custom action
will be launched with the CreateProcessAsUser() API. If the user has administrative
privileges, the performance of the custom action and the resources to which it has
access will be the same regardless of which API function is used.

A custom action implemented as an executable is the only type of custom

action that can continue beyond the point of termination of the Windows

Installer. In order for this to happen the executable custom action must be

defined to run asynchronously.

Custom actions implemented in a dynamic
link library
The actions to be performed by this type of custom action are implemented in a .dll
file. Two subtypes comprise this type. As with the executable file type of custom
action the subtypes are defined by the source used for locating the dynamic link
library being used for the implementation. The one thing about this type of custom
action is that it must be installed with the application. Because of this you cannot
call directly to a Windows API. You have to create the custom action .dll file and
then call a Windows API if that is what you want to do.

Using the information provided in the CustomAction table the Windows Installer
knows the path of the dynamic link library and proceeds to call first the LoadLibrary()
API function to get the handle to the module and then the GetProcAddress() API
function to get the address of the exported function that implements the custom
action. Using this function address the Windows Installer then calls this function to
execute the custom action. In order to call the function the Windows Installer has
defined the prototype of this function.

UINT __stdcall MyActionName(MSIHANDLE hInstall)

Since this type of information is not provided in the CustomAction table you can
pass only a predefined parameter to this function. The only parameter that the
Windows Installer knows to pass is the handle to the current install session and this
is the only parameter that is allowed when defining this exported function. Also,
when defining the exported function that will implement the custom action you will
need to specify that it use the __stdcall calling convention. You need to make sure
you know what the exported name of the function will be so you can enter it into the
CustomAction table correctly. See the sidebar on this subject later in this chapter.

Tip

Chapter 10: Extensibility Through Custom Actions 393

4723-2 ch10.f.qc 1/16/01 11:10 AM Page 393

Custom actions implemented in script
You can implement custom actions using either VBScript or JScript. You can imple-
ment custom actions in VBScript either in a .vbs file or by entering the script text
in one of the appropriate tables. You can implement custom actions in JScript
either in a .js file or by entering the script text in one of the appropriate tables. Four
subtypes comprise either the VBScript or the JScript custom actions. These subtypes
are defined by the source used for locating the source of the code to implement the
custom action.

In order for a custom action defined in script to run it must have VBSCRIPT.DLL
on the system if the script being used is VBScript, or JSCRIPT.DLL if the script being
used is JScript. You need the file SCRRUN.DLL regardless of what script language
you’re using. All of these files should be on all supported operating systems, but it is
possible that a custom action will need an updated version of these files if a syntax is
being used that is not supported by earlier versions. This could be the case on a
Windows 95 system. In some cases you may need to install these files along with the
application files so that custom actions implemented in script will function properly.

Custom actions implemented as formatted text
This type of custom action can change the values of properties and change directory
paths. The changes that are made by these custom actions are all made in the in-
memory version of the Property table. All the information required to implement
this type of custom action is contained in the CustomAction table. There are two
subtypes of this custom action type defined by the possible targets of the action. In
the Source column of the CustomAction table is specified either a key into the
Directory table or into the Property table. In the Target column of the CustomAction
table you would place the formatted text string that would set these values.

A formatted text string is a string that has embedded in it certain parameters
that are replaced by values from the MSI database or from the system. All parame-
ters replaced during the resolution of the formatted text string are surrounded by
square brackets ([]). The formats to use for these parameters are as follows:

[property name] Resolved when it is replaced by the value of the
property in the Property table.

[%environment variable] Resolved when it is replaced by the value of the
environment variable as defined by the system.

[#file key] Resolved when it is replaced by the value of the
full path to the file defined by this primary key
in the File table.

394 Part III: Extending the Windows Installer Functionality

4723-2 ch10.f.qc 1/16/01 11:10 AM Page 394

[$component key] Resolved when it is replaced by the value of the full
path to the installation location of the component
defined by this primary key in the Component table.
This installation can have one of three different values
depending on the install state of the component. If the
component is to be run locally, this is the path to the
installation folder on the local system. If the compo-
nent is to run from source, this will be the value of
the source location for the component. Finally, if the
component is not selected to be installed then a null
string will replace this sub-string.

[\c] Replaced by the character that immediately follows
the backslash. If more than one character follows the
backslash, only the first character will be inserted
into the string and all other characters are ignored.
You would be most likely to use this sub-string if you
wanted to insert a literal [into the string.

We will take a look later in the chapter at how this type of custom action could
be used in place of the dynamic link library we used in Chapter 4 to initialize the
default location for the TARGETDIR property.

Custom actions that display error messages
This is a special type of custom action whose sole purpose is to display an error
message and then terminate the installation. It can display the message from the
CustomAction table or the Error table. For this type of custom action the Source
column of the CustomAction table is left blank and the Target column contains a
formatted text string that will resolve either to a text string or to a pure numeric
value. If the formatted text string resolves to a string that has non-numeric charac-
ters, the string itself is displayed as the error message. However, if the formatted
string resolves to a pure numeric value, then it is used as an entry into the Error
table and the message associated with that error number is displayed as the error
message. The formatting of the text string to be placed in the Target column of the
CustomAction table follows the same rules as described in the previous section on
custom actions implemented using formatted text.

Custom actions that perform nested installations
This custom action type does just what the name implies: It is able to nest a child
installation inside a parent installation. Three subtypes comprise this custom action

Chapter 10: Extensibility Through Custom Actions 395

4723-2 ch10.f.qc 1/16/01 11:10 AM Page 395

type. These subtypes are defined by the location of the installation package that
implements the nested installation.

The Windows Installer package that contains the nested installation can be
inserted as a sub-storage into the main installation package. It can also be located
at the root of the source tree, or it can be an MSI package that has already been
either advertised or installed on the target machine. There are severe sequencing
restrictions on where a nested installation custom action can be placed in the
sequence of the main installation. The user interface of the nested installation will
not be displayed and all progress messages for the nested installation will be shown
by the progress dialog of the main installation. A nested installation custom action
can only be run as an immediate category of custom action and it can only be run
synchronously with the main installation.

We will get into detail about how nested installation custom actions are to

be implemented in Chapter 11.

In the following subsections each of these types of custom actions will be
described in detail. The next subsection kicks off this detailed discussion by looking
at the database tables involved in the definition and execution of custom actions.

Basic Custom Action Implementation
There are 20 basic types of custom actions and these are the focus in this section. You
can modify the performance of most of these basic custom action types with certain
additional options that define special scheduling, invocation, and return value pro-
cessing. These additional options are discussed in the next section. This section
addresses where custom actions can be stored, which is the key element in defining
these 20 basic custom action types.

Storing custom actions in the binary table
You can store four types of custom actions in the Binary table. These are described
in Table 10-7. In order to be in the Binary table these types of custom actions must
be defined in a file and they must have an .exe, .dll, .vbs, or .js file extension. The
files that implement the custom action are streamed out into a temporary file created
in the TEMP directory. This file’s name will begin with msi followed by a unique

XREF

396 Part III: Extending the Windows Installer Functionality

4723-2 ch10.f.qc 1/16/01 11:10 AM Page 396

number and the extension .tmp. The Windows Installer knows how to invoke this
file based on the custom action type. For all of these custom actions the Source col-
umn of the CustomAction table contains a foreign key into the Binary table.

TABLE 10-7 BASIC CUSTOM ACTION TYPES STORED IN THE BINARY TABLE

Custom Action Description

Type 1 A dynamic link library and the Target column of the CustomAction
table containing the name of the exported function that will
implement this custom action.

Type 2 An executable file and the Target column of the CustomAction table
containing any command line string that this executable needs to run
correctly. This column can be blank if no command line is required.

Type 5 A custom action written in JScript and the Target column containing
the name of an optional function that will be called after the
Windows Installer parses the script text. This column can be blank.

Type 6 A custom action written in VBScript and the Target column containing
the name of an optional function that will be called after the
Windows Installer parses the script text. This column can be blank.

Copying custom actions to the system during
installation
Four types of custom actions can be copied to the system during the installation.
These are described in Table 10-8. Just like the custom action types that can be
stored in the Binary table these types of custom actions also must be defined in a
file and they must have a recognized file extension. Since these types of custom
actions depend on the file that implements the functionality to be copied to the sys-
tem they must be deferred category custom actions. Being deferred custom actions
they must be placed after the InstallInitialize action and, because the file must be
copied to the system before it can be executed, it can only be placed after the
InstallFiles action in the execute sequence. Since these files will be removed during
an uninstallation it is important to place a condition on these custom actions so
that they only run during installation.

Chapter 10: Extensibility Through Custom Actions 397

4723-2 ch10.f.qc 1/16/01 11:10 AM Page 397

TABLE 10-8 BASIC CUSTOM ACTION TYPES COPIED TO THE SYSTEM DURING
INSTALLATION

Custom Action Description

Type 17 A dynamic link library and the Target column of the CustomAction
table containing the name of the exported function that will
implement this custom action.

Type 18 An executable file and the Target column of the CustomAction table
containing any command line string that this executable needs to run
correctly. This column can be blank if no command line is required.

Type 21 A custom action written in JScript and the Target column containing
the name of an optional function that will be called after the
Windows Installer parses the script text. This column can be blank.

Type 22 A custom action written in VBScript and the Target column containing
the name of an optional function that will be called after the
Windows Installer parses the script text. This column can be blank.

398 Part III: Extending the Windows Installer Functionality

Calling Conventions, Exporting Symbols, and Name
Decoration in Dynamic Link Libraries Created with
Microsoft Visual C++
In order to understand how an executable or dynamic link library links to functions
defined in a dynamic link library and compiled with Microsoft Visual C++, you need to
know the four calling conventions supported by the Visual C/C++ compiler; the three
methods for exporting functions from a dynamic link library; and how the Visual
C/C++ compiler decorates the function names for internal use.

The four calling conventions are __cdecl, __stdcall, __fastcall, and thiscall. The
__cdecl calling convention is the default calling convention for C and C++ programs
compiled with Microsoft Visual C++. The argument passing order is from right to left.
With this calling convention the caller of the function cleans up the stack. This means
that the function doing the calling will pop the arguments from the stack. Because of
this, functions that use the __cdecl calling convention can have a variable number
of arguments.

4723-2 ch10.f.qc 1/16/01 11:10 AM Page 398

Chapter 10: Extensibility Through Custom Actions 399

The __stdcall calling convention is used to call Win32 API functions. The argument
passing order is from right to left, just as for the __cdecl calling convention. Here the
called function is responsible for cleaning up the stack. Since this calling convention
does not allow a variable argument list, a function that uses this modifier but has a
variable set of arguments is automatically compiled as __cdecl. Functions that use
this calling convention require a function prototype.

The __fastcall calling convention specifies that arguments are to be passed in
registers whenever possible. The implementation of this calling convention is for the
first two DWORD or smaller arguments to be passed in the ECX and EDX registers with
all other arguments being passed from right to left. With this calling convention the
clean up of the stack is done by the called function. The compiler defines the use of
these registers, and new versions of the compiler could possibly change the registers
used for passing arguments.

The thiscall calling convention is the default calling convention for functions that are
members of a C++ class. In this case the arguments are placed on the stack from right
to left with the this pointer being placed on the stack last. The this pointer is not an
explicit member of the argument list and it points to the object itself. Functions
declared with the static keyword do not have the implicit this pointer argument.

C and C++ symbols define variable and function names. When Microsoft Visual C++
compiles a C or C++ program, the symbols are encoded so as to include type
information. This encoding is required in C++ since this language permits the
overloading of function names. When a function is overloaded, there can be more
than one function with that name as long as the argument lists between the two
functions are different. This encoding allows the linker to distinguish between
different versions of the overloaded function. This name encoding spills over to
programs written in the C language.

This encoding of symbols performed by the Microsoft Visual C++ compiler is called
name decoration or name mangling. The algorithm used for creating these decorated
names is contingent on the calling convention being used for the function. It’s
important to know what the decorated name of the function is when you’re creating
dynamic link libraries for functions being exported and the client of the exported
function is linking explicitly to the DLL.

A function name can be exported using the __declspec(dllexport) keyword in the
source code; an EXPORTS statement in a module definition file (.def); or an /EXPORT
specification in a command to LINK.EXE.

Continued

4723-2 ch10.f.qc 1/16/01 11:10 AM Page 399

400 Part III: Extending the Windows Installer Functionality

Calling Conventions, Exporting Symbols, and Name
Decoration in Dynamic Link Libraries Created with
Microsoft Visual C++ (Continued)
The purpose of the __declspec(dllexport) keyword is to simplify the handling of
decorated names, particularly in C++. Every compiler has a proprietary algorithm
for creating decorated names for exported functions in a dynamic link library. In
fact, this algorithm can change among different versions of a compiler. This is true
for Microsoft Visual C++. To account for name changes that occur when you upgrade
your compiler, all you have to do is recompile the DLL and the EXE to account for the
name changes.

When you use C++ the decorated names generated by Microsoft Visual C++ are
somewhat long and, as I mentioned before, they are proprietary and subject to change
at a moment’s notice. However, when you’re programming in C the decorated names
are predictable, although they differ depending on the calling convention being used.
In fact, you can make C++ functions predictable by using the extern “C” modifier
when defining your function. The only place you cannot use this modifier is on a
function that is a class method. It is, of course, not recognized as a valid keyword
in a C language file since its only purpose is to force the C naming convention to
be used from a C++ program.

For the __cdecl calling convention the compiler decorates the name by just
prefixing the underscore (_) character to the function name. However, if you use
the __declspec(dllexport) keyword then the underscore is stripped from the exported
name and all that is left is the original name used in the DLL.

When you use the __stdcall calling convention, you create the decorated name by
prefixing the underscore character to the function name, appending the at symbol (@)
to the end of the function name, and then adding the decimal number that represents
the number of bytes in the argument list. Using the __declspec(dllexport) keyword
does nothing in this case to change the exported function name. For example, a
function that is declared as int __stdcall function(char c, int a,
double b) would have a decorated name of _function@13.

When you use the __fastcall calling convention, you create the decorated name by
prefixing and appending at symbols (@) to the function name and then following the
last at symbol with the decimal number of bytes in the argument list. Using the
__declspec(dllexport) keyword does nothing in this case to change the exported
function name. For example, a function that is declared as int __fastcall
function(char c, int a, double b) would have a decorated name of
@function@13. The thiscall calling convention cannot export the function names
using the C calling convention since it is used only for C++ member functions and
thus you cannot use the extern “C” modifier.

4723-2 ch10.f.qc 1/16/01 11:10 AM Page 400

Identifying the custom action via the directory table
There is only one type of custom action that has its location specified in the Directory
table. This type of custom action depends on an executable file being on the system
before the installation commences. As such this custom action can be either immedi-
ate or deferred. The Windows Installer locates this file through a key to the Directory
table. This custom action is described in Table 10-9.

TABLE 10-9 CUSTOM ACTION TYPES LOCATED BY A KEY INTO THE DIRECTORY
TABLE

Custom Action Description

Type 34 An executable such as NOTEPAD.EXE that is guaranteed to be on the
system prior to installation. The Source column of the CustomAction
table contains a foreign key into the Directory table that defines
where the Windows Installer can find this file. The Target column
of the CustomAction table contains the name of the executable
file followed by any command line string that the executable file
will need.

Chapter 10: Extensibility Through Custom Actions 401

So what do you do if you cannot accept a decorated name because of the
implementation you’re using? This is where the module definition file or
the /EXPORT specification for LINK.EXE come in. Unlike the __declspec(dllexport)
keyword a .DEF file or the /EXPORT specification permit the definition of the name
to be used for the exported function to be the same as the name used in the source
code. This can be very useful when the client has to explicitly link to the DLL. In such
a case the client will be using the LoadLibrary to load the DLL into the address space
of the client and then using GetProcAddress to get the address of the exported
function. GetProcAddress uses the handle to the DLL obtained by calling LoadLibrary
and the exported name of the function to be called. This can only be done if the
exported name of the function is known at run time. It is important to be able to
provide to the client the exported name of the function to be called and this is
much easier when you can control the name during the build.

4723-2 ch10.f.qc 1/16/01 11:10 AM Page 401

Identifying the custom action via the
property table
Three types of custom actions have their locations stored in the Property table.
Defining the location of a custom action as a property concerns executable files
and custom actions that are implemented in either JScript or VBScript. In the case
of an executable file the Property table defines where on the system this file can be
found. In other words, this is an instance where the file that is to implement the
custom action is already on the target system. However, in the case of the custom
actions implemented in VBScript or JScript, it is the script itself that is contained in
the Property table. In all three cases the Source column of the CustomAction table
contains a foreign key into the Property table. The types of custom actions that use
the Property table for defining their source are described in Table 10-10.

TABLE 10-10 BASIC CUSTOM ACTION TYPES LOCATED VIA THE PROPERTY TABLE

Custom Action Description

Type 50 Identifies an executable that already exists on the target system as
the file that will implement the custom action. In the Property table
the value of the property provided in the Source column is the full
path to the executable. The Target column of the CustomAction table
contains any command line required by the executable in order for it
to implement the custom action.

Type 53 Implemented in JScript; the script text is the value of the property
name specified in the Source column of the CustomAction table. The
Target column of the CustomAction table contains the name of an
optional script function that is called after the Windows Installer
parses the script text.

Type 54 Implemented in VBScript; the script text is the value of the property
name specified in the Source column of the CustomAction table. The
Target column of the CustomAction table contains the name of an
optional script function that is called after the Windows Installer
parses the script text.

Storing custom actions as strings in the database
Five types of custom actions are stored as strings in the CustomAction table. With all
five types, a string entered in the Target column of the CustomAction table provides

402 Part III: Extending the Windows Installer Functionality

4723-2 ch10.f.qc 1/16/01 11:10 AM Page 402

the implementation of the custom action functionality. In three of these custom
actions the Source column of the CustomAction table is null and in the other two the
Source column specifies the target of the custom action. The target of the custom
action can be either the Directory table or the Property table. The types of custom
actions where the implementation is stored directly in the CustomAction table are
described in Table 10-11.

TABLE 10-11 BASIC CUSTOM ACTION TYPES STORED IN THE CUSTOMACTION
TABLE

Custom Action Description

Type 19 Displays an error message and then terminates the installation.
The Source column of the CustomAction table is null and the Target
column contains a formatted text string. If this string evaluates to
a pure numeric value, then it will be used as an entry into the Error
table and the associated error message will be displayed. If the string
evaluates to something that contains non-numeric characters, then
the string itself will be the error message.

Type 35 Sets a value for a directory in the Directory table. The Source column of
the CustomAction table defines the key in the Directory table to be set.
The Target column of the CustomAction table contains a formatted text
string that resolves to the value for the directory location.

Type 37 Implements its functionality through the use of JScript code. The
Source column of the CustomAction table is null and the Target
column contains the JScript text.

Type 38 Implements its functionality through the use of VBScript code. The
Source column of the CustomAction table is null and the Target
column contains the VBScript text.

Type 51 Sets a property in the Property table with formatted text. The Source
column of the CustomAction table defines the name of the property
to be set. The Target column is a formatted text string that resolves to
the value for the designated property.

Performing nested installations
Three types of custom actions perform other installations as child installs of the main
installation. These nested installations are themselves defined by MSI packages. There
are severe restrictions on how and where these types of custom actions can be used.

Chapter 10: Extensibility Through Custom Actions 403

4723-2 ch10.f.qc 1/16/01 11:10 AM Page 403

The full details of these types of custom actions will be covered in Chapter 11. These
custom actions are briefly described here in Table 10-12.

TABLE 10-12 BASIC CUSTOM ACTION TYPES THAT PERFORM NESTED
INSTALLATIONS

Custom Action Description

Type 7 The MSI package containing the child installation is streamed into
the main installation package as a sub-storage. The Source column
of the CustomAction table designates the name of this sub-storage.
The Target column contains a list of property settings to be passed
to the child install.

Type 23 The MSI package containing the child installation is located at the
root of the source tree for the main installation. The Source column
of the CustomAction table designates the name of this child MSI
package. The Target column contains a list of property settings to
be passed to the child install.

Type 39 The child installation is already installed or advertised. The Source
column of the CustomAction table designates the product code for
this child installation. The Target column contains a list of property
settings to be passed to the child install.

The Processing of Custom Actions
There are three basic steps to specifying the process that the Windows Installer is to
use in executing a custom action. They are: scheduling when the custom action is
to be executed, invoking the custom action, and processing the return values from
a custom action. You identify these processing options to the Windows Installer by
modifying the Type field in the CustomAction table. The modifications you can
make are subject of the following subsections.

Scheduling custom actions
In this section we will discuss the various options that a setup developer has for spec-
ifying when a custom action is to be executed. This is where a clear understanding of

404 Part III: Extending the Windows Installer Functionality

4723-2 ch10.f.qc 1/16/01 11:10 AM Page 404

the Windows Installer mechanism becomes important. You may want to look back at
the section in this chapter entitled “Windows Installer Mechanism” that goes into this
subject in detail.

Specifying when a custom action is to be run in the context discussed here has
nothing to do with putting conditions on the custom action in the sequence table.
What we are talking about here is telling the Windows Installer in which process the
custom action is to be run. This scheduling option is only applicable to the Immediate
category of custom action, because any of the categories of deferred custom actions
can only run in the execute sequence.

You have to keep in mind here that on Windows NT/2000 two processes are run-
ning and on Windows 95/98 only one process is running. On Windows NT/2000 the
UI sequence table is run in the client process and the execute sequence table is run
in the service process. On Windows 95/98 the actions in both sequence tables are
run in the client process because no service process is possible on these particular
operating systems. The same custom action cannot appear in any sequence table
more than once since the name of the custom action is the primary key for that par-
ticular row of the sequence table. The Windows Installer will not permit duplicate
entries in the database.

You can specify four mutually exclusive options for defining the execution
scheduling of an immediate category of custom action. Two of these relate strictly
to the sequence table in which the custom action has been defined. The other two
relate to the process in which the custom action will be executed. Table 10-13
describes each of the various scheduling options and gives the value that you need
to add to the Type field in the CustomAction table.

TABLE 10-13 EXECUTION SCHEDULING OPTIONS

Option Name Option Value Description

Default 0 The default functionality is for the custom
action to run whenever it is encountered in
a sequence table. If it is in both the UI and
the execute sequence tables and both of
these tables are executed, it will run twice
during an installation or an uninstallation.
This will not happen only if a condition
that does not evaluate to TRUE has been
entered against the custom action.

Continued

Chapter 10: Extensibility Through Custom Actions 405

4723-2 ch10.f.qc 1/16/01 11:10 AM Page 405

TABLE 10-13 EXECUTION SCHEDULING OPTIONS (Continued)

Option Name Option Value Description

First sequence 256 Under this option the custom action will
only be executed when it is encountered
in the UI sequence table, and not when it
is encountered in the execute sequence
table. If the UI sequence table is not run
because of the user-interface level, the
custom action will run in the execute
sequence if encountered. It will never run
in both sequences. If a condition prevents
the custom action from running in the UI
sequence, it will still not run in the
execute sequence. The only thing that
matters for this option is the sequence
table into which the custom action has
been entered and not the process in which
the sequence table is being run.

Once per process 512 Prevents a custom action from running
more than once in the same process. If a
custom action is in both the UI sequence
and the execute sequence tables and the
installation is being run on Windows 98,
the custom action will only run when
encountered in the UI sequence table
(as long as the user interface level is
high enough).

Repeat in same process 768 Permits a custom action to run more
than once in the same process. If a
custom action is in both the UI sequence
and the execute sequence tables and the
installation is being run on Windows 98, the
custom action will run when encountered
in the UI sequence table and then again
when it is encountered in the execute
sequence (as long as the user interface
level is high enough).

Using these descriptions for the custom action scheduling options, Table 10-14
describes the functionality for the possible scenarios that can occur.

406 Part III: Extending the Windows Installer Functionality

4723-2 ch10.f.qc 1/16/01 11:10 AM Page 406

TABLE 10-14 OPERATION OF THE CUSTOM ACTION SCHEDULING OPTIONS

Option Windows NT/2000 Windows 95/98

Default In UI sequence only: The custom In UI sequence only: The custom
action will run when encountered action will run when encountered
in the UI sequence unless in the UI sequence unless
prevented by a condition or if prevented by a condition or if the
the sequence is not run because sequence is not run because the
the user-interface level was set user-interface level was set at
at either basic or none. either basic or none.

In execute sequence only: The In execute sequence only: The
custom action will run when custom action will run when
encountered in the execute encountered in the execute
sequence unless prevented by sequence unless prevented by
a condition. a condition.

In both sequences: The custom In both sequences: The custom
action will run when encountered action will run when encountered
in both sequences. It will not run in both sequences. It will not run
in the UI sequence if prevented in the UI sequence if prevented by
by a condition or if the UI a condition or the UI sequence is
sequence is not run because the not run because the user-interface
user-interface level was set at level was set at either basic or
either basic or none. It will not none. It will not run in the execute
run in the execute sequence if sequence if prevented by
prevented by a condition. a condition.

First sequence In UI sequence only: The custom In UI sequence only: The custom
action will run when encountered action will run when encountered
in the UI sequence unless in the UI sequence unless
prevented by a condition or if prevented by a condition or if the
the sequence is not run because sequence is not run because the
the user-interface level was set user-interface level was set at
at either basic or none. either basic or none.

In execute sequence only: The In execute sequence only: The
custom action will run when custom action will run when
encountered in the execute encountered in the execute
sequence unless prevented by sequence unless prevented by
a condition. a condition.

Continued

Chapter 10: Extensibility Through Custom Actions 407

4723-2 ch10.f.qc 1/16/01 11:10 AM Page 407

TABLE 10-14 OPERATION OF THE CUSTOM ACTION SCHEDULING OPTIONS
(Continued)

Option Windows NT/2000 Windows 95/98

First sequence In both sequences: The custom In both sequences: The custom
action will run only in the UI action will run only in the UI
sequence. However, it will not sequence. However, it will not
run in the UI sequence if run in the UI sequence if
prevented by a condition or if prevented by a condition or if
the UI sequence is not run the UI sequence is not run
because the user-interface level because the user-interface level
was set at either basic or none. was set at either basic or none.
It will then run in the execute It will then run in the execute
sequence unless prevented by sequence unless prevented by
a condition. a condition.

Once per In UI sequence only: The custom In UI sequence only: The custom
process action will run when encountered action will run when encountered

in the UI sequence unless in the UI sequence unless
prevented by a condition or if prevented by a condition or if
the sequence is not run because the sequence is not run because
the user-interface level was set the user-interface level was set
at either basic or none. at either basic or none.

In execute sequence only: The In execute sequence only: The
custom action will run when custom action will run when
encountered in the execute encountered in the execute
sequence unless prevented by sequence unless prevented by
a condition. a condition.

In both sequences: The custom In both sequences: The custom
action will run when encountered action will run only in the UI
in both sequences. It will not run sequence. However, it will not run
in the UI sequence if prevented in the UI sequence if prevented by
by a condition or the UI sequence a condition or if the UI sequence is
is not run because the user- not run because the user-interface
interface level was set at either level was set at either basic or
basic or none. It will not run none. It will then run in the
in the execute sequence if execute sequence unless
prevented by a condition. prevented by a condition.

408 Part III: Extending the Windows Installer Functionality

4723-2 ch10.f.qc 1/16/01 11:10 AM Page 408

Option Windows NT/2000 Windows 95/98

Repeat in In UI sequence only: This is not In UI sequence only: The custom
same process applicable on Windows NT/2000. action will not run in the

UI sequence.

In execute sequence only: In execute sequence only:
This is not applicable on The custom action will run when
Windows NT/2000. encountered in the execute

sequence unless prevented
by a condition.

In both sequences: This is not In both sequences: The custom
applicable on Windows NT/2000. action will run when encountered

in the execute sequence unless
prevented by a condition.

Invoking custom actions
This section deals with the different ways of invoking a custom action. In this same
context we need to discuss how to define when a custom action is to be executed.
We have already discussed the fact that there are two primary categories of custom
actions, immediate and deferred. An immediate custom action is executed as soon as
the Windows Installer encounters it in the Sequence table. This is the default and
you can place this category of custom action at any location, with a few exceptions,
within either the UI sequence table or the execute sequence table. The exceptions
have already been noted in the previous discussions of the various basic types of
custom actions.

With deferred custom actions, the custom action is executed only upon being
encountered in either the execution script or the rollback script. The following
script segment shows how a deferred custom action would appear in the execution
script for an installation.

InstallProtectedFiles(AllowUI=1)
ActionStart(Name=DeferredExe_Binary,,)
CustomActionSchedule(Action=DeferredExe_Binary,ActionType=1026,Sourc
e=BinaryedEx,,)
ActionStart(Name=RegisterUser,Description=Registering
user,Template=[1])

Chapter 10: Extensibility Through Custom Actions 409

4723-2 ch10.f.qc 1/16/01 11:10 AM Page 409

I named this custom action DeferredExe_Binary. It launches Notepad.exe directly
after the completion of the InstallFiles standard action. Lines 2 and 3 of the script
show how the Windows Installer enters this information into the execution script.
You will notice the entry ActionType=1026, which tells the Windows Installer how
to treat this custom action. Table 10-15 lists the various options you can define to
tell the Windows Installer when to execute a custom action. In the terminology of
the Windows Installer these are called the in-script execution options.

TABLE 10-15 IN-SCRIPT EXECUTION OPTIONS

Option Name Option Value Description

Immediate 0 Specifies that the Windows Installer will execute
the custom action immediately when it is
encountered in the sequence table.

Execution 1024 Specifies that the custom action will be written
into the execution script and will be executed
when the execution script is run. Unless a
condition is placed on this custom action it will
run both during installation and uninstallation.

Rollback 1280 Specifies that the custom action will only be
run if the installation or the uninstallation has
to be rolled back, which can happen if there is a
run-time error or if the user cancels the action.

Commit 1536 Specifies that the custom action is to run only
if the installation completes successfully.

System context 3072 Specifies that the custom action is to run with
elevated privileges as long as the user has been
granted elevated privileges by the system
administrator.

Up to now we have been talking about invoking custom actions that have been
entered into the various sequence tables. Entering a custom action into a sequence
table is the most common method of invoking a custom action. Custom actions
can, however, invoke other custom actions — or standard actions, for that matter —
through either the Installer API or through the Installer automation interface.

The name of the Installer API you can use to invoke a custom action is MsiDo
Action. The prototype for this function is as follows:

UINT MsiDoAction(MSIHANDLE hInstall, LPCTSTR szAction)

410 Part III: Extending the Windows Installer Functionality

4723-2 ch10.f.qc 1/16/01 11:10 AM Page 410

Where

hInstall is the handle to the installation
szAction is the name of the action to execute

MsiDoAction is a database function that is part of the Windows Installer API set.
It can execute a standard action, a custom action listed in the CustomAction table,
or a user-interface wizard action. A common way to use this function is to call it
from within a custom action that is sequenced in the InstallExecuteSequence table
between the InstallInitialize and the InstallFinalize actions. In this way you can use
the function to invoke another custom action.

You can access a method through the automation interface that provides the
same functionality as MsiDoAction. The syntax of this method is as follows:

object.DoAction(action)

where object is the session object and action is the string name of the action to
execute.

This is one of the methods of the Session object that is part of the Windows
Installer automation interface. Just like the MsiDoAction method, this method can
execute a standard action, a custom action that is listed in the CustomAction table,
or a user-interface wizard action. A common way to use this method is to call it
from within a custom action that is sequenced in the InstallExecuteSequence table
between the InstallInitialize and the InstallFinalize actions. In this way you can use
the method to invoke a standard action that makes changes to the system.

The final way to invoke a custom action is to use the DoAction control event. A
control event is tied to a control found in a dialog box. The argument to this par-
ticular control event is the name of a custom action listed in the CustomAction
table. Typically this control event is tied to a pushbutton control; clicking on the
pushbutton invokes the specified custom action.

Processing the return values from custom actions
The last step in defining a custom action’s behavior to the Windows Installer is to
define how the custom action thread is to run and how return values are to be han-
dled. A custom action can be run synchronously or asynchronously and the
Windows Installer can be told how to handle any exit codes that may be returned
from the custom action. When a custom action is run synchronously, the Windows
Installer will suspend any further actions until the custom action has finished and its
thread has been terminated. Asynchronous execution means that the custom action
thread and the main installation thread run in parallel; what happens at the end of
the execution of the sequence depends on how you have specified the custom action
exit code is to be handled by the Windows Installer. Table 10-16 shows the possible
options for specifying how the Windows Installer is to run a custom action.

Chapter 10: Extensibility Through Custom Actions 411

4723-2 ch10.f.qc 1/16/01 11:10 AM Page 411

TABLE 10-16 RETURN PROCESSING OPTIONS

Option Name Option Value Description

Synchronous wait 0 Specifies that the installation process will
wait on the custom action to complete
and that the return value must be 0 for
the main installation to proceed. If the
custom action does not return 0, the
installation will be terminated.

Synchronous continue 64 Specifies that the installation process will
wait on the custom action to complete
and that any return value from the custom
action will be ignored. The Windows
Installer will continue with the installation
after the custom action has completed.

Asynchronous wait 128 Specifies that the custom action will
proceed in parallel with the main
installation but that the Windows Installer
will wait at the end of the sequence for
the custom action to return an exit code.
If the exit code is not 0, the installation
will be terminated.

Asynchronous continue 192 Specifies that the custom action
will proceed in parallel with the main
installation and that the Windows
Installer will not wait at the end of
the sequence for the custom action
to return an exit code.

Now we can discuss how to put all this information together so that the Windows
Installer knows how to process the custom action.

Telling the Windows Installer how to process a
custom action
You tell the Windows Installer how to process a custom action through the Type
attribute in the CustomAction table. You can do this by taking the basic custom
action type number and adding it to the execution scheduling option to be used,
and finally by adding this sum to the in-script execution option and then to the
return processing option. This will only work properly if the in-script execution

412 Part III: Extending the Windows Installer Functionality

4723-2 ch10.f.qc 1/16/01 11:10 AM Page 412

option is 0, specifying that the custom action is to be executed in immediate mode
and not written into the execution script. If the custom action is specified as
deferred, you would not want to add in the execution scheduling option; otherwise
you would define an invalid type. For each type of custom action there are rules for
what can be combined to make a valid type. As an example you can create the fol-
lowing pseudo-code that defines how the type specification should operate for the
dynamic link custom action you used in the example installation in Chapter 4.

If(category != deferred AND basic type != nested installation custom
action) then
Type = Basic Type + Execution Scheduling Option + Return Processing
Option
Else
Type = Basic Type + In-Script Execution Option + Return Processing
Option
Endif

For the example installation in Chapter 4 you have a custom action that you are
storing in the Binary table and even though you are placing it in both sequence
tables you want it to run only once and you want the Windows Installer to wait for
a successful exit code before it continues with the processing of the sequence
tables. Since you are placing this custom action into both sequence tables it is not
a deferred custom action. You would enter the following Type value in the Custom
Action table:

Type = 1 + 0 + 256 + 0 = 257

Example Custom Action
In this section we take a close look at the custom action you used in Chapter 4 to
set the default installation location. We also take a look at a different method for
implementing this same type of functionality. This other approach, which we did
not use in Chapter 4, sets the TARGETDIR property using a formatted text string.

If you remember, you implemented the custom action you used in Chapter 4 as a
dynamic-link library. The code for this DLL is as follows:

/*--+
| |
| File Name: SetDefault.cpp |
| Description: Set the default value of TARGETDIR |
| Author: Bob Baker |
| |
+---*/

Chapter 10: Extensibility Through Custom Actions 413

4723-2 ch10.f.qc 1/16/01 11:10 AM Page 413

#include <windows.h>
#include <msi.h>
#include <msiquery.h>

UINT __stdcall SetDefaultTarget(MSIHANDLE hInstall)
{

LPCTSTR TargetDirProp = TEXT(“TARGETDIR”);
LPCTSTR ProgFileFolderProp = TEXT(“ProgramFilesFolder”);
LPCTSTR ManufProp = TEXT(“Manufacturer”);
LPCTSTR ProdNameProp = TEXT(“ProductName”);
TCHAR szValueBuf[MAX_PATH+1] = { 0 };
TCHAR szTargetPath[MAX_PATH+1] = { 0 }; DWORD

ncharCount = MAX_PATH+1;

// Get the location of the program files folder
// This value will already have a directory separator
// since it is a directory-related property
MsiGetProperty(hInstall, ProgFileFolderProp, szValueBuf,

&ncharCount);
lstrcpy(szTargetPath, szValueBuf);
ncharCount = MAX_PATH + 1;

// Get the name of the company publishing the software
MsiGetProperty(hInstall, ManufProp, szValueBuf, &ncharCount);

lstrcat(szTargetPath, szValueBuf);
lstrcat(szTargetPath, “\\”);
ncharCount = MAX_PATH + 1;

// Get the name of the product
MsiGetProperty(hInstall, ProdNameProp, szValueBuf,

&ncharCount);
lstrcat(szTargetPath, szValueBuf);
ncharCount = MAX_PATH + 1;

// Set the concatenated values of the above properties as the
// default value of the TARGETDIR property
MsiSetProperty(hInstall, TargetDirProp, szTargetPath);
return ERROR_SUCCESS;
}

If you wanted to define TARGETDIR using formatted text, you could make the
entries into the CustomAction table as shown in Table 10-17.

414 Part III: Extending the Windows Installer Functionality

4723-2 ch10.f.qc 1/16/01 11:10 AM Page 414

TABLE 10-17 CUSTOMACTION TABLE ENTRIES REQUIRED TO DEFINE THE DEFAULT
INSTALLATION LOCATION USING FORMATTED TEXT

Row # Column Name Attribute Value

1 Action DefaultDest

Type 307

Source TARGETDIR

Target [ProgramFilesFolder][Manufacturer]\[ProductName]

The following remarks explain in more detail the entries that you have made in
the CustomAction table shown in Table 10-17.

◆ In the Action column you use a text string to uniquely identify the cus-
tom action in the table. Here you show that you are using the same name
that you used to define the custom action as a dynamic link library.

◆ In the Type column you want to define this custom action to run only in
the first sequence table in which it is found, but you want to make sure
that if the UI sequence table is skipped the custom action will run in the
execute sequence. The basic type of this custom action is 51 and to it you
need to add the 256 scheduling option. Since you want this custom action
to run synchronously with the main installation and you want it to run in
immediate mode you create the type as follows:

Type = 51 + 256 + 0 + 0 = 307

◆ In the Source column you specify that the property you want to set is
TARGETDIR.

◆ In the Target column you provide the formatted text string that will
create the directory path that would for the example install in Chapter 4
be as follows:

C:\Program Files\ISWI Art Company\ISWI Artist

You will notice that there is no directory divider (backslash) between
the ProgramFilesFolder property and the Manufacturer property. This is
because the ProgramFilesFolder property, being a directory-related prop-
erty, comes with a trailing directory divider (\). There must be a backslash,
however, between the Manufacturer and ProductName properties.

Chapter 10: Extensibility Through Custom Actions 415

4723-2 ch10.f.qc 1/16/01 11:10 AM Page 415

Advanced Issues
Because of the complex mechanism of custom actions a number of advanced issues
have not been covered in this chapter. We will cover these in detail in Chapter 11.
Here I just give a brief overview of what they are.

Context information for deferred custom actions
It is possible that a deferred custom action be executed outside the session that
defined it. Because of this a deferred custom action only has access to the informa-
tion written into the execution script. This can cause a problem if the custom action
is expecting the session object, which is the case with custom actions both imple-
mented as dynamic link libraries and using script. You can use a limited number of
methods in deferred custom actions where the context information is required.

Nested installation custom actions
An installation can be run as a child install of a main installation through the use of
a custom action. You need to understand many things before you can run nested
installation custom actions— such things as how and where nested installations can
be scheduled, how to use custom actions within a nested installation, how to pass
properties to a child installation, how to provide a user interface for the child installa-
tion, and so forth.

Disabling rollback and its impact on
custom actions
It is possible to disable rollback if there is not enough space on the target machine
to temporarily cache files being overwritten during the installation. However, this
can have a major impact on certain types of custom actions.

Debugging custom actions
There will be times when you have to debug a custom action created as a dynamic
link library or as an executable file.

Adding temporary data to the database
Using a custom action it will be possible to add non-persistent data to some of the
tables of the database in memory. This can be important if you want to dynamically
create items that will be displayed in the user interface. In Chapter 11 we’ll discuss
how you can add this temporary data using the special SQL syntax understood by
the Windows Installer API. Function set.

416 Part III: Extending the Windows Installer Functionality

4723-2 ch10.f.qc 1/16/01 11:10 AM Page 416

Summary
In this chapter you learned about the various types of custom actions you can cre-
ate, and (I hope) you learned that creating and using custom actions is not a trivial
matter. In particular you saw that one category of custom action is executed imme-
diately and that another category of custom action is deferred so that it is executed
only when the actual installation is run. You now know that to understand the use
of custom actions you need to clearly understand how the Windows Installer works,
what happens in the client process, and what happens in the service process.

In the following chapters you will have the opportunity to create and run custom
actions of various types. This will continue to cement your understanding of the
Windows Installer functionality. You will also learn how to capitalize on your
knowledge of InstallScript and how to use InstallScript to create custom actions.

Chapter 10: Extensibility Through Custom Actions 417

4723-2 ch10.f.qc 1/16/01 11:10 AM Page 417

4723-2 ch10.f.qc 1/16/01 11:10 AM Page 418

Chapter 11

Creating and Using
Custom Actions

IN THIS CHAPTER

◆ Syntax and use of the Windows Installer SQL

◆ The ISWI Custom Action Wizard

◆ Creation and use of the custom tables

◆ How to use custom actions with the user interface

◆ Special problems in working with deferred custom actions

◆ How to run installations from within an installation

◆ Creation and use of various miscellaneous custom actions

◆ How to debug custom actions

IN THIS CHAPTER YOU’LL extend the knowledge you gained in Chapter 10 about the
categories and types of custom actions. In this chapter you create a number of dif-
ferent types of custom actions and become familiar with a number of techniques
that you can use to create these custom actions.

Preliminaries
Creating and using custom actions can be complicated. Before you get into actually
creating example custom actions you need to take a look at a number of technical
details. First we will look at the valid return values that are recognized by the
Windows Installer, and then we will take a tour through the version of SQL sup-
ported by the Windows Installer. Then before we move on we will look at several
issues related to working with the Windows Installer package at run time.

Custom action return values
There are two sets of return values depending on whether the custom action has
been created with C++ in a dynamic link library or with either VBScript or JScript. 419

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 419

If a custom action is identified as being of the type for which the Windows Installer
is expecting to handle a return value, then one of the valid return values must be
returned. Table 11-1 shows the return values that are valid for a DLL and for script
custom actions.

TABLE 11-1 VALID RETURN VALUES FOR DLL AND SCRIPT CUSTOM ACTIONS

Constant Description

Visual C++ return constant Identifies to the caller that an action was not
ERROR_FUNCTION_NOT_CALLED executed. This is not a failure condition. This is
VBScript or Jscript return most useful if a custom action is calling another
value 0 DLL; this return value tells the caller that a certain

action was not taken. When returned to the
Windows Installer, this return value is treated
just like ERROR_SUCCESS.

Visual C++ return constant Indicates that the action completed successfully.
ERROR_SUCCESS The Windows Installer will continue to process all
VBScript of JScript return the other actions in the sequence table.
value IDOK = 1

Visual C++ return constant Indicates that the user canceled the installation.
ERROR_INSTALL_USEREXIT When the Windows Installer receives this return
VBScript or Jscript return value value, it will immediately terminate the
IDCANCEL = 2 installation and run the action that has a –2

sequence number. If the custom action is in the
execute sequence, the Windows Installer will then
return control to the client process where the
action that has the –2 sequence number is
executed. Default setups created by ISWI will
display the SetupInterrupted dialog box that tells
the user that the setup was interrupted before the
installation was completed. All actions up to this
point will be rolled back unless the rollback
functionality has been disabled.

420 Part III: Extending the Windows Installer Functionality

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 420

Constant Description

Visual C++ return constant Indicates that a fatal error occurred. When the
ERROR_INSTALL_FAILURE Windows Installer receives this return value, it will
VBScript and JScript return immediately terminate the installation and run the
value IDABORT = 3 action that has the –3 sequence number. If the

custom action is in the execute sequence, the
Windows Installer will then return control to the
client process, where the action that has the –3
sequence number is executed. Default setups
created by ISWI will display the SetupComplete
Error dialog box that tells the user that the setup
was interrupted before the installation was
completed. All actions up to this point will be
rolled back unless the rollback functionality has
been disabled.

Visual C++ return constant Indicates that the user canceled the installation.
ERROR_INSTALL_SUSPEND When the Windows Installer receives this return
VBScript and JScript return value, it will immediately terminate the
value IDRETRY = 4 installation and run the action that has the –4

sequence number. If the custom action is in the
execute sequence, the Windows Installer will then
return control to the client processwhere the
action that has the –4 sequence number is run.
Default setups created by ISWI do not have any
actions associated with this sequence number.

When the Windows Installer receives this return
value, the installation will be terminated but no
rollback or cleanup will be performed. The user
will have to restart the installation manually. The
InProgress key in the registry provides the settings
needed to resume the suspended installation. This
is an obsolete return value and is not used.

Visual C++ return constant Tells the Windows Installer to stop processing any
ERROR_NO_MORE_ITEMS more actions in the sequence table. If this custom
VBScript and JScript return action is in the user interface sequence, control
value IDIGNORE = 5 will be passed immediately to the execute

sequence. If the custom action is in the execute
sequence, control will be passed back to the client
process and the SetupCompleteSuccess dialog will
be displayed indicating that the installation
completed successfully.

Chapter 11: Creating and Using Custom Actions 421

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 421

Script-based custom actions are different from those written in C++ because the
script text can be contained directly in either the CustomAction table or the Property
table. Being able to include a script-based custom action in a database table is in
addition to implementing a script custom in a file that can either be installed with
the product or stored in the Binary table. A script custom action does not have to be
implemented as a script function; it can be a scriptlet similar to what might be con-
tained in a Web page. When the custom action is just a scriptlet, the return values
described in Table 11-1 cannot be used and you should tell the Windows Installer to
ignore the return value from the custom action. Checking the appropriate check box
in the Additional Options dialog of the Custom Action Wizard does this

The next subject that you need to investigate is the version of SQL implemented
in the Windows Installer. Many of the custom actions that you will need to create
will have to use SQL in order to interface with the MSI database.

Windows Installer SQL
SQL stands for Structured Query Language and was developed at IBM in the 1970s.
It is by far the most popular relational database query language and it is what you
have to use to access the tables in an MSI database. The only exception to this is
accessing the Property table, which has several special functions for setting and
retrieving individual records. Even with the Property table you have to use SQL if
you want to work with more than one record at a time.

Standard SQL is divided into three parts: a Data Definition Language (DDL), a
Data Manipulation Language (DML), and a Data Control Language (DCL). The ver-
sion of SQL used with MSI databases only contains a Data Definition Language and
a Data Manipulation Language. Using the Data Definition Language you can
change the schema of a database by adding or dropping tables. You can also alter a
table by adding columns. With the Data Manipulation Language you can work with
the records in the database tables. You can select, add, delete, and update records.

The SQL language is made up of various types of statements and associated
clauses. Now you should take a closer look at the statements and clauses that com-
prise the Data Definition Language and the Data Manipulation Language as imple-
mented by the Windows Installer.

THE DATA DEFINITION LANGUAGE
In the Data Definition Language there are three statements. Using these statements
you can create a new table, delete a table, or add a column to a table. These three
commands are described in Table 11-2.

422 Part III: Extending the Windows Installer Functionality

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 422

TABLE 11-2 DATA DEFINITION LANGUAGE STATEMENTS SUPPORTED BY WINDOWS
INSTALLER

Statement Description

CREATE TABLE <table-name> Used to create a new table in the MSI database. This
(<column-specifications>) statement is followed by the name of the table to be

created and a definition of the columns that make up
the new table.

DROP TABLE <table-name> Used to delete a table from the MSI database. The only
parameter used with this statement is the name of the
table.

ALTER TABLE <table-name> Used to add a column to a table in the MSI database.
ADD <column-specification> Like the CREATE TABLE statement, this statement

takes a number of parameters that describe the new
column to be added.

In all three of these commands, the name of a table cannot exceed 31 char-

acters and the table name is case-sensitive.

When you use the CREATE TABLE or ALTER TABLE statements, you need to provide
a column definition, which includes the specification of the type of data to be contained
in the column. In an MSI database there are only three types of data you can use:
strings, integers, and binary streams. The data type keywords you can use with the CRE-
ATE TABLE and the ALTER TABLE statements are described in Table 11-3. You must
specify the data type of a column. If you don’t, you’ll get a Windows Installer SQL
query (1615) error indicating that the query contains an invalid type specifier.

TABLE 11-3 COLUMN DATA TYPE SPECIFICATION KEYWORDS

Keyword Description

CHAR [(column-size)] Defines the column to be a string data type. You can
specify any size from 1 character to a 255 characters.
If no size is specified, this data type will default to be
a string of unlimited length.

Continued

NOTE

Chapter 11: Creating and Using Custom Actions 423

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 423

TABLE 11-3 COLUMN DATA TYPE SPECIFICATION KEYWORDS (Continued)

Keyword Description

CHARACTER [(column-size)] Operates like the CHAR keyword.

LONGCHAR Defines a string data type that can have unlimited
length.

SHORT Defines a column data type that is a two-byte integer.

INT Defines a column data type that is a two-byte integer.

INTEGER Defines a column data type that is a two-byte integer.

LONG Defines a column data type that is a four-byte integer.

OBJECT Defines a binary data type. Only one column in a table
can have this data type.

In Table 11-3 you saw the basic keywords you can use to define the data type of
a column. Only one of these data types can be specified for any particular column.
There are other attributes, however, that you can also use to modify a column.
These attributes determine whether a column is to be treated as temporary or per-
manent, whether it can have a null value or not, and so on. The three modifiers
available with Windows Installer are described in Table 11-4. All of the keywords
shown in Table 11-4 are optional.

TABLE 11-4 COLUMN MODIFIER KEYWORDS

Modifying Keyword Description

NOT NULL Identifies a column that cannot be null.

TEMPORARY Identifies a column that will only exist in memory and will not
be persisted in the database when it is closed. When using this
keyword, it is important to also use the HOLD keyword so that
this column will get a refcount. Without a refcount this column
will not be accessible.

LOCALIZABLE Identifies a column as one that holds a string that must be
localized. The purpose of this keyword is to allow a localization
utility to query for the attribute and only allow the columns that
have the LOCALIZABLE attribute to be localized. No column
designated as a primary key can be marked as being localizable.

424 Part III: Extending the Windows Installer Functionality

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 424

When you are creating a new table using the CREATE TABLE statement, you
need to identify the column or columns that comprise the primary key for the table.
There are a few rules you need to follow when defining the primary key for a table.
First, to designate those columns that form the primary key, you need to use the
PRIMARY KEY clause, which is a comma-delimited list of the column names. Also,
when you create the table you need to define the columns that will form the pri-
mary key first before you define any of the other columns. When creating both per-
sistent and temporary columns in a table, you need to define all the persistent
columns before you define any temporary columns. One final rule for creating a
table is that there can only be one column in a table that has the object data type.

Before we start looking at a few examples of SQL statements that create tables
and add columns we need to discuss the subject of refcounting temporary tables
and columns. Using the HOLD and FREE keywords you can control the lifetime of
temporary columns and tables. When you use the HOLD keyword, the hold count
on a table is incremented, and when you use the FREE keyword, the hold count is
decremented. When the last hold count on a table is released, then all temporary
columns become inaccessible. If all the columns in a table are temporary, the table
itself becomes inaccessible.

When you use the CREATE TABLE statement, you can only use the HOLD key-
word. It would not make any sense to use the FREE keyword when first creating a
table or adding a column. You can use the ALTER TABLE statement to increment or
decrement the hold count on a particular table outside of the action to add a col-
umn. The format for this use of the statement is as follows:

ALTER TABLE <table-name> HOLD
ALTER TABLE <table-name> FREE

Now let’s take a look at a few example SQL statements for creating new tables
and adding columns to an existing table.

CREATING A NEW TABLE For the first example you will create a simple table that
can be used to implement the creation of user accounts on a system. The SQL state-
ment to do this is as follows:

CREATE TABLE `CustomUserAccounts` (`UserName` CHAR(72) NOT NULL,
`TempPassWord` CHAR(25) NOT NULL, `Attributes` LONG PRIMARY KEY

`UserName`)

The most important thing to notice about this SQL statement is that the name of
the table and the names of the columns are enclosed in grave accent marks. This
circumvents any possibility of a clash with an SQL keyword. This use of the grave
accent marks is recommended in all cases, even if there is no possibility of a clash,
since it will enhance performance. If you have to qualify a column name with the
table name in order to make it clear what table the column belongs to, you must
use the grave accent marks around both the table name and the column name. This

Chapter 11: Creating and Using Custom Actions 425

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 425

would look like the following if you needed to make sure you were using the
UserName column from the CustomUserAccounts table and not some other table:

`CustomUserAccounts`.`UserName`

You will be using these SQL statements in your C++ code so they have to be con-
verted to strings. Typically the above SQL statement will be used in our C++ code
as follows:

const TCHAR *const sqlCreateTable = TEXT(“CREATE TABLE
CustomUserAccounts` (`UserName` CHAR(72) NOT NULL,

`TempPassWord` CHAR(25) NOT NULL,
`Attributes` LONG PRIMARY KEY `UserName`)”);

For a second example, suppose that you need to create a temporary table to be
used at install time to hold special attributes of the target system. This table will
have two columns where the first column is the name of the attribute and the sec-
ond column is the value of the attribute. Both columns hold string values with the
first column being restricted to a string length of 36 and second column being able
to hold a string of any length. The name of this table will be SystemAttributes. The
SQL statement to create this table is as follows:

CREATE TABLE `SystemAttributes` (`AttributeName` CHAR(36) NOT NULL
TEMPORARY, `AttributeValue` LONGCHAR NOT NULL TEMPORARY

PRIMARY KEY `AttributeName`, `AttributeValue`) HOLD

The first thing that you should note from this SQL statement is that to create a
temporary table you need to identify each and every column as being temporary.
Also, you need to use the HOLD keyword in order to increment the hold count for
this table. If you do not do this, this table will not be accessible because it will
have a 0 hold count. To use this SQL statement in C++ code you would format it
as follows:

const TCHAR *const sqlTempTable = TEXT(“CREATE TABLE
`SystemAttributes` (`AttributeName` CHAR(36) NOT NULL

TEMPORARY, `AttributeValue` LONGCHAR NOT NULL TEMPORARY
PRIMARY KEY `AttributeName`, `AttributeValue`) HOLD)”);

ADDING A COLUMN TO AN EXISTING TABLE For this example assume that you
want to add a temporary column to the CustomUserAccounts table that will hold
the results of calculations necessary during the installation. For you to do this tem-
porary column must have an integer data type. The SQL statement to create this
temporary column is as follows:

ALTER TABLE `CustomUserAccounts` ADD `Result` LONG TEMPORARY HOLD

426 Part III: Extending the Windows Installer Functionality

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 426

This SQL statement will add a temporary column named Result to the
CustomUserAccounts table.

THE DATA MANIPULATION LANGUAGE
Four statements comprise the Data Manipulation Language implemented in the
Windows Installer. The purpose of these four statements is to work with rows in an
existing database. You can add, delete, and modify the data in rows and you can
query a database table in order to select a group of rows. Table 11-5 shows the four
Data Manipulation Language commands.

TABLE 11-5 DATA MANIPULATION LANGUAGE STATEMENTS SUPPORTED BY
WINDOWS INSTALLER

Statement Description

SELECT <column-name-list> Obtains a group of records from one or more tables. If
FROM <table-name-list> you want to obtain a result set that includes all the

columns in a table or table list, you can use an asterisk (*)
instead of providing a list of the all the column names.

DELETE FROM <table-name> Deletes rows from a table. A WHERE clause is
necessary if only some of the rows are to be deleted.

UPDATE <table-name-list> Modifies existing rows in one or more tables.
SET <update-specification>

INSERT INTO <table-name> Adds new records to a table.
<column-name-list> VALUES
<value-list>

There are two keywords and two clauses that you can use with these SQL state-
ments in order to modify the results obtained from the basic statements. The two
keywords, both optional, are described in Table 11-6.

TABLE 11-6 DATA MANIPULATION LANGUAGE KEYWORDS

Modifying Keyword Description

DISTINCT Prevents duplicate records from appearing in a result set
generated by an SQL query.

Continued

Chapter 11: Creating and Using Custom Actions 427

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 427

TABLE 11-6 DATA MANIPULATION LANGUAGE KEYWORDS (Continued)

Modifying Keyword Description

TEMPORARY Identifies a column that will only exist in memory and will not
be persisted in the database when it is closed. When using
this keyword, you must also use the HOLD keyword so that
this column will get a refcount. Without a refcount this
column will not be accessible.

The two clauses that we need to discuss in detail are the WHERE clause and the
ORDER BY clause. These are discussed in the following two subsections.

THE WHERE CLAUSE Several of the Data Manipulation Language statements use
a WHERE clause to filter the rows that are the subject of the operation. This
optional clause can be used with the SELECT, DELETE FROM, and UPDATE state-
ments. The basic format of the WHERE clause is as follows:

WHERE <operation-list>

The structure of the operation list that follows the WHERE keyword is the
essence of the WHERE clause. The valid operation types that can make up an oper-
ation list are shown in Table 11-7.

TABLE 11-7 VALID OPERATION TYPES

Operation Description

<column-name> = Compares the values in two different columns; if they are
<column-name> equal then the row is added to the result set. If the

columns being compared are in two different tables, the
result set is called an inner join.

<column-name> operator Compares the value in a column with a constant value.
<constant> Following this table is a description of the operators that

can be used and with which data types they are valid.

<column-name> operator Compares the value in a column with a variable (marker).
<marker> A record passed to the MsiViewExecute function provides

a value for the variable. Following this table is a
description of the operators that can be used and with
which data types they are valid. You will also see how to
use markers when you are executing a view.

428 Part III: Extending the Windows Installer Functionality

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 428

Operation Description

<column-name> IS NULL Checks to see if a particular column is null. All rows that
have a null value in the specified column are added to
the result set.

<column-name> IS NOT NULL Checks to see if a particular column contains a value. All
rows that have a value in the specified column are added
to the result set.

The valid relational operators that can be used are the equal to (=), not equal to
(<>), greater than (>), greater than or equal to (>=), less than (<), or less than or
equal to (<=). All of these operators can be used when comparing numerical values,
but only the equal (=) and the not equal (<>) operators can be used when compar-
ing string values. None of the operators can be used to compare columns that con-
tain the object data type. For object data types it is only possible to determine if the
column is null or not null. You can group operations by using the AND and OR log-
ical operators. You can change the order of evaluation of operations by using
parentheses.

A marker is a means by which you can create queries that contain parameters
that will be filled in later. The token used to represent a parameter for which a value
will be provided at a later time is the question mark (?). When a SELECT statement
is created using markers, there is no restriction on where these markers can be
placed relative to the non-parameterized values that are part of the statement.
However, when markers are used with either the INSERT INTO or the UPDATE state-
ments, the use of markers must come before the first use of any hard-coded values.
A record passed to either the MsiViewExecute function or the Execute method of
the View object supplies the values that replace the markers that are part of a para-
meterized statement. When we discuss the WHERE clause, we need to talk about
what to do when this clause is referencing more than one table, which can happen
when you’re using the WHERE clause in either a SELECT or an UPDATE statement.
When you are comparing the columns in different tables, you are creating what is
called a join. In the Windows Installer only inner joins are supported. It is not pos-
sible to perform circular joins or outer joins. In a circular join, three or more tables
are linked together and the final linking returns to the first table in the operation
list. In an outer join records are included even if they do not have related records in
the joined table. An example of this from the MSI help is as follows:

WHERE Table1.Field1=Table2.Field1 AND Table2.Field2=Table3.Field1
AND Table3.Field2=Table1.Field2

Since this WHERE clause refers back to table 1 in a circular fashion this is called
a circular join. An outer join is not possible because the Windows Installer does not

Chapter 11: Creating and Using Custom Actions 429

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 429

support the special syntax required. A valid inner join would be the above WHERE
clause with just the first two operations, as follows:

WHERE Table1.Field1=Table2.Field1 AND Table2.Field2=Table3.Field1

THE ORDER BY CLAUSE You can use this clause to order the results obtained from
a SELECT statement. The basic format for this clause is as follows:

GROUP BY <column-list>

The column list is a comma-delimited list of column names. This clause is the
means by which you can sort the result set obtained by a SELECT statement. Using
this clause will cause a slight delay because of the sorting that is necessary.

Accessing the current Installer session
In Chapter 10 you saw that there are two major categories of custom actions, imme-
diate and deferred. Only DLL and script-based immediate custom actions have
access to the current installer session. If you want to make temporary changes to
the MSI database during the installation, you need to use a DLL, VBScript, or
JScript immediate custom action. It is not possible to use an executable based cus-
tom action to access the current Windows Installer session, because this type of
custom action runs in its own process and there isn’t a way to pass an install ses-
sion handle to it.

A DLL custom action is passed a handle to the current installer session. This han-
dle is then used in a number of the Windows Installer functions to work with the
MSI database during the installation. The format for a DLL custom action function
is as follows:

UINT __stdcall <exported-function-name>(MSIHANDLE <variable-name>)

The name of the function that will be called when the custom action is executed
can be whatever you want it to be, as can be the variable name that receives the
session handle. The remainder of the format for this exported function has to be as
shown in the previous code example. For example, to declare a function MyAction
where the install session handle is called hInstall, you would use

UINT __stdcall MyAction(MSIHANDLE hInstall)
{
//my code here...
}

When you’re using an immediate custom action written in VBScript or Jscript, you
access the current Installer session using the Session object. When you’re using a
deferred custom action, you still get a session handle— it’s just a much more limited
session and you only have access to what has been written into the execution script.

430 Part III: Extending the Windows Installer Functionality

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 430

The Windows Installer attaches this object to the script with the name of Session.
This object has a number of methods and properties that enable the manipulation
of the active database during an installation. Figure 11-1 shows the Windows
Installer object model. Note that the two Installer object methods that can be used
to create a Session object cannot be used in a custom action. This is because there
can only be one Session object in any particular process and during an installation
the Windows Installer automatically creates a Session object, so any attempt to cre-
ate another one will cause an error.

Figure 11-1: The Windows Installer object model

Installer Object
CreateObject("WindowsInstaller.Installer")

SummaryInfo Object
Installer.SummaryInformation

Record Object
Installer.CreateRecord

Database Object
Installer.OpenDatabase

FeatureInfo Object
Session.FeatureInfo

Database Object
Session.Database

SummaryInfo Object
Database.SummaryInformation

UIPreview Object
Database.EnableUIPreview

View Object
Database.OpenView

Record Object
View.Fetch

View.ColumnInfo

Session Object
Installer.OpenProduct
Installer.OpenPackage

StringList Collection Object
Installer.ComponentQualifiers

Installer.Components
Installer.Features
Installer.Products

Chapter 11: Creating and Using Custom Actions 431

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 431

When you need to use a deferred custom action, you cannot access the current
installer session. This is because a deferred custom action is written into the execu-
tion script created by the Windows Installer; during the execution of this script the
installation may be temporarily suspended. When the installation is resumed, the
Windows Installer session that was created when the installation was initially
invoked will no longer be available. This temporary suspension might happen, for
example, when the system needs to be rebooted during the installation.

Because of this, a deferred custom action only has access to information written
into the execution script. This is a complex subject and it is covered in the Deferred
Custom Actions section later in this chapter. If a deferred custom action does not
need to obtain information from the database and only implements changes to the
target system, there is no additional effort required.

It is not possible to access an installer session from a custom action that is

not the current installer session. Custom actions can only work with the

active database of the current session and cannot access another MSI data-

base. Because of this there are a number of Windows Installer database func-

tions that you cannot use within a custom action since they require a handle

to a database that is not the database of the current session. The Windows

Installer help provides a list of these particular functions.

Working with the MSI database at install time
Unless you’re working with the Property table, working with the active database
during an installation session requires the creation of a view. The Property table has
a set of special access functions you can use for access that do not require the cre-
ation of a view. When accessing the active database, you need to follow these steps:

1. Obtain a handle to the active database using the MsiGetActiveDatabase
function. This function requires the handle to the current installer session.
It returns the handle to the active database.

2. Create a view object using the MsiDatabaseOpenView function. It takes
the handle to the active database, an SQL query that defines the result set
required, and a pointer to the view handle that is to be returned.

3. Once a handle to a view object is available, execute the view object using
the MsiViewExecute function in order to obtain the result set. If markers
were used in the SQL query, this where they are given actual values through
the passing of a record containing the replacement values for the markers
used. An example of this is shown later in this section.

Tip

432 Part III: Extending the Windows Installer Functionality

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 432

4. Having executed the view you can fetch each record in turn and manipu-
late it however you want. To fetch a record you use the MsiViewFetch
function, which takes the handle to the view, and a pointer to a record in
which the fetched information will be returned.

5. Access the fetched records with the functions provided for the purpose
of working with each field in a record. These functions are of the form
MsiRecordGet* and MsiRecordSet* where the asterisk can be, with one
exception, String, Integer, or Stream. The one exception is that the func-
tion that would be called MsiRecordGetStream is instead called
MsiRecordReadStream.

6. If any particular record is to be added to the table, call the function
MsiViewModify, passing it the new record that is to be added. You must
use the modify mode MSIMODIFY_INSERT_TEMPORARY because the MSI
database during an installation session is read-only and you can add only
temporary records to tables. You cannot modify records that have been
authored into the database when the MSI package was created.

7. If you are going to execute another view and you have not fetched all the
records in the current view, you must close the current view using the
MsiViewClose function. To follow good programming practices, always
close your views — regardless of whether you need to execute another view.

If the only thing you want to do is add records to an empty table, then you can
skip steps 3 and 4. All you need to do in that case is get the handle to the active
database, open a view, create the record that is to be added, and then use the
MsiViewModify function to add the new record to the table. This record will be
temporary, meaning that it will not be persisted in the database when it is closed.

Before you leave this section you need to take a look at an example of how to
use markers in your SQL queries. The following skeleton code that might be found
in a DLL custom action provides a good description of the use of markers in an SQL
query. This example code shows how to extract from the RadioButton table the
entries associated with an array of property names. For a complete description of
the columns in this table, see the MSI help.

int i;
MSIHANDLE hDatabase, hView, hRecord, hRec=0;
TCHAR* szPropertyNames[] = {TEXT(“RBProp1”), TEXT(“RBProp2”),

TEXT(“RBProp3”)};

// Use a marker (?) in place of the property name in the
// following SQL statment
const TCHAR* sqlRadioButton = TEXT(“SELECT `Order`, `X`, `Y`,
`Width`, `Height`, `Text` FROM `RadioButton` WHERE `Property`=?”);

// With this function call you get a handle to the database

Chapter 11: Creating and Using Custom Actions 433

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 433

// being used by the current installation
hDatabase = MsiGetActiveDatabase(hInstall);

// Once you get a handle to the running database you
// create a view object based on the SQL query
MsiDatabaseOpenView(hDatabase, sqlRadioButton, &hView);

// You need to create a record that will be used to
// replace the marker in the SQL query with an actual value.
// This record only needs one column since you are using only
// one marker in our SQL query
hRecord = MsiCreateRecord(1);

// You now need to loop through the array of property names
// that will be used to replace the marker in the SQL query
for(i=0; i<3; i++)
{

// Now set the value of the record to each
// property name in order
MsiRecordSetString(hRecord, 1, szPropertyNames[i]);

// You need to execute the view in order to supply
// the missing property names before you can get
// a valid result set from the SQL query
MsiViewExecute(hView, hRecord);

// For the view that has been executed you need to loop
// through each record in the result set and do
// something with it
while(ERROR_NO_MORE_ITEMS != MsiViewFetch(hView, &hRec)
{

// Do something with the fetched records
} // end while loop

} // end for loop

The previous code shows that you need to execute a new view for every change
in the value of the marker. Note that the marker is changed for each of the property
names that you want to use in getting a different result set from the RadioButton
table. Since radio buttons are joined together into a radio button group by a com-
mon property name, there will be more than one row in the RadioButton table that
uses the same property name. To loop through any particular result set you can use
the MsiViewFetch function until it returns a value that says that it can find no more
items in the result set. Because you have fetched all the records in the view you do
not have to close the view to generate another one. However, if you want to follow
good programming practices then you should always explicitly close any views
that you create.

434 Part III: Extending the Windows Installer Functionality

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 434

An alternate way to look at actions in the
sequence tables
In Chapter 8 you saw how with the use of the sequence tables you can exert control
on the installation procedure. We discussed the fact that the Windows Installer exe-
cutes the actions listed in the sequence tables in the order of their sequence numbers,
starting with the action that has the lowest positive sequence number and ending
with the action that has the highest sequence number. It is instructive to look at this
process a little more closely and see what is really going on behind the scenes.

The Windows Installer uses many of the API functions that you use to create our
custom actions. This is definitely the case when the Windows Installer executes the
actions placed in the sequence tables. The following pseudo-code shows how the
Windows Installer actually runs an installation.

// First, a SQL query is created that
// will select all the rows in the sequence table. Ignore
// for this example the fact that there are possibly negative
// sequence numbers that identify actions that are only
// executed under certain circumstances.
sqlQuery = SELECT `Action`, `Condition` FROM

`InstallExecuteSequence` ORDER BY `Sequence`

// Using the above query a view object is created.
MsiDatabaseOpenView(hDatabase, sqlQuery, &hView)

// The view is executed passing a null record since no markers
// are used in the SQL query.
MsiViewExecute(hView, 0)

// In a while loop all the records in the view are fetched one
// at a time and the condition on the action is evaluated.
while(ERROR_NO_MORE_ITEMS != MsiViewFetch(hView, &hRecord)
{

// Retrieve the condition string from the record. It is
// the second field.
MsiRecordGetString(hRecord, 2, szCond, 255)

// Evaluate the condition to see if is TRUE or if no condition
// was entered in the sequence table for the action.
// If the condition is NULL or if it evaluates to TRUE
// execute the action.
// an optimization here to only call EvaluateCondition once

result = MsiEvaluateCondition(hInstall, szCond);
if(MSICONDITION_TRUE == result ||

MSICONDITION_NONE == result)

Chapter 11: Creating and Using Custom Actions 435

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 435

{
// Retrieve the name of the action from the fetched record.
// The name of the action is the first field in the record.
MsiRecordGetString(hRecord, 1, szAction, 72)

// Execute the action.
MsiDoAction(hInstall, szAction)

}

// If the condition has a bad syntax or the session handle
// is not valid terminate the installation.
else if(MSICONDITION_ERROR == result)
{

return ERROR_INSTALL_FAILURE
}

}

The preceding example code demonstrates that using the sequence tables is actu-
ally an indirect way of calling the MsiDoAction function. The name of the action
passed to this function can be the name of a standard action, a custom action, or the
name of a dialog. If the name of the action is a deferred custom action, the
MsiDoAction function writes the custom action into the execution script. I’ll go into
more detail about this functionality in the section “Deferred Custom Actions” later in
this chapter.

Introduction to the ISWI Custom
Action Wizard
When you create custom actions, you will probably use the Custom Action Wizard.
You can access this wizard from the Actions/Scripts view by right-clicking the
Custom Actions icon and selecting the Custom Actions Wizard option from the
context menu. For some types of custom actions you can use the New option from
this context menu, but this requires you to know exactly how the CustomAction
table needs to be authored. The first dialog that comes up when you launch the
Custom Action Wizard is the Welcome dialog shown in Figure 11-2.

When you click the Next button, you get the Basic Information dialog where you
provide a name for the custom action and an optional comment that will help you
remember its purpose. The name you enter here will be used to identify the custom
action in the Action field of the CustomAction table when the MSI package is built.
The Basic Information dialog is shown in Figure 11-3.

436 Part III: Extending the Windows Installer Functionality

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 436

Figure 11-2: The Welcome dialog of the Custom Action Wizard

Figure 11-3: The Basic Information dialog of the Custom Action Wizard

The next dialog in the wizard is the Action Type dialog. In this dialog you select
the basic type of custom action you are going to create. This dialog is shown in
Figure 11-4.

Chapter 11: Creating and Using Custom Actions 437

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 437

Figure 11-4: The Action Type dialog of the Custom Action Wizard

For example, if you define a type of custom action as being a Windows Installer
DLL to be stored in the Binary table then it is a basic type 1 custom action. If you
define a DLL custom action to be installed with the product, then it is a basic type
17 custom action. Selections made in later dialogs of the wizard can modify the
basic type identified in this dialog. Depending on the type of custom action you
choose in the Type combo box a different set of selections is available in the
Location combo box. For certain types of custom actions there are no choices in the
Location combo box. Table 11-8 describes the possible custom action types along
with the available location choices.

TABLE 11-8 SUMMARY OF THE BASIC CUSTOM ACTION TYPES AVAILABLE WITH
THE ISWI CUSTOM ACTION WIZARD

Type Location Description

Launch an executable Stored in the Binary table The only type of custom action
Installed with the product that can exist on the system prior
Stored in the Property table to the start of the installation.
Stored in the Directory table When the executable, such as

Notepad.exe is already on the
system, the location of this file
is then specified in either the
Property table or the Directory
table.

438 Part III: Extending the Windows Installer Functionality

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 438

Type Location Description

Call a function in a Stored in the Binary table A special type of custom action
standard dynamic Installed with the product implemented by ISWI to allow the
link library Destination machine calling of a DLL function in any

search path DLL. Behind the scenes is a
Windows Installer DLL stored in
the Binary table that reads from
an initialization file all the
information required to actually
call the standard DLL function.
This type of custom action is
covered in the section “Calling
functions in a standard link
library” later in this chapter.

Call a function in a Stored in the Binary table Calls a function in a DLL that is
Windows Installer Installed with the product either stored in the Binary table
dynamic-link library or installed with the product. The

format of the function has to
conform to the description given
in the section “Accessing the
current Installer session” earlier
in this chapter.

Run VBScript code Stored in the Binary table Implemented in a .vbs file when
Installed with the product stored in the Binary table or
Stored in the Property table installed with the product. When
Stored directly in the custom the script code is stored in the
action Property table or in the

CustomAction table, the script
code is written into either the
Value column of the Property
table or the Source field of the
CustomAction table.

Run JScript code Stored in the Binary table Implemented as a .js file when
Installed with the product stored in the Binary table or
Stored in the Property table installed with the product. When
Stored directly in the custom stored in the Property table or in
action the CustomAction table, the script

code is written into either the
Value column of the Property
table or the Source field of the
CustomAction table.

Continued

Chapter 11: Creating and Using Custom Actions 439

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 439

TABLE 11-8 SUMMARY OF THE BASIC CUSTOM ACTION TYPES AVAILABLE WITH
THE ISWI CUSTOM ACTION WIZARD (Continued)

Type Location Description

Run InstallScript code No options available No location option since an
InstallScript custom action is
implemented behind the scenes as
a DLL stored in the Binary table.
This functionality is described in
Appendix A. Using InstallScript to
create custom actions is the
subject of Chapters 12–16.

Set a property No options available No location options to be set
since this type of custom action is
totally contained within the fields
of the CustomAction table.

Set a directory No options available No location options to be set
since this type of custom action is
totally contained within the fields
of the CustomAction table.

Launch another .msi Included within your main A nested installation custom
package setup action is provided by the Windows

Stored on the source media Installer that you can have child
An application that is installations to the main
advertised or already installation. A nested installation
installed that is included in the main setup

is incorporated as a sub-storage
in the MSI package. When it is
stored on the source media the
nested installation package is
external to the main MSI package
but is in a location that is relative
to the main package. When the
nested install custom action is for
a product that is either advertised
or installed, all you have is the
ProductCode for that product.

440 Part III: Extending the Windows Installer Functionality

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 440

Once you have selected the basic type of custom action we want to create you
move on to the next dialog in the wizard. With a few exceptions the next dialog
asks you to provide the entries to be used in the Source and Target fields of the
CustomAction table. Figure 11-5 shows the next wizard dialog, the Action
Parameters dialog.

For each type of basic Windows Installer custom action the Custom Action
Wizard can create the entries required in the Source and Target fields of the
CustomAction table are different. Table 11-9 describes the entries required based on
the type of custom action being created.

Figure 11-5: The Action Parameters dialog of the Custom Action Wizard

TABLE 11-9 SUMMARY OF THE ACTION PARAMETERS REQUIRED FOR EACH
CUSTOM ACTION TYPE

Type Source Target

Launch an executable Contains a key to the Binary If the executable is to be run
stored in the Binary table that identifies the row with a particular command
table from which the executable line option, this command line

will be streamed out into a is entered in this field. For
temporary file. example, you could use it to

identify a text file that is to be
displayed by the executable.

Continued

Chapter 11: Creating and Using Custom Actions 441

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 441

TABLE 11-9 SUMMARY OF THE ACTION PARAMETERS REQUIRED FOR EACH
CUSTOM ACTION TYPE (Continued)

Type Source Target

Launch an executable Contains a key to the File table If the executable is to be run
installed with the that identifies the component with a particular command
product with which the file is associated. line option, this command line

The install location for the is entered in this field. For
component provides the location example, you could use it to
of the executable file on the identify a text file to be
system. This type of custom displayed by the executable.
action would most likely be run
as a deferred category custom
action since the InstallFiles
action must run before this type
of custom action can be executed.

Launch an executable Contains the name of a property. If the executable is to be run
with a fully qualified The value of this property with a particular command
path identified by a includes the complete path, line option, this command line
property including the name of the is entered in this field. For

executable. By definition this example, you could use it to
type of custom action is for identify a text file to be
an executable already on the displayed by the executable.
target system.

Launch an executable Contains a key to the Directory Contains the name of the
located by an entry in table. The entry in the Directory executable to be launched; it
the Directory table table provides the location to can also include a command-

the executable but does not line string with which the
provide its name. By definition executable will be run. For
this type of custom action is for example, you could use it to
an executable already on the identify a text file to be
target system. displayed by the executable.

Call a function in a Contains a key to the Binary Contains the name of the
Windows Installer table that identifies the row exported function that will be
dynamic-link library from which the DLL will be called by the Windows
stored in the Binary streamed out into a temporary Installer to implement the
table file. custom action.

442 Part III: Extending the Windows Installer Functionality

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 442

Type Source Target

Call a function in a Contains a key to the File table Contains the name of the
Windows Installer that identifies the component exported function that will be
dynamic-link library with which the DLL is called by the Windows
installed with the associated. The install location Installer to implement the
product for the component provides the custom action.

location of the DLL file on the
system. This type of custom
action would most likely be run
as a deferred category custom
action since the InstallFiles
action must be run before this
type of custom action can be
executed.

Run VBScript code in Contains a key to the Binary Contains the name of a
a .vbs file stored in table that identifies the row script function that can be
the Binary table from which the .vbs file will called. this function is also

be streamed out into a implemented inside the .vbs
temporary file. file but it need not be called

from within this file. If the .vbs
file contains only a function,
this column must contain the
name of the function.

Run VBScript code in Contains a key to the File table Contains the name of a
a .vbs file installed that identifies the component script function that can be
with the product with which the .vbs file is called. This function is also

associated. The install location implemented inside the .vbs
for the component provides file but it need not be called
the location of the .vbs file on from within this file. If the .vbs
the system. This type of file contains only a function,
custom action would most this column must contain the
likely be run as a deferred name of the function.
category custom action since
the InstallFiles action must be
run before this type of custom
action can be executed.

Continued

Chapter 11: Creating and Using Custom Actions 443

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 443

TABLE 11-9 SUMMARY OF THE ACTION PARAMETERS REQUIRED FOR EACH
CUSTOM ACTION TYPE (Continued)

Type Source Target

Run VBScript code in Contains the name of a property Contains the name of a
a .vbs file already on in the Property table. The value script function that can be
the system and located of this property includes the called. This function is also
by an entry in the complete path, including the implemented inside the .vbs
Property table name of the executable. By file but need not be called

definition this type of custom from within this file. If the .vbs
action is for a .vbs file that is file contains only a function,
already on the target system, this column must contain the
an unlikely scenario. name of the function.

Run VBScript code There is no entry in this field The VBScript text that
stored in the for this type of custom action. comprises this custom action
CustomAction table is contained in this field of the

CustomAction table.

Run JScript code in a Contains a key to the Binary Contains the name of a
.js file stored in the table that identifies the row script function that can be
Binary table from which the .js file will called. This function is also

be streamed out into a implemented inside the .js file
temporary file. but need not be called from

within this file. If the .js file
contains only a function, this
column must contain the
name of the function.

Run JScript code in Contains a key to the File table Contains the name of a
a .js file installed that identifies the component script function that can be
with the product with which the .js file is called. This function is also

associated. The install location implemented inside the .js file
for the component provides the but need not be called from
location of the .js file on the within this file. If the .js file
system. This type of custom contains only a function, this
action would most likely be column must contain the
run as a deferred category name of the function.
custom action since the
InstallFiles action must be
run before this type of custom
action can be executed.

444 Part III: Extending the Windows Installer Functionality

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 444

Type Source Target

Run JScript code in Contains the name of a property Contains the name of a
a .js file already on in the Property table. The value script function that can be
the system and of this property includes the called. This function is also
located by an entry complete path, including the implemented inside the .js file
in the Property table name of the executable. By but need not be called from

definition this type of custom within this file. If the .js file
action is for a .js file already contains only a function, this
on the target system, an column must contain the
unlikely scenario. name of the function.

Run JScript code There is no entry in this field The VBScript text that
stored in the for this type of custom action. comprises this custom action
CustomAction table is contained in this field of the

CustomAction table.

Set a property A property the value of which Contains a formatted text
will be set be set by the string that will be used to set
formatted text string provided the value of the property
in the Target field. named in the Source field. The

formatting of this string must
follow the rules used by the
MsiFormatRecord API function.

Set a directory A key into the Directory Contains a formatted text
table that will be set by the string that will be used to set
formatted text string provided the value of the property
in the Target field. named in the Source field. The

formatting of this string must
follow the rules used by the
MsiFormatRecord API function.

Launch another .msi Contains the name of the sub- Contains a string that
package contained storage inside the MSI package identifies the public properties
as a sub-storage in that contains the MSI package, and their values that are to be
the main installation which implements the nested used on the command line
package installation custom action. when the nested installation is

executed.

Continued

Chapter 11: Creating and Using Custom Actions 445

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 445

TABLE 11-9 SUMMARY OF THE ACTION PARAMETERS REQUIRED FOR EACH
CUSTOM ACTION TYPE (Continued)

Type Source Target

Launch another .msi Contains the path on the source Contains a string that
package that has media where the MSI package, identifies the public properties
the install package which implements the nested and their values that are to be
located on the installation custom action, can used on the command line
source media be found. This path must be when the nested installation

relative to the location of the is executed.
MSI package that contains the
main installation.

Launch another Contains the ProductCode Contains a string that
.msi package for an property value for the product identifies the public properties
application that is that is the target of the nested and their values that are to be
advertised or already installation custom action. used on the command line
installed when the nested installation

is executed.

Table 11-9 did not mention the special type of custom action implemented by
ISWI where a function in any DLL can be called. This is because this particular type
of custom action is covered separately in the section “Calling functions in a stan-
dard dynamic link library” later in this chapter. As Table 11-8 showed, this type of
custom action is a special implementation of a Windows Installer DLL custom
action that is stored in the Binary table. I also did not cover the InstallScript type of
custom action since this type is the subject of Chapters 12 through 16.

After entering the necessary action parameters for the custom action you are
creating you move on to the Additional Options dialog by clicking the Next button.
This dialog is shown in Figure 11-6.

This is the final dialog of the wizard where you can enter information to define
your custom action. It is in this dialog that the basic type is modified according to
the return processing, in-script processing, and execution scheduling options that
you choose. The return processing options enable you to define whether the custom
action will run synchronously or asynchronously. It also enables you to tell the
Windows Installer to ignore the return code from the custom action. The In-Script
Execution and Execution Scheduling options are described in detail in Chapter 10.

446 Part III: Extending the Windows Installer Functionality

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 446

Figure 11-6: The Additional Options dialog of the Custom Action Wizard

After you make your selections in the Additional Options dialog and click the
Next button you get the Summary dialog, shown in Figure 11-7.

Figure 11-7: The Summary dialog of the Custom Action Wizard

When you click the Finish button on this dialog, the custom action is created in
the ISWI project file and the entries that are going to be made in the CustomAction
table are shown in the Actions/Scripts view when you click on the name of the cus-
tom action. Figure 11-8 shows the CustomAction table entries.

Chapter 11: Creating and Using Custom Actions 447

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 447

Figure 11-8: The CustomAction table entries for the Set_Default_Target custom action

The custom action you created in the preceding example was a Type 1. This is a
DLL custom action where the DLL is stored in the Binary table. The Source property
row shows the foreign key into the Binary table, New_Binary1. This key is created by
ISWI and it will identify the entry in the Binary table from which this DLL will be
temporarily streamed out. The Target property row shows the name of the exported
function from this DLL that will be called by the Windows Installer to implement the
custom action. The Comments property row in Figure 11-8 shows the comments you
entered when you first started to create the custom action. The entry in this row is
only stored in the project file and is not used in the MSI database.

The only type of custom action that cannot be created by the ISWI Custom

Action Wizard is the Error custom action (Type 19).You must create this type

of custom action directly in the IDE by selecting the New option from the

context menu where you launched the Custom Action Wizard. We will look

at an example of this type of custom action in the “Miscellaneous Custom

Actions” section later in this chapter.

Working with Properties
Windows Installer provides two special functions to work with properties in an
install session. In the next section we take a close look at these two functions. You
need to keep in mind that the function of properties in the Windows Installer envi-
ronment is to act as global variables to the installation.

The MsiGetProperty and MsiSetProperty APIs
Two primary database functions are provided by the Windows Installer for work–
ing with the Property table. These functions are MsiGetProperty() and MsiSet
Property().These two functions are prototyped in the header file msiquery.h, which is
in the Include subfolder of the Windows Installer SDK installation location.

Tip

448 Part III: Extending the Windows Installer Functionality

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 448

The MsiGetProperty() function retrieves the value of an installer property. It has
the following format:

UINT MsiGetProperty(
MSIHANDLE hInstall, // handle to installer session
LPCTSTR szName, // case-sensitive property name
LPTSTR szValueBuf, // buffer for returned property value
DWORD pchValueBuf // in/out buffer character count
);

When you use this API to obtain the value of a property, you need to tell the
function the number of characters in the property value, including the null termi-
nator. The best way to set the size of the buffer passed to this function is to first
pass an empty string in order to get back the actual size of the number of charac-
ters that make up the property value. Then call the function again with the buffer
sized to just accommodate the property value, making sure to increment this size in
order to accommodate the null terminator. If a property is not defined, you will get
an empty string returned as the value of the buffer and a buffer size of 0. The fol-
lowing is typical C++ code that would retrieve the value of a property:

LPCTSTR szPropName = TEXT(“ADDLOCAL”);
LPTSTR szPropValue = 0;
DWORD dwBufSize = 0;

::MsiGetProperty(hInstall, szPropName, TEXT(“”), &dwBufSize);
szPropValue = new TCHAR[++dwBufSize];

if(ERROR_SUCCESS != ::MsiGetProperty(hInstall, szPropName,
szPropValue, &dwBufSize))

{
if(szPropValue)

delete [] szPropValue;
return ERROR_INSTALL_FAILURE;

}

The MsiSetProperty() function sets the value of an installer property. It has the
following format:

UINT MsiSetProperty(
MSIHANDLE hInstall, // handle to installer session
LPCTSTR szName, // case-sensitive property name
LPCTSTR szValue // property value to set
);

You can use this function to remove a property as well as to set the value of a
property. To remove a property all you need to do is set the value of the existing
property to an empty string. This will remove the property from the Property table.

Chapter 11: Creating and Using Custom Actions 449

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 449

Two additional functions retrieve information from the Property table. These are
the MsiGetMode and MsiGetLanguage APIs. The MsiGetMode function determines
whether the installer is running in a specified mode. This function returns a
Boolean value of TRUE or FALSE depending on whether the specified mode passed
into the function is currently set or not. The Windows Installer help defines those
properties that can be passed to this function. The MsiGetLanguage function
returns the value of the ProductLanguage property.

An example custom action using the Property table
A good example of using a DLL custom action to manipulate properties in the
Property table is one that shows how you can change the selection of features pro-
grammatically. For this example you need a simple setup project with four features,
each feature containing several components. You can find this project and the
source code for this custom action on the CD-ROM at the back of the book.

The project you are going to work with here is called Features. It has four fea-
tures, each with three components. The fourth feature is hidden and its install level
property has been set to 101 so that it will not be installed. In this scenario you
want the fourth feature to be installed only if the end user deselects the third fea-
ture, and you can arrange this with a simple DLL custom action that manipulates
the ADDLOCAL property. You are going to search the value of the ADDLOCAL
property to see if contains the string Feature3. If it does, then you do not have to do
anything, but if it does not then you need to concatenate the string ,Feature4 to the
value of the ADDLOCAL property. This way you will force the installation of the
fourth feature if the user has deselected the third feature.

The source code for this custom action is as follows:

/*---+
|
| File Name: Features.cpp
|
| Description: Custom action to control the feature set of an
| installation
| Author: Bob Baker
|
+---*/

#include “stdafx.h”

BOOL APIENTRY DllMain(HANDLE hModule, DWORD ul_reason_for_call,
LPVOID lpReserved)

{
return TRUE;

}

450 Part III: Extending the Windows Installer Functionality

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 450

//
// This custom action will force the installation of Feature4
// if Feature3 is deselected
//
UINT __stdcall SetFeatureFour(MSIHANDLE hInstall)
{

LPCTSTR LocalFeatureProp = “ADDLOCAL”;
TCHAR* szFeatureThree = TEXT(“Feature3”);
TCHAR* szFeatureFour = TEXT(“,Feature4”);
TCHAR* szFeatureBuf;
DWORD ncharCount = 0;
UINT uiReturn;

// Get the list of features to be installed
// First send an empty string in order to get the
// correct size of the buffer needed to hold the property value
uiReturn = MsiGetProperty(hInstall, LocalFeatureProp, TEXT(“”),

&ncharCount);

switch(uiReturn)
{
case ERROR_INVALID_HANDLE:
case ERROR_INVALID_PARAMETER:

// don’t call message boxes from within your CA, use
MsiProcessMessage() instead. Message boxes break no UI installs,
don’t encourage folks to do it. ProcessMessage also works with the
logging system, and external UI, so it is a way better way to go.

MessageBox(NULL,
“An error occurred when getting the buffer size”,

“Error”, MB_OK);
return ERROR_INSTALL_FAILURE;

}

// Increment the character count to account
//for the null terminator
++ncharCount;

// Allocate memory for the property value return buffer
szFeatureBuf = (LPTSTR) malloc(ncharCount);
uiReturn = MsiGetProperty(hInstall, LocalFeatureProp,

szFeatureBuf, &ncharCount);

switch(uiReturn)

Chapter 11: Creating and Using Custom Actions 451

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 451

{
case ERROR_INVALID_HANDLE:
case ERROR_INVALID_PARAMETER:

MessageBox(NULL,
“An error occurred when getting the buffer size”,

“Error”, MB_OK);
return ERROR_INSTALL_FAILURE;

}

// If Feature3 is not being installed install Feature4
// by adding the , Feature4
// string to the ADDLOCAL property
if(!strstr(szFeatureBuf, szFeatureThree))
{

strcat(szFeatureBuf, szFeatureFour);

uiReturn = MsiSetProperty(hInstall, “ADDLOCAL”,
szFeatureBuf);

switch(uiReturn)
{
case ERROR_INVALID_HANDLE:
case ERROR_INVALID_PARAMETER:
case ERROR_FUNCTION_FAILED:

MessageBox(NULL,
“An error occurred when getting the buffer size”,

“Error”, MB_OK);
return ERROR_INSTALL_FAILURE;

}

}

return ERROR_SUCCESS;
}

You need to add this custom action to the InstallExecuteSequence table as an
immediate category type of custom action. You can place it right after the
LaunchConditons action in this sequence and create a condition in the Condition
column so that it will only run on installation and not on uninstallation. The con-
dition you place on this custom action is Not Installed. You cannot place this cus-
tom action in the user-interface sequence because the ADDLOCAL property is not
created until the ExecuteAction action runs. The entries you need to make in the
Custom Action Wizard to create this custom action are shown in Table 11-10.

452 Part III: Extending the Windows Installer Functionality

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 452

TABLE 11-10 CREATING THE SET_FEATURE_SELECTION CUSTOM ACTION

Wizard Dialog Selections

Basic Information Name: Set_Feature_Selection

Comments: Add Feature4 if Feature3 not selected

Action Type Type: Call a function in a Windows Installer dynamic-link library

Location: Stored in the Binary table

Action Parameters Source: <Sources>\Features.dll

Target: SetFeatureFour

Additional Options Return Processing: The “Wait for the action to finish executing”
option is checked and the “Ignore custom action return code”
option is unchecked

In-Script Execution: Immediate execution

Execution Scheduling: Always execute

To insert this custom action into the execution sequence go to the Sequences
view and expand the sequence of actions under the Execute icon. Highlight the
LaunchConditions action, right click and then select the Insert... option on the con-
text menu. This will give you a dialog box where you can choose to insert custom
actions from the combo box at the top of the dialog. There should only be one cus-
tom action to select but before you close this dialog you should enter the condition
in the edit field below the list of custom actions. When you close the dialog by
clicking the OK button, the custom action is inserted into the sequence and this
custom action is given a sequence number halfway between the sequence number
for the LaunchConditons action and the FindRelatedProducts action.

To build the Features project on the CD-ROM you will probably need to modify
the path variable used to locate the files and the custom action during the build. In
a real-world scenario you would have to concern yourself with the all the public
properties that control what gets installed where. These public properties are
ADDLOCAL, REMOVE, ADDSOURCE, ADDDEFAULT, REINSTALL, ADVERTISE,
COMPADDLOCAL, COMPADDSOURCE, FILEADDLOCAL, FILEADDSOURCE, and
FILEADDDEFAULT. The MSI help provides a detailed description of these properties
and explains the order in which they are evaluated.

Chapter 11: Creating and Using Custom Actions 453

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 453

The preceding method for controlling the feature set to be installed requires

that the features not be disabled. In other words, if you had set the install

level of Feature4 to 0 then it would still not have been installed even after

you added it to the ADDLOCAL property value.

Creating and Using Custom Tables
There will be many times when you want to create custom tables to be used by cus-
tom actions that you develop. Even though these custom actions could be created
in memory at install time you will probably want to create these tables and enter
data into them at build time. The custom actions you call at run time will use the
data in these custom tables to perform their intended function.

ISWI version 1.5 cannot create custom tables and therefore to create a custom
table that will be persisted in the database you need to perform post processing on
the MSI package after it is built using ISWI. You can add a custom table to a
Windows Installer database in two ways. You can create a text archive file and then
import this text archive file using the Orca utility that comes with the Windows
Installer SDK. This is more work than the second option, which is to use a VBScript
file created to perform this particular function. The name of this script file is
WiRunSQL.vbs and you can find it in the Samples\Scripts folder under the location
where the Windows Installer is installed. This operation requires that the Windows
Scripting Host (WSH) be installed and it must use the console executable that comes
with the WSH. The format of the command line for using this script file is as follows:

cscript wirunsql.vbs “<path-to-msi-database >” “<sql-statement>”

Once you have added the table to a copy of the original MSI database you can
use Orca to enter the data into this table. Since you do not want to have to repeat
this whole operation every time you build a new package using ISWI, you need to
use the ISWI Transform Wizard to create a transform between the original package
and the package that has the new table or tables. Now every time you build a new
package you can then use the Transform Wizard to apply the transform to the new
package. This will add the new table or tables and associated data to the newly cre-
ated database. If some of the data must be modified, we can open up the trans-
formed database with Orca and make the changes.

Caution

454 Part III: Extending the Windows Installer Functionality

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 454

Chapter 18 includes a complete discussion of transforms and how to create

and apply them.

For example, you might want to create a custom table in order to mimic the
standard actions that search for files and directories. The Windows Installer pro-
vides a standard action called AppSearch the purpose of which is to search for the
existence of files, folders, registry entries, and initialization file entries. The only
problem with this standard action is that it can only be placed in a sequence table
prior to the CostInitialize standard action. This sequence restriction is imposed by
ICE27, which is one of the Internal Consistency Evaluators used in validating a
package for the “Certified for Windows” logo. If you want to search for a file or
folder based on the value of the INSTALLDIR property, you need to run your search
after the CostFinalize standard action. In this case you would need to create your
own search functionality.

Custom Actions and the User
Interface
There will be many times when you will want to create custom actions that work
with the user interface. You will want to have custom actions that are launched
when the user clicks a button. If you want to populate a control at run time, you
will need to create a custom action to do this. In the following two sections you will
create one custom action that will launch a Web site when a button is clicked and
another custom action that will dynamically populate a combo box control. Since
in the previous custom actions you used C++ you will now use VBScript for these
custom actions.

Using the DoAction control event
One of the things you might want to do is launch a custom action with a button is
click. To do this you use the DoAction control event. This control event takes as an
argument the name of the custom action to be launched. For this to work, this cus-
tom action has to be of the immediate category; it cannot be a deferred custom
action. For this custom action you will store the VBScript code directly in the
CustomAction table. Table 11-11 show the selections you need to make in the
Custom Action Wizard for this custom action.

XREF

Chapter 11: Creating and Using Custom Actions 455

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 455

TABLE 11-11 CREATING THE OPEN_WEB_PAGE CUSTOM ACTION

Wizard Dialog Selections

Basic Information Name: Open_Web_Page

Comments: Launches the InstallShield Web site

Action Type Type: Run VBScript code

Location: Stored directly in the custom action

Additional Options Return Processing: The “Wait for the action to finish executing”
option is unchecked and the “Ignore custom action return code”
option is checked; tell the Windows Installer to ignore the return
code because you are creating a VBScript custom action that
cannot return a code because no function is being invoked

In-Script Execution: Immediate execution

Execution Scheduling: Always execute

For this particular type of custom action the Custom Action Wizard does not pro-
vide you with a dialog in which to enter the Source and Target fields of the
CustomAction table; instead you get a dialog where you can enter the VBScript that
will go into the Target field of the CustomAction table. From Table 11-9 you can see
that for this type of custom action the Source field is empty. Figure 11-9 shows the
VBScript editor dialog and the VBScript text you need to enter for this custom action.

Figure 11-9: The In-Sequence Scripts dialog of the Custom Action Wizard

456 Part III: Extending the Windows Installer Functionality

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 456

The dialog shown in Figure 11-9 is only displayed when you are creating either a
VBScript or JScript custom action where the script code is to be stored in the Target
field of the CustomAction table. The code that has been entered for this custom action
is very simple, creating an Internet Explorer object and then using the navigate
method of this object to launch the Web site. Setting the visible property of this object
to True just ensures that when the Web site is launched you will be able to see it.

Now you need to attach this custom action to a button on a dialog. The best way
to do this is with the Finish button on the SetupCompleteSuccess dialog displayed
after a successful installation. Since you already have a project named Features that
you used earlier for running other custom actions you might as well continue to
use it for this example. To add this custom action to the project go to the User
Interface view and expand the tree under the SetupCompleteSuccess dialog. Click
on the Behavior icon: this displays all the controls so that you can assign control
events to them. You need to make sure that the Events tab is active at the bottom of
the screen.

Since you want to add this control event to the Finish button click on the con-
trol named OK. When you click in an empty row in the Event column, you get a
dropdown list of control events to choose from. The one you want is the DoAction
control event. In the Argument column for this control event you get a dropdown
list of all the custom actions you have created in the project. The one you want to
select is the Open_Web_Page custom action. Since you only want this custom
action to run during an installation, place the condition Not Installed on this con-
trol event. This will prevent the custom action from launching the InstallShield
Web site at the end of an uninstallation. Figure 11-10 shows the User Interface view
for the control event you just selected. You’ll notice that this new control event has
been moved to the top. You can do this by right-clicking on the control event and
selecting the Move Up option.

Figure 11-10: Creating the control event for launching the InstallShield Web site

Now that you have created a small custom action using VBScript you need to see
how to use this programming language to populate a control dynamically at run time.

Chapter 11: Creating and Using Custom Actions 457

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 457

Dynamically populating a combo box during
an install
In this example you are going to enumerate the mapped network drives on the tar-
get machine and then display this enumeration in a combo box control. To enu-
merate the network drives that are mapped to a particular machine you will use the
Network object of the Windows Scripting Host. The object model for the Windows
Scripting Host is shown in Figure 11-11.

Figure 11-11: The Windows Scripting Host object model

This example, of necessity, is comprised of the creation of a VBScript file and the
creation of a dialog box that contains a combo box control and a pushbutton. You
will place both the custom actions you create using the .vbs file and the dialog that
you create in the user interface sequence so that you can verify that what you have
done actually works. You do not need to insert this dialog into a wizard sequence
but can place it directly in the sequence table itself.

The first thing we need to do is to create the VBScript file that will implement
the functionality you want. The following VBScript code is what you want to cre-
ate in order to populate the ComboBox table at run time with the list of mapped
network drives.

WshShell Object
CreateObject("WScript.Shell")

WshShortcut Object
WshShell.CreateShortcut

WshEnvironment Object
WshShell.Environment

WshUrlShortcut Object
WshShell.CreateShortcut

WshSpecialFolders Collection Object
WshShell.SpecialFolders

WshNetwork Object
CreateObject("WScript.Network")

WshCollection Object
WshNetwork.EnumNetworkDrives
WshNetwork.PrinterConnections

458 Part III: Extending the Windows Installer Functionality

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 458

The code described in the next section can be found on the CD-ROM in a file

named ENUMNETDRIVES.VBS.The custom action that uses this file has been

created in the Features project that is on the CD-ROM as well.

CREATING THE VBSCRIPT FILE
The process followed by this script file is much the same as what I described in the
section “Working with the MSI database at install time” earlier in this chapter. Here
you are using the methods and properties made available through the Windows
Installer Automation interface. When you use the automation interface, the Session
object is provided to you by the Windows Installer. You do not have to create this
object. It comes to you with the name Session. You use the Session object and the
Database and the Installer properties to create a Database object and an Installer
object. Once you have these two objects you do not need to use the Session object
anymore.

‘ This VBScript is used to populate the ComboBox table with
‘ a list of the mapped network drives on the target machine
Function GetNetworkDrives()

‘ You need to create an installer object
‘ so that you can create a record object.
‘ The Session object is given to you by
‘ the Windows Installer so it does not have to be created.
Set objInstaller = Session.Installer

‘ Create an object for the currently running
‘ database using the Database property of the Session object.
Set objDB = Session.Database

‘ Create a view object for all the columns
‘ in the ComboBox table.
Set objView = objDB.OpenView(“SELECT * FROM `ComboBox` WHERE

`Property` = ‘NETWORKDRIVES’”)

‘ You need to execute the view so that you can
‘ iterate through it to find how many rows may
‘ have been authored into the database.
objView.Execute

j = GetStartingIndex(objView)

‘ Create a record object that you will use to
‘ enter data into the ComboBox table.

ON THE CD

Chapter 11: Creating and Using Custom Actions 459

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 459

Set objRec = objInstaller.CreateRecord(4)

‘ Create a Windows Scripting Host network object
‘ that you will use to enumerate all the network drives.
Set WshNetwork = CreateObject(“WScript.Network”)

‘ Create a collection of network drives
‘ that you will iterate in order to populate the
‘ ComboBox table.
Set objDrives = WshNetwork.EnumNetworkDrives

‘ Initialize an index that will be used to order
‘ the appearance of items in the combo box control.
‘ Now iterate through the collection of network drives
‘ and use this information to add records to the ComboBox table.
‘ The network drives collection comes in two parts. First is the
‘ mapped drive letter followed by the UNC path to the network
‘ server.
‘ This is why you need to step through the collection with
‘ a step value of 2.
For i = 0 to objDrives.Count - 1 Step 2

‘ Create a string that includes both the drive letter
‘ and the server path.
‘ This will be the text that is displayed in the
‘ combo box control.
strMapDrive = “Drive “ & objDrives.Item(i) & “ = “

& objDrives.Item(i+1)

‘ The first column of the ComboBox table is the name of the
‘ property that will identify all the records
‘ to be displayed.
objRec.StringData(1) = “NETWORKDRIVES”

‘ The second column of the ComboBox table is an index
‘ that orders how the records in the table
‘are to be displayed.
objRec.IntegerData(2) = j

‘ The third column of the ComboBox table is the
‘ value to which the property NETWORKDRIVES
‘ will be set when a selection is made
‘ from the list in the combo box control.
‘ For this example this is just the string
‘ equivalent of the order index.
objRec.StringData(3) = CStr(j)

460 Part III: Extending the Windows Installer Functionality

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 460

‘ The fourth column is the string that will be
‘ displayed in the combo box control.
objRec.StringData(4) = strMapDrive

‘ Using the Modify method of the view object
‘ you add a temporary record to the ComboBox table.
‘ This record will not be persisted in the table
‘ when the databse is closed.
objView.Modify 7, objRec

‘ Clear the data from the record so that you can
‘ use it again for the next row to be inserted.
objRec.ClearData

‘ Increment the index.
j = j + 1

Next

‘ Return success to the Windows Installer.
GetNetworkDrives = 1

End Function

‘ This function returns the value to be used
‘ for the starting index in the ComboBox table.
‘ It is necessary to have a function like this
‘ in case there are already records in this table
‘ associated with the NETWORKDRIVES property.
Function GetStartingIndex(view)

‘ The index will never be less than 1
j = 1

‘ You need to loop through the view to make sure
‘ that there are no existing records
‘ for your particular property.
‘ There is no way to get the number of records
‘ in a view except to loop through the view
‘ and increment a counter.
Do

Set rec = view.Fetch
j = j + 1

Loop Until rec Is Nothing

Chapter 11: Creating and Using Custom Actions 461

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 461

GetStartingIndex = j

End Function

Using the Database object you can create a view object using the following SQL
statement:

SELECT * FROM `ComboBox` WHERE `Property` = ‘NETWORKDRIVES’

Using this statement the OpenView method of the Database object creates a View
object that will include all the columns of the ComboBox table and those rows
where the Property column has the value of NETWORKDRIVES. Create this view
using the WHERE clause to make sure that any new rows that you add start with
the correct index in the Order column. You do not want to have two rows with the
same index number.

Use the CreateRecord method of the Installer object to create a Record object
with four columns. This is the record you will use to add the temporary rows to the
ComboBox table. Then create a Windows Scripting Host Network object using
the VBScript CreateObject function. Using the EnumNetworkDrives method of the
Network object, create a collection object that enumerates the mapped network dri-
ves on the target machine. Once you have the drives collection you can loop
through it and create the records you want to place into the ComboBox table. Do
this by setting the either the StringData or the IntegerData property of the Record
object to the appropriate value. These properties take as an argument the field num-
ber being set. The field numbers of a record are 1-based since field 0 is reserved for
Windows Installer–specific information.

Once the fields of the Record object have been populated, add the record to the
ComboBox table using the Modify method of the View object. Because you are
dealing with the run-time database you can only add temporary rows to a table and
these will not be persisted when the database is closed. Accordingly you need to use
the temporary action available with the Modify method, which has a value of 7.
Once you have added a row to the table, clear the data in the record and loop back
to pick up the information for the next record you want to add. It is interesting to
note that the drives collection has two parts, the drive letter and the UNC path to
the server. Each has a separate index number, which is why the For loop in the code
has a Step value of 2.

CREATING THE CUSTOM ACTION
Now that you have created the code that will implement the custom action you
need to create the custom action itself. You can do this using the Custom Action
Wizard, making the entries shown in Table 11-12.

462 Part III: Extending the Windows Installer Functionality

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 462

TABLE 11-12 CREATING THE ENUM_NETWORK_DRIVES CUSTOM ACTION

Wizard Dialog Selections

Basic Information Name: Enum_Network_Drives

Comments: Populates the ComboBox table with a list of the
network drives

Action Type Type: Run VBScript code

Location: Stored in the Binary table

Action Parameters Source: <Sources>\enumnetdrives.vbs

Target: GetNetworkDrives

Additional Options Return Processing: The “Wait for the action to finish executing”
option is unchecked and the “Ignore custom action return code”
option is also unchecked

In-Script Execution: Immediate execution

Execution Scheduling: Always execute

After creating this custom action you need to insert it into a sequence so that
you can test its functionality. To make things simple and quick you can insert it
into the user interface sequence immediately after the FindRelatedProducts action.
After creating the custom dialog box you can insert it immediately after the custom
action. Now you need to create this dialog box.

CREATING THE CUSTOM DIALOG
In order to see whether our custom action actually populates the ComboBox table
with a list of mapped network drives you need to create a dialog that has at a
minimum a combo box control and a pushbutton. Such a dialog box is shown in
Figure 11-12.

Figure 11-12: The Select Network Drive dialog box

Chapter 11: Creating and Using Custom Actions 463

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 463

When you add the combo box control to this dialog, you will be asked to iden-
tify the name of the property with which the control is to be associated. You need
to make sure to enter the name of the property you used in the VBScript code, NET-
WORKDRIVES. When you enter this property name, it will appear in the Property
Manager in the Project view. If you want to have this combo box control show a
default value when the dialog is launched, you need to give this property a value.
The simplest thing to do is to give it a value of 1. This means that the first item in
the list of mapped network drives will be shown as the default value. The last thing
you need to do to this combo box control is to make sure to set the height of the
control to a size that will contain at least three or four items. A good height is 100.
If you do not set the height, the combo box will not show any values when you
drop it down.

You need to add a pushbutton so that you can dismiss the dialog after selecting
the network drive. You can use the EndDialog event with the Return argument to
do this. You should also make sure to set the condition to 1 so that it will always be
true. Now you can insert this dialog directly into the user interface sequence after
the Enum_Network_Drives custom action. Then you can build the project and test
it to make sure that it works.

This custom action and dialog have been included with the Features pro-

ject that is on the CD-ROM at the back of the book.

Deferred Custom Actions
Up until now you have creating custom actions of the immediate category. These cus-
tom actions run as soon as the Windows Installer encounters them in the sequence
table. As I mentioned earlier, deferred custom actions are first written into the
Windows Installer execution script and then executed. A custom action written into
the Windows Installer execution script no longer has access to the MSI database and
has to rely on the information that has been written to the CustomActionData prop-
erty. In the following example you will learn how to create this special property value.

Both DLL and script-based custom actions require a handle to the installation
session. In the case of a DLL the handle is in the form of a value of type MSIHAN-
DLE; in the case of script-based custom actions it is an object with the name
Session. When one of these types of custom actions is defined as being deferred, it
will still be passed a valid handle or object but will have greatly reduced access to
any context information. Table 11-13 describes available information for deferred
custom actions.

ON THE CD

464 Part III: Extending the Windows Installer Functionality

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 464

TABLE 11-13 CONTEXT INFORMATION AVAILABLE TO DEFERRED CUSTOM ACTIONS

Function/Method Name Description of Available Context Information

MsiGetProperty or The only properties that can be accessed by these
Session.Property functions are the ProductCode property and a special

property named CustomActionData.

MsiGetMode or MsiGetMode can identify whether the custom action is
Session.Mode running as part of an installation, rollback, or commit

operation. Session.Mode can only identify whether the
custom action is running as part of an installation. It does
not have access to either rollback or commit operations.

MsiGetLangauge or These functions return the value of the ProductLanguage
Session.Language property as a numeric language ID.

MsiProcessMessage or This function is used by the custom action to send
Session.ProcessMessage messages to the Windows Installer, which in turn can

display them on the progress bar to indicate the status
of the custom action.

Now you should take a look at a simple example of a deferred custom action and
its use of the CustomActionData property.

In this example you will create the CustomActionData property that will have as
its value a string that you want to display using a deferred DLL custom action.
You’ll need two custom actions for this example: one immediate category custom
action that will define the CustomActionData property and one deferred DLL cus-
tom action that will display the value of this property in a message box. To create
the string value for the CustomActionData property you will use a Type 51 custom
action. This type of custom action sets the value of a property based on a formatted
text string. You will not actually use the name CustomActionData when setting the
property value; you’ll use the name of the custom action that will be accessing this
value. The custom action that is going to display the value of the property will do
an MsiGetProperty call on the property name CustomActionData. Once again you
will use the Features project to create this example. First, create the Type 51 custom
action. Table 11-14 show the entries you need to make in the Custom Action Wizard
for this custom action.

Chapter 11: Creating and Using Custom Actions 465

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 465

TABLE 11-14 CREATING THE TYPE 51 CUSTOM ACTION

Wizard Dialog Selections

Basic Information Name: Set_CAD_Prop

Comments: Set the value of the CustomActionData property

Action Type Type: Set a property

Location: Null

Action Parameters Source: Display_CAD_Prop

Target: This string is the value of the CustomActionData property

Additional Options Return Processing: The “Wait for the action to finish executing”
option is checked and the “Ignore custom action return code”
option is unchecked (these selections cannot be changed)

In-Script Execution: Immediate execution (cannot be changed)

Execution Scheduling: Always execute

As you can see, the custom action being used to set the value of the
CustomActionData property is of the immediate category. In the source field of the
Action Parameters dialog of the wizard you have entered the name of the deferred
custom action you are going to create next. The value of the property is the string
“This string is the value of the CustomActionData property.” And this is what will
be displayed in the message box launched from the deferred custom action.

The deferred custom action that will read the value of the CustomActionData
property is implemented in a DLL. The code for the exported function in the DLL is
shown below:

UINT __stdcall DisplayProperty(MSIHANDLE hInstall)
{

LPCTSTR PropertyName = “CustomActionData”;
TCHAR* szPropertyBuf;
DWORD ncharCount = 0;
UINT uiReturn;

// First, send an empty string in order to get the

466 Part III: Extending the Windows Installer Functionality

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 466

// correct size of the buffer needed to hold the property value
// Note that the name of the property being accessed
// is CustomActionData
uiReturn = MsiGetProperty(hInstall, PropertyName, TEXT(“”),

&ncharCount);

switch(uiReturn)
{
case ERROR_INVALID_HANDLE:
case ERROR_INVALID_PARAMETER:

// never do this in a deferred CA. It totally breaks unattended
installs. MsiProcessMessage()
MessageBox(NULL, “An error occurred when getting the buffer

size”, “Error”, MB_OK);
return ERROR_INSTALL_FAILURE;

}

// Allocate memory for the property value return buffer
szPropertyBuf = (LPTSTR) malloc(++ncharCount);
uiReturn = MsiGetProperty(hInstall, PropertyName, szPropertyBuf,

&ncharCount);

switch(uiReturn)
{
case ERROR_INVALID_HANDLE:
case ERROR_INVALID_PARAMETER:

MessageBox(NULL, “An error occurred when getting the
property value”, “Error”, MB_OK);

return ERROR_INSTALL_FAILURE;
}

MessageBox(NULL, szPropertyBuf, “Property Display”, MB_OK);

return ERROR_SUCCESS;
}

The DLL that implements this functionality is on the CD-ROM as well as the
source code for the DLL. Table 11-15 shows the entries you need to make in the
Custom Action Wizard to create this deferred custom action.

Chapter 11: Creating and Using Custom Actions 467

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 467

TABLE 11-15 CREATING THE DISPLAY_CAD_PROP CUSTOM ACTION

Wizard Dialog Selections

Basic Information Name: Display_CAD_Prop

Comments: Disp lay the value of the CustomActionData property

Action Type Type: Call a function in a Windows Installer dynamic-link library

Location: Stored in the Binary table

Action Parameters Source: <Sources>\PropertyDisplay.dll

Target: DisplayProperty

Additional Options Return Processing: The “Wait for the action to finish executing”
option is checked and the “Ignore custom action return code”
option is unchecked

In-Script Execution: Deferred execution

Execution Scheduling: Always execute (cannot be changed)

Note that the name of the custom action you have just created is the same as the
name of the property that you set with the formatted text (Type 51) custom action.

Finally, you need to insert these two custom actions into the execute sequence
table. Since you are working with a deferred custom action you need to insert them
between the InstallInitialize and the InstallFinalize actions in this sequence. Insert
the custom action that is setting the value of the property first and then insert the
deferred custom action right after it. In the Features project the two custom actions
are inserted immediately after the MoveFiles action and just before the InstallFiles
action. Place the formatted text custom action so the property is set before the
deferred custom action is run.

Running Secondary Installations
within a Main Installation
You often need to run another installation as part of a main installation. You might
be installing a third-party application as part of your application. If this secondary
installation is also a Windows Installer package and you want the progress of this

468 Part III: Extending the Windows Installer Functionality

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 468

secondary installation to be reflected in the progress of the main installation, you
can only do this installation by using a nested installation custom action. It is pos-
sible to execute a secondary installation in the user interface sequence, but this is
not a good idea because the secondary installation will not run if the user decides
to implement an install using either a basic or silent user-interface level.

The Windows Installer prevents additional MSI-based installations from running
at the same time under two different scenarios. The Windows Installer will not
allow the processing of more than one execute sequence table at the same time.
Preventing the processing of more than one sequence table at the same time is
accomplished by setting the _MSIExecute mutex when it starts to process any of
the execute sequence tables. Setting this mutex prevents the Windows Installer
from executing a second installation in the execute sequence. More than one instal-
lation can be run in the user interface sequence at the same time as long as all the
installations are in separate processes. However, if you try to launch another instal-
lation package to run as a thread in the same user-interface process, you will gen-
erate a Windows Installer error. For instance, if you try to run another installation
from a DLL custom action placed in the user interface sequence table by calling the
MsiInstallProduct function you will get an error that informs us that another instal-
lation is already running.

Because nested installation custom actions are the primary means provided in
Windows Installer for running secondary installations you need to take a close look
at how to use them. There are three types of nested install custom actions. All of
these three types are categorized according to where the main installation can find
the MSI package that implements the nested install custom action. Table 11-16 lists
these three types.

TABLE 11-16 THE TYPES OF NESTED INSTALLATION CUSTOM ACTIONS

Custom Action Type Description

Type 7 The MSI package that implements the nested install custom
action is incorporated in the main installation package as a
sub-storage. The name of this sub-storage is entered into the
Source field of the CustomAction table. The Target field of the
CustomAction table provides a list of the public properties to be
set when the nested install custom action runs. See the list after
this table for the public properties that can be set on the
command line.

Continued

Chapter 11: Creating and Using Custom Actions 469

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 469

TABLE 11-16 THE TYPES OF NESTED INSTALLATION CUSTOM ACTIONS (Continued)

Custom Action Type Description

Type 23 The MSI package that implements the nested install custom
action is separate from the main package but is located relative
to the root location of the main package. The relative location
of this nested install custom action is entered into the Source
field of the CustomAction table. The Target field of the
CustomAction table provides a list of the public properties to be
set when the nested install custom action runs. See the list after
this table for the public properties that can be set on the
command line.

Type 39 The application has already been either advertised or installed.
The Source field of the CustomAction table contains the value
for the ProductCode property of this application. The Target
field of the CustomAction table provides a list of the public
properties to be set when the nested install custom action runs.
See the list after this table for the public properties that can be
set on the command line.

This type of nested installation custom action is restricted in
that it can only perform a reinstall or removal of a product that
was originally installed with a nested installation custom action.
You cannot just specify any product code and remove it with
the Type 39 custom action.

There are many rules and restrictions you need to follow when using nested
installation custom actions:

◆ A nested installation shares the same user interface and logging settings
as the main installation.

◆ A nested installation can only be run as an immediate custom action. The
Windows Installer will automatically combine the rollback information for
the main installation and the secondary installation.

◆ Nested installation custom actions have the same return values as
described earlier in this chapter for other non-script-based custom actions.
This means that if a nested installation custom action fails then the main
installation will be terminated unless the Windows Installer has been told
to ignore the return values.

470 Part III: Extending the Windows Installer Functionality

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 470

◆ A nested installation custom action can only be executed as a synchro-
nous custom action. However, it is possible to tell the Windows Installer
to ignore any return codes from the nested install custom action.

◆ Since a nested installation is performed within the same context as the
main installation and in a sense owns the process it can have a nested
installation itself. In other words, there is nothing to prevent a nested
install from launching another nested install.

◆ The main installation cannot call itself as a nested installation custom
action.

◆ It is possible to initiate system reboots from within a nested install custom
action just as they can be performed from within the main installation.

◆ Windows Installer cannot query a nested installation for its cost. Because
of this it is necessary to add rows in the ReserveCost table to account for
the worst-case cost associated with the components that comprise the
nested install custom action.

◆ To control the feature state of a nested installation custom action you
need to set the ADDLOCAL, ADDSOURCE, REINSTALL, and REMOVE
properties on the command line for the nested MSI package. Enter this
command line in the Target column of the CustomAction table. Only those
public properties that reference features can be set in this way for a nested
installation custom action.

◆ If a per-machine installation attempts to run a per-user nested installa-
tion, the Windows Installer registers the parent installation as per-user by
default. This can cause the installer to incorrectly remove the application,
because it attempts to uninstall the application per-machine when it is
actually registered as per-user. To force the state of a nested installation to
track the state of its parent installation, enter ALLUSERS=[ALLUSERS] in
the Target column of the CustomAction table. In this case, the nested
installation is per-machine if the parent is per-machine, and the nested
installation is per-user if the parent is per-user.

◆ You cannot place a nested installation custom action in either the
AdminUISequence table or the AdminExecuteSequence table.

◆ Patching and upgrading will not work with nested installations.

◆ A main installation and the associated nested installation cannot install
the same component.

◆ There will only be one progress bar with the total installation but it will
not integrate the actions from the main install and the nested install. The
progress of the nested install will be shown as a separate action.

◆ A nested install custom action cannot install any of its resources in an
advertise mode.

Chapter 11: Creating and Using Custom Actions 471

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 471

Now that know the rules you need to follow when using nested installation cus-
tom actions, you need to look at a few examples of running secondary installations
from within a main installation. The first example does not use a nested installation
custom action, but the second example does.

I mentioned at the beginning of this section that you could run a secondary install
from the user interface sequence without using a nested installation custom action:
You can do this by creating an executable custom action that runs MSIEXEC.EXE.
Table 11-17 shows the entries you can make to create this type of secondary installa-
tion. You can only run a secondary installation using MSIEXEC.EXE in the user
interface sequence since this type of secondary installation would be locked out in
the execute sequence.

TABLE 11-17 CREATING A SECONDARY INSTALLATION CUSTOM ACTION USING
MSIEXEC

Wizard Dialog Selections

Basic Information Name: <custom-action-name>

Comments: <comment>

Action Type Type: Launch an executable

Location: Stored in the Directory table

Action Parameters Source: SystemFolder

Target: Msiexec.exe /i <path-to-MSI-package> /qn (You can
install the secondary MSI package to be installed with the
product or stream it into the Binary table; if you stream it into
the Binary table you will have to stream it out to a known
location in order to provide a path)

Additional Options Return Processing: The “Wait for the action to finish executing”
option is checked and the “Ignore custom action return code”
option is unchecked

In-Script Execution: Immediate execution

Execution Scheduling: Always execute

Now let’s move on and cover the other custom actions available to you with the
Windows Installer.

472 Part III: Extending the Windows Installer Functionality

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 472

Miscellaneous Custom Actions
Up to now we have looked at some of the major types of custom actions that you
will use most of the time. A few other types of custom actions deserve a little atten-
tion. In this section we will look more closely at the formatted text type of custom
action and the Type 19 or error custom action. Finally we will look at a utility pro-
vided by ISWI to allow you to call a function in any DLL, not just those DLLs that
have been formatted to meet the requirements of the Windows Installer.

Using formatted text custom actions
You have already used a formatted text custom action in the example related to
deferred custom actions. This was a very simple example since it did not really use
any formatting at all, but just provided a string that would be displayed. Before we
discuss this type of custom action further you should look at the conventions used
to create a formatted text string.

FORMATTING A TEXT STRING
Formatting a text string involves replacing tokens in the string with values from
one or more of the database tables. The tokens to be replaced are enclosed in square
brackets ([token]). The square brackets can be iterated because the substitutions are
resolved from the inside out. This enables you to set the value of one property to
the value of another property.

Curly braces ({}) in addition to the square brackets have a special meaning when
it comes to the creation of a formatted text string. If a part of the string being for-
matted is enclosed in curly braces and contains no square brackets, it is left
unchanged, including the curly braces. If a part of the string is enclosed in curly
braces and contains one or more property names, and if all the properties are
found, the text (with the resolved substitutions) is displayed without the curly
braces. If any of the properties is not found, all the text in the braces and the braces
themselves are removed.

There are four ways to format a taken using the square brackets to get different
values from the database or from the system. You can insert the value of a property,
file path, a component path, or an environment variable into a string using the
square brackets. You need to use a special character if the substitution is not to
come from the Property table. The formatting of the various types of tokens are as
follows:

◆ The inclusion of a property name between the square brackets without
any initial character means that the value of the property will be substi-
tuted into the text string. The format for this token is [property-name].

◆ The inclusion of an environmental variable name between the square
brackets with an initial % character means that the value of the environ-
mental variable will be substituted into the text string. The format for this
token is [%environment-variable-name].

Chapter 11: Creating and Using Custom Actions 473

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 473

◆ The inclusion of a key into the File table between the square brackets with
an initial # character means that the full destination path of the file will
be substituted into the text string. The first column of the File table is the
primary key into this table. Finding the associated component and then
getting the value of the key into the Directory table will resolve the actual
path for the file. Because the value substituted here depends on the
Directory table being resolved, you cannot use this type of substitution
in a custom action that is placed in the sequence table before the
CostFinalize action. The format for this token is [#file-table-key].

◆ The inclusion of a key into the Component table between the square
brackets with an initial $ character means that the full installation path of
the component will be substituted into the text string. The first column of
the Component table is the primary key into this table. Finding the associ-
ated value of the key into the Directory table will resolve the actual path
for the component. Because the value substituted here depends on the
Directory table being resolved, you cannot use this type of substitution
in a custom action that is placed in the sequence table before the
CostFinalize action.

When the substitution of the component installation path is made, the
action state of the component is taken into account when making the sub-
stitution. If the action state of the component is to be installed locally, the
target directory replaces the token in the text string. If the action state of
the component is to be installed to run from source, the source directory
replaces the token in the text string. If the component is not selected or if
the component is missing, the token is replaced by a null string. The for-
mat for this token is [$component-table-key].

◆ The Windows Installer will replace, by the character without any further
processing, a token in the text string of the form [\c]. Only the first char-
acter after the backslash is kept; everything else is removed.

Now that you have seen how a formatted text string is created you need to look
at two of the three types of custom actions that use a formatted text string. The
third type of custom action that can use a formatted text string is the error message
custom action. A separate section is devoted to this type of custom action.

SETTING A DIRECTORY USING A FORMATTED TEXT STRING
(TYPE 35)
The CostFinalize action resolves the Directory table and all entries are entered into
the in-memory version of the Property table as properties that have an ending
backslash. Normally this resolution of the Directory table happens only once in
each process. Using a Type 35 formatted text custom action forces a re-resolution
of the Directory table and a subsequent update of the Property table. None of these
operations affect the persistent version of the database; they only happen in mem-
ory. In fact, only with this type of custom action or the direct use of the

474 Part III: Extending the Windows Installer Functionality

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 474

MsiSetTargetPath API function is it possible to force this re-resolution of the
Directory table and update of the Property table.

This type of custom action identifies the key into the Directory table in the
Source field of the CustomAction table. The formatted text string that will be used
to update the entry in the Directory table is placed in the Target field of the
CustomAction table when you build your project. This type of custom action can
only be of the immediate category. Also, since it depends on the Directory table
already being resolved, this type of custom action must come after the CostFinalize
action in the sequence table.

A good example of the use of this type of custom action is the modification of
the default installation location for an application. The “Certified for Windows”
logo requirements state that the default location for the installation of a product
must be <ProgramFilesFolder>\<Company Name>\<Application Name> unless the
application has already been installed, in which case the default location for instal-
lation can be the actual location of the installed product. You would probably want
to change the default location of an installation when doing a major upgrade of a
product. It would create a more efficient upgrade if you installed into the same
location as the product version being upgraded.

In order to change the default location of the installation, you would first use the
AppSearch action to find the installation location of the old product. This would set
a property to the location of the old installation if the product were found on the
system. Let’s assume for this example that the name of this property is
APPSEARCHPROP and that all the tables associated with the AppSearch action
have been properly authored. As I mentioned earlier, you can only run the
AppSearch action prior to the CostInitialize action in the sequence and you can
only run a Type 35 custom action after the CostFinalize action. What you want to
do is create a Type 35 custom action so that it redefines the location of the
INSTALLDIR location based on the value of the APPSEARCHPROP property. Table
11-18 describes the entries you need to make in the Custom Action Wizard to cre-
ate this custom action.

TABLE 11-18 CREATING A TYPE 35 CUSTOM ACTION TO MODIFY INSTALLDIR

Wizard Dialog Selections

Basic Information Name: Set_INSTALLDIR

Comments: Modify the installation location of a product to be the
same as that of the one already installed

Action Type Type: Set a directory

Location: Null (no entry possible here)

Continued

Chapter 11: Creating and Using Custom Actions 475

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 475

TABLE 11-18 CREATING A TYPE 35 CUSTOM ACTION TO MODIFY INSTALLDIR
(Continued)

Wizard Dialog Selections

Action Parameters Source: INSTALLDIR

Target: [APPSEARCHPROP]

Additional Options Return Processing: The “Wait for the action to finish executing”
option is checked and the “Ignore custom action return code”
option is unchecked (no changes possible here) In-Script
Execution: Immediate execution (no change possible here)

Execution Scheduling: Always execute

This custom action redefines the value of INSTALLDIR to be the value of the
APPSEARCHPROP property. You can simulate the results of the AppSearch action by
authoring the Property table to have a value using the Property Manager in the Project
view of ISWI. This has been done in the Features project on the CD-ROM. In this pro-
ject the default installation location is <ProgramFilesFolder>\InstallShield\Features,
which you can see in the Product Properties dialog of the Project view. The location
C:\Features\ has been authored into the project to be the value of the APPSEARCH-
PROP property.

You’ll want to insert the Set_INSTALLDIR custom action in the user interface
sequence immediately after the MigrateFeatureStates action. You need to place a
condition on this custom action of APPSEARCHPROP in order to prevent it from
executing if a previous install location for the product was not found by the
AppSearch action. You can verify that this works by running the installation and
going to the CustomSetup dialog and looking at the install location defined there.
If you have defined the above value for the APPSEARCHPROP property, you will
see that the install location for Features application will be C:\Features\ unless you
change it.

SETTING A PROPERTY USING A FORMATTED TEXT STRING
(TYPE 51)
You have already used a simple version of a Type 51 custom action so now you need
to look at another example where you implement some indirection using this type of
custom action. The Property table does not allow any indirection in that the value of
one property will not resolve to the value of another property even if you use the
square brackets around the property name. For example, if you had a property called
PROP1 and it had a value of [PROP2], and you had a property called PROP2 with a
string value of “This is the value of PROP2,” the value of the property PROP1 would

476 Part III: Extending the Windows Installer Functionality

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 476

just be [PROP2] and not the string “This is the value of PROP2.” This prevents circu-
lar references in the Property table.

Using a Type 51 custom action you can implement indirection and set the value
of a property to be equal to the value of another property. The following example is
somewhat contrived but it does illustrate the capability of this type of custom
action. What you want to do in this example is implement double indirection,
which will set the value of a property to the value of another property and that
property to the value of a third property. Here you want to author into the Property
table, using the Property Manager in ISWI, a property called PROP1 with a value of
PROP2. You also want to author a property called PROP2 and give it a value of
“This is the value of PROP2.” Now you want to create a Type 51 custom action that
sets the value of PROP3 but starts with the PROP1 property. Table 11-19 shows the
entries you need to make in the Custom Action Wizard.

TABLE 11-19 CREATING A TYPE 51 CUSTOM ACTION TO INDIRECT PROPERTY
VALUES

Wizard Dialog Selections

Basic Information Name: Indirect_Properties

Comments: Set the value of one property to be equal to the
value of another property

Action Type Type: Set a property

Location: Null (no entry possible here)

Action Parameters Source: PROP3

Target: [[PROP1]] (note the use of double square brackets)

Additional Options Return Processing: The “Wait for the action to finish executing”
option is checked and the “Ignore custom action return code”
option is unchecked (no changes possible here)

In-Script Execution: Immediate execution (
no change possible here)

Execution Scheduling: Always execute

In order to check that the value of PROP3 has been set to the value of PROP2
you can place the following text in a text control on the InstallWelcome dialog:
PROP3: [PROP3]. You can insert this custom action prior to the InstallWelcome
dialog and then when this dialog is displayed the value of PROP3 will be substi-
tuted in the location where you have placed [PROP3] in the text control. The point

Chapter 11: Creating and Using Custom Actions 477

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 477

of this example is that you can nest property names and the resolution of the for-
matted text string will occur from the innermost set of square brackets to the out-
ermost set of square brackets. This custom action has also been implemented in the
Features product on the CD-ROM.

Now let’s move on to a discussion of one additional formatted text custom
action, the error message custom action. This is discussed separately since it has a
unique functionality.

The error message custom action (Type 19)
The Type 19 custom action is special in that it has only one purpose: to display an
error message and then terminate the installation. It is also the only type of custom
action that you cannot create with the Custom Action Wizard. This is because it is
so simple that it does not merit a wizard for its creation. The type will always be 19
and you can’t modify it by any other options since none of the other options
applies to this type of custom action. It can only be of the immediate category and
there is no return type except the ERROR_INSTALL_FAILURE return type; the
Windows Installer cannot be told to ignore this.

To create a Type 19 custom action in ISWI you need to select the New option
from the context menu when you right click on the Custom Actions icon in the
Actions\Scripts view. Then, enter the values directly in the dialog that represents
the fields in the CustomAction table. In the Type field enter the number 19. In the
Source field do not enter anything since this field is to be left null. Finally, in the
Target field enter the formatted text string that will resolve to the error message to
be displayed in the message box when the custom action is executed. The rules for
formatting this text string are the same as those described earlier for the “Set a
property” and “Set a directory” custom actions. This formatted text string can either
resolve to the message to be displayed or to an integer. If it is a text string, this
string is what will be displayed in the error message box. If it resolves to a number,
this number needs to be a key into the Error table and the message associated with
the error number will be displayed in the error message box.

This type of custom action must always be conditioned since once it is exe-

cuted there is no way to avoid the termination of the installation.

A good example of the use of this type of custom action is provided in

Chapter 20 in the section “Preventing the Downgrading of a Higher Version

with a Lower Version.”There it is used to terminate an installation if there is a

situation where installing the product will downgrade the product to one of

a lower version.

XREF

Caution

478 Part III: Extending the Windows Installer Functionality

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 478

Calling functions in a standard dynamic-link
library
There is an additional capability in ISWI that enables you to directly create custom
actions that can call many functions in normal DLLs. This can assist setup develop-
ers who already have many functions implemented in DLLs in their legacy installa-
tions in using these DLLs so they do not have to reformat these functions to
conform to the calling requirements of the Windows Installer. A special wrapper
DLL that does conform to the Windows Installer calling requirements has imple-
mented this functionality. This wrapper DLL gets the information it needs about the
standard function calls to the normal DLLs from an .ini file created by the Custom
Action Wizard. In any one project it is possible to have up to 1001 calls to various
DLL functions.

It is possible to directly call many Windows APIs as well as those functions in
DLLs that have been created for legacy installations. It is not possible to call any
function, however, that requires the passing of a structure or pointer to a structure.
Since return values and in/out arguments to any function called are treated as
properties in the Property table it is only possible to work with values that can be
handled as numbers or strings.

To implement this type of functionality you need to choose the “Call a function
in a standard dynamic-link library” type in the Action Type dialog of the wizard.
For this type there are three possible selections for the location. “Stored in the
Binary table” and “Installed with the product” are the ones that apply to the DLLs
created by the setup developer. The “Destination machine search path” is the loca-
tion selection that you need to use when calling a Windows API. The machine
search path is the one Windows typically uses when it searches for a DLL. This
search path is as follows:

◆ The directory where the executable module for the current process is
located

◆ The current directory

◆ The Windows system directory

◆ The Windows directory

◆ The directories listed in the PATH environment variable

When calling a Windows API, you must be aware that when any function takes
a string the appropriate Windows DLL exports both an ANSI and a Unicode version
of the function. These are exported with either an A or a W appended to the base
name of the function. For example, the DeleteFile() function exported by
Kernel32.dll takes as an argument a string that is the fully qualified path to the file
to be deleted. To use this function you would need to identify the name of this
function as DeleteFileA.

Chapter 11: Creating and Using Custom Actions 479

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 479

To get a better handle on this ISWI functionality and the additional dialog in the
Custom Action Wizard where the definition of the function being called is made,
you need to work through an example. In this example you will call a function in a
DLL that reverses the characters in a string. This is not a Windows DLL so you will
include it with the MSI package by streaming it into the Binary table. Table 11-20
shows the selections you need to make in the Custom Action Wizard.

TABLE 11-20 CREATING A CUSTOM ACTION TO CALL A STANDARD DLL FUNCTION

Wizard Dialog Selections

Basic Information Name: Reverse_String

Comments: Reverse the characters in a string

Action Type Type: Call a function in a standard dynamic-link library

Location: Stored in the Binary table

Function Definition (See Figure 11-13 for the entries to be made in this dialog)

Action Parameters Source: <Sources>\revstr.dll

Target: (This field is disabled and shows the calling specification
for the DLL function)

Additional Options Return Processing: The “Wait for the action to finish executing”
option is checked and the “Ignore custom action return code”
option is unchecked

In-Script Execution: Immediate execution

Execution Scheduling: Always execute

The Function Definition dialog of the Custom Action Wizard is a dialog that you
have not seen before. It is in this dialog that you define the arguments and return
values for the function that will be called as a custom action. The information you
enter goes into the .ini file that the wrapper DLL reads to set up the call to the
actual function. The declaration of the function you are calling is as follows:

STDAPI ReverseString(LPCSTR szStr, LPSTR svStr)

The first argument is the constant string you are passing to the function and the
second argument is the first argument returned with all the characters reversed.
Figure 11-13 shows the entries you need to make in the Function Definition dialog
of the wizard.

480 Part III: Extending the Windows Installer Functionality

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 480

Figure 11-13: The Function Definition dialog entries for the ReverseString function call

In the Function Definition dialog you enter the name of the function being
called in the Name edit field. In the arguments dialog you define both arguments as
being of type STRING. The Source for the first argument is an in Property and the
Source for the second argument is an out Property. You identify the property names
to be used to hold these arguments in the Value column. You use STRINGIN for the
first argument and STRINGOUT for the second argument. When you enter these
property names, they are created in the Property Manager where you can give them
values if required. You need to give the STRINGIN property a value so that some-
thing will be passed to the ReverseSring function. The STRINGOUT property will be
populated when the custom action is run.

To complete this example you need to give a value to the STRINGIN property
using the Property Manager in the Project view. You also need to insert the custom
action in a sequence and then provide some means for displaying the results. This
has been done in the Features project on the CD-ROM. The value given to the
STRINGIN property is “This is the input string.” The custom action is inserted
immediately before the PatchWelcome dialog in the user interface sequence. You
can display the value returned in the STRINGOUT property by placing the string
Reversed String: [STRINGOUT] in a static text control in the InstallWelcome dia-
log. When the installation is run, the input string will be displayed in this dialog
with all the characters reversed.

Debugging Custom Actions
To enable the debugging of a custom action, set the environment variable MsiBreak
to the name of the designated action, which is case-sensitive, just as it appears in
the CustomAction and sequence tables. For DLL custom actions, a user breakpoint

Chapter 11: Creating and Using Custom Actions 481

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 481

is called just prior to the entry point call. If the current session is not running under
a debugger, the standard exception dialog box is invoked with an option to debug.
This brings up the debugger registered for JIT debugging (to enable MSDEV for this,
select Just-in-time debugging from the Options menu). Single-step a few times and
you will be inside the custom action code.

If you want to enable source-level debugging, the PDB file must be available,
either at the original build location for the DLL or in the directory where the DLL is
executing. Custom actions stored in the Binary table are saved to a new temporary
file and executed from the system TEMP directory. The temporary file name begins
with MSI. This separate file is created to prevent conflict with other temp files. If
you want source-level debugging and you are not running on the same machine
where the DLL was built, you need to copy the PDB file to the TEMP directory under
the same name as the new custom action file. A separate thread is created to call
the custom action to support asynchronous execution, to provide cleanup after the
action is called, and to provide recovery in the case of an exception during execu-
tion. The mechanism is similar with EXE custom actions, except that the debug
break occurs just prior to the CreateProcess call. You cannot step into the EXE code,
and you cannot attach the debugger to the process until it is running. If you want
to debug custom actions executing in the service, you must attach the debugger to
the service process (MsiExec.exe) ahead of time.

Summary
In this chapter you got your hands dirty and created a number of different types of
custom actions. You started off by looking at the valid return codes that certain
types of custom actions can use to communicate with the Windows Installer. Then
you reviewed the SQL syntax you need to use in a custom action when you interface
with the tables of the database. We discussed how to interface with the Windows
Installer during the installation and how to access the installation session from
either a DLL custom action or a custom action implemented in VBScript or JScript.

After going through these preliminary subjects you worked through the Custom
Action Wizard in ISWI to see the various dialogs that comprise it. Once you fin-
ished with that you looked at the special means provided for accessing the values in
the Property table. You saw that there are two special functions for getting and set-
ting values in the Property table without having to use SQL statements. We briefly
discussed the creation of custom tables.

You spent some time creating several custom actions that worked with the user
interface. One of these custom actions would launch a Web site when a button was
pushed. The other custom action would show how to dynamically populate a
combo box control at run time. This custom action enumerated the list of mapped
network drives on the target system and supplied this list in the combo box. You
created a special dialog to show this list of mapped network drives. You then looked
at the special considerations required for running deferred custom actions and how
this category of custom action can obtain the values it needs. Because a deferred

482 Part III: Extending the Windows Installer Functionality

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 482

custom action can run after the original installation session has ended, it only has
access to the information written into the execution script. You looked at how to
add the information required by your custom actions to this execution script.

At the end of the chapter you looked at a special type of custom action that can
perform a secondary installation during the install of the main product. These types
of custom actions are called nested install custom actions. You saw that there are
many restrictions on the implementation of these types of child installations.
Finally, you looked at several miscellaneous types of custom actions and created
several examples of them.

Chapter 11: Creating and Using Custom Actions 483

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 483

4723-2 ch11.f.qc 1/16/01 11:10 AM Page 484

Chapter 12

The ISWI Scripting
Environment

IN THIS CHAPTER

◆ What is InstallScript

◆ The script editor

◆ Compiler settings

◆ Compiling at the command line

◆ Compiler directives

◆ The script debugger

THIS IS THE FIRST of four chapters to delve into the InstallScript language and its
use. In particular, we discuss the scripting environment provided in InstallShield for
Windows Installer: the script editor, the script compiler, and the script debugger.
These are all things you need to know about before you start investigating the lan-
guage itself and how to use it in creating custom actions.

What Is InstallScript?
InstallScript is a powerful scripting language designed to enable the functionality
required for creating a software installation package. InstallScript in many ways
appears to be similar to the C language but it is definitely not “C.” Also, unlike
VBScript or JScript, InstallScript has to be compiled before it can run. However, it is
not compiled into native code but into something similar to Java’s bytecode format.
The InstallScript bytecode looks a lot like machine code but is only understood by
the scripting engine. The scripting engine is added to the system on which the instal-
lation is being run: it interprets the InstallScript bytecode and then passes the cor-
rect machine code to the processor in order to implement the actions in the script.

485

4723-2 ch12.f.qc 1/16/01 11:10 AM Page 485

486 Part III: Extending the Windows Installer Functionality

Appendix C provides a complete description of how the InstallScript engine

is added to the target machine and how it provides functionality for creat-

ing custom actions.

InstallScript provides many of the basic data types found in other programming
languages. It also provides a robust API function set. These functions provide an
installation-focused capability that enables you to easily implement the various
actions you’ll need when creating an installation package.

Creating and Compiling Scripts
To work through this section you need to create a sample project in ISWI. Name
this project ScriptTest. After creating this project, go to the Actions/Scripts work-
space view and left-click the InstallScript icon in the tree view. Then go to the
InstallScript panel to the right of the tree view and right-click to bring up the con-
text menu. From this context menu select the New Script File command and you
will get something that looks like what is shown in Figure 12-1.

Figure 12-1: Creation of a new Setup.rul script file

4723-2 ch12.f.qc 1/16/01 11:10 AM Page 486

A skeleton file named Setup.rul will be created for you in the folder ScriptTest that
was created when you created the project. This location is defined by the ISProduct
Folder path variable. Now double-click the script file name and you will be launched
into the script editor. You can also right-click the script file name and you will get a
context menu that provides the following commands:

Edit Script Opens the script editor just as when you double-click the
file name.

Compile Compiles the script code into a file with an .obs exten-
sion. This object file will be located in the same folder
as the .rul file and will have the same name as the .rul
file. The keyboard shortcut for this command is Ctrl+F7.
You can also compile a script using the Compile com-
mand from the Build pulldown menu or by clicking the
Compile icon on the toolbar.

Remove Removes the file from the project but does not delete it;
if you were to remove Setup.rul and then create a new
script file you would get a file named Script1.rul, and
then Script2.rul, and so on.

Rename Allows you to rename the script file that is created for
you when you select the New Script File command. The
keyboard shortcut for this command is F2.

You must not remove or rename the script file Setup.rul. This is the required

filename for creating the final compiled script. Other script files may have

any name you choose; you can incorporate them into Setup.rul using the

#include statement.

New Script File Allows you to create a new empty script file that can be
edited by the script editor.

Insert Script Files... Allows you to browse for script files that already exist
and that you want to include in your project.

Let’s take a brief look at the skeleton Setup.rul file and make a few changes so
that you will be able to use it to explore the script editor, the Compiler, the Debug-
ger, and the InstallScript language. The initial Setup.rul file is shown in the follow-
ing code.

Caution

Chapter 12: The ISWI Scripting Environment 487

4723-2 ch12.f.qc 1/16/01 11:10 AM Page 487

//
//
// IIIIIII SSSSSS
// II SS InstallShield (R)
// II SSSSSS (c) 1996-2000, InstallShield Software Corporation
// II SS All rights reserved.
// IIIIIII SSSSSS
//
//
// This template script provides the code necessary
// to build an entry-point function to be called in an
// InstallScript custom action.
//
// File Name: Setup.rul
//
// Description: InstallShield script
//
//

// Include Isrt.h for built-in InstallScript function prototypes.
#include “isrt.h”

// Include Iswi.h for Windows Installer API function prototypes and
// constants, and to declare code for the OnBegin and OnEnd events.
#include “iswi.h”

// The keyword export identifies MyFunction() as an
// entry-point function. The argument it accepts must be a
// handle to the Installer database.
export prototype MyFunction(HWND);

// To Do: Declare global variables, define constants,
// and prototype user-defined and DLL functions here.

// To Do: Create a custom action for this entry-point function:
// 1. Right-click on Custom Actions in the Actions/Scripts view.
// 2. Select Custom Action Wizard from the context menu.
// 3. Proceed through the wizard and give the custom action
// a unique name.
// 4. Select Run InstallScript code for the custom action type,
// and in the next panel select MyFunction (or the new name of
// the entry-point function) for the source.
// 5. Click Next, accepting the default selections until the wizard
// creates the custom action.

488 Part III: Extending the Windows Installer Functionality

4723-2 ch12.f.qc 1/16/01 11:10 AM Page 488

//
// Once you have made a custom action, you must execute it in your
// setup by inserting it into a sequence or making it the result of
// a dialog’s control event.

//
//
// Function: MyFunction
//
// Purpose: This function will be called by the script engine when
// Windows(R) Installer executes your custom action
// (see the “To Do,” above).
//
//
function MyFunction(hMSI)

// To Do: Declare local variables.
begin

// To Do:
// Write script that will be executed when MyFunction is called.

end;

// To Do:
// Handle initialization code when each sequence (User Interface and
// Execute) starts.
// function OnBegin()
// begin
// end;

// To Do:
// Write clean-up code when each sequence (User Interface
// and Execute) ends.
// function OnEnd()
// begin
// end;

You want to change the name of the entry-point function from MyFunction to
ScriptTest. You will do this in two places: once where the function is being proto-
typed and once where the function is being defined. You should change the prototype
so that it looks like this:

export prototype ScriptTest(HWND);

Chapter 12: The ISWI Scripting Environment 489

4723-2 ch12.f.qc 1/16/01 11:10 AM Page 489

Now change the entry point-function implementation line to look like this:

function ScriptTest(hMSI)

The quickest way to do these changes is to use the Replace... command in the
Edit pulldown menu. Now you’re ready to get into the script editor and see how this
tool works.

The script editor
The script editor in ISWI is automatically invoked when you open a script file for
editing. This editor encompasses most of the features that you’d expect in a text
editor for code creation. When you double-click the Setup.rul filename, you enter
the script editor and get something that looks like what is shown in Figure 12-2.
The only difference that you might see is that the left margin in Figure 12-2 is a
different color from the color in the script window. The normal functionality at the
time of this writing is that the left margin is same color as the script window. In
Figure 12-2 you can see that the tree view shows the new name of your ScriptTest
entry-point function. When you click this icon in the tree view, the script editor will
take you directly to the first line of the function’s implementation.

Figure 12-2: Script editor showing skeleton script after function name change

490 Part III: Extending the Windows Installer Functionality

4723-2 ch12.f.qc 1/16/01 11:10 AM Page 490

SCRIPT EDITOR PROPERTIES
You are going to start your tour of the script editor by bringing up the Properties
sheet. Do this by right-clicking in the script editor and selecting the Properties com-
mand at the bottom of the context menu. This will bring up a tabbed properties dia-
log, which will look like what is shown in Figure 12-3.

Figure 12-3: Tabbed dialog for setting color and font properties in the script editor

There are two sections in the dialog shown in Figure 12-3. At the top is the sec-
tion where you can change the default syntax coloring, and at the bottom is the
section where you can change the font used in the script editor. First we will discuss
the items for which you can define the display colors to be used in the script editor.
Table 12-1 provides a description of the items for which colors can be assigned.

TABLE 12-1 ITEM DESCRIPTIONS AND DEFAULT COLOR SCHEMES IN THE
SCRIPT EDITOR

Item Description Default Color

Bookmarks A marker displayed in the left margin, Teal
which allows you to traverse your script
with a minimum of keystrokes.

Comments All text in your script that explains what’s Green
happening in the script to those using it.
Comments are identified by either a set of
enclosing characters /* ...*/ or by a
set of double slashes (//).

Continued

Chapter 12: The ISWI Scripting Environment 491

4723-2 ch12.f.qc 1/16/01 11:10 AM Page 491

TABLE 12-1 ITEM DESCRIPTIONS AND DEFAULT COLOR SCHEMES IN THE
SCRIPT EDITOR (Continued)

Item Description Default Color

Keywords Reserved words that you are not allowed Blue
to use in your script for variable names
because the compiler expects these words
to have a special meaning.

Left Margin The space to the left of the script window Default color
in which your bookmarks can be displayed. of the script
It is also where your cursor will turn to an window
arrow and allow you to select a complete
line of the script.

Numbers A numeric value not contained in quotes Teal
or in a comment statement.

Operators One of the symbols you can use to execute Red
actions in your script, such as the plus
sign (+).

Scope Keywords Reserved words that define the beginning Blue
and end of a block of script. In the script
editor, these particular keywords are not
separated out and thus are treated as
normal keywords.

Strings A set of displayable characters contained Dark Red
within a pair of double or single quotes.

Text A set of displayable characters not Black
contained within double or single quotes.
Such text strings will be variable names,
function names, and the like.

Window The background color of the script window. Windows
You can change this as you wish but you default color
will have to make sure that the other
syntax coloring will be compatible or
some text may not be visible.

At the bottom of the dialog shown in Figure 12-3 you can change the font used
in the script editor and see a sample of the current font style. When you click the
Change... button, you get the dialog shown in Figure 12-4, which looks a lot like

492 Part III: Extending the Windows Installer Functionality

4723-2 ch12.f.qc 1/16/01 11:10 AM Page 492

the typical font-selection dialog available in most Windows applications. One thing
you will notice is that the selection of fonts is limited those with fixed spacing. Also
at the bottom of this dialog is a dropdown combo box labeled Script. In this combo
box you have the choice of Western, Hebrew, Arabic, Greek, Turkish, Baltic, Central
European, Cyrillic, or Vietnamese script languages.

Figure 12-4: The Font dialog in the script editor

The next tab on the Properties dialog is the Language/Tabs tab. On this panel
(shown in Figure 12-5) are three sets of properties that you can configure. These
property sets are Auto Indentation, Tabs, and Language. You can also define three
styles of Auto Indentation, but the default style is to use the same indentation as
was used for the previous line.

Figure 12-5: The Language/Tabs property page in the script editor

The second Property set defines the number of spaces that comprise a tab. You
can also have all tabs turned into spaces as you enter them. This means, of course,
that when you use the backspace or arrow keys to traverse a line you will move a
space at a time and not in tab-sized increments. The final property set you can

Chapter 12: The ISWI Scripting Environment 493

4723-2 ch12.f.qc 1/16/01 11:10 AM Page 493

define is the language in which the file is being created. The default is InstallScript
but the dropdown combo box allows you to choose among a number of other lan-
guages with built-in rules as far as what keywords are to have syntax coloring.
These other languages are C/C++, Basic, Java, Pascal, SQL, and <none>. Choosing
<none> means that the file to be created is straight ANSI text and there are no key-
words defined.

The third tab on the Properties dialog is where you can define keyboard short-
cuts for a number of built-in commands. There are 125 commands for which you
can define keyboard shortcuts. Of these 125 commands, 67 have default settings. In
some cases more than one keyboard shortcut is assigned to the same command.

Figure 12-6 shows the third panel in the Properties dialog.

Figure 12-6: The Keyboard property page in the script editor

Let’s take a look at how to set the keyboard shortcut for a command that does not
have a default value. For this example, look at the BookmarkClearAll command,
which clears all bookmarks in the edit window, as shown in the following steps.

1. Highlight the command in the Command list box.

2. Place the cursor in the New Key Assignment edit box and press the keys
that you want to use as the keyboard shortcut. For this example, use the
combination Ctrl+Alt+F12; press and hold down each of these keys in
succession. When the F12 key is pressed, you will see this key combina-
tion in the New Key Assignment edit box.

3. Click the Assign button, which has now been enabled, and this keyboard
shortcut is entered into the Key Assignments edit box.

494 Part III: Extending the Windows Installer Functionality

4723-2 ch12.f.qc 1/16/01 11:10 AM Page 494

4. Click the Apply button to finalize this action. If you had chosen a keyboard
shortcut that was already in use, you would have been notified in the
sunken text field directly below the New Key Assignment edit box. If you
highlight the key assignment in the Key Assignments edit box, the Remove
button is enabled, which enables you to undo this keyboard shortcut.

In the fourth and final panel of the Properties dialog you can enable or disable
certain types of functionality in the script editor. This panel is shown in Figure 12-7.

Figure 12-7: The Misc property page in the script editor

At the bottom of this property page you can limit the number of undoable actions
you can have. You might want to do this to conserve limited memory resources. You
can also undo an Undo by using the Redo capability that is also available in the
script editor.

You can set ten additional options with this page in the Property dialog. Table 12-2
describes these options.

TABLE 12-2 MISCELLANEOUS SCRIPT EDITOR OPTIONS

Option Description

Smooth Scrolling Slows down some scrolling operations for the
smooth vertical scrolling of a large script file.

Show Left Margin Turns off the left margin so the script text goes
all the way to the left side of the script window.

Continued

Chapter 12: The ISWI Scripting Environment 495

4723-2 ch12.f.qc 1/16/01 11:10 AM Page 495

TABLE 12-2 MISCELLANEOUS SCRIPT EDITOR OPTIONS (Continued)

Option Description

Show Line Tooltip# While Scrolling Turns off the Tooltip display that shows the line
number of the top line in the script window
when you’re scrolling with the vertical scroll bar.

Allow Drag and Drop Enables the capability to drag and drop within
your script any highlighted sections of text.

Allow Column Selection Enables the capability to select columns of
text by using the Alt key in conjunction with
the mouse.

Color Syntax Highlighting Turns off the color syntax of the various types
of words in the script so everything is displayed
in the default Windows foreground color, nor-
mally black.

Show Horizontal Scrollbar Displays the horizontal scrollbar. When the
horizontal scrollbar is not shown, the only way
to move horizontally is to use the keyboard.

Show Vertical Scrollbar Displays the vertical scrollbar. When the vertical
scrollbar is not shown, the only way to move
vertically is to use the keyboard.

Allow Horizontal Splitting Enables the capability to split the script window
horizontally.

Allow Vertical Splitting Enables the capability to split the script window
vertically.

We have now finished the discussion of the various properties you can set for
the script editor. In the next section we will get into the various things you can do
with the script editor to make your life easier when creating scripts.

USING THE SCRIPT EDITOR
In this section I am only going to briefly address some of the important features of
the script editor. I’m assuming that everyone is familiar with the normal navigation
capabilities of a text editor or word processor. I want to concentrate on those fea-
tures that might be considered a little out of the ordinary.

THE CONTEXT MENU We’ll start with some of the commands available in the con-
text menu you bring up by right-clicking in the script editor. To enable the items on

496 Part III: Extending the Windows Installer Functionality

4723-2 ch12.f.qc 1/16/01 11:10 AM Page 496

this context menu enter some text in the script editor and then highlight the line of
text. With the cursor in this highlighted line right-click and you will see that most
of the options on this menu are enabled. The most interesting commands are the ones
in the middle section of this context menu, and they are described in Table 12-3.

TABLE 12-3 CONTEXT MENU COMMANDS

Command Description

Show Whitespace Displays all spaces with a dot, which appears midway in the
height of the uppercase characters. This menu command is
a toggle.

Make Uppercase Only active when text has been highlighted. If a word or string
has been highlighted, this command will enable you to change
all characters to upper case.

Make Lowercase Only active when text has been highlighted. If a word or string
has been highlighted, this command will allow you to change all
characters to lower case.

Tabify Converts spaces to tabs of the currently set tab size. The groups
of spaces to be converted to tabs must be highlighted; otherwise
no conversion will take place. If the group of spaces is smaller
than the current tab size, no action is taken. If the number of
spaces is greater than the tab size, groups of spaces equal to the
tab size will be converted to tabs. After this operation, any group
of spaces smaller than the tab size will be left as spaces.

Untabify Converts all tabs in highlighted text to spaces.

THE EDIT MENU In addition to those commands on the context menu, two inter-
esting commands are found on the Edit pulldown menu. These are the Repeat... and
Insert commands. Selecting the Repeat... command brings up a small dialog where
you are asked to define the number of times you want the next action to be
repeated. To see how this works, select this command and choose the default value
of 10 in the edit field. Now type a letter and you will see that this letter appears 10
times on the same line. Now highlight this line, making sure that there is a carriage
return at the end of the line, and copy it to the clipboard. Now place the cursor on
the line following the line that you just copied to the clipboard, go to the Repeat...
option again, and choose the default value of 10 again. Now hit Ctrl+V to copy this
line from the clipboard and you will see that the line has been copied 10 times.

Chapter 12: The ISWI Scripting Environment 497

4723-2 ch12.f.qc 1/16/01 11:10 AM Page 497

When you select the Edit →Insert menu option, you will see a sub-menu con-
taining the options InstallScript Function... and String Table Entry.... Choosing the
InstallScript Function... option launches the Function Wizard. The Function Wizard
enables the easy insertion of a call to one of the InstallScript APIs mentioned at the
beginning of this chapter. Figure 12-8 shows the first panel of this wizard, which
lists the available function categories and the function names that comprise these
categories.

Figure 12-8: Panel one of the InstallScript Function Wizard

The prototype of the selected function and a short description of the function’s
purpose are provided below the two list boxes in this dialog. Clicking the Next but-
ton brings up the second and final panel in this wizard. In this panel you can edit
the names of the parameters to be passed to the function; this panel also provides,
where appropriate, a list of the valid constants that you can pass. Placing the cur-
sor in each of the edit fields on this panel gives you a short description of the pur-
pose of the parameter. Figure 12-9 shows the second panel of the Function Wizard.

In the above two figures the function name that selected is the CreateFile API.
When I click on the Finish button, the following string will be entered into the
script at the point where I have my cursor:

CreateFile (nvFileHandle , szPath , szFileName);

Of course it is still your responsibility to make sure that all parameters passed to
a function have been properly initialized. You will use the Function Wizard in this
chapter and the next as you explore the InstallScript language and see how to cre-
ate custom actions with it.

498 Part III: Extending the Windows Installer Functionality

4723-2 ch12.f.qc 1/16/01 11:10 AM Page 498

Figure 12-9: Panel two of the InstallScript Function Wizard

The other option on the Edit →Insert submenu is the String Table entry... com-
mand. When you select this option, a dialog box is launched that enables you to
select a string from the string table and to have it inserted into your script with the
proper format. This format is for the string ID, preceded by the @ symbol, to be
inserted into the present location of the cursor. This location must be a place where
this format will be recognized. For example, this format can be used to pass a string
to a function that requires a string constant. Figure 12-10 shows this dialog box.

Figure 12-10: The Select String dialog box

Chapter 12: The ISWI Scripting Environment 499

4723-2 ch12.f.qc 1/16/01 11:10 AM Page 499

In this figure you can see that the selected string identifier is IDS__
DestinationFolder_5. When I click on the OK button, the following string will be
inserted in my script at the location of the cursor.

@IDS__DestinationFolder_5

We have not discussed the Find..., Replace..., Goto..., Cut, Copy, Paste, Undo, and
Redo options since these are standard commands and operate in the script editor
just as they do in any other text editor or word processor. You will also notice that
there is a Print command on the File pulldown menu. This command is only
enabled when the script editor has the focus.

USING THE MOUSE All the normal mouse operations are available in the script
editor. These include selecting a line by clicking in the left margin, dragging to
select multiple lines, and so on. You can, however, implement several operations
with the mouse that might not be so obvious. First we’ll cover dragging and drop-
ping text. Using drag-and-drop you can move or copy text from one part of the
script to another and you can also move or copy text to and from applications that
are OLE Drag and Drop enabled, such as Visual C++. To move text you need to first
highlight it, click the left mouse button over the highlighted text, and drag the text
to the new location. If you want to copy the text instead of move it, hold down the
Control key as you drag the text. This will copy the text to the new location while
leaving it in the original location.

Another handy functionality you can implement with the mouse is to select
columns of text. To do this, first hold down the Alt key, left-click in the column and
line where you want to start selecting columns, and with the left button still down
drag the cursor to the line and column where you want to end the selection. You
can now cut, copy, paste, and/or delete this selection.

With the mouse you can also create a split window. The script window can be
split vertically, horizontally, or in both directions to create four windows. You can
scroll each of these windows individually, meaning that you can work on as many
as four different areas of the script. You can also use the drag-and-drop function-
ality to move or copy text among these windows. To create the split window you
need to move your mouse cursor to the upper end of the vertical scroll bar or to the
left end of the horizontal scroll bar and find the location where the cursor turns
into a double-headed arrow. Then you can either double-click the left mouse button
to split the window exactly in half or drag the splitter bar to any location you
desire. To remove the split window you can double-click the left mouse button on
the splitter bar or drag it to the top or to the left until it disappears.

Finally, you can use the mouse to vertically scroll the text in the editor. When
you hold down the left mouse button and then drag the vertical scroll bar, you will
see what is called a Tooltip#, which identifies the number of the line presently at
the top of the script editor window.

500 Part III: Extending the Windows Installer Functionality

4723-2 ch12.f.qc 1/16/01 11:10 AM Page 500

USING THE KEYBOARD Appendix D goes into detail about all the keyboard short-
cuts implemented by default. In this section we’ll take a close look at only two of
these areas of functionality, because they can be very useful when creating a script.
These two areas are bookmarks and macros. Bookmarks are handy devices for nav-
igating quickly to important parts of a large script. There are six bookmark-related
commands, three of which are assigned a default keyboard shortcut. The first thing
to do is assign keyboard shortcuts to the three commands that do not have them.
Table 12-4 shows all six commands related to bookmarks, the first three with their
default keyboard shortcuts and the second three with the shortcuts I suggest you
assign them.

TABLE 12-4 KEYBOARD SHORTCUTS FOR IMPLEMENTING BOOKMARKS

Keyboard
Command Shortcut Description

BookmarkToggle Ctrl+F2 (default) Toggles a bookmark for the current
line on and off.

BookmarkNext F2 (default) Moves to the line containing the
next bookmark.

BookmarkPrev Shift+F2 (default) Moves to the line containing the
previous bookmark.

BookmarkClearAll Ctrl+Shift+F2 Clears all bookmarks in the script
window.

BookmarkJumpToFirst Alt+F2 Moves to the first line containing
a bookmark.

BookmarkJumpToLast Ctrl+Alt+F2 Moves to the last line containing
a bookmark.

To set the keyboard shortcuts for the last three commands, go to the Properties
dialog and click on the Keyboard tab. Then put the focus in the New Key Assign-
ment edit field and press the keys that will make up the shortcut. Click the Assign
button and then the Apply button and the assignment is complete.

To turn a bookmark on, place the cursor in the line you want the bookmark asso-
ciated with and press Ctrl+F2. An arrowhead will appear in the left margin pointing
at the line. Enter a number of bookmarks and then see how the other keyboard short-
cuts will help you navigate in the script.

Chapter 12: The ISWI Scripting Environment 501

4723-2 ch12.f.qc 1/16/01 11:10 AM Page 501

Using the Find functionality enables you to define a string that can be used

to identify any line for which you want to set a bookmark. All you do is enter

the string and then click on the Mark All button. For instance, you could

bookmark all functions by entering the string “function” and then clicking

the Mark All button. All lines with the word “function” in them would then be

set with a bookmark.

The other keyboard-implemented functionality we’ll discuss here is the creation
of macros. A macro is a recording of keystrokes, which you can play back by exe-
cuting the assigned keyboard shortcut. You’ll create three macros that will save you
time when you create custom actions using InstallScript. These macros will contain
the standard formatting and information for creating new files and functions.

To create a macro you need to go into record mode, enter the keystrokes that will
be recorded, and assign a keyboard shortcut to the macro. The script editor will
allow you to create a maximum of ten macros. To initiate the record mode you need
to press the Ctrl+Shift+R keys. When you do this, a small modeless dialog will be
displayed, containing one button. You use this button to end the recording session.
When you end the recording session, you will be presented with a dialog box that
asks you to assign the keyboard shortcut to the macro you just created. This dialog
box is shown in Figure 12-11.

Figure 12-11: Dialog box for assigning a keyboard shortcut to a macro

The macro you’re about to create is a standard header for a private function that
you’ll use whenever you create a helper function for your entry-point functions.
The code for this standard template for a private function is as follows.

///
//
// Function Name:
//
// Parameters:
//
// Purpose:
//
// Implementation:

Tip

502 Part III: Extending the Windows Installer Functionality

4723-2 ch12.f.qc 1/16/01 11:10 AM Page 502

//
///

function <name>(<parameter_list>)

begin

end;

You can assign any keyboard shortcut you want for this macro if it is not
already in use for some other purpose. I have used Ctrl+F12 in the environment that
I have set up on my machine.

The compiler
When you build your project, your script is automatically compiled. You can also
compile your script without having to build your project, by using the Compile but-
ton on the toolbar just to the left of the Build button. You can also initiate a compile
using the Ctrl+F7 keyboard shortcut or by going to the Compile option on the Build
pulldown menu. When your script is compiled, it is turned into an object file with an
.obs extension. This file will be located in the root folder of your ISWI project. When
you perform a straight compile, you will get an output window at the bottom of the
screen where all warnings and errors will be displayed. When you perform a build of
the project, the same output window provides you with the output of the build
process. The output window will first provide the results of the script compilation
and then these results will scroll off the screen to be replaced with the results of the
build. The script results are not displayed at the bottom of the output window along
with the build results. You will need to scroll to the top of the output window to see
the results of the script compilation and linking.

Always compile your scripts separately first before building your project.

This way you won’t be surprised with a bad script when you go to test your

installation.

COMPILER SETTINGS
On the Build pulldown menu is the option for Compiler settings..., which launches
a dialog box enabling you to define how you want the compiler to behave. You
make settings in this dialog for every project. The Compiler Settings dialog is
shown in Figure 12-12.

Tip

Chapter 12: The ISWI Scripting Environment 503

4723-2 ch12.f.qc 1/16/01 11:10 AM Page 503

Figure 12-12: The Compiler Settings dialog

In the Warning Level combo box are four levels to choose from and they are
described in Table 12-5. The default warning level is Level 1.

TABLE 12-5 COMPILER WARNING LEVELS

Warning Level Option Description

None No warning messages displayed

Level 1 (Default) Displays all system warning messages that cannot be
handled by the InstallScript compiler

Level 2 Displays all system warning messages that cannot be
handled by the InstallScript compiler and any warnings
that relate to string lengths that exceed the limit

Level 3 Displays all warning messages

Check the “Warnings as errors” check box if you want the compiler to treat a
warning as an error and not create the .obs file. Warnings will still be displayed as
warnings in the output window but they will prevent the correct compilation of the
script. Below this check box are two edit fields where you can specify the maximum
number of warnings and errors to be displayed in the output window.

In the edit field labeled Preprocessor Defines you can set a constant identifier to
a numeric value. Entries look like the following:

CONSTANT1=1234,CONSTANT2=5678

There cannot be any spaces between the constant name and the equals (=) sign,
but there can be spaces to the right of the equals sign. There can also be spaces after

504 Part III: Extending the Windows Installer Functionality

4723-2 ch12.f.qc 1/16/01 11:10 AM Page 504

the value and before the comma separator, but not to the right of the comma sepa-
rator. The following input into this edit field would also be valid:

CONSTANT1,CONSTANT2

The following statement in your script would be valid if you were to make these
entries in the Preprocessor Defines edit box of the Compiler Settings dialog. However,
in this case you need to avoid spaces on either side of the comma separator.

#ifdef CONSTANT1
statements to perform some actions

#endif

With these entries in your script and CONSTANT1 defined in Compiler Settings
dialog box then the statements between #ifdef and #endif will be compiled; if CON-
STANT1 is not defined then these statements will not be compiled.

We discuss preprocessor directives in detail later in this section.
At the bottom of the Compiler Settings is another edit field labeled Libraries.

Here you can enter the fully qualified path(s) to script libraries that you have cre-
ated for commonly used code. Script libraries are linked into the final compiled
script. In order to keep the size of the final compiled script as small as possible only
those functions from the library are used are brought into the compiled script and
not all the code in the library. A script library will have an .obl extension and the
compiled script will have an .inx extension. You can use libraries created using
InstallShield Professional 6.0 or higher or you can create these libraries with ISWI.
There is no way to create libraries using the ISWI IDE so you will need to do this at
the command line. You’ll learn how in the next section.

THE COMPILE OUTPUT WINDOW
When you compile your script, an output window will open up across the bottom of
the ISWI IDE, providing the following information:

◆ The version of the script compiler being used

◆ The name of the file being compiled (in most cases Setup.rul)

◆ A list of the errors and warnings generated by the compiler. Each error or
warning will be accompanied by the name of the file in which the error or
warning occurred, the line number in the script that may be generating
the error or warning, the error or warning number being generated, and a
short description of the error or warning.

◆ The name of the object file being created followed by the location of the
file being compiled

If you click the right mouse button in this window, you will get a context
menu that gives you three choices. You can copy the contents of the window to the

Chapter 12: The ISWI Scripting Environment 505

4723-2 ch12.f.qc 1/16/01 11:10 AM Page 505

clipboard by selecting the Copy All option or you can clear the window by select-
ing the Clear All option. You can paste the information copied to the clipboard into
a text file for permanent reference. You can also close this window by selecting the
Hide option, or by grabbing the top edge with the left mouse button and dragging
it down to the bottom. You can open this window by running the compiler or by
grabbing the top edge of the window in the closed position and dragging it upward
with the mouse using the left button.

As I mentioned earlier, the settings made in the Compiler Settings dialog are

on a per-project basis. If you have a standard set of script libraries that you

want to use across all of your projects, you must enter this same information

in the Compiler Settings dialog for every project. There, however, is a way

around this: you can make entries into the Compile Folders.ini file. You can

find this initialization file in the Support folder of the installation location for

ISWI.The default entries in this file are as follows:

[Folders]
Folder0=<ISProductFolder>\Script\Include
Folder1=<ISProductFolder>\Script\ISRT\Include
Folder3=<ISProductFolder>\Script\ISWi\Include

[Libraries]
Libraries1=<ISProductFolder>\Script\ISWi\Lib\iswi.obl
Libraries2=<ISProductFolder>\Script\ISRT\Lib\isrt.obl

The [Folder] section provides the search path for all the include files. You

can add to this section the location of your own include files, particularly

those that prototype the functions in your own script libraries. To add the

location for your own script libraries you just need to make entries under the

[Libraries] section using the format shown above. The order in which

functions are linked is the order in which the libraries are identified. If you

have two functions with the same name in two different libraries, the one

that will actually get linked will be the one in the library listed last.

COMPILING AT THE COMMAND LINE
You can do a lot from the command line that you can’t do from the IDE. Most
importantly, you can create script libraries. The compiler is named COMPILE.EXE
and you’ll find it in the following location:

C:\Program Files\Common Files\InstallShield\IScript

Tip

506 Part III: Extending the Windows Installer Functionality

4723-2 ch12.f.qc 1/16/01 11:10 AM Page 506

Chapter 12: The ISWI Scripting Environment 507

The command line syntax is as follows:

compile [options] [filename(s)] [@commandfile]

The arguments on the command line are not order-dependent and you can place
them at any location on the command line. Table 12-6 describes the command-line
options you can use. There can be no space between an option and its parameter.

TABLE 12-6 COMMAND LINE COMPILE OPTIONS

Option Description

/Q or /q Suppresses the copyright message and the information
about the file being created during the compilation.

/O<filename> or Changes the name of the output file being created. Keep
/o<filename> in mind that the main script must be compiled to have the

name Setup.inx. You can only control the naming of the .inx
file from the IDE by starting off with the script file being
named Setup.rul.

/G or /g Creates the debug information files that have .dbg and .map
file extensions.

/I<directory path> or Defines a directory where a script will search for an
/i<directory path> include file. You need to use this option for each location

that you want to include in the search path.

/D<name>=<num> or Defines a numeric constant or constants. To define more
/d<name>=<num> than one constant you need to use this option for each.

/E<num> or /e<num> Sets the number of errors that will be displayed. The default
value is 50.

/W<num> or /w<num> Sets the number of warnings that will be displayed. The
default value is 50.

/V<num> or /v<num> Sets the warning level to be used. This determines the type
of warnings to be displayed. The default value is Level 1.

/C or /c Specifies that the .rul file is only to be compiled and that it
is not to be linked. The file created will be an object file with
an .obs extension.

/L or /l Specifies that the specified files be compiled into a script
library. The file created will have an .obl extension.

4723-2 ch12.f.qc 1/16/01 11:10 AM Page 507

The one thing that you cannot do on the command line that you can do in the IDE
is have the compiler treat warnings as errors and prevent compilation of the script.
The /C and /L options cannot be used together. When you use neither the /C nor the
/L option, the default behavior of the compiler is to compile and link, thus creating an
.inx file.

The [filename(s)] parameter on the command line specifies the file or files
that are the target of the action being taken with the compiler. You can specify one
.rul file along with .obs and .obl files. These files do not need to be in the same
position on the command line. They can be separated by one or more of the options
described in Table 12-6. If you specify more than one .rul file, the compiler will
only work with the first one it finds and will skip any subsequent .rul files.

The [@commandfile] parameter is a special file in which you can provide the
compiler with all the other command-line parameters required to perform the com-
pilation activity. This prevents the command line from becoming too long and
unwieldy. The command line using this facility would look like the following:

compile @parameters.txt

A typical parameters.txt file would look like the following:

“D:\Installation Projects\Setups\ScriptTest\Setup.rul”
“/iC:\Program Files\InstallShield\InstallShield for Windows
Installer\Script\Include”
“/iC:\Program Files\InstallShield\InstallShield for Windows
Installer\Script\isrt\Include”
“/iC:\Program Files\InstallShield\InstallShield for Windows
Installer\Script\iswi\Include”
“C:\Program Files\InstallShield\InstallShield for Windows
Installer\Script\iswi\lib\iswi.obl”
“C:\Program Files\InstallShield\InstallShield for Windows
Installer\Script\isrt\lib\isrt.obl”

Note that the option switches are inside the double quotes and that each quoted
string should be on a separate line in the command file.

COMPILER DIRECTIVES
The InstallScript preprocessor is a text processor that manipulates the text of a
script file as the first phase of the compilation process. A number of directives are
recognized by the preprocessor. Some of these directives are called preprocessor
directives and others are called conditional-compilation directives. Some predefined
macros are also defined during the compilation process. These three types of direc-
tives are the subjects of this section.

The preprocessor directives are #include, #define, #undef, #warning, and #error.
The conditional-compilation directives are #if, #ifdef, #ifndef, #else, #elif, and
#endif. The predefined macros are __LINE__, __FILE__, and _ISCRIPT_VER.

508 Part III: Extending the Windows Installer Functionality

4723-2 ch12.f.qc 1/16/01 11:10 AM Page 508

No directive can span more than one line in the script and this line is limited to
a total of 250 characters, including the directive itself. The line on which a directive
is being defined has no terminator. In other words, do not use a semi-colon (;) at
the end of the line defining a directive.

THE #INCLUDE DIRECTIVE The #include directive is a preprocessor directive that
instructs the preprocessor to add the contents of a specified file to the file in which
this directive is contained and at the point at which it appears. This means that the
contents of the specified file replace the directive. The syntax for this directive is as
follows:

#include “path-spec”
#include <path-spec>

The path-spec identifier can be a simple filename or it can include a fully quali-
fied path or a relative path to the file. The syntax of this directive determines the
search algorithm used to find the file when path-spec does not contain a complete
path to its location.

When you use the quoted form, the preprocessor searches for the specified file
in the directory where the file being compiled is located. Then it looks for the file in
the folders specified in the Compile Folders.ini file (if the compiler is being invoked
from the IDE) or in the folders specified by the /I option (if the compiler is being
run from the command line). The angle-bracket form has the same search algorithm
that you use with double quotes. This is different from the implementation in the C
language.

Include files can be nested. This means that a #include directive can appear in a
file that is itself named by a #include directive in another file. When a #include
directive is nested, you need to watch out for a situation where there is a multiple
declaration of a constant, variable, function prototype, or the like. When we discuss
the conditional-compilation directives, you will learn how to avoid this situation.

In InstallScript you will commonly use the #include directive to incorporate dec-
larations as well as script code. Declarations are contained in files with the .h
extension (header files) and script code is contained in files with the .rul extension.
Header files are normally included at the top of the script file and script files are
included at the bottom of the script file. However, if you are including script files
where you are not using all the code, you may want to consider creating a script
library instead. Including the script library as part of your compiler settings will
only statically link that code that is actually used and not all the code in the library.
This gives you a smaller .inx file.

You should only #include header files created with InstallScript since some

of the C/C++ constructs in header files are not supported by the InstallScript

compiler.
Caution

Chapter 12: The ISWI Scripting Environment 509

4723-2 ch12.f.qc 1/16/01 11:10 AM Page 509

THE #DEFINE DIRECTIVE The #define directive gives a meaningful name to a
constant that you are going to use in your program. There is only one construct for
the #define directive, as follows:

#define identifier token-string

The identifier is the name of a constant and wherever in the script code this name
appears the preprocessor replaces it with “token-string.” The only exceptions occur
where the identifier forms part of a comment statement, is part of string, or forms
part of a longer identifier. By convention identifiers are in upper case using the
underscore character (_) to separate words, but they can be any combination of low-
ercase and uppercase letters. You can also use numbers and the underscore charac-
ter to create an identifier, as long as the first character of your identifier is not a
number. You need to limit your identifier to a maximum of 63 characters.

You don’t need a token-string when defining an identifier. If you define an iden-
tifier without providing a token-string, you remove any occurrences of the identi-
fier from the source file where the definition has been made. The identifier is still
defined and you can still test for its existence. When you specify a token-string,
there must be at least one space between it and the identifier. The token-string can
be either a numeric value or a string value. A numeric value can be a decimal num-
ber or a hexadecimal value. To identify a numeric value as hexadecimal you need
to precede the value with 0x so the compiler will know how to treat it. The follow-
ing are valid uses of the #define directive:

#define DEBUG
#define CONSTANT 0xFFFF
#define PATH_LENGTH 260
#define PROGRAM_FILES_FOLDER “C:\\Program Files”

If you redefine a constant within your code, you will get compiler warning
C7502 to tell you that you have a macro redefinition.

THE #UNDEF DIRECTIVE The #undef directive removes the definition of an iden-
tifier previously defined with the #define directive. The syntax for this directive is
as follows:

#undef identifier

This directive removes the current definition of identifier and the preprocessor
ignores further instances of this identifier. If there are any more instances, you will get
compiler error C8025 to tell you that you have an undefined identifier. When you use
the #undef directive, you only provide the identifier and do not add the token-string.

THE #ERROR DIRECTIVE The #error directive produces a compile-time error mes-
sage. When an #error directive is encountered, compilation of the script is ter-
minated.

510 Part III: Extending the Windows Installer Functionality

4723-2 ch12.f.qc 1/16/01 11:10 AM Page 510

The syntax of this directive is as follows:

#error token-string

The argument to the #error directive is an optional string that provides a mes-
sage that describes the reason for the error. There must be at least one space
between the #error directive and the token-string argument. This directive is useful
for detecting constraint violations during the preprocessing of the script. The fol-
lowing is an example of the use of this directive:

#if _ISCRIPT_VER < 0X600
#error “Script compiler version 6.10.100.1265 is required.”
#endif

You cannot use macro expansion in the string-token argument to #error.

THE #WARNING DIRECTIVE The #warning directive is similar to the #error direc-
tive, but it gives a warning and does not terminate compilation unless you have
specified that warnings are to be treated as errors. The syntax for this directive is as
follows:

#warning token-string

As with the #error directive, this directive is useful in detecting pre-defined con-
straints during the preprocessing of the script.

THE #IF, #ELIF, #ELSE, AND #ENDIF DIRECTIVES This set of directives controls
the compilation of portions of the script. The syntaxes for the #if and #elif direc-
tives are as follows:

#if constant-expression
#elif constant-expression

or

#if constant-expression)
#elif (constant-expression)

The constant-expression argument to these two directives can be either an expres-
sion that evaluates to a numeric value or a predefined constant that is a numeric
value. If the expression or constant has a nonzero value, then the lines following the
directive are included in the compilation of the script. Otherwise these lines are not
included in the compilation. Each #if directive must be matched with a closing #endif
directive prior to the end of the file; otherwise you will get an error message.

Chapter 12: The ISWI Scripting Environment 511

4723-2 ch12.f.qc 1/16/01 11:10 AM Page 511

You can use the defined processor operator with the #if and #elif directives. The
syntax for this operator is as follows:

defined(identifier)

In this expression identifier must be a macro. This expression evaluates to TRUE
if identifier is currently defined and to FALSE if it is not defined. The defined oper-
ator can be modified with the unary NOT (!) operator.

The syntaxes for the #else and the #endif directives are as follows:

#else

and

#endif

These two directives do not take any arguments.
One way you can use these directives is to make sure that you do not get macro

redefinition when you have nested include files. The iswi.h header file, with a slight
modification, provides a good example:

#if !defined(_ISWI_H_)
#define _ISWI_H_

#include “ISMsiQuery.h”

external prototype void OnBegin();
external prototype void OnEnd();

NUMBER __hMsiInstall;

#endif // _ISWI_H_

In the preceding code sample the header file ISMsiQuery.h will only be included
once and after that the identifier _ISWI_H_ will show as being defined and the pre-
processor will not include the lines between the #if and the #endif directives.

THE #IFDEF AND #IFNDEF DIRECTIVES These two directives perform the same
function as the #if directive when it is used with the defined (identifier) operator.
The syntaxes for these directives are as follows:

#ifdef identifier

and

#ifndef identifier

512 Part III: Extending the Windows Installer Functionality

4723-2 ch12.f.qc 1/16/01 11:10 AM Page 512

These are equivalent to

#if defined(identifier)

and

#if !defined(identifier)

The example in the previous section would look like this if you were to use these
two directives:

#ifndef _ISWI_H_
#define _ISWI_H_

#include “ISMsiQuery.h”

external prototype void OnBegin();
external prototype void OnEnd();

NUMBER __hMsiInstall;

#endif // _ISWI_H_

THE PREDEFINED MACROS Three predefined macros are generated by the pre-
processor. These are __LINE__, __FILE__, and _ISCRIPT_VER. You can use them
wherever a numeric constant is valid. The __LINE__ expands to be equal to the line
number wherever this macro is located. The following code snippet demonstrates
what this means. (The numbers in the left-hand column represent the line numbers
in the script.)

50 nArg = __LINE__;
51 SprintfBox(INFORMATION, “Title”, “nArg = %d”, nArg);
52 SprintfBox(INFORMATION, “Title”, “Line = %d”, __LINE__);

The first call to SprintfBox will display nArg = 50 and the second call will dis-
play Line = 52. Using the __LINE__ macro can be quite beneficial when you’re
using message box displays to help debug a script. If you are using multiple script
files, it would be handy not only to have the line number printed out but also to
know the name of the file that contains the line number. This is where the __FILE__
macro comes in. The value of the __FILE__ macro is set by the preprocessor to the
name of the file that is being compiled. The name of the file includes the full path
to the file. You can use the __FILE__ macro wherever a string constant can be used.

The final predefined macro is _ISCRIPT_VER, which identifies the version of the
compiler being used. At the time of this writing, the value to which this macro was
expanded was 0x600 hex or 1536 decimal.

Chapter 12: The ISWI Scripting Environment 513

4723-2 ch12.f.qc 1/16/01 11:10 AM Page 513

The debugger
The InstallShield Visual Debugger is a source-level debugger; it displays debugging
controls and your setup script in different panes of the same window. In the script
pane of the window, the statement to be executed next is indicated with a visual
marker, called the execution point.

From the Visual Debugger you can execute your script, statement by statement,
and trace the flow of control by watching the execution point as it moves in the
script pane of the Visual Debugger window. You can also monitor the value of any
variable in your script at any point during script execution. With these methods,
you can more easily identify sources of script error and inefficiency.

LAUNCHING THE DEBUGGER
The debugger is only useful in debugging script run-time errors. You cannot use the
debugger to find the source of any compilation errors. A script that will not com-
pile will not be added to an installation project at build time. You can launch it
from the Build pulldown menu, by pressing the F5 key, or by clicking the Debug
icon in the toolbar. Debugging is made possible during the build by the creation of
the .dbg file. The .dbg file is created when you compile and build from the IDE a
script that is associated with a custom action that you have defined. You must also
have inserted this custom action into a sequence table before you can debug. If no
InstallScript custom action has been defined, this file is not created and no debug-
ging can occur. If an InstallScript custom action has been defined but not inserted
into a sequence table, there is nothing to execute and the debugger will not be
launched. During the build process the linker creates a file with a .map extension.
This file enables you to perform a manual inspection to find out which module’s
version of a function was linked into the final image. Since the .map file is a text
file you can view it using any text editor. This file can be valuable if you are using
a number of different modules and a function with the same name defined is in
more than one module.

When compiling from the command line, you need to remember to include the /G
switch; otherwise the debug information will not be created. When you’re compiling
from the IDE, the .dbg and .map files are created in the Interm folder under the Build
Label folder in your project location. When you compile from the command line
using the /G option, the .dbg and .map files will be created in the same location as
your Setup.rul file. This file is located in the root of your project location.

You can also run the debugger from the command line when you launch an
installation package using msiexec.exe, as shown in the following code:

msiexec /i <msi package> ISSCRIPTDEBUG=1
ISSCRIPTDEBUGPATH=”path to folder where the .dbg file is located”

This functionality allows for remote debugging as long as the debugger has been
registered on the remote machine. To debug a script on a remote machine you need
to copy Isdbg.exe to that machine and run this file with the /REGSERVER command-

514 Part III: Extending the Windows Installer Functionality

4723-2 ch12.f.qc 1/16/01 11:10 AM Page 514

line parameter. This will register this executable on the remote machine. You will
find Isdbg.exe in the Program Files\Common Files\InstallShield\IScript folder. You
will also have to make sure that your MSI package and associated source files are on
the remote machine.

If you embedded the MSI package into Setup.exe, you use the following com-
mand line to launch the installation in debug mode:

setup /v”ISSCRIPTDEBUG=1 ISSCRIPTDEBUGPATH=\”path to folder where
the .dbg file is located\””

Note that the complete command line is enclosed in double quotes and that the
quotes around the path to the .dbg file are preceded with the backslash.

If you are debugging from the command line and the .dbg file is in the

default location as determined by the build, then you do not need to use the

ISSCRIPTDEBUGPATH public variable.

When you launch the installation in debug mode, either from the ISWI IDE or from
the command line, you will get the Debugger interface, as shown in Figure 12-13.

Figure 12-13: The InstallScript Debugger window

Tip

Chapter 12: The ISWI Scripting Environment 515

4723-2 ch12.f.qc 1/16/01 11:10 AM Page 515

THE DEBUGGER USER INTERFACE
The user interface of the Debugger provides three main windows, which provide feed-
back during the debugging process. There are also a menu and toolbar that provide
the command selection that enables you to control the various actions you take while
debugging a script.

THE MENU, TOOLBAR, AND CONTEXT MENU COMMANDS The Debugger inter-
face provides you with six menus: File, Edit, View, Debug, Windows, and Help.
Table 12-7 describes the commands on each of these menus.

TABLE 12-7 DEBUGGER MENU COMMANDS

Menu Option Description

File Open... Opens a text file in read-only mode. You cannot make
changes to a text file when it is displayed
in the script window. The keyboard shortcut for this
command is Ctrl+O.

Close Closes the topmost script window.
Exit Exits the Debugger and shuts down the debugging

process.

Edit Copy Copies a highlighted section of text in the script window
to the clipboard. Within the Debugger you can paste
what you have copied to the clipboard in the Local
Value field of the Variable Window or the Name field
of the watch window. The Paste command is available
from this context menu. The keyboard shortcut for this
command is Ctrl+C.

Find... Brings up a basic dialog for entering the string on
which you want to perform the search. There is no Find
Next functionality so you need to use this command
for repeated searching on the same string. The key-
board shortcut for this command is Ctrl+F.

View Toolbar Toggles the toolbar so that it is either enabled or
disabled and not visible.

Status Bar Toggles the status bar so that it is either enabled
or disabled and not visible.

Watch Toggles the watch window so that it is either
enabled or disabled and not visible.

Variable Toggles the Variable Window so that it is either
enabled or disabled and not visible.

516 Part III: Extending the Windows Installer Functionality

4723-2 ch12.f.qc 1/16/01 11:10 AM Page 516

Menu Option Description

View Options... Displays a property dialog where you can set the
(continued) various properties that determine how the script

window is to display various items. The functionality
of this property dialog is exactly the same as that of
the property dialog available for the script editor.

Debug Go Instructs the Debugger to run the script until it encoun-
encounters a breakpoint. The keyboard shortcut for this
command is F5. (You can use this same keyboard short-
cut to initiate a debugging session from the ISWI IDE.)

Break Inserts a break when the Debugger is running. This
command is only enabled when the Debugger is run-
ning and when this is the case you will see the word
[Run] in the title bar of the Debugger. When you select
the Break command, you might then also see the phrase
[Waiting for a Break] flashing in the title bar. This indi-
cates that the Debugger has not reached the point
where it is going to break — possibly because a modal
dialog has been displayed and the breakpoint is to be
the next executable statement after the dialog. The
keyboard shortcut for this command is the Break key.

Step Into Steps into a user-defined function and traces through
the code that comprises this function. You cannot step
into a built-in function or a Windows API function that
you are calling. The keyboard shortcut for this com-
mand is F11.

Step Over Steps over a user-defined function so that you will not
trace through the code that comprises this function.
The keyboard shortcut for this command is F10.

Step Out Steps out of a user-defined function when you are
finished tracing through the code that comprises this
function. The keyboard shortcut for this command is
Shift+F10.

Run to Runs the Debugger from the current location to the
Cursor location in the script where the cursor has been

placed. When you select this command, a blue circle
is placed in the left margin and the Debugger moves
to this location.

Continued

Chapter 12: The ISWI Scripting Environment 517

4723-2 ch12.f.qc 1/16/01 11:10 AM Page 517

TABLE 12-7 DEBUGGER MENU COMMANDS (Continued)

Menu Option Description

Debug Show Next Moves the cursor to the line of code marked by a
(continued) Statement yellow arrow in the left margin. When you have a large

script, using this command is an excellent way to find
out where you are in the debugging process. The key-
board shortcut for this command is Alt+Num*. (This is
the asterisk on the numeric keypad.)

Toggle Turns on or off a breakpoint for the line where the
Breakpoint cursor is located. The keyboard shortcut for this com-

mand is F9.

Debug Clear All Toggles off all breakpoints that have been set. This
Breakpoints command will not toggle all the breakpoints you have

set back on; you will have to do that breakpoint by
breakpoint. The keyboard shortcut for this command is
Shift+Ctrl+F9.

Break on Causes the Debugger to break whenever an exception
Exceptions is thrown and to break on the line that generated the
exception.

Window Cascade Displays all open script windows so that they overlap.
Tile Tiles all open script windows so that they are all visible

at the same time.
Help Contents Brings up the Debugger help file with the contents

showing.
Index Brings up the Debugger help file with the index

showing.

About IS Brings up a dialog that tells you what version of the
Debugger... Debugger is running.

Eight of the commands described in Table 12-7 can also be executed from the
toolbar if it is enabled. These commands are from the File and Debug pulldown
menus. From the File menu the Open command has been implemented as a toolbar
button. From the Debug pulldown menu the Go, Break, Step Into, Step Over, Step
Out, Show Next Statement, and Toggle Breakpoint commands have been imple-
mented as toolbar buttons. After the Open Toolbar button, the commands on the
toolbar are in the following order (from left to right): Toggle Breakpoint, Go, Break,
Step Into, Step Over, Step Out, and Show Next Statement. When you place the
mouse pointer over a toolbar button, a ToolTip will tell you what the button does.

518 Part III: Extending the Windows Installer Functionality

4723-2 ch12.f.qc 1/16/01 11:10 AM Page 518

If you click your right mouse button in the script window, you will get a context
menu containing three commands: Insert/Remove BreakPoint, Run to Cursor, and
Add to Watch. The Insert/Remove BreakPoint command is the same as the Toggle
Breakpoint command on the toolbar or on the Debug pulldown menu. The Run to
Cursor command is the same as the command of the same name on the Debug
menu. The Add to Watch command is not on any of the pulldown menus or on the
toolbar. This command adds a variable to the watch window. You select the variable
that you want added by placing the cursor somewhere in the variable’s name in the
Script window. You can add any word to the watch window but unless this word is
a variable name the Value field in the watch window will inform you that there was
an error because the symbol could not be found.

THE SCRIPT WINDOW The script window displays your script so that you can
view it as you run it. The next statement to be executed is positioned in the window
and identified by a yellow arrow. Magenta circles appear in the left margin of lines
with breakpoints. A line you have identified by the Run to Cursor command is
marked by a blue circle in the left margin.

The title bar of the script window shows the full name of the file displayed in the
top script window. Also shown in the title bar is the state of the Debugger. This
state can be one of the following: [Break], [Run], or [Waiting for a Break]. Note that
you can scroll the window to any location in your script, but that unlike the script
editor, the Debugger does not offer the Goto command that would allow you to
jump to a specific line number in the script.

The script window scrolls automatically if necessary when you use the Step Into
or Step Over commands to trace through a set of statements. Likewise, when script
execution is halted at a breakpoint, the window scrolls automatically to the loca-
tion of the breakpoint.

The Debugger uses color syntax highlighting to display your script in the Script
window just as the script editor does. The Options... command on the View pull-
down menu will bring up the Properties dialog where you can redefine the colors to
be used to color syntax the tokens in the Debugger script window. Property changes
made in the Debugger script window do not have an impact on the properties set
for the script editor.

When the Debugger is in the [Break] state, the next statement to be executed is
identified by a yellow arrow in the left margin. Often you will have scrolled the
script so that this marker is not in view: you can bring it back into view by using
the Show Next Statement command, which brings the cursor back to the line iden-
tified by this yellow arrow. In a large script this is the way to easily get back to
where the Debugger has stopped.

THE VARIABLE WINDOW The Variable Window displays the values of the local
variables that have been declared in the user-defined function where the Debugger
is presently running. When the Debugger moves out of one user-defined function
into another, the list of variables displayed in the Variable Window will change.

Chapter 12: The ISWI Scripting Environment 519

4723-2 ch12.f.qc 1/16/01 11:10 AM Page 519

Variables declared as structures and lists cannot be inspected in the Variable

and watch windows. The only way to display the values of structure or list

members is to assign the value to a local or global variable: the value of this

variable will then display the value of the member.

In the Variable Window, you can change the displayed value of the local variable.
You get access to the variable’s value by first highlighting the row of the variable
and then left-clicking in the Local Value field. This puts you into an edit mode
wherein you can change the value. When you are in the edit mode, a context menu
is available to you, which you can display by clicking the right mouse button. This
context menu provides the Undo, Cut, Copy, Paste, Delete, and Select All commands.

THE WATCH WINDOW Where the Variable Window provides a complete list of all
the local variables in your user-defined function, the watch window enables you to
choose which variables you want to inspect or watch. You can highlight the first
blank row in the watch window and then left-click to put yourself into edit mode.
You can then type in the name of the variable that you want to watch, which can
be either a local or a global variable.

The easiest way to add a variable to the watch window is to right-click the vari-
able name in the script window and select the Add to Watch command. This will
place the variable’s name into the Name field of the watch window. If the variable
is in scope, the watch window will immediately display the present value assigned
to the variable. If the variable is out of scope, the value in the Value field of the
watch window will display the following error message:

Error: symbol “variable_name” not found.

An important global variable you can set in the watch window is LAST_RESULT.
This variable displays the value returned from the last function call made in the script
and executed by the Debugger. Being a global variable, it does not go out of scope.

TRACING THE EXECUTION OF YOUR SCRIPT
You can use any one of several methods to trace through your script in order to see
what is happening. Most of your debugging will consist of your stepping through
the script one executable line at a time. Your favorite command to use for this pur-
pose will be the Step Over command (the keyboard shortcut is F10). However, there
will be times when you want to get into one of your private functions to see how it
is operating; to do this you will use the Step Into command (the keyboard shortcut
is F11). When you do go into one of your private functions and you want to get out
of it before you reach the end, you will use the Step Out command (the keyboard
shortcut is Shift+F10). If you do go to the end of your private function, use either
the F10 or F11 command to bring you back to the main entry point function.

Tip

520 Part III: Extending the Windows Installer Functionality

4723-2 ch12.f.qc 1/16/01 11:10 AM Page 520

When you want to run to a certain point before you start to execute the code
line by line, you have two choices. You can place the cursor in the script window
where you want to start the step-through operation to begin and then select the
Run to Cursor command. You can also set a breakpoint on the executable line
where you want to begin your step-through operation and then select the Go com-
mand and the Debugger will execute the script up to this point. You can only set
breakpoints on executable lines of script. If you try to set a breakpoint on a non-
executable line, the breakpoint will actually be set on the first subsequent exe-
cutable line. If you want to jump from point to point, set a number of breakpoints
and use the Go command to jump from one to the next.

If you want to jump into a private function, all you have to do is set a break-
point in the function where you want the Debugger to stop. This will take you to
the desired location. If you do not set breakpoints inside the function, the function-
ality will be the same as if you had selected the Step Over command when reaching
the line where the function was called.

If you do not want to set a breakpoint, you can place the cursor in the line where
you want to the Debugger to stop and then select the Run to Cursor command from
either the Debug pulldown menu or the context menu that appears when you click
the right mouse button.

As you are tracing through your script the Variable Window shows the current
values of the variables. You can also change the values of these variables in order
to give yourself a better idea of what is happening. The watch window shows where
you can see how a specific variable or set of variables are behaving during the exe-
cution of your script.

Breakpoints are not saved from one debugging session to another. This

functionality may be provided in some future release of the ISWI product.

Summary
In this chapter, you took a close look at the scripting environment to be found in
InstallShield for Windows Installer. This scripting functionality enables you to cre-
ate custom actions using a language that was specifically developed for performing
installation-related actions. This chapter is a prerequisite to your upcoming study
of the InstallScript language and its capabilities, which are the subjects of the next
two chapters. Then in the final chapter of this part we discuss how to use this
scripting language to create custom actions.

Tip

Chapter 12: The ISWI Scripting Environment 521

4723-2 ch12.f.qc 1/16/01 11:10 AM Page 521

4723-2 ch12.f.qc 1/16/01 11:10 AM Page 522

Chapter 13

Introduction to the
InstallScript Language

IN THIS CHAPTER

◆ Setting up the environment for testing InstallScript

◆ InstallScript data types

◆ InstallScript expressions

◆ InstallScript statements

◆ Built-in InstallScript functions

◆ Creating user-defined functions

◆ Calling functions in a dynamic-linked library

THIS CHAPTER COVERS the basic features of InstallScript, a scripting language that
provides a rich set of data types, expressions, statements, and built-in functions. In
addition, we will cover how to extend the functionality of the language by using
user-defined functions creating functions in a dynamic-linked library. This chapter
serves as a prerequisite for the next chapter, which is about how to use the Install-
Script language to create functional programs.

Setting up an Environment for
Testing the InstallScript Language
As you work through this chapter, you will want to be able to experiment with the
code examples that are provided. To make this easy and efficient, you need to set
up an environment for running scripts and seeing some output. To create this envi-
ronment, start with the ScriptTest project that you created at the beginning of
Chapter 12. The first thing to do with the Setup.rul script is to delete all the “TO
DO:” comment statements along with any other instructional comment statements.
This will cut down on the clutter in your script and make things easier to see. The
next thing you should do is define a string constant CAPTION that will contain the
title text that you will use in your dialog that will provide you with feedback when 523

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 523

you run your scripts. You define this string constant before defining the ScriptTest
entry point function.

In the ScriptTest function you define some string and number local variables
that you will use to run your tests and use as arguments to the SprintfBox function.
In this function you also enter a call to the SprintfBox built-in function. You will
be adding more variables later when you start testing your script examples. For
now this gives you a skeleton with which you can complete the other preparations
required to get this function to execute your scripts.

//
//
// IIIIIII SSSSSS
// II SS InstallShield (R)
// II SSSSSS (c) 1996-2000, InstallShield Software Corporation
// II SS All rights reserved.
// IIIIIII SSSSSS
//
//
// This template script provides the code necessary to build an
// entry-point function to be called in an InstallScript
// custom action.
//
// File Name: Setup.rul
//
// Description: InstallShield script
//
//

#include “isrt.h”
#include “iswi.h”

#define CAPTION “Script Test Feedback”

export prototype ScriptTest(NUMBER);

//
//
// Function: ScriptTest
//
// Purpose: This is the entry point function used to run
// our scripting test examples
//
//
//

524 Part III: Extending the Windows Installer Functionality

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 524

function ScriptTest(hMSI)
STRING szFormat, szValue;
NUMBER nValue;
begin

SprintfBox(INFORMATION, CAPTION, szFormat, nValue, szValue);

end;

You now need to create a custom action using the Custom Action wizard. As you
did in Chapter 11, right-click the Custom Actions icon in the tree view of the Actions/
Scripts view and select the Custom Action Wizard... option. For each of the panels in
this wizard, Table 13-1 shows the values that need to be entered or selected.

TABLE 13-1 CUSTOM ACTION WIZARD ENTRIES

Panel Field Value

Basic Information Name ScriptTest
Comment Custom action for experimenting

with InstallScript

Action Type Type Run InstallScript code
Location Disabled for this type

Action Parameters Source ScriptTest
Target Disabled for this source

Additional Options Wait for the action This check box is checked and
to finish executing cannot be unchecked
Ignore custom action This check box can be checked
return code or left unchecked
In-Script Execution Immediate execution
Execution Scheduling Always execute

The following remarks provide additional information about the Custom Action
Wizard selections that are shown in Table 13-1:

◆ The “Ignore custom action return code” check box can be left unchecked
but for this particular usage of a custom action it doesn’t matter whether
it’s checked or not, because you are only working with the script and not
actually creating custom actions that have return codes.

Chapter 13: Introduction to the InstallScript Language 525

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 525

◆ Since you are not installing anything you need to have this custom action
run in immediate mode.

◆ In this example the Execution Scheduling is left as “Always execute,” but
it would work just as well to have specified that the custom action is to
“Execute only once” or “Execute only once per process.”

What you should now have in your Actions/Scripts view is something that looks
like Figure 13-1. The tree control under the InstallScript icon shows a blue diamond
with the name of the one function that you have in your script. Your ScriptTest cus-
tom action appears under the Custom Actions icon.

Figure 13-1: Actions/Scripts view with defined function

To finish setting up your test environment you need to insert your ScriptTest cus-
tom action into the InstallUISequence. Before you do this, however, you’ll want to
strip this sequence of all other actions and dialogs, so that the only user interface
you have to deal with is the one that the SprintfBox function will display. When you
insert the ScriptTest custom action into the UI sequence, it will be the first and only
action in this sequence. Since you are not running the ExecuteAction action the client
never passes control to the server process. This means that when you click the OK
button on the message box displayed by the SprintfBox function the install process
will terminate and you will not have to waste time canceling the installation. When
you are finished with this manipulation of the InstallUISequence, your sequences
view will look like Figure 13-2.

526 Part III: Extending the Windows Installer Functionality

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 526

This project does not need to have any features or components defined. If it
doesn’t, you will get a warning telling you that there are no files included in the
project. You can ignore this warning for your present purposes. This project was
named ScriptTest. Since you will not be making any changes to the system when
you run our tests you do not have to do anything with respect to the project set-
tings or the setup design.

Figure 13-2: The Sequences view of your InstallScript test project

You now need to run the Release Wizard to create the project that you will con-
tinue to rebuild as you experiment with the InstallScript language. Run the Release
Wizard using a build label of Basic Build and a release name of Version 1.0.0. Take
the defaults all the way up to the Advanced Settings panel and then uncheck all the
check boxes in the Launcher Settings group before completing the build.

Your script test environment is now constructed, so you are ready to look at the
details of the InstallScript language. What you will do to run the test scenarios is to
first compile the script to make sure there are no compile-time errors, and then build
the project using the Build icon on the toolbar, and finally make a test run using the
Test button on the toolbar. Your output will be displayed in a message box created
by the SprintfBox script function. You should now look at the SprintfBox function
and see what its capabilities are.

Chapter 13: Introduction to the InstallScript Language 527

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 527

The SprintfBox script function
This script function is essentially a wrapper around the Windows MessageBox API
and the wsprintf function. The prototype for this function is as follows:

SprintfBox(
NUMBER nType, // message box style
STRING szTitle, // message box title
STRING szFormat, // format-control string
. . . // optional arguments

);

The following describes the parameters to the SprintfBox built-in function:

◆ nType — This specifies the style of the message box to be displayed. A
few InstallScript styles are defined that map to the styles in the Windows
MessageBox API, but you can use many of the styles defined for this API
directly in SprintfBox. In the skeleton code that you created earlier in
the chapter, you used the INFORMATION style, which is an InstallScript-
defined constant. This provides a message box with an icon that has an
i in a circle and one OK button.

You can see the MessageBox API styles that are supported by the Install-
Script compiler by looking in the windefs.h header file. You can also add
the missing style constants to this file, if you wish. You can find the val-
ues for these additional MessageBox styles in the Windows header file
winuser.h. This file comes with both Visual C++ and the Platform SDK.
You’ll find the windefs.h header file in the following location:

Program Files\InstallShield\Script\isrt\Include

◆ szTitle — This is a string that appears as the caption in the title bar of the
message box.

◆ szFormat—This string contains the format by which the values to be dis-
played are formatted. For each argument to be printed you should provide a
compatible format specification to print the value. You can also provide text
in addition to the format specification. If there were no values to be printed,
this format string would contain only text with no format specification. The
format specification is as follows:

%[-][#][0][width][.precision]type

The format specifiers in square brackets ([]) are optional, as with the
wsprintf function. SprintfBox also supports all the fields supported by
this function. Refer to the MSDN Library for a complete description of
the wsprintf function.

528 Part III: Extending the Windows Installer Functionality

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 528

The InstallScript Data Types
A computer’s memory consists of a string of ones and zeros, and for a high-level pro-
gramming language to make sense out of this it needs to know how to interpret the
contents of memory. It does this by declaring that a certain part of memory is to be
interpreted as being a particular type of data, which it does in turn by defining some-
thing called a data type. All high-level languages have a set of primitive data types
and InstallScript is no exception.

Unlike with C language, you cannot assign a value to an InstallScript variable on
the same line where you declare the variable. The InstallScript compiler initializes
all variables to default values and you cannot change these default values by spec-
ifying a value at the point of declaration.

int nArg = 1; // OK in C but an error in InstallScript

InstallScript has three primitive data types, as described in the following list:

NUMBER A four-byte signed integer, which means that it can represent
numbers from –2,147,483,648 to 2,147,483,647. Any variable
declared as a NUMBER type is automatically initialized to zero.

STRING An array of characters with each character being handled as a two-
byte Unicode character on an NT or 2000 machine and as multi-
byte characters on a Win 9x machine. Strings in InstallScript are
handled without the use of a null terminator, which means that
you can have embedded null characters. A null terminator is only
added to a string when it is being passed to a DLL function. Any
variable declared as a STRING type is automatically initialized as
a null string (“”).

VARIANT A special data type that can contain many different types of infor-
mation. You can use a VARIANT data type in place of any of the
other data types in InstallScript. Variables of this type are initial-
ized as Empty, which means that 0 is used if the variable is being
used in a numeric context or a null string (“”) is used if the vari-
able is being used in a string context. The VARIANT data type can
be a convenient way to convert between NUMBER and STRING
variable types.

The InstallScript language has many aliases for these three primitive data types.
These aliases help you remember the purpose for which you are declaring the dif-
ferent variables in your script; they are described in Table 13-2.

Chapter 13: Introduction to the InstallScript Language 529

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 529

TABLE 13-2 INSTALLSCRIPT DATA TYPE ALIASES

Primitive Alias Description

NUMBER BOOL Used to represent the conditions of TRUE or FALSE.
CHAR Used to represent a single character. A character code

fits in the lower byte of the four-byte NUMBER type.
Inside a structure this data type is only one byte in size.

HWND Used to hold the handle to a window and, more generic-
ally, used to hold any handle provided by the Windows
operating system.

INT Used to represent a four-byte signed integer.
LIST Used to identify a LIST that is the InstallScript imple-

mentation of a linked list.
LONG Used to represent a four-byte signed integer.
LPSTR Used as a pointer to a null terminated string.
POINTER Used as a generic pointer.
PSZ Used as a pointer to null terminated string.
SHORT Used to represent a four-byte signed integer. However,

in a structure a variable declared as this data type is
only two bytes in size.

STRING STRING Used to hold a null terminated string of characters.

VARIANT OBJECT Used to hold any of the other types of data, or a
COM object.

As you can see, there are many aliases for the primitive NUMBER data type. You
may be asking yourself how a signed integer, which a NUMBER is, can serve as a
pointer to a location in memory or a handle to a window. Everyone knows that
there is no such thing as a negative memory address or window handle. The answer
is that within InstallScript a pointer can be negative, but when you pass it out to a
function, it is used as the required data type. An integer is just four bytes and an
address is also just four bytes. When you pass a NUMBER variable to a function
that is expecting a pointer argument, the NUMBER variable gets implicitly type cast
to a pointer.

You should note that no floating-point data types are defined for

InstallScript; in this regard it is just like the Windows Installer. No floating-

point data types are used in any of the MSI database tables.

Tip

530 Part III: Extending the Windows Installer Functionality

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 530

It is very important that you use the correct data type that represents the
intended usage of the variable.

It cannot be emphasized enough that you should use the correct data type

for the intended use of a variable. For example, even though the CHAR data

type is presently implemented as an alias for the NUMBER data type, this

may not be the case later on down the line. It is very possible that in future

releases of InstallScript the CHAR data type may be changed to be truly just

one character and not four bytes like it is now. For your code to continue to

compile, you would have to be declaring your data types correctly.

This is so you can be sure that your scripts continue to compile in the future. It
is possible that future versions of the InstallScript language will only allow pointer
types where a pointer type is required. In other words, future versions of the
InstallScript compiler may be made to perform much stricter type checking.

Symbolic constants and variables
In InstallScript we deal with two types of symbols: symbolic constants and vari-
ables. You create symbolic constants using the #define preprocessor directive. They
are either of type NUMBER or of type STRING. You can define a symbolic constant
of type NUMBER by using either decimal or hexadecimal notation. The following
lines of code

#define CONSTANT 65

and

#define CONSTANT 0x41

define the same bit representation for the CONSTANT symbolic constant. The
main points to understand about symbolic constants is first that their values cannot
be changed and second that even though they are in memory someplace you have
no means of accessing that memory. Another important point is that the compiler
does not see symbolic constants. The preprocessor makes all the substitutions in the
code before the compiler begins to parse the code.

Variables provide you with the means to access memory. A variable essentially
gives you a name for a particular location in memory. When you declare a variable,
you have to tell the compiler what its data type is so that it will know how the bits
that comprise that memory are to be interpreted. The compiler also uses the data
type so that it knows how much space in memory the variable is going to occupy.
The data type of a variable is also used by the compiler to perform type checking. To

Caution

Chapter 13: Introduction to the InstallScript Language 531

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 531

create a variable name you can use letters, numbers, and the underscore character
(_), but you cannot start the name with a number. There is no practical limit on the
length of a variable name, but only the first 63 characters of the name are consid-
ered significant in InstallScript. A number of language keywords (as shown in the
following list) are reserved by InstallScript and cannot be used as variable names.

532 Part III: Extending the Windows Installer Functionality

Abort

begin

binary

BINARY

BOOL

BYREF

BYVAL

case

catch

cdecl

CDECL

char

CHAR

default

downto

else

elseif

end

endcatch

endif

endfor

endprogram

endswitch

endwhile

exit

EXIT

external

EXTERNAL

export

EXPORT

for

function

goto

HWND

if

int

INT

LPSTR

LIST

long

LONG

number

NUMBER

object

OBJECT

pointer

POINTER

PSZ

program

prototype

repeat

return

set

short

SHORT

stdcall

STDCALL

step

string

STRING

switch

then

to

try

typedef

until

variant

VARIANT

void

VOID

while

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 532

The following remarks provide specific information about several of the key-
words shown above:

◆ You will use the binary/BINARY keyword when you want to send binary
data to a Windows API. Strings in the script are handled as Unicode but the
string is translated to ANSI before it is passed to the Windows API. Using
this keyword will prevent this translation from occurring when a binary file
is being created or read using APIs such as WriteFile() or ReadFile().

◆ You will use the external/EXTERNAL keyword when you prototype a
function that has been defined in a script library that is being linked
with the .rul file.

◆ You will use the void/VOID keyword when you prototype a function that
does not return a value.

Before we take a closer look at the various data types, let’s discuss some of the
conventions used in creating scripts.

Scripting conventions
There are only a few conventions we need to discuss here: these deal with declaring
variables, naming variables, and using comments and white space in your script.

DECLARING VARIABLES
Many of the data types such as INT also allow the lowercase version int. Both the
uppercase and the lowercase versions mean the same thing and can be used inter-
changeably. Some of the data types such as LIST and HWND must be rendered in
uppercase. By convention, you should declare all variables using the uppercase ver-
sion of the data-type name.

INT nVal; // Use this form
int nVal; // Don’t use this form

As with all coding conventions, the objective here is easier readability of the
script.

VARIABLE NAMING
The most important thing that a good variable name does is let the reader of the
code know the purpose of the data the variable represents. Since variable names in
InstallScript can be up to 63 characters long, you have plenty of opportunity to cre-
ate meaningful names for your variables. A good variable name is a big step toward
self-documenting code. In the InstallScript documentation, the names used for
variables employ a limited Hungarian notation.

Chapter 13: Introduction to the InstallScript Language 533

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 533

The term Hungarian notation comes from the man who invented this con-

vention. His name is Charles Simonyi, one of the senior programmers at

Microsoft, and he happens to be a native of Hungary.

The convention in InstallScript is to use a lowercase prefix that identifies the
data type and a qualifier that describes the purpose of the data held in the variable.
Qualifiers are normally mixed-case names with each word in the variable name
beginning with an uppercase letter. Table 13-3 provides a description of the pre-
fixes commonly used in InstallScript.

TABLE 13-3 COMMON VARIABLE PREFIXES

Prefix Data Type Description

b BOOL A Boolean variable that indicates a condition of either
TRUE or FALSE

c CHAR A variable that represents a single character

h HWND A variable that represents any type of handle used or
returned by a Windows API function

n INT A variable that is a four-byte signed number

l LONG A variable that is a four-byte signed number

p or lp POINTER A value to be used as a pointer; lp stands for long
pointer, a standard identifier used by Windows APIs

sz or str STRING A string that can contain null characters. The sz prefix
has been used in the past to signify a null terminated
string. The str prefix is now the preferred prefix since
strings in InstallScript are no longer null terminated
except when they are passed to a DLL function.

v or obj OBJECT A variable being used as a VARIANT; most of the time
this will be an object created with the CreateObject()
InstallScript API

COMMENTS AND WHITE SPACE
InstallScript uses the same comment statement syntax available in C++. You can
create block comment statements that cover multiple lines if they are surrounded
by the /* and */ identifiers. You can also create in-line or single-line comment

NOTE

534 Part III: Extending the Windows Installer Functionality

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 534

statements by using double slashes (//). InstallScript ignores white space outside of
a string literal, which allows you to provide more readable code. You are encour-
aged to make use of white space and comment statements so that other people will
be able to understand your code more easily.

The pointer data types
I have already shown that all pointer data types in InstallScript are just aliases for
the NUMBER primitive data type. A pointer variable holds the address of another
variable. To be able to work with pointers you need to be able to get the address of
a variable and, having gotten the address, to get the value that the pointer is point-
ing at. To do this you have two special operators: you can use the Address operator
(&) and the indirection operator (*) to get the address of a variable and to get the
value at an address, respectively.

The aliases that declare various types of pointers are POINTER, LPSTR, PSZ,
LIST, and HWND. Actually, HWND is not really a pointer; it is an alias for a loca-
tion in memory. Handles are used in a table where the actual memory address of a
window may change because the operating system is moving things about in order
to make the most efficient use of the memory resource.

We discuss the LIST data type later in this chapter in the section of the same

name, because it plays a special role in the creation of a linked list.

The following code shows the typical use of this data type and the operators pre-
viously mentioned:

function Foo()
INT nArg1, nArg2;
POINTER pArg;
begin

nArg1 = 3;
pArg = &nArg1 ; // Set the variable pArg to point at nArg1
nArg2 = *pArg; // Set nArg2 to be equal to nArg1

end;

You cannot use the indirection operator on the left side of the assignment oper-
ator. The following code would be valid in C but not in InstallScript.

pArg = &nArg1;
*pArg = 3; // This generates an InstallScript compiler error

XREF

Chapter 13: Introduction to the InstallScript Language 535

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 535

You can, however, use the indirection operator when you pass values to a func-
tion, as shown in the following example:

nArg1 = 3;
pArg = &nArg1 ; // Set the variable pArg to point at nArg1

// The following message box will display nArg1 = 3
SprintfBox(INFORMATION, “Script Test”, “nArg1 = %d”, *pArg);

You can have pointers to pointers as long as you dereference them one step at
a time:

function Foo()
INT nArg1, nArg2;
POINTER pArg1, ppArg1, pArg2;
begin

nArg1 = 3;
pArg1 = &nArg1 ; // Set the variable pArg to point at nArg1
ppArg1 = &pArg1; // ppArg is now a pointer to a pointer
nArg2 = **pArg1; // This will cause a compiler error
pArg2 = *ppArg1; // This will work
nArg2 = *pArg2; // nArg2 is now equal to nArg1

end;

You can only use the indirection operator (*) with NUMBER data types.

We will examine pointers in more detail in Chapter 14.

The BOOL data type
A BOOL variable holds either a symbolic constant, either TRUE or FALSE. The fol-
lowing is an example of its use. In this example, szArray is an array of strings of
nSize size and szSearch is a string being searched for in the array.

function Foo()
BOOL bFound;
INT i;
begin

bFound = FALSE;
i = 0;

Caution

536 Part III: Extending the Windows Installer Functionality

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 536

while(!bFound && i<nSize)
if(StrCompare(szArray(i), szSearch) = 0) then

bFound = TRUE;
SprintfBox(INFORMATION, “Search Results”, “The string: %s\n

was found at index: %d”,
szSearch, i);

endif;
i = i + 1;

endwhile;

if(!bFound) then
SprintfBox(INFORMATION, “Search Results”,

“The string %s was not found”, szSearch);
endif;

end;

The TRUE symbolic constant is defined to be 1 and the FALSE symbolic constant
is defined to be 0.

The CHAR data type
The CHAR data type declares variables that will hold single characters; the excep-
tion is when a CHAR data type is declared a member of a structure. Then the size of
the CHAR variable is actually only one byte. You can test the fact that a CHAR is
only one byte within a structure by implementing the following code in a script:

// global declaration
typedef Test
begin

CHAR cArg;
end;

function Foo()
// local declarations in a function
CHAR cArg;
Test test;
INT nArg;
begin

nArg = SizeOf(cArg); // this returns the value of 4

nArg = SizeOf(test); // this returns the value of 1
end;

What this means is that in a structure you can only hold numbers between 0 and
255 in a structure member if it has been declared as being CHAR. As a character, this

Chapter 13: Introduction to the InstallScript Language 537

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 537

structure member will be able to display the complete ASCII character set. Outside of
a structure, a variable declared as CHAR can hold values from –2,147,483,648 to
2,147,483,647. If you assign a CHAR structure member a value larger than 255 or
smaller than 0, the script will still compile but at run time an exception will be
thrown and your script will die.

You can create an array of type CHAR but this would not be the same thing as a
type STRING, which is also an array of characters. The array of type CHAR would
be treated in InstallScript as if it were an array of integers.

The following are all valid ways to assign the letter A to a variable of type
CHAR:

function Foo()
// local variable declarations
STRING szStr;
CHAR cArg;
begin

// string assignment
szStr = “This is A test”;

// a type CHAR variable assignment
cArg = “A”;
cArg = ‘A’;
cArg = szStr[8];

end;

The integer data types
The integer data types are LONG, INT, and SHORT. With one exception, in Install-
Script these each represent a four-byte signed integer. The exception is that a type
SHORT that is a member of a structure will have a size of two bytes, as shown in
the following code:

// global declaration
typedef Test
begin

SHORT sArg;
end;

function Foo()
// local declarations in a function
SHORT sArg;
Test test;
INT nArg;
begin

538 Part III: Extending the Windows Installer Functionality

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 538

nArg = SizeOf(sArg); // this returns the value of 4

nArg = SizeOf(strucTest); // this returns the value of 2
end;

This means that in a structure you can only hold numbers between –32768 and
32767 in a structure member if it has been declared as being SHORT. Outside of a
structure, a variable declared as SHORT can hold values from –2,147,483,648 to
2,147,483,647. If you assign a SHORT structure member a value larger than 32767
or smaller than –32768, the script will still compile but at run time an exception
will be thrown and your script will die.

The STRING data type
The STRING data type is an array of Unicode or multi-byte characters (that is, not
null terminated). The internal implementation of the STRING data type in Install-
Script allows for embedded null characters. As I mentioned before, you cannot
assign a value to a STRING variable on the same line where you have declared the
variable. You can assign a value to a STRING variable as follows:

function Foo()
STRING szStr;
begin

szStr = “This is a string”; // OK in InstallScript
szStr = ‘This is a string’; // Also OK in InstallScript

end;

Of course, in C, you cannot initialize a pointer to an array of characters using
double quotes unless you are doing it at the same time that you are declaring the
variable, and at no time can you initialize a pointer to an array of characters using
single quotes.

When you declare a STRING variable, you can specify a minimum size or you can
leave the variable unsized and let InstallScript automatically size it for you when
you assign it a value. When you specify a minimum size for a string variable, this
variable can still grow as needed. It just cannot get smaller than the minimum size
defined. InstallScript has an auto-size feature that will always resize the length of a
STRING variable to the size required to hold the value assigned. However, a STRING
variable will never be sized smaller than the minimum size specified when the vari-
able was declared. You are only required to set the size of a string when a STRING
variable is a member of a structure. There are also issues relative to string sizing,
when they are being passed to an API exported from a DLL.

Specifying the minimum size of a string variable is done as follows:

function Foo()
STRING szArg[10]; // square brackets are used for string sizing

Chapter 13: Introduction to the InstallScript Language 539

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 539

INT nSize;
begin

szArg = “string”;
nSize = SizeOf(szArg); // nSize will still equal 10

szArg = “This is a string”;
nSize = SizeOf(szArg); // nSize will now equal 16

end;

We will address the specific string-sizing issues with regard to structures and

passing strings to a DLL function in the section “Working with Strings” in

Chapter 14.

The following code describes the string-sizing functionality in InstallScript
where one STRING variable type is given an initial size of 10 and the other variable
is not given an initial size.

// szArg1 has a minimum size of 0
// szArg2 has a minimum size of 10
STRING szArg1, szArg2[10];
INT nArg;

The minimum size of szArg1 is 0 since it was not given an initial size when it
was declared, and the minimum size of szArg2 is 10 since it was initialized with
that size.

nArg = SizeOf(szArg1); // nArg is 0
nArg = SizeOf(szArg2); // nArg is 10

When a STRING variable is assigned a value, it will automatically be sized to fit
the length of the string unless the minimum size of the variable is greater than the
length of the string being used for the initial assignment.

szArg1 = “Test”;
nArg = SizeOf(szArg1); // nArg is 4

szArg2 = “Test”;
nArg = SizeOf(szArg2); // nArg is still 10

szArg1 = “This is a test”;
nArg = SizeOf(szArg1); // nArg is 14

XREF

540 Part III: Extending the Windows Installer Functionality

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 540

szArg2 = “This is a test”;
nArg = SizeOf(szArg2); // nArg is now 14

Resetting the values of szArg1 and szArg2 to a null string resets their sizes to
those used when they were first declared.

szArg1 = “”;
nArg = SizeOf(szArg1); // nArg is 0

szArg2 = “”;
nArg = SizeOf(szArg2); // nArg is 10

Using the Resize operator temporarily redefines the size of the string but a new
assignment operation again redefines their size.

szArg1 = “This is a test”;
Resize(szArg1, 20);
nArg = SizeOf(szArg1); // nArg is 20

szArg2 = “This is a Test”;
Resize(szArg2, 20);
nArg = SizeOf(szArg2); // nArg is 20

szArg1 = “”;
nArg = SizeOf(szArg1); //nArg is 0

szArg2 = “”;
nArg = SizeOf(szArg2); // nArg is 10

These code examples show that when a STRING type variable is declared with-
out an initial size then its minimum size will be 0 and it will continue to be resized
so that it will be able to hold whatever string is assigned to it. Automatic resizing
works in both directions as the size of the text string being used to set the value of
the variable increases or decreases. When a STRING type variable is given a size
when it is declared, this size becomes the minimum size for that variable. All auto-
matic resizing occurs with respect to that minimum size. A STRING variable given
an initial size when it is declared cannot be resized to a length less than this initial
value. Nothing but practical considerations limit the length of a string that can be
assigned to a STRING type variable.

A more detailed description of the use of the SizeOf and Resize operators

will be provided later in this chapter in the section “Expressions.”

XREF

Chapter 13: Introduction to the InstallScript Language 541

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 541

The VARIANT data type
The VARIANT data type in InstallScript can hold either NUMBER or STRING type
information. This is the same VARIANT data type used in Visual Basic. You can use
it to hold a pointer to an OLE automation object.

We can assign the same VARIANT type variable a string value or an integer value.

function Foo()
STRING szArg;
INT nArg;
VARIANT vArg;
begin

vArg = 12345;

// szArg will be equal to the string “1234567890”
szArg = vArg + “67890”;

vArg = “12345”;

// nArg will be equal to the value 80235
nArg = vArg + 67890;

end;

These code examples show that you can use the VARIANT data type in place of
the NumToStr() and StrToNum() InstallScript functions.

In most cases, when you have two VARIANT data types and you want to use
them in an expression, they have to hold the same data type if you are using the +
operator. This operator is overloaded to mean addition in an arithmetic expression
and to mean concatenation in an expression that contains strings. With the follow-
ing variables declared, I’ll demonstrate various combinations of the VARIANT types
vArg1 and vArg2 that work and other combinations that will not work. When both
of the VARIANT data types are assigned string values, using the concatenation
operator can have the result assigned only to a STRING type variable. When both of
the VARIANT data types are assigned integer values, then using the concatenation
operator can have the result assigned only to a STRING type variable.

function Foo()
STRING szArg;
INT nArg;
VARIANT vArg1, vArg2;
begin

542 Part III: Extending the Windows Installer Functionality

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 542

vArg1 = “12345”;
vArg2 = “67890”;

// This will work and give the value of “1234567890” for szArg
szArg = vArg1 + vArg2;

// This will not work and an exception will be thrown
nArg = vArg1 + vArg2;

vArg1 = 12345;
vArg2 = 67890;

// This will work and give the value of 80235 for nArg
nArg = vArg1 + vArg2;

// This will not work and an exception will be thrown
szArg = vArg1 + vArg2;

end;

When the VARIANT data types are assigned an initial value, one with an integer
and the other with a string, then using the + operator can have the result assigned
only to a NUMBER type variable.

vArg1 = 12345;
vArg2 = “67890”;

// This will work and give the value of 80235 for nArg
nArg = vArg1 + vArg2;

// This will not work and an exception will be thrown
szArg = vArg1 + vArg2;

Adding a symbolic constant to the previous expression will provide enough
information to the compiler for it to work.

// This will work and give the value of “8023510”
szArg = vArg1 + vArg2 + “10”;

In the previous statement, vArg1 and vArg2 are first treated as integers and
added together. Then the result of the summation is treated as a string and con-
catenated with the string “10”.

Chapter 13: Introduction to the InstallScript Language 543

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 543

I have mentioned that certain code will throw an exception. We’ll cover

exception handling in Chapter 14.

The LIST data type
InstallScript has a special data type called a LIST. In actuality, this data type is just
a pointer to the header of a doubly linked list that is implemented by the runtime
engine and not by the InstallScript engine. A list can hold either a string or an inte-
ger and as such is something like an array, which also can hold only one type of
data. There are a number of built-in functions in InstallScript that you can use in a
script to create and manipulate lists. Some of these functions work only with lists
that hold strings and others work only with lists that hold numbers. In the next sec-
tion you are introduced to arrays in InstallScript and this new data type should be
used in place of the LIST data type.

The following code shows how to create a string list and add a first member to it.

function Foo()
STRING szArg;
LIST lList;
begin

// You would use the constant NUMBERLIST to create a number list
lList = ListCreate(STRINGLIST);

// Adding the first element you can use either the
//BEFORE constant or the AFTER constant
ListAddString(lList, “This is a string”, BEFORE);

// The following will display this string in a message box
ListCurrentString(lList, szArg);
SprintfBox(INFORMATION, “String List”, “Current Element: %s,

szArg);
end;

There are three types of built-in functions in InstallScript that you can use to
manipulate lists: Those that create and destroy lists, those that search lists, and
those that modify lists. The following tables provide brief descriptions of these
functions. For the detailed descriptions, refer to the online or the printed Function
Reference that comes with InstallShield for Windows Installer.

Table 13-4 lists the functions you can use to create and/or destroy a LIST object.
Where the function name contains an asterisk, you can replace the asterisk by
either the token “String” or the token “Item.” Function names that end with the

XREF

544 Part III: Extending the Windows Installer Functionality

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 544

term “String” work only with lists that contain strings and function names that end
with the term “Item” work only with lists that contain numbers.

TABLE 13-4 FUNCTIONS FOR CREATING AND DESTROYING LISTS

Function Name Description

ListCreate Creates an empty list. Pass it the NUMBERLIST constant if you
want a number list or the STRINGLIST constant if you want a
list that holds strings. This function returns a handle to an initial-
ized list header. You use this pointer as a parameter to all of the
other list functions.

ListAdd* Adds either a number node or a string node to the list, depending
on which variation of the function you use. You cannot add a
number node to a string list or a string node to a number list. With
this function, you can add the new node either before or after the
node defined in the header as the current node in the list.

ListReadFromFile Adds strings to a string list by reading in the values from a text
file. Each line in the text file delimited with a new line and
carriage return creates one node for the target string list. There
is no similar function for number lists, but you could create one
in InstallScript.

ListDestroy Frees up the memory used by the list header and all the nodes that
have been created.

Table 13-5 lists those built-in functions you can use to search and access a list
once it is created.

TABLE 13-5 FUNCTIONS FOR SEARCHING AND ACCESSING LISTS

Function Name Description

ListCount Returns the number of elements in the list.

ListCurrent* Depending on the variation used, returns as a parameter either the
number value or the string value stored in the element identified
in the list header as the current node.

Continued

Chapter 13: Introduction to the InstallScript Language 545

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 545

TABLE 13-5 FUNCTIONS FOR SEARCHING AND ACCESSING LISTS (Continued)

Function Name Description

ListGetFirst* Depending on the variation used, returns as a parameter either the
number value or the string value stored in the element identified
in the list header as the first node in the list.

ListGetNext* Depending on the variation used, returns as a parameter either the
number value or the string value stored in the element that comes
directly after the node identified in the header as the current node.
This node is then set as the new current node.

ListGetType An undocumented function that returns the list type of the list
identifier (pointer) that is passed to it as a parameter. The return
value will be equal to either NUMBERLIST or STRINGLIST.

ListFind* Depending on the variation used, searches for either a specified
number or a string in the list. If found, this element is then set
as the new current node. The search for a string in a string list
is case-sensitive. It starts from the node identified in the list
header as the current element. The search will stop when the
first matching element is found.

ListSetIndex Makes a certain element the current element, based on the index
that is passed. This function enables you to traversal the list using
special constants. Since a list is implemented as a doubly linked
list you can traverse the list both forward and backward one
element at a time using the appropriate constants in place of
the index value. The list index is zero-based.

ListWriteToFile Writes the contents of a string list to a text file. Each element in
the list is created in the text file as a separate line.

Finally, Table 13-6 lists the functions you can use to modify a list after it has
been created.

TABLE 13-6 FUNCTIONS FOR MODIFYING LISTS

Function Name Description

ListSetCurrent* Depending on the variation used, enables you to change either the
value of the number or the string contained in the current element.

546 Part III: Extending the Windows Installer Functionality

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 546

Function Name Description

ListDelete* Depending on the variation used, enables you to delete either the
current number or the current string element. It only deletes the
current element and not the list. Even if you were to delete all the
elements in the list you would still need to delete the list header
using the ListDestroy() function.

You will notice that there are no specific functions you can use to directly

sort a list.We discuss the implementation of a simple algorithm for sorting a

list in the section “Working with Lists and Arrays” in Chapter 14.

The array data type
An array is a collection of values of a specific data type. You can create arrays of
any of your primitive data types and you can even create arrays of structures and
lists if you have a mind to do so. An array performs much the same function as
does a LIST data type but it does not have or need a set of functions to manipulate
it. All you need is an index to either set or get values in the array. Lists are better
performing than arrays if you do a lot of inserts and deletions into the list while
arrays outperform lists when it comes to random access.

You can declare an array with a defined size or without giving it an initial size.
You can then use the Resize operator to change the size of the array if you want it
to grow or shrink. Just as in the C language the indexing of an array is zero-based.
The following code shows how to declare and work with arrays.

function Foo()
INT nArray(); // No initial size given to the integer array
begin

// Size the array so that it can hold 5 values
Resize(nArray, 5);

nArray(0) = 0;
nArray(1) = 1;
nArray(2) = 2;
nArray(3) = 3;
nArray(4) = 4;

// The following will display the value of 4 in the message box
SprintfBox(INFORMATION, “Script Test”, “Value: %d”, nArray(4));

end;

XREF

Chapter 13: Introduction to the InstallScript Language 547

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 547

You need to be careful when using the Resize operator since you can make your
array smaller and lose some or all of your data, as shown in the following code.

function Foo()
INT nArray(); // No initial size given to the integer array
begin

// Size the array so that it can hold 5 values
Resize(nArray, 5);

nArray(0) = 0;
nArray(1) = 1;
nArray(2) = 2;
nArray(3) = 3;
nArray(4) = 4;

Resize(nArray, 4);

// The following will throw an exception since nArray(4)
// no longer exists
SprintfBox(INFORMATION, “Script Test”, “Value: %d”, nArray(4));

end;

If in the preceding code you make the array smaller and then larger again, the
data is lost and the lost value is reset to 0, as shown in the following code.

Resize(nArray, 4);
Resize(nArray, 5);

// The following will display the value of 0 in the message box
SprintfBox(INFORMATION, “Script Test”, “Value: %d”, nArray(4));

The array data type in InstallScript is limited to a single dimension. This means
that you cannot declare an array as follows:

INT nArray(2)(5); // This will give you a compiler error

An array is most useful when it represents a table and you want to perform a table
lookup based on an index number. It also lends itself to the use of hashing algo-
rithms, which provide very efficient access to the desired value in the table or array.

We’ll complete our look at the InstallScript data types by looking at the one data
type that permits you to store different primitive data types as a unit. This is the
structure data type.

548 Part III: Extending the Windows Installer Functionality

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 548

The structure data type
A structure creates a user-defined data type that collects related elements together;
these elements can consist of variables that are of different primitive types. This
goes beyond the abilities of the LIST and array data types, which can only collect
together elements of the same primitive data type. To define a structure you need to
use the typedef keyword and create a block that is defined by the begin and end
keywords. To create a structure that defines a geometrical point you would do the
following:

typedef POINT
begin

INT x;
INT y;

end;

To declare a variable of this type and assign it a value you would do this:

function Foo()
POINT point;
begin

point.x = 2;
point.y = 3;

end;

To access the members of this structure you have used the structure member
operator, which is a period (.). You can define a structure where the members of
that structure are themselves structures. You could create a RECTANGLE structure
that consisted of two POINT structures, as follows:

typedef POINT
begin

INT x;
INT y;

end;

typedef RECTANGLE
begin

POINT top_left;
POINT bottom_right;

end;

Chapter 13: Introduction to the InstallScript Language 549

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 549

Using the structure member operator, you can define a RECTANGLE variable
Rect and assign it values that define it as a 2 ×2 square, as shown below:

function Foo()
RECTANGLE Rect;
begin

Rect.top_left.x = 2;
Rect.top_left.y = 1;
Rect.bottom_right.x = 4;
Rect.bottom_right.y = 3;

end;

The following is a structure definition that represents a row in the Feature table.
This lets you see how you can use different primitive data types to define a structure
and what rules some of these primitive data types need to follow. There are eight
columns in the Feature table. The data types of five of these columns are text strings
of varying lengths and the other three columns are two-byte integers. You will use
the STRING data type for the text string attributes and the SHORT data type for the
two-byte integer attributes. Remember from the previous discussion on these data
types that any variable declared in a structure as a STRING must be given a size, and
that the SHORT data type inside of a structure has a size of two bytes.

typedef FEATURE_TABLE
begin

STRING Feature[32];
STRING Feature_Parent[32];
STRING Title[64];
STRING Description[255];
SHORT Display;
SHORT Level;
STRING Directory_[72];
SHORT Attributes;

end;

Instead of accessing the members of this structure with the structure member
operator, you will declare a pointer to this structure and access the members using
the structure pointer operator, which is a dash followed by the greater-than symbol
(->). You declare a pointer to a structure by writing first the name of the structure
followed by the POINTER data type identifier, and then the declared name of the
structure.

FEATURE_TABLE Feature_Row3;
FEATURE_TABLE POINTER pFeature_Row3;

550 Part III: Extending the Windows Installer Functionality

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 550

You now have to assign an initial value to the pointer variable so that it points
at the Feature_Row1 structure.

pFeature_Row1 = &Feature_Row1;

Now, using the structure pointer operator, you will assign values to members of
the structure appropriate for the ShapeDraw_Feature feature created for the ISWI
Artist application.

pFeature_Row3->Feature = “ShapeDraw_Feature”;
pFeature_Row3->Feature_Parent = “Main_Feature”;
pFeature_Row3->Title = “Shape Drawing”;
pFeature_Row3->Description = “This feature allows the user of” +

“ the application to draw” +
“ the \”Hello ISWI\” string” +
“ inside various geometric shapes”;

pFeature_Row3->Display = 8;
pFeature_Row3->Level = 100;
pFeature_Row3->Directory_ = “INSTALLDIR”;
pFeature_Row3->Attributes = 8;

A structure can contain a POINTER variable that points at a variable of its own
type. This enables you to create a linked list where the nodes can be used to store
data of different types. This is more robust than the linked list implemented by the
LIST data type but to create a linked list using a structure you would need to create
all your own functions for manipulating this linked list. A node in a linked list is
implemented as follows:

typedef tagNODE
begin

STRING string_data;
INT integer_data;
tagNODE POINTER pNext; // pointer to next element in the list
tagNODE POINTER pPrev; // pointer to the previous element in

// the list
end;

You could use this type of definition for a linked list node to implement a dou-
bly linked list.

It is now time to move on and discuss the creation of valid expressions in Install-
Script. Here is where we look at the various operators and how to use them in gener-
ating expressions.

Chapter 13: Introduction to the InstallScript Language 551

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 551

Expressions
An InstallScript expression is composed of some number of operands and optional
operators, the number of each depending on the type of expression being formed.
Variable names, array names, constants, function calls, array references, and struc-
ture references are all expressions. Applying a unary operator to one of these
expressions is also an expression. Combining two or more expressions with a
binary operator generates another expression.

An expression that can be assigned a value is called an lvalue. An lvalue is used
on the left-hand side of an assignment expression but it can be on the right-hand
side as well if the expression is returning the value of an address. An expression
that can provide a value is called an rvalue. An rvalue has to be on the right-hand
side of an assignment expression and since it can be a constant, it does not have to
have an address associated with it.

We will now look at the various types of expressions you can form using
InstallScript.

Arithmetic operators
There are five arithmetic operators in InstallScript, as shown in Table 13-7.

TABLE 13-7 ARITHMETIC OPERATORS

Operator Function Usage Description

* Multiplication x * y: Multiplies the expressions x and y

/ Division x / y: Divides expression x by expression y

% Remainder or x % y: Provides the remainder of the division of
modulus integer expression x by integer expression y

+ Addition x + y: Adds the value of expression x to the value
of expression y

- Subtraction x – y: Subtracts the value of expression y from
the value of expression x

Keep in mind that all numerical operations in InstallScript are integer opera-
tions. Therefore, division will truncate the result and not round the result to the
closest value.

552 Part III: Extending the Windows Installer Functionality

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 552

For example:

function Foo()
INT nResult;
begin

nResult = 5/2; // Here nResult will equal 2
end;

As I mentioned before, in InstallScript you are working with signed integers, so
when performing operations on large numbers you need to be careful that you are
not making the number go negative when you do not want it to. See the following
code.

function Foo()
INT nResult;
begin

nResult = 3000000000;

// nResult interpreted as -1294967296
SprintfBox (INFORMATION, CAPTION, “nResult = %d”, nResult);

nResult = nResult/2;

// nResult interpreted as -647483648
SprintfBox (INFORMATION, CAPTION, “nResult = %d”, nResult);

nResult = 1500000000;

// nResult interpreted as 1500000000
SprintfBox (INFORMATION, CAPTION, “nResult = %d”, nResult);

end;

An arithmetic expression is most commonly used on the right-hand side of the
assignment operator, but it can also be used wherever a logical statement is
expected, such as in an if statement or a while statement. Arithmetic statements
can also be combined with the logical operators, which are discussed in the follow-
ing section.

Relational and logical operators
Relational and logical operators create expressions that evaluate to TRUE or FALSE.
These operators are outlined in Table 13-8.

Chapter 13: Introduction to the InstallScript Language 553

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 553

TABLE 13-8 RELATIONAL AND LOGICAL OPERATORS

Operator Function Usage Description

! logical NOT !x: Evaluates to FALSE if expression x is TRUE and
evaluates to TRUE if expression x is FALSE

< less than x < y: Evaluates to TRUE if expression x is less than
expression y: otherwise it evaluates to FALSE

<= less than or x <= y: Evaluates to TRUE if expression x is less
equal than or equal to expression y; otherwise it

evaluates to FALSE

> greater than x > y: Evaluates to TRUE if expression x is greater
than expression y; otherwise it evaluates to FALSE

>= greater than x >= y: Evaluates to TRUE if expression x is greater
or equal than or equal to expression y; otherwise it

evaluates to FALSE.

= equality x = y: Evaluates to TRUE if expression x is equal to
expression y; otherwise it evaluates to FALSE.

!= inequality x != y: Evaluates to TRUE if expression x is not
equal to expression y; otherwise it evaluates to
FALSE.

&& logical AND x && y: Evaluates to TRUE if both expression x
and expression y are TRUE; otherwise it evaluates
to FALSE.

|| logical OR x || y: Evaluates to TRUE if either or both expression
x or expression y are TRUE; if both expressions are
FALSE it evaluates to FALSE.

When you’re creating a logical expression in InstallScript, any expression that
evaluates to something other than 0 will be considered TRUE. Because the equality
operator is the same as the assignment operator, you cannot use an assignment
operation where a logical expression is expected. If you try this, the compiler will
treat the assignment as a check on equality and your variable will not be assigned
a value.

554 Part III: Extending the Windows Installer Functionality

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 554

As I mentioned before, the equals sign (=) can both assign a value to a vari-

able and evaluate the equality of two expressions. Even in an expression that

you would not think is assessing equality you will get some unexpected

results.Take a look at the following code:

function Foo()
INT x, y, z;
begin

x = y = z = 1;
end;

You might think that you have just assigned the value of 1 to all three vari-

ables.What actually happens is that this statement is evaluated like this:

x = (y = (z = 1));

First z is evaluated to determine if it is equal to 1: the result is FALSE so the

expression z = 1 evaluates to FALSE, which is 0.Then the expression y = 0 is

evaluated: this evaluates to TRUE or 1 since it is initialized as 0.The variable x

is then set equal to the result of the y = 0 relational expression which is 1.

When you are using the AND (&&) logical operator, both expressions must be
TRUE for the logical expression to evaluate to TRUE. When you are using the OR
(||) logical operator, then only one of the associated expressions must be TRUE for
the logical expression to evaluate to TRUE. The logical NOT (!) operator evaluates
to TRUE when its operand is FALSE or 0 and to FALSE if the operand is other than
0 or is TRUE.

Evaluation of logical expressions is performed from left to right. In addition,
arithmetic operators have a higher precedence than relational and logical operators
do. See the following code:

function Foo()
INT a, b, c, d, e;
begin

a = 14;
b = 2;
c = 3;
d = 4;

// This if statement will evaluate to TRUE and the
// assignment statement will be executed since c *d
// gets evaluated first then its value is added
// to the value of b then the relationship is evaluated.
if(a = b + c * d) then

Caution

Chapter 13: Introduction to the InstallScript Language 555

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 555

e = 5;
endif;

end;

I recommend that you make liberal use of parentheses to make this type of expres-
sion more readable. A liberal use of parentheses becomes very important when you
are creating compound relational tests. For an example, see the following code:

function Foo()
INT a, b, c, d;
begin

a = 2;
b = 2;
c = 3;

// Here the if statement evaluates to FALSE
if(!a = c-b) then

d = 5;
endif;

// Here the if statement evaluates to TRUE
if(!(a = c-b)) then

d = 5;
endif;

end;

You can use function calls in a logical statement. Using a remainder (modulus)
operator to get the remainder of a division operation you can determine whether a
number is odd or even.

// Here the return value from taking the modulus would be 1
// so the number is odd
if((5%2)=0)then
SprintfBox (INFORMATION, CAPTION, “Even”);
else
SprintfBox (INFORMATION, CAPTION, “Odd”);
endif;

In this if statement, I have made an explicit comparison between the result of the
modulus operation and 0. You can use a shorthand approach by using the NOT log-
ical operator, as shown below:

// If the return value from the modulus operation is
// non-zero then the NOT operator
// would make the if statement FALSE so the

556 Part III: Extending the Windows Installer Functionality

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 556

// else block would get executed. If the number being tested
// was even then the NOT operator would make the if statement
// TRUE and the first block would be executed
if(!(5%2))then

SprintfBox (INFORMATION, “Script Test”, “Even”);
else

SprintfBox (INFORMATION, “Script Test”, “Odd”);
endif;

It’s very easy to use the relational operators such as the operator less-than or the
inequality operator. You just want to remember to use parentheses to make sure
you are getting the evaluation of the conditional statement that you are expecting.

The SizeOf and Resize operators
The SizeOf operator finds the size of variables and structures and the Resize opera-
tor modifies the size of strings and arrays. The syntax of the SizeOf operator is as
follows:

NUMBER SizeOf(variable name);

You cannot use this operator to return the size of a data type such as INT, CHAR,
or the like. You first have to declare a variable of this type and then set its size. If
you set the size of an array, the SizeOf operator will return the number of elements
in the array and not the number of bytes of memory being used. For example:

function Foo()
INT nArray(20), nSize;
begin

// nSize is set to 20
nSize = SizeOf(nArray);

end;

When you use the SizeOf operator with a VARIANT data type, the VARIANT
variable must contain an array or a structure or it will throw an exception.

function Foo()
INT nArray(20), nSize;
VARIANT vVariant;
begin

vVariant = nArray;

// nSize is set to 20
nSize = SizeOf(vVariant);

Chapter 13: Introduction to the InstallScript Language 557

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 557

vVariant = “This is a string”;

// This throws an exception
nSize = SizeOf(vVariant);

end;

The Resize operator has the following syntax:

NUMBER Resize(array or string name, new size)

You can use this operator as follows to set the size of an array that was declared
without a size:

function Foo()
INT nArray(), nSize;
begin

// This sets the size of nArray to 20
// and returns the value of 20 to nSize
nSize = Resize(nArray, 20);

end;

You can also use the SizeOf operator with the Resize operator to set the size of
one array to be equal to the size of another array.

function Foo()
INT nArray1(20), nArray2();
begin

// This sets the size of nArray2 to be equal
// to the size of nArray1
Resize(nArray2, SizeOf(nArray1));

end;

When trying to resize a string variable for which a minimum size was set when
it was declared, be aware that you cannot resize it to a size below the established
minimum. If you attempt to resize an array below the size specified when the vari-
able was declared, it is a no-op so no harm is done. However, the size returned
by the Resize operator will be the new size that you specify, but if this size is less
than the minimum size, this value will be incorrect.

function Foo()
INT nSize;
STRING szStr[10];
begin

szStr = “ABCDEFGHIJKLMNOPQRSTUVWXYZ”;

558 Part III: Extending the Windows Installer Functionality

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 558

// Here the string is resized down to 15
// and the last letter contained is O
nSize = Resize(szStr, 15);

// This gives the size of the string as 15
// and this is good
nSize = SizeOf(szStr);

// Here the string is left at a size of 15
// but the value of nSize is 9 which is incorrect
nSize = Resize(szStr, 9);

// This gives the size of the string as 15
nSize = SizeOf(szStr);

end;

The Bitwise Operators
A bitwise operator views its operand or operands as a collection of bits. Each bit
can contain a value of either 0 or 1. Using these bitwise operators, you can test
and/or set individual bits to one of the two allowed values. Table 13-9 shows the
bitwise operators implemented in InstallScript.

TABLE 13-9 BITWISE OPERATORS

Operator Function Usage Description

~ bitwise NOT ~x: Does a NOT on each bit in expression x. This
converts all 1s to 0s and all 0s to 1s.

<< left shift x << n: Shifts all the bits in expression x n places
to the left and fills in the bits on the right side
with 0s.

>> right shift x >> n: Shifts all the bits in expression x n places to
the right and fills in the bits on the left side with
the bit that is in the sign bit location.

& bitwise AND x & y: Compares each bit in expression x with the
bit in the same position in expression y; if both bits
are 1 then the resultant bit at that position will be
set to 1; otherwise the bit will be set to 0.

Continued

Chapter 13: Introduction to the InstallScript Language 559

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 559

TABLE 13-9 BITWISE OPERATORS (Continued)

Operator Function Usage Description

^ bitwise XOR x ^ y: Compares each bit in expression x with the
(exclusive OR) bit in the same position in expression y; if either

bit but not both is 1 then the resultant bit at that
position will be set to 1; otherwise the bit will be
set to 0.

| bitwise OR x | y: Compares each bit in expression x with the
(inclusive OR) bit in the same position in expression y; if either

or both bits are 1 then the resultant bit at that
position will be set to 1; otherwise the bit will
be set to 0.

One of the primary uses of the bitwise operators is to store large amounts of
information in a small space. They do this by creating what are called bit flags
wherein each bit in an integer can be set or not set, and this state can be used to
signify a certain action to be taken. Also, shifting bits left or right is a very fast way
to multiply or divide a number by 2n.

You can use the bitwise AND operator in masking operations to set specific bits
of a data item to 0 and preserve other bits of the data.

function Foo()
INT nVal1, nVal2;
begin

nVal1 = 25;

// nVal2 will equal 9
nVal2 = nVal1 & 77;

end;

The following code demonstrates the effect of the bitwise inclusive OR operator.
The major effect is that it will preserve all the bits of both operands.

function Foo()
INT nVal1, nVal2;
begin

nVal1 = 25;

// nVal2 will equal 93
nVal2 = nVal1 | 77;

end;

560 Part III: Extending the Windows Installer Functionality

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 560

The bitwise exclusive OR operator has the property that if a value is exclusive
OR’d with itself it will always produce 0 as the result. In addition, the exclusive bit-
wise OR can do a swap without the use of a temporary variable. See the following
for an example:

function Foo()
INT nVal1, nVal2;
begin

nVal1 = 25;
nVal2 = 50;

nVal1 = nVal1 ^ nVal2;
nVal2 = nVal2 ^ nVal1;
nVal1 = nVal1 ^ nVal2;

// In the message box nVal1 will show as 50 and
// nVal2 will show as 25
SprintfBox(INFORMATION, “Script Test”,

“nVal1 = %d\nnVal2 =%d”, nVal1, nVal2);
end;

The bitwise left-shift operator shifts the bits to the left and inserts 0s on the right.
The effect of shifting is to multiply the value by 2n where n is the number of places
that the bits are shifted to the left. However, because you are dealing with signed
integers in InstallScript, this will only work until the sign bit becomes 1 and then the
number turns negative. If you shift enough spaces, the number will become 0.

function Foo()
INT nVal1, nVal2;
begin

nVal1 = 1;

// nVal2 is equal to 1073741824
nVal2 = nVal1 << 30;

// nVal2 is equal to -2147483648
nVal2 = nVal1 << 31;

// nVal2 is equal to 0
nVal2 = nVal1 << 32;

end;

The bitwise right-shift operator shifts bits to the right and inserts 0s on the right
if the number is positive and 1s on the right if the number is negative. This is what
is known as a logical right shift.

Chapter 13: Introduction to the InstallScript Language 561

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 561

function Foo()
INT nVal1;
begin

nVal1 = 1;

// nVal1 is now equal to -2147483648
nVal1 = nVal1 << 31;

// nVal1 is now equal to -1
nVal1 = nVal1 >> 31;

// nVal1 is now back to 1
nVal1 = nVal1 ^ -2;

end;

Operator precedence
Precedence of operators in InstallScript is the same as in the C language. Table
13-10 summarizes each InstallScript operator, its precedence, and its associativity.

TABLE 13-10 SUMMARY OF INSTALLSCRIPT OPERATORS AND THEIR PRECEDENCES

Operator Description Associativity

() Function call Left to right

[] Array element reference

-> Pointer to structure member reference

. Structure member reference

- Unary minus Right to left

! Logical negation

~ Ones complement

* Pointer indirection

& Address

SizeOf Size of an object

Resize Resize an object

* Multiplication Left to right

/ Division

562 Part III: Extending the Windows Installer Functionality

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 562

Operator Description Associativity

% Modulus

+ Addition Left to right

- Subtraction

<< Left shift Left to right

>> Right shift

< Less than Left to right

<= Less than or equal to

> Greater than

>= Greater than or equal to

= Equality Left to right

!= Inequality

& Bitwise AND Left to right

^ Bitwise XOR Left to right

| Bitwise OR Left to right

&& Logical AND Left to right

|| Logical OR Left to right

= Assignment Right to left

Statements
A statement is the smallest independent unit in an InstallScript. It is any valid
expression followed by a semicolon, or it is one of the special statements such as
a label. Most commonly, a simple statement is an assignment or a function call.
A compound statement is a sequence of statements enclosed by the begin and
end keywords. Statements are executed in the order in which they occur, unless
special flow-of-control statements change this sequential order. These special flow-
of-control statements allow for the conditional or repeated execution of expres-
sions. The conditional execution of statements is implemented by the if, if-else, and
switch compound statements. The repeated execution of statements is implemented
by the for, while, and repeat statements. The following sections address those state-
ments supported by InstallScript.

Chapter 13: Introduction to the InstallScript Language 563

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 563

The if and if-else statements
An if statement places conditions on the execution of a statement or group of state-
ments. There are a number of different constructs of the if statement, all of which
will be discussed here. The general format of the simplest of these constructs is as
follows:

if[(]expression [)] then
program statement(s);

endif;

When expression evaluates to a numerical value different from 0, the program
statements within this block are executed. The parentheses around expression are
optional but using them will make the program much more readable.

function Foo()
INT nVal;
begin

// This will produce the absolute value of nVal
if(nVal < 0)then

nVal = -nVal;
endif;

end;

In the majority of situations you will want to do something else if expression
does not evaluate to a non-0 value. For this reason, we have the if-else construct.
The general format for this construct is as follows:

if(expression) then
program statement(s); // executed if expression is non-zero

else
program statement(s); // executed if expression is zero

endif;

One situation in which you might use this construct was already mentioned in
this chapter: you want to determine whether a number is even or odd.

if(!5%2)then
SprintfBox (INFORMATION, CAPTION, “Even”);

else
SprintfBox (INFORMATION, CAPTION, “Odd”);

endif;

In these constructs you can see that any valid statement within the confines
of an if or if-else statement is permitted. This means that you can have an if or an

564 Part III: Extending the Windows Installer Functionality

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 564

if-else statement, thus nesting the if or if-else constructs. The general format for
this type of construct is as follows:

if[(]expression [)] then
if(expression) then

program statement(s);
else

program statement(s);
endif;
else // This else belongs to the outside if statement

if(expression) then
program statement(s);

else
program statement(s);

endif;
endif;

There is no practical limit in InstallScript as to the level to which you can nest
these statements. I have tested a nested if statement that was 30 levels deep and
found no problems when I compiled or ran it. However, because it is very common
to create a decision based on more than just executing one set of code when a con-
dition is true and another set of code when the condition is false a special construct
is available to you. This is the elseif construct and its general format is as follows:

if(expression1) then
program statement(s); // executed if expression1 is non-zero

elseif(expression2)then
program statement(s); // executed if expression2 is non-zero

else
program statement(s); // executed if expression1 and

// expression2 are both zero
endif;

You could use the elseif construct to count the vowels, consonants, and spaces in
a string variable, as shown in the following example.

function Foo()
INT nSize, nIndex;
INT aCnt, eCnt, iCnt, oCnt, uCnt, conCnt, spCnt;
STRING szStr;
begin

szStr = “This is a string”;
nSize = SizeOf(szStr);

Chapter 13: Introduction to the InstallScript Language 565

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 565

for nIndex = 0 to nSize-1
if(szStr[nIndex] = ‘a’ || szStr[nIndex] = ‘A’)then

aCnt = aCnt + 1;
elseif(szStr[nIndex] = ‘e’ || szStr[nIndex] = ‘E’)then

eCnt = eCnt + 1;
elseif(szStr[nIndex] = ‘i’ || szStr[nIndex] = ‘I’)then

iCnt = iCnt + 1;
elseif(szStr[nIndex] = ‘o’ || szStr[nIndex] = ‘O’)then

oCnt = oCnt + 1;
elseif(szStr[nIndex] = ‘u’ || szStr[nIndex] = ‘U’)then

uCnt = uCnt + 1;
elseif(szStr[nIndex] = ‘ ‘)then

spCnt = spCnt + 1;
else

conCnt = conCnt + 1;
endif;

endfor;
end;

When you create a long chain of elseif statements like this, they can be hard to
read and might cause errors when they have to be modified. A better way to accom-
plish the same thing is to use the switch statement. You can use a switch statement
if the values being tested are any of the InstallScript data types. Before we move on
to the switch statement, however, which is the subject of the next section, there is a
special version of the if statement in InstallScript you should know about: the if with
the goto statement. The general format for this construct is as follows:

if [(]expression [)] goto labelname

In this construct, if expression evaluates to non-zero then program execution
will jump to the line containing labelname. A label is an identifier followed by a
colon. The section on the goto statement addresses this subject in more detail.

The switch statement
The switch statement is another way to choose between two mutually exclusive
options. The switch statement is considered by many to be superior to the elseif
statement for implementing this type of functionality. It is more readable and eas-
ier to maintain than a long chain of elseif statements. The general format of the
switch statement is as follows:

switch(expression)
case value1[, valuen]:

program statement(s);
case value2[, valuen]:

566 Part III: Extending the Windows Installer Functionality

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 566

program statement(s);
case value3[, valuen]:

program statement(s);
case value4[, valuen]:

program statement(s);
default:

program statement(s);
endswitch;

The switch statement shown here consists of the switch keyword followed by an
expression in parentheses. It is the result of this expression that will be evaluated
by the switch statement. Following the switch keyword is a set of case labels fol-
lowed by a constant expression or expressions delimited by commas. The constant
expression(s) are compared against the result of the switch expression and the
success of the comparison determines which program statements are executed. Just
before the endswitch statement there is an optional default label. When none of the
case label comparisons is successful, then the code under the default label is exe-
cuted. Finally, the switch statement is terminated by the endswitch statement,
which needs to have a semicolon at the end.

The constant expressions that follow the case label can be of any of the Install-
Script data types, including a string constant. Unlike in C there is no break state-
ment required because the implementation includes an automatic break. In other
words, you can’t implement a fall-through where a series of case statements are all
implemented. The closest thing to implementing this fall-through is the ability to
include more than one constant for a particular case label.

In the following example you will calculate the number of each vowel, space,
and consonant in a string using the switch statement. This is the same thing you
did in the example for the elseif statement, except that here you will use a while
statement instead of a for loop to cycle through the letters of your string.

function Foo()
INT nIndex;
INT aCnt, eCnt, iCnt, oCnt, uCnt, sCnt, conCnt;
STRING szStr;
begin

szStr = “This is a string”;

while(szStr[nIndex] != ‘\0’) // Continue until the
//terminating null

switch (szStr[nIndex])
case ‘a’,’A’: // Check for both lowercase and uppercase

aCnt = aCnt + 1;
case ‘e’,’E’:

eCnt = eCnt + 1;
case ‘i’,’I’:

Chapter 13: Introduction to the InstallScript Language 567

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 567

iCnt = iCnt + 1;
case ‘o’,’O’:

oCnt = oCnt + 1;
case ‘u’,’U’:

uCnt = uCnt + 1;
case ‘ ‘: // Check for the space character

sCnt = sCnt + 1;
default:

conCnt = conCnt + 1; / Count the consonants
endswitch;

nIndex = nIndex + 1; // Increment the string index
endwhile;

end;

In InstallScript the compiler will let you have the same value for multiple

case labels, which can definitely cause problems if you are not careful. Using

the same value for multiple case labels can easily happen if you are using a

cut-and-paste approach to create your initial switch statement. You will not

get a run-time error either.

The for loop statement
You have already seen the use of the for loop in some of the previous examples. The
important thing to remember about the for loop is that it is designed to loop
through a block of statements a fixed number of times. Depending on the condition
of the for loop, it may terminate before it executes any statements. The general for-
mat of the for loop statement is as follows:

for init-expression to | downto expression1 [step expression2]
program statement(s);

endfor;

The init-expression sets the initial value of the for loop’s index. The index can
be assigned a value using any expression that provides a numerical value. The sec-
ond element of the for loop is either the to keyword or the downto keyword. The to
keyword sets the for loop mode of operation so that the loop’s index is incremented
and the downto keyword sets the mode of operation so that the index is decre-
mented. The purpose of expression1 is to determine when the looping operation
should be terminated. When the for loop’s index is incremented or decremented so
that is greater or less, depending on the for loop’s mode, than the numerical value
specified in expression1 then the program execution exits the loop and continues
with the first statement following the endfor keyword.

Caution

568 Part III: Extending the Windows Installer Functionality

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 568

The default operation of the for loop is to increment or decrement the index by
one. You can change this default operation by using the step keyword followed by an
expression (expression2) that evaluates to a numerical value. This value will then be
to the number by which the index is incremented or decremented.

If you use a value of zero for expression2 you will create an infinite loop.

This may be what you want to do but you will need to use a goto combined

with an if statement to break out of this infinite loop.

In the example showing the use of the for loop statement you first use a for loop
to assign values to an integer array and then use a nested for loop to perform a
bubble sort on this array. You sort the array into ascending order as follows:

function Foo()
INT nSize, nIndex;
INT nArray(20), nVal, i, j;
begin

nVal = -1;
nSize = SizeOf(nArray);

// Use this to initialize the array elements
// This will create alternating negative and positive values
for nIndex=0 to nSize-1

nArray(nIndex) = nIndex * nIndex * nVal + nVal;
nVal = nVal * -1;

endfor;

// Display the values of the array before it is sorted
for i=0 to nSize-1

SprintfBox (INFORMATION, “Before Sort”,
“Array value: %d at index = %d”, nArray(i),i);

endfor;

// Perform a bubble sort on nArray
for i=0 to nSize-2

for j=i+1 to nSize-1

// We use our bitwise approach for swapping values
if(nArray(i) > nArray(j)) then

nArray(i) = nArray(i) ^ nArray(j);
nArray(j) = nArray(j) ^ nArray(i);
nArray(i) = nArray(i) ^ nArray(j);

Caution

Chapter 13: Introduction to the InstallScript Language 569

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 569

endif;
endfor;

endfor;

// Display the values of the array after it is sorted
// This is to make sure that it worked as expected
for i=0 to nSize-1

SprintfBox (INFORMATION, “After Sort”,
“Array value: %d at index = %d”, nArray(i), i);

endfor;
end;

If you want to break out of a for loop statement prior to its completion, you can
do this with the special if statement with the goto syntax. You cannot, however,
define a label inside a for loop. If you do define a label inside a for loop, you will
get a compiler error.

The while statement
The while statement repeatedly executes a block of statements as long as a certain
condition remains TRUE. Based on the evaluation of the condition it is possible that
the program statements contained within the while statement will not be executed.
The general syntax for this statement is as follows:

while [(] condition [)]
program statement(s);

endwhile;

The parentheses around condition are optional, but using them will make the
program much more readable. The while statement is particularly valuable because
you do not have to know in advance how many times the program statement is to
be executed; you let the condition expression determine that. Even the for state-
ment does not require you to know in advance how many iterations you’re going to
have. The distinguishing characteristic of the for statement is just that index variable
is incremented/decremented automatically while the while statement does not have
the concept of index variables and can base iterations on a variety of conditions.

The following are two examples of using the while statement in situations where
you do not know in advance how many loops will be required. The first example is
simple: calculating the greatest common divisor (GCD) of two positive integers. To
implement this algorithm you need to use the modulus operator that we discussed
earlier in the chapter.

function Foo()
INT nTemp, nNum1, nNum2;
INT nOrigNum1, nOrigNum2;

570 Part III: Extending the Windows Installer Functionality

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 570

begin
// Set the values for which the GCD is to be calculated
nNum1 = 1026;
nNum2 = 405;

// Save these values for use in the SprintfBox
nOrigNum1 = nNum1;
nOrigNum2 = nNum2;

// Implement Euclid’s procedure for finding the GCD
while(nNum2 !=0)

nTemp = nNum1%nNum2;
nNum1 = nNum2;
nNum2 = nTemp;

endwhile;

SprintfBox(MB_OK, “Script Test”, “The GCD of %d and %d = %d”,
nOrigNum1, nOrigNum2, nNum1);

end;

The second example is a little more complicated because you need to use nested
while statements. Again, you are using the while statement because you do not
know in advance how many loops will be required to obtain the desired result. This
example shows how to calculate a certain quantity of prime numbers. The first
prime integer is defined as being 2. Again you need to make use of the modulus
operator.

function Foo()
INT nTest, nPrimes, nDiv;
INT nPrimeArray(), i;
BOOL bIsPrime;
begin

nTest = 2;
nPrimes = 1;

Resize(nPrimeArray, 1);
nPrimeArray(0) = 2;

while(nPrimes <= 20)

// Assume at the start that the nTest is a prime number
bIsPrime = TRUE;
nDiv = 2;

// Test the target number up to one-half its value

Chapter 13: Introduction to the InstallScript Language 571

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 571

while(nDiv <= nTest/2 && bIsPrime)
bIsPrime = nTest%nDiv;
nDiv = nDiv + 1;

endwhile;

if(bIsPrime) then
nPrimes = nPrimes + 1;
Resize(nPrimeArray, nPrimes);

nPrimeArray(nPrimes-2) = nTest;
endif;

nTest = nTest + 1;
endwhile;

// Print out the values calculated to verify it worked
for i=0 to 19

SprintfBox (INFORMATION, “Script Test”, “Prime # = %d”,
nPrimeArray(i));

endfor;
end;

As with the for loop statement you cannot define a label inside of a while state-
ment. You can, however, use the special goto with an if statement in order break
out of a while loop before it finishes.

The repeat statement
As you have seen with both the for loop statement and the while statement there
are situations where these statements might not be executed at all. Also the condi-
tion for the execution of these looping constructs must be set outside of the state-
ment structure. With the repeat statement, you are guaranteed that the statement
body will be executed at least once because the condition is not evaluated until the
end of the loop. The general syntax of this statement is as follows:

repeat
program statement(s);

until [(] condition [)];

Note that the parentheses are optional but it is best to use them for the sake of
readability. With this construct, the looping will continue until condition evalu-
ates to TRUE; then program execution will exit the loop and continue with the first
program statement after the repeat statement.

In the following example, I use the repeat statement to reverse the digits of a
number and display this operation as it occurs.

572 Part III: Extending the Windows Installer Functionality

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 572

function Foo()
STRING szNumber;
INT nValue;
VARIANT vRightDigit;
begin

nValue = 12345;

repeat
vRightDigit = nValue%10;

// Convert the right digit to a string using the
// properties of the VARIANT data type
szNumber = szNumber + vRightDigit;

// Knock off the right-most digit
//and repeat the operation
nValue = nValue/10;
SprintfBox (INFORMATION, “Script Test”,

“Reversed Number = %s”, szNumber);
until (nValue = 0);

end;

If you were to use a while statement to perform this manipulation, you would
have to set the condition as nValue != 0. This would, however, prevent you from
getting a display if the value of nValue were set to 0.

The goto statement
InstallScript supports the much maligned goto statement. This statement provides
unconditional branching from the point where the goto statement is encountered in
the code to the location in the code where a label statement is defined. The general
syntax for this statement is as follows:

goto Label;

Label is an identifier provided in the code. The Label identifier can only be
used as the target of the goto statement and this label must be terminated with a
colon. You cannot jump from one function to another using this statement, which
means that inside a function the target of the goto statement must be defined inside
that same function. You are also not allowed to immediately precede the end state-
ment of a function with a label. You can get around this restriction using the null
statement like this:

Label:;
end;

Chapter 13: Introduction to the InstallScript Language 573

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 573

The semicolon by itself is termed a null statement. If you use it as shown above,
you can place the label immediately before the end statement.

If you want to read more about the controversy surrounding the goto state-

ment in programming and how that controversy got started, refer to the

book Code Complete by Steve McConnell (Microsoft Press, 1993).The first sec-

tion of Chapter 16 of this book provides an excellent discussion on this topic.

The return, exit, and abort statements
The return, exit, and abort statements allow termination of function execution
when conditions merit. The return statement ends a function’s execution and
returns control and a return value to the parent routine at the statement that fol-
lows the point where the function was originally called. The general syntax of the
return statement is as follows:

return [[(]value [)]];

You can return the value of any data type supported by InstallScript. Returning
an integer value from a function is optional and placing parentheses around the
value being returned is also optional.

The syntax of the exit and abort statements is as follows:

exit;
abort;

The difference between exit & abort is that the former is used to perform normal
termination while the latter is used for abnormal termination. You need to be very
careful when using these statements because they will shut down the InstallScript
engine and you will not be able to execute any further custom actions in the cur-
rent sequence.

Functions
In a normal programming environment you have a main program and you create
the functionality you require in separate code units called functions. These func-
tions are then called from the main program to implement the specific purpose of
the application. A function is identified by its name and a list of parameters
enclosed in parentheses. A function generates a result that can be returned to the
calling program either through the return type of the function, through a parame-
ter passed to the calling function, or both.

Tip

574 Part III: Extending the Windows Installer Functionality

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 574

In the InstallShield for Windows Installer environment, the units of code that
you deal with are functions and only functions. There is no main program from
which you call the functions you create. Every function that you create in ISWI is
either a private function or an entry-point function that you call to implement a
custom action.

There are four types of functions that you can use in creating custom actions
in ISWI: built-in functions, user-defined functions, functions implemented in a
dynamic-linked library, and event handler functions. These four types of functions
are the subjects of the following four subsections.

The built-in functions
The InstallScript engine provides a set of functions that have already been created
and made available for use. These functions are described in the online help as well
as in the Function Wizard available from the Edit →Insert pulldown menu option.
The operation of the Function Wizard has already been described Chapter 12. For
the built-in InstallScript functions the isrt.h header file provides the function pro-
totypes for all the built-in functions. The online help provides sample scripts that
use each of the built-in functions.

User-defined functions
User-defined functions are the functions that you create to implement a custom
action. In general, to create a user-defined function you need to create a prototype
for the function and implement the function body. You will create either a private
function or an entry-point function. The entry-point function is what you will call
to implement a custom action; a private function is what the entry-point function
will use in its implementation of the custom action. Each of these two types of
functions has a specific syntax that you must use when you create a prototype.

PROTOTYPING USER-DEFINED FUNCTIONS
The syntax for the entry-point function prototype is as follows:

export prototype func-name(NUMBER);

In this prototype the export keyword identifies the function as an entry-point
function. An entry-point function can only have one parameter and the data type
of that parameter must be NUMBER. By convention, the name you should use when
implementing your entry-point function for this parameter is hMSI. The compiler
will not object if you add more parameters to this function, but it will not work as
a custom action. The Windows Installer expect a function that only needs the han-
dle to the install session. A function that needs additional parameters will not be
called properly: thus the call will fail.

A private function prototype can have as many parameters as it needs to carry
out its intended purpose. In fact, a private function can be prototyped to have a

Chapter 13: Introduction to the InstallScript Language 575

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 575

variable number of arguments, as shown in the following example. This is the gen-
eral syntax for prototyping a private function:

[external] prototype [return-type]
func-name([parameter-data-type-list], [...]);

At the beginning of this prototype is the external keyword. This keyword is only
required if the function definition is contained in a script library. It lets the com-
piler know that it does not need to find the implementation of the function in the
current script when a call is made to it. It is the job of the linker to locate where this
function is defined.

It is also optional to specify the return type for the function. If no return type is
specified the default NUMBER return type is assumed. However, you can specify a
STRING or a VARIANT return type for a function. If you do specify one of these
return types, you also have to specify it in the function definition.

A private function can take as many 16 defined parameters and it can also take a
variable number of parameters. When a function is going to take a variable number
of parameters, you denote this with an ellipsis (...). When you want to pass a set
number of parameters along with a variable set of parameters, the set number of
parameters must be first in the parameter list. The variable number of parameters
will then follow the predefined number of parameters. The variable number of para-
meters is handled as an array inside the function being called. There is an example
of this in the next section.

When you pass arguments to a private function, you have the option of passing
them by value or by reference. When you pass an argument by value, the private
function makes its own local copy of the argument and any changes made to this
argument within the private function are not seen by the calling function. This is
the default operation for any argument that is passed to a private function.
However, if you want to send an argument by reference, then you need to use the
BYREF keyword when you prototype your function. When you send an argument
by reference, the private function does not create a local copy of the argument and
any changes that it makes to the value of the argument will be seen by the calling
function. Even though the default is to pass an argument to a private function by
value there is a BYVAL keyword that can be used in order to make your code more
readable.

As an example, you could have a private function that is passed a string literal
and the string with the characters reversed is passed back to the calling function
through a second argument. You would prototype such a function as follows:

prototype ReverseString(BYVAL STRING, BYREF STRING);

CREATING AND USING USER-DEFINED FUNCTIONS
The best way to explain the creation and use of a user-defined function is to give
an example. In the following example, you have a small private function that sums
an undefined quantity of numbers and then returns the result as part of a string.

576 Part III: Extending the Windows Installer Functionality

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 576

This gives you a chance to look at the use of a return type other than the default,
and also to look at the use of a variable set of parameters.

#include “isrt.h”
#include “iswi.h”

#define CAPTION “Script Test Feedback”

export prototype ScriptTest(NUMBER);

// Prototype a STRING return type and a variable number of
// parameters to be passed.
prototype STRING SumArray(NUMBER, ...);

//
//
// Function: ScriptTest
//
// Purpose: This is the entry point function used to run
// our scripting test examples
//
//
//
function ScriptTest(hMSI)
STRING szFormat, szValue;
begin

szFormat = “%s”;

szValue = SumArray(10 ,0,1,1,2,3,5,8,13,21,34);
SprintfBox(INFORMATION, CAPTION, szFormat, szValue);

end;

// The variable number of parameters is handled by
// the nArray parameter
function STRING SumArray(nNum, nArray)
INT i, sum;
STRING szResult;
begin

// Sum the array of numbers passed to the function
for i=0 to nNum-1

sum = sum + nArray(i);

Chapter 13: Introduction to the InstallScript Language 577

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 577

endfor;

// Generate the buffer for returning to the calling function
Sprintf(szResult, “The sum of the array is %d”, sum);

return szResult;

end;

In this small example, you have summed the first 10 values of the Fibonacci
sequence and returned this calculation as a STRING data type. You didn’t really
need to pass the number of values to be summed as a parameter; you could have
used the SizeOf operator inside the function instead. I used this example solely to
show that you can have a mix of defined and variable number of parameters.

When using private functions, you need to be constantly aware of the fact that all
variables declared inside your function cease to exist once the function has returned
to the calling routine. If you have defined a global and a local variable of the same
name, the local variable will take precedence over the global variable. You may ask,
How can the value of a local variable be returned to the calling routine and still be
valid? The answer is that behind the scenes the compiler assigns your local variable
to a global variable and this is how you can return a STRING or VARIANT data type.
The name of this global variable is LAST_RESULT and we discussed it in the last
chapter when we discussed using the Watch Window in the Debugger.

A common method for returning values from a private function is to pass an
[out] variable to the function and have the function fill in the value for this vari-
able. This approach is required when more than one value is to be returned from a
function. This variable or variables are then available for use in the calling routine.
For a function parameter to be an [out] variable it must be defined as being passed
BYREF, meaning that the parameter is being passed by reference and not by value.
You could change your previous example so that you get the result back through a
parameter instead of as the return value from the function. The following code
demonstrates this; since you are not returning anything from the function you can
use the VOID keyword to indicate that this is the case.

#include “isrt.h”
#include “iswi.h”

#define CAPTION “Script Test Feedback”

export prototype ScriptTest(HWND);

// Declare that function as returning VOID since the value
// you desire is being passed through a parameter
prototype VOID SumArray(NUMBER, BYREF STRING, ...);

578 Part III: Extending the Windows Installer Functionality

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 578

//
//
// Function: ScriptTest
//
// Purpose: This is the entry point function used to run
// your scripting test examples
//
//
//
function ScriptTest(hMSI)
STRING szFormat, szValue;
begin

szFormat = “%s”;

SumArray(10 ,szValue, 0,1,1,2,3,5,8,13,21,34);
SprintfBox(INFORMATION, CAPTION, szFormat, szValue);

end;

function VOID SumArray(nNum, szResult, nArray)
INT i, sum;
begin

for i=0 to nNum-1
sum = sum + nArray(i);

endfor;

Sprintf(szResult, “The sum of the array is %d”, sum);

end;

You now have defined your private function to return the requested information
through a passed parameter defined as being passed by reference. If you do not use
the BYREF keyword, the compiler defaults to treating the parameter as being passed
by value and in this case the function will make its own copy of the parameter and
use that in its operation. When the function ends, however, this variable will go out
of scope and the calling function will see no change in the parameter that it passed.

The name of every user-defined function you create, whether an exported func-
tion or a private function, will appear in the tree control to the left of the Script
Editor panel beside a blue icon. This is shown in Figure 13-3.

Chapter 13: Introduction to the InstallScript Language 579

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 579

Figure 13-3: Script Function view in ISWI showing tree list of all define functions

Even though all the functions that you define show up in the tree control, only
the exported functions are available to you in the Custom Action Wizard. This is
useful because it means you can click any function name in the tree control and be
taken directly to that function’s definition in the script. This is a big help in navi-
gating a large script.

Functions in a dynamic-linked library
With InstallScript, you can create functionality in a dynamic-linked library that
you can call from within your script. You can also call Windows APIs from your
script. To take advantage of this functionality you need to prototype these func-
tions in a special way.

PROTOTYPING THE FUNCTION
To prototype functions in a dynamic-linked library that you have created yourself,
you need to use the following syntax:

prototype [calling-convention] DLL-name.exported-func-name
([parameter-data-type-list]);

InstallScript has two keywords that you can use to specify the calling conven-
tion used by the DLL function. These keywords are stdcall and cdecl. If you do not
specify a calling convention then the stdcall convention is used by InstallScript.

580 Part III: Extending the Windows Installer Functionality

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 580

Most Windows APIs use the stdcall calling convention where as DLLs created using
Visual C++ have a default calling convention of cdecl.

In Chapter 10 there is a sidebar that discusses in detail the various calling

conventions as well as the name decoration of exported functions. The title

of this sidebar is Calling Conventions, Exporting Symbols, and Name

Decoration in Dynamic Link Libraries Create with Microsoft Visual C++.

When you want to prototype one of the Windows APIs, you first need to know
from which Windows DLL the API is exported. You can find this out in the MSDN
Library description of the particular API you are interested in. For most of your needs
the Windows API you want to use will be in Kernel32.dll, User32.dll, or GDI32.dll. For
each of these DLLs there is a symbolic constant you can use when you prototype the
API. The general syntax to use for prototyping these APIs is as follows:

prototype KERNEL32|USER32|GDI32.API-name(parameter-data-type-list);

Refer to Chapter 10 for a discussion of name decoration for functions

exported from a dynamic-linked library. To properly call an exported func-

tion from your script you need to know the exact exported name of that

function.

USING THE FUNCTION
To use a function in a dynamic-linked library that you create you need to load
that DLL into memory before you can call your functions. To do this you need to use
the built-in function UseDLL. UseDLL is essentially a wrapper around a call to the
LoadLibrary() Windows API. The UseDLL function has the following declaration:

NUMBER UseDLL(
STRING szDLLName // Full path to the DLL location

);

The return value from this function lets you know the success or failure of the
attempt to load this DLL into memory. A failure to load the DLL is most commonly
caused by an incorrect path being specified for the DLL’s location.

After you have invoked this function, you can make the calls to any of the func-
tions you have exported from this DLL. After you have finished using the functions
in the DLL, you need to free the DLL from memory. To do this you will need to use
the UnUseDLL built-in function. This function is a wrapper around the FreeLibrary()
Windows API. The UnUseDLL function has the following declaration:

XREF

XREF

Chapter 13: Introduction to the InstallScript Language 581

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 581

NUMBER UnUseDLL(
STRING szDLLName // Full path to the DLL location

);

When you want to call a Windows API function, you do not need to load it

into memory or free it from memory since Windows takes care of that for

you when it starts up. In Appendix E you will find a list of the Windows APIs

that are already prototyped for you.

Event-handler functions
An event handler function is a special function that is automatically executed at
the beginning and end of each sequence. There are two of these functions,
OnBegin() and OnEnd(), and they are already prototyped in the header file iswi.h.
The default implementation of these two event handlers is a no-op, which means
that they are empty functions. Use them when you want to perform some special
operations at the start and end of each sequence. To do this you would implement
these functions in your script and essentially override the built-in implementation.

We discuss the actual use of these two functions in more detail in the

Preliminaries section of Chapter 16 when we talk about creating custom

actions using InstallScript.

Summary
In this chapter, you have taken an extensive tour through the components of the
InstallScript language, including the available data types, the use of operators to
create expressions, and the statements that provide you with the ability to control
the flow of execution of your programs. At the end you took a look at how you can
extend the functionality of the language by creating your own functions either in
InstallScript or in a DLL. You have seen that you can also access the many func-
tions provided by the Windows operating system.

This chapter has prepared you for the next chapter, where you get into actually
seeing the things you can do with the language. In the next chapter you will use the
various capabilities of InstallScript to see the different methods you can develop for
extending the base capability of the language. Then, in Chapter 15, you will actu-
ally create some practical custom actions using the scripting language.

XREF

Tip

582 Part III: Extending the Windows Installer Functionality

4723-2 ch13.f.qc 1/16/01 11:10 AM Page 582

Chapter 14

Advanced InstallScript
IN THIS CHAPTER

◆ Working with stings in InstallScript

◆ Passing strings to functions

◆ Working with the LIST data type

◆ Working with arrays in InstallScript

◆ Working with structures

◆ Using exception handling in InstallScript

NOW THAT YOU KNOW what InstallScript is all about you can take a look at how to use
it for typical programming tasks. In this chapter you will work through a number of
examples showing how to create meaningful scripts. We start with how to work with
strings and then move on to arrays, lists, and structures. We then cover how to per-
form exception handling in InstallScript and finally how to interface with COM.

Working with Strings
In InstallScript, you can work with strings both as strings and as path names. You
can use several special operators and a number of built-in functions when working
with strings.

Strings as strings
One of the built-in functions is the StrCompare(szString1, szString2) function,
which compares two strings and returns a value that is –1 if string1 is less than
string2, 0 if the strings are equal, and 1 if string1 is greater than string2. The only
problem with this function is that it does the comparison on a case-insensitive
basis.

As a general example of working with strings, try creating a string comparison
function that allows you to perform either a case-insensitive or a case-sensitive
comparison of two strings. Call this function StrCompareEx(), and in addition to
passing in as parameters, the two strings to be compared, pass in a parameter that

585

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 585

will tell the function how you want this comparison to be performed. The code for
this function is shown below; you will be using it in other examples in this chapter.

//
//
// Function: StrCompareEx
//
// Purpose: This function
// compares two strings for equality. The comparison can be
// performed on case sensitive or non-case sensitive basis.
//
//
function StrCompareEx(szStr1, szStr2, bCase)
INT nReturn, nLen1, nLen2, i;
begin

// The following assignment is not really necessary
// since all NUMBER data types are initialized to zero
// when they are declared. An explicit assignment has been
// done to make it clear what the starting values are.
i = 0;
nReturn = 0;

// Get the length of each string to be compared
// All else being equal the longer string is the greater
nLen1 = StrLength(szStr1);
nLen2 = StrLength(szStr2);

// If it is to be a case insensitive comparison
// change both strings to be upper case.
if(!bCase) then

StrToUpper(szStr1, szStr1);
StrToUpper(szStr2, szStr2);

endif;

// Compare each string character by character
// and the first character that is different
// determines the result of the comparison.
// The comparison with ‘\0’ for strings greater than
// 260 characters fails in ISWI 1.52 but is fixed in
// version 2.0
while(szStr1[i] != ‘\0’ && szStr2[i] != ‘\0’)

if(szStr1[i] < szStr2[i]) then

586 Part IV: Advanced Concepts

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 586

return -1;
elseif(szStr1[i] > szStr2[i]) then

return 1;
endif;

i = i + 1;
endwhile;

// If all characters are the same up to the end of the
// shortest string then the string length determines
// the result of the string comparison.
if(nLen1 = nLen2) then

return 0;
elseif(nLen1 > nLen2) then

return 1;
elseif(nLen1 < nLen2) then

return -1;
endif;

return 0;

end;

In the above function, you used two of the built-in string manipulation functions.
These are StrLength() and StrToUpper(). The condition expression for the while loop
provides an example of a complex logical expression and shows that the null termi-
nator for a string is the ‘\0’ character. Ten functions are available for manipulating
strings as strings. Table 14-1 gives a brief description of each of these functions.

TABLE 14-1 BUILT-IN FUNCTIONS FOR MANIPULATING STRINGS AS STRINGS

Function Name Description

CopyBytes Copies a specified number of bytes from one string to another
string. You can specify offset indexes into the source and
destination strings if you do not want to start copying from
the beginning of the string.

NumToStr Converts a number to a string and returns this value as an
[out] parameter of the function.

StrCompare Performs a comparison of two strings. This comparison is
case-sensitive manner.

Continued

Chapter 14: Advanced InstallScript 587

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 587

TABLE 14-1 BUILT-IN FUNCTIONS FOR MANIPULATING STRINGS AS STRINGS
(Continued)

Function Name Description

StrFind Determines if one string contains another string. If the string is
found, this function will return the index of the first character of
the first occurrence of the string. The search is case-insensitive.

StrGetTokens Extracts sub-strings from a string and places them into a string
list. The sub-strings are identified by being separated by a list of
one or more characters that make up a set of delimiters.

StrLength Returns the length of a string in bytes passed to it as a parameter.
When working with multi-byte character strings, this will provide
an incorrect value as to the true length of a string. You should get
into the habit of using the function that is described next. Also, if
a string passed to this function has embedded null characters, it
will return the length up to the first null character only. To get the
length of any string that has embedded null characters, you need
to use the SizeOf operator.

StrLengthChars Returns the number of characters in a string. You can get the
correct number of characters even if you pass this function a
multi-byte character string. If the string passed to this function
has embedded null characters it, it will return the length of the
string in characters up to the first null character. To get the length
of any string that has embedded null characters you need to use
the SizeOf operator.

StrSub Copies part of a string to another string. The sub-string to copy is
defined by a starting point in the source string and the number of
bytes to copy.

StrToLower Converts all the alphabetic characters in a string to lower case.

StrToNum Converts a string to a number, much like the C function atol().
The first character can be a plus (+) or a minus (-) sign, but the
remaining characters in the string must be numeric. After the
optional plus or minus sign this function will convert all numeric
characters to numbers up to the first alphabetic character it finds.
At that point it will return the value already converted. If it finds
no numeric characters, the function will fail.

StrToUpper Converts all the alphabetic characters in a string to upper case.

588 Part IV: Advanced Concepts

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 588

For a complete description of these string-related functions you need to

refer to the on-line language reference. The on-line reference provides

examples of the use of these functions.

Two or more strings are often concatenated into one longer string. You can do this
easily in InstallScript by overloading the plus (+) sign so that it can operate on strings
as well as numbers. The following code snippet shows the use of this operator.

function Foo()
STRING szStr1, szStr2, szStr3;
begin

szStr1 = “This is string number 1”;
szStr2 = “This is string number 2”;

szStr3 = szStr1 + “ and “ + szStr2 + “ and they “ +
“have been concatenated together”;

end;

The above code shows that you can concatenate string variables with string literals
and that you can continue on multiple lines as long as you terminate the string with
either double or single quotes before continuing on the next line.

Sometimes when searching for a sub-string in another string you only need to
know if it is there and not what its location is. To accommodate this need
InstallScript has the string find operator, which is the percent sign (%). Since this
operator only tells you if the sub-string exists in the parent string it returns a
Boolean: TRUE or FALSE. You can only use a construct using this operator where a
logical expression is allowed. The following code snipped gives an example of the
basic function of this operator.

parent_string % sub_string

You can use this in if, while, and repeat statements, as shown in the following code.

function Foo()
STRING szFormat, szStr1, szStr2;
NUMBER nNum;
begin

szFormat = “szStr1 = %s\nszStr2 = %s”;

szStr1 = “1”;

XREF

Chapter 14: Advanced InstallScript 589

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 589

szStr2 = “8532110”;

// Continue to truncate the number until the number 1
// is no longer part of the string, and then exit the loop
while(szStr2 % szStr1)

StrToNum(nNum, szStr2);
nvNum = nNum/10;
NumToStr(szStr2, nNum);

endwhile;

SprintfBox(INFORMATION, CAPTION, “Final Result\n” +
szFormat, szStr1, szStr2);

end;

In the above code I keep changing the parent string until the character 1 can no
longer be found, and then I exit the while loop and print the resulting number. I use
several string manipulation functions in doing this, and also show an example of
using the string concatenation operator in the construction of the output format
string in the SprintfBox function.

Another handy capability available to you when you’re working with strings is to
be able to use strings that have been entered into a string table. In a string table, a
string ID identifies each string value in the table. Using the @ symbol you can use a
string identifier wherever you would normally use a string constant. For example,
the following line of code would display the string {&Tahoma8}The disk space
required for the installation of the selected features. in a message box.

SprintfBox(INFORMATION, CAPTION, “%s”, @IDS__IsFeatureDetailsDlg_6);

The InstallScript compiler does not interpret the formatting part of the string as
the Windows Installer does but takes the whole string identified by the
IDS__IsFeatureDetailsDlg_6 string ID.

When you’re working with strings, there are a select group of nonprintable char-
acters and some printable characters that have special meaning and these special
characters require special treatment to be used in a string. You can insert these
characters into a string if you use them as escape sequences. An escape sequence is
a backslash combined with a character, which either performs a special function or
permits the display of a character that, if used by itself, would not be displayable.
Table 14-2 shows the escape sequences supported by InstallScript.

In the next section you will be using the \\ escape character, because path
strings must contain the backslash character. Now let’s move on to looking at how
to handle strings that define paths to folders and files.

590 Part IV: Advanced Concepts

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 590

TABLE 14-2 SUPPORTED ESCAPE SEQUENCES

Escape Character Description

\n Inserts a carriage return and a line feed into the string.

\r Inserts a carriage return only into a string. This will only work
for the display device that supports this type of operation.
Otherwise this does the same thing as the \n escape character.

\t Inserts a horizontal tab into the string.

\’ Inserts a single quote into the string.

\” Inserts a double quote into the string.

\\ Inserts a backslash into the string.

\ooo Inserts the character whose octal code is equal to ooo.

Strings as paths
When we speak of paths in a 32-bit environment, we are concerned with both
filename length and path length. However, even though you are in a 32-bit envi-
ronment you still need to worry about short filenames, because some targets for an
installation might not support more than the 8.3 file naming convention. Install-
Script provides a special concatenation operator and a number of functions to help
you manipulate paths.

When we talk about paths we mean absolute paths, relative paths, and universal
naming convention (UNC) paths. The term path is generic enough to mean filename
as well as hierarchy of folder names. In the 32-bit world we often talk about long
filenames. What this means is that filenames are limited to 256 characters and
paths are limited to 260 characters. The path limit includes the name of the file. The
difference between the path length and the filename length is the space required for
the drive letter, colon (:), and backslash (\) at the beginning of the path, and the
NULL terminator (‘\0’) at the end of the path.

A UNC path denotes a location on a network server that might not necessarily be
mapped to a drive letter on the local machine. In any case the same network drive
could easily be mapped to different drive letters on different workstations. The format
for a UNC path is as follows:

\\server_name\share_name\folder name(s)\filename

Chapter 14: Advanced InstallScript 591

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 591

The component \\server_name\share_name\ of this path is equivalent to the
drive letter, colon, and backslash of a standard absolute path.

A path string is no different from any other string. The only thing that sets it
apart is that a path string is comprised of components that happen to use the double
backslash (\\) as a delimiter. Unlike with most other strings, working with a path
string consists of extracting these various components from the string and using
them in special ways. You could create your own user-defined functions to access
the components that make up a path string. However, since InstallScript provides
built-in functions for most — if not all — of your needs in this regard, you are relieved
of this extra effort.

The special concatenation operator you use when dealing with paths is called the
append-to-path operator and it is the caret (^) symbol. This operator ensures that
you have backslashes between a path and the subdirectory or filename you are
appending. If you have the correct number of backslashes at the end of your path,
this operator will only concatenate the second string. If you do not have the proper
number of backslashes, they will be added before the second string is concatenated.
The following code snippet demonstrates this functionality.

szInstallLocation = “C:\\Program Files\\” ^ “InstallShield”;
szInstallLocation = “C:\\Program Files” ^ “InstallShield”;

Both of these lines of code result in the same legal path to the installation loca-
tion of InstallShield for Windows Installer. The first line just concatenates the two
strings and the second line adds the double backslashes and then concatenates the
two strings.

A number of built-in functions also enable you to manipulate path strings. With
them you can easily convert from long paths to short paths and back again. You
can also parse a path and retrieve significant information, such as the drive letter,
filename, or file extension. Table 14-3 provides a list of these functions along with
a short description of each.

TABLE 14-3 BUILT-IN FUNCTIONS FOR MANIPULATING STRINGS AS PATHS

Function Name Description

GetDir Removes the drive letter and colon from a fully qualified
path and returns the remainder of the path in a function
parameter. If the supplied path name is formulated
according to the universal naming convention, then the
server and share names are removed from the string and
the remainder of the path is returned. If you pass a string
that does not have either a drive letter or a UNC format
string, then the return will be a null string.

592 Part IV: Advanced Concepts

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 592

Function Name Description

GetDisk Removes the drive letter and colon from a fully qualified
path and returns the drive letter with the colon in a function
parameter. If the supplied path name is formulated according
to the universal naming convention, then the server and
share names are returned. If you pass a string that does not
have either a drive letter or a UNC format string, then the
return will be a null string.

LongPathFromShortPath Converts a short path name to its equivalent long path name.
The short path name must exist on the system or the function
will return the same path that was passed. Your short path
name cannot have a trailing backslash or the path will not
be converted.

LongPathToQuote Either places double quotation marks around a long path
name or removes the double quotation marks from a long
path name. Double quotation marks around a long path
name are only necessary if the name contains spaces. You
will use this function to remove the quotes around a long
path name before you pass it to any other function such
as LongPathToShortPath.

LongPathToShortPath Converts a long path name to its equivalent short path
name. The long path being converted must exist on the
system or the function will return the same path that was
passed to it. For a relative path to be converted the current
directory needs to be the root of the relative path or the
function will not be able to find the path. You can use the
ChangeDirectory function to make the current directory
the root of the relative path.

ParsePath Retrieves the specified part of an existing path string without
using direct string manipulation. Works with any valid path,
including short paths, long paths, and UNC paths that may or
may not include a specific filename.

PathAdd Adds an additional path specification to a search path in
the path buffer. The path buffer must be created with the
PathSet function before this operation can take place.

PathDelete Removes a path specification from a search path in the path
buffer. The path buffer must be created with the PathSet
function before this operation can take place.

Continued

Chapter 14: Advanced InstallScript 593

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 593

TABLE 14-3 BUILT-IN FUNCTIONS FOR MANIPULATING STRINGS AS PATHS
(Continued)

Function Name Description

PathFind Searches the path buffer for a specific directory. You can
specify the directory with either a fully qualified path or the
directory name only. The path buffer must be created using
the PathSet function before this operation can take place.

PathGet Retrieves the search path currently stored in the path
buffer. The path buffer must be created with the PathSet
function before this operation can take place.

PathMove Repositions a directory in the path buffer to another
location. You can also use this function to position the
directory relative to another directory or as the first or last
item in the path string. The path buffer must be created with
the PathSet function before this operation can take place.

PathSet Creates the path buffer and stores a search path string in
this buffer. You can then manipulate this buffer using the
other path functions.

StrRemoveLastSlash Removes the trailing backslash from a path specification.

For a complete description of the above functions you need to access the

InstallScript on-line help, which becomes available when you open the

Script Editor.

Passing strings to functions
When you consider the passing of strings to functions, you need to understand the
difference between passing a string to a user-defined function and passing a string
to a DLL function. By default a string is passed BYVAL to a user-defined function.
When the string is passed, you do not need to define a size for the string because
auto sizing will be performed on the string inside the function. If you do define the
size of a string and then pass it to a user-defined function, the defined size will
carry over to the function.

When you pass a string to a DLL function and this string is being passed by ref-
erence (BYREF), the string is sized to a length of at least 1024 automatically. You can
specifically size it to something higher but the minimum size passed to the DLL
function will be 1024. Automatically sizing strings to a minimum of 1024 characters

XREF

594 Part IV: Advanced Concepts

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 594

is done so as to provide backward compatibility with older scripts that have assumed
this type of functionality. If you pass a string to the DLL function by value (BYVAL),
it is not sized to a length greater than that to which the calling function has set it. To
demonstrate the passing of a string to both a user-defined function and a DLL func-
tion, try creating the capability to reverse the characters in a string. You will do this
first with a user-defined function and then using a DLL function.

In the following code you are implementing a small private function that
reverses the characters of a string and sends this reversed string back to the calling
function through one of the arguments. This shows the actual use of the BYVAL
and BYREF keywords. As explained in Chapter 13 you could just as easily have
returned the reversed string as the return value of the function instead of putting it
into one of the function’s arguments.

//
//
// IIIIIII SSSSSS
// II SS InstallShield (R)
// II SSSSSS (c) 1996-2000,
// II SS InstallShield Software Corporation
// II SS All rights reserved.
// IIIIIII SSSSSS
//
// File Name: Setup.rul
//
// Description: InstallShield script
//
//
// include files
#include <isrt.h>
#include <iswi.h>

// function prototypes
// entry point functions
export prototype ScriptTest(NUMBER);

// private functions
prototype ReverseString(BYVAL STRING, BYREF STRING);

// global constants
#define CAPTION “Script Test Feedback”

//
//
// Function: ScriptTest

Chapter 14: Advanced InstallScript 595

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 595

//
// Purpose: This function is
// the entry point for a custom action that
// demonstrates the passing of a string to a private
// function.
//
///
function ScriptTest(hMSI)
STRING szStr, szRevStr;
begin

// Initialize the string variable
szStr = “This is a test string”;

// Call the private function
ReverseString(szStr, szRevStr);

// Display the results of the function call
SprintfBox(INFORMATION, “Calling User Function”,

“Input String = %s\nOutput String = %s”, szStr, szRevStr);

end;

//
//
// Function: ReverseString
//
// Purpose: This function is used to reverse the characters in a
// string
//
//
function ReverseString(szStr, szRevStr)
NUMBER i, j, nLen;
begin

// Get the length of the input string
nLen = StrLength(szStr);

// Explicitly assign the indices
i = 0;
j = nLen-1;

// Loop through one half the string swapping the characters
while(i < j)

596 Part IV: Advanced Concepts

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 596

szStr[i] = szStr[i] ^ szStr[j];
szStr[j] = szStr[j] ^ szStr[i];
szStr[i] = szStr[i] ^ szStr[j];

// Increment the forward index
i = i + 1;

// Decrement the backward index
j = j - 1;

endwhile;

// Set the output string to the reversed string
// Since the input string was passed BYVAL the original
// input string does not get changed.
szRevStr = szStr;

end;

The next code example shows you how to implement the previous functionality
with a function exported from a DLL. This will demonstrate how to pass a string to
a DLL function. Following the InstallScript code is the C++ code that implemented
the DLL.

//
//
// IIIIIII SSSSSS
// II SS InstallShield (R)
// II SSSSSS (c) 1996-2000,
// II SS InstallShield Software Corporation
// II SS All rights reserved.
// IIIIIII SSSSSS
//
// File Name: Setup.rul
//
// Description: InstallShield script
//
//
// include files
#include <isrt.h>
#include <iswi.h>

// function prototypes
// entry point functions
export prototype ScriptTest(NUMBER);

Chapter 14: Advanced InstallScript 597

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 597

// private functions
// This is the prototype for the DLL function
prototype RevStr.ReverseString(BYVAL STRING, BYREF STRING);

// global constants
#define CAPTION “Script Test Feedback”

//
//
// Function: ScriptTest
//
// Purpose: This function is
// the entry point for a custom action that demonstrates
// the passing of a string to a DLL function.
//
//
function ScriptTest(hMSI)
STRING szStr, szRevStr, szDLLName;
NUMBER nReturn, nSize;
begin

// Set the path to the DLL and then load the DLL into memory
szDLLName = “D:\\Installation Projects\\Scratch\\revstr.dll”;
nReturn = UseDLL(szDLLName);

if(nReturn) then
MessageBox(“Failed to load DLL”, SEVERE);
return ERROR_INSTALL_FAILURE;

endif;

// Initialize the input string
szStr = “This is a test string”;

// Get the size of the input string
nSize = SizeOf(szStr);

// Size the string variable being passed BYREF to the DLL
Resize(szRevStr, nSize+1);

// Call the DLL function
ReverseString(szStr, szRevStr);

// Display the results
SprintfBox(INFORMATION, CAPTION,

“Input String = %s\nOutput String = %s”, szStr,

598 Part IV: Advanced Concepts

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 598

szRevStr);

// Unload the DLL from memory
UnUseDLL(szDLLName);

end;

The following is the source code for the DLL that exports the ReverseString()
function.

// stdafx.h : include file for standard system include files,
// or project specific include files that are used frequently, but
// are changed infrequently
//

// Insert your headers here
#define WIN32_LEAN_AND_MEAN // Exclude rarely-used stuff from

// Windows headers

#include <windows.h>
#include <stdio.h>
#include <string.h>

// stdafx.cpp : source file that includes just the standard includes
// ReverseString.pch will be the pre-compiled header
// stdafx.obj will contain the pre-compiled type information

#include “stdafx.h”

;
; Module definition file for the RevStr.dll
;

LIBRARY “REVSTR”

DESCRIPTION “DLL for reversing the text in a string”

EXPORTS
ReverseString PRIVATE

// ReverseString.cpp : Defines the entry point for the
// DLL application.
//

Chapter 14: Advanced InstallScript 599

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 599

#include “stdafx.h”

BOOL APIENTRY DllMain(HANDLE hModule,
DWORD ul_reason_for_call,
LPVOID lpReserved

)
{

return TRUE;
}

//
// This function will reverse the characters in a string
//
STDAPI ReverseString(LPCSTR szStr, LPSTR szRevStr)
{

int i, j, nLen;

// Get the length of the input string
nLen = strlen(szStr);

// Copy the input string into the output string
// All operations will be done directly on the output string
strcpy(szRevStr, szStr);

// Initialize the forward and backward indices
i = 0;
j = nLen -1;

// Loop through half the string and switch values
while(i < j)
{

szRevStr[i] ^= szRevStr[j];
szRevStr[j] ^= szRevStr[i];
szRevStr[i] ^= szRevStr[j];

// Increment the forward index
++i;

// Decrement the backward index
--j;

};

return 0;
}

600 Part IV: Advanced Concepts

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 600

The present default action in InstallScript is to size any string variable being
passed BYREF to a DLL function to a size of 1024. In the previous code you specifi-
cally went through the procedure of sizing the szRevStr variable to the size of the
input string. This was important because this default sizing may not continue to be
implemented in the ISWI version of InstallScript and of course the actual size of the
stirng may be larger than 1024 characters. Because of the way you explicitly specified
the size of szStr, your code will be able to handle any change in this default handling
of string lengths.

Working with Lists and Arrays
There are many similarities between lists and arrays in that they have a homogeneous
data type and they can be expanded or contracted in size rather easily. An array has
an advantage over a list because it can hold the VARIANT data type as well as a
STRING or a NUMBER data type. A list can only hold a STRING or a NUMBER data
type and it cannot hold a VARIANT data type. It is also easier to sort an array than it
is to sort a list. With a list, however, it is easier to insert items at arbitrary locations
and to delete items in the middle of the list. The main thing that you do with either a
list or an array is hold data and then search the list or array to retrieve that data.

An example of sorting and searching a list
The following example presents a complete Setup.rul file that demonstrates the use
of a bubble sort on a list and then a binary search of that list. There are built-in
functions that enable you to do a sequential search of a list. When the list is short a
sequential search is just as fast as any other mechanism, but when you have a long
list then you may want to use other means to speed up the search process. Shown in
this example is an implementation that enables you to use the same functions on
either a numerical list or a string list. Also demonstrated is the use of a function that
can take a variable number of arguments and the ability of the VARIANT data type
to switch between numbers and strings. You’ll use the StrCompareEx function that
you developed earlier to do these string comparisons.

//
//
// IIIIIII SSSSSS
// II SS InstallShield (R)
// II SSSSSS (c) 1996-2000,
// II SS InstallShield Software Corporation
// II SS All rights reserved.
// IIIIIII SSSSSS
//
// File Name: Setup.rul
//

Chapter 14: Advanced InstallScript 601

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 601

// Description: InstallShield script
//
//
// include files
#include <isrt.h>
#include <iswi.h>

// function prototypes
// entry point functions
export prototype ScriptTest(NUMBER);

// private functions
prototype Compare(LIST,...);
prototype GetValues(LIST, NUMBER, NUMBER, BYREF VARIANT,

BYREF VARIANT);
prototype Sort(LIST);
prototype Swap(LIST, NUMBER, NUMBER);
prototype BinSearch(LIST, VARIANT);
prototype StrCompareEx(STRING, STRING, BOOL);

// global constants
#define CAPTION “Script Test Feedback”

//
//
// Function: ScriptTest
//
// Purpose: This function is
// the entry point for a custom action that demonstrates
// the sorting and searching of an InstallScript LIST.
//
//
function ScriptTest(hMSI)
INT nCount, k, i, j, nItem, nStart, nReturn;
STRING szString[10], szItem, szStr1, szStr2;
LIST nList, szList;
begin

// Create a number list
nList = ListCreate(NUMBERLIST);

k = -1;

// Initialize the number list

602 Part IV: Advanced Concepts

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 602

// What you create here is an arbitrary set of 21 numbers
for i=0 to 20

ListAddItem(nList, i*i*k, AFTER);
k = k * -1;

endfor;

// Create a string list
szList = ListCreate(STRINGLIST);

nStart = 65;

// Initialize the string list
// What you create here is an arbitrary set of 21 strings
for i=0 to 20

for j=0 to 8
k = nStart + j;
szString[j] = k;
if(k=90) then

nStart = 97;
endif;

endfor;

// Null terminate each string
szString[9] = ‘\0’;

// Add the string to the list
ListAddString(szList, szString, AFTER);
nStart = nStart + 1;

endfor;

// Perform a bubble sort on the number list
Sort(nList);

nCount = ListCount(nList);

// Loop through the list and display each number value
for i=0 to nCount-1

ListSetIndex(nList, i);
ListCurrentItem(nList, nItem);
SprintfBox (INFORMATION, “Script Test”,

“Current Item = %d”, nItem);
endfor;

// Search the number list for -100
nReturn = BinSearch(nList, -100);

Chapter 14: Advanced InstallScript 603

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 603

// Display the results of the search
if(nReturn >= 0) then

SprintfBox (INFORMATION, “Script Test”,
“Value found at index = %d”, nReturn);

else
SprintfBox (INFORMATION, “Script Test”, “Value not found”);

endif;

Sort(szList);

nCount = ListCount(szList);

// Loop through the list and display each string value
for i=0 to nCount-1

ListSetIndex(szList, i);
ListCurrentString(szList, szItem);
SprintfBox (INFORMATION, “Script Test”,

“Current String = %s”, szItem);
endfor;

// Search the string list for the string “bcdefghij”
nReturn = BinSearch(szList, “bcdefghij”);

// Display the results of the search
if(nReturn >= 0) then

SprintfBox (INFORMATION, “Script Test”,
“Value found at index = %d”, nReturn);

else
SprintfBox (INFORMATION, “Script Test”, “Value not found”);

endif;

end;

//
//
// Function: Compare
//
// Purpose: This function is used to compare values in a list
// that are passed as an array of two VARIANTs.
// If the first value is less than the second value
// then return -1.
// If the first value is equal to the second
// then return 0. If the first value is greater than the
// second value then return 1.

604 Part IV: Advanced Concepts

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 604

//
//
function Compare(ListID, Values)
INT nType, nItem;
STRING szItem;
begin

// Get the list type
nType = ListGetType(ListID);

// If the list is a number list then
// do a simple numeric comparison
// If the list is a string list then perform a
// case-sensitive string comparison
if(nType = NUMBERLIST) then

if(Values(0) < Values(1)) then
return -1;

elseif(Values(0) = Values(1)) then
return 0;

else
return 1;

endif;
else

if(StrCompareEx(Values(0), Values(1), TRUE) < 0) then
return -1;

elseif(StrCompareEx(Values(0), Values(1), TRUE) = 0) then
return 0;

else
return 1;

endif;
endif;

end;

//
//
// Function: Sort
//
// Purpose: This function performs a bubble sort on a list
//
//
function Sort(ListID)
INT nCount, i, j;
VARIANT Value1, Value2;

Chapter 14: Advanced InstallScript 605

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 605

begin

// Get the number of elements in the list
nCount = ListCount(ListID);

for i=0 to nCount-2
for j=i+1 to nCount-1

// Get the values in the list at indices i and j
GetValues(ListID, i, j, Value1, Value2);

// Compare the two list values and
// if the first value
// is greater than the second value
// swap the values
// because you are sorting in ascending order
if(Compare(ListID, Value1, Value2) = 1) then

Swap(ListID, i, j);
endif;

endfor;
endfor;

end;

//
//
// Function: GetValues
//
// Purpose: This function returns the values of two list nodes
// without regard for whether they are strings or
numbers
//
//
function GetValues(ListID, nIndex1, nIndex2, Value1, Value2)
INT nType, nItem1, nItem2;
STRING szItem1, szItem2;
begin

// Get the list type
nType = ListGetType(ListID);

// Using the capabilities of the VARIANT type
// you can work with either a number list or a
// string list. You just have to use the correct
// APIs to access the list. Since the return
// data type is a VARIANT it can hold either

606 Part IV: Advanced Concepts

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 606

// a number value or a string value.
if(nType = NUMBERLIST) then

ListSetIndex(ListID, nIndex1);
ListCurrentItem(ListID, nItem1);
ListSetIndex(ListID, nIndex2);
ListCurrentItem(ListID, nItem2);
Value1 = nItem1;
Value2 = nItem2;

else
ListSetIndex(ListID, nIndex1);
ListCurrentString(ListID, szItem1);
ListSetIndex(ListID, nIndex2);
ListCurrentString(ListID, szItem2);
Value1 = szItem1;
Value2 = szItem2;

endif;
end;

//
//
// Function: Swap
//
// Purpose: This function does an in-place swap of
// two elements in a list
//
//
function Swap(ListID, nIndex1, nIndex2)
INT nType, nTemp, nItem1, nItem2;
STRING sTemp, szItem1, szItem2;
begin

// Get the list type
nType = ListGetType(ListID);

// You just need to know the list type
// so that you can use the correct APIs for swapping the
// values and the correct data type for the temporary
// variable used to hold one of values being swapped
if(nType = NUMBERLIST) then

ListSetIndex(ListID, nIndex1);
ListCurrentItem(ListID, nItem1);
ListSetIndex(ListID, nIndex2);
ListCurrentItem(ListID, nItem2);

nTemp = nItem1;

Chapter 14: Advanced InstallScript 607

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 607

nvItem1 = nItem2;
nItem2 = nTemp;

ListSetIndex(ListID, nIndex1);
ListSetCurrentItem(ListID, nItem1);
ListSetIndex(ListID, nIndex2);
ListSetCurrentItem(ListID, nItem2);

else
ListSetIndex(ListID, nIndex1);
ListCurrentString(ListID, szItem1);
ListSetIndex(ListID, nIndex2);
ListCurrentString(ListID, szItem2);

sTemp = svItem1;
svItem1 = svItem2;
svItem2 = sTemp;

ListSetIndex(ListID, nIndex1);
ListSetCurrentString(ListID, szItem1);
ListSetIndex(ListID, nIndex2);
ListSetCurrentString(ListID, szItem2);

endif;
end;

//
//
// Function: BinSearch
//
// Purpose: This function performs a binary search
// on a sorted list
//
//
function BinSearch(ListID, Search)
INT nCount, nMid, nLow, nHigh, nType;
INT nReturn, nItem;
STRING szItem;
VARIANT vItem;
begin

// Get the list type
nType = ListGetType(ListID);

// Get the number of elements in the list
nCount = ListCount(ListID);

608 Part IV: Advanced Concepts

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 608

nLow = 0;
nHigh = nCount - 1;

// Loop through the list until the element is found
// or nLow is greater than nHigh meaning that the element
// is not in the list
while(nLow <= nHigh)

nMid = (nLow + nHigh)/2;
ListSetIndex(ListID, nMid);

// Use a VARIANT to hold either the
// number or the string value
if(nType = NUMBERLIST) then

ListCurrentItem(ListID, nItem);
vItem = nItem;

else
ListCurrentString(ListID, szItem);
vItem = szItem;

endif;

// Based on the comparison results either continue
// the search in the upper half of the list
// or in the lower half of the list
nReturn = Compare(ListID, vItem, Search);

if(nReturn = -1) then
nLow = nMid + 1;

elseif(nReturn = 1) then
nHigh = nMid - 1;

else
return nMid;

endif;

endwhile;

return -1;
end;

//
//
// Function: StrCompareEx
//
// Purpose: This function performs a comparison
// of two strings
// and this will be done on a case-sensitive or case

Chapter 14: Advanced InstallScript 609

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 609

// -insensitive basis depending on the value of bCase.
//
//
function StrCompareEx(szStr1, szStr2, bCase)
INT nReturn, nLen1, nLen2, i;
begin

i = 0;
nReturn = 0;

// Get the length of the two strings
// that are being compared.
nLen1 = StrLength(szStr1);
nLen2 = StrLength(szStr2);

// If it is to be a case-insensitive comparison
// change all characters to upper case
if(!bCase) then

StrToUpper(szStr1, szStr1);
StrToUpper(szStr2, szStr2);

endif;

// Compare each string character by character
while(szStr1[i] != ‘\0’ && szStr2[i] != ‘\0’)

if(szStr1[i] < szStr2[i]) then
return -1;

elseif(szStr1[i] > szStr2[i]) then
return 1;

endif;

i = i + 1;
endwhile;

// If the characters in both strings are the same
// then the length will determine the comparison results
if(nLen1 = nLen2) then

return 0;
elseif(nLen1 > nLen2) then

return 1;
elseif(nLen1 < nLen2) then

return -1;
endif;

return 0;

end;

610 Part IV: Advanced Concepts

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 610

In the previous code example you implemented sorting and searching that is
probably easier to do with an array. The same approach you used above to sort and
search a list can be easily converted to sort and search an array. You do not need to
repeat the above example for arrays but you should examine another aspect of
arrays: how to make an array of structures.

The implementation of arrays in InstallScript
You implement arrays in InstallScript the same way you implement arrays in Visual
Basic, using the SAFEARRAY. The SAFEARRAY approach was developed in order to
get around the problems inherent in the raw C++ array. These problems include a
lack of index protection, no size limit, and no initialization. In C++ a SAFEARRAY
is a protected data structure accompanied by a set of system functions that allow
you to work on this structure. The C++ SAFEARRAY structure for Win32 machines
looks like what is shown in the following code.

// The C/C++ SAFEARRAY data structure
struct SAFEARRAY {

WORD cDims;
WORD fFeatures;
DWORD cbElements;
DWORD cLocks;
void *pvData;
SAFEARRAYBOUND rgsabound[1];

};

With the SAFEARRAY method you need to use a special approach to pass an
array to a DLL function. You learn how to do this in the next section.

Implementing the QuickSort algorithm
The following code demonstrates how to implement the QuickSort algorithm to sort
an array. To actually use this example you will need to insert it into your code for
implementing a custom action. This would be a private function that is called by
the function that you export.

//
//
// IIIIIII SSSSSS
// II SS InstallShield (R)
// II SSSSSS (c) 1996-2000,
// II SS InstallShield Software Corporation
// II SS All rights reserved.
// IIIIIII SSSSSS
//
// File Name: Setup.rul

Chapter 14: Advanced InstallScript 611

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 611

//
// Description: InstallShield script
//
//

// include files
#include <isrt.h>
#include <iswi.h>

prototype void Swap(BYREF VARIANT, NUMBER, NUMBER);
prototype void QuickSort(BYREF VARIANT, NUMBER, NUMBER);

//
//
// Function: Swap
//
// Purpose: This function will swap two values in an array
//
//
function void Swap(array, i, j)
VARIANT vTemp;
begin

vTemp = array(i);
array(i) = array(j);
array(j) = vTemp;

end;

//
//
// Function: QuickSort
//
// Purpose: This function implements the QuickSort algorithm
//
//
function void QuickSort(array, nLBound, nUBound)
NUMBER nLo, nHi;
VARIANT vMid;
begin

if(nLBound >= nUBound) then
return;

endif;

vMid = array((nLBound + nUBound) / 2);

612 Part IV: Advanced Concepts

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 612

nLo = nLBound;
nHi = nUBound;

while(nLo <= nHi)
while(nLo < nUBound && array(nLo) < vMid)

nLo = nLo + 1;
endwhile;

while(nHi > nLBound && array(nHi) > vMid)
nHi = nHi - 1;

endwhile;

if(nLo <= nHi) then
Swap(array, nLo, nHi);
nLo = nLo + 1;
nHi = nHi - 1;

endif;
endwhile;

if(nLBound < nHi) then
QuickSort(array, nLBound, nHi);

endif;

if(nLo < nUBound) then
QuickSort(array, nLo, nUBound);

endif;
end;

The QuickSort algorithm is probably the most widely used sorting algorithm.
However, you will notice that the implementation of the QuickSort algorithm uses
recursion. As I mentioned earlier, recursion can consume stack space on the
machine where it is running.

Passing an array to a DLL function
The following example shows how to create an array of DWORDs so that it can be
passed to a Win32 API.

//
//
// IIIIIII SSSSSS
// II SS InstallShield (R)
// II SSSSSS (c) 1996-2000,
// II SS InstallShield Software Corporation

Chapter 14: Advanced InstallScript 613

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 613

// II SS All rights reserved.
// IIIIIII SSSSSS
//
// File Name: Setup.rul
//
// Description: InstallShield script
//
//

// include files
#include <isrt.h>
#include <iswi.h>

// Private functions
prototype STRING StreamArray(VARIANT);
prototype BOOL PSAPI.EnumProcesses(POINTER, LONG, BYREF LONG);
prototype POINTER Array2Pointer(BYREF VARIANT);

// entry point functions
export prototype ScriptTest(NUMBER);

// global variables
// Mirroring the C/C++ SAFEARRAY data structure
typedef _SAFEARRAY
begin
SHORT cDims;
SHORT fFeatures;
LONG cbElements;
LONG cLocks;
POINTER pvData;
/*rgsabound omitted*/
end;

// Mirroring the C/C++ VARIANT data structure
typedef _VARIANT
begin

SHORT vt;
SHORT wReserved1;
SHORT wReserved2;
SHORT wReserved3;
NUMBER theRealData;

end;

//

614 Part IV: Advanced Concepts

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 614

//
// Function: ScriptTest
//
// Purpose: This function is
// the entry point for a custom action that demonstrates
// the passing of an array to a DLL function.
//
//
function ScriptTest(hMSI)
LONG processIDs(512);
LONG cb, cbNeeded;
begin

cb = SizeOf(processIDs) * 4; // 4 = SizeOf DWORD

EnumProcesses(Array2Pointer(processIDs), cb, cbNeeded);

// Shrink the Array to the no. of
// items returned by EnumProcesses
// This is needed to prevent StreamArray
// from outputting junk
Resize(processIDs, cbNeeded / 4);

MessageBox(StreamArray(processIDs), INFORMATION);

abort;
end;

//
//
// Function: Array2Pointer
//
// Purpose: This function will typecast an array pointer to a
// _VARIANT pointer
//
//
function POINTER Array2Pointer(array)
_VARIANT POINTER pVariant;
_SAFEARRAY POINTER pArray;
begin

pVariant = &array;
pArray = pVariant->theRealData;
return pArray->pvData;

end;

Chapter 14: Advanced InstallScript 615

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 615

//
//
// Function: StreamArray
//
// Purpose: This function dumps an array into a string. Elements
// are separated by a space.
//
//
function STRING StreamArray(array)
NUMBER i;
STRING s;
begin

for i = 0 to SizeOf(array) - 1
s = s + array(i) + “ “;

endfor;

return s;
end;

The important function in the preceding code is the Array2Pointer function.
When you declare an array variable, a VARIANT variable is created internally. This
VARIANT variable holds the SAFEARRAY implementation of the array. In this sense
the Array2Pointer function typecasts the pointer to the array to a _VARIANT pointer.
This extracts the SAFEARRAY pointer from the VARIANT variable. The pointer to
the actual data is extracted from the _SAFEARRAY pointer. The _VARIANT and
_SAFEARRAY typedefs are InstallScript versions of the VARIANT and SAFEARRAY
structures defined in C++.

Working with Structures
At the time of this writing it is not possible in InstallScript to generate a linked list
where new nodes for the list have to be created at run-time. This makes it somewhat
useless to try to create a linked list of structures unless you know at compile time
how many nodes you are going to have in the list. Accordingly, I will not provide an
example of this type of construct.

However, it is possible to create an array of structures. The following example is
a complete working Setup.rul file that demonstrates how to create this type of array.

//
//
// IIIIIII SSSSSS
// II SS InstallShield (R)
// II SSSSSS (c) 1996-2000,

616 Part IV: Advanced Concepts

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 616

// II SS InstallShield Software Corporation
// II SS All rights reserved.
// IIIIIII SSSSSS
//
// File Name: Setup.rul
//
// Description: InstallShield script
//
//
// include files
#include <isrt.h>
#include <iswi.h>

// function prototypes
// entry point functions
export prototype ScriptTest(NUMBER);

// private functions
prototype OBJECT NewNode();
prototype FillNodeArray(BYREF VARIANT, NUMBER);

// global constants
#define CAPTION “Script Test Feedback”

// global variables
typedef NODE
begin
STRING szStr[50];
INT nCount;
end;

///
//
// Function: ScriptTest
//
// Purpose: This function is
// the entry point for a custom action that demonstrates
// the creation of an array of structures.
//
//
function ScriptTest(hInstall)
INT nNodes, i;
OBJECT structArray();
begin

Chapter 14: Advanced InstallScript 617

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 617

nNodes = 15;

try

// Create and populate the array of structures
FillNodeArray(structArray, nNodes);

// Display the values in the array
for i=0 to nNodes-1

SprintfBox(INFORMATION,
“Script Test”, “String = %s\nLength = %d”,

structArray(i).szStr,
structArray(i).nCount);

endfor;

catch
SprintfBox(SEVERE, “Script Test”, “Exception was thrown”);

endcatch;

end;

///
//
// Function: NewNode
//
// Purpose: This function returns a new object of type NODE
//
//
function OBJECT NewNode()
NODE node;
begin

// Creates new local version and then
// sends it to the global variable
return node;

end;

///
//
// Function: FillNodeArray
//
// Purpose: This function creates and populates an array of
// structures of type NODE
//
//

618 Part IV: Advanced Concepts

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 618

function FillNodeArray(array, n)
INT i;
STRING szi;
OBJECT obj;
begin

// Size the array for the number of nodes
// to be stored in the array
Resize(array, n);

// Fill the array with arbitrary strings and numbers
for i=0 to n-1

// Create a new node for each element in the array
set obj = NewNode();
array(i) = obj;
NumToStr(szi, i);
array(i).szStr = “This is string #” + szi;
array(i).nCount = StrLength(array(i).szStr);

endfor;

end;

The secret here is the function NewNode, which returns into a global variable an
object of the type defined for the array. The reason that this is possible is that struc-
tures are actually COM objects and there is an external reference counting that
keeps them alive in memory.

Exception Handling
When your script does something wrong at run time, it is called an exception.
Exception handling is the mechanism you implement to do something in your code
about the exceptions that occur when your script is executing. There are many
ways to do exception handling: you can check return values from functions or cre-
ate special blocks of code to handle exceptions that are “thrown” by the function or
block of code to where they are handled appropriately.

The traditional approach
The traditional approach to checking for and handling exceptions at run time is to
evaluate the return values from function calls. An example of this is as follows:

function Foo()
INT nReturn, nFileHandle;
STRING szPath, szFileName;

Chapter 14: Advanced InstallScript 619

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 619

begin
// Assign the file parameters
SzPath = “C:\\Scratch”;
SzFileName = “TestText.txt”;

nReturn = CreateFile(nFileHandle, szPath, szFileName);

if(nReturn < 0) then
// code to handle situation where
// where the file was not created.

endif;
end;

In this traditional approach, you handle errors where you are doing your normal
processing. Many functions have a whole range of return values that represent differ-
ent types of errors; if this is the case you might use a switch statement after each call
to these functions to try to handle each of the error types in the best way possible. A
good example of this type of function is the CopyFile InstallScript built-in function
that has seven types of error-return codes. With the InstallScript built-in functions,
you are stuck with this traditional approach to handling errors, but in user-defined
functions you have a much more elegant approach available to you. This modern
approach is the subject of the remainder of this section.

The modern approach
With the modern approach to exception handling, you can take care of exceptions in
a different part of the code from where you are performing your normal processing.
All modern programming languages, such as C++, Java, Visual Basic, VBScript, and
JScript, can perform exception handling. InstallScript also has this same functionality,
which is designed along the lines of the exception handling found in VBScript and
JScript. This mechanism consists of having functions “raise” or “throw” an exception
when a run-time error occurs; this exception is then caught and handled by a special
block of code. You place the statements and function calls that you know can throw
an exception in another special block of code called the try block. In this way, you can
if you wish select only a subset of code that needs to be subject to exception handling.

The general syntax for creating this modern approach to exception handling is
as follows:

try
// Statements and function calls that may raise an exception

catch
// Code that is used to handle the exception when one is

raised
// by the statements and function calls in the try block

endcatch;

620 Part IV: Advanced Concepts

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 620

The try...catch block can be nested inside another try...catch block to an arbitrary
depth. Nesting of these blocks would look like the following:

try
// Statements and function calls that may raise an exception

try
// Statements and function calls that may raise an exception

catch
// Code that is used to handle the exception when one is

raised

endcatch;

catch
// Code that is used to handle the exception when one is raised
// by the statements and function calls in the outer try block
try
// Statements and function calls that may raise an exception
catch
// Code that is used to handle the exception when one is raised
// by the statements and function calls in the inner try block
endcatch;

// Code that is used to handle the exception when one is raised
// by the statements and function calls in the outer try block

endcatch;

This raises the question, How does one go about throwing or raising an exception
so that all this new exception handling can go to work? An exception can be thrown
in several ways. The InstallScript engine will throw an exception under certain cir-
cumstances, and the scripting engine will turn a failure HRESULT return values from
COM calls into an exception. Finally, you can raise an exception within the script
code you write using the same functionality inherent in the VBScript Err object.

To understand how to handle exceptions that are raised when you’re accessing
the methods of an automation interface, you need to get into detail about the Err
object. You will also want to use the functionality of the Err object when you
develop your own user-defined functions to implement exception handling.

THE ERR OBJECT
The Err object in InstallScript is very similar to the same object in VBScript. With
this object you can design your user-defined functions to respond well to run-time
errors. The Err object is intrinsic to InstallScript and it has global scope. You do not
need to create an instance of this object since it is already done for you. When used
correctly the Err object will tell you what went wrong and where it went wrong.

Chapter 14: Advanced InstallScript 621

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 621

The Err object has five properties and two methods that are used to implement
exception handling. The syntax of the Err object is as follows:

Err.<Property_Name> [= value];

or

Err.<Method_Name>[(argument_list)];

You can read a property value by specifying the name of the property to be read
and you set the value of the property using the assignment operator. You invoke a
method by providing its name and when necessary a list of arguments. The available
properties for the Err object are described in Table 14-4.

TABLE 14-4 ERR OBJECT PROPERTIES

Property Name Description

Err.Number The default property of the Err object. This numeric value is set at
the point where the error occurs and is normally used in a switch
statement for handling the error or exception. The range of the
permitted values for an error is 0 to 65535. The final value of the
error number is the value chosen bitwise AND’d with 0x80040000.

Err.Source A string that identifies the procedure or object where the error
was generated.

Err.Description A string that provides a short description of the error that has
occurred. This string is displayed to the user if the script is not going
to handle the error internally and then continue with the installation.

Err.HelpFile The fully qualified path to the help file where help for this error has
been documented.

Err.HelpContext The context ID of the topic within the help file where help for this
error has been documented. The help file will open up to this topic.

Err.LastDllError This property holds the return value of the WINAPI function
GetLastError(). This is useful since calling GetLastError() directly
from a script will not yield the intended result since the scripting
engine as part of its normal operations, is itself calling a lot of
WINAPI functions that set the last error.

622 Part IV: Advanced Concepts

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 622

The two methods available with the Err object are documented in Table 14-5.

TABLE 14-5 ERR OBJECT METHODS

Method Name Description

Err.Clear Clears all property settings of the Err object.
This method does not take any arguments.
If you do not use it, any properties not reset
will carry over for the next Err object defined.
The InstallScript engine automatically calls
this method on the Err object whenever an
Err object is handled in the catch block and
a new Err object has not been initialized.

Err.Raise[(number, source, description,
helpfile, helpcontext)] Used to generate the run-time error. When

this method is used, there must be a try...
catch block somewhere in the calling chain
in order for the exception to be intercepted
and handled. This method takes as optional
arguments any or all of the five properties
associated with this object. None of these
arguments is required since all of the
properties can be set outside prior to
the invocation of the method.

Before we get into the actual use of the Err object you need to examine the
exception handling hierarchy, which deals with handling exceptions when there is
a chain of calls from one function to another.

THE EXCEPTION HANDLING HIERARCHY
Figure 14-1 shows a typical scenario where the entry-point function calls a private
function that in turn calls another private function. In this figure the entry point
function ScriptTest calls private function fooA and fooA calls fooB. As shown in
the figure all these calls occur in a try...catch block.

When fooB is executed an exception is raised. Since this happens inside a try block
the exception handling mechanism takes over and tries to handle the exception
within its own catch block. If it cannot handle the exception, it raises another error,

Chapter 14: Advanced InstallScript 623

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 623

which then jumps the execution handling to the catch block of the fooA function. If
fooA cannot handle the exception, it raises another exception and the attempt to
handle the exception starts again in the catch block of the ScriptTest function.

Figure 14-1: A sequence of function calls

Now take the situation where the functions fooA and fooB have not had
try...catch blocks implemented. If fooB raises an exception the InstallScript engine
will continue up the hierarchy until it can find a function that has an error handler
enabled. In this case the function ScriptTest attempts to handle the exception
within its catch block.

Now it is time to take a look at how you would actually use the Err object to trap
exceptions thrown by the scripting engine or implement exception handling for
user-defined functions. First take a look at how you would use the Err object to
handle engine-thrown exceptions.

Chapter 15 covers handling exceptions that are thrown while you’re

accessing COM.

XREF

function ScriptTest (hMSI)
begin

try
fooA();

catch
/ / Handle

/ / exception

endcatch;

end;

function fooA ()
begin

try
fooB();

catch
Err.Raise

endcatch;

end;

function fooB ()
begin

try
Err. Raise

catch
Err.Raise

endcatch;

end;

624 Part IV: Advanced Concepts

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 624

HANDLING EXCEPTIONS THROWN BY THE INSTALLSCRIPT ENGINE
Table 14-6 lists the seven exceptions that the InstallScript engine will throw based
on the circumstances. Most of these exceptions are thrown when something goes
wrong when you’re trying to access a function in a dynamic-link library.

TABLE 14-6 EXCEPTIONS THROWN BY THE INSTALLSCRIPT ENGINE

Error Number Description

0x80040701 Occurs when there is an attempt in the script to divide by 0.

0x80040702 Occurs when a dynamic-link library failed to load when the UseDLL()
built-in function is called. This can happen if the DLL could not be
found, if DLLs on which the DLL that is being loaded is dependent
could not be found.

0x80040703 Raised when the DLL function being called cannot be found. This can
happen if you are not using the function name as exported from the
DLL. If you did not use a module definition file when creating the DLL,
the names of the exported functions will be decorated.

0x80040704 Raised when a DLL function call results in a bad stack. This can
happen when the prototyping of the function being called in the
DLL is incorrect.

0x80040705 Raised when you try to access a string location that is outside the
upper bound of the string. For purposes of backward compatibility
this exception is not raised until you try to access position 300 in
a string that is sized to be less than 300 characters in length.

0x80040706 Raised when you try to use an object variable that is not referring
to a valid object.

0x80040707 Raised when you make a call to a DLL function and the DLL
function crashes.

The following code shows a generic layout for catching the exceptions thrown by
the InstallScript engine. It is a switch statement that provides an error description
and then displays this error in a message box. When the user clicks the OK button on
the message box, the Windows Installer will get an installation failure message and
will abort the installation.

function ScriptTest(hMSI)
begin

Chapter 14: Advanced InstallScript 625

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 625

try
// do something that will cause
// the engine to throw an exception

catch

switch(Err.Number ^ 0x80040000)
case 0x701:

Err.Clear;
Err.Description = “There was a division by zero”;

case 0x702:
Err.Clear;
Err.Description =

“The installation failed to load a required DLL”;
case 0x703:

Err.Clear;
Err.Description =
“The installation could not find a required DLL

function”;
case 0x704:

Err.Clear;
Err.Description =
“ Dll function call resulted in a bad stack because”

+ “of a Possible incorrect function prototype”;”;
case 0x705:

Err.Clear;
Err.Description = “An attmept was made to access “ +

“an array location that was out of bounds.”;
case 0x706:

Err.Clear;
Err.Description = “An attempt was made to access “ +

“an object that does not exist”;
case 0x707:

Err.Clear;
Err.Description = “A call to a DLL function crashed”;

default:
Err.Clear;
Err.Description = “There was an unknown exception” +

“ thrown by the scripting engine”;
endswitch;

SprintfBox(SEVERE, “Exception”, “Error: %X\n\n%s”,
Err.Number, Err.Description);

// Tell the Windows Installer to abort the installation

626 Part IV: Advanced Concepts

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 626

return ERROR_INSTALL_FAILURE;

endcatch;

end;

In the above switch statement you will notice that I am performing the switch on
the value of Err.Number XOR’d with 0x80040000, which will generate the raw error
number given in hex used by the case statement. At the time of this writing using
just the value of Err.Number for the switch expression generated a compiler error.
Another option would have been to use a number variable to store the value of the
Err.Number property and then use this in the switch expression.

IMPLEMENTING EXCEPTION HANDLING IN USER-DEFINED
FUNCTIONS
In the example shown here you are going to create a wrapper around the CopyFile
built-in function. This is a good example of how to make use of the exception-
handling capabilities of InstallScript in the functions you write. The following code
demonstrates this wrapper function.

export prototype ScriptTest(HWND);

prototype VOID MyCopyFile(STRING, STRING);

//
//
// Function: ScriptTest
//
// Purpose: This is the entry point function used to run
// your scripting test examples
//
//
function ScriptTest(hMSI)
STRING szSrc, szDest;
begin

szSrc = “D:\\Installation Projects\\Scratch\\revstr.dll”;
szDest = “E:\\Scratch\\revstr.dll”;

try
MyCopyFile(szSrc, szDest);

catch
switch(Err.Number ^ 0x80040000)

case 2:
SprintfBox(SEVERE, “Exception”,

Chapter 14: Advanced InstallScript 627

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 627

“Error #: %X\n\nError occurred in function %s\n\n%s”,
Err.Number, Err.Source, Err.Description);

case 3:
SprintfBox(SEVERE, “Exception”,
“Error #: %X\n\nError occurred in function %s\n\n%s”,

Err.Number, Err.Source, Err.Description);
case 5:

SprintfBox(SEVERE, “Exception”,
“Error #: %X\n\nError occurred in function %s\n\n%s”,

Err.Number, Err.Source, Err.Description);
case 6:

SprintfBox(SEVERE, “Exception”,
“Error #: %X\n\nError occurred in function %s\n\n%s”,

Err.Number, Err.Source, Err.Description);
case 27:

SprintfBox(SEVERE, “Exception”,
“Error #: %X\n\nError occurred in function %s\n\n%s”,

Err.Number, Err.Source, Err.Description);
case 38:

SprintfBox(SEVERE, “Exception”,
“Error #: %X\n\nError occurred in function %s\n\n%s”,

Err.Number, Err.Source, Err.Description);
case 46:

SprintfBox(SEVERE, “Exception”,
“Error #: %X\n\nError occurred in function %s\n\n%s”,

Err.Number, Err.Source, Err.Description);
default:

SprintfBox(SEVERE, “Exception”,
“Error #: %X\n\nError occurred in function %s\n\n%s”,

Err.Number, Err.Source, Err.Description);
endswitch;

endcatch;

end;

//
//
// Function: MyCopyFile
//
// Purpose: This is the entry point function used to run
// your scripting test examples
//
//

628 Part IV: Advanced Concepts

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 628

function VOID MyCopyFile(szSrcFile, szDestFile)
NUMBER nReturn;
begin

nReturn = CopyFile(szSrcFile, szDestFile);

if(nReturn < 0) then
switch(nReturn ^ 0x80070000)

case 0x02:
Err.Number = 2;
Err.Source = “MyCopyFile”;
Err.Description = “Unable to open the source” +

“ file for copying”;
Err.Raise;

case 0x03:
Err.Number = 3;
Err.Source = “MyCopyFile”;
Err.Description =

“Unable to copy the source file to” +
“ the destination file”;

Err.Raise;
case 0x05:

Err.Number = 5;
Err.Source = “MyCopyFile”;
Err.Description =

“The destination drive is read only”;
Err.Raise;

case 0x06:
Err.Number = 6;
Err.Source = “MyCopyFile”;
Err.Description =

“Unable to allocate enough memory to” +
“ complete the file copy”;

Err.Raise;
case 0x27:

Err.Number = 27;
Err.Source = “MyCopyFile”;
Err.Description = “Unable to create the” +

“ destination directory”;
Err.Raise;

case 0x38:
Err.Number = 38;
Err.Source = “MyCopyFile”;
Err.Description =

“Not enough space on the target location to” +

Chapter 14: Advanced InstallScript 629

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 629

“ perform the file copy”;
Err.Raise;

case 0x46:
Err.Number = 46;
Err.Source = “MyCopyFile”;
Err.Description = “The destination file is” +

“ read only”;
Err.Raise;

default:
Err.Number = 100;
Err.Source = “MyCopyFile”;
Err.Description = “An unknown error occurred” +

“ during the file copy”;
Err.Raise;

endswitch;
endif;

end;

Summary
In this chapter you took a close look at the InstallScript language and implemented
a number of functions that perform generic actions. We saw that InstallScript is a
very powerful scripting language and that there is very little you cannot do with it.
In the next chapter you will see that it is even more powerful and that with COM
you can extend the language to suit your needs.

630 Part IV: Advanced Concepts

4723-2 ch14.f.qc 1/16/01 11:11 AM Page 630

Chapter 15

InstallScript and COM
IN THIS CHAPTER

◆ Accessing COM objects form InstallScript

◆ Using the Windows Installer automation interface

◆ Using the FileSystemObject

◆ The capabilities of the Windows Scripting Host object model

FROM INSTALLSCRIPT YOU can access COM objects via the automation interface
exposed by any application or DLL. This dramatically increases the capability of this
scripting language over and above what is available to it from its own built-in API
function set. The purpose of this chapter is to provide a sense of what you can do with
this functionality. It is not an in-depth discussion of COM or what an automation
interface is. In particular we look at three commonly available automation interfaces
and how you might want to take advantage of their exposed methods and properties.
These three automation interfaces are the ones exposed by the Windows Installer, the
SCRRUN.DLL run-time scripting engine, and the Windows Scripting Host.

Accessing COM
From within a script, you can access the methods and properties of any automation
interface that has been registered on the target machine. To do this you need to
know the ProgID of the registered interface and you will need to use the set keyword
and the CreateObject() function. The general syntax for this is as follows:

set object-name = CreateObject(“progID”);

The object-name is a variable that you have declared in your script as an
OBJECT data type. The progID is the programmatic identifier for the automation
interface you are accessing, as given in the Registry. The CreateObject() function
uses the ProgID to access the CLSID that defines the requested interface.
InstallScript supports the standard object.property and object.method syntax for
accessing the properties and methods exposed by an automation interface.

631

4723-2 ch15.f.qc 1/16/01 11:11 AM Page 631

Accessing the Windows Installer
Automation Interface
Below is an example script that accesses the Windows Installer automation interface.
You can use the same process for any other automation interface you want to access.

Function foo()
STRING szVersion;
OBJECT Installer;
begin

try

// Create an Installer object
set Installer = CreateObject(“WindowsInstaller.Installer”);

// Access the Version property of the Installer object
szVersion = Installer.Version;

// Display the results in a message box
SprintfBox (INFORMATION, CAPTION,

“Windows Installer Version: %s”,szVersion);
catch

SprintfBox (INFORMATION, “Script Test”,
“Exception was thrown”);

exit;
endcatch;

end;

In the preceding script sample, you should notice that the Version property is
returned as a string. Also note that the script is using a try-catch block to trap any
exceptions that are thrown. If you were to capture the Version property as an integer
data type, you would see that an exception is thrown. The return value depends on
the method or property being accessed and type mismatches can occur when there is
no legal conversion from the returned type to the type of the variable that holds the
return value. The SprintfBox in the above example displayed on my machine the
following string:

Windows Installer Version: 1.10.1029.0

From within InstallScript you are not able to access the Windows Installer
Session object for the current installation process. This is because the Session object
is not an object that you can create. A VBScript or JScript custom action has access
to the Session object because the Windows Installer provides this object to them as
the host in which these types of custom actions are running.

632 Part IV: Advanced Concepts

4723-2 ch15.f.qc 1/16/01 11:11 AM Page 632

However, there are many other objects and their methods and properties that
you can use from InstallScript. Unfortunately, most of these can only operate on an
MSI package that has not been opened for installation. Figure 15-1 shows the
object model for the Windows Installer automation interface.

Figure 15-1: The Windows Installer object model

The session object for
an active installation is
not available from
InstallScript

Installer Object
CreateObject("WindowsInstaller.Installer")

SummaryInfo Object
Installer.SummaryInformation

Record Object
Installer.CreateRecord

Database Object
Installer.OpenDatabase

FeatureInfo Object
Session.FeatureInfo

Database Object
Session.Database

SummaryInfo Object
Database.SummaryInformation

UIPreview Object
Database.EnableUIPreview

View Object
Database.OpenView

Record Object
View.Fetch

View.ColumnInfo

Session Object
Installer.OpenProduct
Installer.OpenPackage

StringList Collection Object
Installer.ComponentQualifiers

Installer.Components
Installer.Features
Installer.Products

Chapter 15: InstallScript and COM 633

4723-2 ch15.f.qc 1/16/01 11:11 AM Page 633

There is a good use of the Windows Installer automation interface that you can
implement from InstallScript. That is the use of the OpenProduct or the Open-
Package method of the Installer object. These will allow you to perform the equiv-
alent of a nested installation of another MSI package. You would have to do this
from the UI sequence because another MSI installation would be locked out once
control had passed to the execute sequence. In the execute sequence you are
restricted to running one of the three types of nested installation custom actions
that become child installs of the main install.

A potentially useful object exposed by the Windows Installer automation interface
is the StringList collection object. Using the ComponentQualifiers, Components,
Features, and Products properties of the Installer object you can create a StringList
collection object that contains a list of the associated GUIDs or names that have been
installed on the system. For the Products and Components properties the StringList
contains the associated GUIDs. For the ComponentQualifiers and Features properties
the StringList object contains the text string identifier. Using these properties you can
find out what is already installed on the target system. The following code provides an
example of how to iterate through the products and features installed on the system
and display this information in a message box.

//
//
// IIIIIII SSSSSS
// II SS InstallShield (R), (c) 1996-2000
// II SSSSSS InstallShield Software Corporation
// II SS All rights reserved.
// IIIIIII SSSSSS
//
//
// This template script provides the code necessary
// to build an entry-point function to be called in
// an InstallScript custom action.
//
//
// File Name: Setup.rul
//
// Description: InstallShield script
//
//

#include “isrt.h”
#include “iswi.h”

export prototype ScriptTest(HWND);

634 Part IV: Advanced Concepts

4723-2 ch15.f.qc 1/16/01 11:11 AM Page 634

//
//
// Function: ScriptTest
//
// Purpose: This is the entry point function used to run
// our scripting test examples
//
//
function ScriptTest(hMSI)
NUMBER nProductCount, nFeatureCount, i, j;
STRING szFeature, szProduct;
OBJECT Installer, Features, Products;
begin

// Since you are dealing with COM you want to do everything
// inside a try block so you can catch any exceptions
// that might be thrown.
try

// Create the object using the Windows Installer ProgID
set Installer = CreateObject(“WindowsInstaller.Installer”);

// Create a Products collection object using the Products
// property of the Installer object
set Products = Installer.Products;

// Obtain the number of products in the collection
// so that you can iterate through the collection.
nProductCount = Products.Count;

for i=0 to nProductCount-1

// Create a Features collection object for each
// product in the Products collection object.
set Features = Installer.Features(Products.Item(i));

// Get the number of features in the Features collection
// object so you can iterate through this collection.
nFeatureCount = Features.Count;

// Display the names of each feature for each product
// registered on the machine.
for j=0 to nFeatureCount-1

SprintfBox(INFORMATION, “Products & Features”,
“Product: %s\n\nFeature: %s”,

Chapter 15: InstallScript and COM 635

4723-2 ch15.f.qc 1/16/01 11:11 AM Page 635

Products.Item(i), Features.Item(j));
endfor;

endfor;

catch

// Announce that an exception was thrown
SprintfBox(INFORMATION, “Exception”,

“An exception was thrown.”);

endcatch;

end;

Refer to the Windows Installer help file, found in the SDK, for a complete

description of all the objects, methods, and properties exposed by the

Windows Installer automation interface.

Using the Capabilities of the
Scripting Objects
The Microsoft Script Runtime objects are located in SCRRUN.DLL. These objects can
be used from within InstallScript to create custom actions. The only requirement to
be able to use these objects is for SCRRUN.DLL to be installed on the target system.
The two objects that are available from SCRRUN.DLL are the FileSystemObject
object and the Dictionary object.

As an example of using the methods and properties of the FileSystemObject, create
a folder and then create a text file in this folder. Then write a line to this text file and
get the date and time of its creation by accessing its attributes.

function foo()
OBJECT fso, f, file, MyFile;
begin

try

// Create a file system object
set fso = CreateObject(“Scripting.FileSystemObject”);

// Create a new folder named New Folder under Scratch
// The Scratch folder must already exist; otherwise

XREF

636 Part IV: Advanced Concepts

4723-2 ch15.f.qc 1/16/01 11:11 AM Page 636

// an exception is thrown
set f = fso.CreateFolder(“c:\\Scratch\\New Folder”);

// Use the folder object created to display the full path
SprintfBox (INFORMATION, “Script Test”, “Path: %s”, f.Path);

// Create a text file in the folder just created
set MyFile = fso.CreateTextFile(“C:\\Scratch\\New

Folder\\TestFile.txt”, TRUE);

// Write a line of text to the new text file created
MyFile.WriteLine(“This is a test.”);

// Close the text file
MyFile.Close;

// Create a file object for the file just created
set file = fso.GetFile

(“C:\\Scratch\\NewFolder\\TestFile.txt”);

// Using the file object DateCreated property display the
// date and time the file was created
SprintfBox (INFORMATION, CAPTION, “Date Created: %s”,

file.DateCreated);
catch

SprintfBox(INFORMATION,
“Script Test”,”Exception was thrown”);

exit;
endcatch;

end;

The Dictionary object implements an associative array. Each item in the array is
associated with a unique key. The key is used to access the items in the array. This
key can be an integer or a string. Dictionary objects give you associative arrays
whereas InstallScript gives you regular arrays with numeric indices. The Dictionary
object can be very valuable if you need a map like functionality. Therefore we will
focus our attention on the capabilities of the FileSystemObject object.

Overview of the FileSystemObject Objects
There are eight objects and collections contained in the FileSystemObject model.
Figure 15-2 provides an overview of the scripting run-time object model.

Chapter 15: InstallScript and COM 637

4723-2 ch15.f.qc 1/16/01 11:11 AM Page 637

Figure 15-2: The scripting run-time object model

FileSystemObject Object
CreateObject("Scripting.FileSystemObject")

Folder Object
FileSystemObject.CreateFolder

FileSystemObject.GetFolder
FileSystemObject.GetSpecialFolder

Folder Object
Drive.RootFolder

Drives Collection Object
FileSystemObject.Drives

Drive Object
FileSystemObject.GetDrive

Dictionary Object
CreateObject("Scripting.Dictionary")

File Object
FileSystemObject.GetFile

Folders Collection Object
Folder.SubFolders

Folder Object
Folder.ParentFolder

Files Collection Object
Folder.Files

TextStream Object
Folder.CreateTextFile

Folder Object
File.ParentFolder

TextStream Object
File.OpenAsTextStream

TextStream Object
FileSystemObject.CreateTextFile
FileSystemObject.OpenTextFile

638 Part IV: Advanced Concepts

4723-2 ch15.f.qc 1/16/01 11:11 AM Page 638

Considering the nature of an installation the FileSystemObject provides a very
potent set of methods and properties. With this object you can create, modify,
move, and delete folders. You can determine if a folder exists and, if it does, where
it is located. You can also create, read, write, and delete files. You can also obtain
information about the drives attached to the local machine. These drives can be
either local drives or remote drives on a network.

Figure 15-2 has incorporated the methods or property names used to create the
identified object. Table 15-1 describes these various objects and collections.

TABLE 15-1 THE FILESYSTEMOBJECT COLLECTIONS AND OBJECTS

Object Name Description

FileSystemObject The main object from which all other objects are created. To
create this object you need to use the following line of code:

CreateObject(“Scripting.FileSystemObject”);

Directly from this object you can create a Drives collection object, a
Drive object, a Folder object, a File object, and a TextStream object.
There are 24 methods exposed by this object and one property.

Drives Provides a list of all the drives attached to the local system,
regardless of type. Of particular importance is that fact that a
removable drive does not have to have media in it in order to be
in the list. You can only create a Drives collection object from a
FileSystemObject through the Drives property.

Drive Provides a number of methods and properties that enable you to
access information about a particular drive attached to the local
system. The drive can be of any type including one that is mapped
to a network share. You can only create a Drive object by the
FileSystemObject’s GetDrive method.

Folders Provides a list of all folders within a folder. You can only create a
Folders collection object with a Folder object’s SubFolders property.

Continued

Chapter 15: InstallScript and COM 639

4723-2 ch15.f.qc 1/16/01 11:11 AM Page 639

TABLE 15-1 THE FILESYSTEMOBJECT COLLECTIONS AND OBJECTS (Continued)

Object Name Description

Folder Contains the methods and properties that enable you to
manipulate folders. You can create, delete, and move folders
and query the system for other information about the folders
that are present. You can create a folder in a number of ways:
with the FileSystemObject methods (CreateFolder, GetFolder,
and GetSpecialFolder); with the ParentFolder property of a
Folder object; with the RootFolder property of a Drive object
(which creates a Folder object that represents the root folder
of a specified drive); or with the ParentFolder property of a
File object.

Files Contains a list of all files contained in a particular folder. You
can only create a Files collection object with the Files property
of a Folder object.

File Provides you with the methods and properties to manipulate
files. You can create, delete, and move files. You can also query
the system for pertinent information about the file such as its
attributes. You can only create a File object with the GetFile
method of the FileSystemObject.

TextStream Provides you with the methods and properties that enable you
to read and write text files. You can create a TextStream object
with the CreateTextFile method of the Folder object; with the
OpenAsTextStream method of the File object; and with either the
CreateTextFile or OpenTextFile methods of the FileSystemObject.

The present capability of the FileSystemObject only enables you to manipulate

text files. It is planned in the future to extend this capability to binary files.

At the present time in InstallScript there is no functionality equivalent to the For
Each...Next capability in VBScript. This functionality is critical to iterating a col-
lection that you cannot access through a numeric index. This is the case with the
Drives collection, which only implements access through a string index. Since you
will want to use this capability for one of the examples in the next chapter, in the
next section you are going to create a very specialized function for iterating
through a Drives collection.

Tip

640 Part IV: Advanced Concepts

4723-2 ch15.f.qc 1/16/01 11:11 AM Page 640

Creating a Drives collection iterator
The following code implements the capability for iterating through a Drives collec-
tion object. This is somewhat ugly so we can only hope that this functionality will
be added to the InstallScript language in the future. In this example you will take
advantage of the intrinsic functionality of exception handling. Trying to access a
drive that does not exist will throw an exception. When you catch the exception,
you increment the index and proceed with the loop until you have either exhausted
all the letters of the alphabet or found all the drives in the collection. You know you
have found all the drives in the collection when the number of drives found is equal
to the value of the Count property of the Drives collection.

//
//
// IIIIIII SSSSSS
// II SS InstallShield (R), (c) 1996-2000
// II SSSSSS InstallShield Software Corporation
// II SS All rights reserved.
// IIIIIII SSSSSS
//
//
// This template script provides the code necessary
// to build an entry-point function to be called in
// an InstallScript custom action.
//
//
// File Name: Setup.rul
//
// Description: InstallShield script
//
//

#include “isrt.h”
#include “iswi.h”

#define CAPTION “Script Test Feedback”

export prototype ScriptTest(HWND);

prototype GetDriveTypeText(STRING, BYREF STRING, NUMBER);
prototype GetDrivesAndTypes(BYREF VARIANT, BYREF VARIANT);

//
//
// Function: ScriptTest

Chapter 15: InstallScript and COM 641

4723-2 ch15.f.qc 1/16/01 11:11 AM Page 641

//
// Purpose: This is the entry point function used to run
// your scripting test examples
//
//
function ScriptTest(hMSI)
STRING valArray(), txtArray();
NUMBER i;
begin

GetDrivesAndTypes(valArray, txtArray);

for i=0 to 4
SprintfBox(INFORMATION, “Drives Collection”,

“Drive: %s\n\nDescription: %s”, valArray(i),
txtArray(i));

endfor;

end;

//
//
// Function: GetDrivesAndTypes
//
// Purpose: This function returns as arrays the available drive
// letters and drive types.
//
//
function GetDrivesAndTypes(valArray, txtArray)
NUMBER nCount, nFound, i;
STRING szDrive, szIterator, Text;
OBJECT dc, d, fso;
begin

// Create a FileSystemObject
set fso = CreateObject(“Scripting.FileSystemObject”);

// From the FileSystemObject create a
// Drives collection object
set dc = fso.Drives;

// Get the number of items in the Drives collection object
nCount = dc.Count;

642 Part IV: Advanced Concepts

4723-2 ch15.f.qc 1/16/01 11:11 AM Page 642

// Size the arrays to hold the number of items in
// Drives collection object.
Resize(valArray, nCount);
Resize(txtArray, nCount);

nFound = 0;
i = 0;

// Loop through all possible drive letters and check if
// they are available on the local machine.
// If a drive letter is available then you add it to the
// valArray. If the drive does not exist an exception gets
// thrown and you increment the index i.
// This will be the code that is replaced once InstallScript
// implements the For Each...Next functionality for iterating
// collections that do not support a numeric indexing.
// Since the switch statement is inside a try block
// you will be able to catch the exception thrown when an item
// you are trying to access does not exist. You handle this
// exception by incrementing the index and continuing with
// loop through the possible list of drives.
while(nFound < nCount)

try
switch(i)

case 0:
szDrive = dc.Item(“A”);

case 1:
szDrive = dc.Item(“B”);

case 2:
szDrive = dc.Item(“C”);

case 3:
szDrive = dc.Item(“D”);

case 4:
szDrive = dc.Item(“E”);

case 5:
szDrive = dc.Item(“F”);

case 6:
szDrive = dc.Item(“G”);

case 7:
szDrive = dc.Item(“H”);

case 8:
szDrive = dc.Item(“I”);

case 9:
szDrive = dc.Item(“J”);

case 10:

Chapter 15: InstallScript and COM 643

4723-2 ch15.f.qc 1/16/01 11:11 AM Page 643

szDrive = dc.Item(“K”);
case 11:

szDrive = dc.Item(“L”);
case 12:

szDrive = dc.Item(“M”);
case 13:

szDrive = dc.Item(“N”);
case 14:

szDrive = dc.Item(“O”);
case 15:

szDrive = dc.Item(“P”);
case 16:

szDrive = dc.Item(“Q”);
case 17:

szDrive = dc.Item(“R”);
case 18:

szDrive = dc.Item(“S”);
case 19:

szDrive = dc.Item(“T”);
case 20:

szDrive = dc.Item(“U”);
case 21:

szDrive = dc.Item(“V”);
case 22:

szDrive = dc.Item(“W”);
case 23:

szDrive = dc.Item(“X”);
case 24:

szDrive = dc.Item(“Y”);
case 25:

szDrive = dc.Item(“Z”);
endswitch;
szDrive = szDrive + “\\”;

// For the found drive get the drive type
GetDriveTypeText(szDrive, svText, i);

// Populate the arrays for the drives that are found
valArray(nFound) = szDrive;
txtArray(nFound) = svText;
nFound = nFound + 1;
i = i + 1;

catch
i = i + 1;

endcatch;

644 Part IV: Advanced Concepts

4723-2 ch15.f.qc 1/16/01 11:11 AM Page 644

endwhile;

end;

//
//
// Function: GetDriveTypeText
//
// Purpose: This function will be called by the script engine
//
//
function GetDriveTypeText(szDrive, svText, index)
INT nType;
begin

// Call the Windows API to get the drive type identifier
nType = GetDriveType(szDrive);

// For the drive type returned create a text description
switch(nType)

case DRIVE_UNKNOWN:
svText = “Unknown drive type”;

case DRIVE_NO_ROOT_DIR:
svText = “Invalid drive”;

case DRIVE_REMOVABLE:
svText = “Removable drive”;

case DRIVE_FIXED:
svText = “Fixed drive”;

case DRIVE_REMOTE:
svText = “Remote drive”;

case DRIVE_CDROM:
svText = “CD-ROM drive”;

case DRIVE_RAMDISK:
svText = “RAM disk drive”;

endswitch;

end;

You will use this iterator in the creation of a real-world custom action in Chapter 16.

Chapter 15: InstallScript and COM 645

4723-2 ch15.f.qc 1/16/01 11:11 AM Page 645

Refer to the VBScript or JScript documentation for a complete discussion of

the methods and properties of the FileSystemObject and Dictionary objects.

Now let’s move on and examine another automation interface that can provide
some robust functionality. This is the set of objects exposed by the Windows
Scripting Host.

Capabilities of the WSH Objects
The Windows Scripting Host comes natively with Windows 98 and Windows 2000
but you have to install it on Windows 95 and Windows NT 4.0. This means that if
you are distributing your application to Windows 95 and/or Windows NT 4.0, and
you want to use the WSH automation interface methods and properties, you will
have to check for the existence of the scripting host and if it is not there install it
before trying to access it.

To check for the existence of the Windows Scripting Host you need to see if the
file wscript.exe is in the System32 folder. If you need to install the WSH, first
obtain the redistributable file WSH.exe and run the installation silently with the
following command line:

WSH.exe /q

You would run this as an executable custom action with the WSH.exe file stored
in the Binary table.

Figure 15-3 shows the objects you can access from InstallScript. There are two
creatable objects: one that enables access to the Windows shell through a set of
methods and properties and one that provides methods and properties that work
with networks.

You can download the WSH setup program from the following URL:

www.microsoft.com/msdownload/vbscript/scripting.asp

XREF

646 Part IV: Advanced Concepts

4723-2 ch15.f.qc 1/16/01 11:11 AM Page 646

Figure 15-3: The Windows Scripting Host object model

Refer to the MSDN Library for a complete description of the methods and

properties available to you from the Windows Scripting Host.

Summary
In this chapter you have received (I hope) a sense of the immense power available to
you through this capability in InstallScript to access COM. You have seen three major
areas where you can derive major benefit from various automation interfaces. These
are the Windows Installer automation interface, the FileSystemObject available from
the scripting run-time library, and the Windows Scripting Host, which provides some
unique ways to access the Registry and remote drives and printers.

XREF

WshShell Object
CreateObject("WScript.Shell")

WshShortcut Object
WshShell.CreateShortcut

WshEnvironment Object
WshShell.Environment

WshUrlShortcut Object
WshShell.CreateShortcut

WshSpecialFolders Collection Object
WshShell.SpecialFolders

WshNetwork Object
CreateObject("WScript.Network")

WshCollection Object
WshNetwork.EnumNetworkDrives
WshNetwork.PrinterConnections

Chapter 15: InstallScript and COM 647

4723-2 ch15.f.qc 1/16/01 11:11 AM Page 647

4723-2 ch15.f.qc 1/16/01 11:11 AM Page 648

Chapter 16

Using InstallScript to
Create Custom Actions

IN THIS CHAPTER

◆ Getting setup to use InstallScript for custom actions

◆ Initialization and clean up during an installation

◆ Working with the Property table

◆ Setting properties at runtime

◆ Using custom actions in the user interface

◆ Working with dynamic link libraries from InstallScript

THE PURPOSE OF THIS chapter is to take what you have learned in the last three
chapters about InstallScript and use this knowledge to create some actual custom
actions. We will start of with creating a method for determining what sequence you
are running in. This will give you a chance to examine the use of the OnBegin() and
OnEnd() event handlers.

After this we will examine the Property table in great detail. The Property table
is very important since you need to interface with this table to create most custom
actions. After looking at the Property table you’ll create a custom action that
dynamically populates a ListBox control in a dialog box. Finally we’ll look at how
to create helper functions in a dynamic-linked library.

Preliminaries
In order to run the custom actions you’ll create in this chapter you need to build a
complete project. You cannot use the project that you were using to investigate the
InstallScript language since you took all the actions out of the InstallUISequence
table in that project. So the first thing you need to do is to create a small project.
This time, create a project with one feature and one component. This way, you’ll
avoid problems with the Windows Installer when you run this package.

649

4723-2 ch16.f.qc 1/16/01 11:11 AM Page 649

You can create an InstallScript custom action as either an immediate or a deferred
category custom action. The one thing you cannot do with an InstallScript custom
action is run it asynchronously. The custom actions you are going to create in this
chapter will all be of the immediate category and they will all be inserted into the
InstallUISequence table. When you create an InstallScript custom action and then
highlight this custom action in the Actions/Scripts tree control, you will see that there
is a very large number for the custom action type. This is a special number used in the
project file to differentiate an InstallScript custom action from the normal custom
actions created as described in Chapter 11. This number is the Windows Installer type
value summed with 65535. When you create your immediate custom action, you will
see the type number for this action as 65536; when you subtract 65535 you get a type
of 1. This type, as I described in Chapter 10, is a DLL custom action stored in the
Binary table.

Before you start creating some custom actions you need to understand the use of
the two event handlers that are part of the scripting environment. These event han-
dlers are the subjects of the next section.

Initialization and Clean-Up
Implemented in InstallScript are two script functions called event handlers. The
names of these functions are OnBegin() and OnEnd(). As implemented in
InstallScript they are empty functions. However, you can override the internal
implementation by adding these functions to your script. When your script is
linked, the implementation of these functions in your script will be linked to create
the .inx file. The OnBegin() function is called right after the scripting engine is
installed and/or started. This function gives you a chance to implement whatever
initialization actions are required so that your InstallScript custom actions will run
correctly. On Windows NT and Windows 2000 these event handlers are executed
twice, once in each process — that is, once in the UI sequence running in the client
process and once in the execute sequence running in the service process. On
Windows 95/98 these event handlers are executed twice but this time they are exe-
cuted once in the UI sequence and once in the execute sequence. There is only one
process running, however, on Windows 95/98.

The OnBegin() and the OnEnd() event handlers are prototyped in the header file
iswi.h, which can be found in the Script\iswi\Include folder under the InstallShield
for Windows Installer installation location. In this header file is also defined the
__hMsiInstall global variable. This global variable holds the handle to the current
installation session and its purpose is to allow the OnBegin() and the OnEnd() event
handlers to have access to this handle.

It might be important to know the process or sequence you are in when the
OnBegin() or OnEnd() function is executing. You might want to do different things
depending on whether you are in the UI sequence or the execute sequence. In the
following code you’ll create the capability to determine what sequence or process is
currently being executed. The core of this code is in the SetSequence() function.

650 Part IV: Advanced Concepts

4723-2 ch16.f.qc 1/16/01 11:11 AM Page 650

You need to call this function in the OnBegin() event handler prior to any code that
depends on the sequence being executed. You must then call the GetSequence()
function, which returns a value of 1 if execution is in the UI sequence and a value of
2 if execution is in the execute sequence. You can find this code on the CD-ROM
contained in the file WhatSequence.rul under the Chapter 16 folder. In this example
the entry point function is named CATest() and is the custom action inserted into the
various sequences to test this functionality.

//
//
// IIIIIII SSSSSS
// II SS InstallShield (R)
// II SSSSSS (c) 1996-2000,
// II SS InstallShield Software Corporation
// II SS All rights reserved.
// IIIIIII SSSSSS
//
// File Name: Setup.rul
//
// Description: InstallShield script
//
//

// include files
#include <isrt.h>
#include <iswi.h>

// function prototypes
// entry point functions
export prototype CATest(NUMBER);

// private functions
prototype SetSequence();
prototype NUMBER GetSequence();

// global variables
HWND nSequence; // Only required if the CleanUp custom action

// is not passing the session handle

//
//
// Function: CATest
//

Chapter 16: Using InstallScript to Create Custom Actions 651

4723-2 ch16.f.qc 1/16/01 11:11 AM Page 651

// Purpose: This function will be called by the script engine
// as a custom action
//
//
function CATest(hInstall)
NUMBER nReturn;
begin

nReturn = GetSequence();

switch(nReturn)
case 1:

SprintfBox (INFORMATION, “Script Test”,
“We are in the UI Sequence”);

case 2:
SprintfBox (INFORMATION, “Script Test”,

“We are in the Execute Sequence”);
default:

SprintfBox (INFORMATION, “Script Test”,
“We do not know where we are”);

endswitch;

end;

//
//
// Function: OnBegin
//
// Purpose: This function will override the predefined OnBegin
// event handler
//
//
function OnBegin()
NUMBER nReturn;
begin

// Call this function as the first line in
// the OnBegin event handler
SetSequence();

nReturn = GetSequence();

// In a switch statement like this you would perform any
// appropriate initialization

652 Part IV: Advanced Concepts

4723-2 ch16.f.qc 1/16/01 11:11 AM Page 652

switch(nReturn)
case 1:

SprintfBox (INFORMATION, “OnBegin()”,
“We are in the UI Sequence”);

case 2:
SprintfBox (INFORMATION, “OnBegin()”,

“We are in the Execute Sequence”);
default:

SprintfBox (INFORMATION, “OnBegin()”,
“We do not know where we are”);

endswitch;

end;

//
//
// Function: OnEnd
//
// Purpose: This function will override the predefined OnEnd
// event handler
//
//
function OnEnd()
NUMBER nReturn;
begin

nReturn = GetSequence();

// In a switch statement like this you would perform any
// appropriate clean-up activities
switch(nReturn)

case 1:
SprintfBox (INFORMATION, “OnEnd()”,

“We are in the UI Sequence”);
case 2:

SprintfBox (INFORMATION, “OnEnd()”,
“We are in the Execute Sequence”);

default:
SprintfBox (INFORMATION, “OnEnd()”,

“We do not know where we are”);
endswitch;

end;

Chapter 16: Using InstallScript to Create Custom Actions 653

4723-2 ch16.f.qc 1/16/01 11:11 AM Page 653

//
//
// Function: SetSequence
//
// Purpose: This function will set the current sequence in the
// property table so that it can be retrieved by the
// GetSequence function.
//
//
function SetSequence()
STRING szWHATSEQName, szWHATSEQValue, strWHATSEQValue;
STRING szUILevelName, strUILevelValue;
NUMBER nCharCount, nUILevelValue, nWHATSEQValue;
begin

// The public property that will be set with the
// currently executing sequence
szWHATSEQName = “WHATSEQ”;

// The Windows Installer property that identifies the
// user interface level being used for the current installation
szUILevelName = “UILevel”;

// Get the value of the UILevel property
// from the Property table
nCharCount = 1024;
MsiGetProperty(__hMsiInstall, szUILevelName, strUILevelValue,

nCharCount);
StrToNum(nUILevelValue, strUILevelValue);

// Get the value of the WHATSEQ property
// from the Property table. The first time
// this property will not exist.
nCharCount = 1024;
MsiGetProperty(__hMsiInstall, szWHATSEQName, strWHATSEQValue,

nCharCount);
// If the property does not exist then
// nWHATSEQValue will be zero
StrToNum(nWHATSEQValue, strWHATSEQValue);

// If the UI level is less than 4 then the installation
// is being run in either basic or silent mode
if(nUILevelValue < 4 && nWHATSEQValue = 0) then

szWHATSEQValue = “2”;

654 Part IV: Advanced Concepts

4723-2 ch16.f.qc 1/16/01 11:11 AM Page 654

// Set the global variable to the current sequence for
// use by the OnEnd event handler. This is only necessary
// as long as the CleanUp custom action does not define
// the value of the session handle. This is a situation
// that should be fixed by the time this book is published.
nSequence = 2;
MsiSetProperty(__hMsiInstall, szWHATSEQName,

szWHATSEQValue);

// If the UI level of the installation is full
// or reduced and the WHATSEQ property is null
// then we must be running in the UI sequence
elseif(nUILevelValue >= 4 && nWHATSEQValue = 0) then

szWHATSEQValue = “1”;
nSequence = 1;
MsiSetProperty(__hMsiInstall, szWHATSEQName,

szWHATSEQValue);

// If the UI level of the installation is full
// or reduced and the WHATSEQ property is 1
// then we must be running in the execute sequence
elseif(nUILevelValue >= 4 && nWHATSEQValue = 1) then

szWHATSEQValue = “2”;
nSequence = 2;
MsiSetProperty(__hMsiInstall, szWHATSEQName,

szWHATSEQValue);
endif;

end;

//
//
// Function: GetSequence
//
// Purpose: This function returns the value of the WHATSEQ
// property, which determines the current sequence
// in which the installation is running.
//
//
function NUMBER GetSequence()
STRING szWHATSEQName, strWHATSEQValue;
NUMBER nCharCount, nWHATSEQValue, nResult;

Chapter 16: Using InstallScript to Create Custom Actions 655

4723-2 ch16.f.qc 1/16/01 11:11 AM Page 655

begin

szWHATSEQName = “WHATSEQ”;

nCharCount = 1024;
nResult = MsiGetProperty(__hMsiInstall, szWHATSEQName,

strWHATSEQValue, nCharCount);

// If the call to MsiGetProperty was successful then
// the value of the WHATSEQ property tells you what sequence
// you are currently running in.
if(nResult = ERROR_SUCCESS) then

StrToNum(nWHATSEQValue, strWHATSEQValue);

// The following is necessary only as long as the CleanUp
// function does not properly set the session handle. This
// situation occurs only in the OnEnd() event handler. If you
// get an invalid handle error when calling the MsiGetProperty
// API then you assume that you are in the OnEnd()event handler.
// You base your decision on the value of the nSequence global
// variable to return the current sequence in which you are
// running. You need to reset the global variable to 1 so
// that when the next call to the OnEnd()event handler is made
// you can return the current value for the current sequence.
elseif(nResult = ERROR_INVALID_HANDLE && nSequence = 2) then

nWHATSEQValue = 2;
nSequence = 1;

elseif(nResult = ERROR_INVALID_HANDLE && nSequence = 1) then
nWHATSEQValue = 1;

endif;

return nWHATSEQValue;

end;

It is important to realize that the first call to the OnBegin() event handler can be
made either from the UI sequence or from the execute sequence. However, the first
call to the OnEnd() event handler will always be made from the execute sequence.

The above example has also illustrated one of the important features of the
InstallScript implementation: when you define a global variable it is available to all
custom actions running in a particular sequence. This is similar to the type of com-
munication you can get with the Property table and public properties across the
process boundary that separates the client and server processes.

656 Part IV: Advanced Concepts

4723-2 ch16.f.qc 1/16/01 11:11 AM Page 656

If the implementation of the CleanUp custom action has been corrected by

the time this book has gone to press, you do not need to use the nSequence

global variable approach to determining the current sequence inside the

OnEnd() event handler.

Retrieving and Adding Data to the
Property Table
When you create custom actions, you will most likely have to interface with the
Property table. You have already gotten a taste of working with the Property table
from the code example in the previous section. Because the Property table is so
important, there are two special functions provided by the Windows Installer to work
with this table. In the next section you’ll take a close look at these two functions.
Keep in mind that the function of properties in the Windows Installer environment is
to act as global variables to the installation.

Working with the Property table
There are two database functions provided by the Windows Installer for working
with the Property table at runtime. These functions are MsiGetProperty() and
MsiSetProperty().These two functions have been prototyped in the InstallScript fash-
ion in the header file ISMsiQuery.h. This file is in the Script\Include subfolder of the
ISWI installation location. You will notice in this header file that even though many
of these API functions have both ANSI and Unicode versions that you do not need
to specify the ANSI version of the function name when using it. This is because in
this header file you will see the following macro defined for all functions that have
both versions:

#define MsiGetProperty msi.MsiSetPropertyA

The MsiGetProperty() function retrieves that value of an installer property. The
MsiGetProperty function has the following format:

NUMBER MsiGetProperty(
NUMBER hInstall, // handle to installer session
BYVAL STRING szName, // case sensitive property name
BYREF STRING szValueBuf, // buffer for returned property value
BYREF NUMBER pchValueBuf // in/out buffer character count

);

Caution

Chapter 16: Using InstallScript to Create Custom Actions 657

4723-2 ch16.f.qc 1/16/01 11:11 AM Page 657

By default, InstallScript sets the size of a string variable passed BYREF to a DLL
function to 1024. However, the best approach to setting the size of the buffer that is
passed to this function is to first pass an empty string in order to get back the
actual size of the number of characters that make up the property value. Then use
the Resize operator to set the size of the buffer, making sure to add 1 to the value
returned from the function. Then you call the function again with the buffer sized
to just accommodate the property value. If a property is not defined, an empty
string will be returned as the value of the buffer.

The MsiSetProperty() function is used to set the value of an installer property.
The MsiSetProperty function has the following format:

NUMBER MsiSetProperty(
NUMBER hInstall, // handle to installer session
BYVAL STRING szName, // case-sensitive property name
BYVAL STRING szValue // property value to set

);

You can use this function to remove a property as well as set the value of a prop-
erty. To remove a property all you need to do is set the value of the existing property
to an empty string. This will remove the property from the Property table.

An example custom action for setting the
CCP_DRIVE property
The CCP_DRIVE property is a public property used during a competitive upgrade sce-
nario. Essentially, the value of the CCP_DRIVE property contains the root path to a
removable volume that contains the signature file or files, which identify the com-
petitive product. This property is used by the RMCCPSearch action along with the file
signatures provided in the CCPSearch table to qualify the user for compliance with
the installation requirements of the upgrade product. This property provides the root
location for any searching to be done by the RMCCPSearch action. The acronym CCP
stands for compliance Checking Program and RMCCP stands for Removable Media
Compliance Checking Program.

In this example, assume that the removable media that you want to find is the
drive letter for the CD-ROM, and that there is only one CD-ROM on the target
machine. In a later example you will create a more robust solution wherein, under
certain circumstances, the user will be asked to select the root location from which
the RMCCPSearch action will start its search. The code for this example is as follows:

//
//
// IIIIIII SSSSSS
// II SS InstallShield (R)
// II SSSSSS (c) 1996-2000,
// II SS InstallShield Software Corporation
// II SS All rights reserved.

658 Part IV: Advanced Concepts

4723-2 ch16.f.qc 1/16/01 11:11 AM Page 658

// IIIIIII SSSSSS
//
// File Name: Setup.rul
//
// Description: InstallShield script
//
//

// include files
#include <isrt.h>
#include <iswi.h>

// function prototypes
// entry point functions
export prototype CCP_DRIVE(NUMBER);

//
//
// Function: CCP_DRIVE
// Purpose: This function is
// the entry point for a custom action that will set the
// CCP_DRIVE property to the drive letter of the CD_ROM
// on the target system
//
//
function CCP_DRIVE(hInstall)
NUMBER nCount;
STRING szCCPDrive;
LIST lstCCPDrive;
begin

// Create the list to hold the list of valid drives
lstCCPDrive = ListCreate(STRINGLIST);

// Get just a list of CD-ROM drives and make sure that
// checking of the minimum drive space does not occur
GetValidDrivesList(lstCCPDrive, CDROM_DRIVE, -1);

// Get a count of the number of entries made in the list
nCount = ListCount(lstCCPDrive);

// Make sure that there is a CD-ROM drive found
// before setting the CCP_DRIVE property
if(nCount > 0) then

// Assume that the first item in the list is the one you want

Chapter 16: Using InstallScript to Create Custom Actions 659

4723-2 ch16.f.qc 1/16/01 11:11 AM Page 659

ListGetFirstString(lstCCPDrive, szCCPDrive);

// You need to add the colon and backslash to complete the
// specification of the root search location
szCCPDrive = szCCPDrive + “:\\”;

// Set the property using the MSI API
MsiSetProperty(hInstall, “CCP_DRIVE”, szCCPDrive);

else
// If no CD-ROM drive is found abort the installation
// after telling the user about the problem
MessageBox(“Cannot find a CD-ROM drive to search”, SEVERE);

// Returning this value will cause the Windows Installer
// to abort the installation
return ERROR_INSTALL_FAILURE;

endif;

end;

The simplifying assumption made here is that it is the CD-ROM drive that contains
the media from which the qualifying product will be validated. Later in this chapter,
when you get to the section on working with the user interface, you will implement a
more robust solution to this problem.

Chapter 21 provides more detail about searching for other applications.

An example custom action for setting the
ARPINSTALLLOCATION property
The ARPINSTALLLOCATION property is the full path to an application’s root folder.
This information will appear in the Add/Remove Programs applet information that is
part of the new functionality on Windows 2000. In the following example you will
take the value of the INSTALLDIR property and use its final value to set
the ARPINSTALLLOCATION property. You need to place this custom action in the
InstallExecuteSequence to make sure that this property will still be set even if
the installation is run in basic or silent mode.

//
//
// IIIIIII SSSSSS

XREF

660 Part IV: Advanced Concepts

4723-2 ch16.f.qc 1/16/01 11:11 AM Page 660

// II SS InstallShield (R)
// II SSSSSS (c) 1996-2000,
// II SS InstallShield Software Corporation
// II SS All rights reserved.
// IIIIIII SSSSSS
//
// File Name: Setup.rul
//
// Description: InstallShield script
//
//

// include files
#include <isrt.h>
#include <iswi.h>

// function prototypes
// entry point functions
export prototype SetARPINSTALLLOCATION(HWND);

//
//
// Function: SetARPINSTALLLOCATION
//
// Purpose: This function will be called by the script engine
//
//

function SetARPINSTALLLOCATION(hInstall)
STRING szPropertyName, szPropertyValue;
NUMBER nResult, nBufSize;
begin

// Explicitly initialize the value buffer and buffer size
// to null values so as to get the size of the buffer needed
szPropertyValue = “”;
nBufSize = 0;

MsiGetProperty(hInstall, “INSTALLDIR”, szPropertyValue,
nBufSize);

// Get the buffer size required and resize the value buffer
nBufSize = nBufSize + 1;
Resize(szPropertyValue, nBufSize);
MsiGetProperty(hInstall, “INSTALLDIR”, szPropertyValue,

Chapter 16: Using InstallScript to Create Custom Actions 661

4723-2 ch16.f.qc 1/16/01 11:11 AM Page 661

nBufSize);

// Set the value of the ARPINSTALLLOCATION property to the
// value of the INSTALLDIR property
MsiSetProperty(hInstall, “ARPINSTALLLOCATION”, szPropertyValue);

end;

Even though you may think of INSTALLDIR as an entry in the Directory table it
also becomes a property when the Directory table is resolved.

You must set the ARPINSTALLLOCATION property to qualify for the “Certified

for Microsoft Windows” logo.

Creating a custom action to view the contents of
the Property table
Up to this point you have been working with the Property table one property at a
time. Taking a look at all the properties in the Property table is educational, and
will also introduce the use of the Windows Installer SQL query language.

An explanation of the Windows Installer SQL query language is provided in

Chapter 11.

In the following code you execute a view on the complete Property table and
then fetch each record one at a time and write it to a text file.

//
//
// IIIIIII SSSSSS
// II SS InstallShield (R)
// II SSSSSS (c) 1996-2000,
// II SS InstallShield Software Corporation
// II SS All rights reserved.
// IIIIIII SSSSSS
//
// File Name: Setup.rul
//

XREF

Tip

662 Part IV: Advanced Concepts

4723-2 ch16.f.qc 1/16/01 11:11 AM Page 662

// Description: InstallShield script
//
//

// include files
#include <isrt.h>
#include <iswi.h>

// function prototypes
// entry point functions
export prototype GetProperties(HWND);

// private functions
prototype HWND GetPropertyTableView(HWND, STRING);
prototype WritePropertyTableToFile(HWND, STRING, STRING);
prototype OBJECT CreateTextFile(STRING, STRING);

// global constants
#define NAME_FIELD 1
#define VALUE_FIELD 2
#define NAME_FIELD_BUFSIZE 73
#define TAB_DELIMITER “\t”

//
//
// Function: GetProperties
//
// Purpose: This function will be called by the script engine
//
//
function GetProperties(hMSI)
HWND hView;
begin

// Get the persistent property values
hView = GetPropertyTableView(hMSI, “Property”);

// Write the persistent property values to a text file
WritePropertyTableToFile(hView, “C:\\Scratch”, “Property.txt”);

end;

Chapter 16: Using InstallScript to Create Custom Actions 663

4723-2 ch16.f.qc 1/16/01 11:11 AM Page 663

//
//
// Function: GetPropertyTableView
//
// Purpose: This function returns a view of all the records in
// the named Property table
//
//
function HWND GetPropertyTableView(hInstall, szTableName)
STRING szQuery;
NUMBER nResult;
HWND hView, hDataBase;
begin

// Select all columns and all rows in the named table
szQuery = “SELECT * FROM “ + szTableName;

// Obtain a handle to the active database
hDataBase = MsiGetActiveDatabase(hInstall);

if(hDataBase = 0) then
MessageBox(“Unable to open active database”, SEVERE);
exit;

endif;

// Create a view object as specified by szQuery
nResult = MsiDatabaseOpenView(hDataBase, szQuery, hView);

if(nResult != ERROR_SUCCESS) then
MessageBox(“Error opening view.”, SEVERE);
exit;

endif;

// Execute the view object and make it
// ready for retrieving records
nResult = MsiViewExecute(hView, NULL);

if(nResult != ERROR_SUCCESS) then
MessageBox(“Error executing view.”, SEVERE);
exit;

endif;

return hView;

end;

664 Part IV: Advanced Concepts

4723-2 ch16.f.qc 1/16/01 11:11 AM Page 664

//
//
// Function: WritePropertyTableToFile
//
// Purpose: This function will write the records of the Property
// table to the specified text file
//
//
function WritePropertyTableToFile(hView, szFolder, szFileName)
NUMBER nResult, nBufSize;
STRING szPropertyName, szPropertyValue, szStr;
HWND hRecord;
OBJECT file;
begin

// Get the text file to which the records will be written
set file = CreateTextFile(szFolder, szFileName);

// Fetch the first record of the Property table
nResult = MsiViewFetch(hView, hRecord);

// Loop through all the records of the Property table
// and write them one at a time to the text file.
while(nResult = ERROR_SUCCESS)

// You know the name field of the Property table is 72
// characters in size so set the buffer size to that
nBufSize = NAME_FIELD_BUFSIZE;
MsiRecordGetString(hRecord, NAME_FIELD, szPropertyName,

nBufSize);

// Explicitly set the value buffer to an empty string
// so you can obtain the required buffer size
szPropertyValue = “”;
nBufSize = 0;
MsiRecordGetString(hRecord, VALUE_FIELD, szPropertyValue,

nBufSize);

// Now that you know the required buffer size set the
// buffer size and get the property value
nBufSize = nBufSize + 1;
Resize(szPropertyValue, nBufSize);
MsiRecordGetString(hRecord, VALUE_FIELD, szPropertyValue,

nBufSize);

Chapter 16: Using InstallScript to Create Custom Actions 665

4723-2 ch16.f.qc 1/16/01 11:11 AM Page 665

// Create a tab delimited string to write to the text file
szStr = szPropertyName + TAB_DELIMITER + szPropertyValue;

// Write the line to the text file
file.WriteLine(szStr);

// Fetch the next record in the view
nResult = MsiViewFetch(hView, hRecord);

endwhile;

// Close the text file after you have fetched and
// written all the records.
if(nResult = ERROR_NO_MORE_ITEMS) then

file.Close;
return 0;

else
MessageBox(“Error fetching view.”, SEVERE);
return -1;

endif;

end;

//
//
// Function: CreateTextFile
//
// Purpose: This function will use the FileSystemObject to
// create a text file
//
//
function OBJECT CreateTextFile(szFolder, szFileName)
OBJECT fso, folder, file;
begin

// Create a file system object
set fso = CreateObject(“Scripting.FileSystemObject”);

// Create a folder object if it does not already exist
if(!fso.FolderExists(szFolder)) then

set folder = fso.CreateFolder(szFolder);
endif;

// Create the absolute path to the text file

666 Part IV: Advanced Concepts

4723-2 ch16.f.qc 1/16/01 11:11 AM Page 666

szFileName = szFolder ^ szFileName;

// Create a text stream object
set file = fso.CreateTextFile(szFileName, TRUE);

return file;

end;

In the preceding code you have made use of a number of new Windows Installer
API functions. These functions helped you to access the Property table as a whole
by creating a view and then fetching the records of that view one at a time. Table
16-1 describes each of these functions.

TABLE 16-1 DATABASE MANIPULATION FUNCTIONS

Function Name Description

MsiGetActiveDatabase Returns a handle to the database that was opened during the
present installation session. This function must be called first
in order to provide the database handle required as input by
other MSI functions.

MsiDatabaseOpenView Opens a view object using a SQL query. This query must be
created using the special syntax accepted by the Windows
Installer. From this function you get a handle to the view
object used by the other functions that work with the
view object.

MsiViewExecute Executes the SQL query on the specified table and prepares
the view for fetching the records. This function must be
called only once per view, before any attempt is made to
fetch a record. Refer to Chapter 11 for a discussion of how
to use the parameter record argument to this function.

MsiViewFetch Retrieves the next sequential record in the view. Once you have
obtained the record handle you can use a number of different
functions to read and write the columns in the record.

MsiRecordGetString Gets the string value of a record column. You can use a number
of Get and Set functions to retrieve or set string and integer
types of column data. For binary column data you can use a
pair of Set and Read functions to manipulate binary data as
a stream.

Chapter 16: Using InstallScript to Create Custom Actions 667

4723-2 ch16.f.qc 1/16/01 11:11 AM Page 667

Refer to the MSI help file for a complete description of the record manipulation

API functions available from the Windows Installer.

Table 16-2 describes the properties that are persisted in the Property table. You
will notice that some of these properties are not documented in the MSI help file
because they have been authored by ISWI.

TABLE 16-2 LIST OF PROPERTIES WRITTEN TO THE PROPERTY TABLE AT RUN TIME

Property Name Property Value

ARPHELPLINK http://www.iswiartco.com

ARPHELPTELEPHONE 555-555-1234

ARPNOREPAIR 0

ARPURLINFOABOUT http://www.iswiartco.com

ARPURLUPDATEINFO http://www.iswiartco.com

DefaultUIFont Tahoma8

DialogCaption InstallShield for Windows Installer

DiskPrompt [1]

DiskSerial 1234-5678

Display_IsBitmapDlg 1

ErrorDialog SetupError

InstallChoice AR

INSTALLLEVEL 100

Manufacturer ISWI Art Company

NewFolder NewFolder-NOTUSED

PIDTemplate 12345<###-%%%%%%%>@@@@@

ProductCode {F1E244D0-C12A-4B8A-BFD4-3EDC00710E6D}

ProductID None

ProductLanguage 1033

XREF

668 Part IV: Advanced Concepts

4723-2 ch16.f.qc 1/16/01 11:11 AM Page 668

Property Name Property Value

ProductName CATest

ProductVersion 1.0.0.0000

ProgressType0 install

ProgressType1 Installing

ProgressType2 installed

ProgressType3 installs

RebootYesNo Yes

Registration No

ReinstallFileVersion o

ReinstallModeText omus

ReinstallRepair r

SetupType Typical

UpgradeCode {A82A9247-D63F-46EA-BD2B-913D26276B32}

We have pretty much exhausted the Property table so now it is time to see how
to work with the user interface using custom actions.

Custom Actions and the
User Interface
Custom actions are about the only method you can use when you want to do some-
thing dynamic with the user interface. In particular you need to use a custom action
if you want to dynamically populate a ListBox, ComboBox, or a ListView control in a
dialog box. There is also a DoAction control event that executes a custom action
based on the action of the control with which it is associated. In the following section
you will work with a ListBox control and learn how to dynamically populate it using
a custom action.

Chapter 16: Using InstallScript to Create Custom Actions 669

4723-2 ch16.f.qc 1/16/01 11:11 AM Page 669

Dynamically populating a list box during
an installation
In this example you are going to create the capability that will enable the user to
choose the drive on which the RMCCPSearch action will search for the qualifying
product. This will give you experience with a list box control and the DoAction
control event. In this example you need to create three entry-point functions: one
to populate the ListBox control and two to be associated with the DoAction control
event assigned to the two buttons in the dialog box you will have to create.

Before you start generating the custom actions, generate the dialog box you are
going to populate with your custom action. In Chapter 9, you learned how to work
with the user interface using the Dialog Editor. Therefore, I will only show the dialog
you need to create. Figure 16-1 shows this dialog.

Figure 16-1: Dialog box with ListBox control showing the list of available drives on
the local machine

When you create this dialog box, you will want to assign the property DRIVELIST
to the ListBox control. It is through this property that all of the local drives will be
associated so that they will all show up as a group in the ListBox control. Now let’s
move on to looking at the code to manage this dialog box. In the following code you
are creating three entry point functions, three helper or private functions, and you are
accessing one DLL function. The three entry point functions are the targets of the three

670 Part IV: Advanced Concepts

4723-2 ch16.f.qc 1/16/01 11:11 AM Page 670

custom actions that you will need to create. The three private functions are used to
provide functionality that is needed by the three entry point functions. We also need
to prototype one of the Windows Installer functions that has not been prototyped for
us in the iswi.h file. You should enter this code yourself and make sure that it compiles
correctly. Following this code I discuss the steps you need to take to make use of the
functionality that you have created.

//
//
// IIIIIII SSSSSS
// II SS InstallShield (R)
// II SSSSSS (c) 1996-2000,
// II SS InstallShield Software Corporation
// II SS All rights reserved.
// IIIIIII SSSSSS
//
// File Name: Setup.rul
//
// Description: InstallShield script
//
//

// include files
#include “isrt.h”
#include “ISWI.h”
#include “winapi.h”

// function Prototypes
// entry point functions
export prototype SetDriveList(HWND);
export prototype SetCCP_DRIVE(HWND);
export prototype ClearCCP_DRIVE(HWND);

// private functions
prototype AddListBoxRecord(STRING, INT, STRING, STRING, HWND);
prototype GetDriveTypeText(STRING, BYREF STRING, NUMBER);
prototype GetDrivesAndTypes(BYREF VARIANT, BYREF VARIANT);

// DLL functions
prototype MSI.MsiCloseHandle(HWND);

// global constants
#define PROPERTY “DRIVELIST”

Chapter 16: Using InstallScript to Create Custom Actions 671

4723-2 ch16.f.qc 1/16/01 11:11 AM Page 671

//
//
// Function: SetDriveList
//
// Purpose: This function will be called by the script engine
// to populate the ListBox control
//
//
function SetDriveList(hMSI)
NUMBER nReturn, nSize, i, nBufSize;
STRING valArray(), txtArray(), szDisplay;
STRING szQuery, szDrive, szValue;
HWND hDataBase, hView;
begin

i = 1;

// Define the SQL query for accessing the ListBox table
szQuery = “SELECT * FROM ListBox”;

// Get the active database handle
hDataBase = MsiGetActiveDatabase(hMSI);

if(!hDataBase) then
return ERROR_INSTALL_FAILURE;

endif;

// Create the view object based on the SQL query
nReturn = MsiDatabaseOpenView(hDataBase, szQuery, hView);

if(nReturn != ERROR_SUCCESS) then
MsiCloseHandle(hDataBase);
return ERROR_INSTALL_FAILURE;

endif;

// Obtain an array of drive letters and another
// array of drive types. The values in these arrays
// will be used to populate the ListBox control
GetDrivesAndTypes(valArray, txtArray);

// Get the array size so you know how many drives
// are on the local machine. This will be the number
// of rows that you need to add to the ListBox table
nSize = SizeOf(valArray);

672 Part IV: Advanced Concepts

4723-2 ch16.f.qc 1/16/01 11:11 AM Page 672

// Loop thorugh all the values in the arrays and add
// them to the ListBox table
for i=0 to nSize-1

// Create the string that will be displayed in the
// ListBox control
szDisplay = valArray(i) + “ - “ + txtArray(i);

// Add the record to the ListBox table
nReturn = AddListBoxRecord(PROPERTY, i+1, valArray(i),

szDisplay,hView);

if(nReturn < 0) then
MsiCloseHandle(hDataBase);
MsiCloseHandle(hView);
return ERROR_INSTALL_FAILURE;

endif;

endfor;

// After everything is completed close all the handles
MsiCloseHandle(hDataBase);
MsiCloseHandle(hView);

return ERROR_SUCCESS;

end;

//
//
// Function: SetCCP_DRIVE
//
// Purpose: This function will be called by the DoAction
// control event assigned to the OK button
//
//
function SetCCP_DRIVE(hMSI)
NUMBER nReturn, nBufSize;
STRING szValue;
begin

// Get the value of the DRIVELIST property
// This will be equal to the choice made by the user

Chapter 16: Using InstallScript to Create Custom Actions 673

4723-2 ch16.f.qc 1/16/01 11:11 AM Page 673

// in the ListBox control on the dialog
szValue = “”;
nReturn = MsiGetProperty(hMSI, PROPERTY, szValue, nBufSize);

nBufSize = nBufSize + 1;
Resize(szValue, nBufSize);

nReturn = MsiGetProperty(hMSI, PROPERTY, szValue, nBufSize);

// Set the value of the CCP_DRIVE property to be equal
// to the selection made by the user in the ListBox control
nReturn = MsiSetProperty(hMSI, “CCP_DRIVE”, szValue);

if(nReturn != ERROR_SUCCESS) then
return ERROR_INSTALL_FAILURE;

endif;

end;

//
//
// Function: ClearCCP_DRIVE
//
// Purpose: This function will be called by the DoAction
// control event assigned to the Skip button
//
//
function ClearCCP_DRIVE(hMSI)
NUMBER nReturn;
begin

// Set the value of the DRIVELIST property to an empty
// string so that it will be removed from the Property table
nReturn = MsiSetProperty(hMSI, PROPERTY, “”);

if(nReturn != ERROR_SUCCESS) then
return ERROR_INSTALL_FAILURE;

endif;

end;

//
//

674 Part IV: Advanced Concepts

4723-2 ch16.f.qc 1/16/01 11:11 AM Page 674

// Function: AddListBoxRecord
//
// Purpose: This function adds records to the
// ListBox table
//
//
function AddListBoxRecord(szProperty, nOrder, szValue, szText,
hView)
NUMBER nReturn;
HWND hRecord;
begin

// Create a record object so you can add your values to it
hRecord = MsiCreateRecord(4);

if(!hRecord) then
return ERROR_INSTALL_FAILURE;

endif;

// Populate the four fields of the record object
MsiRecordSetString(hRecord, 1, szProperty);
MsiRecordSetInteger(hRecord, 2, nOrder);
MsiRecordSetString(hRecord, 3, szValue);
MsiRecordSetString(hRecord, 4, szText);

// Add this record to the ListBox table
// These changes will not be persistent since the
// in-memory database is read only
nReturn = MsiViewModify(hView, MSIMODIFY_INSERT_TEMPORARY,

hRecord);

if(nReturn != ERROR_SUCCESS) then
MsiCloseHandle(hRecord);
return ERROR_INSTALL_FAILURE;

endif;

// Close the record handle
MsiCloseHandle(hRecord);

return ERROR_SUCCESS;

end;

//

Chapter 16: Using InstallScript to Create Custom Actions 675

4723-2 ch16.f.qc 1/16/01 11:11 AM Page 675

//
// Function: GetDrivesAndTypes
//
// Purpose: This function returns as arrays the available drive
// letters and drive types
//
//
function GetDrivesAndTypes(valArray, txtArray)
NUMBER nCount, nFound, i;
STRING szDrive, szIterator, svText;
OBJECT dc, d, fso;
begin

// Create a FileSystemObject
set fso = CreateObject(“Scripting.FileSystemObject”);

// From the FileSystemObject create a
// Drives collection object
set dc = fso.Drives;

// Get the number of items in the Drives collection object
nCount = dc.Count;

// Size the arrays to hold the number of items in the
// Drives collection object
Resize(valArray, nCount);
Resize(txtArray, nCount);

nFound = 0;
i = 0;

// Loop through each possible drive letter and check if
// that drive letter is available on the local machine.
// If the drive letter is available then add it to the
// valArray. If the drive does not exist and an exception is
// thrown increment the index i.
// This will be the code that is replaced once InstallScript
// implements the For Each...Next functionality for iterating
// collections that do not support numeric indexing
while(nFound < nCount)

try
switch(i)

case 0:
szDrive = dc.Item(“A”);

case 1:

676 Part IV: Advanced Concepts

4723-2 ch16.f.qc 1/16/01 11:11 AM Page 676

szDrive = dc.Item(“B”);
case 2:

szDrive = dc.Item(“C”);
case 3:

szDrive = dc.Item(“D”);
case 4:

szDrive = dc.Item(“E”);
case 5:

szDrive = dc.Item(“F”);
case 6:

szDrive = dc.Item(“G”);
case 7:

szDrive = dc.Item(“H”);
case 8:

szDrive = dc.Item(“I”);
case 9:

szDrive = dc.Item(“J”);
case 10:

szDrive = dc.Item(“K”);
case 11:

szDrive = dc.Item(“L”);
case 12:

szDrive = dc.Item(“M”);
case 13:

szDrive = dc.Item(“N”);
case 14:

szDrive = dc.Item(“O”);
case 15:

szDrive = dc.Item(“P”);
case 16:

szDrive = dc.Item(“Q”);
case 17:

szDrive = dc.Item(“R”);
case 18:

szDrive = dc.Item(“S”);
case 19:

szDrive = dc.Item(“T”);
case 20:

szDrive = dc.Item(“U”);
case 21:

szDrive = dc.Item(“V”);
case 22:

szDrive = dc.Item(“W”);
case 23:

szDrive = dc.Item(“X”);

Chapter 16: Using InstallScript to Create Custom Actions 677

4723-2 ch16.f.qc 1/16/01 11:11 AM Page 677

case 24:
szDrive = dc.Item(“Y”);

case 25:
szDrive = dc.Item(“Z”);

endswitch;
szDrive = szDrive + “\\”;

// For the found drive get the drive type
GetDriveTypeText(szDrive, svText, i);

// Populate the arrays for the drives that are found
valArray(nFound) = szDrive;
txtArray(nFound) = svText;
nFound = nFound + 1;
i = i + 1;

catch
i = i + 1;

endcatch;

endwhile;

end;

//
//
// Function: GetDriveTypeText
//
// Purpose: This function will be called by the script engine
//
//
function GetDriveTypeText(szDrive, svText, index)
INT nType;
begin

// Call the Windows API to get the drive type identifier
nType = GetDriveType(szDrive);

// For the drive type returned create a text description
switch(nType)

case DRIVE_UNKNOWN:
svText = “Unknown drive type”;

case DRIVE_NO_ROOT_DIR:
svText = “Invalid drive”;

case DRIVE_REMOVABLE:

678 Part IV: Advanced Concepts

4723-2 ch16.f.qc 1/16/01 11:11 AM Page 678

svText = “Removable drive”;
case DRIVE_FIXED:

svText = “Fixed drive”;
case DRIVE_REMOTE:

svText = “Remote drive”;
case DRIVE_CDROM:

svText = “CD-ROM drive”;
case DRIVE_RAMDISK:

svText = “RAM disk drive”;
endswitch;

end;

The SetDriveList function is the entry point of a custom action that will collect
the information found on the target system of the installation and add rows to the
ListBox control in the dialog that you created earlier. In this function you have cre-
ated an SQL query that is used to get a view of the ListBox table. Using the
GetDrivesAndTypes private function you obtain an array of drives and their
descriptions that will be used to populate the ListBox table. You then call the
AddListBoxRecord function that will add the rows to the ListBox table.

The AddListBoxRecord private function first creates an empty record of four
columns and then, using the Windows Installer functions MsiRecordSetString and
MsiRecordSetInteger, adds values to this record. After setting the values for the
columns in the record, the record is used by the Windows Installer function
MsiViewModify to add rows to the ListBox table. It is important to realize that all
tables in the running database are read only. When you create records at run time for
a specific table, these records are not persisted in the database after the installation is
complete. This is why you need to use the MSIMODIFY_INSERT_TEMPORARY con-
stant when you call the MsiViewModify function.

In the above code there are two other exported functions, which are the entry
points for two additional custom actions. The SetCCP_DRIVE function is used to set
the CCP_DRIVE property to the location selected by the end user. The ClearCCP_
DRIVE function is used to set the CCP_DRIVE property to null. The custom actions
defined using these two entry point functions are attached to the two buttons in the
dialog shown in Figure 16-1.

The steps that you need to take to get this example to work are given in the fol-
lowing list. It is assumed that you have already created the dialog box shown in
Figure 16-1 and that you have entered and compiled the code shown above.

1. Using the custom action wizard create an immediate custom action that
uses the SetDriveList entry point function.

2. Insert this custom action into the InstallUISequence table right after the
SetupInitialization dialog.

Chapter 16: Using InstallScript to Create Custom Actions 679

4723-2 ch16.f.qc 1/16/01 11:11 AM Page 679

3. Right after this custom action insert the dialog that contains the ListBox
control and which is shown in Figure 16-1.

4. Create another immediate custom action that uses the SetCPP_DRIVE
entry point function.

5. Using the dialog editor go to the Behavior icon for the new dialog and
define a DoAction control event for the button that is to be used to set
the CCP_DRIVE property. The argument for this control event is the name
of the custom action that you created in the previous step. The condition
on this control event needs to be 1 so that it will always execute.

6. Create the final immediate custom action that will use the ClearCCP_
DRIVE entry point function.

7. Using the dialog editor go again to the Behavior icon for the new dialog
and define a DoAction control event for the button that is to be used for
clearing the CCP_DRIVE property. The argument for this control event is
the name of the custom action that you created in the previous step. The
condition on this control event needs to be 1 so that it will always execute.

Once you have completed the above steps you need to build your project and
test it. When you run your installation user interface, you should see a dialog box
in which all the drives on your test machine are displayed.

We now need to move on and look at how to create custom actions where
dynamic link libraries need to be accessed from InstallScript.

Working with Dynamic Link
Libraries
There will often be times when you want to implement functions in a DLL that you
can call from your script. The problem that arises is how does one get this DLL onto
the system then find it. After the installation is complete the question is how to
remove this DLL from the system. The solution to this is to stream your DLL into the
Binary table and then stream it out into the location defined by the SUPPORTDIR
system variable. This system variable is a temporary location that gets cleaned up
at the end of the installation by the CleanUp custom action that is launched at the
end of each sequence.

The following code shows how to incorporate a DLL into the Binary table and to
stream it out and then call a function in this DLL. The DLL that we are using for this
example is the one we created to reverse a string passed to it. This DLL was created
in Chapter 14.

680 Part IV: Advanced Concepts

4723-2 ch16.f.qc 1/16/01 11:11 AM Page 680

To be able test this code example you will need to stream the DLL into the Binary
table. You do this by using the Power Editor in ISWI. For this new row you will create
in the Binary table you want to use the name of REVSTR for the entry. You then need
to identify in the second column the build location of the revstr.dll. When you build
your project, this file will be streamed into the Binary table without any further effort
on your part.

//
//
// IIIIIII SSSSSS
// II SS InstallShield (R)
// II SSSSSS (c) 1996-2000,
// II SS InstallShield Software Corporation
// II SS All rights reserved.
// IIIIIII SSSSSS
//
// File Name: Setup.rul
//
// Description: InstallShield script
//
//

// include files
#include “isrt.h”
#include “ISWI.h”
#include “winapi.h”

// function Prototypes
// entry point functions
export prototype CATest(HWND);

// private functions
prototype StreamFileFromBinary(HWND, STRING, STRING);

// DLL functions
// This function is not already prototyped in winapi.h
prototype KERNEL32.WriteFile(NUMBER, BINARY, NUMBER,

BYREF NUMBER, NUMBER);
// This function is not already prototyped in ISMsiQuery.h
prototype MSI.MsiCloseHandle(HWND);

// This is the prototype for our own DLL function
prototype revstr.ReverseString(STRING, BYREF STRING);

Chapter 16: Using InstallScript to Create Custom Actions 681

4723-2 ch16.f.qc 1/16/01 11:11 AM Page 681

// global variables
// This is a constant associated with the
// WriteFile Windows API function
#define CREATE_ALWAYS 2

//
//
// Function: CATest
//
// Purpose: This function will be called by the script engine
//
//
function CATest(hMSI)
STRING szBinaryKey, szFileName;
STRING szStr, svStr;
NUMBER nReturn;
begin

// Intialize the string that we are going to reverse
szStr = “This is a string.”;

// Identify the row in the Binary table
// where our DLL is stored
szBinaryKey = “REVSTR”;

// Create the path to where we are going
// stream out our DLL
szFileName = SUPPORTDIR ^ “revstr.dll”;

// Stream out the DLL
nReturn = StreamFileFromBinary(hMSI, szBinaryKey, szFileName);

if(nReturn != ERROR_SUCCESS) then
return ERROR_INSTALL_FAILURE;

endif;

// Load our DLL into memory
nReturn = UseDLL(szFileName);

if(nReturn < 0) then
return ERROR_INSTALL_FAILURE;

endif;

// Call our exported function in our DLL

682 Part IV: Advanced Concepts

4723-2 ch16.f.qc 1/16/01 11:11 AM Page 682

revstr.ReverseString(szStr, svStr);

// Display the results of reversing the string
SprintfBox(INFORMATION, “DLL Streaming”,

“Input string: %s\n\n Output string: %s”, szStr, svStr);

// Unload our DLL from memory
nReturn = UnUseDLL(szFileName);

end;

//
//
// Function: StreamFileFromBinary
//
// Purpose: This function will stream out a file from the
// the Binary table.
//
//
function StreamFileFromBinary(hInstall, szBinaryKey, szFileName)
NUMBER nReturn, nvBufSize, nWritten;
STRING szQuery, szStream;
HWND hDataBase, hBinaryView, hBinaryRecord, hFile;
begin

//Get the handle to the active database.
hDataBase = MsiGetActiveDatabase(hInstall);

if(hDataBase = 0) then
return ERROR_INSTALL_FAILURE;

endif;

// Get a view of the binary table based on an SQL Query
szQuery = “SELECT * FROM Binary WHERE Name=’”

+ szBinaryKey + “‘“;

// Create the view object for that contains the one
// row that we are interested in
nReturn = MsiDatabaseOpenView(hDataBase, szQuery, hBinaryView);

if(nReturn != ERROR_SUCCESS) then
MsiCloseHandle(hDataBase);
return ERROR_INSTALL_FAILURE;

endif;

Chapter 16: Using InstallScript to Create Custom Actions 683

4723-2 ch16.f.qc 1/16/01 11:11 AM Page 683

// Execute the view before getting the record
nReturn = MsiViewExecute(hBinaryView, NULL);

if(nReturn != ERROR_SUCCESS) then
MsiCloseHandle(hDataBase);
MsiCloseHandle(hBinaryView);
return ERROR_INSTALL_FAILURE;

endif;

// Fetch the first and only record in the view
nReturn = MsiViewFetch(hBinaryView, hBinaryRecord);

if(nReturn != ERROR_SUCCESS) then
MsiCloseHandle(hDataBase);
MsiCloseHandle(hBinaryView);
return ERROR_INSTALL_FAILURE;

endif;

// Create the file in that location using the
// CreateFile Windows API.
hFile = CreateFileA(szFileName, GENERIC_WRITE, 0, 0,

CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, 0);

if(hFile = INVALID_HANDLE_VALUE) then
MsiCloseHandle(hDataBase);
MsiCloseHandle(hBinaryView);
MsiCloseHandle(hBinaryRecord);
return ERROR_INSTALL_FAILURE;

endif;

nBufSize = 1023;
// Repeat our extraction of the file until there are
// no more bytes to stream out of the Binary table
repeat

//Read the stream into a buffer, 1023 bytes at a time
nReturn = MsiRecordReadStream(hBinaryRecord, 2, szStream,

nBufSize);

// If the operation to stream out the file fails
// then close all handles and return failure. The Windows
// Installer will then terminate the installation.
if(nReturn != ERROR_SUCCESS) then

684 Part IV: Advanced Concepts

4723-2 ch16.f.qc 1/16/01 11:11 AM Page 684

MsiCloseHandle(hDataBase);
MsiCloseHandle(hBinaryView);
MsiCloseHandle(hBinaryRecord);
CloseHandle(hFile);
return ERROR_INSTALL_FAILURE;

endif;

if(nBufSize > 0)then
//Write the buffer to a file.
nReturn = WriteFile(hFile, szStream, nBufSize,

nWritten, 0);

// If the operation to write the file fails
// then close all handles and return failure.
// The Windows Installer will then
// terminate the installation.
if(nReturn == 0) then

MsiCloseHandle(hDataBase);
MsiCloseHandle(hBinaryView);
MsiCloseHandle(hBinaryRecord);
CloseHandle(hFile);
return ERROR_INSTALL_FAILURE;

endif;
endif;

until(nBufSize = 0);

//Close all handles
CloseHandle(hFile);
MsiCloseHandle(hBinaryRecord);
MsiCloseHandle(hDataBase);
MsiCloseHandle(hBinaryView);

return ERROR_SUCCESS;

end;

A good location for handling your DLLs that you want to use from your script is
the OnBegin() event handler. You could create one DLL that exports all the functions
needed by your script and load this DLL in this handler. You could then unload this
DLL in the OnEnd() event handler. Based on the sequence in which you are running,
you could load a different DLL. You would use the code shown earlier in this chapter
for determining what sequence you are in.

Chapter 16: Using InstallScript to Create Custom Actions 685

4723-2 ch16.f.qc 1/16/01 11:11 AM Page 685

Summary
In this chapter we have taken a look a number of ways you can use InstallScript to
implement custom actions. We have discussed the OnBegin() and OnEnd() event
handlers and the important use we can make of these special functions. We have
also investigated the very important Property table and taken a look at what we can
use it for. We have been reminded that this table is the equivalent of the definition
of global variables in a structured programming environment. Finally we looked at
how to handle a DLL that we need to call from our script. We saw how to stream this
file into the Binary table and how to stream it out again into a temporary location
that will automatically get cleaned up at the end of the installation.

686 Part IV: Advanced Concepts

4723-2 ch16.f.qc 1/16/01 11:11 AM Page 686

Chapter 17

Creating and Sharing
Components

IN THIS CHAPTER

◆ How the operating system handles dynamic-link libraries

◆ The rules to follow when creating components

◆ How to properly modify components

◆ How to use InstallShield for Windows Installer to create components

◆ Using merge modules to deliver components to an installation package

◆ How the Windows Installer keeps track of the components already installed

◆ The installation of special types of components

THIS CHAPTER ADDRESSES one of the core concepts of creating Windows Installer
packages. This core concept is the proper creation of components and how the
Windows Installer handles these components.

Component Sharing and the
Operating System
From its very inception, the Windows operating system was based on the concept
of different applications sharing code. Initially, much of the code that comprised a
Windows application was found in a dynamic-link library (DLL), which exported
various functions that the main application executable used to perform various
operations. If these operations are of generic value, other applications can use these
same DLLs for implementing their functionality without having to develop the
same code over again. All installing these DLLs into a central location where all

687

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 687

applications that need them can find them is all that is necessary. Typically, if a
DLL were only shared among the applications of a specific company, then it would
be installed to a folder that has a format similar to the following:

<Drive>:\Program Files\Common Files\<company-name>\Shared

If a DLL is installed in this location, all the clients that use this file need to know
the path to locate the file, so that it can be found and loaded into memory.

If the DLL is shared across applications of different companies, the standard
location for installing this type of file is the following:

<WindowsFolder>\System32

A globally shared DLL that is installed in the System32 folder can always be
found because this location is part of the standard search path used by the operating
system for finding DLLs.

Dynamic-link libraries that are not shared are installed into the install location
of the using application executable or in a subdirectory of this location. In this sit-
uation, the client executable always knows the relative path to this DLL and can
always find it.

If you look at a COM server instead of a Win32 DLL, the Registry now provides
the location of the server. You find this location by querying the registry for the
class ID and not through a search path as you use with a Win32 DLL.

How the OS handles a dynamic-link library
Regardless of how an application finds its DLLs, only one copy of this DLL is in mem-
ory. This section of memory is called the global heap and this DLL gets mapped into
the separate address space of each application that is using the DLL. On Windows 95,
Windows 98, and Windows NT 4, each application runs in its own process space,
which is one of the major advances that these 32-bit operating systems make over the
older 16-bit Windows OS. This functionality is shown in Figure 17-1.

The problem comes when two different applications need different versions of the
same DLL. After the first application launches, it loads the DLL that it needs into
memory and it works the way it was designed. However, after the second application
launches, the operating system finds that a DLL already exists by the requested name
in memory, so that the OS maps this DLL into the address space of the second appli-
cation. Unfortunately, this is not the version of the DLL that this second application
needs, and thus it fails to function properly or possibly will not run at all. This is the
conflict between versions of DLLs we’ve referred to as DLL Hell.

688 Part IV: Advanced Concepts

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 688

Figure 17-1: The mapping of a DLL into the address space of two different applications

What causes DLL Hell?
Version conflicts between DLLs are caused primarily because newer versions of
DLLs that get installed onto a machine are not completely backward compatible.
After the newer DLL is installed into a shared location, it will overwrite the older
version that is already on the machine. You find other causes of DLL Hell, such as
introducing new DLLs that have bugs, which break functionality that used to work
or the overwriting of newer DLLs with older versions, because the installation pro-
gram did not check for the version before it copied the file. However, the lack of
complete backward compatibility between new and old DLLs is the primary cause.

Application 1

Global Heap

Application 2

DLL

Application Code

DLL Code

Process 1
Address Space

Application Code

Process 2
Address Space

DLL Code

Chapter 17: Creating and Sharing Components 689

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 689

How new versions of are changing things
The new versions of the Windows operating systems — Windows 2000, Windows 98
SE, and Windows Me — implement new functionality to help reduce the problems
that have arisen in the past due to the conflict between different versions of DLLs.
One area addressed is the destabilization caused to the operating system itself by the
indiscriminate replacement of system components with the wrong versions of these
components. This functionality is termed System File Protection and is discussed in
the next section. System File Protection has only been implemented in Windows
2000 and Windows ME.

Another functionality implemented in these new operating systems is the capa-
bility to have more than one version of the same DLL in memory at the same time.
This capability allows for what is called side-by-side sharing, where each application
can use the version of a DLL that it needs and with no version conflict. Side-by-side
sharing has been implemented in Windows 2000, Windows 98 SE, and Windows
ME. This creation of private components is discussed in the sections that follow the
discussion of System File Protection.

SYSTEM FILE PROTECTION
System File Protection (SFP) is a new functionality that protects the system files
from being updated or deleted by applications that try to modify the files that are
in the System32 folder and other protected folders. If an application tries to copy
over or delete one of the files that is on the File Protection List, the copy or delete
operation will appear to succeed, but the correct file will be replaced, so that the
system is brought back to the same state as when it was first installed.

The files that are protected by this new functionality are the .sys, .exe, .dll, .ocx,
.ttf, and .fon files that are installed from the Windows 2000 CD-ROM. If a file is
copied to a protected folder, the System File Protection will receive a directory
change notification. After this notification is received, the System File Protection
determines which file was changed. If the file is on the system file protection list, the
SFP checks the file signature in a catalog file to determine whether the new file is
the correct version. If the version is not correct, the file is replaced with the correct
version from the dllcache folder under the System32 directory or the file is replaced
from the original distribution media for the operating system.

You find approximately 2700 to 2800 files on the file protection list, depending
on the flavor of the operating system that you are talking about. The question that
arises is how to update these files if the operating system has them protected. Only
four mechanisms support changing the files that are on the file protection list.
These are listed as follows:

◆ Windows 2000 Service Packs (Update.exe)

◆ Hot-fix distributions (Hotfix.exe)

◆ Operating system upgrades (Winnt32.exe)

◆ Windows Web Update

690 Part IV: Advanced Concepts

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 690

The Windows Me operating system implements System File Protection in a differ-
ent manner. Windows Me uses catalogs that describe protected files. The protection of
files on Windows Me requires that the file be on the file protection list with a catalog
with the version information. This functionality permits the update of protected files
with the installation of an application if the information for the file is updated with a
system file protection catalog.

SIDE-BY-SIDE SHARING
In Windows 2000, Windows 98 SE, and Windows Me, you find a new functionality
that permits applications to privatize the DLLs that they need to make sure are not
changed out by the installation of another application with a version of the DLL
with which they cannot work. This functionality is called side-by-side sharing,
which allows multiple versions of a DLL to be loaded into memory at the same time.

Two approaches to side-by-side sharing exist and the type you use determines
how an installation is structured. These approaches are shown in the following list:

◆ Creating new components: Creation of a new component, designed from
scratch and used by only one application.

◆ DLL redirection: Reconfiguration of an existing application so that the DLLs
that provide its functionality are isolated, and another application that
installs a newer version will not prevent the already installed application
from using the version of the DLL that it needs.

The primary focus of creating new components that make use of the side-by-side
sharing capabilities of the new operating systems is to prevent future versions of the
component from being the one that is used by the original application. The primary
focus of DLL redirection is to insulate existing applications from being disabled by the
installation of other applications that install incompatible versions of the same DLL.

The Componentization Rules
You need to follow a number of strict rules when creating components. These rules
need to be followed because components are sharable between features in a single
application, as well as across applications and across companies. These rules are
critical to the proper reference counting of components and if this is not done cor-
rectly, then applications can get disabled when uninstalling a component that is
required. A situation is also possible where you can leave orphaned resources
behind on a machine after uninstalling components that were not created in the
proper manner. Proper reference counting is also critical to the proper performance
of major upgrades using the Upgrade table.

When creating components, the basic guideline to follow is to build small com-
ponents that include all the resources required by the file or files in the component.
The reason for small components is to make modification of the component less

Chapter 17: Creating and Sharing Components 691

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 691

necessary. Adding or removing files from a component is not possible while still
keeping the same component ID. If you want to be able to add or remove files from
an application, you want to be able to do this by adding or removing components
and not adding or removing files from a component.

As you deal with the installations for medium to large applications, creating larger
components is necessary. This becomes necessary to both simplify the creation of the
installation package as well as to minimize the bloat caused to the registry by the
large amount of component information that needs to be added. However, making
larger components does generate component management problems when it comes
time to version the component. Thinking of a component in the same light as COM
interface that has been shipped is appropriate. Once shipped, a COM interface is
immutable. The only way to add functionality to a COM server is to add a new inter-
face. The same goes for components. After you create a component and actually ship
it as part of an application, you do not want to change it in any fashion. If you need
to add additional resources to a component, then you need to think about creating a
new component with a new component ID.

You now look at the rules to follow when creating a component. You also look
at how a component can legally be modified, as well as at the impact that breaking
the rules for component creation can have.

Creating new components
With components being the atomic unit of an application, defining the components
correctly is important. One of the important reasons for defining the components cor-
rectly is so that the mechanism used for reference counting the components works as
designed. The refcounting of components plays an important role in many areas,
such as the performance of major upgrades. Below is a list of rules that to follow
when creating components:

◆ Never create two components that install a resource under the same
name and target location. If a resource must be duplicated in multiple
components, change its name or target location in each component. Apply
this rule across applications, products, product versions, and companies.

◆ Note that the previous rule means that no two components can ever
have the same keypath file. The keypath value points to a particular file
or folder belonging to the component, which the installer uses to detect
the component. If two components have the same keypath file, the installer
is unable to distinguish which component is installed. Two components,
however may share a keypath folder.

◆ Never create a version of a component that is not compatible with all
previous versions of the component. Apply this rule across applications,
products, product versions, and companies.

692 Part IV: Advanced Concepts

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 692

◆ Don’t create components that contain resources, which need to be
installed into more than one directory on the user’s system. The
installer installs all the resources in a component into the same directory.
Installing some resources into subdirectories is not possible.

◆ Define a new component for every .exe, .dll, and .ocx file. Designate
these files as the keypath files of their components. Assign each component
a component code GUID.

◆ Define a new component for every .hlp or .chm help file. Designate these
files as the keypath files of their components. Add the .cnt or .chi files to
the components holding their associated .hlp and .chm files. Assign each
component a component code GUID.

◆ Define a new component for every file that serves as a target of a
shortcut. Designate these files as the keypath files of their components.
Assign each component a component code GUID.

◆ Identify any files, registry keys, shortcuts, or other resources that are
shared across applications and which can be provided by existing com-
ponents available as merge modules. You must not include any of these
resources in the components you author. Instead obtain these components
by merging the merge modules into your installation package.

◆ Group all the remaining resources into folders. All resources in each
folder must ship together. If a pair of resources may ship separately in
the future, put these in separate folders. Define a new component for
every folder. Try to keep the total number of components low to improve
performance. Divide the application into many components when it is
necessary to have the installer check the validity of the installation thor-
oughly. Designate any file in the component as the keypath file. Assign
each component a component code GUID.

◆ Add registry keys to the components. Any registry key that points to a
file should be included in that file’s component. Other registry keys should
be logically grouped with the files that require them.

These above rules are not necessarily hard and fast but used with an understanding
of why they are there. The rules basically aim to insure that no two applications will
ever require different versions of the same file, removal of one application does not
break another application, and no resources are orphaned on a machine regardless of
the order in which products are uninstalled.

Modifying a component
Authors may need to introduce new components or modify existing components. If
the addition, removal, or modification of resources effectively creates a new com-
ponent, then the component code must also be changed.

Chapter 17: Creating and Sharing Components 693

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 693

CREATING A NEW COMPONENT
Introduce a new component and assign it a unique component code when making
any of the following changes:

◆ Any change not shown by testing to be compatible with previous versions
of the component. In this case, you must also change the name or target
location of every resource in the component.

◆ A change in the name or target location of any file, registry key, shortcut,
or other resource in the component. In this case, you must also change the
name or target location of every resource in the component.

◆ Addition or removal of any file, registry key, shortcut, or other resource
from the component. In this case, you must also change the name or target
location every resource in the component.

When introducing a new component, authors need to do one of the following to
ensure that the component does not conflict with any existing components:

◆ Change the name or target location of any resource that may be installed
under the same name and target location by another component.

◆ Guarantee that the new component is never installed into the same folder
as another component, which has a resource under a common name and
location. This includes localized versions of files with the same filename.

◆ When changing the component code of an existing component, also
change the name or target location of every file, registry key, shortcut,
and other resource in the component.

CREATING A NEW VERSION OF A COMPONENT
A new version of a component is assigned the same component code as another
existing component. Modifying a component without changing the component
code is only optional in the following cases:

◆ Testing the changes to the component prove it to be backward compatible
with all previous versions of the component.

◆ The author can guarantee that the new version of the component will never
be installed on a system where it conflicts with previous versions of the
component or applications requiring a previous version.

◆ The component code results in two components sharing resources, such as
registry values, files, or shortcuts.

694 Part IV: Advanced Concepts

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 694

What happens if the rules are broken
The following describes ways that authors sometimes break the recommended com-
ponent rules and the possible consequences.

An author adds resources to a component without changing the component code.

◆ Products installed with the old component have no information about the
added resources in their installation database.

◆ If both a new product, which has the added resources, and an old product
are installed on the same computer, the resources can be left behind if the
new product is uninstalled first.

◆ An old product without the added resources cannot repair the newer version
of the component. Reinstalling the old product does not restore the added
resources.

An author removes resources from a component without changing the component
code.

◆ Products installed with the new component have no information about the
removed resources in their installation database.

◆ If both an old product, having the resource information, and a new product
are installed on the same computer, the resources can be left behind if the
old product is uninstalled first.

◆ A new product with the removed resources cannot repair the older version
of the product. Reinstalling the new product does not restore the removed
resources.

An author includes a file that is incompatible with previous versions without
changing the component code.

If an author includes an incompatible file in a component without changing the
component code, default file versioning causes the installer to overwrite the original
file with the more recent incompatible file. This overwrite can damage old products
needing the original file. It may also prevent the installer from repairing the old prod-
uct because the version of a component’s keypath file determines the version of the
component. If a newer version of the keypath file is already installed, the installer
does not install the older version of the component. For more information, see File
Versioning Rules in the Windows Installer help. In this case, the new product must be
removed before the old product can be reinstalled.

◆ Default file versioning causes the installer to overwrite the original file
with the more recent incompatible file.

◆ Old products that need the original file are damaged.

Chapter 17: Creating and Sharing Components 695

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 695

◆ An overwrite may also prevent the installer from repairing the old product
because the version of a component’s keypath file determines the version of
the component. If a newer version of the keypath file is already installed, the
installer does not install the older version of the component. For more infor-
mation, see File Versioning Rules in the Windows Installer help. In this case,
the new product must be removed before the old product can be reinstalled.

An author includes the same resource in two different components.
If two components have a resource under the same name and location, and both

components are installed into the same folder, then the removal of either component
removes the common resource, which damages the remaining component.

◆ Uninstalling either component removes the resource and breaks the other
component.

◆ The component reference-counting mechanism is damaged.

Special issues relating to component creation
Several special issues need to be addressed when creating components. These issues
are the use of self-registration for COM components, the sharing of COM components
between features, the use of the SharedDLLs key in the registry, and the various ways
that a KeyPath can be defined for a component. These topics are discussed in the fol-
lowing four subsections.

SELF-REGISTRATION OF COM COMPONENTS
The self-registration of COM components has long been the solution to correctly mak-
ing the entries in the registry so that the COM component can be properly initialized
and loaded into memory when the client application needs it. In the new world of the
Windows Installer, self-registration is should not be done because self-registration is
a black box that cannot be managed by the Windows Installer service. If the Windows
Installer does not know what has been done to the system by the running of the
DllRegisterServer function in a COM DLL, it cannot know how to properly handle the
registry keys this function has created during other operations.

Not using self-registration is strongly recommended for installation package
authors. Instead, they should register modules by authoring one or more of the
other tables provided by the installer for this purpose. These tables are the Class,
TypeLib, and ProgId tables. Many of the benefits of having a central installer ser-
vice are lost with self-registration, because self-registration routines tend to hide
critical configuration information.

◆ A rollback of an installation with self-registered modules cannot be safely
done using DllUnregisterServer because you have no way of telling if the
self-registered keys are used by another feature or application.

696 Part IV: Advanced Concepts

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 696

◆ The ability to use advertisement is reduced if Class or extension server
registration is performed within self-registration routines.

◆ The installer automatically handles HKCR keys in the registry tables for
both per-user and per-machine installations. DllRegisterServer routines
currently do not support the notion of a per-user HKCR key.

◆ If multiple users are using a self-registered application on the same
computer, each user must install the application the first time they run
it. Otherwise the installer cannot easily determine that the proper HKCU
registry keys exist.

◆ The DLLRegisterServer can be denied access to network resources, such as
type libraries, if a component is both specified as run-from-source and is
listed in the SelfReg table. This can cause the installation of the component
to fail to during an administrative installation.

◆ Self-registering DLLs are more susceptible to coding errors because the
new code required for DllRegisterServer is commonly different for each
DLL. Instead, use the registry tables in the database to take advantage of
existing code provided by the installer.

◆ Self-registering DLLs can sometimes link to auxiliary DLLs that are not
present or are the wrong version. In contrast, the installer can register the
DLLs using the registry tables with no dependency on the current state of
the system.

The order in which the installer registers or unregisters self-registering DLLs
cannot be specified by the order in which the entries are made in the SelfReg table.
Also the SelfReg table cannot be used to implement the registration of a self-
registering executable. For this type of executable, authoring the correct database
tables is necessary if this registration is to take place during the installation.

SHARING A COM COMPONENT BETWEEN FEATURES
You cannot share a COM component between features under certain circumstances.
If you do not self-register your COM component and you want to share this com-
ponent between two features where one of these features is not a child of the other,
then it is not possible to create the Class table where your COM component is
entered twice, once for each feature. This is because the name of the feature with
which a COM component is associated is not part of the primary key of the Class
table and you cannot have duplicate primary keys in any table. When you build
your Windows Installer package, ISWI will make only one entry in the Class table
and will not make the second entry. You would then have the possibility of not
installing the feature that actually registers the COM component thus causing the
other feature to fail because the COM registration has not been created.

Chapter 17: Creating and Sharing Components 697

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 697

You have a few solutions to this dilemma. One possible approach is to make one of
the features that are going to use this COM component a child of the other feature
that will also use this COM component. You would then associate the COM compo-
nent with the parent feature and you would never be able to install the child without
installing the parent, but you could install the parent without installing the child. You
could also define this COM component as self-registering, but then you would start to
cripple some of the functionality that was described in the previous section.

MIXING LEGACY AND MSI APPLICATIONS ON THE SAME MACHINE
Before the advent of the Windows Installer, applications kept track of shared DLLs
in the following registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\
SharedDLLs

Under this key, every DLL installed to a shareable location is entered here and
given a reference count. Every application that comes along increments the reference
count after installing the same DLL to the same location. Any uninstalled application
that was decrements the reference count. When the reference count on the shared
DLL becomes zero, the DLL gets removed from the system under the assumption that
no other application needs it. This was a way to keep the system as clean as possible,
so that it would not clutter up with a lot of unused files.

The Windows Installer keeps track of shared DLLs independently of the shared
DLL reference count in the registry. For the purpose of backward compatibility with
the older form of reference counting shared components, a Windows Installer com-
ponent can be marked as being shared. This marking tells the Windows Installer to
reference count the file in the component using the older format as well as with the
newer format. If a reference count for a shared DLL exists in the registry, the
installer always increments the count when it is installing the file and decrements
the count when it is uninstalling, regardless if the component is marked as being
shared. If a component is not marked as being shared and the reference count does
not already exist, the installer will not create a reference count under the
SharedDLLs key. Also, on Windows NT and Windows 2000, if a file is installed to
the System32 folder, the file automatically receives an entry under the SharedDLLs
key, even if the component is not marked as being shared.

If a component is not identified as being shared, another application can remove
the component under certain circumstances even if the component is still needed.
The following scenario demonstrates how this can occur:

◆ An application that uses the Windows Installer installs a shared component.

◆ A component is not marked as being shared with no reference count
already under the SharedDLLs registry key, so that the installer does not
begin a reference count.

698 Part IV: Advanced Concepts

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 698

◆ A legacy application, which also installs the DLL in the above component,
is installed, and this legacy application creates and increments a reference
count for the shared DLL.

◆ The legacy application is uninstalled.

◆ The reference count for the shared component is decremented to zero and
the component is removed.

◆ The application that used the Windows Installer is now broken because it no
longer has access to the DLL that was removed by the legacy application.

To avoid these scenarios, always mark a component as being shared so that it
makes the proper entries under the SharedDLLs registry key.

DEFINING THE KEYPATH FOR A COMPONENT
The keypath for a component is normally the name of a file in the component, but it
can also be a folder or a registry entry. If the keypath is a folder, then the component
installs in this folder. It is not possible to have two keypath values for any compo-
nent and this value cannot be shared between two components. This goes along with
the rule that the same file cannot be installed by two different components. The use
of a folder as the keypath value for a component is appropriate for a component that
contains a number of files and where no particular files stands out as being a good
candidate. This situation may occur for a component that installs a bunch of clip art,
for example.

The keypath value is how the Windows Installer is able to locate the component
on the system after it is installed. The health of a component is evaluated through
the keypath. If the keypath for a component to be installed is missing, then this
enables the self-repair functionality of the Windows Installer. If a component has a
missing keypath and that component is associated with a feature that contains the
target of a shortcut, then the Windows Installer attempts to reinstall the component
that has the missing keypath after the user activates the shortcut. If the component
is not associated with such a feature, then the self-repair is implemented from
within the application itself.

Creating Components in ISWI
You can use two approaches to create components directly in an ISWI installation
project. You can do this by using the various context menus to create components,
add files, create shortcuts, and so forth. You can also make use of the Component
Wizard to create components that require special handling. These types of special-
ized components can be COM components, NT Services, ODBC components, and
Font components. The next two sections discuss each of these two approaches for
adding components to a project.

Chapter 17: Creating and Sharing Components 699

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 699

Another method can be used to deliver components to a project, which is the cre-
ation of components outside of the project and then merging these components into
the Windows Installer database at build time. This approach deals with the subject of
Merge Modules, which are covered in a separate section later in this chapter.

Creating components directly in the ISWI IDE
No matter what approach you use to create components, you need to associate
them with a feature. After you define your features, you can right-click a feature
name to get a context menu that provides you with a number of options that relate
to components. The component related options on this context menu are described
in the following list:

New Component Creates an empty component with a default name. All
the input required to define this component is entered
through the IDE.

Insert Components... Launches a dialog that enables you to associate compo-
nents that have already been created with other features
in the project. Because you cannot add the same compo-
nent twice under the same feature, this functionality only
permits the sharing of components between features.

Component Wizard... Launches the Component Wizard that helps you create
specialized components. Using this wizard is the subject
of the next section.

Merge Module Wizard... Enables the selection of Merge Modules to associate
with a feature or set of features. Using this wizard is
discussed later in this chapter.

In this section, you will be covering the first two options in the previous list. After
you select the New Component option, ISWI creates a component with the default
name of NewComponentX, where X represents a sequence number used to distin-
guish components from one another. The name that you use for the component
identifies the component in the Component table and because this component is the
primary key in this table, this name has to be unique within the project. If you try to
create two components with the same name, ISWI gives you an error message stat-
ing that a component with that name defined in the project already exists.

After you create a component by using the New Component option, you add
all the files and associated information that is necessary to completely define the
component. First, you want to look briefly at the context menu options after you

700 Part IV: Advanced Concepts

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 700

right-click a component name in the IDE. After you right-click a component name,
you get the following listed options:

Remove Disassociates the component with the present feature. It does not remove
the component from the project and it can still be seen in the Setup
Design – Components view as well as under any other features with
which it is still associated. This particular command is only available
in the global view where both features and components are displayed
together. Using the Insert Components... command, described in the
previous section, you can re-associate a removed component with the
feature or to move it to another feature. You cannot create another
component with the same name as a removed component because it
is still resident in the project.

Delete Permanently removes a component from the project and if you want
the component back, you have to recreate it. After a component is
deleted, you can then create another component with the same name.

Rename Allows you to change the name of a component.

Associated with each component in the ISWI IDE is a property page in which you
enter data. When you define components in this property page, you are specifying
the entries that are made in the Component table. Under each component is a tree of
icons where you enter data that is associated with the component. If you enter data
here, you are defining values that get entered into other tables. Each of these other
tables has a foreign key into the Component table or has a foreign key into a table
that has a foreign key into the Component table. To be able to create components in
a knowledgeable fashion, you need to take a look at the fields of the Component
table. Table 17-1 provides a description of the fields in the Component table.

TABLE 17-1 THE FIELDS IN THE COMPONENT TABLE

Column Description

Component The primary key for the table and an identifier that is unique for
the product.

Continued

Chapter 17: Creating and Sharing Components 701

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 701

TABLE 17-1 THE FIELDS IN THE COMPONENT TABLE (Continued)

Column Description

ComponentId A GUID, which by definition, must be unique. The Windows Installer
uses this value to register the component in the registry. If this value
is null, then the component will not get registered and the Windows
Installer will not be able to either remove or repair it. Notice that
all the letters in the above values are uppercase letters, which is
necessary for this to be a valid component ID. The GUIDGEN utility
generates GUIDs that can have some lowercase letters, which have
to be changed to uppercase before they can be used in this table.

Directory_ A foreign key into the Directory table. The value in the Directory table
is a property that contains the path to where the component is to
be installed.

Attributes The value in this column is used to define how components are to
be handled by the Windows Installer. This field is used to define
whether a component can or cannot be run from source or whether
this functionality is optional. Other options can be set as well, such
as whether a component is permanent, or transitive, and so on.

Condition A condition is an expression that evaluates to TRUE or FALSE. If the
result of a condition is TRUE, the component will install, otherwise
it will not install. If this column is null, then is the result is the same
as if the condition is evaluated to TRUE.

Keypath The Windows Installer uses the value to detect the existence of the
component. Normally, this value is called the key file of the component,
but it can also be a registry entry or a folder. If this column is null, then
the value in the Directory_ column is used as the keypath.

Now that you see what is entered into the Component table, you look at the com-
ponent properties page in ISWI to see how each of the entries that you make are
used to populate the Component table. Figure 17-2 shows the component property
page in ISWI.

Table 17-2 describes all the properties shown in Figure 17-2.

702 Part IV: Advanced Concepts

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 702

Figure 17-2: The component properties page in ISWI

TABLE 17-2 DESCRIPTION OF THE COMPONENT PROPERTIES IN THE ISWI IDE

Property Description

Destination This property sets the value of the Directory_ field in the
Component table. You can add hard coded folders under
this location that is configurable by the end user through
the custom setup dialog, or you can have the component
installed to a predefined location, such as the
System32 folder.

Registration This property relates to COM servers and how the registration
information is extracted. For components that are not COM
servers, this setting is meaningless. In your installation project,
you can choose to have the COM information extracted after
the MSI database is created. You can also use the Component
Wizard to extract this information and if you do, the information
does not change from build to build. If you extract the COM
registration, every time you build the database, the COM
information is written to the Log file, which is created for
each build.

Component Code This property is the GUID that makes each component unique.
These GUIDs are not the same GUIDS used to define COM
class IDs. This property sets the value of the ComponentId
field of the Component table.

Continued

Chapter 17: Creating and Sharing Components 703

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 703

TABLE 17-2 DESCRIPTION OF THE COMPONENT PROPERTIES IN THE ISWI IDE
(Continued)

Property Description

Shared This property is used to set a bit flag in the Attributes field
of the Component Table. The purpose of this bit flag is to
maintain compatibility with legacy applications that may be
installing the same files that make up this component. The
SharedDLLs key in the registry maintains this compatibility
where a reference count is kept of all applications that use
the same shared file.

Permanent This property sets another bit flag in the Attributes field of the
Component table that determines whether this component will
be uninstalled or left on the machine.

Condition This property is a condition that controls whether a component
is installed or not. This property is used to set the value of the
Condition field in the Component table.

Remote Installation This property sets another bit flag in the Attributes field of the
Component table that determines whether this component can
be run from source only, run locally only, or run in either mode.

Languages This property relates to the build environment of ISWI where it is
possible to filter components based on the language that is set
here. A build can be made to bring in only components identified
with a set of languages. Components that are designated as
Language Independent are included in all builds.

Reevaluate Condition This property sets another bit flag in the Attributes field of
the Component table that determines whether the condition
in the Condition field of the Component table is reevaluated
on a reinstall of the application. This property is primarily used
under the circumstances where the OS has been upgraded and
the component originally installed needs to be switched out
with another component. Setting this property to Yes identifies
the component as a transitive component. Without this bit flag
being set, the condition statement is not reevaluated during
the reinstallation.

Never Overwrite This property sets another bit flag in the Attributes field of
the Component table that determines whether this
component will be overwritten during an installation or a
reinstallation.

704 Part IV: Advanced Concepts

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 704

Property Description

Source Location This is an ISWI specific property that allows you to configure
the media layout to be different from the layout of folders of
the installed product. By default, the media layout of files is
the same as what is seen after installing the product.

Comments This property is an internal comment that only is inserted into
the project file and is never built into the MSI database.

After you have entered the data that defines the component, you need to start
making entries for the tree of icons that are below the component name. This tree of
icons, shown in Figure 17-2, shows that you have some basic input that can be made
and then you have number of areas in the IDE where you can create the Advanced
Settings. The basic settings that you can make are the addition of files to the com-
ponent by clicking on the Files icon, definition of registry entries that are to be made
when the component gets installed, and the definition of a shortcut that is associated
with the component. The Advanced Settings area provides the capability to define
an entry under the App Paths key in the registry, define COM registration informa-
tion, create a file association, define the installation and control parameters of an NT
service, and define the component as being a member of an array of components.
Refer to the entries for several of the basic and advanced settings described in detail
in Chapter 7. Next, you look at the background of each of these settings and only
discuss those details not already covered.

ADDING FILES TO A COMPONENT
After you create a component and click the Files icon, you have two methods to use
to add files to the component. By default, the File List panel appears after you click
the Files icon. This is shown in Figure 17-3.

Figure 17-3: The File List property page in the ISWI IDE

Chapter 17: Creating and Sharing Components 705

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 705

If you right-click in this page, you get a context menu that has an Add... option.
Selecting this option launches a browse dialog where you can navigate to the location
of the files that you want to add to the component. After you select the files that you
want to add to the component, ISWI asks you to supply the name of a path variable
for this location if one isn’t defined already. After the files are added the context
menu, by right-clicking you find a number of additional options that are enabled. You
can set a file to be the keypath for the component. After installation, you can also
remove a file or set the properties of the file to be different than what they are on the
build machine by selecting the appropriate option.

The most important of these options is the Set Key File option, which allows you
to designate the file that is highlighted as the keypath of the component. If you do
not define any file as the keypath and you do not designate an associated registry
entry as being the keypath for the component, you find the keypath in the folder in
which the component is installed.

Using the previous method creates what is termed a static link to the files. You
can also create a dynamic link, which is a link to a folder and not any specific file or
files. Dynamic links are good if the added files to the component are likely to change
on a regular basis during development. This functionality makes performing nightly
builds much more efficient, without having to continuously add and remove files
from the project before the build is made.

To get to the property page where you can create a dynamic file link to a folder,
you need to click the mouse on the File Linking text at the top of the Files page. A
property page, which looks like Figure 17-4, appears.

Figure 17-4: The File Linking Property page in the ISWI IDE

If you right-click the mouse in this property page, you get a different set of
options in the resulting context menu. Before any dynamic link is created, the only
enabled option is the New Dynamic Link option. If you select this option, you
obtain the Dynamic File Link Settings dialog, which is shown in Figure 17-5.

706 Part IV: Advanced Concepts

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 706

Figure 17-5: The Dynamic File Link Settings dialog

In this dialog, you can browse the folder that contains the files to be added to the
component. You have the option to include subfolders. If you do, the linking auto-
matically creates a new component for the files in the subfolder. You can add and
delete files from these folders and the dynamic link gets updated so that the new files
are added to the component, and the missing files are dropped from the component
at the next build. You cannot add new folders after the dynamic link is created and
have the new folder used to create another new component. You have to remove the
dynamic link and create a new one that encompasses the additional subfolder.

At the bottom of the Dynamic File Link Settings dialog you are provided with
the option to include all files in the designated folders or to include and exclude
files based on a file specification. The specification for including and\or excluding
files can use wild cards. By necessity, you need at least one file in a dynamically
linked folder that is excluded if a file is to be used as the keypath for the compo-
nent. It is only possible to identify a statically linked file as the keypath, which only
makes sense if you understand that a dynamic link is only relative to a particular
folder and has no knowledge with regard to the files in the folder.

Regardless of how you add files to a component, the outcome of the operation is
to eventually make the entries in the File table. One of the fields in this table is a
foreign key into the Component table. These files do not get copied to the target
system unless the associated component gets installed to run locally. The files do
not get copied for any other state of the component, such as if the component were
to run from source.

Chapter 17: Creating and Sharing Components 707

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 707

ADDING REGISTRY DATA
Clicking the Registry Data icon in the component tree, the visual registry editor pre-
sents itself. Using this editor, you can define the entries made in the registry after the
component gets installed. You can also right-click the top node in the visual registry
editor and choose to import the contents of a .REG file. You can also export the
information that you enter in this editor to a .REG file. This visual registry editor is
shown in Figure 17-6.

Figure 17-6: The Visual Registry Editor in the ISWI IDE

The values that you enter here are used to populate the Registry table when the
Windows Installer package is built. To create a key, you left-click the name of the
root key and right-click to bring up the context menu. The options offered are to
create a new key or to perform a search of the keys, value names, and/or value data.
After you select the New Key option, you get a key with a default name, which you
can rename as necessary. If you right-click on this new key, you are offered the
options to create another new key, rename the key, delete the key, or to perform a
search of the entries made in the registry editor.

A special key in the registry editor may look unfamiliar. This registry key has the
name of HKEY_USER_SELECTABLE. This key allows you to define registry values
that get written to HKEY_CURRENT_USER if the install is for the current user or to
HKEY_LOCAL_MACHINE if the install is for the machine. To make this work properly,
it is first necessary to create a key named SOFTWARE under this key before any other
keys and values are created. Creating a key is necessary because the SOFTWARE key
is the only key that can be written under both HKEY_CURRENT_USER and HKEY_
LOCAL_MACHINE.

After you create a key, you can then create value names and value data by right-
clicking in the farthest right panel. You get the (Default) value name provided for
you and you can set the value by typing in the value data field, which is shown in
Figure 17-7.

708 Part IV: Advanced Concepts

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 708

Figure 17-7: Creating value names and value data for registry keys

If you right-click in the Registry Data panel, you get a context menu that offers
the capability to create a string value, a binary value, or a DWORD value. You are
also able to delete or rename a value name and you can define a particular value
name and value data pair as the keypath for the component. A number of formatting
issues need to be understood when creating keys or value name and value data pairs.
These issues are discussed in the following sections. In general the creation of a key,
a value name, and value data use formatted strings, which means that the replace-
ment mechanism of using the square brackets in a formatted string can be used to
insert the value of properties, environment variables, File table keys, and Component
table keys into the registry keys and values that are created at install time.

CREATING KEYS As you have already seen, you can enter key names by hard coding
them in the visual registry editor. However, you can use the replacement functionality
of a formatted string to create the actual key names themselves at run time. You can
use four possibilities to create key names at install time. These are using the value of a
property, the value of a user environmental variable, the path to the installation folder
of a component, and the complete path to a file. The format for each of these is shown
in the following list:

[property-name] If you put the name of a property inside square brack-
ets, the value of the property is inserted at run time
and the property name and the square brackets is
removed.

[%environmental-variable] If you precede a name with the % sign, you tell the
Windows Installer to replace the square brackets
with the value of the user defined environmental
variable. Note that this will only capture the user
environmental variable value and not the system
environmental variable.

Chapter 17: Creating and Sharing Components 709

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 709

[$component-name] If you precede a name with the $ sign, you tell the
Windows Installer to replace the square brackets
with the install directory of the component. The
component-name is a key into the Component table.

[#file-key] If you precede a name with the # sign, you tell the
Windows Installer to replace the square brackets with
the full installation path of the file. The file-key is a
key into the File table.

When you use these replacement mechanisms, you get a tree of sub-keys with a
new sub-key being created for every backslash in the replacement string. For
example, if you use the [#file-key] format for creating a key comprising the full
path to a file, you make an entry similar to Figure 17-8.

Figure 17-8: Using a key into the file table to create a registry key at install time

In Figure 17-8, note that the key into the File table is not file name but a decorated
version of the file name. This decorated name is used as the primary key in the File
table, and for any file this decorated name can be read from the File List property page
after you click the Files icon under the component name in the IDE. For any particular
file, this key into the File table is found from the farthest right-hand column in the File
List property page.

When you run the installation and install, this component for the previous
example you gets the registry entry, as shown in Figure 17-9. From this figure, you
can see that you get a key structure where every backslash in the file path creates
another sub-key.

When you create keys, you have some options about how they are to be handled
during the installation or uninstallation. By default, any key that you define in the
visual registry editor is created at install time and removed during uninstallation.
You can, however, define a key that is created at install time but will not be
removed at uninstallation. Conversely, you can define a key that is not created at
install time but if it exists is removed at uninstallation.

710 Part IV: Advanced Concepts

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 710

Figure 17-9: The Registry entry for a key created by using a key into the file table

In Figure 17-10 is shown the format where you can have a key created during
the installation but the key is not removed during uninstallation.

Figure 17-10: Defining a registry key that will get created but not removed

To create this key, you create a dummy value name that has no value data. In
place of a value name you enter the plus + sign. This sign tells the Windows Installer
to create a key but that during uninstallation, this key should not be removed. If you
want to create a key that would not be created during the installation but would be
removed, if it existed, during uninstallation, you would replace the + sign with the
minus – sign. The default for registry keys defined in ISWI uses the asterisk * and
this defines that the registry key is to be created during installation and removed
during uninstallation.

CREATING VALUES When you create values, you first create a value name and
then you give it a value that can be interpreted as a REG_SZ, REG_MULTI_SZ,
REG_EXPAND_SZ, REG_DWORD, or REG_BINARY depending on the formatting
that is used. When you create string type data, you can use the same replacement
mechanism that was described when creating keys. When creating binary data or
DWORD data, the only replacement option that can be used is the [property-name]
mechanism. The value for the particular property name to be replaced has to be of
the correct data type.

Chapter 17: Creating and Sharing Components 711

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 711

When you create string data and you do not use any specific formatting, the data
is interpreted as being of type REG_SZ. With a little formatting, you can create
either a REG_MULTI_SZ or a REG_EXPAND_SZ data type. Figure 17-11 shows the
entries that need to be made for all of the various data types.

Figure 17-11: Creating the various registry data types

If you want to create a string data type that is interpreted as type
REG_EXPAND_SZ, you need to prefix the string to expand with #%. If you want to
create an expandable string value in the registry for the TEMP environmental vari-
able, you enter the #%%TEMP% string in the ISWI visual registry editor, as shown in
Figure 17-11. To create a data type that to be interpreted as type REG_MULTI-SZ,
you need to use the [~] sequence of characters to represent the null delimiter
between the various components that make up this registry data type. Figure 17-11
shows the entry that needs to be made if you want to create null-delimited list of
property values. Here you use the [~] sequence of characters between three property
names enclosed in square brackets. The use of the [~] sequence of characters can be
used to either append or prefix a null-delimited list of strings to an existing registry
entry. The complete use of this sequence of characters is shown in the following list:

◆ The use of the character sequence [~] within a string value separates the
individual strings and is interpreted and stored as a null character.

◆ If a [~] character sequence precedes the string list to be written into the
registry, the strings are appended to any existing registry value strings. If
a string being appended already exists in the registry value, the original
occurrence of the string is removed.

◆ If a [~] follows the end of the string list, the strings are prefixed to any
existing registry value strings. If the string to be prefixed already exists
in the registry value, the original occurrence of the string is removed.

◆ If a [~] character sequence is at both the beginning and the end or at neither
the beginning nor the end of the string list to be written to the registry, the
strings are to replace any existing registry value strings.

712 Part IV: Advanced Concepts

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 712

If creating string data that will be interpreted as type REG_SZ, you use a special
form of the File table key replacement. If you use the [!file-key] format for this
replacement, you get as data a short file name path to the referenced file. This is the
only location where this replacement form can be used. If the replacement form is
used in any other location, it is treated as if you used the # sign instead.

Figure 17-12 shows the actual registry entries that are made for the input in the
visual registry editor that is depicted in Figure 17-11.

Figure 17-12: The registry entries created from the input shown in Figure 17-11

When you create DWORD, type REG_DWORD, data values in the visual registry
editor, you need to select whether you are entering the values as decimal numbers
or hexadecimal numbers. You should set the type of input being made before the
number is actually entered. The value is always shown in hexadecimal format with
the decimal equivalent shown in parentheses. You can use a property name within
square brackets here as long as the value of the property is a number.

When you create a data of type REG_BINARY, you would normally cut and paste
the binary data from another source into the data field in the registry editor. You can
also define a property name within square brackets and the value of the property
name is used at install time. Because you can programmatically create a string of
binary data in the Property table, this is the best method of creating this data. It is
recommended that if the binary data exceeds 2048 bytes, then this data should be
stored as a file and only the name of the file stored in the registry. Do this to reduce
registry bloat and to increase the efficiency of the registry.

Within the ISWI IDE, angle brackets (<>) are used to enclose the names of prop-
erties or Directory table entries. When you build your project, these angle brackets
are converted to the square brackets that are understood by the Windows Installer.
This angle bracket mechanism only works if the properties are authored in the
Property Manager or authored in the Directory table using the Power Editor. If you
try to use angle brackets for a property or Directory table that does not exist at
build time, the angle brackets will be entered into the MSI database as is and when
the Windows Installer tries to run the installation, it generates an installer error.

Chapter 17: Creating and Sharing Components 713

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 713

CREATING SHORTCUTS
In Chapter 7, you go through the details of creating a shortcut and discuss each of
the properties defined for a shortcut. Creating a shortcut in the ISWI IDE provides
the information that is required in order to populate the Shortcut table when the
Windows Installer is built. When you create a shortcut, you do not have to create it
only on the Start | Programs menu. You can create a folder and create shortcuts to
various features of the application inside this folder. You can also create shortcuts
and folders in the Start | Programs | Startup menu, directly on the Start menu, and
in the Desktop and SendTo folders in a user’s profile. The options to create either a
shortcut or a folder are provided via the context menu if you right-click the appro-
priate icon in the Shortcuts tree under a component name.

When you want to create a folder in which to place several shortcuts, you need
to make sure that for every shortcut to go into this folder, you use the exact folder
name and description. So that you do not have perform a copy and paste operation,
you can do this simply through the use of string identifiers. Both the displayable
name and description of the folder get assigned a default string ID after it is first
created. You can then go into the String Table editor that is accessed at the bottom
of the shortcut property page and redefine the string ID to a name that is more
meaningful. After you create the folder and subsequent shortcuts that are to go into
this folder, all you need to do is select the string ID in the Display Name property
that was created the first time the folder was entered. The same process goes for the
folder description.

When creating shortcuts or folders for shortcuts, the name that you first create

is not important and it is not used. The display name is the important name,

which is placed in the Name column of the Shortcut table.

If you want to create a shortcut directly on the Start menu itself or on the
Desktop, you do this same way that you create a shortcut on Start | Programs
menu. However, if you want to create a shortcut in the SendTo folder, you need to
make sure that you create a standard shortcut and not an MSI shortcut. This means
that you need to identify the target of the shortcut and not depend on the keypath
file to be the target. If you create an MSI shortcut, then the Send To command on
the context menu in Windows Explorer won’t work.

If you are creating an installation package for an application to obtain the
“Certified for Windows” logo, you need to be aware of the requirements and recom-
mendations that are listed in the “Application Specification for Microsoft Windows
2000 for desktop applications.” These requirements and recommendations are given
in the following list:

◆ You cannot place shortcuts to documents, such as read me files, in the Start
Menu. If you have important information that the user should see, you need
to consider displaying that information during the install process.

Tip

714 Part IV: Advanced Concepts

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 714

◆ You cannot put shortcuts to help files in the Start Menu. Users need to
access help as soon as they launch the application.

◆ You cannot place shortcuts to perform an uninstallation in the Start Menu.
The Add/Remove Program control panel applet is available to provide this
functionality.

◆ Do not place an icon to launch an application directly under Start |
Programs, and if possible, you need to avoid placing it in a folder under
programs. In particular, you should not create a folder in the Start Menu
in which you only put one item.

◆ Do not put anything at the top of the Start Menu because users consider
this their own personal space.

◆ If the product supports applications, such as tools or utilities that are
associated with the application, put all the icons under a single folder
in the Start Menu.

It is possible for any particular installation to disable the creation of MSI shortcuts,
which is accomplished through the setting of the DISABLEADVTSHORTCUTS property.
Because this line is a public property, it can be set at the command line. A common use
of this property is when an administrator wants to disable the capability to advertise
an application for roaming users that move between environments that support and
do not support advertisement. Advertisement is not supported on Windows 95 and
Windows NT 4.0 where the version of SHELL32.DLL is less than 4.72.3110.0.

THE APPLICATION PATH
The first icon under the Advanced Settings tree under the component name is
where you create the application path for an application. Chapter 7 covers the
actual creation of an application path. Here I discuss what an application path is
and where this information is placed in the MSI database.

Essentially the concept of a per-application path was introduced with Windows
95. When you define an application path in ISWI, you are defining two entries that
will be made in the Registry table when the installation package is built. The registry
key that is created is the name of the executable that runs the application. This key
is created in the following location:

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\App Paths\<exe-name>

The default value data is the complete path to the executable and this allows you
to type in the name of the executable in the Run dialog accessed from the Start menu
and run the application. Also, you create a Path value name if the application uses
dynamic-link libraries. The value data for this value name is a semicolon-delimited
list of folder paths that contain the DLLs that the application needs to load. This list
of paths is appended to the system PATH environment variable, and thus they get
included in the standard search path that the operating system uses to find DLLs.

Chapter 17: Creating and Sharing Components 715

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 715

COM REGISTRATION
The next advanced settings icon is used to define COM Registration information for
the component. Here you have a visual editor that is similar in function to the registry
editor discussed in the previous section. You create the values that get entered into the
Class table, ProgId table, and the TypeLib table when the database is built. The alter-
native to making these entries manually is to have the Component wizard extract this
information for us. The Component Wizard is discussed later in this chapter.

Reading the discussion earlier in this chapter about not using self-registration

for COM servers is important.

FILE TYPES
You have already gone through the process in Chapter 7 of creating a file association.
What I want to discuss here are the rules imposed by the “Certified for Windows” logo
about creating file associations.

Having an associated registered file-type for every file that does not have the
hidden bit set that is created by the application in a location that is not in the
install location of the application is necessary. This includes files that are created
during the installation, implementation and data files, and user created files that
are native to the application.

If the file-type is already registered, you do not have to create a file association
unless you want to take over the association that is already resident on the target
machine. If the file-type is not already registered, creating an association for each
new file type is necessary. When you create a file association, you need to include
the following items:

◆ Provide an icon so that none of the files that the application creates is
identified by the default Windows icon.

◆ Provide a friendly type description for the file type that makes for easy
identification of the file in Windows Explorer.

◆ Ensure that each file-type has an associated action when double-clicked,
such as launching the application and loading the file.

The NoOpen designation may be used for files that you do not want users to open.
If the user double-clicks a file marked as NoOpen, the operating system automatically
provides a message informing the user that the file cannot be opened. If an action is
associated with a NoOpen file type, the NoOpen designation is ignored.

To create a NoOpen designation for a particular file type, you create a ProgId and
extension as you have done in the past. After you do this, you right-click the ProgId
and select the Rename option. You right-click again and select to copy this ProgId to

Caution

716 Part IV: Advanced Concepts

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 716

the clipboard. You now move to the Registry Data icon under the same component
and create a new key under HKEY_CLASSES_ROOT. You replace the default name of
the new key with the name of the ProgId that you copied to the clipboard. Now
against this key, you create a new string value and give it a value name of NoOpen.
For the value data for this NoOpen value name, you enter a message that gets dis-
played by the operating system.

An exception is made if the application allows the user to save or export file
types that are not native to the application. In this case, the user may choose to
save a file as a type that has no association on the user’s computer. The application
may save the file as requested by the user, even though the file will have a default
Windows icon.

For every file extension that you define, you can create a MIME type so that the
file can be opened with a helper application if the file is sent across the Internet. To
register a MIME type for a particular file extension, you right-click the file extension
that you have created under the File Types icon in ISWI and select the New MIME
Type option. After you do this, you get a default MIME type that you needs to
change to the correct value for your file extension. A MIME type consists of a major
type and a subtype. For example, the MIME type for a text file is text/plain, which
indicates a normal ASCII file. Also, when you create this MIME type, you have the
option to identify the CLSID of an ActiveX server that can handle your file. The
CLSID information is optional.

CONTROL NT SERVICES
Under this icon in the Advanced Settings tree, you define the entries that get built
into the ServiceControl table. The Windows Installer uses the entries in this table to
control NT services that are on the target machine or are being installed as part of
the application installation.

INSTALL NT SERVICES
Under this icon in the Advanced Settings tree, you define the entries that get built
into the ServiceInstall table. The Windows Installer uses the entries in this table to
install an NT service.

PUBLISHING
The final icon in the Advanced Settings tree is where you create what may be
thought of as an array of components. The entries you make here are entered into
the PublishComponent table when the MSI database is built. The information from
this table is entered into the registry during the installation of the application and
this information can then be used from within the application to allow the user to
choose which component to use for a particular operation. The entries made here
have nothing to do with enabling advertisement of an application. A complete
description of how to use the entries made here to create qualified components is
provided later in this chapter.

Chapter 17: Creating and Sharing Components 717

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 717

Using the component wizard
In the previous sections, you looked at the many entries that you can make to
define a component. For large applications, creating components in this fashion
can be time consuming and subject to error. To help ease the burden of creating
components, ISWI has a Component Wizard that you can use to create components
from a group of files and it can also be used to guide you through the creation of
specialized components.

The Component Wizard is accessed from the context menu displayed after you
right-click a feature name in the Setup Design view. The option to launch the
Component Wizard is the next to the last command on this context menu. After
you launch the wizard, you get the welcome dialog that gives two options. You can
choose to create components using “Best Practices” (componentization rules) or
you can choose to create specialized components. This welcome dialog is shown in
Figure 17-13.

Figure 17-13: The welcome dialog for the Component Wizard

In the following two sections, you look at both of the options that are offered by
the Component Wizard.

GLOBAL COMPONENT CREATION
After you select to create components using the componentization rules, you get a
number of created components based on a subset of all the rules that were
described earlier in this chapter. A list of rules used to create components are
below:

◆ Every .exe, .dll, and .ocx file needs to be placed in its own component and
this file has to be the keypath of the component.

718 Part IV: Advanced Concepts

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 718

◆ Every .hlp and .chm file needs to be placed in its own component. For a
component that has an .hlp file, the .cnt file needs to be included in the
component. For a component that has a .chm file, the .chi file needs to be
included as part of the component. The .hlp file and the .chm file need to
be the keypath for the component.

◆ The same file cannot be included in more than one component.

◆ No file that is available in a merge module can be included in an
authored component.

When the Component Wizard runs, it creates components based on the above
rules. Any file that does not fall into one of the above categories is grouped into a
single component using the AllOther<feature-name>Files naming convention. The
other components are given a name that is the same as the keypath file name.

When you use the Component Wizard to create components based on the above
rules, only standard components are created with the exception that if the .exe, or
.dll are COM servers, then the COM registration information is extracted after the
component is created. By definition, an .ocx is a COM server, so that the COM
information is always extracted when the component is created. Special compo-
nents for NT Services, ODBC, and Fonts cannot be created using this particular
option of the Component Wizard.

After you launch the Component Wizard and you move to the dialog following the
welcome dialog, you are prompted to specify the installation location to be used for
all the components to be created. This dialog provides a dropdown list of the standard
locations that are set by the Windows Installer at run time, as well as the INSTALLDIR
variable, which is the default location. This dialog is shown in Figure 17-14.

Figure 17-14: The Best Practices-Destination dialog of the Component Wizard

Chapter 17: Creating and Sharing Components 719

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 719

After the destination dialog, you get a dialog that enables you to select the files
to use to create the components. This dialog is shown in Figure 17-15.

Figure 17-15: The Best Practices-Files dialog of the Component Wizard

You can browse to a particular location using the Add Files... button on this dialog
and select a group of files, or you can click the Add Folder... button and browse to a
folder and after the folder is selected, all the files in the folder are used to create the
components. You can also do a combination of both by selecting individual files as
well as pulling in all the files out of a particular folder or folders. Files can be
removed from the group of files by selecting one or more files and clicking the
Remove Files push button.

When you click the Next button on this dialog, the Component Wizard starts the
process of creating the components. For each .exe, .dll, and .ocx it will attempt to
self-register the file and then compare the applicable areas of the registry for any
COM information that may have been written. Once this snap shot has been taken
then the file is unregistered. At the completion of this process the Component
Wizard displays a Summary dialog as shown in Figure 17-16.

In this dialog it can be seen what components were created and the files that are
included in each of these components. Now that the components have been created
you can start to modify them by performing such actions as defining shortcuts,
registry entries, renaming the components, etc. When the wizard runs it looks for
the OLESelfRegister string in the version resource of the file. If it finds it this string
and the file is either a .dll or an .ocx then the wizard runs REGSVR32.EXE <file-
name>. After collecting the COM registration information it runs REGSVR32.EXE
/u <file-name> to unregister the file. If the file is an .exe the command <file-
name.exe> /regserver is run to register the COM server and then the command
<file-name.exe> /unregserver is run to remove the registration.

720 Part IV: Advanced Concepts

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 720

Figure 17-16: The Summary dialog of the Component Wizard

Now that you have seen how to use the Component Wizard to create compo-
nents in a global fashion, you can look at the second option where you can create
specialized components one at a time.

CREATING SPECIALIZED COMPONENTS
By selecting the second option on the welcome dialog of the Component Wizard,
you are able to create five different types of specialized components. After you
click the Next button on the welcome dialog, you get the Component Type dialog
that shows these five component types. You can choose to create a COM Server,
Install NT Services, Control NT Services, ODBC Resources, or Fonts component. The
Component Type dialog is shown in Figure 17-17.

In this dialog, you first select the component type that you want to create, and then
you give the component a name by entering it into the Component Name edit field.
The only type of component that does not allow the specification of a component
name is the ODBC Resources component type, because the Component Wizard creates
a number of different components for ODBC. In the following sections, you examine
each of the five types of specialized components that you can create.

COM SERVER COMPONENTS After you select to create a COM server component,
the Component Wizard gives you two dialogs where you specify the required para-
meters to define this type of component. Table 17-3 describes each of the dialogs in
the wizard that come after the Component Type dialog.

Chapter 17: Creating and Sharing Components 721

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 721

Figure 17-17: The Component Type dialog of the Component Wizard

TABLE 17-3 THE CREATION OF A COM SERVER COMPONENT USING THE
COMPONENT WIZARD

Dialog Name Description

COM Server-Destination In this dialog, you define the folder where the component
gets installed. A dropdown list offers a choice of the
operating system defined locations that you can select or
the INSTALLDIR location. The INSTALLDIR location is the
configurable location that can be set by the end user
during the installation. If you want your component to go
to a subdirectory of the INSTALLDIR location, then you can
add the name of that subfolder in this edit field of the
dropdown list.

COM Server Executable You identify the file that is the COM server to be the key
file for the component you are creating. You have the
option of specifying that the Component Wizard extract
the COM registration information from the file. If you do,
then this information gets entered into the project file and
every time you build the installation package, the proper
tables in the database get populated.

If you want to extract the COM information during the
build, you would not check this option for extraction
during the component creation process. If the identified
file is executable, you can also identify it as being a COM
NT service.

722 Part IV: Advanced Concepts

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 722

Dialog Name Description

Summary This dialog provides a list of all the COM information that is
extracted from the COM server. If you click the Back button,
you can go back to the previous dialog and either change
any of the settings or just have the information re-extracted.

After you have created the COM component, you can view and modify the
results of the COM registration extraction by clicking the COM Registration icon
under the components Advanced Settings tree. If no extraction was performed
because it is to be done at build time, the COM information is only shown in the
build log file and not in the IDE.

Unlike the approach used by the Component Wizard, when components are
being created using the componentization rules, the file is not checked for the
OLESelfRegister string in the version resource when creating a single COM compo-
nent. If the file is not self-registering and is an .exe, then the file gets launched. You
need to be careful that the file is an actual COM server.

COM extraction only captures the information that is actually related to

COM. If the DllRegisterServer function in a COM DLL makes entries in the

registry that are not related to COM, these entries are not captured by the

Component Wizard.This is because only the COM related keys in the registry

are monitored during the extraction process. Non-COM registry entries have

to be entered into the Registry table.

INSTALL NT SERVICE COMPONENTS After you select that you want to create an
Install NT Service component, the Component Wizard gives you five dialogs where
you specify the parameters that are required to define this type of component. Table
17-4 describes each of the dialogs in the wizard that follow the Component Type
dialog. The entries that you make when creating an Install NT Service type of com-
ponent are used to populate the ServiceInstall table in the database.

Caution

Chapter 17: Creating and Sharing Components 723

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 723

TABLE 17-4 THE CREATION OF AN INSTALL NT SERVICE COMPONENT USING THE
COMPONENT WIZARD

Dialog Name Description

NT Service Executable In this dialog, you identify the executable file being used to
house the NT service or services that are going to be installed
by this component. For each service that you are installing,
you need to identify the name of the service by which this
service is to be known by the Service Control Manager. You
do this by clicking the Add button and providing this name.
You can also remove a service name by using the Remove
button. The context menu you get after you click the right
mouse button offers the same functionality. In addition, you
can use the context menu to rename a service.

Service Information In this dialog, you get a dropdown list of all the services that
you defined in the previous dialog. For each of these services
you can define a display name that is used by the Service
Control Manager. By default, this display name is the same
as the service name that you specified.

At the bottom of this dialog, you specify whether the service
shown in the dropdown list is to run in its own process or
whether it is to be a thread in the same process as other
services. You also need to define when to start the service.
This dialog provides five options for starting a service.

Service Load Order In this dialog, you identify how the services that you have
defined get loaded. This incorporates the definition of a
load-ordering group to which a service may belong, as well
as the names of other services to start before this service can
be started. If the service does not belong to a load-ordering
group, then this edit field is left blank.

In the dependencies edit field, you can identify both load
ordering groups and other services to start before the service
you are installing can be started. To identify a load ordering
group, you need to precede its name with the plus (+) sign,
so that the windows Installer knows that it is not a service. If
you want to identify more than one service as dependencies,
you need to separate the name of each service with a comma.

724 Part IV: Advanced Concepts

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 724

Dialog Name Description

Error Control In this dialog, you specify how to handle an error. The
selection you make here affects how the entries are
made in the ServiceControl table for this service.

Service Logon This dialog allows you to identify whether the NT service is to
be installed to the local system account or whether it is to be
installed for a particular user and password. For a service that
is being installed to the local system account, you can identify
whether it will interact with the desktop or not.

Summary This final dialog displays a list of the selections that you made
in the wizard and gives you the opportunity to go back and
change your selections before the component is created.

After you create the Install NT Service component, you can view and modify the
results created by the wizard by clicking the Install NT Services icon under the
components Advanced Settings tree.

CONTROL NT SERVICE COMPONENTS After you select that you want to create a
Control NT Service component, the Component Wizard gives you four dialogs
where you specify the parameters that are required to define this type of compo-
nent. Table 17-5 describes each of the dialogs in the wizard that follow the
Component Type dialog.

TABLE 17-5 THE CREATION OF A CONTROL NT SERVICE COMPONENT USING THE
COMPONENT WIZARD

Dialog Name Description

Specify Service In this dialog, you specify the service that you are controlling
with this component. You can specify a service already installed
or one being installed with the present installation package.

Installation Events In this dialog, you specify what events you want to occur
when the NT service is installed. You can start, stop, and/or
delete a service during the installation. You also can specify
that no event is to occur during the installation.

Continued

Chapter 17: Creating and Sharing Components 725

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 725

TABLE 17-5 THE CREATION OF A CONTROL NT SERVICE COMPONENT USING THE
COMPONENT WIZARD (Continued)

Dialog Name Description

Uninstallation Events In this dialog, you specify what events you want to occur when
the NT service is uninstalled. You can start, stop, and/or delete
a service during the uninstallation. You also can specify that no
event is to occur during the installation.

Wait Type In this dialog, you specify the wait type for the NT service
being controlled before the installation or the uninstallation
is to proceed.

Summary This final dialog displays a list of the selections that you made
in the wizard and gives you the opportunity to go back and
change your selections before the component is created.

After you create the Control NT Service component, you can view and modify
the results created by the wizard by clicking on the Control NT Services icon under
the component’s Advanced Settings tree.

FONTS COMPONENTS After you select that you want to create a Fonts component,
the Component Wizard gives you a maximum of two dialogs where you specify the
parameters that are required to define this type of component. Table 17-6 describes
each of the dialogs in the wizard that follow the Component Type dialog.

TABLE 17-6 THE CREATION OF A FONTS COMPONENT USING THE COMPONENT
WIZARD

Dialog Name Description

Add Installed Fonts In this dialog, you select from the fonts installed on the build
system those that you want to install as part of the installation.
In this dialog, you can also choose to include font files that are
not already installed on the build system.

Add New Fonts When you select to include fonts that are not installed on the
system, you get this dialog, where you need to enter the title of
the font and the name of the font file name.

Summary This final dialog displays a list of the selections that you have
made in the wizard and gives you the opportunity to go back
and change the selections before the component is created.

726 Part IV: Advanced Concepts

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 726

After you create the Fonts component, you can view and modify the results cre-
ated by the wizard by clicking the Files icon under the component’s basic settings
tree. Unlike with other types of components that are created with the Component
Wizard, no special icon is in the component’s settings tree where the definition of the
component can be viewed because all you have actually done is select and/or specify
a number font files to be included in the component. The one thing that you want to
do is go to the property sheet for the Fonts component and mark the component as
being permanent. You need to do this because there is no mechanism for reference
counting font files in the operating system.

If you do not mark a font component as being permanent then when you

uninstall your application the fonts will be deleted and they will no longer

be available on your system.

ODBC RESOURCE COMPONENTS After you select that you want to create ODBC
Resource components, the Component Wizard gives you three dialogs where you
specify the required parameters to define this type of component. Table 17-7
describes each of the dialogs in the wizard that follow the Component Type dialog.

TABLE 17-7 THE CREATION OF ODBC RESOURCE COMPONENTS USING THE
COMPONENT WIZARD

Dialog Name Description

Specify ODBC Drivers In this dialog, you get a list of all the ODBC drivers that
are installed on the build system. You select those for
which you want to create components. You are not able
to add any drivers that are not already on the system.
However, when you highlight a driver in the left-hand
panel, you can add, modify, or delete attributes for this
driver in the right hand panel of this dialog. To add or
delete an attribute, you right-click the mouse and
choose the desired option from the context menu. To
modify an existing attribute, you left-click the mouse
on the attribute to be changed and type in the changes.

Continued

Caution

Chapter 17: Creating and Sharing Components 727

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 727

TABLE 17-7 THE CREATION OF ODBC RESOURCE COMPONENTS USING THE
COMPONENT WIZARD (Continued)

Dialog Name Description

Specify ODBC Data Sources In this dialog, you are given a list of the ODBC data
source names that have been installed on the build
system. Here you can add new data source names by
right-clicking in the left hand panel and you can add,
modify, and delete attributes for any highlighted data
source name. To add or delete an attribute, you right-
click the mouse and choose the desired option from
the context menu. To modify an existing attribute, you
left-click the mouse on the attribute to be changed and
type in the changes. To set any data source name to be
installed to the local system account, you highlight the
data source name in the left-hand panel and check the
System DSN check box at the bottom of the dialog.

Specify ODBC Translators In this dialog, you get a list of the code page translators
installed on the build system. You cannot add new
translators and you cannot add or delete attributes.
You can modify an attribute by left-clicking in the
attribute value cell and making the desired changes.

Summary This final dialog displays a list of the selections that you
have made in the wizard and gives you the opportunity
to go back to change any selections before the
component is created.

For the other components, except for fonts, you find an icon in a component’s
Advanced Settings tree where you can create the component without having to use
the Component Wizard. For ODBC Resource components, you find no icon until
after you have run the Component Wizard. After the wizard is run, then you can go
to view and modify the settings that were entered after the wizard was run.

Delivering Components to the
Application
Merge modules are a mechanism used at design time whereby diverse development
groups can work independently and create components that can be shipped to a
central location where the installation for the complete application is developed.

728 Part IV: Advanced Concepts

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 728

Merge modules depend on the capability of the Windows Installer to be able to take
two MSI databases and combine them into one.

Merge modules are the choice if you want to create shared components shared
between applications. If the components you are create are used by only one appli-
cation with no possibility that the component will be shared across applications,
then creating the component directly in the application without the use of a merge
module is better. Creating merge modules are important so that two different setup
developers do not try to create a component for the same file using two different
component codes. If this happens, the component reference count is done incor-
rectly, particularly concerning the interface with legacy installations that use the
SharedDLLs key in the registry.

The use of merge modules becomes particularly important when an application
is designed to use the Windows Installer API in order to perform feature level
install-on-demand and to perform self-repair operations. In this situation, creating
the component IDs during the development process instead of during the creation
of the installation becomes necessary. For the correct component IDs to be used for
the installation, the developer of the application needs to create the components
making sure that the component IDs used are the ones that were used inside the
application for implementing the desired functionality.

Merge modules also have a function if a development team is located in differ-
ent parts of the country or even the world. This scenario can happen for large
applications. Here the various development organizations need to package their
part of the application in merge modules to ship these to the central location where
the installation for the application is being created. In this case, it only is necessary
for the setup developer to know to which features in the application each merge
module is to be associated.

Merging MSI databases
To be able to merge two MSI databases, the databases must have the same code page.
If the code pages are different for the databases to be merged, then any attempt to
merge them will fail. Chapter 19 covers database code pages and localization. In
addition, for two databases to merge, all corresponding tables in each database must
have the same schema, meaning each table that appears in both databases must have
the following:

◆ Equal number of primary keys

◆ Equal number of columns

◆ Each corresponding column must have the same column type

◆ Each corresponding column must have the same name

If the schema of any two corresponding tables is different, then the merge will fail.

Chapter 17: Creating and Sharing Components 729

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 729

Another scenario can occur where the merge will not fail outright but you still
have a problem. If a row or rows in corresponding tables of the databases to be
merged have the same primary key(s) but the data is different, a problem occurs.
The problem is called a row merge conflict and when this occurs, the merge process
creates a new persistent table that is used to keep track of the row merge conflicts.
This table identifies the table name and for each table it gives the number of row
merge conflicts in that table.

Occasionally, temporary columns are added to a table to perform some particular
operation. Columns that are not persistent do not affect the schema definition and
therefore do not affect a merge operation.

The structure of a merge module
A merge module is a simplified msi database that is constructed in a fashion so that
you have no possibility of having a row merge conflict. A merge module cannot be
installed but instead has to be merged with a full MSI package. A merge module has
an .msm extension and delivers components to an MSI package. After a merge
module is merged, it has no further use relative to that particular installation.

Six database tables must be present in all merge modules, which are the
Component, Directory, FeatureComponents, File, ModuleSignature, and Module-
Components tables. After a merge module is merged with an MSI database, the
ModuleSignature and the ModuleComponents tables become part of this database.
The ModuleDependency and the ModuleExclusion tables are optional and only used
if identifying modules that are required to also be present or those that cannot be
used with a particular merge module is necessary. After the merge, these tables
become part of the MSI database.

Six sequence tables can occur in a merge module, but these tables are never
merged into the MSI database. The tables are only used to identify where actions
and/or dialogs are to be inserted into the standard sequence tables found in an MSI
database. These module sequence tables have the naming format Module* where
the asterisk stands for the name of the equivalent table in the MSI database. If any
of these tables is authored into a merge module, an empty copy of the equivalent
table in the MSI database also has to be included in the merge module. A copy is
included to allow the merge utility to know the schema of the table into which the
actions and/or dialogs in the merge module will be inserted. A ModuleIgnoreTable
table is optional in a merge module. This table identifies those tables in the merge
module that are not to be merged with the MSI database. This table is never added
to the MSI database during the merge operation.

Nine database tables cannot occur in merge module. These are the BBControl,
Billboard, CCPSearch, Error, Feature, LaunchCondition, Media, Patch, and Upgrade
tables. All the other database tables can occur in a merge module. Whether you
include the tables or not depends on the functionality that is authored in to the
merge module.

730 Part IV: Advanced Concepts

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 730

A merge module is described in the Summary Information stream that it contains.
The module GUID is given in the Revision Number property of the Summary
Information stream. This same property in a Windows Installer package defines the
Package Code. Using this GUID and modifying it in a special way and then appending
the GUID to a readable string, you get the Module ID. You can think of the readable
string as the name of the merge module. The modifications that you need to make to
the module GUID are as follows:

◆ Remove the curly braces ({}) from the ends of the GUID.

◆ Change all the dashes (-) in the GUID to underscores (_).

◆ Delimit the module name from the modified module GUID with a period (.).

For example, if you have merge module name of “Object” and you have a mod-
ule GUID of {94366786-F5EF-11D3-8213-204C4F4F5020} in the Revision Number
property of the Summary Information stream, then you get a Module ID as follows:

Object.94366786_F5EF_11D3_8213_204C4F4F5020

This Module ID is the entry in the first column of the ModuleSignature table. In
addition, this modified Module GUID is used to make the primary key in every table
unique in the merge module. This is to prevent the possibility of a conflict between
the rows in the merge module and the database with which the merge module is to be
merged. A conflict occurs when the database and the merge module have the same
primary key and different data. If this occurs, the row in the database is not over-
written with the row in the merge module. The place where this naming convention
in a merge module is not used is where the primary key in the merge module is not
by definition already unique. Such a situation occurs in the Class and TypeLib tables
where part of the primary key is made up of a GUID already. The modified Module
GUID is not used in this case to make the primary key unique because it already is
unique. In fact, to modify a GUID with another GUID makes the registration of a class
be incorrect after the COM component is installed.

Every file that is delivered to an installation project by a merge module is stored
in a cabinet (CAB) file that is streamed into the merge module. The name of this
embedded cabinet file is always MergeModule.CABinet. The names of the files in
this CAB file need to match the names of the files given in the first column of the
File table in the merge module database. Any files that are in the CAB file but not
listed in the File table are not installed when the main installation package is run.
It is this mechanism that allows the creation of multiple language merge modules.

Chapter 19 briefly discusses the creation of multiple language merge

modules.

XREF

Chapter 17: Creating and Sharing Components 731

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 731

As can be seen from the previous discussion, the creation of a merge module is a
complex process. This complex process is greatly eased by using ISWI. This product
handles all the complexities of creating the correct primary keys, and so forth, for
you. All you concern yourself with is the proper creation of the components that
comprise the merge module, which is the subject of the next section.

Creating a merge module
If you want to create a merge module, you open a merge module project that is created
by selecting the Blank Merge Module Project icon in the Create a new project... view,
as shown in Figure 17-18.

Figure 17-18: Creating a Merge Module Project

The project file that is created has the same .ism extension as for a standard
installation project except that when this file is built, the file creates an .msm file
and not an .msi database. After the merge module is created, it is inserted into any
project you’re using. A number of merge modules are shipped with ISWI where
many of these come from Microsoft and a few are provided to enable the migration
from projects created by the InstallShield Express product. The Microsoft merge
modules that ship with ISWI are found in the Modules\i386 folder under the root
ISWI install location. The merge modules that enable the migration from Express
are found in the Objects folder under the root ISWI install location.

732 Part IV: Advanced Concepts

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 732

When you create merge modules and want to copy them to a central location for
use by multiple projects, the merge modules are copied by default to the Merge-
Modules folder under the MySetups folder. On Windows NT 4.0, the MySetups folder
is under the Personal folder in a user’s profile. On Windows 2000, this folder is under
the MyDocuments folder in the Documents and Settings\<user-name> folder. You
can modify the location of all merge modules by going to the Tools | Options dialog
and clicking the File Locations tab. At the bottom of this particular property sheet is
an edit field where you can add new locations and modify the default locations.

Now you need to take a look at the basic merge module project to see how it differs
from the creation of a standard installation project.

CREATING AND BUILDING THE MERGE MODULE PROJECT
When you first open a new merge module project, nothing dramatic tells you that
this is a merge module project, but several items are different from a normal install
project. First, in the View Bar on the right side of the screen, you see only five icons
instead of six that can be used to show the major views in a project. The one view
that is missing is the Sequences view. Also, you can note that in the Project view,
you do not see the Windows 2000 Properties icon, and you have a Merge Module
Properties icon instead of a Product Properties icon. The path variables are the same
as in the standard install project, but both the Property Manager and the String
Tables editor are empty. These tables are empty because a merge module cannot run
without first being merged with a standard MSI package, so that no properties need
to be authored unless the component(s) included in the merge module require them.
Also, having a user interface is not common for a merge module, so that no dis-
playable strings are needed to be part of the default merge module project. The
Merge Module Properties page is shown Figure 17-19.

Figure 17-19: The Merge Module Properties page

Because the Merge Module Properties in the Project view is the only item that is
different from what you have seen in a standard install project, you need to look at
the properties to be entered here. Table 17-8 discusses the values to be entered in
this property page.

Chapter 17: Creating and Sharing Components 733

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 733

TABLE 17-8 THE MERGE MODULE PROPERTIES

Property Name Description

Product Name The text you enter in this field is used as the Module Name,
which along with the modified module GUID, forms the
Module ID that is used to identify the merge module in the
ModuleSignature table.

Product Version The value that you enter here is used to version the merge
module. This value is placed in the Version column of the
ModuleSignature table when the merge module is built.

Application Type An internal type identification is used only in the project file,
which used to create the merge module. This is not placed in
the merge module itself.

Module ID The Module GUID is used in a modified form, along with
the Product Name value described in this table, to create
the Module ID that is used in the ModuleSignature table
as the identifier that uniquely describes the merge module.

Language The language identifier of the default language for the merge
module whose value is entered into the Language column of
the ModuleSignature table. If this value is shown as language
independent, then 0 is entered into the Language column.

Module Dependencies This property defines those other merge modules that are
necessary for the present merge module to function correctly.
After you click this cell, you get a property sheet at the bottom
of the screen where you enter the necessary information to
define the merge modules on which this merge module is
dependent. If you right-click a row in this property sheet, you
have the option of creating a dependency entry from scratch
by selecting the New option or a merge module that is already
in the Merge Module Gallery.

In the Name column, you enter the value of the Subject
property in the Summary Information Stream. In the Version
column, you enter the version string that is in the Version
column of the ModuleSignature table. For the Language and
Module ID columns, you enter the values in the equivalent
columns of the ModuleSignature table. After you select a
merge module in the gallery, all these columns are filled in
for us.

734 Part IV: Advanced Concepts

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 734

Property Name Description

Destination Folder In this property, the initial value of the INSTALLDIR property
of the merge module is defined. In a following section, I
discuss the merge module’s destination.

Module Exclusions The entries made for this property are similar to those made
for defining the module dependencies. This property defines
those merge modules where the present merge module cannot
work. The additional information here is that you define both
the minimum and maximum versions of the merge modules to
be excluded. You also define the languages of those modules
to exclude based on the various formats. If you define the
Language to be language independent, then you exclude no
merge module based on its language. Otherwise, you can
exclude merge modules based on the language you enter into
the Language column or you can exclude all languages except
the one identified in the Language column. You do this by
double-clicking the Language column and launching special
Exclusion Languages dialog. Based on one of the two options
in this dialog, you exclude the identified language or you
exclude all languages except the selected language.

When you move to the Setup Design view, you see that you can only create com-
ponents. Components are created in a merge module in the same fashion as discussed
earlier in this chapter for a standard installation project. These components can be
created manually or you can create them by using the Component Wizard.

In the Actions/Scripts view, you cannot create custom actions using InstallScript.
You have the Custom Action Wizard available, but you are not allowed to create
nested install custom actions, yet you can create all the other types of custom
actions. You can create custom actions in the same manner as described in Chapter
11. If all you do is create these actions, you can then insert them into the proper
location in the sequence tables in the standard installation project after the merge
module has been incorporated. You can also define within the merge module where
the custom action is supposed to go relative to the actions in the target packages
sequence tables. The next section discusses how you accomplish this creation.

Chapter 17: Creating and Sharing Components 735

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 735

The User Interface view does not have any predefined dialogs but you can create
dialogs if a particular merge module requires them. As stated in the previous para-
graph, a merge module only needs a user interface in unusual circumstances. If all
you do is create these dialogs, you can then insert them into the proper location in
the sequence tables in the standard installation project after the merge module is
incorporated. You can also define within the merge module where the dialog is sup-
posed to go relative to the actions in the target packages sequence tables. How you
accomplish this is also discussed in the next section.

Finally, the Release view provides the same functionality that is available in the
Release view of a standard installation project. The only item that is different is the
property page for a particular release label. Here only those properties that can
change for a merge module can be set, while the other properties are read-only.
When building a release from the Release view, the merge module is not copied to
the MergeModules folder in the default build location.

Maximum control over a build is gained by running the Release Wizard to create
the merge module. In this version of the Release Wizard, you find one additional
dialog than in a standard installation project and some fields are disabled because a
merge module only contains components and no features, while a merge module
cannot perform an installation on its own. In the Filtering Settings dialog, the
Release Flags edit field is disabled because this option only applies to features.

The new dialog in the merge module Release Wizard is the Merge Module
Options dialog, which allows you to copy or not copy the merge module to the
MergeModules folder. This dialog is shown in Figure 17-20.

Figure 17-20: The Merge Modules Options dialog in the Merge Module Release Wizard

736 Part IV: Advanced Concepts

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 736

In the Advanced Settings dialog, the Launcher Settings are disabled because
these all pertain to the creation of a boot strapping capability. This capability is not
needed here because a merge module cannot run independently.

Chapter 7 covers in detail the Release Wizard for a standard installation pro-

ject.

CONTROLLING WHERE A MERGE MODULE GETS INSTALLED
As discussed in the previous section, every merge module requires a Directory table
in order to add directories to the main installation database. Directories defined in
the merge module cannot replace any directories already defined in the Directory
table of the main installation database. ISWI provides a default destination location
for a merge module in the Modules Properties panel and it also allows you to spec-
ify specific locations for the installation of each component in the Setup Design
view. If you merge a merge module in the main installation project, you use the
Merge Module Wizard. After you run this wizard, the Merge Module Destination
dialog asks where in the directory structure of the main installation you want to
add the merge module. You need to look at the various options that you have for
setting the destination where the files in a merge module are copied after the instal-
lation is run.

In a merge module, you have two main choices for defining the merge module
destination in the Modules Properties panel. These choices are a full path or just a
folder name, which can be considered a relative path to where the merge module
files get installed. For the destination property for the component in the Setup
Design view, you also have two main choices. You can specify the component desti-
nation to be the INSTALLDIR variable that gets set at run time, or you can define the
destination to be a predefined location, such as CommonFilesFolder\Folder-Name.
After you run the Merge Module Wizard to insert the merge module into the main
installation project, you have three main choices after you get to the Merge Module
Destination dialog. You can specify “(Use merge module’s default destination),” or
“INSTALLDIR,” or some predefined location that is set by the operating system. The
file destinations described in Table 17-9 are the various combinations that you can
set for the destination in the merge module, along with the choices you can select
after the Merge Module wizard runs.

XREF

Chapter 17: Creating and Sharing Components 737

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 737

TABLE 17-9 MERGE MODULE FILE DESTINATION MATRIX

Merge Module Main Project
Destination Settings Destination Setting File Installation Location

The Destination Folder Any of the three The files are copied to the absolute
property in the Merge possible types of path defined in the Destination
Module Properties selections, that is Folder property in the Merge
property sheet defines (Use merge module’s Modules Properties sheet.
an absolute path value “ default destination),”
and the Destination “INSTALLDIR,” or a
property for the predefined location.
as INSTALLDIR.

The Destination Folder The selection made The component files are copied to
property in the Merge when inserting the the following location:
Module Properties merge module by ROOTDRIVE\Relative-Path
property sheet defines using the Merge
a relative path value Module Wizard is If the ROOTDRIVE property is not
and the Destination “(Use merge module’s authored into the Property table,
property for the default destination).” the Windows Installer sets the files
component is defined to the local drive that can be
as INSTALLDIR. written to and which has the most

component is defined free space.

The Destination Folder The selection made The component files are copied to
property in the Merge after inserting the he following location:
Module Properties merge module by tINSTALLDIR\Relative-Path
property sheet defines using the Merge
a relative path value Module Wizard is
and the Destination “INSTALLDIR.”
property for the
component is defined
as INSTALLDIR.

The Destination Folder The selection made The component files are copied to
property in the Merge after inserting the the following location:
Module Properties merge module by Predefined-Location\ Relative-Path
property sheet defines using the Merge
a relative path value Module Wizard is a
and the Destination predefined location.
property for the
component is defined
as INSTALLDIR.

738 Part IV: Advanced Concepts

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 738

Merge Module Main Project
Destination Settings Destination Setting File Installation Location

The Destination Folder Any of the three The component files are copied to
property in the Merge possible types of the predefined location that is
Module Properties selections, that is defined for the component
property sheet defines “(Use merge module’s Destination property.
either a relative path default destination),”
value or an absolute “INSTALLDIR,” or a
path value and the predefined location.
Destination property
for the component is
defined as a
predefined location.

Provided later in this chapter is a full discussion of the Merge Module

Wizard.

One of the aspects that you notice from the previous table is that none of the
possibilities described include having the component files go to the root directory
of an installation. To make this happen, you must make a special entry in the
Directory table of the main installation database. For example, assume that the
merge module has a Module GUID of {9376C8F3-784D-11d4-9837-0010A4ECA
65E}. You find this same value as the Module ID property in the ISWI Merge
Module Properties property sheet. The entry you then need to make in the Directory
table of the main installation database is shown in Table 17-10.

TABLE 17-10 DIRECTORY TABLE ENTRY TO FORCE MERGE MODULE FILES TO GO
TO THE ROOT INSTALLATION LOCATION

Column Name Value

Directory INSTALLDIR.9376C8F3_784D_11D4_9837_0010A4ECA65E

Directory_Parent INSTALLDIR

DefaultDir .

XREF

Chapter 17: Creating and Sharing Components 739

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 739

The entry in the Directory column is what appears in the Directory table of the
merge module. The Module GUID is modified to conform to the rules for naming
primary keys in a merge module. The Directory_Parent column essentially equates
the merge module location to be equal to the value of the INSTALLDIR location.
The period (.) in the DefaultDir column is placed there because you are not inter-
ested in any sub-folders under INSTALLDIR, yet this column cannot be NULL.

CONTROLLING THE SEQUENCE OF ACTIONS AND DIALOGS WITHIN
THE MERGE MODULE
For many merge modules that you create, all you do is deliver files and other com-
ponent resources to a standard Windows Installer installation package. However, if
your merge module needs to include actions and/or dialogs, and you want to control
where and how they are used in the main installation package, you then need to
author special sequence tables in the merge module. You do this so that these actions
and dialogs get inserted correctly when the merge module is merged into the main
Windows Installer package.

Controlling the sequence of actions from within a merge module depends on the
proper authoring of the special sequence tables that can only be included in a
merge module. The names of these sequence tables follow the format Module<name
of equivalent .msi sequence table>. For example, the name of the sequence table in
a merge module that controls the user interface during installation has the name
ModuleInstallUISequence. The schema of these special tables is different than the
tables in an MSI database. This schema is described in Table 17-11.

TABLE 17-11 THE SCHEMA OF THE MERGE MODULE SEQUENCE TABLES

Column Name Description

Action The name of an action to insert into sequence of the main installation
database, this action can be one of the standard actions known to
the Windows Installer, or it can be an entry in the merge module’s
CustomAction table or Dialog table. If it is the name of a standard
action, then the BaseAction and After columns of the record must
be Null.

Sequence If a standard action is defined in the Action column, then this column
contains the recommended sequence number for this standard action.
If the sequence number in the merge module differs from that for the
same action in the main installation database sequence table, the
merge operation uses the sequence number from the main installation
database and not the sequence number that is entered here.

If a custom action or dialog is entered into the Action column, this
field must be set to Null.

740 Part IV: Advanced Concepts

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 740

Column Name Description

BaseAction The BaseAction column can contain a standard action, a custom
action specified in the merge module’s custom action table, or
a dialog specified in the module’s dialog table. The BaseAction
column is a key into the Action column of this table. This means
that every standard action, custom action, or dialog listed in the
BaseAction column must also be listed in the Action column of
another record in this table.

After The number placed in this column is a Boolean value that determines
whether the entry in the Action column comes before or after the
entry in the BaseAction column. If it is to come before the value in
the BaseAction column, you need to use 0 and if you want it to come
after then you need to 1.

Condition This condition is an expression that evaluates to either True or False. If
it evaluates to True, the action is executed, and if it is False, the action
is not executed. If this column is left Null, the condition is considered
to be True. This entry becomes the condition in the Condition column
of the sequence table in the main installation database.

The concept of these tables is to provide information to the tool that is performing
the merge about where to insert the action or dialog into the sequence table of the
main installation database. A good example of the use of these tables is the Access97
merge module that is distributed with ISWI version 1.52. You can find this merge
module in the Objects folder under the location where ISWI is installed. Except for a
situation where you are inserting a standard action that does not already occur in the
sequence table of the main installation database, a minimum of two rows needs to be
authored into the module sequence table.

INSERTING A MERGE MODULE INTO THE MAIN INSTALLATION
PROJECT
After you create your merge modules or receive them from the developer, you need
to consume them in the main installation project. First, you need to make sure that
these merge modules are copied to the MergeModules folder in the location where
your builds are being made. Next, you need to make sure that you know which fea-
tures to associate with each merge module. Then you start the process of inserting
each merge module that you want to use by launching the Merge Module Wizard.
Right-clicking a feature and selecting the last option on the resulting context menu
accesses this wizard.

The first dialog in this wizard is the welcome screen that is shown in Figure 17-21.

Chapter 17: Creating and Sharing Components 741

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 741

Figure 17-21: The Welcome dialog of the Merge Module Wizard

As shown in this dialog, the wizard provides access to all the merge modules
that you find in the merge module locations specified in the options dialog. After
you click the next button, you get the Merge Module Gallery dialog that provides
access to the merge modules in the specified locations. The string provided in the
Subject property of the merge module information stream identifies the merge
modules in the gallery. The Merge Module Gallery dialog is shown in Figure 17-22.

Figure 17-22: The Merge Module Gallery dialog of the Merge Module Wizard

742 Part IV: Advanced Concepts

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 742

In this dialog, you find two panels, the Local Gallery on the left and the Merge
Module Properties on the right. In the left panel, you can display the available
merge modules in list form, as shown in Figure 17-22, or you can right-click to
have the merge modules displayed using large icons. After you click a merge mod-
ule in the Local Gallery, you get a display of its properties in the right panel. The
Name property is the same as shown in the left hand panel and this is the value of
the Subject property in the Summary Information Stream. The File Name property
shows where the merge module is located on the build machine, The Author prop-
erty is the value of the Author property in the Summary Information Stream, The
Version property is obtained from the Version field of the ModuleSignature table,
and the Comments property is the value of the Comments property in the Summary
Information Stream.

You can also browse for a merge module by clicking on the Browse button.
When you select a merge module in this manner, its location will be added to the
standard search path used for merge modules. Thereafter merge modules in this
new location will appear in the Merge Module Gallery.

You select the merge module that you want to associate with your feature and click
the Next button. Selecting more than one merge module at a time is not possible.
After you click the Next button, you get the Merge Module Destination dialog. This
dialog is shown in Figure 17-23.

Figure 17-23: The Merge Module Destination dialog of the Merge Module Wizard

Chapter 17: Creating and Sharing Components 743

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 743

In this dialog, you can make some choices where to install the merge module. In
this dialog, a dropdown list provides a list of operating system defined locations as
well as the standard INSTALLDIR location. You also can choose to have the merge
module installed to the default location specified in the merge module Directory
table. A full discussion of defining the destination for a merge module is provided
earlier in this chapter.

After you have select how to handle the destination of the merge module, you
move on to the next dialog in the wizard. This dialog is the Associate Merge
Module with Features dialog that is shown in Figure 17-24.

Figure 17-24: The Associate Merge Module with Feature dialog of the Merge Module Wizard

In this dialog, you have the opportunity to associate the merge module with
more than just the feature from which you launched the wizard. If you select to
associate the merge module with multiple features, you then get the dialog shown
in Figure 17-25.

In this dialog, you are given a list of all the other features in the project, and you
can choose to associate the merge module with some or all of the other features.
After you finish with this selection, you go to the final dialog in the wizard, which
is the Summary dialog. This dialog is shown in Figure 17-26.

This dialog, as with all summary dialogs, shows all the selections that were made
in the wizard and gives you the chance to go back and change them. After you click
the Finish button on the Summary dialog, a pointer to the merge module is created
and associated with the designated features. If you highlight a merge module that
has been inserted, you get a property sheet that provides a view of the properties for
the merge module. This is shown in Figure 17-27.

744 Part IV: Advanced Concepts

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 744

Figure 17-25: The Associate Merge Module with Multiple Features dialog of
the Merge Module Wizard

Figure 17-26: The Summary dialog of the Merge Module Wizard

Figure 17-27: The viewable properties in the Setup view for a Merge Module

Chapter 17: Creating and Sharing Components 745

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 745

All of these properties are read-only with the exception of the Destination prop-
erty. You can change this value without having to reinsert the merge module. After
you have the merge module inserted into the main installation project, all you have
to do is build the project. The merge modules will merge during this process. Not
incorporating the merge modules into the project .ism file is important. After you
change a merge module, all you have to do is rebuild the installation project and
this merges the new merge module with the MSI database that is created.

Installing Shared Components
With the Windows Installer, components are refcounted in the registry but using a
different approach than is used for non-Windows Installer based installations. For the
non-Windows Installer installation, a shared component (file) is given a refcount in
the SharedDlls key in the registry. This approach normally is used for DLLs and most
of these DLLs are installed to the Windows System32 folder, which only reference
counted the file itself and does nothing with regard to the registry entries and other
information that are associated with this DLL.

Windows Installer components, however, are refcounted as a whole. This means
that all resources that comprise a component are refcounted.

How the system keeps track of installed
components
One of the primary mechanisms in the Windows Installer is the new approach to
the reference counting of components. Instead of just counting the number of
applications that are using a shared component, the Windows Installer counts all
aspects of the component, which means that all the resources that comprise a com-
ponent are counted. Because the present SharedDLLs key in the registry is not
designed to handle this counting, a more robust type of reference counting with a
different approach has to be used. The location where this reference counting is
performed for both per-machine and per-user installed applications is under the
following registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\
Installer\Components\

Under the Components key are sub-keys that are packed component GUIDs of all
the components that have been installed to either run locally or to run from source.
The value names under each of these sub-keys are the packed product GUIDs of all
the products that have installed the component. The value data for each of these
packed product GUIDs is the keypath for the component as defined for the product
that installed it. If a product is uninstalled, its value name and data are removed from
the registry. If no more products are associated with a particular component, then the
Windows Installer removes the component and all its resources from the system.

746 Part IV: Advanced Concepts

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 746

As has been stated in other chapters that discuss the use of the registry by

the Windows Installer, you need to be aware that what I have said here only

relates to version 1.2 and earlier of the Windows Installer. The next versions

of the Windows Installer will be changing the way information about an

application is stored.

One of the properties discussed earlier in this chapter is the property that defines
the component as being permanent. This means that the component never get
uninstalled even if no products are registered as using the component. The creation
of a packed product GUID that consists of all zeros accomplishes this. Because this
will never represent an actual product that has been installed on the system, the
component will never be uninstalled because one value name and data will always
be associated with the component.

Installing Win32 and COM DLLs
Shared files come in two categories, globally shared components and side-by-side
shared components. In this section, you discuss where to put globally shared
components.

If a shared component is only shared between the applications created by a single
software vendor, then these shared components are installed into a folder under the
following location:

%ProgramFiles%\Common Files\Company-Name

It is also acceptable to install shared components for a single software vendor to
the following directory:

%ProgramFiles%\Company-Name\Shared Files

When more than one software vendor uses a shared component, this type of
component needs to be installed into the following location:

%WindowsFolder%\System32

When installing to this global location and you want to obtain the “Certified for
Windows” logo, documenting all cases where files are copied to this location is
necessary.

Caution

Chapter 17: Creating and Sharing Components 747

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 747

If you try to copy files that are on the Windows File Protection list into the

System32 folder on Windows 2000, Windows 98 SE, or Windows Me, this

action will fail. On these operating systems, having the application use the

system files provided by the operating system is necessary.

The ideal situation on the new operating systems is to privatize the components
of an application so that there is no opportunity for one application to place a
globally shared component on the system with which another application cannot
work. How this is accomplished is the topic of the next section.

Isolating a component
If you want to privatize a component on Windows 2000, Windows 98 SE, or
Windows Me so that only the application that needs the component uses it, you
need to isolate this component. When you isolate a component using the Windows
Installer, you are implementing DLL redirection. To implement DLL redirection
using the Windows Installer, you need to define the components that are going to
run in a side-by-side manner in the IsolatedComponent table. The Isolate-
Components action reads this table and enables the proper handling of the affected
components so that they get installed properly. Table 17-12 describes the entries
that need to be made in the IsolatedComponent table.

TABLE 17-12 THE ISOLATEDCOMPONENT TABLE SCHEMA

Column Name Description

Component_Shared The entry in this column is a foreign key into the Component
table and identifies the component that contains the shared
file. This shared file should be the key file for this component
and it must be a different component than the one that
installs the client of the shared file. For this component,
setting the Shared property to Yes in the Component
property sheet is necessary. This is necessary to protect the
shared copy of the component being isolated so that other
applications that are using the shared copy are not be
broken by an uninstallation.

Component_Application The entry in this column is a foreign key into the Component
table and identifies the component that contains the client
executable of the shared file. The .exe should be the key file
for this component and it must be a different component
than listed in the Component_Shared column.

Caution

748 Part IV: Advanced Concepts

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 748

DLL redirection is implemented by making a copy of the shared file in the install
location of the client executable. In this same location, a zero byte file is created
with the same name as the executable but with a .LOCAL extension added. For
example, if the name of the executable is MyApp.exe, the zero byte file has the name
of MyApp.exe.LOCAL. When the system loader on Windows 2000, Windows 98 SE,
or Windows Me detects that a .LOCAL file is in the same directory, it alters the search
path for loading DLLs or OCXs. It does not matter whether the executable is per-
forming a LoadLibrary call using an absolute path to the shared location, the local
version of the DLL gets loaded into memory. The same applies to COM servers where
the registration contains the absolute path to the shared location of the DLL or OCX.
The isolated version is loaded instead.

The IsolateComponents action needs to be placed between the CostInitialize and
the CostFinalize actions and can only be used when performing an INSTALL top-
level action. In other words, component isolation cannot be implemented during an
administrative installation or when an application is being advertised. This action
makes sense when the IsolateComponents action runs it queries the Isolated-
Component table and makes entries in the DuplicateFile table, which is queried by
the DuplicateFiles action. The reason that the IsolateComponents action has to be
placed as I describe previously is because of the need to have an accurate file cost
calculation, which can only be done after the DuplicateFile table has been popu-
lated. When the Windows Installer detects that it is running on a system that sup-
ports DLL redirection, it sets the RedirectedDLLSupport property. Using this
property, conditioning the IsolateComponents action is possible so that it only runs
when the installation is being performed on Windows 2000, Windows 98 SE, and
Windows Me.

When the InstallFiles action runs, it copies the shared files to the shared location
and then the DuplicateFiles action makes a copy of these files to the location where
the client executables is installed.The InstallFiles action also creates the .LOCAL file
at this time. The duplication of the shared files to a private location only occurs if
the client executable gets installed.

Earlier in this chapter, you mention a true side-by-side functionality that does
not rely on creating a .LOCAL file for COM components. A new application is
designed at the beginning to take advantage of the capability to have two or ver-
sions of the same DLL in memory at the same time. Part of this functionality relies
on registering a COM server with a relative path instead of an absolute path. To
have the Windows Installer register a COM server with a relative path instead of an
absolute path, you need to set a special attribute. In ISWI when you have a COM
component and you have extracted the COM registration information by using the
Component Wizard, you have the class information displayed under the Advanced
Settings. If you click the COM Registration icon and then expand the Class icon in
the right hand panel, you see the class description. If you click this description, a
property sheet is displayed and you can then set the relative attribute, as shown in
Figure 17-28.

Chapter 17: Creating and Sharing Components 749

4723-2 ch17.f.qc 1/16/01 11:11 AM Page 749

Figure 17-28: Setting the relative attribute for a COM Class

Setting the relative attribute for a class when extracting the COM informa-

tion at build time is not presently possible.

Creating an array of components
A special capability of the Windows Installer allows for the creation of a category of
components. Components that belong to a defined category are called Qualified
Components and can be thought of as an array of components. The Windows
Installer makes special registry entries for qualified components, which allows appli-
cations to access these components to provide particular capabilities to the user.
Qualified components are defined in the PublishComponent table and this table is
read by the PublishComponents action, which makes the needed registry entries.
Just because the term “Publish” is used here does not mean that this functionality
has to do with advertising. This is a completely different use of the word publish.

Because you are concerned here with the authoring of the PublishComponent
table, you need to look at the fields that need to be filled in for this table. Table 17-13
describes the entries that are required in this table.

TABLE 17-13 THE PUBLISHCOMPONENT TABLE SCHEMA

Column Name Description

ComponentId This value is a GUID that defines the category of components
being grouped together. This is the GUID for the category of
qualified components and is not the same GUID appearing in
the ComponentId column of the Component table.

Caution

750 Part IV: Advanced Concepts

4723-2 ch17.f.qc 1/16/01 11:12 AM Page 750

Column Name Description

Qualifier This qualifier is a text string that qualifies the value in the
ComponentId column. This qualifier is used to distinguish
multiple forms of the same component, such as a component that
is implemented in multiple languages. These are the qualifier text-
strings returned by MsiEnumComponentQualifiers.

Component_ A foreign key in the first column of the Component table, this
identifier refers to the qualified component’s record in the
Component table.

AppData An optional and localizable text string, which describes the qualified
component, is commonly parsed by the application and is displayed
to the user. This string is retrieved from the registry by using the
MsiEnumComponentQualifiers function.

Feature_ This is a foreign key into the first column of the Feature table and
is the feature that is installing the qualified component.

In ISWI the entries made in this table are created for each component using the
Publishing icon under the Advanced Settings. After you click the Publishing icon,
you see a panel to the right where you can right-click to generate a GUID that serves
as the ComponentId in the PublishComponent table. Under the GUID is a default
qualifier string, which you can rename to whatever you want. After you highlight the
qualifier, you can add an optional string to be placed in the AppData column. In
order to include other components in the same group, copying the ComponentId
GUID from the first component to the other components is necessary. To copy the
GUID to the clipboard, you right-click the first GUID generated, select the Rename
option, and then right-click again and select the Copy command. This copies the
GUID to the clipboard where it can be used to generate the same ComponentId for the
other components that are to be grouped together. Orca is an example of the use of
published components. Orca creates an array of components for the three validation
suites defined in three different .cub files. You can see this if you open up the Orca
.msi file using Orca and go into the PublishComponent table.

The ISWI IDE where the qualified components are defined is shown in Figure 17-29.

Chapter 17: Creating and Sharing Components 751

4723-2 ch17.f.qc 1/16/01 11:12 AM Page 751

Figure 17-29: Creating qualified components by using the Publishing advanced settings

When the PublishComponents action queries the PublishComponent table, it
makes entries into the registry that a number of Windows Installer API functions
can use to retrieve information about these components. The names of the API
functions that use this information are MsiProvideQualifiedComponent,
MsiProvideQualifiedComponentEx, and MsiEnumComponentQualifiers. These func-
tions read the information in the registry that defines the qualified components.
The registry entries for qualified components are made in one of two locations
depending on whether the installation was performed for the current user or for the
machine. These locations are as follows:

HKEY_CURRENT_USER\SOFTWARE\Microsoft\Installer\Components

for a per-user installation and

HKEY_LOCAL_MACHINE\SOFTWARE\Classes\Installer\Components

for a per-machine installation. The sub-keys under these locations are the packed
ComponentId GUIDs from the PublishComponent table. Under these sub-keys, the
value names are the component qualifiers and the value data for each of these
qualifiers is a Darwin Descriptor concatenated with the AppData string from the
PublishComponent table. A Darwin Descriptor is a combination of the ProductCode
property, feature name, and component code.

You need to be aware that after version 1.2 of the Windows Installer the

usage of the registry will be changing. What I have shown here could very

well be changing in the future. This information is provided so that you can

get a feeling about how the Windows Installer works underneath.

Caution

752 Part IV: Advanced Concepts

4723-2 ch17.f.qc 1/16/01 11:12 AM Page 752

Summary
You start this chapter by looking at how operating systems handle the loading of
dynamic link libraries into memory. You examine how the older operating systems
handle this function, and then you look at the changes introduced by Windows
2000, Windows 98 SE, and Windows Me. This new functionality is where more
than one version of the same DLL can be loaded into memory at the same time. You
then look at the rules set down to guide you in the creation of components and look
at what happens if you do not follow these rules. You also look at the guidelines
that should be followed to change a component and when the component code
needs to be changed, thus creating a new component.

Next, you took a close look at the many ways that components can be created
using the features in ISWI. You see how a component can be created by using the
Component Wizard. The Component Wizard had two modes of operation, one where a
number of files can be used to create components following the componentization
rules, and the second where you can create special types of components. These special
types of components are those that install NT Services, ODBC, Fonts, and COM Servers.

After looking at the creation of components, you then look at the means that have
been provided by the Windows Installer for delivering components to an application.
For any component that is to be shared between applications, the recommended
method is to create the component in a merge module. You look at the structure of a
merge module and then investigate the features in ISWI where you can create merge
modules and then insert them into an installation project.

Finally, you look at how the Windows Installer registers components and how to
install special types of components. These special types of components are those
that support side-by-side sharing as well as the creation of an array of components.
An array of components allows applications to access various components that
belong to a family of components all of which have a parallel functionality.

Chapter 17: Creating and Sharing Components 753

4723-2 ch17.f.qc 1/16/01 11:12 AM Page 753

4723-2 ch17.f.qc 1/16/01 11:12 AM Page 754

Chapter 18

The Creation and Use of
Transforms

IN THIS CHAPTER

◆ Understanding what transforms are, and what they are not

◆ Learning the structure of a transform file

◆ Learning the various types of transforms

◆ Creating of transforms

◆ Applying transforms at both design time and at run time

◆ Using and manipulating transforms in special ways

TRANSFORMS ARE A major component of the Windows Installer functionality. They
can play important roles at design time and at run time.

What Are Transforms?
Simply put, a transform is the difference between two MSI packages. Unlike a merge
module, which we discussed in Chapter 17, a transform can be used not only to add
resources to a MSI package but also to modify entries in a MSI database. You
learned in Chapter 17 that a merge module was only used for delivering components
at design time to a MSI package. Like a merge module a transform can be used for
delivering a component to a MSI package, but unlike a merge module it can also be
used to add features to a package.

You might ask, What is the good of a merge module when I can do everything
with a transform? The answer is that a merge module can be authored and a trans-
form is only generated as the difference between two MSI packages. When I say
that a transform cannot be authored I mean that there are no APIs available from
the Windows Installer that provide direct access to the components of a transform.
It is possible to create a tool, such as InstallShield Tuner, that gives the impression
that you are directly manipulating the internals of a transform. With a transform
there is no structure to ensure that applying a transform to a MSI package will

755

4723-2 ch18.f.qc 1/16/01 11:12 AM Page 755

avoid conflicts. With a merge module, the structure of this type of file is specifically
designed to avoid conflicts that are possible when merging two databases. A merge
module can contain a CAB file but a transform cannot.

When authoring a merge module, you can control whether it can be applied to
an MSI package by using the ModuleDependency, ModuleExclusion, and
ModuleIgnore tables in the merge module. (In Chapter 17 we discuss these tables.)
When creating a transform, you can use the Error and Validation flags to control
the database to which it can be applied. These flags are stored in the Character
Count property of the Summary Information Stream inside the transform file.

You can apply a transform either at design time or at run time. When applied at
design time, it will permanently alter the target MSI package much as a merge module
does. A transform can also be applied at run time. When you do this, the MSI package
is modified only in memory and the target package is not permanently modified. A
merge module has no such functionality.

Transforms are a very important feature of the Windows Installer technology. You
can use them by themselves or to help implement other features in the Windows
Installer. You can use transforms in multilanguage merge modules or to implement
patch packages. They also play a major role in the deployment functionality of
Windows 2000. Transforms are the de facto standard for customization of an MSI
package. Tools available in the market for authoring transforms are InstallShield
Tuner for any MSI package and Office Customization wizard only for Microsoft Office.

The Structure of a Transform File
A transform (an .mst file) is a COM-structured storage file but it is not an MSI data-
base and so you can’t open it with Orca. You can use a transform to add, update, or
delete a row in the reference database; you can also use it to add or delete a table
or add a column to the reference database. As of this writing, you cannot delete a
column with a transform. If you open a transform using the DocFile viewer that
comes with Visual Studio, you will see something that looks very much like an MSI
database. The difference is that the streams in the transform are different from
those in an MSI package.

A transform is made up of a Tables catalog, a Columns catalog, and individual
streams for tables in which rows will be added, updated, or deleted. A transform
makes use of masks to determine whether a particular operation is to add, update,
or delete a particular entity in the reference database. The Tables catalog contains
the information for the tables that are to be added or deleted. The Columns catalog
contains information about the columns to be added. The table streams make use of
the masks to define whether the entry in the stream is to be used to add a new row,
update a row, or delete a row from the associated table.

756 Part IV: Advanced Concepts

4723-2 ch18.f.qc 1/16/01 11:12 AM Page 756

The transform Summary Information Stream
Because a transform is a COM-structured storage file, it has a Summary Infor-
mation Stream. Appendix B contains a complete description of the properties found
in a transform Summary Information Stream and the use that each of these proper-
ties is put to. One property that we should discuss in more detail is the Character
Count property.

The Character Count property in the Summary Information Stream of a transform
holds information that determines whether a transform can be applied to the reference
database or not. It also holds information that determines whether the application of a
transform will fail or not. The Character Count property is a four-byte integer where
the upper word contains the transform’s validation flags and the lower word contains
the error condition flags. The validation flags determine whether a transform can be
applied to a particular database and the error flags determine the conditions under
which the application of the transform will succeed or fail. In either case the term
reference database refers to the database to which the transform is being applied.

The error flags in actual fact define the error conditions to be suppressed when a
transform is applied to a database. If none of the error flags is set then any of the
possible error conditions will cause the application of the transform to fail. Table
18-1 describes the various error flags .

TABLE 18-1 TRANSFORM ERROR CONDITION FLAGS

Error Flag Description

0x00000000 When the error flag is 0, any of the possible errors described in
the remaining rows of this table will cause the application of the
transform to the reference database to fail.

0x00000001 Suppresses the error that would be generated when a transform
tries to add a pre-existing row to the reference database.

0x00000002 Suppresses the error that would be generated when a transform
tries to delete a nonexistent row from the reference database.

0x00000004 Suppresses the error that would be generated when a transform
tries to add a pre-existing table to the reference database.

0x00000008 Suppresses the error that would be generated when a transform
tries to delete a nonexistent table from the reference database.

0x00000010 Suppresses the error that would be generated when a transform
tries to update a nonexistent row in the reference database.

0x00000020 Suppresses the error that would be generated if the code page for
the transform and the code page for the reference database do not
match and neither is neutral.

Chapter 18: The Creation and Use of Transforms 757

4723-2 ch18.f.qc 1/16/01 11:12 AM Page 757

As I mentioned earlier, the validation flags you can set in the transform determine
whether a transform can be applied to a particular database. Also, as with the error
flags I just described, you need to add the validation flags for the various types of
validation to occur when a transform is applied. Table 18-2 describes the possible
validation flags. The validation flags fall into one of four groups as shown in the
table. In the general group any combination of flags is allowed, but in the other
groups only one of the flags can be selected.

TABLE 18-2 TRANSFORM VALIDATION FLAGS

Flag Group Validation Flag Description

General 0x00000000 If the upper word in the Character
Count summary property is 0, there
will be no validation to determine if
the transform can be applied to the
reference database. The transform
will just be applied.

0x00000001 When this flag is set, the default
language of the transform must
match the default language of the
reference database or the transform
will not be applied.

0x00000002 When this flag is set, the product
code of the transform must match
the product code contained in the
Property table of the reference
database or the transform will
not be applied.

Product Version 0x00000008 When this flag is set the transform
and the reference database will
be compared using only the major
version.

0x00000010 When this flag is set the transform
and the reference database will
be compared using the major and
minor versions.

0x00000020 When this flag is set the transform
and the reference database will be
compared using the major, minor,
and update versions.

758 Part IV: Advanced Concepts

4723-2 ch18.f.qc 1/16/01 11:12 AM Page 758

Flag Group Validation Flag Description

Product Version Relationship 0x00000040 When this flag is set the comparison
of product versions in the transform
and the reference database will
be validated if the product version
in the transform is less than the
product version in the reference
database or the transform will not
be applied.

0x00000080 When this flag is set the comparison
of product versions in the transform
and the reference database will
be validated if the product version
in the transform is less than or
equal to the product version in
the reference database or the
transform will not be applied.

0x00000100 When this flag is set the comparison
of product versions in the transform
and the reference database will
be validated if the product version
in the transform is equal to the
product version in the reference
database or the transform will not
be applied.

0x00000200 When this flag is set the comparison
of product versions in the transform
and the reference database will be
validated if the product version in
the transform is greater than or
equal to the product version in the
reference database or the transform
will not be applied.

0x00000400 When this flag is set the comparison
of product versions in the transform
and the reference database will be
validated if the product version in
the transform is greater than the
product version of the reference
database.

Continued

Chapter 18: The Creation and Use of Transforms 759

4723-2 ch18.f.qc 1/16/01 11:12 AM Page 759

TABLE 18-2 TRANSFORM VALIDATION FLAGS (Continued)

Flag Group Validation Flag Description

Upgrade Code 0x00000800 When this flag is set the Upgrade
Code property of the transform
must match the UpgradeCode
property of the reference database
or the transform will not be applied.

We have gone into detail here about the error condition and validation flags you
can set to determine whether a transform is applied or not. These flags are important
and you will come into contact with them again when you create a transform in this
chapter using the ISWI Transform Wizard. You will also meet up with them again in
Chapter 20 when we look at the creation of patch packages. Now let’s take a look at
the various types of transforms that have been defined.

The Types of Transforms
Transforms can be embedded in the MSI package to which they are to be applied.
This type of transform only has relevance in a run-time environment. A transform
can also be stand-alone: this type of transform is relevant to both the design-time
environment and the run-time environment. In the design-time environment you
can perform only a static application of the transform to the target MSI package
that permanently changes the package. In the run-time environment, stand-alone
transforms get much more interesting. For this type of transform you need to be
concerned about the proper caching of transforms as well as how many transforms
are to be applied and in which order. In the run-time environment stand-alone
transforms are either secured or unsecured. Depending on the security designation
of a stand-alone transform the place where a transform is cached will change after
the installation has been completed. Table 18-3 describes each type of transform.

Transforms associated with a product are entered into the registry. The type of
transform is indicated in the registry by the entry’s formatting. If you are installing
on a per-user basis, the transform entries in the registry are the value data for the
Transform value name associated with the following key:

HKCU\SOFTWARE\Microsoft\Installer\Products\{ProductCode}

If you are installing on a per-machine basis, the transform entries in the registry
are the value data for the Transform value name associated with the following key:

HKLM\SOFTWARE\Classes\Installer\Products\{ProductCode}

760 Part IV: Advanced Concepts

4723-2 ch18.f.qc 1/16/01 11:12 AM Page 760

TABLE 18-3 DESCRIPTION OF THE TRANSFORM TYPES

Transform Type Description

Embedded Transform Stored inside the MSI package; as such
these types of transforms are always
available to the user. Because of this, this
type of transform is never cached on the
end user’s system.

Stand-alone Secure-At-Source Transform Has a source at the root of the MSI package.
When the product is either installed or
advertised, the transform is cached on
the system in a location where the user
does not have write privileges.

Stand-alone Secure-Full-Path Transform Has a source located at the fully qualified
path specified in the TRANSFORMS property.
When the product is either installed or
advertised, the transform is cached on the
system in a location where the user does not
have write privileges.

Stand-alone Unsecured Transform Cached on the local system when the
package is either installed or advertised.
The cache location is the Application Data
folder in the user’s profile; here the user
has write privileges. If you are installing
on a per-machine basis, the transform
is cached in %Windows%\Installer\{
ProductCode} folder.

In either of these registry locations the value data for the Transform value name
are a semicolon-delimited list of the associated transforms for the product. If a
transform is a Secure-At-Source transform type, the name of the transform in the
list is preceded by an at symbol (@). If the transform is a Secure-Full-Path transform
type, the entry for the transform in the list is a fully qualified path to the transform
preceded by the pipe symbol (|).

If the transform is stand-alone and unsecured and the install was performed on
a per-user basis, the cached location of the transform is shown in the list using
what is called a shell-folder path. If the installation was performed on a per-
machine basis, the transform is shown in the list with a fully qualified path to its
cached location. Embedded transforms are stored in the list with the storage token,
a colon (:) preceding the name of the transform.

Chapter 18: The Creation and Use of Transforms 761

4723-2 ch18.f.qc 1/16/01 11:12 AM Page 761

Creating and Applying Transforms
The main thing to keep in mind about transforms is that you can author them as
you author an MSI database. The only way to create a transform is to use the
appropriate Windows Installer APIs to create the transform as the difference
between two MSI databases. Another thing to keep in mind is that transforms only
describe the difference between the tables in two MSI databases; they do not do
anything with source files or the Summary Information Stream in an MSI file.

You can apply a transform at design time or at run time. When you apply a
transform at design time, the target database to which you apply the transform is
permanently changed. When you apply a transform at run time the MSI database
is changed only in memory; the changes are not persisted in the database.

Creating a transform using ISWI
You can access the ISWI Transform Wizard from the Tools pulldown menu. You can
use this wizard to create a transform as the difference between two MSI databases.
For creating a transform the wizard is wrapper around the MsiDatabaseGenerate-
Transform and MsiCreateTransformSummaryInfo Windows Installer APIs. You will
use the Transform Wizard to create a transform between the Schema.msi database
found with the Windows Installer SDK and the MSI package you created earlier for
the ISWI Artist application. Schema.msi is an empty database that you used in chap-
ters 4 and 5 to create your first installation package the hard way. In order for
Schema.msi to work correctly in this example you have to make two entries into the
Property table using Orca. You need to enter one row containing the ProductVersion
property and set this property to be the same as that for the ISWI Artist application.
You also need to add a row for the ProductCode property and again make the value
the same as for the ISWI Artist application. Once you have done these two things
you can proceed with creating the transform. Finally, you need to add a
PackageCode value to the Summary Information Stream of Schema.msi. You can get
a package code value by using the GUIDGEN.EXE utility that comes with Visual
C++. Once you are done modifying the Schema.msi database you can move on to
creating the transform.

When you access the Transform Wizard from the Tools pulldown menu, you will
see the Welcome dialog shown in Figure 18-1.

In this Welcome dialog the default selection is to create a transform so all you
need to do is click on the Next button. This brings you to the Specify Files dialog
where you identify the two MSI databases to be used to create the transform. This
dialog is shown in Figure 18-2.

762 Part IV: Advanced Concepts

4723-2 ch18.f.qc 1/16/01 11:12 AM Page 762

Figure 18-1: The Welcome dialog of the Transform Wizard

Figure 18-2: The Specify Files dialog of the Transform Wizard
(transform creation mode)

In this dialog you can see that you need to identify a base package and a target
package. The base package is the database without any changes. The base package
is sometimes called the reference database and it is the one to which you apply the
transform in order to obtain the target package. Figure 18-2 shows that Schema.msi
is the base package and ISWI Artist.msi is the target package.

Chapter 18: The Creation and Use of Transforms 763

4723-2 ch18.f.qc 1/16/01 11:12 AM Page 763

The dialog in the Transform Wizard is the Validation Settings dialog, shown in
Figure 18-3.

Figure 18-3: The Validation Settings dialog of the Transform Wizard
(transform creation mode)

In this dialog you set the validation flags that determine whether a transform can
be applied to a particular package or not. (These flags were described in Table 18-2.) In
the example you are running you won’t want to perform any validation because you
will be applying this transform to an empty database. The next dialog in the Transform
Wizard is the Suppress Error Conditions dialog, where you can decide which errors to
suppress at application time. Any errors that occur and are not suppressed will cause
the application to fail. The Suppress Error Conditions dialog is shown in Figure 18-4.

In this dialog you check all possible error conditions to be suppressed. By doing
this you ensure that the transform will be applied regardless of whether any of the
possible error conditions actually exist.. The next dialog in this wizard is where you
determine the name of the transform and where it is to be created. The Specify output
file name dialog is shown in Figure 18-5.

As you can see in this figure the transform is named ISWI Artist.mst and it will
be created in the same location where the two databases are located. (You could of
course browse to another location.) The next dialog in the Transform Wizard is the
Summary dialog, shown in Figure 18-6. Here you can review all the settings you
have made and if necessary go back and change them.

Clicking on the Create button in this dialog creates the transform and presents
the Completing the Transform Wizard dialog. This dialog is shown in Figure 18-7:
it tells you that the transform was created successfully and provides you with a
sample command line for applying this transform at run time.

764 Part IV: Advanced Concepts

4723-2 ch18.f.qc 1/16/01 11:12 AM Page 764

Figure 18-4: The Suppress Error Conditions dialog of the Transform Wizard
(transform creation mode)

Figure 18-5: The Specify output file name dialog of the Transform Wizard
(transform creation mode)

Now that the transform has been created, you can get rid of the original ISWI
Artist.msi file and rename Schema.msi as ISWI Artist.msi. Now you also have to
copy the source file tree to the location of the ISWI Artist.msi and ISWI Artist.mst
files. You are now ready to install the ISWIArtist application using the essentially
empty database and a transform.

Chapter 18: The Creation and Use of Transforms 765

4723-2 ch18.f.qc 1/16/01 11:12 AM Page 765

Figure 18-6: The Summary dialog of the Transform Wizard
(transform creation mode)

Figure 18-7: The Completing the Transform Wizard dialog of the Transform Wizard
(transform creation mode)

Before you use the transform you have just created, you need to understand the
business of applying transforms, both at run time and at design time.

766 Part IV: Advanced Concepts

4723-2 ch18.f.qc 1/16/01 11:12 AM Page 766

Applying transforms at run time
To apply a transform at run time you need to run the installation from the com-
mand line or programmatically where the command line is passed to the
CreateProcess Windows API. When using a transform at run time to modify an
installation package, you need to be aware of the fact that this transform must
always be available to perform maintenance operations on the original install.

Transforms have many run-time uses. Network administrators use transforms to
modify the feature set of a product depending on the workgroup to which the prod-
uct is assigned. In Chapter 19 you will see how the run-time application of transforms
is used to permit multilingual installations. The key to applying transforms at run
time is using the TRANSFORMS public property. This property takes a value that is a
semicolon-delimited list of transforms that the Windows Installer is to apply to the
base MSI package when the installation is run. Before you take a look at some of the
various example command lines for applying transforms, you need to understand
how transforms affect the resource resiliency and how setting system policy comes
into play.

RESOURCE RESILIENCY AND SYSTEM POLICY
The main concern with transforms is that unless they are embedded in the MSI pack-
age they can be deleted or lost. Once this happens you can’t perform any further
operations on the installed product. This can have a negative impact on resource
resiliency. Resource resiliency is one of the key features of the Windows Installer
functionality. How the Windows Installer will handle deleted or lost transforms can
be controlled by using either a specific public property or by setting a per-machine
policy in the registry. The appropriate formatting of the command-line value for the
TRANSFORMS property can also control the caching of transforms. Essentially what
we are talking about here is generating one of the two types of secure transforms
described in Table 18-3. A secure transform is just a transform that is cached on the
target system in a location where the user does not have write privileges.

A secure transform only has meaning if the user installing the application

that uses a transform does not have administrative privileges. If the user has

administrative privileges the transform cannot be located in any place that

cannot be written to by the user because an administrator has access to all

locations on the machine.

Tip

Chapter 18: The Creation and Use of Transforms 767

4723-2 ch18.f.qc 1/16/01 11:12 AM Page 767

To define a secure transform to the Windows Installer you can set the TRANS-
FORMSSECURE property to 1, you can set the TransformsSecure policy to 1, or you
can use either the @ or | symbol in front of the name of the transform on the com-
mand line. This may look like redundant functionality, but in fact each of these
methods of securing a transform has a different scope. If you set the TRANS-
FORMSSECURE property in the MSI database to have a value of 1, you have
determined that regardless of the machine on which this package is installed the
associated transforms will be secure. When you set the TransformsSecure system pol-
icy, you have limited the scope to the machine but it will apply to all packages using
transforms installed on the machine. When you use the special symbols, you have
limited the scope to just the current installation package on the current machine.

USING THE TRANSFORMSSECURE PROPERTY Authoring the TRANSFORMSSE-
CURE property into the MSI database is the only sure method that a setup developer
has of forcing all applied transforms to be secure transforms. When you use this
property, the Windows Installer distinguishes between a Secure-At-Source and a
Secure-Full-Path transform from the command line. If the transform list only
includes the names of the transform files to be applied without any path qualifica-
tion, the transforms are considered Secure-At-Source transforms. If the transform list
includes the full path for each transform in the transform list, then the transforms are
considered Secure-Full-Path transforms.

A property called TRANSFORMSATSOURCE was available with the version 1.0
of the Windows Installer. This property is no longer used and if version 1.1 of the
Windows Installer comes across this property in any MSI database it will treat it
just as it treats the TRANSFORMSSECURE property.

SETTING THE TRANSFORMSSECURE MACHINE POLICY Setup developers have no
control over the machine policies to be set; this is the domain of the network
administrator. The key where the machine policies are set is as follows:

HKLM\SOFTWARE\Policies\Microsoft\Windows\Installer

The value name created for this key is TransformsSecure and the value data given
to it is 1. When this policy is set, the Windows Installer distinguishes between a
Secure-At-Source and a Secure-Full-Path transform from the command line. If the
transform list only includes the names of the transform files to be applied without any
path qualification, the transforms are considered to be Secure-At-Source transforms. If
the transform list includes the full path for each transform in the transform list, then
the transforms are considered to be Secure-Full-Path transforms.

A per-user system policy called TranformsAtSource was available with version
1.0 of the Windows Installer. This system policy is no longer used and, if version
1.1 of the Windows Installer comes across this policy, it will treat it as if the
TransformsSecure per-machine system policy had been set.

768 Part IV: Advanced Concepts

4723-2 ch18.f.qc 1/16/01 11:12 AM Page 768

CACHING AND SEARCHING FOR TRANSFORMS When you install an application
using Secure-At-Source transforms or unsecured transforms, these transforms are
cached on the system (see Table 18-3). If these transforms become unavailable,
the Windows Installer will try to restore them as it would an unavailable MSI pack-
age. This search pattern is prescribed by the SourceList entries in the registry for
each product.

When you install an application using Secure-Full-Path transforms, these trans-
forms are also cached on the system as described in Table 18-3. If these transforms
become unavailable, they can only be restored using the location specified by the
full path associated with them. The Windows Installer in this instance will not
search as it would if an MSI package needed to be restored.

EXAMPLE COMMAND LINES
You are not allowed to mix types of transforms at the command line except to
identify embedded transforms along with any other type. For example, if you have
Secure-At-Source transforms, you cannot include any Secured-Full-Path or
Unsecured transforms in the transforms list. You could include any embedded
transforms that needed to be applied. Table 18-4 shows a number of example trans-
form lists that are valid values for the TRANSFORMS property.

TABLE 18-4 VALID TRANSFORM LISTS

Transform List Description

@transform1.mst;transform2.mst Secure-At-Source transforms. Setting TRANS
FORMSSECURE or the TransformsSecure system
policy would be redundant and have no effect.

|transform1.mst;transform2.mst Secure-Full-Path transforms. Setting TRANS
FORMSSECURE or the TransformsSecure system
policy would be redundant and have no effect.

@transform1.mst;:transform2.mst transform1.mst is a Secure-At-Source transform
and transform2.mst is an embedded transform.
Setting TRANSFORMSSECURE or the Transforms
Secure system policy would be redundant and
have no effect, because transform1.mst has
already been identified as a secure transform
and transform2.mst’s being embedded is not
cached on the system.

Continued

Chapter 18: The Creation and Use of Transforms 769

4723-2 ch18.f.qc 1/16/01 11:12 AM Page 769

TABLE 18-4 VALID TRANSFORM LISTS (Continued)

Transform List Description

\\server\share1\transform1.mst; Unsecured transforms if the TransformsSecure
\\server\share2\transform2.mst system policy and the TRANSFORMSSECURE

property are not set. If either of these is set both
of the transforms are Secure-Full-Path transforms.

transform1.mst;transforms2.mst; Unsecured transforms if the TransformsSecure
:transform3.mst property and the TransformsSecure system

policy are not set. If either of these is set these
transforms are Secured-At-Source transforms.
In all cases transform3.mst is an embedded
transform.

The help that comes with the Windows Installer SDK provides many more

examples of valid command lines.

You can now run the ISWI Artist.msi installation package using the following
command line:

msiexec /i <path to ISWI Artist.msi> TRANSFORMS=”ISWI Artist.mst”

When you run this command line, you get the normal installation user interface
and the application installs just as it did earlier in the book. The only difference is
that the transform is cached in the %Windows%\Installer\{ProductCode} folder.
When you uninstall the application, you will still see the transform cached on the
machine until you reboot the system. After the reboot the transform will have been
removed. If you change this command line as follows, you will see that the transform
is cached in a different location.

msiexec /i <path to ISWI Artist.msi> TRANSFORMS=”@ISWI Artist.mst”

Now the transform is cached in the %Windows%\Installer\{ProductCode}\
SecureTransforms folder. You can experiment with the different command lines if
you want to see what happens in other situations.

XREF

770 Part IV: Advanced Concepts

4723-2 ch18.f.qc 1/16/01 11:12 AM Page 770

Applying a transform at design time using ISWI
Now let’s look at the design-time use of transforms. Essentially, the design-time
purpose of transforms is to efficiently propagate the differences between two data-
bases to a third database. Being able to do this automatically is much more efficient
than having to author the changes into the third database using ISWI or Orca.

Now let’s go through the ISWI Transform Wizard using the Apply a Transform
option from the Welcome dialog shown in Figure 18-1. The Apply Transform oper-
ation of this wizard is a wrapper around the MsiDatabaseApplyTrnasform Windows
Installer API. When you select this option and click the Next button, you get the
dialog shown in Figure 18-8.

Figure 18-8: The Specify Files dialog of the Transform Wizard
(apply transform mode)

In this dialog you are asked to select the MSI database to which the transform is
going to be applied, and to select the transform to apply. Once you have browsed to
these two files you proceed to the next dialog, shown in Figure 18-9.

This dialog looks exactly like the dialog shown in Figure 18-4, which appears when
you are creating a transform. This dialog appears again when you are applying a
transform in order to give you the opportunity to override the error-suppression flags
you added to the Summary Information Stream of the transform. For the purpose of
this example you should keep the same settings, which suppress all error conditions
that might occur when you apply the transform. After making sure that you have
selected to suppress all error conditions, move onto the next dialog in the wizard. This
dialog is the Specify output file name dialog and it is shown in Figure 18-10.

Chapter 18: The Creation and Use of Transforms 771

4723-2 ch18.f.qc 1/16/01 11:12 AM Page 771

Figure 18-9: The Suppress Error Conditions Dialog of the Transform Wizard
(apply transform mode)

Figure 18-10: The Specify output file name dialog of the Transform Wizard
(apply transform mode)

In this dialog you specify the name of the resulting MSI file that will be created
when the transform is applied. In this case you can just leave the default name for
now. You can rename it after we finish with the wizard. The next dialog in the wizard
is the Summary dialog where you can review all the selections you have made in the
various wizard dialogs. This dialog is shown in Figure 18-11. When you click the

772 Part IV: Advanced Concepts

4723-2 ch18.f.qc 1/16/01 11:12 AM Page 772

Apply button, the transform is applied and you see the final dialog, that tells you that
the application of the transform was successful, and also shows you the name and
location of the MSI file that was created.

Figure 18-11: The Completing the Transform Wizard dialog of the Transform Wizard
(apply transform mode)

Before you test this new MSI package you need to rename it as ISWI Artist.msi.
You need to do this because every product identified by a specific ProductCode
property value must have the same package name. You can give the same package
name to different products, but if you change the package name used to install a
product you need to change the ProductCode. Once you have changed the name,
double-click this file and make sure that it runs correctly. If ISWI Artist was already
on the system the install will launch into the maintenance mode and you can unin-
stall it.

Now that we have covered the basics of transforms we should look at a few
special issues.

Using a Transform to Add Resources
As you have seen you can only use transforms to modify the MSI database. You
cannot modify the Summary Information Stream or the files that comprise the
application. When you are adding new files to an installation, you’ll normally want
to associate these new files with components and features. The transform should
add one or more new components to the installation database to contain the addi-
tional files. The transform should not add resources to a component that already
exists in the installation.

Chapter 18: The Creation and Use of Transforms 773

4723-2 ch18.f.qc 1/16/01 11:12 AM Page 773

The transform should also add one or more new features to the installation data-
base to contain the new components. These new features should not be the parents
of any existing features, but new parent and child features may be introduced
together. New features should be given names that are unique across all other
transforms for this product. No two transforms should ever add a feature to this
product that has the same name listed in the Feature column of the Feature table
and contains different components or resources.

Viewing the Contents of a Transform
You cannot look at a transform with Orca or any tool like it. One of the ways you
can look at the contents of a transform is like what you did in the above exercise:
you can merge it with a blank MSI database such as Schema.msi and then open up
the database with Orca. Using Orca, you can then export all the tables and import
those with data in them into an Excel spreadsheet. This approach, however, is fairly
cumbersome and lacks a certain amount of elegance.

The more elegant solution to viewing the contents of a transform is to use the
_TransformView table. This is a read-only temporary table specifically created to
enable you to view the contents of a transform. Using this table, however, requires
you to do some programming. In this chapter we will only look at the steps you
would need to take if you were going to create a utility to view a transform using
this special table.

To invoke this table you need to use the MsiDatabaseApplyTransform API and the
MSITRANSFORM_ERROR_VIEWTRANSFORM error condition bit flag. Using this
flag stops the transform from being applied to the database and dumps the contents
of the transform into the _TransformView table. The first thing to do is to take a look
at the attributes of this database table. Table 18-5 describes each column in the
_TransformView table.

TABLE 18-5 THE ATTRIBUTES OF THE _TRANSFORMVIEW TABLE

Column Data Type Key Description

Table Identifier Y Contains the name of an altered table in the
database.

Column Text Y The name of the altered column, if a row has been
modified. If the table was added or deleted, then
the keyword CREATE or DROP is entered in this
column. If a row has been added or deleted from
the table, the keyword INSERT or DELETE is entered
in this column.

774 Part IV: Advanced Concepts

4723-2 ch18.f.qc 1/16/01 11:12 AM Page 774

Column Data Type Key Description

Row Text Y Contains a tab-delimited list of the values of the
columns that comprise the primary key for the table.
If one of these columns is null, a single space is
entered. If the table is being added or removed, this
column is null.

Data Text Holds the data in the field, which can be a string,
integer, or a binary stream. If the data is a binary
stream, this column holds the column definition. If
the table is being added or removed, this column
holds the column definition. A column definition
string consists of a single letter that defines the
data type followed by a number that defines the
width of the column. If the letter is uppercase,
then the column can be null.

Current Text If the reference database has a value that is going
to be modified, this column holds the current value
of the column data. Otherwise it holds a column
number.

Once you populate this table with the contents of a transform, you can look at
the table to get the details. Since this table is not persisted when the database is
closed you cannot open it up and look at it using Orca after the transform has been
applied. What you need to do is access the rows in this table using SQL queries and
save the information to a text file or display it in a window of the utility you cre-
ated to perform this operation.

Chapter 11 covers the syntax of the SQL used in Windows Installer.

XREF

Chapter 18: The Creation and Use of Transforms 775

4723-2 ch18.f.qc 1/16/01 11:12 AM Page 775

A VBScript file that uses the _TransformView table to view the contents of a
transform comes with the Windows Installer SDK. The name of this script file is
WiLstXfm.vbs and you can run it using the console executable of the Windows
Scripting Host. If you want to view the transform you created for the ISWI Artist
application and capture it to a text file, run the following command line:

cscript wilstxfm.vbs “ISWI Artist.msi” “ISWI Artist.mst” >
Transform.txt

This will give a very large text file that is somewhat cryptic so it is not necessarily
very valuable.

Editing a Transform
There will be times when you will want to be able to edit the contents of a transform.
The problem with trying to edit a transform is that there are no Windows Installer
APIs that enable you to directly access the structure of a transform file. To edit a
transform you need to apply it to a database, edit the database, and then recreate the
transform. You can do this programmatically or use ISWI. The ideal situation would
be to create a utility to perform this operation and read the required changes from
an initialization file. Table 18-6 describes the process of editing a transform both
programmatically and using ISWI.

TABLE 18-6 PROCESS STEPS FOR EDITING A TRANSFORM

Step Programmatic Approach ISWI Approach

1 Make a temporary copy of Make a temporary copy of the reference
the reference database. The database. The name of this temporary
name of this temporary copy does not matter.
copy does not matter.

2 Using the MsiOpenDatabase Using the Transform Wizard, apply the
API, open the temporary transform to be edited to the temporary
copy of the database using copy of the reference database.
the MSIDBOPEN_TRANSACT
persist mode.

776 Part IV: Advanced Concepts

4723-2 ch18.f.qc 1/16/01 11:12 AM Page 776

Step Programmatic Approach ISWI Approach

3 Apply the transform to be Open this MSI database using Orca and
edited to the temporary make the changes in the tables that are
copy of the database using affected. You could also use this database
the MsiDatabaseApply to create an ISWI project and make the
Transform API. changes in the IDE. However, to rebuild

the database you would have to make sure
all the source files for the application
were available so that you could make the
build without creating any build errors.

4 Edit the database by Using the Transform Wizard, create a
applying the transform to new transform between the modified
the temporary copy of the temporary database and the original
reference database. This reference database.
entails creating and
executing a view and then
fetching and modifying a
record. When you have done
this, commit the database
using the MsiDatabase
Commit API. (Chapter 11
provides more detail on this
type of operation.)

5 Open the reference database Replace the original transform with the
in read-only mode. new transform just created.

6 Generate a new transform
as the difference between
the reference database and
the modified temporary
database. This will require
the use of the MsiDatabase
GenerateTransform and
MsiCreateTransform
SummaryInfo APIs.

7 Close the two open
databases and replace the
original transform with the
new transform.

Chapter 18: The Creation and Use of Transforms 777

4723-2 ch18.f.qc 1/16/01 11:12 AM Page 777

Creating a command-line utility to automatically edit a transform is a good exer-
cise that gives you experience with the Windows Installer database functions. Of
course you could use the InstallShield Tuner product and save yourself a lot of effort.

Embedding a Transform in an
MSI Package
You learned from the discussion on the types of transforms that a transform can be
embedded in the MSI package. Version 1.5 of ISWI does not provide any post pro-
cessing that enables you to embed a transform in an MSI package. To do this you have
to work with the _Storages table. When you embed a transform in an MSI package,
you create a sub-storage that will hold the stream containing the transform.

Since the _Storages table is the mechanism that the Windows Installer uses to
create a sub-storage in an MSI package, you should take a look at this table. Table
18-7 describes the attributes that comprise this table.

TABLE 18-7 ATTRIBUTES OF THE _STORAGES TABLE

Column Data Type Key Description

Name Text Y A unique identifier that is the name to be used
as the name of the sub-storage in MSI database.
The length of this identifier cannot exceed 31
characters.

Data Binary Comprises the file to be streamed into the MSI
database.

You work with this table as you would work with any of the tables in the data-
base. You need to create and execute a view to this table, fetch a record, and then
set the values in this record using the MsiRecordSetString and MsiRecordSetStream
APIs. After you have done this you need to use the MsiViewModify API to insert
the record into the _Storages table. When you call the MsiDatabaseCommit API, the
Windows Installer will use the information in this table to actually create the sub-
storage in the database. The _Storages table is only a temporary table and is not
persisted with the database.

778 Part IV: Advanced Concepts

4723-2 ch18.f.qc 1/16/01 11:12 AM Page 778

Windows Installer SDK comes with a VBScript file that provides command-line
functionality for creating sub-storages in an MSI database. The name of this script
file is WiSubStg.vbs and you can use it on the command line as long as the
Windows Scripting Host is installed. The command line you would use to embed
the ISWI Artist.mst transform into the ISWI Artist.msi MSI database is as follows:

cscript wisubstg.vbs “ISWI Artist.msi” “ISWI Artist.mst”

This will create a sub-storage in the ISWI Artist.msi database. The name of this
sub-storage will be ISWI Artist.mst. After you have embedded the transform in the
MSI package, you can run the installation using the following command line:

msiexec /i <path to the ISWI Artist.msi file>
TRANSFORMS=”:ISWI Artist.mst”

The source code for the WiSubStg.vbs file is the place to go to find out more

about how to remove sub-storages from an MSI database or how to get a list

of the sub-storages that might be in a database.

Summary
In this chapter you learned how to use transforms both at design time and at run
time. We discussed the various types of transforms and how they are cached on the
system at run time. This caching is necessary in order for the Windows Installer to
be able to support maintenance operations on an installed product. Transforms are
cached in different locations depending on whether they are secured or unsecured.
Embedded transforms are not cached since they remain with the MSI database
when it is cached on the system.

You learned how to add resources to an MSI package using a transform. Since
transforms only make modifications to a database you cannot use them to directly
change the files in an installation or to change the Summary Information Stream in
the MSI package. You learned what steps to take to edit a transform, which essentially
requires that the transform be applied to the reference database, the changes made to
this database, and the transform recreated. You also looked at some of the VBScript
files that come with the Windows Installer SDK and saw how you could use them to
view the contents of a transform or to embed a transform in an MSI package.

Tip

Chapter 18: The Creation and Use of Transforms 779

4723-2 ch18.f.qc 1/16/01 11:12 AM Page 779

4723-2 ch18.f.qc 1/16/01 11:12 AM Page 780

Chapter 19

Localizing an Installation
IN THIS CHAPTER

◆ The issues related to localizing an installation

◆ The support provided by Windows 2000 for running localized applications

◆ Common installation scenarios that come up during localized installation

◆ How a Windows Installer database gets localized

◆ The features in ISWI that enable you to create localized installations

◆ How to use the ISWI features to create various localized installations

◆ How to add a new language to ISWI

THE PC HAS BECOME the standard global computing and communications tool and
this globalization has created the need to distribute products around the world. It is
incumbent on us to provide our customers with product installations in many
different languages. Creating numerous international editions of a product has
therefore become a major effort that entails creating and managing localized
versions of products and their installations.

Using the features of InstallShield for Windows Installer you can take a big step
toward managing all the aspects of distributing software internationally. In this
chapter we’ll look at a number of issues related to localizing Windows Installer
packages.

The Issues of Globalization and
Localization
The globalization and localization of an installation is not really much different than
the globalization and localization of an application. Globalization refers to the process
by which software is made locale-independent; localization refers to the practice of
modifying software so that it displays its user interface in the language of the user.
When it comes to the globalization activity in the creation of an installation package,
all you are doing is creating a database with a neutral code page. A code page–neutral
installation database is one that only contains characters that can be handled by any

783

4723-2 ch19.f.qc 1/16/01 11:12 AM Page 783

code page. Once you have this type of installation database you can localize it by first
setting the code page of the database and then adding the appropriate localized strings
to the various fields in the affected database tables.

Once you have the neutral code page installation database you need to be able
to localize it according to the needs of the end user. Doing this at run time is the
subject of this chapter. However, before we can get to the point of running an
installation in the language of the end user you need to take a quick look at the
issues involved in creating an installation for a particular locale. A locale is a set of
user preferences that relate to language, cultural conventions, and environment.
These user preferences are represented as a list of values used to identify such
things as input language, keyboard layout, sorting order, and the formats to be used
for numbers, dates, currencies, and time.

If you’re creating a localized installation, translating all the displayable strings is
the task that will undoubtedly take the most time and effort. Creating the appropriate
bitmaps and icons to be displayed on the dialogs making up the installation user
interface will also take a lot of time. The creation of the correct graphics can often be
overlooked, resulting in the display of graphics that have either no meaning to the
end user or might even be considered by the end user to be offensive.

Generally English strings to be translated are totally developed and then sent to
a translation firm where they are translated into the various languages required by
the installation. It’s important to provide the translator with the context in which
the English string is being used. This is because an English string can be translated
in different ways depending on the context in which it is being used.

Something else you should keep track of is the length of the translated string
relative to the length of the English string. Sometimes the translated string will not fit
into the same space as the English string. This will cause the resizing of text and but-
ton controls and could even affect the size of the dialog box itself. Since all dialogs in
a wizard sequence should be of the same size, this is an important consideration.

Windows 2000 Language Support
Windows 2000 has the best international language support of any Windows operat-
ing system that has been released so far, largely because all international versions of
Windows 2000 use the same set of binary files. Because of this it is now possible to
develop multilingual installations on the same machine without having to switch
between various localized versions of the operating system. Of course you should still
test your installations on the various localized version of the OS before releasing
the product.

Windows 2000 is available in either localized versions or in a multilingual version.
There are 24 localized versions of Windows 2000. These localized versions are
English, German, Japanese, Traditional Chinese, Simplified Chinese, Korean, Arabic,
Hebrew, Spanish, French, Italian, Swedish, Dutch, Brazilian, Norwegian, Danish,
Finnish, Czech, Polish, Hungarian, Russian, Portuguese, Greek, and Turkish. Each of
these localized versions has the same ability to handle input, processing, and display

784 Part V: Solving Real-World Problems

4723-2 ch19.f.qc 1/16/01 11:12 AM Page 784

of text in any of the languages supported in Windows 2000. For example, with the
proper selection of a user locale, input locale, and system locale a user could create
and display a Japanese document on an English version of the operating system.

There are differences among the localized versions of Windows 2000 when it
comes to some language-specific items. The following is a list of cases in which a
particular language version of Windows 2000 would provide additional functionality
over another.

◆ Greater migration and upgrade support for the language of the OS

◆ More extensive compatibility for applications written in the language of
the OS

◆ More language-specific fonts available for the specific language of the OS

◆ Greater selection of Input Method Editors available for the specific language
of the OS

◆ Special tools available for the specific language of the OS

◆ More local drivers are available for such peripherals as modems and printers

◆ Legacy support for DOS and earlier BIOS versions

◆ The user interface is localized in the language of the OS

◆ All documents — such as readme files, release notes, and help — are in the
localized language of the OS

The multi-language version of Windows 2000 essentially wraps all the localized
versions into one version. This product enables the switching of the user interface
between the various supported languages. On the same machine one user could run
the user interface in Japanese and another user could run the user interface in
German. Not only as menus and dialogs would be shown in the selected language
but the help files, readme files, and so forth would also be in the selected language.
The main benefit to corporations purchasing this version of Windows 2000 is a
reduction in the total cost of ownership because they don’t have to support separate
language versions of the OS in a multilingual environment.

There is very little difference between the Multi-Language version of Windows
2000 set to a particular user interface language and the localized version of Windows
2000 in that same language. The main difference is that for the Multi-Language ver-
sion of Windows 2000 the install language is English. Also not localized with this
version of Windows 2000 are all 16-bit code, bitmaps, registry keys, registry values,
folder and file names, and .inf files.

For those who want to delve into the international aspects of Windows 2000 in
more depth the following Web site is a good place to start: http://www.
microsoft.com/globaldev/. This Web site is a repository of information about
developing applications that take advantage of the new multilingual features of
Windows 2000.

Chapter 19: Localizing an Installation 785

4723-2 ch19.f.qc 1/16/01 11:12 AM Page 785

Language-Specific Installation
Scenarios
Along with the new international capabilities offered by Windows 2000 comes a
more complex set of installation options. It is now possible to enable the user to
choose the language of the installation and in so doing select the language version
of the product to be installed. No longer do you have to check the language ver-
sion of the operating system and make that the default language for both the instal-
lation and the product.

We can group the various language installation scenarios into one of three
categories. The first category is the simplest: the product is language-specific and
the language of the installation is the same as the language of the product. In the
second category there are a number of different language versions of the product
on the distribution media and the user can choose the language in which to run the
installation. The choice of installation language determines the language version of
the product that is installed. Finally, in the third category there is one application
that ships with multiple language resources. In this scenario the end user chooses
which language to use for the installation as well as the language resources to be
installed. The following sections address these categories in more detail. Then, after
a discussion of how a Windows Installer database is localized, we’ll look at three
example installations that demonstrate each of these three categories.

Installing a single-language product
This is the simplest scenario, wherein the product is defined to be of one language
only. Typically you would set the language of the installation to be the same as the
language of the product. With this type of setup the end user does not choose the
language of the product or the language to be used during the installation.
However, it is possible to offer the user a selection of languages in which to run the
installation. This can be valuable in a multilingual environment where the person
doing the installation is not the person who will be using the application. With
Windows 2000 this becomes totally feasible, but with the Windows Installer there is
a small problem related to the proper registration of the product language. We
discuss this particular problem at the end of this chapter.

Installing a product whose language is set during
installation
In this scenario the end user is offered a list of languages in which to run the instal-
lation and the selection that is made also determines the language version of the
product being installed. Implementing a scenario like this requires that an installa-
tion package be constructed of components that support all the languages to be
offered during the installation. These components are then conditioned on the
ProductLanguage property and only those components that support the selected

786 Part V: Solving Real-World Problems

4723-2 ch19.f.qc 1/16/01 11:12 AM Page 786

language are installed. Alternatively, the user may be given a selection of lan-
guages in which to run the installation, while the components are still conditioned
on the language of the operating system. You could develop other variations, but
they would all be very similar to these.

Installing a product whose language is set when
the product is run
It is possible to create a multi-language application wherein the user can change the
language of the user interface. Applications such as these are normally created using
satellite resource DLLs. In this method, each supported language has its resources in
a separate DLL, which means that there is a separate component for each of these
DLLs. Each DLL uses the same resource identifiers, but also contains strings and
other language- or locale-dependent resources in the appropriate language. Each
DLL is named according to the language of its resource.

When generating the installation package for this type of application, you need
to focus on the structure of the feature tree because you need to enable the end user
to select the languages to be supported by the application. As in the previous two
scenarios, you can also provide a selection of languages in which the end user can
run the installation.

The Localization of a Windows
Installer Database
Before we get into a discussion of how to use ISWI to create a localized install, we
should discuss the inner workings of the Windows Installer and how it handles
language issues. In this discussion you will learn about the MSI database, the
Summary Information Stream, and multi-language merge modules. These three
subjects are covered in the following three subsections.

Basics of Windows 2000 national language
support
In this section we’ll take a brief look at what national language support is and a few
definitions that relate to creating installations in different languages. National
language support is a broad subject so we will only scratch the surface here.

National language support provides an API set that enables you to set the user
locale, user language identification, and retrieve strings formatted correctly for a
specific language and location. It also includes support for keyboard layouts and
language-specific fonts.

Chapter 19: Localizing an Installation 787

4723-2 ch19.f.qc 1/16/01 11:12 AM Page 787

Languages are installed on Windows 2000 in the form of language groups. For
any particular language group the system locale determines which code pages are
used on the system by default. The user locale determines which settings are used for
formatting dates, times, currency, and numbers by default for each user. It also deter-
mines the sort order for text. When it comes to creating localized installations, you do
not need to know any more about the intricacies of national language support.

For a complete discussion of national language support in Windows 2000 a

good source is the MSDN Library.

Now let’s take a closer look at what these particular terms mean. To do this, look
at the Regional Options applet accessed from the Control Panel. This dialog is
shown in Figure 19-1.

Figure 19-1: The Regional Settings dialog from the Windows 2000 Control Panel

LANGUAGE GROUP
When you install a language group, you are controlling which system locale and user
locale can be selected. When you’re installing the English version of Windows 2000,
the Western Europe and United States language group is installed by default. This
particular language group cannot be uninstalled. In Figure 19-1 you can see that a
number of other languages can be installed. If you decided to check the Japanese lan-
guage group in the Regional Settings dialog and then click the Apply button, you
would be asked for the CD-ROM from which the original installation of Windows
2000 was performed so that this additional language group could be installed.

XREF

788 Part V: Solving Real-World Problems

4723-2 ch19.f.qc 1/16/01 11:12 AM Page 788

When an additional language group is installed, Windows 2000 copies the neces-
sary keyboard files, Input Method Editors (IMEs), TrueType Font files, bitmap font
files, and national language support files (.nls). This operation also adds registry
entries for font linking and installs scripting engines for complex script languages
such as Arabic and Hebrew. The fact that a language group has been copied to the
system does not mean that this new language group has been activated. Any number
and combination of language groups can be installed on any Windows 2000 version.

There are 16 language groups in addition to the Western Europe and United
States language group. These language groups are Arabic, Armenian, Baltic,
Central Europe, Cyrillic, Georgian, Greek, Hebrew, Indic, Japanese, Korean,
Simplified Chinese, Thai, Traditional Chinese, Turkish, and Vietnamese. When any
of these language groups is copied to the system, Windows 2000 will require that
the system be rebooted.

SYSTEM LOCALE
The system locale determines which code page is used on the system by default. The
system locale setting only affects those applications that are not fully Unicode-
compliant. When you set the system locale to a certain language, Windows 2000 is
instructed to emulate a non-Unicode-based operating system that is localized to the
language you have selected. This does not mean that the dialogs and menus of the
operating system are changed to the selected language. Setting the system locale
only affects the dialogs and menus of the applications of the system that are not
fully Unicode-compliant.

For example, once you have installed the Japanese language group and want the
code page for this language to become the default UI code page, click the Set
default... button in the Regional Options dialog and you will get the Select system
locale dialog shown in Figure 19-2.

Figure 19-2: The Windows 2000 Select system locale dialog

In this dialog you select Japanese from the combo box and click the OK button.
Back in the Regional Options dialog, click the Apply button and you are offered the
choice of recopying the language group from the original CD-ROM or using the
files you have already copied. Click the Yes button in this message box to use the
files you have already copied; you are immediately notified that the system needs
to restart for the new settings to take effect. After the restart you’ll notice that
Japanese is now shown as the default in the Regional Options dialog, shown in
Figure 19-3.

Chapter 19: Localizing an Installation 789

4723-2 ch19.f.qc 1/16/01 11:12 AM Page 789

Figure 19-3: The Regional Options dialog with Japanese as the default language

The Japanese code page is now the default UI code page in the MSI documenta-
tion. Note that Japanese cannot now be deselected; if you scroll down to the
Western Europe and United States language group you’ll see that it is still checked
that you cannot deselect this language group either, even though it is no longer
shown as the default. If you want to deselect Japanese, you would first have to
change the default back to the Western Europe and United States language group
and then uncheck the Japanese language group. Then clicking on the Apply button
would remove this language group from the system.

USER LOCALE
The user locale determines the default sort order and the default settings for
formatting dates, times, currency, and numbers. The user locale is set by using the
Your locale (location): combo box at the top of the Regional Settings dialog. The
user locale is not considered a language setting. It just handles formatting issues for
displayable text. Even though Japanese is currently selected as the default language
you can still continue to use the formatting criteria for United States English. When
you apply a particular user locale, you don’t need to restart your computer.

CODE PAGE
A code page defines a collection of characters, numbers, punctuation, symbols, and
special characters for a particular language. Each character in a code page is
assigned a numeric value called a code point. Computer hardware, software, and
operating systems exchange information for a particular language or group of
languages using these code points.

790 Part V: Solving Real-World Problems

4723-2 ch19.f.qc 1/16/01 11:12 AM Page 790

For historical reasons the Windows code page currently in effect is referred to as
the ANSI code page. The original Windows ANSI code page was developed for use
with Windows 3.1 and was targeted for use in the United States and Western
Europe. This code page was called code page 1252, Latin 1, or Windows ANSI. The
explosion of computer usage around the globe necessitated the creation of many
new single-byte and double-byte code pages. All of these code pages are still
referred to as the ANSI code page.

Localizing a Windows Installer package
Now that you understand a little about how Windows 2000 handles the complex
issues of language support, take a close look at what you need to do to localize an MSI
package to a particular language. You need to examine three areas in particular: the
database, the Summary Information Stream, and the handling of multiple language
merge modules. Each is the subject of one of the following three subsections. Before
you go on, however, look at how strings are stored in the MSI package. This discussion
applies to both the MSI database and merge modules, but it does not apply to the
Summary Information Stream.

THE STRING POOL
In order to minimize the size of the database all strings are stored in a single array,
called the string pool. In other words, all strings are actually in the database only
once even if they are used in more than one location in the database. Each table
that uses a string has only an index into the string array; it does not actually
contain the string itself. Case-sensitive string comparisons are accomplished very
quickly since all they require is the comparison of the indices of two strings. Fast
string comparisons are required, for one example, during database queries. When
you open an MSI database using Orca and see a string in a particular column, what
you are seeing is the string being indexed by that column. The string is not actually
stored in the column.

The string pool actually consists of two sets of data stored in a stream called
_StringPool. One set of data consists of an array of refcounts, attributes, and string
lengths. Attributes deal mainly with the type of string — whether it is a double-byte
character set string (DBCS), the display style, or other. The other set of data
contains the strings that are all concatenated together without the NULL terminator.
The code page of the database is stored in the header of the _StringPool stream.

It is important to validate the string pool when creating a localized installation
database because it is possible to have a corrupt string pool. The only means of
validating the string pool is to use the MSIINFO.EXE tool in the Windows Installer
SDK. String pool verification consists of two main checks: a check for unsupported
extended characters and a string reference count verification.

Chapter 19: Localizing an Installation 791

4723-2 ch19.f.qc 1/16/01 11:12 AM Page 791

The check for unsupported extended characters can happen in one of two ways
depending on whether the database has a neutral code page or not. For packages
with a neutral code page a check is made to see if any characters are extended
character. If such a string is found, it is flagged and a message is displayed saying
that the code page of the database is invalid because these characters require a
specific code page to be rendered consistently on all systems.

If the database has a code page, each string is scanned for an invalid extended
character. This check requires that the code page of the database be installed on the
system. If there is a code page problem, a message is displayed saying that the code
page of the database is invalid because these characters require a specific code page to
be rendered consistently on all systems. You can fix the problem by using the pseudo
_ForceCodepage table to force the code page of the database to the appropriate value.
The next section describes the use of this pseudo table.

To verify the reference counts of all strings, every table is scanned for string
values, a count of each distinct string is kept, and the result is compared to the
stored reference count in the database string pool. If there is a string reference
count problem, the database is considered to be corrupt. You can fix this problem
by exporting each table of the database using the MsiDatabaseExport API. This
function creates a text archive file for each table exported. These text archive files
are then used to create a new database using the MsiDatabaseImport API. The new
database will have the same content as the old database, but the string reference
counts will be correct. Adding data to or deleting data from a database with a
corrupt string pool can increase corruption of the database and loss of data.

LOCALIZING THE MSI DATABASE
When you want to localize an MSI database, you need to concern yourself with not
only the localized strings that make up the authored installation user interface and
those that are added to the system during installation, but also with the code page
of the database, the ProductLanguage, ProductCode, and PackageCode properties,
and the localization of the Error and ActionText tables. First we need to discuss
how to set the code page of an MSI database.

THE DATABASE CODE PAGE Before we get into a deeper discussion of setting the
code page for an MSI database we need to discuss the concept of a code page
neutral database. A code page neutral database contains only those characters that
can be translated using any code page. This means that all characters must be
contained in the ASCII character set. This is because all code pages share this char-
acter set, which is the lowest 128 characters (0x00 to 0x7F). The code-page entry in
the string pool header for a code page neutral database is 0.

792 Part V: Solving Real-World Problems

4723-2 ch19.f.qc 1/16/01 11:12 AM Page 792

You define the code page of an MSI database by importing a text archive file for
a pseudo table with the name of _ForceCodePage. The first two lines in the file are
to be blank; on the third line there is to be a numeric code page number followed
by a tab delimiter and the string _ForceCodePage. You can import this text archive
file using the MSIDB.EXE utility found with the Windows Installer SDK on the
CD-ROM at the back of the book, or you can add it programmatically with the
MsiDatabaseImport database function or the Import method of the Database object
available as part of the Windows Installer automation interface. Once you have set
the code page of an MSI database you need to stamp all further text archive table
imports with the same code page; otherwise the import action will fail.

You can also set the code page of a neutral database by importing a text archive
file that includes non-ASCII characters. A text archive file that contains non-ASCII
characters is stamped with the appropriate code page. When you import this file
with the MsiDatabaseImport API function, the code page of the database is set to
the code-page stamp of the text archive file. After this, only text archive files that
are code page neutral or have the code page of the original text archive file can be
imported. All other text archive files will cause failure of the import action.

All strings are stored in an MSI database as ANSI strings regardless of the
operating system on which the database was built. This is because an MSI package
must run on Windows 9x just as easily as it runs on Windows NT/2000. The main
thing to remember about the code page for an MSI database is that its primary
function is to correctly translate the strings being added to the database and the
strings being extracted from the database for use during an installation. Except in
one minor way, which we discuss in the next section, the database code page does
not have any function in the actual display of the strings when the installation
is run.

On Windows 9x the strings in the database are displayed at run time based on
the active code page as defined by the system locale. If the system locale code page
does not support some of the characters authored into the database, these charac-
ters will not appear correctly during the installation. On Windows NT/2000 the
strings in the database are translated from ANSI to Unicode and are thus displayed
properly. The only requirement is for the database code page to be on the system so
that the translation can occur. ANSI strings are translated to Unicode by the
MultiByteToWideChar Windows API with the database code page being used as
input to this function.

ADDING LOCALIZED STRINGS TO THE DATABASE In the last section we touched
on the issue of adding localized strings to the database by importing text archive
files. You add localized strings to an MSI database in two ways: by importing text
archive files or by programmatically adding strings using the Windows Installer
API. Since we have already covered the importing of localized text archive files in
the last section, in this section we’ll look at the programmatic approach.

Chapter 19: Localizing an Installation 793

4723-2 ch19.f.qc 1/16/01 11:12 AM Page 793

When you add localized strings to a database, there are four things that you
have to be concerned about: the operating system of the authoring environment,
the code page of the database, the system locale code page, and the code page
required to support the characters in the strings being added to the database.
Programmatically modifying a database means that you are going to open the
database, create a view, modify all records that contain localizable strings using
the MsiRecordSetString API, and then commit the changes to the database.

When you author a database on a Windows 95/98 system, the code page of the
database must match the current code page of the system. The strings being passed
to the database then require the code page of the database for proper display. The
code page of the database can be neutral (0) and in this case you would only be
able to pass strings that use the original ASCII characters — that is, there could
be no extended characters.

The situation changes when you author a localized database on a Windows
NT/2000 system. On these operating systems the only requirement is that the code
page of the database be on the system when the strings are being passed to the
database. The code page of the database does not have to be the code page
currently in effect on the build system. You start the process of localizing a
Windows Installer database by setting the code page of the database before you add
any strings. You do this by importing the _ForceCodePage pseudo table. The next
step is to convert the ANSI strings from your authoring environment to Unicode
using the MultiByteToWideChar API function with the database code page as input.
Then use the resulting string as input to the Unicode version of the
MsiRecordSetString function. When the database is committed, the Unicode string
passed to it is translated back to ANSI using the code page of the database. This
process results in a properly localized database.

However, if you pass an ANSI to the ANSI version of the MsiRecordSetString API
function, Windows NT or Windows 2000 converts this ANSI string to Unicode using
the current code page of the system. When the database is committed, the Unicode
string is then converted back to ANSI using the code page of the database. If the
current system code page is different from the code page of the database, this could
result in corruption of the strings in the database. Also, in the event that you change
the code page of the database when it already contains non-ASCII characters, the
non-ASCII strings will be translated to the new code page. This will also corrupt
the database if the existing strings have characters not supported by the new data-
base code page.

Finally, consider the display of text in controls that populate a dialog box.
Essentially it is important that the DefaultUIFont property be set to one of the
predefined styles listed in the TextStyle table. If this property is not set,
the Windows Installer will use the system font and if the code page of the database
is different from the system locale code page it is possible that the Windows
Installer will incorrectly display text strings in the User Interface Wizard of the

794 Part V: Solving Real-World Problems

4723-2 ch19.f.qc 1/16/01 11:12 AM Page 794

installation. Also, there is an attribute you can set for the Text, ListBox, and
ComboBox controls that enables you to specify whether the database code page or
the system locale code page is to be used to create the fonts shown in these
controls. The name of this attribute is UsersLanguage. When this bit flag is set, the
system locale code page is used; when it isn’t, the database code page is used. If you
have a database that is not code page neutral, you will want to use the code page
of the database to display strings. If your database is code page neutral, then you
can set the bit flag so that the code page of the system locale is used to display
the strings.

LOCALIZING THE ACTIONTEXT AND ERROR TABLES The ActionText and Error
tables provide an important part of the text displayed in the installation user inter-
face. The ActionText table contains localizable text that is displayed in a progress
dialog box describing the action currently being executed. The text in this table is
also written to a log file when logging is enabled. The format of this table is shown
in Table 19-1.

TABLE 19-1 THE FORMAT OF THE ACTIONTEXT TABLE

Column Data Type Key Description

Action Identifier Y Contains the name of the action with which the
action text is associated. This is the primary key
for this table.

Description Text Contains the localized text that will be displayed
when this action is being executed.

Template Template Contains the localized template string that
displays the action data associated with the
action listed in the first column.

The Error table is used by the Windows Installer to look up error message–
formatting templates when processing an error that has a defined error number.
Error messages are also localizable strings and you need to handle the translation
of these error messages when localizing an MSI database. Table 19-2 shows the
format of the Error table.

Chapter 19: Localizing an Installation 795

4723-2 ch19.f.qc 1/16/01 11:12 AM Page 795

TABLE 19-2 THE FORMAT OF THE ERROR TABLE

Column Data Type Key Description

Error Integer Y Contains the error code. This code is a positive
integer used to find the message to be displayed
when an error occurs. The Windows Installer uses
a set of reserved error codes ranging from 0 to 33.
There is another set of error codes that start at
1000 and go through 1999. These are what are
called ship error codes and they are authored into
this table along with the other reserved error codes.
Error codes greater than 1999 are considered
internal errors and not authored into the database.
The range of error codes from 25000 to 30000 is
reserved for use by custom actions.

Message Template Contains the localized template that is displayed
when an authored error occurs.

The Windows Installer SDK includes localized versions of the ActionText and
Error tables for all languages supported by the Windows Installer. You can import
these tables into an MSI database by using the MSIDB.EXE utility found in the SDK
or by using the MsiDatabaseImport API.

ISWI automatically includes localized versions of these tables when you add a
supported language to your installation project. With these tables already available,
the only thing you need to do when you author an MSI package is make sure that
you localize any custom strings you have authored.

SETTING THE PROPERTIES When localizing an MSI database, you need to make
sure that the ProductCode, ProductLanguage, and PackageCode properties are set
correctly. One of the simple rules you need to follow is that every language version
of a product must be considered a separate product. An English and a French
version of the same product must each have different ProductCode properties
because they are considered different products. The PackageCode is set in the
Revision property of the Summary Information Stream and must be different for
each package.

There is, however, an instance where two different products can be installed from
the same package. This can happen when a base package is modified at run time by a
transform. The transform modifies the package so that it installs a particular lan-
guage version of the product. It changes the ProductCode property as part of the
transform operation but the package code remains unchanged since it is not affected
by the transform. All that is required is for the bootstrap executable that launches the
installation to query the user for the language version of the product to be installed.

796 Part V: Solving Real-World Problems

4723-2 ch19.f.qc 1/16/01 11:12 AM Page 796

THE SUMMARY INFORMATION STREAM
Two properties in the Summary Information Stream are important when you are
localizing an MSI database. In the Template property you identify a list of
languages supported by the database. Entering a comma-delimited list of numeric
language IDs in this property specifies the supported languages. If the language ID
entered is 0, the database is identified as being language-neutral. The whole
purpose of identifying the supported languages in the Summary Information
Stream is so that when transforms are being applied to the database validation can
be performed against the language of the database. If the supported languages
identified in the Summary Information Stream do not match the language of the
database, you can define that the transform not be applied.

The other property to set is the Codepage property. The Codepage property is the
numeric value of the ANSI code page used for any strings stored in the Summary
Information Stream. This property translates the strings in the Summary Information
Stream into Unicode when the contents are being displayed in windows Explorer. You
must set the Codepage property before setting any property strings in the Summary
Information Stream. This is not the same code page that is in the header of the
_StringPool stream in the database.

Chapter 18 addresses in detail the creation and application of transforms.

MULTIPLE-LANGUAGE MERGE MODULES
In Chapter 17 you learned about merge modules and using them to deliver compo-
nents to an installation database. In this section we’ll briefly touch on a special
type of merge module that contains components that support more than one
language. Version 1.52 of ISWI does not support the creation and merging of mul-
tiple-language merge modules.

The basic concept of a multiple-language merge module is that it is comprised of
components that ship files in different languages. The merge module is identified as
having a default language both in the Template property of the Summary
Information Stream and in the Language column of the ModuleSignature table. The
Template property contains a comma-delimited list of all the languages supported
by the merge module with the first language in the list being the default language.
The cabinet file embedded in the merge module contains all the files that comprise
the components in the merge module.

For every language supported by the merge module there is an embedded trans-
form inside the merge module that is applied when the module is opened during a
merge operation. Which transform is applied to the merge module prior to its being
merged depends on the requested language at merge time. The merge tool is
responsible for requesting the language and then applying the transform to the
merge module before actually merging it with the installation database.

XREF

Chapter 19: Localizing an Installation 797

4723-2 ch19.f.qc 1/16/01 11:12 AM Page 797

The Localization Features of ISWI
You enable the localization features of ISWI when you install one of the language
packs. There is an East language pack and a West language pack that provide trans-
lated text for all the dialogs that come with ISWI as well as the localizable text in the
ActionText and Error tables. When you look at the localization features of ISWI, you
will see that both build-time and run-time functionality have been made available.
The core of the build-time functionality is the string table.

The string table
In Chapter 7 you learned about the basic functionality and concept of a string table,
and you do not need to go back over that material again. What we’ll discuss here is
the string table with respect to the localization of an installation. In order to add
languages to an installation you need to go to the Project Properties icon in the
Project view and select the Setup Languages property. When you do this, you will
see at the bottom right of the screen a list of languages that you can add to your
setup project. If you were to select French, German, and Spanish in addition to
English, you would see something like what is shown in Figure 19-4.

Figure 19-4: A selection of four setup languages

798 Part V: Solving Real-World Problems

4723-2 ch19.f.qc 1/16/01 11:12 AM Page 798

If you click any of the four string tables under the String Tables icon in the
Project view, you will see the standard text in the particular language you chose.
Also, you can see that a red arrowhead identifies the English string table in Figure
19-4. This tells you that this is the default language that will be used throughout
the ISWI IDE. You can set any of the other languages as the default IDE language
by right-clicking one of the non-default languages and selecting the Make default
option from the context menu. If you were to do this for French, you could then go
to the Power Editor, open up the ActionText table, and see all the localizable strings
in French.

You need to set the default language to the one you will be using to author the
setup package. When you create custom strings, such as feature display names,
these strings will be placed into the default string table. When the setup project is
complete, you can export these strings to a tab-delimited text file for translation
into the other languages. You would, of course, make sure that you had set all the
string identifiers to your format before exporting these custom strings. If the
formats that you use for all the new string identifiers do not all sort together, you
can get them to sort contiguously by sorting on the Modified column instead of the
Identifier column. The Modified column provides the date and time that the strings
were placed into the string table.

The Dialog Editor
In the Dialog Editor, accessible through the User Interface view, the default
language you set in the Project view plays an important role. In the User Interface
view you can access and edit dialogs in each language for which you have defined
a setup language. Each dialog in every language will always have the same
controls. The default language you set in the Project view under the String Tables
icon has no meaning in the Dialog Editor. Whatever you do to any dialog, regard-
less of the language, will affect that dialog for all the languages. The only control
attributes that are not propagated to other dialogs are the size, position, and right-
to-left (RTL) attributes. When you change the position or size of a control in one
dialog, the change does not apply to the other language versions of that dialog.

Filtering components on language association
One of the things you can do in ISWI is identify a component with a language or
set of languages. When you click a component in the Setup Design view, you see
that there is a property called Languages. This is not a Windows Installer property
but a property defined by ISWI. By default all components are indicated as being
Language Independent. However, if you click the Languages property for a compo-
nent you can see that a list of languages appears in the bottom right corner of the
screen. This list looks like the list you get when setting the setup languages but here
you get not only the languages but also all the sub-languages defined for the
Windows operating system. Also, you do not need to install the language packs for
this list to be functional.

Chapter 19: Localizing an Installation 799

4723-2 ch19.f.qc 1/16/01 11:12 AM Page 799

After you have set the Languages property for the component you make use of
this property when you build the installation package. In the Release Wizard there
is a dialog called Filtering Settings. This dialog is shown in Figure 19-5.

Figure 19-5: The Filtering Settings dialog of the Release Wizard

In the Application Data Language Settings group box you can filter the compo-
nents for the current build based on language. As soon as you select the option to
filter the components the list of languages in the list box is enabled. You then select
the component languages that you want included in the build. The Release Wizard
will include only those components that have a Languages property value that
matches the languages selected in the Filtering Settings dialog. The Release Wizard
will also include all components identified as being Language Independent.

Just because you can filter components based on language doesn’t mean

that you can create different language versions of a product from one

project file simply by filtering the components. You need to keep in mind

that every language version of a product requires a different value for the

ProductCode property. Also, if there are to be separate packages for each

language version of a product then there will need to be different

PackageCode values. There is also the consideration of whether the

UpgradeCode property should be changed or not between the different

language versions of a product.

Caution

800 Part V: Solving Real-World Problems

4723-2 ch19.f.qc 1/16/01 11:12 AM Page 800

Multilingual installations
With ISWI you can create multilingual installations. The first aspect of multilingual
installations you need to understand is another of the dialogs in the Release Wizard
and the functionality it controls.

THE SETUP LANGUAGES DIALOG IN THE RELEASE WIZARD
The Setup Languages dialog is shown in Figure 19-6.

Figure 19-6: The Setup Languages dialog in the Release Wizard

In this dialog you are presented with a list of the setup languages that you have
added to the project. It is in this dialog that you control how the specific build in
progress will be constructed with regard to language support. You can see that in this
dialog a default language is identified. Identifying a default language in this dialog
does not have the same meaning as identifying a default language in the Project view.
Here you are specifying the language or possible languages in which the installation
will run. The default language specified here is the language in which the installation
will be run. Any of the languages in this dialog can be deselected except the language
designated as the default language. To change to a different default language all you
need to do is select another language and click the Make default button.

At the bottom left in the Setup Languages dialog is a check box with the title
Display the Setup Languages dialog, which when checked forces SETUP.EXE to
display an initial dialog from which the user can select the language in which the
installation is to run. Once the user has chosen a language SETUP.EXE launches the
installation using that language.

Chapter 19: Localizing an Installation 801

4723-2 ch19.f.qc 1/16/01 11:12 AM Page 801

BUILDING THE MEDIA
Regardless of whether the Display the Setup Languages dialog check box is checked
or not, the SETUP.EXE and SETUP.INI files must be part of your installation package.
SETUP.EXE implements the functionality of the multilingual installation and it gets
the information it needs from the SETUP.INI file. There are two locations in the
SETUP.INI file where information is found. This information is used to control the
installation of an application when you select more than one language in the Setup
Languages dialog of the Release Wizard. The first section is the startup section
as follows:

[Startup]
CmdLine=<Command line to be passed to Setup.exe>
Product=<Product name>
PackageName=<Package file name>
MsiVersion=<Windows Installer Version>
EnableLangDlg=[Y | N]

The EnableLangDlg key has a value string of Y if the Setup Languages dialog is
to be launched by SETUP.EXE; otherwise the value string is N. The other section in
SETUP.INI that is important to running a multilingual installation is as follows:

[Languages]
count=4
default=407
key0=409
key1=40C
key2=407
key3=40A

Under this section you get a total count of all the languages; then a language ID
in hexadecimal notation identifies the default language. The default language is
followed by the language ID for all the languages selected in the Setup Languages
dialog of the Release Wizard.

When more than one language has been selected in the Setup Languages dialog,
the build creates a media image that consists of a code page neutral MSI database and
a separate transform for each language selected. The code page neutral database is
one that contains no tables that have columns that have localizable columns. Creating
a temporary MSI database for each language and then generating the transform as the
difference between this language specific database and the code page neutral database
creates the language transform for each of the selected languages.

You run into a problem on Windows 9x if you want to create a multilingual
installation package for languages that require different code pages such as
English, German, or Greek. Either the German or Greek strings in the MSI database
will be corrupt depending on whether the system locale on the build machine is set

802 Part V: Solving Real-World Problems

4723-2 ch19.f.qc 1/16/01 11:12 AM Page 802

to code page 1252 (Western Europe and United States) or code page 1253 (Greek).
Both German and Greek have different extended character sets, and only the
characters supported by the system locale code page will be translated correctly.

It is possible that a multilingual installation package could be created successfully
with only English and Greek as the selected setup languages because generally
English characters can be translated by the ASCII character set, which all code pages
support. You would need to set the system locale of the build machine to the Greek
(1253) code page so that the Greek characters would be properly translated.

RUNNING THE INSTALLATION
If the Setup Languages dialog has been enabled, the user is presented with a dialog
that contains a combo box that lists all of the languages included in the installation
as setup languages. Choosing one of these languages launches the setup in this
language. To launch the setup, SETUP.EXE launches the code page neutral MSI
database and applies the appropriate language-specific transform to it. Since this
operation only transforms the in-memory version of the database, the language
transform along with the code page neutral database is cached on the machine for
use during maintenance operations.

On Windows 9x machines, if the current system locale code page does not
support the selected install language, then SETUP.EXE will check to see if any of
the other languages identified as setup languages during the build are supported. If
one of these languages is supported, then the install will run in that language. If
none of the languages is supported, then SETUP.EXE will display an error and the
installation will not continue.

On Windows NT/2000 it is only necessary that the code page of the selected
language be installed on the system; the code page does not necessarily have to be
the current system locale code page. If the code page is not installed, SETUP.EXE
will look at the other possible setup languages and if an installed code page
supports one of these then it will be used to run the installation. Otherwise
SETUP.EXE will display an error message and terminate the installation.

If the Setup Languages dialog is not enabled and more than one language is
selected during the build, the installation will be run in the language designated as
the default language. If the default language is not supported by the target system,
SETUP.EXE will look in SETUP.INI for another language supported by the system.

THE PRODUCT LANGUAGE AND PRODUCT CODE PROBLEM
One of the things that you’ll notice immediately when you create multilingual
installations is the fact that the ProductCode property will stay the same regardless
of the language of the installation. Also, the ProductLanguage property will be set
to the language of the install, which may not be the language of the product that is
getting installed.

To follow the rules you need a different ProductCode value for each language of
a product. Using the default functionality of ISWI you cannot do this. It is necessary
to post process the transforms created for a multilingual installation so that each of
the transforms has a different ProductCode. By doing this you ensure that you can
install different language versions of a product on the same machine.

Chapter 19: Localizing an Installation 803

4723-2 ch19.f.qc 1/16/01 11:12 AM Page 803

The ProductLanguage property is set to the language of the install so that if the
Windows Installer displays an internal message during the installation it will be in
the language in which the install is being performed. However, this property also
identifies in the registry the language of the product that is installed. This language
can be used to identify products in the Upgrade table that are to be removed after
the completion of a major upgrade. Here there is no neat solution since once the
ProductLanguage property is set so that it will show the correct language for the
built-in messages it will also be used to identify the language of the product that
has been installed.

You can decide to accept Windows Installer messages in an incorrect language
or you can accept the incorrect product language entry in the registry. If you want
to ignore the possibility of the Windows Installer displaying messages in the wrong
language, you can post process the language transforms so that they include the
language of the product and not the language of the installation. A better approach
is to create installations in the same language as the language of the product and
not provide the end user a choice of install language.

Now that you know all about the localization features in ISWI let’s look at a few
scenarios to see how to create various types of installations.

Using the Localization
Features of ISWI
Let’s look at three scenarios and list the actions you would need to take to create
the appropriate installation packages. There are no example packages for these
scenarios — just a set of steps you need to follow and issues you need to consider.

Creating an installation for a single
localized product
In its simplest form this type of installation is no different from the installation
packages that we have been talking about throughout this book. This is where there
is one product in a particular language and the installation is created in the same
language. If you want to create an installation in German for a German product, all
you have to do is select German as a setup language, change the default language
to German, and deselect the English language. (You would do all this in the Project
view.) You would select or deselect the setup languages in the Project Properties
panel and change the default language under the String Tables icon.

A more complex scenario is one in which you build a project that contains
components of various languages and from this one project build a package for a
particular language version of the product with the same language being used for
the installation. In this case you need to identify each component by its language

804 Part V: Solving Real-World Problems

4723-2 ch19.f.qc 1/16/01 11:12 AM Page 804

association. You can do this in the Setup Design view where one of the properties
you can assign to a component is a language. During the build you can filter out all
components that do not possess the correct language affiliation. You set the filtering
criterion to be used in the build in the Filtering Settings dialog of the Release Wizard
(see Figure 19-5). The next setting you have to make is in the Setup Languages dia-
log of the Release Wizard (see Figure 19-6). Here you have to identify the language
of the product to be the default language and to make sure that all other languages
are deselected. You need to make sure that the ProductLanguage property is set
properly. This will only happen if you make the language you use in the installation
the same as the language of the components in the product.

When you have a project that includes components for multiple language

versions of a product, you need to be careful about changing the

ProductCode property when you build each language version.The Windows

Installer considers two different versions of the same product to be different

products.

Finally you need to understand what it takes to create an installation for a single-
language product but we want to offer the end user a selection of languages in which
the installation can be run. In this scenario you will still want to filter the compo-
nents so that you get only those components applicable to the language version of
the product you want to install. However, you will need to check all the languages
you want to include in the selection offered to the user in the Setup Languages
dialog of the Release Wizard (see Figure 19-6), and you will also want to check the
Display the Setup Languages dialog check box at the bottom of this dialog.

When you build, you get a code page neutral MSI database and a transform file
for each of the installation languages you want offered to the end user. Now you
have to post process the transform files so that they all contain the same value for
the ProductLanguage property. You need to give this product language property the
language ID that corresponds to the language of the product. If you do not do this,
then the product language entered into the registry will be the language in which
the installation is run and not necessarily the language of the product itself.

You can post process the language transforms as described in Chapter 18

where it discusses how to edit a transform.

XREF

Caution

Chapter 19: Localizing an Installation 805

4723-2 ch19.f.qc 1/16/01 11:12 AM Page 805

If you post process the language transforms for a single-language product

in order to offer a selection of languages in which the installation can be run,

you run the risk of Windows Installer internal messages being displayed in a

language different from the language of the installation. For example, if you

have a French product and the end user selects to run the installation in

Arabic, the Windows Installer will display any internal messages in French

because you have set the ProductLanguage property in all the language

transforms the French language ID.

Creating an Installation for a Set of
Localized Products
Here there is only one main scenario, the installation of a particular localized product
based on the language selected for use in the installation user. When creating the
install package, you need to condition each component that is not language-
independent on the value of the ProductLanguage property. This scenario requires that
you do not filter the components based on language association when building the
installation package. You should also select all languages in the Setup Languages dia-
log of the Release Wizard and make sure to check the Display the Setup Languages
dialog check box so that the language selection dialog is enabled at run time. This will
give you a build comprised of a code page neutral MSI database and a language trans-
form for each language in which the product has been created.

Using the technique described in Chapter 18 you need to edit each of the
language transforms you created when you built the install package. For each of
these transforms you need to modify the ProductCode so that each transform has
the product code that corresponds to the language of the product. Now when the
user selects a language for the installation the transform that implements that
language will be applied to the code page neutral database and only those compo-
nents that are language-independent and of which the condition on the component
is true will get installed.

Creating an installation for a product that ships
multiple-language resources
The main scenario for this category of localized installation is very much like the
installation of a single-language product with the language of the installation
being selected by the user at run time. The languages that the product to be
installed will support after installation are selected in the custom setup–type dialog
where the feature tree is comprised of not only the main functionality features but
also the features from which you can select the languages to be supported.

Caution

806 Part V: Solving Real-World Problems

4723-2 ch19.f.qc 1/16/01 11:12 AM Page 806

When building the install package, you should not filter any of the components
based on language association. You can have either a single language for the
installation user interface or you can enable the user select the language in which
the install will run. If you want present the user with a selection of install
languages, you will need to edit the language transforms in order to set the
ProductLanguage property to be the language of the product being installed. It
would be acceptable to set the product language for this type of product to be the
default language that the product will use in its user interface. You could also set it
to the primary language ID if all the languages supported by the product are in the
same family.

Depending on the language selected for the installation user interface, the
Windows Installer may display internal messages in a language different from
the one being used during the installation.

Adding a New Language
ISWI provides a method for adding new languages that are not available using the
language packs that are offered by InstallShield Software Corporation. You can
access the New Language wizard from the Tools pulldown menu by selecting the
Add New Language... option. This option is only enabled if there are no open
projects. When you select this option and click the Next button on the Welcome
dialog, you get a dialog that looks like what is shown in Figure 19-7.

Figure 19-7: The Project Language dialog in the New Language Wizard

Chapter 19: Localizing an Installation 807

4723-2 ch19.f.qc 1/16/01 11:12 AM Page 807

In this dialog you are presented with a list of languages that you can add to past
projects as well as to future projects. When you select one or more languages from
this list, the Next button is enabled and you can proceed to the next dialog in the
wizard. That dialog is the Project Files dialog, shown in Figure 19-8.

Figure 19-8: The Project Files dialog in the New Language Wizard

In this dialog you are given a list of all the projects you have created and you can
select some or all of these to which to add a new language. You can also choose to
include the new language or languages in all future projects: just check the check
box at the bottom of the Project Files dialog. When you click the Next button, you
get to the Summary dialog. When you click the Finish button, the selected projects
and templates are updated. The Summary dialog is shown in Figure 19-9.

Figure 19-9: The Summary dialog in the New Language Wizard

808 Part V: Solving Real-World Problems

4723-2 ch19.f.qc 1/16/01 11:12 AM Page 808

When you add a new language to an existing project you are able to then select
that new language as one of the setup languages. What you get is a copy of the
default language string table, which you then have to translate into the new
language. The standard approach to performing this translation is to export the
string table as a tab-delimited text file and send it to a translator. Once the transla-
tion is complete you import the translated text file and it will overwrite the default
language strings in the string table.

When you add a new language so that it will be included in all new projects, you
are modifying the templates used to create new installations or merge module
projects. However, every time you create a new project you will have to translate
the strings for the new language unless you have preserved the previous text file
that was translated and then import this file each time you create a new project that
needs to use this language. A better way would be to modify the template files used
to create new projects so that you do not have to worry about losing the translated
text file or having to always import it. The project template files are found in the
Support\0409 directory where ISWI is installed. The three template files you want
to modify are as follows:

IsProjTpl.ism The template used by the Project Wizard to create
new projects

IsProjBlankTpl.ism The template you use to create a new project
directly in the IDE without going through the
Project Wizard

IsProjBlankMMTpl.ism The template used to create a new merge module
project

Since these files have the regular project file format you can open them up
directly in ISWI. In these files you can temporarily add the new language as a setup
language and then translate this new language. After the text file is translated you
can import the new language, save the project file, and then deselect this language
as one of the setup languages. After you do that you can create new projects where
this new language will be immediately available because it is now included in the
project template.

Chapter 19: Localizing an Installation 809

4723-2 ch19.f.qc 1/16/01 11:12 AM Page 809

Summary
In this chapter you learned what it takes to localize a Windows Installer package.
You saw that this is not a simple activity, but you also saw how ISWI simplifies
many of the tasks involved. In particular you looked in detail at how the code page
of the database and the current code page of the build system affect the creation of
a localized database, both in a Windows 9x build system and in a Windows
NT/2000 build system environment. Learning how a Windows Installer package
gets localized you were able to easily create a localized package using ISWI.

You saw a number of scenarios where creating a multilingual installation for a
single-language product necessitated the post processing of the language trans-
forms. You needed to post process these transforms in order to set the
ProductLanguage and the ProductCode properties correctly. In the Windows
Installer world, you discovered that two different language versions of a product
are considered two different products and thus need to have different ProductCode
property values.

Finally, you saw how we could extend the language offerings that are available
for ISWI by adding your own languages. You can add these new languages to
existing projects and also to the templates, so that these new languages will auto-
matically be available to all new projects.

810 Part V: Solving Real-World Problems

4723-2 ch19.f.qc 1/16/01 11:12 AM Page 810

Chapter 20

Handling Updates and
Upgrades of a Product

IN THIS CHAPTER

◆ Performing updates and upgrades

◆ Updating a product by reinstallation

◆ Performing major upgrades by using the Upgrade table

◆ Patch package structure

◆ Creating patch packages

◆ Handling updates of the operating system

THIS CHAPTER COVERS one of the most important subjects relating to the installation
of software, which is how to upgrade an application that has already been installed.

Description of the Example Products
In this chapter, you work with an application called MathPlot. On the CD-ROM at the
back of the book, you can find four versions of this product. Both the source code for
this application and the setup projects are available there. Figure 20-1 provides a dia-
gram of this simple application. This application draws some trigonometric functions
with more capability being added with each higher version.

The difference between versions 1.0 and 1.2 is that version 1.2 draws two addi-
tional curves. A COM DLL implements the plotting functionality and is available in
both an ANSI and a UNICODE version. This application follows the rules as to when
the component code of a component is to be changed. All the components in this
application are backward compatible with the component codes remaining from
version to version. After you add the Symbol_Font component to the Main_Feature
feature, you force a change in the ProductCode property and thus the major version
of the product changes. You find the rules of when you need to change the Product
Code property a little later in this chapter.

811

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 811

Figure 20-1: The MathPlot application

MathPlot
Versions 1.0 & 1.2

Main_Feature

Client_EXE Component
Installs the main executable
for the MathPlot application

Help_Comp Component
Installs a Win32 DLL that
launches an HTML page.

Help_Comp Component
Installs a Win32 DLL that
launches an HTML page.

Help_Comp Component
Installs a Win32 DLL that
launches an HTML page.

PlotDLL_A Component
Installs the ANSI version of
COM DLL that implements
the plot functionality.

PlotDLL_W Component
Installs the UNICODE
version of COM DLL that
implements the plot
functionality.

MathPlot
Versions 2.0

Main_Feature

Editor_Feature

Client_EXE Component
Installs the main executable
for the MathPlot application

Symbol_Font Component
Installs the Symbol fonts
required by the plotting
DLLs.

PlotDLL_A Component
Installs the ANSI version of
COM DLL that implements
the plot functionality.

PlotDLL_W Component
Installs the UNICODE
version of COM DLL that
implements the plot
functionality.

MathPlot
Versions 3.0

Main_Feature

Editor_Feature

Client_EXE Component
Installs the main executable
for the MathPlot application

Editor_Comp Component
Installs an executable that
implements basic text
editing.

Symbol_Font Component
Installs the Symbol fonts
required by the plotting
DLLs.

PlotDLL_A Component
Installs the ANSI version of
COM DLL that implements
the plot functionality.

PlotDLL_W Component
Installs the UNICODE
version of COM DLL that
implements the plot
functionality.

DrawShape_A Component
Installs the ANSI version of
COM DLL that implements
the shape drawing
functionality.

DrawShape_W Component
Installs the UNICODE
version of COM DLL that
implements the shape
drawing functionality.

Editor_Comp Component
Installs an executable that
implements basic text
editing.

812 Part V: Solving Real-World Problems

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 812

Types of Updates and Upgrades
The Windows Installer provides a robust functionality for updating or upgrading an
application. This functionality applies to an application that is installed on the local
machine or is installed as an administrative image on a network drive. The Windows
Installer defines three types of updates or upgrades, which are a small update, a
minor upgrade, and a major upgrade. Each of these types of update or upgrades can
be distributed as either a full installation package or as a patch package.

As you may expect, the difference between the three types of upgrades to a
product is how major the changes are to the product. The three types of upgrades
are discussed in detail in the following three sections. Based on the significance of
the changes being applied to the application, the ProductCode may require no
changes. Also, the ProductVersion properties or only the ProductVersion may need
to change or both properties need to change. In all cases, however, the PackageCode
of the cached installation package will need to change.

The use of patch packages to perform an upgrade to an application has advantages
over the approach of using a full installation package. A patch package can contain
an entire file as part of the upgrade process, but the patch package also can contain
just those bits required to modify part of a file. This approach has the advantage of
allowing for a much smaller download by the end user than is necessary if the whole
product had to be downloaded.

Only two types of images can receive an update or an upgrade, which are a local
installation or an administrative installation. You cannot update or upgrade fea-
tures that have not been installed. You find more information about the three types
of updates and or upgrades in the following sections.

The small update
For a small update, you have a situation where a small number of files that make
up the application require some minor changes. If you have this situation and do
not want to change the product version, you can perform a small update. But you
find a problem with this situation because no efficient means is available to detect
whether a user is using the original product or the one with the updated files. This
situation poses a problem for the technical support organization if the changes
made in the affected files fixed any bugs.

You can use three methods to deliver a small update to a product that has
already been installed either locally or as an administrative image on a network
drive. These three methods are as follows:

◆ Perform a reinstallation of the product.

◆ Apply a patch to a local installation of the product.

◆ Apply a patch to an administrative image of the product, followed by
reinstalling the clients of that administrative install.

Chapter 20: Handling Updates and Upgrades of a Product 813

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 813

Upgrading a product
When you get away from making only minor changes to a few files, you get into
the business of upgrading a product. Here you start to make changes in some of the
important properties in the MSI database. The two types of upgrades are the minor
upgrade and the major upgrade. Both of these upgrades are discussed in the fol-
lowing sections.

THE MINOR UPGRADE
A minor upgrade is different from a small update in that a minor upgrade does
change the product version. The product code does not change with a minor
upgrade. The propagation of a minor upgrade to the end user is implemented in the
same fashion as described in the previous section for small updates. One new issue
arises after you propagate a minor upgrade that doesn’t occur with a small update.
You need to make sure that you do not inadvertently downgrade an existing ver-
sion to a lower version. Changing the product version also mandates that you
maintain an order to the application of minor upgrades. For example, if you have a
version 1.0 for which you create a patch to upgrade it to version 1.1, and then you
create another patch to upgrade version 1.0 to version 1.2, you need to be cog-
nizant of the fact that you need to apply the patches in the appropriate order to go
from version 1.0 to version 1.2.

In general, you can control the order of patch application by setting the product
version validation bits in the transforms that comprise part of a patch package.
However, if you propagate a minor upgrade through the reinstallation of the product,
you need to take special care to author into your installation packages the logic
required to prevent the downgrading of a higher version to a lower version. For
example, you do not want a version 1.0 product to be able to reinstall over a version
1.2 product.

THE MAJOR UPGRADE
As you may assume, a major upgrade of a product requires a change to both the
ProductVersion and the ProductCode properties. Major upgrades change the major
version number of a product whereas a minor upgrade changes only the minor ver-
sion number of a product.

PREPARING AN APPLICATION FOR AN EVENTUAL MAJOR UPGRADE To be able
to perform a major upgrade, be sure to include an UpgradeCode in the Property
table in the database. The UpgradeCode is a GUID and it is an indicator of a family
of related products. For example, version 1.0 and version 1.2 of a particular prod-
uct should all use the same UpgradeCode. You also need to have the ProductCode,
ProductVersion, and ProductLanguage properties, which are required properties and
always need to be in the Property table. The UpgradeCode property identifies an
installed application as being a member of the family to which a major upgrade
applies. You can see how this property operates later in the chapter. First look at the
rules that you need to follow before deciding to change the ProductCode property.

814 Part V: Solving Real-World Problems

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 814

WHEN TO CHANGE THE PRODUCTCODE Before you change the ProductCode, fol-
low these specific rules to decide whether the changes are necessary. These rules are:

◆ If having both the original product and the upgraded product on the
machine at the same time is necessary, then the ProductCode properties
need to be different between the two versions. If the ProductCode proper-
ties are not different, trying to install the upgraded version of the product
puts you into a maintenance mode where you can change the existing
product that is already on the machine.

◆ If the name of the MSI package file is to change, then you need to change
the ProductCode property. The reason this change is necessary is because of
the information the Windows Installer writes to the registry for each prod-
uct. One of the values that is written to the registry is the PackageName
against the SourceList key that is associated with each product that is
installed. In the case of a per-user installation this information is written
to the following key:

HKCU\SOFTWARE\Classes\Installer\Products\{ProductCode}
\SourceList

In the case of a per-machine installation this information is written to the
following key:

HKLM\SOFTWARE\Classes\Installer\Products\{ProductCode} \SourceList
All sources identified for a particular product are paths to folders only and
do not include the name of the package. A source can be the location of
some media, a network location, or a URL. The PackageName value is then
appended to these folder paths to get the fully qualified path to the MSI
package. Regardless of the actual source for a product, the name of the
package is identical

◆ The ProductCode needs to change if the component code for an existing
component changes. Once again this is because of how components are
refcounted in the registry. This refcounting of components is done under
the following registry key:

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Installer
\Components\{Component Code}

Under each of the component codes is a list of value names comprised of
the ProductCodes of the products that have installed the component. The
installed state of the component can be either local or run-from-source.
The data associated with each of these value names is the key path for the
component. From this it can be seen that if we change the component code
of an existing component without changing the ProductCode, we will still
have the original component still refcounted in addition to the component
with the new component code. This is, of course, not desirable and would
break the component refcount functionality of the Windows Installer.

Chapter 20: Handling Updates and Upgrades of a Product 815

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 815

◆ If you add a new component to an existing feature or remove a compo-
nent from an existing feature, you need to change the ProductCode. The
association between features and components is written to the registry
under the flooring key:

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Installer
\Features\{ProductCode}

The value names under each of the ProductCode keys are the names of fea-
tures that have been installed locally or run-from-source. The value data
for each feature is the compressed component codes of all components
contained within that feature. At the end of this string of compressed com-
ponent codes is the name of the parent feature if one exists. If you do not
change the ProductCode after adding or removing a component from a
feature, this information in the registry will be incorrect. If this informa-
tion is incorrect, then the installer functions that use this information will
not function correctly.

◆ If you make an existing feature into the child of another existing feature,
you need to change the ProductCode property. The Windows Installer keeps
track of the feature tree of a product in one of two locations depending on
whether the installation was performed per-user or per-machine. For a
per-user install the registry key is as follows:

HKCU\SOFTWARE\Microsoft\Installer\Features\{ProductCode}

For a per-machine installation the registry key where this information
is recorded is as follows:

HKLM\SOFTWARE\Classes\Installer\Features\{ProductCode}

The value names for each of the ProductCode keys are the names of the
features in the product and the value data is the name of the parent feature
for the feature. If the feature has no parent, the value data is null. If the
structure of the feature tree changes without changing the ProductCode,
then you will create incorrect information in the registry for the product
that is already registered.

If you remove an existing child feature from its parent feature, you also
need to change the ProductCode. The reason for this is the same as stated for
when we make an existing feature into the child of another existing feature.

This book is showing the registry entries that are made with versions 1.2 or

lower of the Windows Installer. In future versions of the Windows Installer

the use of the registry will be different. The purpose of showing you these

registry entries is to give you an idea of the basis for the rules that have been

setup by Microsoft. You should not depend on these registry entries being

there in the future.

Caution

816 Part V: Solving Real-World Problems

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 816

In the section above, I mention ProductCodes and ComponentCodes and

their use in the registry. In all these cases, these codes will not look the same

as you see them in the installation projects because they have been entered

into the registry in packed or compressed form. This manipulation of these

codes by the Windows Installer is done in order to enhance searching func-

tionality and to save space in the registry.

Summary of valid upgrade methods
Three types of updates or upgrades are discussed in the previous sections and vari-
ous methods shown to implement these changes. Table 20-1 summarizes all this
information and shows where you can use each of the methods that are available.

TABLE 20-1 SUMMARY OF THE METHODS USED TO UPDATE OR UPGRADE
A PRODUCT

Upgrade Method Upgrade Type Discussion

Reinstallation Small Update Small update works because the Windows
Installer recognizes the product is already
installed on the machine through the
ProductCode being the same.

Minor Upgrade Minor upgrade works because the Windows
Installer recognizes that the product is already
installed on the machine through the
ProductCode being the same.

Major Upgrade The reinstallation cannot be used to perform
a major upgrade because a change in product
code exists and the new MSI package does
not recognize that the old product is on
the system.

Patching Small Update Small update works because the patch
package created uses the original package and
the new package as the sources for creating
the difference that needs to be added to the
installed version of the product.

Continued

Tip

Chapter 20: Handling Updates and Upgrades of a Product 817

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 817

TABLE 20-1 SUMMARY OF THE METHODS USED TO UPDATE OR UPGRADE
A PRODUCT (Continued)

Upgrade Method Upgrade Type Discussion

Patching Minor Upgrade Minor upgrade works because the patch
package created uses the original package and
the new package as the sources for creating
the difference that needs to be added to the
installed version of the product.

Major Upgrade Major upgrade works because the patch
package was created by using the original
package and the new package as the sources
for creating the difference that needs to be
added to the installed version of the product.

In the case of a major upgrade, the old
product has to be removed by using the
functionality contained in the Upgrade
table approach.

Fresh Install Small Update The Fresh Install cannot be used to perform
a small update because no product version
difference exists between the product on the
system and the package that is making
the changes.

Minor Upgrade Even though the Fresh Install can be used
to identify older versions on the system, the
ProductCode property has not changed so
that the Windows Installer will attempt to
perform a maintenance operation on the
current installation.

Major Upgrade Major upgrade works because the Fresh Install
contains the definition of those older products
that have to be removed after the installation
of the new product.

In the following sections, you can investigate a number of the scenarios shown
in the above table. You can use the sample applications found on the CD-ROM at
the back of the book and discussed in the first section of this chapter.

818 Part V: Solving Real-World Problems

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 818

Updating or Upgrading a Product by
Reinstallation
If you update an installation by performing a reinstallation of the product, you can
perform a complete reinstallation or a partial reinstallation. Generally, a reinstallation
is performed from the command line setting the REINSTALL and REINSTALLMODE
properties appropriately. However, you can also perform a complete reinstallation of
a product in a programmatic fashion.

The basic command line syntax for performing a reinstallation of a product is
as follows:

msiexec /i [path to new .msi file] REINSTALL=[feature list]
REINSTALLMODE=vomus

In this command line, you need to identify that path to the new MSI package
because it contains the modified files that comprise the small update. You cannot
use the product code in place of this new .msi file because that only uses the cached
package already on the machine, and the package does not reference the correct
files. For a complete reinstallation, the REINSTALL property is set to a value of ALL.
This value signifies that all features already installed on the local machine will be
reinstalled. To perform a reinstall of just the features that are impacted by the
changed files comprising the small update, the REINSTALL property is set equal to
a comma delimited list of the names of the affected features.

The value string used to set the REINSTALLMODE property defines the type of
reinstallation to perform. Each letter in this string specifies how the reinstallation
treats files, registry entries, and shortcuts. Table 20-2 describes the meaning of each
of these five reinstallation modes.

TABLE 20-2 REINSTALLATION CODES

Option Description

v Using the specified MSI package runs the reinstallation, which is used to
re-cache the local package on the target machine.

o A file is reinstalled if the file is missing or if an older version of the file on the
system exists. The files that change need to have a more recent version. Or if
they are not versioned, then they need to show a later file creation date.

Continued

Chapter 20: Handling Updates and Upgrades of a Product 819

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 819

TABLE 20-2 REINSTALLATION CODES (Continued)

Option Description

m Rewrite all required registry entries from the Registry table that go to the
HKEY_LOCAL_MACHINE or HKEY_CLASSES_ROOT registry hive. Rewrite all
information from the Class table, Verb table, PublishComponent table, ProgID
table, MIME table, Icon table, Extension table, and AppID table regardless of
machine or user assignment. Reinstall all qualified components.

u Rewrite all required registry entries from the Registry table that go to the
HKEY_CURRENT_USER or HKEY_USERS registry hive.

s Reinstall all shortcuts and re-cache all icons overwriting any existing shortcuts
and icons.

An optional command line approach for performing a complete reinstallation of
a product is to use the repair mode switch and not the installation switch. The com-
mand line for the repair mode switch is as follows:

msiexec /fvomus [path to new .msi file]

If you want to programmatically initiate a complete reinstall, you use the
MsiReinstallProduct() Windows Installer API function. Use the Windows Installer
SDK documentation for the correct parameters to pass to this function.

A minor upgrade example by using the
reinstallation approach
On the CD-ROM at the back of the book are setups that are created for version 1.0
and version 1.2 of the MathPlot application. For each of these versions, you find a
Release-1. Work with the Release-1 by first installing version 1.0 and then upgrade
it to version 1.2 by using the following command line:

msiexec /i [path to version 1.2 .msi file] REINSTALL=ALL
REINSTALLMODE=vomus

This command performs a minor upgrade of the MathPlot application by using
a complete reinstall of the product. After you run the command line, you see the
SetupResume dialog display, which is modified to show both the value of the Pre-
selected property and the RESUME property. This dialog was modified in the ver-
sion 1.2 setup package. After you click the Next button, the reinstall takes place
and the new product is immediately available for use.

820 Part V: Solving Real-World Problems

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 820

The above process shown for performing a minor upgrade is the same that

you would use to perform a small update.

Performing a Major Upgrade by
Using the Upgrade Table
The approach to performing a major upgrade is to first find all related products that
are already installed on the system and then to remove these products after the new
product is installed. A related product is one that has the same UpgradeCode as the
product to be installed while the product version and product language match
the product version range and list of valid languages that are identified in the
Upgrade table against the UpgradeCode. The FindRelatedProducts action implements
the process of finding the related products on the system. For every product found
on the system, the FindRelatedProducts action appends the associated product code
to a property identified in the ActionProperty column of the Upgrade table.

The RemoveExistingProducts action uses this list of product codes to initiate the
uninstallation of these found products. To make sure that this public property gets
sent across the process boundary to the InstallExecuteSequence table, make the
ActionProperty a part of the SecureCustomProperties property. This property adds
the ActionProperty property to the list of restricted public properties. Then the
ActionProperty property will still be sent across the process boundary, even if the
application is being managed and the public properties that can be sent across to
the execute sequence are restricted.

During an upgrade, you can have the same feature states of the installed appli-
cation maintained after the upgrade process. Using the MigrateFeatureStates action
maintains the features, but this is only useful if the feature tree has not changed
significantly between the original product and the new product.

The following is a summary of the process of performing a major upgrade using
the Upgrade table:

◆ In the setup of the new product, identify all the products that you are
replacing with this image by authoring rows in the Upgrade table.

◆ By using the FindRelatedProducts action in the new setup of the product,
find all the products on the system that match the criteria provided in the
Upgrade table.

◆ The Installer adds the ProductCode property for each product that is found
to the value of the property name identified in the ActionProperty column
in the Upgrade table. The value of this property ends up being a semicolon-
delimited list of all the product codes found on the target system.

Tip

Chapter 20: Handling Updates and Upgrades of a Product 821

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 821

◆ Add the name of the ActionProperty as a value for the SecureCustom
Properties property. Do this by authoring the value into the Property
table using the ISWI Property Manager. You do this so that the execute
sequence still passes from the ActionProperty in the case where the prod-
uct is being installed as a managed application in a Windows NT/2000
environment.

◆ Using the RemoveExistingProducts action, the installer uninstalls all the
older products that it finds on the system by the FindRelatedProducts action.

◆ If you want to maintain the same feature states in the product that existed
in the old product, use the MigrateFeatureStates action in both the user
interface sequence and the execute sequence and add the appropriate
attribute in the Upgrade table.

The next section takes a closer look at the FindRelatedProducts, MigrateFeature
States, and RemoveExistingProducts actions. The Upgrade table is covered in detail
in the major upgrade example.

The FindRelatedProducts action
As stated in the previous section, the FindRelatedProducts action queries the Upgrade
table to get the UpgradeCode that is used to search the registry for any installed prod-
ucts that have this UpgradeCode. The UpgradeCode for each product is written in the
registry in one of two locations depending on whether the installation of the product
was done per user or per machine. You find another location where this action is also
written, but that location is only for future use. If an installation is performed for the
current user, the UpgradeCode is written to the following registry key:

HKCU\SOFTWARE\Microsoft\Installer\UpgradeCodes\{UpgradeCode}

If an installation is performed for the machine, the UpgradeCode is written to the
following registry key:

HKLM\SOFTWARE\Classes\Installer\UpgradeCodes\{UpgradeCode}

The other location where the UpgradeCode is written for all installations but is
reserved for future use is under the following registry key:

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Installer
\UpgradeCodes\{UpgradeCode}

The UpgradeCode properties are written in a packed format and under each of
these keys is a list of value names that consist of the ProductCode property of the
products that are associated through the UpgradeCode. The ProductCode is also
written in a packed format. There is no value data written to the registry for any of
these value names.

822 Part V: Solving Real-World Problems

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 822

Once again you need to be aware that this book is showing the registry

entries that are made with versions 1.2 or lower of the Windows Installer. In

future versions of the Windows Installer the use of the registry will be differ-

ent.The purpose of showing you these registry entries is to give you an idea

of the basis for the rules that have been setup by Microsoft. You should not

depend on these registry entries being there in the future.

Using the ProductCode associated with the UpgradeCode, the FindRelatedProducts
action finds the ProductVersion and ProductLanguage and decides whether the crite-
rion in the Upgrade table is met. If the action is met, it unpacks the ProductCode and
appends it to the value of the ActionProperty property specified in the Upgrade table.
The action unpacks this ProductCode because it needs to be in the original format for
use in eventually performing an uninstallation using a nested-install custom action.

Because this action finds the product codes to uninstall, the action needs to be
placed prior to either the MigrateFeatureStates or the RemoveExistingProducts
action. Because of the possibility of a silent upgrade being performed, the action
needs to be placed in both the user interface sequence and the execute sequence. The
FindRelatedProducts action is designed to run only once. If the action runs in the user
interface sequence, then it will not run in the execute sequence. Place this action in
the sequence right after the LaunchCondition action, which is the default location.

The MigrateFeatureStates action
The MigrateFeatureStates action uses the results of the FindRelatedProducts action
to determine what relevant products are already on the target system. Then if the
msidbUpgradeAttributesMigrateFeatures bit flag has been set in the Attributes col-
umn of the Upgrade table, this action will query the registry for the feature states of
the installed product and then will set the feature states for the new application to
be the same as for the installed product. Of course, this action is only possible for
those features that have the same names in both old and new products.

Feature states are written to the registry by the PublishFeatures action. The
MigrateFeatureStates action is placed immediately after the CostFinalize action
because the feature states are not finally set for the new product installation until the
CostFinalize action queries the Condition table. You do not want the feature states
modified by the MigrateFeatureStates action until the internal process of setting the
feature states is complete. If the Preselected property is set, the MigrateFeatureStates
action will not run. The Windows Installer sets this property whenever there is a
resumed installation, such as after the reboot of the system or if the selection of fea-
tures is made from the command line.

Caution

Chapter 20: Handling Updates and Upgrades of a Product 823

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 823

The RemoveExistingProducts action
The main concern with the use of the RemoveExistingProducts action is where it
should be placed in the execute sequence. To place this action in the correct loca-
tion, you need to understand that you are combining two events into one. Instead
of first uninstalling the old product before we install the new product, or installing
the new product and then later uninstalling the old product, you are combining
these two events into one installation package. The whole functionality of the com-
bining of theses two events depends on the proper refcounting of components. By
using this action, older files that are still needed by the new product are not
removed after the RemoveExistingProducts action is executed.

You essentially have two choices where to place the action in the execute
sequence, before any changes are made to the system by the install of the new
product or after all changes are made to the system by the install of the new prod-
uct. You definitely do not want to remove the old product during the making of
changes to the system because that removes files, registry entries, and so on before
the components of the new product are refcounted. The most efficient placement of
this action is after the InstallFinalize action, because this action keeps the install of
the new product from having to reinstall files that were not changed between the
old and the new products. The RemoveExistingProducts action only runs during an
initial install and not during a maintenance installation.

An example using the Upgrade table approach to
perform a major upgrade
To upgrade either version 1.0 or version 1.2 of the MathPlot application to version
2.0, you only have to make one entry into the Upgrade table in the version 2.0
installation package. Use the Power Editor under the Tools pulldown menu in ISWI.
Table 20-3 shows the entries that need to be made in the Upgrade table.

TABLE 20-3 ENTRIES IN THE UPGRADE TABLE OF THE VERSION 2.0 PACKAGE

Row # Column Name Attribute Value

Row 1 UpgradeCode {E04C6575-37E0-11D4-97E4-0010A4ECA65E}

VersionMin

VersionMax 1.20.0000

Language

Attributes 513

Remove

ActionProperty OLDPRODUCTS

824 Part V: Solving Real-World Problems

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 824

The following remarks provide more detail for the entries that are described in
Table 20-3:

◆ The value used in this table for the UpgradeCode comes from the value
used for that property in both the version 1.0 and version 1.2 installation
packages.

◆ Leave the VersionMin column null, which means that no lower bound
is on the minimum version to which this upgrade can be applied.

◆ Leaving the VersionMin field null means that you have to enter a value
for the VersionMax field. Enter the value of the highest product version to
which this upgrade can be applied. In this case that value is 1.20.0000.

◆ Leave the Language column null, so that this upgrade applies to all
languages.

◆ In the attributes column, tell the Windows Installer to include in the
search for installed products those attributes that include the version
specified in the VersionMax column. You also want to migrate feature
states, so that the final result is 512 + 1 as the bit flag to be entered into
the Attributes column.

◆ Leave the Remove column null to indicate that you want to remove all fea-
tures of the old product. Otherwise, you can provide a comma-delimited list
of feature names you want removed, and only those names would be unin-
stalled after the RemoveExistingProducts action is executed.

◆ In the last column of the Upgrade table, specify the name of the public
property that is to hold the product codes of the installed older products.

In addition to entering the above row into the Upgrade table, enter into the Property
table the SecureCustomProperties property name with a value of OLDPRODUCTS. This
installation package is available on the CD-ROM at the back of the book. One feature
added to this installation package is the value of the OLDPRODUCTS property, which
is displayed in the InstallWelcome dialog box. To perform the upgrade, run the instal-
lation for version 2.0 of the MathPlot product.

Preventing the Downgrading of a
Higher Version with a Lower Version
Authoring your installations so that some time in the future they cannot be used to
downgrade a higher version to a lower version is another application of the Upgrade
table. This action presupposes that you know the UpgradeCode to be used in future
versions, which may not be possible. But I can go through an explanation of how to
implement this functionality, by assuming that a version 3.0 of the MathPlot product
exists and that it has the same UpgradeCode as in version 2.0.

Chapter 20: Handling Updates and Upgrades of a Product 825

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 825

To implement this type of logic requires the use of the UpgradeCode and
SecureCustomProperties properties, the Upgrade, Property, and CustomAction tables,
and the FindRelatedProducts action. The key here is to use the same UpgradeCode
property for all major versions in the same family of products. Then by using the
FindRelatedProducts action, a designated property is set if a product is found that is
a member of this family. This property is then used as a condition on an Error custom
action that displays an error message and then terminates the reinstallation if the user
is trying to downgrade the present version on the computer.

The following is a summary of the process to prevent a lower version from
installing over a higher version:

1. In the setup of a particular product, identify all the higher versions of
the product by authoring rows in the Upgrade table that will detect these
higher version products if they have already been installed.

2. Using the FindRelatedProducts action in the older setup of the product,
find all the products on the system that match the criteria provided in
the Upgrade table.

3. Add the ProductCode property for each product that is found to the value
of the property name identified in the ActionProperty column in the
Upgrade table. The value of this property ends up being a semicolon-
delimited list of all the product codes found on the target system.

4. Add the name of the ActionProperty as a value for the SecureCustom
Properties property. Do this by authoring into the Property table using the
ISWI Property Manager. Add this value so that in the case where the prod-
uct is being installed as a managed application in a Windows NT/2000
environment, the ActionProperty still passes to the execute sequence.

5. Using an Error (Type 19) custom action prevents the installation of a
lower version over a higher version. This custom action is conditioned
using the name of the property entered in the ActionProperty column
of the Upgrade table. If a newer product is found, this property gets set,
and the condition on the custom action evaluates to TRUE, which lets the
custom action execute. The custom action displays a message and then
terminates the installation after the user clicks the OK button.

To demonstrate how this all works, the assumption is made that four versions of
the product is already produced. These are version 1.0, version 1.2, version 2.0, and
version 3.0. The following tables show the entries that need to be made to implement
the logic in the MSI package for version 2.0, so that it does not install if version 3.0
is already installed, but will upgrade versions 1.0 and 1.2. You can author the ver-
sion 1.0 and version 1.2 MathPlot packages to not install over versions 2.0 and 3.0,
as long as you know in advance the UpgradeCode properties that you use in these
later versions. You can use the same UpgradeCode property for all versions of the
MathPlot application to make the changes easier, but in this example I used a differ-
ent upgrade code for the version 1.x products than I did for versions 2.0 and 3.0.

826 Part V: Solving Real-World Problems

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 826

The first change is to add an additional row to the Upgrade table. This additional
row is shown in Table 20-4 as Row 2. Shown as Row 1 in Table 20-4 is what you have
already entered when you did the major upgrade example in the previous section.

TABLE 20-4 ENTRIES IN THE UPGRADE TABLE OF THE VERSION 2.0 PACKAGE

Row # Column Name Attribute Value

Row 1 UpgradeCode {E04C6575-37E0-11D4-97E4-0010A4ECA65E}

VersionMin

VersionMax 1.20.0000

Language

Attributes 513

Remove

ActionProperty OLDPRODUCTS

Row 2 UpgradeCode {E04C65B6-37E0-11D4-97E4-0010A4ECA65E}

VersionMin 2.00.0000

VersionMax

Language

Attributes 2

Remove

ActionProperty NEWPRODUCTS

In the following remarks, I have provided more detail about the entries shown in
Table 20-4:

◆ Row 1 is the same as what you already entered to perform the major
upgrades of either version 1.0 or version 1.2 of the MathPlot application.

◆ The UpgradeCode used in Row 2 is the value that is assigned to both
version 2.0 and version 3.0 of the MathPlot install packages.

◆ Set the VersionMin column to 2.00.0000, but do not set the inclusive
attribute in the Attributes column, which means that all versions greater
than 2.00.0000 will be detected but not version 2.0 itself.

Chapter 20: Handling Updates and Upgrades of a Product 827

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 827

◆ In the Attributes column, set the msidbUpgradeAttributesOnlyDetect
bit flag so that there will only be detection but not installation of the
products found.

◆ In the ActionProperty column, identify the public property to contain
the product codes of all products found on the target system that match
the criteria specified in this row of the Upgrade table.

The next step is to enter this new ActionProperty property as part of the value for
the SecureCustomProperties property. You do this by using the Property Manager in
ISWI found in the Project view. We use a semicolon delimiter to separate the two
action properties. Table 20-5 shows what this row in the Property table looks like.

TABLE 20-5 ENTRIES IN THE PROPERTY TABLE OF THE VERSION 2.0 PACKAGE

Row # Column Name Attribute Value

Row x Property SecureCustomProperties

Value OLDPRODUCTS;NEWPRODUCTS

The final step is to create the Error custom action that halts the installation of
the earlier version over the later version. You cannot use the Custom Action Wizard
in ISWI to do this, but you can do this directly in the IDE. After you right-click on
the Custom Actions icon in the Actions/Scripts view, select the New option form the
context menu instead of the Custom Action Wizard option. Then make the entries
directly in the property screen, as shown in Figure 20-2.

Figure 20-2: Creating the error custom action

As you can see from the figure, you enter 19 for the Type of the custom action,
leave the Source field null, and enter the message to be displayed in the message
box in the Target field.

Running the example
You find the projects for both version 2.0 and version 3.0 of the MathPlot application
on the CD-ROM at the back of the book. To see how this works, just install version 3.0

828 Part V: Solving Real-World Problems

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 828

and then try to install version 2.0. The installation of version 2.0 will be stopped
immediately by the custom action.

Patching
Patching is a technique that is used to update a file with only those bits that are dif-
ferent. Using this technique is the best means of delivering upgrades of products in
the smallest possible form. Patching can have great value when delivering product
upgrades via the Internet. With the Windows Installer, a patch package contains an
update or upgrade, which combines both the means to upgrade the files in a prod-
uct as well as the means to upgrade the associated MSI database. You can only use
a patch package to perform a small update, minor upgrade, or a major upgrade. The
first subject we need to discuss is the structure of a patch package.

The structure of a patch package
A patch package is a COM structured storage file, but it does not contain a database
such as a normal installation package. A Summary Information Stream comprises a
patch package with at least one transform sub-storage and at least one cabinet file
stream. A patch package has an .msp file extension and this extension is registered
to the following command:

msiexec /p “%1”

However, double-clicking on an .msp file can only perform a major upgrade of a
local installation. The small update and the minor upgrade need to be run from the
command line with certain other parameters being set, which will be discussed in
detail later in this chapter.

THE SUMMARY INFORMATION STREAM
The following is the Summary Information Stream for the patch package as a whole.
Each transform sub-storage has its own Summary Information Stream, which is
described in the following sub-section. Four properties need to be set, as listed below.
For a description of the other properties that can be set, see Appendix B.

Revision Number property A GUID that uniquely identifies the patch package.
A list of patch code GUIDs follow this GUID, which
designates the patches to be removed after this
patch is applied. The patch codes for the patches
to be removed are concatenated with no delimiter
separating the GUIDs in the list.

Template property A semicolon-delimited list of product codes that
designate the products that are valid targets for
the patch package.

Chapter 20: Handling Updates and Upgrades of a Product 829

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 829

Last Saved By property A semicolon-delimited list of the transform sub-
storages contained in the patch package. This list
is given in the order in which these transforms
are applied.

Keyword property Contains a semicolon-delimited list of sources used
for the patch.

Word Count property Specifies the patch engine used to create the patch
files. Windows Installer version 1.1 requires a value
of 1. This value indicates that the Microsoft library
of functions was used to create the file patches. The
file MSPATCHC.DLL provides this library of functions
that need to be used for creating patch packages.
The functions found in MSPATCHC.DLL presently
constitute the only mechanism for creating patch
packages that is currently supported.

THE TRANSFORM SUB-STORAGE
The transforms included in a patch package are used to modify an application’s
database. As discussed in Chapter 15, a transform can add, delete, or modify infor-
mation that is contained in an application’s MSI package. For each database that is
the target of the patch package, you have separate transform sub-storages. Both
sub-storage contain two transforms. One transform is used to change the target
database to the new version of the product. The second transform is used to add
entries to the Patch, PatchPackage, Media, InstallExecuteSequence, and Admin
ExecuteSequence tables. These entries provide instructions to the Windows Installer
for performing file patching.

THE CABINET FILE STREAM
The cabinet file stream in a patch package contains the files or the parts of files that
are required to update or upgrade an application. The cabinet file stream can con-
tain three types of files, as listed below:

Patch files Contain only that information required to change an older ver-
sion of a file into a newer version of the same file. Modifying
more than one file with a single patch file is possible.

New files Not included in the original distribution of the application
and as such, are not present on the machine.

Replacement files Replace an older version of the same file. The most common
use for including this type of file in a patch package is if the
patch file is larger than the new version of the file.

830 Part V: Solving Real-World Problems

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 830

Patch creation basics
Creating a patch package is a complex process, which you can only accomplish by
using the API exported from the Microsoft supplied file PATCHWIZ.DLL. In this sec-
tion, we discuss how to use this API to create a patch package. To use this API, we
first need to create a patch creation properties file (.pcp). Using the API and a .pcp
file, we work through an example of how to create a patch package.

THE PATCH CREATION PROPERTIES FILE
A patch creation properties file is a COM structured storage file that has the same
format as an MSI database, except that it has a .pcp file extension. This database
does not use any of the tables that are used in an MSI database, but instead it has
its own database schema. This schema is shown in Figure 20-3.

You can use nine tables in a patch creation properties file, but only four of these
tables are required. The tables identified with an asterisk in Figure 20-3 are the
required tables. The other five tables are used to specify additional information for
more the creation of complex types of patch packages. The File table shown in the
schema is not part of the .pcp file. The table is shown because many of the tables ref-
erence either the File table in the target image or the File table in the upgraded image.
A patch package is created as the difference between these two images of the product.
We take a close look at the four required tables in the Patch Creation Properties file
because these four tables are populated by the ISWI Patch Creation Wizard.

The API that uses the patch creation properties file is UiCreatePatchPackage with
the only function exported from PATCHWIZ.DLL. The ISWI Patch Creation Wizard
invokes this API after it creates the patch creation properties file. We can also cre-
ate a patch package using the MSIMSP.EXE utility that is available with the MSI
SDK. However, we need to first create the patch creation properties file using the
Orca database-editing tool. Using the ISWI Patch Creation Wizard is much easier.

The creation of a basic patch package uses just the Properties, ImageFamilies,
TargetImages, and UpgradeImages tables. The steps for creating a basic patch package
are as follows:

1. Define the global properties to use in creating the patch package in the
Properties table.

2. Define the product images to upgrade by the patch package in the
TargetImages table.

3. Define the product images in the UpgradedImages table as they will
appear after the application of the patch package.

4. Define a family of upgraded images in the ImageFamilies table.

Chapter 20: Handling Updates and Upgrades of a Product 831

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 831

Figure 20-3: Database schema for a patch creation properties file

Value (Text)

Name (Text)

Target (Text)

(Text)
(Text)
(Text)
(Integer)
(Text)
(Integer)

MsiPath
SymbolPaths
Upgraded
Order
ProductValidateFlags
IgnoreMissingSrcFiles

SymbolPaths (Text)

(Text)FTK
Target (Text)

TargetFiles_OptionalData Table

(Text)FTK
Upgraded (Text)

UpgradeFilesTolgnore Table

(Text)FTK
Family (Text)

(Text)RetainLengths
RetainOffsets (Text)

FamilyFileRanges Table

(Text)
(Text)

IgnoreOffsets
IgnoreLengths

(Text)RetainOffsets

SymbolPaths (Text)

(Text)FTK
Upgraded (Text)

UpgradeFiles_OptionalData Table

(Integer)
(Integer)

AllowIgnoreOnPatchError
IncludeWholeFile

TargetImages Table *

Properties Table *

File (Identifier)

(Identifier)
(Filename)
(DoubleInteger)
(Version)
(Language)
(Integer)

Component_
FileName
FileSize
Version
Language
Attributes

(Integer)Sequence

(Text)
(Integer)
(Text)
(Text)
(Text)

SymbolPaths
Order
IgnoreOffsets
IgnoreLengths
RetainOffsets

File Table Upgraded (Text)

(Text)
(Text)
(Text)
(Text)

MsiPath
PatchMsiPath
SymbolPaths
Family

Family (Text)

UpgradedImages Table *

FilePath (Text)
(Text)FTK
(Text)Family

ExternalFiles Table

(Text)
(Integer)
(Integer)
(Text)
(Text)

MediaSrcPropName
MediaDiskld
FileSequenceStart
DiskPrompt
VolumeLabel

ImageFamilies Table *

832 Part V: Solving Real-World Problems

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 832

The remaining tables provide optional enhanced functionality so that they may be
empty for simple patches. Frequently you need to treat specific files differently.
Sometimes a file may need to be patched, which contains a range of bits that may
contain unpredictable contents. (For example, past versions of Microsoft Office
would stamp some user registration data into the executable.) This presents a prob-
lem when patching is determining if a current file on an end-user’s machine matches
the Target image as well as how to patch just the needed bits while retaining the user
specific bits. In order to accommodate this need, fields were added to specify ranges
of bits to ignore when identifying the file as well as ranges for bits that should never
be overwritten.

The first table that we want to look at is the Properties table. Unlike the other
tables, the Properties table contains a number of prescribed entries for which values
need to be provided. However, these entries do not limit the addition of other rows
to this table if rows are required for other purposes. We see how ISWI adds an addi-
tional row to this table. The Properties table has two columns with the first column
the name of the property and the second column holding the value of the property.
Table 20-6 shows the twelve required properties and gives a description of the pur-
poses of these properties.

TABLE 20-6 DESCRIPTION OF THE PROPERTIES TABLE IN A PATCH CREATION
PROPERTIES FILE

Name of Required Property Purpose of Required Property

PatchGUID A unique identifier for the patch package that is
to be created from the patch creation properties
file. This unique identifier is a GUID in the same
form as the ProductCode property. This is a
required property for every patch package
that is created.

PatchOutputPath The full path, including filename, of the patch
package file that is to be generated. This
information can pass directly to the
UiCreatePatchPackage function. If the
information passes, this property can be
NULL. Otherwise this property is required.

Continued

Chapter 20: Handling Updates and Upgrades of a Product 833

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 833

TABLE 20-6 DESCRIPTION OF THE PROPERTIES TABLE IN A PATCH CREATION
PROPERTIES FILE (Continued)

Name of Required Property Purpose of Required Property

ListOfPatchGUIDsToReplace A non-delimited list of PatchGUID identifiers
that identifies all the patches that can be
unregistered during the application of the new
patch package. This identifier allows older
patches whose changes are incorporated into
this patch to be un-registered and no longer
used. A typical use of this is a service pack that
replaces several hotfixes. To un-register a patch
package means to remove the information in
the registry that associates these patches with
a product and to remove the patch transforms
from the list of transforms that are to be applied
to the MSI database associated with the
product. This property can be NULL.

ListOfTargetProductCodes A semicolon-delimited list of ProductCode
property values for the products that may
receive the patch being created. If this list
begins with an asterisk, the list of product codes
is generated from the .msi files of the targets
listed in the TargetImages table. Additional
product codes can be entered after a leading
asterisk, and they get appended to the list that
replaces the asterisk. This property is required.

PatchSourceList A source used to locate the .msp file for the
patch in the event that the locally cached copy
becomes unavailable. This value is added to the
source list of the patch after it is applied to a
product. This property can be NULL.

AllowProductCodeMismatches Set to 1 if the ProductCode property may differ
between the upgraded images listed in the
UpgradedImages table and the target images
listed in the TargetImages table. If the value of
this property is NULL or 0, a patch package will
not include any of the products where there is a
difference in the ProductCode properties.

834 Part V: Solving Real-World Problems

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 834

Name of Required Property Purpose of Required Property

AllowProductCodeMismatches If we are creating a patch that will perform a
(continued) major upgrade, this property needs to be set

to 1.

AllowProductVersionMajorMismatches Set to 1 if the major version field of the
ProductVersion property may differ between
the upgraded images listed in the Upgraded
Images table and the target images listed in the
TargetImages table. If the value of this property
is NULL or 0, a patch package will not include
any of the products where there is a difference
in the major version field of the ProductVersion
properties. If we are creating a patch that will
perform a major upgrade, then this property
needs to be set to 1.

ApiPatchingOptionFlags A 32-bit integer in hex format that represents
the combination of patch option flags to use
when creating a binary file patch. The default
for this property is to automatically select
the best patching approach and to fail the
creation of the binary patch if the resulting
file is larger than compressing the new file
itself. This approach is the slowest of all the
creation options. You can find a complete
list of the patch symbol usage flags in the
PATCHAPI.H file in the MSI SDK. All these flags
start with the sub-string PATCH_OPTION_.

ApiPatchingSymbolFlags A 32-bit integer in hex format that represents
the combination of patch symbol usage flags
to use when creating a binary file patch.
The default value for this property is zero. A
complete list of the patch symbol usage flags
can be found in the PATCHAPI.H file in the MSI
SDK. All these flags start with the sub-string
PATCH_SYMBOL_.

Continued

Chapter 20: Handling Updates and Upgrades of a Product 835

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 835

TABLE 20-6 DESCRIPTION OF THE PROPERTIES TABLE IN A PATCH CREATION
PROPERTIES FILE (Continued)

Name of Required Property Purpose of Required Property

ApiPatchingSymbolFlags If Microsoft Visual C++ is on the machine
(continued) creating the patch and if symbol files are

provided, the resulting binary patch may be
smaller. A working binary patch will still be
created if no symbol files are provided or if the
symbol files provided to the patch creation dll
are unable to be used (only symbol files created
with Microsoft Visual C++ will be recognized).
Subdirectories of symbol file folders are not
traversed when searching for symbol files.

MsiFileToUseToCreatePatchTables The full path to a template .msi file from which
to export the Patch table and PatchPackage
table. This property is optional.

DontRemoveTempFolderWhenFinished Set to 1 if the temporary folder containing the
transforms, the byte-level patches, and the entire
new files are not being removed after creating the
patch package. These files constitute the contents
of the .msp file before they are embedded into
the patch package. This property can be useful for
debugging patches. Setting this property to 0 or
NULL forces the temporary folder to be removed
after the creation of the patch package.

IncludeWholeFilesOnly Set to 1 if the files being changed are to be
included in their entirety when creating the
patch package instead of creating a binary file
patch. The patch packages will be larger in size,
but the creation of the patch package will be
faster. Setting this property to 0 or NULL means
that a binary file patch will be created.

The next table that we look at is the ImageFamilies table. The ImageFamilies
table provides information to be added to the Media table during the patching
process. The family name is prefixed with PCW_CAB_ to generate the cabinet’s
stream name when embedded into the patch package file. The installer embeds a
cabinet stream in the Windows Installer patch file for each family in the table. The
cabinet contains the binary patches and new files required to update a target image
into an upgraded image of the product.

836 Part V: Solving Real-World Problems

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 836

A family is a group of related Upgraded Images that share one or more common
files. Each Upgraded Image must belong to one and only one Family; a Family con-
tains one or more Upgraded Images. Each Family has its own cabinet file in the
Windows Installer patch file. This cabinet file contains the binary patches and new
files necessary to update the file differences between Target and Upgraded Images.

A family cabinet file, shared among several upgraded images, does not replicate
the binary patches and new files for common files. Any foreign key into the File table
(FTK) shared between two or more upgraded images within a family must represent
the same common file; these common files must be identical between all the upgraded
images in a family. A common file must share the same FTK in each upgraded image
to contribute to a smaller cabinet file. Two or more unrelated upgraded images can be
associated in one family, but the Windows Installer patch will not be any smaller and
there are disadvantages. You can create a Windows Installer patch that patches the
target images of more than one family. But for download efficiency, avoid this patch
and create separate patch packages for each family.

Table 20-7 describes the purpose of the six columns that comprise ImageFamilies
table.

TABLE 20-7 THE ATTRIBUTES OF THE IMAGEFAMILIES TABLE IN A PATCH
CREATION PROPERTIES FILE

Column Name Data Type Key Description

Family Text Y The value entered in this field is an
identifier for a group of related product
images that have been updated to the
most recent version of the product.
This identifier is limited to a total of
eight alphanumeric characters or
underscores.

MediaSrcPropName Text This property is entered into the Source
column of the Media table. This property
identifies the location of the cabinet file
containing the patch files or any new
files added by the patch. A different
source needs to be specified for these
files, because the source of the patch
package can be stored separately from
the product’s source. The patch package
transform adds this property to the
Media table.

Continued

Chapter 20: Handling Updates and Upgrades of a Product 837

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 837

TABLE 20-7 THE ATTRIBUTES OF THE IMAGEFAMILIES TABLE IN A PATCH
CREATION PROPERTIES FILE (Continued)

Column Name Data Type Key Description

MediaDiskId Integer The Windows Installer enters this value
into the DiskId field of the Media table
record created after the patch package
is applied. This value must be greater
than any current DiskID in any of the
target MSI databases, including
previous patches

FileSequenceStart Integer This field is the sequence number for
the starting file. This same file sequence
number must not exist in two patches
for the same product. To ensure this, the
value in this field must be greater than
all sequence numbers used in previous
patches or in the original installation
package. The greatest sequence number
in a patch can be determined by adding
the total number of entries in the patch
cabinet file to the FileSequenceStart
number for that patch.

DiskPrompt Text The Windows Installer enters the value
in this column into the DiskPrompt field
of the Media table record crated after
the patch package is applied.

VolumeLabel Text The Windows Installer enters the value
of this attribute into the VolumeLabel
field of the Media table record created
after the patch package is applied.

The next table that we look at is the UpgradedImages table. The UpgradedImages
table provides information specific to the upgraded image of the product to which the
targets will be patched. The upgraded image needs to be an administrative image of
the latest version of the product because patching does not replace existing versioned
files with lower versions. The upgraded image can also be an uncompressed build of

838 Part V: Solving Real-World Problems

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 838

the upgraded image as created by the ISWI Release Wizard. Table 20-8 describes the
purpose of the five columns that comprise this table.

TABLE 20-8 THE ATTRIBUTES OF THE UPGRADEDIMAGES TABLE IN A PATCH
CREATION PROPERTIES FILE

Column Name Data Type Key Description

Upgraded Text Y An arbitrary identifier to connect the
target images with an upgraded image
of that product.

MsiPath Text Specifies the path to the installation
database at the root of the upgraded
image. This path includes the name of
the MSI database. This field is required.

PatchMsiPath Text Points to another copy of the upgraded
installation database that contains
additional authoring specific to the patch
installation process; an example may be
additional dialogs or custom actions
conditioned on the PATCH property.
This filed is optional.

SymbolPaths Text A semicolon-delimited list of folders that
are searched for Visual C++ symbol files
that can be used to optimize the generation
of the binary patch. Visual C++ must be
installed on the computer generating the
patch and used to create the symbol files.
This field is optional.

Family Text A foreign key into the ImageFamilies table.
An upgraded image can only belong to one
image family.

The next table that we look at is the TargetImages table. This table provides
information for target images similar to the information provided by the Upgraded
Images table for the upgrade images of the product. Table 20-9 describes the pur-
pose of the seven columns that comprise this table.

Chapter 20: Handling Updates and Upgrades of a Product 839

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 839

TABLE 20-9 THE ATTRIBUTES OF THE TARGETIMAGES TABLE IN A PATCH CREATION
PROPERTIES FILE

Column Name Data Type Key Description

Target Text Y An identifier for a target image. The
patch package updates the target
image specified in this column to
the upgraded image specified in the
Upgraded column. You can have one or
more target images for each upgraded
image. As with the upgraded image,
the target image must be a fully
uncompressed administrative image of
the product or an uncompressed build
created by the ISWI Release Wizard.
The value in this field is used with the
value in the Upgraded field to generate
the names of the transforms that the
installer adds to the patch package.

MsiPath Text Specifies the path to the installation
database at the root of the target
image. This path includes the name of
the MSI database. This field is required.

SymbolPaths Text A semicolon-delimited list of folders
that are to be searched for Visual C++
symbol files that can be used to
optimize the generation of the binary
patch. Visual C++ must be installed
on the computer generating the patch
and used to create the symbol files.
This field is optional.

Upgraded Text A foreign key into the UpgradedImages
table.

Order Integer Specifies the relative order of the
target image, which is commonly
from the oldest to the newest image.
Because multiple targets can be
patched to an upgraded image, the
Order field provides a means to
sequence the transforms in the
patch transforms list.

840 Part V: Solving Real-World Problems

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 840

Column Name Data Type Key Description

ProductValidateFlags Text Used to specify product checking to
avoid applying irrelevant transforms
to a target image. The flags used here
are the same validation flags that
are used to create the Summary
Information Stream in a transform.
These flags force validation of the
target database before the transform
is applied. Chapter 18 covers this
topic in detail.

IgnoreMissingSrcFiles Integer If this field is set to 1, then the
Windows Installer ignores the files
that are missing from the target
image and leaves the files unchanged
during patching. This field enables
patches to be made without requiring
the entire administrative image; only
the changed files of the product and
the .msi file are required. This may
reduce the time required to generate
the patch.

We have taken a very detailed look at the four tables that make up every patch
creation package file because this information is important in the proper use of the
ISWI Patch Creation Wizard. Before we leave this section, we want to take a brief
look at the other five tables that are used for advanced patching implementations.

In order to create the smallest patch packages as possible, make a build

using the Release Wizard to optimize the build using the option provided in

the Media Type & Patch Optimization panel. This optimization makes sure

that the same files in two MSI packages use the same File table keys (FTK).

When creating a patch package, two files that have the same FTK are

assumed to be the same file and those files that do not have the same FTK

are assumed to be different files.

Tip

Chapter 20: Handling Updates and Upgrades of a Product 841

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 841

THE UPGRADEDFILES_OPTIONALDATA TABLE The UpgradedFiles_OptionalData
table provides information specific to individual files of an Upgraded Image. If the
symbol files for a file are not in the image’s SymbolPaths, you can use the
SymbolPaths field to add the specific path. (See the glossary for more information
on symbol files). If you encounter a file that is cannot be patched, you can use the
AllowIgnoreOnPatchError field to indicate that the file patch is non-vital (for
example, a readme file); this field allows patching to continue without failing and
halting. If you want to include the whole file instead of creating a binary patch, the
IncludeWholeFile field can be set to a non-zero value.

THE FAMILYFILERANGES TABLE The FamilyFileRanges table provides informa-
tion specific to individual files of an Upgraded Image that have ranges that should
never be overwritten. The offsets and sizes of these ranges to avoid are specified in
the RetainOffsets and RetainLengths fields respectively.

THE TARGETFILES_OPTIONALDATA TABLE The TargetFiles_OptionalData table
provides information specific to individual files of a Target Image. If the symbol files
for a file are not in the image’s SymbolPaths, you can use the SymbolPaths field to
add the specific path. (See the glossary for more information on symbol files.) If the
UpgradedFiles_OptionalData specifies file ranges to retain, the RetainOffsets field
specifies the offsets for those ranges in the Target file; the UpgradedFiles_
OptionalData table derives lengths. If ranges need be ignored only for determining
the signature of a file, use the IgnoreOffsets and IgnoreLengths fields; the file binary
patch may still overwrite these ranges. Note: bound files are automatically unbound
before determining their signature so that the binding data does not need to be
specifically excluded.

THE EXTERNALFILES TABLE The ExternalFiles table provides information just as
the TargetFiles_OptionalData but for files that are not part of a Target Image. Files
that need this capability are those that are part of the product but may be encoun-
tered because they may have been updated by another product or process. The
FilePath field locates the file, and in the event that you have multiple external files
of the same FTK value, the Order field provide sequencing information. The other
fields are similar to those in the TargetFiles_OptionalData table.

THE UPGRADEDFILESTOIGNORE TABLE In some instances, you may not want to
update some of the changed files of the product and want to keep them in the
Upgraded Image. You can do this by using the UpgradedFilesToIgnore table. Files
that are only part of an administrative image can cause an unnecessary increase in
size in patch packages targeted for client machines. If you exclude these files with
the UpgradedFilesToIgnore table, the administrator should be instructed in how to
update these files separately.

842 Part V: Solving Real-World Problems

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 842

Applying a patch package
Use a patch package to perform all three types of upgrades and apply these
upgrades to either locally installed images of a product or administrative images of
a product. One of the main reasons that an administrative installation unpacks all
compressed files is to allow it to be upgraded through the use of a patch package.
In the following subsections, we look at how to apply a patch package to both a
locally installed product and to an administrative image of the product.

THE SMALL UPDATE OR MINOR UPGRADE OF A LOCALLY
INSTALLED IMAGE
The application of a patch package to the local installation of a product is done
from the command line or by using one of the programmatic approaches that are
available. The command line for applying a patch package looks very similar to the
one used to do a reinstallation of the product. The general syntax of this command
line is as follows:

msiexec /p[path to .msp file] REINSTALL=[comma delimited feature
list] REINSTALLMODE=omus

Note that you do not have to identify the product to which this patch is being
applied, because this information is contained in the Summary Information stream
of the .msp file. The application of the patch package does not permanently change
the database in the cached MSI package. The changes to the database required by
the patch package are made only in memory and are applied each time the product
installation is run in maintenance mode or if the product is uninstalled. These data-
base changes are implemented by the transforms that comprise the patch package.

When a patch is applied a number of registry entries are made. For installations
performed for the current user entries are made under the following keys:

HKCU\SOFTWARE\Microsoft\Installer\Products\{ProductCode}\Patches

and

HKCU\SOFTWARE\Microsoft\Installer\Patches\{PatchGUID}\SourceList

Under the first key shown above is a value name of patches with the value data
being a REG_MULTI_SZ list of patches that are associated with the product. For each
patch listed there is a value name of the patch code with the value data being semi-
colon delimited list of transforms that are applied by the patch. Under the second
key shown above is provided the information related to the source locations for the
patch packages. This information is provided in the same fashion as is provided for
the sources each product. Installations performed on a per-machine basis are written
to the following two keys with the same value names and value data as described
above for the per-user installs.

Chapter 20: Handling Updates and Upgrades of a Product 843

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 843

HKLM\SOFTWARE\Classes\Installer\Products\{ProductCode}\Patches

and

HKCU\SOFTWARE\Classes\Installer\Patches\{PatchGUID}\SourceList

For all installations, regardless of whether they are per-user or per-machine, entries
are made under the following registry key:

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Installer\Patches
\{PatchGUID}\

The value name for each PatchGUID is LocalPackage and the value data associ-
ated with this value name is the path to the cached .msp file. All ProductCode and
PatchGUID keys are in a packed format.

Once again you need to be aware that this book is showing the registry

entries that are made with versions 1.2 or lower of the Windows Installer. In

future versions of the Windows Installer the use of the registry will be differ-

ent.The purpose of showing you these registry entries is to give you an idea

of the basis for the rules that have been setup by Microsoft. You should not

depend on these registry entries being there in the future.

The patch package patches the application files that are already installed on the
target system. When dealing with the application files, the patch package ignores
the original source for the application. If any components exist that we identified in
the original installation to run-from-source, these components are changed in the
database so that they are installed locally during the application of the patch pack-
age. After these components are installed locally, the files affected by the small
update or minor upgrade are modified by the patch package. A side effect of this
patch is that you cannot reinstall any of these components to run-from-source as
long as the patch package is on the system.

THE MAJOR UPGRADE OF A LOCALLY INSTALLED IMAGE
Performing a major upgrade using a patch package is easier than doing a small
update or a minor upgrade because we do not have to do it from the command line.
All we have to do is double-click the patch package, and the installation is upgraded.
We can also run the following command line:

msiexec /p [path to .msp file]

Caution

844 Part V: Solving Real-World Problems

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 844

When doing a major upgrade using a patch package, we also need to author the
upgraded image to uninstall the old application. Do this in the same fashion as
explained in the previous section on performing upgrades using the Upgrade table.

PATCHING AN ADMINISTRATIVE IMAGE
You can apply a patch package to an administrative installation by virtue of the
fact that this type of installation has unpacked all compressed application source
files. The application of a patch package to an administrative image is performed in
the same fashion for all three types of upgrades. In fact, one of the purposes of cre-
ating administrative installations in this fashion is to specifically enable the appli-
cation of a patch package to the product. After an administrative installation is
updated through a patch package, the propagation to the end user of the revised
application is through the installation or reinstallation of the product from the
patched administrative image. In other words, getting an updated application on
the user’s machine through the patching of an administrative image is a two-step
process. First, you apply the patch to the administrative image, and then the user
comes to where this image is located and installs the updated product.

The syntax for the command line required to apply a patch package to an
administrative installation is as follows:

msiexec /a [path to the administrative image .msi file] /p [path to
the .msp file]

After an administrative image is created, sometimes the SHORTFILENAMES prop-
erty will need to be set to the value of 1. Do this if the network operating system
does not support long file names. If this is the case, then this property also needs to
be set when applying the patch package to the administrative image.

The reinstallation of the patched administrative image, explained in the previous
section, is performed through either a complete or partial reinstallation. Of course,
for any user that has not already installed the application, a normal installation is
all that is required because the patching of an administrative installation perma-
nently changes the msi database and source files. This reinstallation is different
from the patching of a local installation where the transforms that comprise the
patch package get applied every time that a maintenance operation is performed for
the application.

How transforms affect patching
If you’re installing a patch and one or more customization transforms to an applica-
tion, you usually install the patch first, followed by the customization transforms. By
design, the patch is not broken by the subsequent installation of the customization
transforms. However, installing the transforms first, followed by the patch, may break
the customization.

Chapter 20: Handling Updates and Upgrades of a Product 845

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 845

For example, a break in the customization occurs if a patch is used to update a
product from version 1 to version 2 and a customization transform that works for
version 1 does not work for version 2. In this case, the version update patch cannot
be applied to a customized product without first uninstalling and then reinstalling
the original product.

Note that version validation used by the Microsoft Office Customization Wizard
permits customizations to be used across changes in the product version. The devel-
oper is responsible for authoring their customization transforms to be compatible
across all versions if this is necessary for the product.

Using the ISWI Patch Creation Wizard
We can create a patch creation properties file using the Orca database-editing tool,
and then create the patch package using the MSIMSP.EXE utility. This, however, is
a lot of work, so instead, we are going to use the ISWI Patch Creation Wizard to
create the patch packages that we need. As an example of how to use this wizard,
we will create a patch package that will upgrade either version 1.0 or version 1.2 of
the MathPlot application.

We access the wizard from the Tools pulldown menu by selecting the Create
Patch... option. You do not need to have an open ISWI project to create a patch
package. After we first launch the Patch Creation Wizard, we get the welcome panel
shown in Figure 20-4.

Figure 20-4: The welcome panel of the ISWI Patch Creation Wizard

Click next to get a panel that asks us either to name the patch creation properties
file that we want to create or to select an existing file. We will browse to a folder
where we want the patch created and provide a name for the patch creation proper-
ties file as shown in Figure 20-5.

846 Part V: Solving Real-World Problems

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 846

Figure 20-5: Naming the patch creation properties file

After naming the patch creation properties file, click next to get a panel where we
are asked to name the target images to which the upgrade patch will be applied. The
first action that we need to take is to create identifiers for the target images. We do
this by right-clicking on the Previous Version icon and selecting the Add Package
option. We need to create two identifiers here because we are targeting two versions
of the MathPlot application to be handled by this one upgrade. After creating the two
identifiers, click on one of the identifiers, and you get a screen shown in Figure 20-6.

Figure 20-6: Describing the target images to upgrade

Each of the identifiers that we create will be inserted into the Target column of
the TargetImages table in the patch creation properties file that we are authoring.
Because we are creating two identifiers, two rows will be in the TargetImages table.

Chapter 20: Handling Updates and Upgrades of a Product 847

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 847

Each of these identifiers has a set of attributes that we need to enter. Except for the
naming of the target MSI package, we are given a set of default attributes that we
may need to change depending on the circumstances. The attributes that we set in
this panel of the wizard are used to populate the columns of the TargetImages table.
Because we are creating a major upgrade patch package, some changes need to be
made. Table 20-10 shows the entries that need to be made in the right hand panel
for each of the two identifiers.

TABLE 20-10 ATTRIBUTES FOR TARGET IMAGES OF THE MATHPLOT APPLICATION

Attribute Value Discussion

File Name [path to MSI package] For the Version1 identifier, we supply
the complete path, including the file
name, to the MSI package for version
1.0 of the MathPlot application. This
MSI package needs to be at the root
of the source files that comprise this
version of the MathPlot application.
For the Verson1_2 identifier, we
supply the same information, which
is the path to the version 1.2 MSI
package. This information populates
the MsiPath column of the
TargetImages table.

Missing Source Files Ignore while The default setting for this attribute
creating patch is set with the IgnoreMissingSrcFiles

column of the TargetImages table
to ‘1’. This tells the Patch Creation
Wizard to ignore any missing source
files in the target images.

Version to Check Check major, minor, The default value for this attribute is
and update versions set and it specifies that all three fields

of the ProductVersion property will be
checked when the patch package
transforms are applied to the target
database. This information is used
along with the next four attributes to
set the ProductValidateFlags column
in the TargetImages table.

848 Part V: Solving Real-World Problems

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 848

Attribute Value Discussion

Version Relationship New version >= The default value for this attribute is
previous version set and it specifies how the version

checking is to be done. This
information is used along with the
previous attribute and the next three
attributes to set the ProductValidate
Flags column in the TargetImages
table.

Match Product Code No The default value for this attribute is
Yes. We need to change this to No
because we are performing a major
upgrade in this example. Setting this
to No means that the patch package
transforms will still be applied, even
when the ProductCode property of the
target image is different than the
ProductCode property in the
transforms.

This information is used along with
the previous two attributes and
the next two attributes to set the
ProductValidateFlags column in
the TargetImages table.

Match Upgrade Code No The default value for this attribute is
Yes. We need to change this to No
because we are performing a major
upgrade in this example. Setting this
to No means that the patch package
transforms will still be applied even
when the UpgradeCode property of
the target image is different than
the UpgradeCode property in the
transforms.

This information is used along with
the previous three attributes and
the next attribute to set the Product
ValidateFlags column in the Target
Images table.

Continued

Chapter 20: Handling Updates and Upgrades of a Product 849

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 849

TABLE 20-10 ATTRIBUTES FOR TARGET IMAGES OF THE MATHPLOT APPLICATION
(Continued)

Attribute Value Discussion

Match Language No No is the default value for this
attribute. The No value means that
the patch package transforms will
still be applied even when the
ProductLanguage property of the
target image is different than the
ProductLanguage property in
the transforms.

This information is used along with
the previous four attributes to set the
ProductValidateFlags column in the
TargetImages table.

C++ Symbols Folders This value is left NULL because we
are not trying to use the Visual C++
symbol files to make the binary file
patches smaller. If we enter a path
here, this information would be used
to populate the SymbolPaths column
of the TargetImages table.

The order column of the TargetImages table is populated by the order in which
the identifiers are created in the lefthand screen of the Previous Packages wizard
panel. We create these identifiers in an older to newer sequence as recommended.
The Upgraded column in the TargetImages table is automatically filled in by the
Patch Creation Wizard to be the same as the one row that will be created in the
UpgradedImages table.

After we click the Next button in the Previous Packages panel, we get the Newer
Package wizard panel. In this panel, we are asked to provide the complete path to the
MSI package for the upgraded image. This upgraded image is the MSI package and
source files of Version 2.0 of the MathPlot application. The path to the MSI package
for the upgraded image is used to populate the MsiPath column of the UpgradedImages
table. This panel of the Patch Creation Wizard is shown in Figure 20-7.

Also in this panel, we are asked to identify the Visual C++ symbol file folders for
the upgraded image of the MathPlot application. Because we are not using symbol

850 Part V: Solving Real-World Problems

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 850

files, we leave this edit filed blank. If we had identified a path to a folder holding
symbol files, this information would be used to populate the SymbolPaths column
of the UpgradedImages table in the patch creation properties file.

Figure 20-7: Identifying the upgraded image

We click the Next button to get to the next panel of the wizard, which is the Patch
Package Identity panel. In this panel, we are asked to identify the name of the patch
package (.msp file) being created. We are provided with a default name that is in the
same location as the .pcp file and uses the same name as this file except that the
extension is .msp instead of .pcp. For our purposes we can use the default name and
path that is provided us. We also have the opportunity to specify a GUID to be used
to uniquely identify the patch package that will be created by the wizard. We can take
the value that is offered to us. This panel is shown in Figure 20-8.

Figure 20-8: Identifying the patch package to create

Chapter 20: Handling Updates and Upgrades of a Product 851

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 851

The information as to the name and location of the patch package file being cre-
ated by the wizard is used to populate the PatchOutputPath column of the Properties
table. Populating the PatchGUID column of the Properties table is the patch package
GUID value.

The next panel in the wizard is the Previous Patches panel. In this panel, you
find three edit fields that are described in Table 20-11.

TABLE 20-11 THE ENTRIES IN THE PREVIOUS PATCHES PANEL

Edit Field Name Value Description

Disk ID 2 2 is a value that written to the Media table of the target
images MSI database after it is upgraded using the
patch package. The default value here is based on being
one greater than the largest DiskID attribute value
found in any of the identified target image MSI
databases. The DiskID column of the Media table needs
to be unique because it is the primary key for that table.

File sequence start 9 The default number here is a value that is larger than
any file sequence number in either of the target image
MSI databases. It is also one larger than the last file
sequence number in the upgraded image MSI database,
because this value has to be greater than any file
sequence number for any previous patches that may
have been applied, as well as greater than the original
installation database.

List of patch GUIDs This edit field enables us to specify the PatchGUID
to replace properties of any patches that should be unregistered

after the current patch package is applied. The data we
enter here is used to populate the ListOfPatchGUIDs
ToReplace property in the Properties table. We have
nothing to enter in this edit box.

Shown in Figure 20-9 is the panel in the wizard.

852 Part V: Solving Real-World Problems

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 852

Figure 20-9: The Previous Patches wizard panel

The next panel in the Patch Creation Wizard is the Patch Creation Settings dia-
log. In this dialog, we select some additional settings that control how we create the
patch package. This panel is shown in Figure 20-10.

Figure 20-10: The patch creation settings panel

In this panel, you find six check boxes with the purpose of each check boxes
described in Table 20-12.

Chapter 20: Handling Updates and Upgrades of a Product 853

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 853

TABLE 20-12 SELECTING THE PATCH CREATION SETTINGS

Check Box Title State Description

Allow version numbers to differ Checked Checking this box controls whether
the wizard actually creates a patch
package or not. If this box were not
checked and we tried to create a patch
package for the situation where the
target and the upgrade images had
differences in the major version of the
products, then the patch package
would not get created. This check box
only governs the creation of a patch
package and not the application of the
patch package. If this control is
checked, the AllowProductVersion
MajorMismatches property of the
Properties table will be set to 1.

Use entire files in patch package Unchecked This check box governs whether a
patch package will include binary file
patches or just whole files that have to
be replaced. Because we want to have
binary file patches to give us a smaller
patch package, we leave this box
unchecked. If this control is checked,
the IncludeWholeFilesOnly property of
the Properties table is set to 1.

Allow product codes to differ Checked Checking this box controls whether
the wizard will actually create a patch
package or not. If this box were not
checked and we tried to create a patch
package for the situation where the
target and the upgrade images had
differences in the values for the
ProductCode property, the patch
package would not get created. This
check box only governs the creation
of a patch package and not the
application of the patch package. If
this control is checked, the Allow
ProductCodeMismatches property of
the Properties table will be set to 1.

854 Part V: Solving Real-World Problems

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 854

Check Box Title State Description

Create Update.exe Unchecked This check box defines whether the
Patch Creation Wizard creates a file
called Update.exe where the patch
package is embedded inside this file.
This file is a means of delivering a
patch package and allowing the
user just to double-click this file in
Windows Explorer. This has nothing
to do with how the patch is created.
Because we are doing major upgrade,
we leave this control unchecked.

Previous versions I listed earlier Checked Leaving this box checked means that
the patch package will be created
using the target images that have
already been identified in the
TargetImages table through the
Previous Packages panel. If this control
is checked, the ListOfTargetProduct
Codes property in the Properties table
will begin with an asterisk.

Versions with these product Unchecked If this control is checked, we can
codes (semicolon-delimited list) enter additional product codes that

will get appended to the list of product
codes identified in the TargetImages
table. We leave this box unchecked
because we do not have any additional
products that need to be updated with
this patch package.

After we click the Next button, we start the creation of the patch package and
see a wizard panel that provides the progress of this creation, which is shown in
Figure 20-11.

After the creation of the patch package is complete, we get the final panel in the
wizard. This wizard displays the results of the creation process. We can scroll down
in this panel and see if any errors were produced during the creation of this patch
package. This final panel in the wizard is shown in Figure 20-12.

Chapter 20: Handling Updates and Upgrades of a Product 855

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 855

Figure 20-11: The Patch Creation progress panel

Figure 20-12: The final Patch Creation Wizard panel

Now that we created our patch package that will perform a major upgrade on
either version 1.0 or version 1.2 of the MathPlot application, we can run the
upgrade just by double-clicking on the .msp file in Windows Explorer. But before
we do that, we need to make sure that we authored into version 2.0 a row in the
Upgrade table that will handle the uninstallation of either of the earlier versions.
Unless this is in the version 2.0 package, the old version will be upgraded, but it
will not be removed from the system.

On the CD-ROM at the back of the book, you find both a major upgrade patch
package and a minor upgrade patch package. The major upgrade is from versions
1.0 and 1.2 to version 2.0 of the MathPlot application, and the minor upgrade is
form version 1.0 to version 1.2 of the MathPlot application. If you want to look at
the .pcp files that are created for these patch packages, you can open them by using
the Orca database editing tool and exporting to tab-delimited text files. These files
can be imported into an Excel spreadsheet for formatting and printing.

856 Part V: Solving Real-World Problems

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 856

The Handling of Operating
System Upgrades
One feature a product needs is to handle the upgrade of an operating system. The
most common scenario is to have a product installed on Windows 98 and then have
the operating system upgraded to Windows 2000. If the product needs to have dif-
ferent components installed because of the change in the OS, the product needs to
go through an upgrade process by being reinstalled. The purpose of the reinstalla-
tion is to switch out those components that only run on Windows 98 with those
components that run on Windows 2000.

Under normal circumstances, performing this reinstallation does not cause a
reevaluation of the conditions on the components that were already installed on
Windows 98. To make this reevaluation take place during the reinstallation, we
need to set a certain property on the components that need to be changed out. This
property, called the Reevaluate Condition property, is in the property sheet for each
component. This property sheet is accessed by going to the Setup Design view in
ISWI and clicking a component name. For the properties that are OS dependent, we
want to set this property to Yes.

A good example where you want to do this is with the MathPlot application. The
PlotDLL_A and the PlotDLL_W components need to be changed out if the OS is
ever upgraded. We already have these components conditioned based on the ver-
sion of the operating system. The PlotDLL_A component only gets installed if the
application is installed on a Windows 9.x machine, and the PlotDLL_W component
only gets installed if the application gets installed on a Windows NT/2000 machine.
For each of these components the Reevaluate Condition property for these two
components has been set to yes in the install packages provided on the CD-ROM at
the back of the book.

Summary
In this chapter, we see a number of methods that can be used to upgrade the instal-
lation of a product. You can accomplish a small update and a minor upgrade by
reinstallation or through the use of a patch package. A major upgrade can be per-
formed using the Upgrade table or by using a patch package. We also looked at
using the Upgrade table to prevent a lower version from installing over a later ver-
sion of a product. The creation on a patch package is investigated in detail by going
through all the tables that comprise a patch creation properties file. The ISWI Patch
Creation Wizard is examined during the creation of a patch package and all the
panels in this wizard were related to the specific tables in the patch creation prop-
erties file that were being authored. Finally, we saw how to author an installation
package that would handle the upgrading of the operating system from Windows
9x to Windows NT/2000.

Chapter 20: Handling Updates and Upgrades of a Product 857

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 857

4723-2 ch20.f.qc 1/16/01 11:13 AM Page 858

Appendix A

MsiExec Command Line
Options

THIS APPENDIX PROVIDES A comprehensive explanation of all the command line
switches that you can use with MSIEXEC.EXE. Examples are provided for most of
the common usages of the command line.

General
The command line options available for running the Windows Installer can be put
into one of four different categories. These categories are listed as follows:

◆ Initiates one of the three top-level actions

◆ Modifies an already installed product

◆ Modifies one of the above two categories

◆ Sets the value of public properties

◆ Has miscellaneous functionality

All the command line options discussed here relate to the Windows Installer exe-
cutable MSIEXEC.EXE. This executable runs all the installations while also returning
error codes that are discussed at the end of this appendix. The format of the com-
mand line is as follows:

msiexec /<switch>[optional modifiers] <parameters> [/<additional
switches>]

or

msiexec [/<additional switches>] /<switch>[optional modifiers]
<parameters>

The switches used are position independent, but you cannot separate a switch
from its parameters. All switches are also case independent. When specifying the
location of an MSI package or other file, you can provide the absolute path, just the
file name if the name is in the current directory, or a relative path if the file is in a 859

4723-2 appA.f.qc 1/16/01 11:13 AM Page 859

lower directory from where you are located. Using the parent directory notation (..)
to identify a relative path to the file does not work.

Invoking the Top-Level Actions
Three top-level actions correspond to the three major components of functionality
of the Windows Installer. These top-level actions are INSTALL, ADMIN, and
ADVERTISE. The following three sections cover the command to invoke each of
these top-level actions.

The INSTALL top-level action
To invoke the INSTALL top-level action, use the following command line:

msiexec /i <MSI package | ProductCode> [properties ...]

If the product is not installed or advertised, the only valid parameter that you
can use is the name of the MSI package. If the product is advertised, you can use
either the MSI package or the ProductCode property to run the installation. If using
the ProductCode property, make sure that you include the curly braces on each end
of the GUID, otherwise msiexec.exe will not recognize the parameter. With an
advertised product using either the MSI package or the ProductCode, the installa-
tion runs you through the complete user interface. This guidance does not happen
if you try to run an advertised product from the Start | Programs menu. In this case,
only basic UI is displayed without providing any option for the user to interface
with the user interface. If the product is already installed, using either parameter
will put you into the maintenance mode where you have the option to Modify,
Repair, or Remove the product.

Three modifying switches can be used with the /i switch, which are listed below
and described in detail in a later section.

/l This switch allows for the creation of a Windows Installer log file that
can display all the actions that are being taken to install the product.

/q This switch sets the user interface level to be used for the installation.

/m This switch generates an SMS status .mif file.

The ADMIN top-level action
To invoke the ADMIN top-level action, use the following command line:

msiexec /a <MSI package> [properties...]

860 Appendixes

4723-2 appA.f.qc 1/16/01 11:13 AM Page 860

Using this command line places an administrative image of the product on a
network drive. If the source files for the product are compressed, they will be
uncompressed in this operation and placed in a tree as defined by the DefaultDir
column of the Directory table. In the special case where a patch package is applied
to an administrative image, this command line is also used in conjunction with the
command parameters that identify the patch package. This command line is dis-
cussed in the section on invoking maintenance operations.

There are three modifying switches that can be used with the /a switch and they
are listed below and described in detail in a later section.

/l This switch allows for the creation of a Windows Installer log file that
can display all the actions that are being taken to install the product.

/q This switch sets the user interface level that is to be used for the
installation.

/m This switch generates an SMS status .mif file.

The ADVERTISE top-level action
To invoke the ADVERTISE top-level action, use the following command line:

msiexec /j[u|m] <MSI package>

Running this command line advertises the product so that its icon appears on the
Start | Programs menu, but no files are installed. On a pre-Windows 2000 operating
system, this command line only works if Active Desktop is installed. Two optional
parameters can be used to modify the /j switch, which are described as follows:

u This switch specifies that the advertised product is only available to the
current user of the machine.

m This switch specifies that the advertised product is available to all the
users of the machine.

If you do not use either of the optional switches, then the default action is make
the advertised product available to all users of the machine. After this operation is
complete, the product is installed the first time a user tries to access it from the
Start | Programs menu. When advertising a product from the command line, you
can additionally apply a list of transforms or specify a language ID. The switches to
do this are described as follows:

/t Applies a list of transforms to the advertised package in the same fashion
as setting the public TRANSFORM property on the command line when
running the INSTALL top-level action. If you have to apply more than one
transform, then you delimit the list of transform files with semicolons.

Appendix A: MsiExec Command Line Options 861

4723-2 appA.f.qc 1/16/01 11:13 AM Page 861

/g Using this switch sets the ProductLanguage value in the Property table
to the ID specified.

Possible command lines that implement this functionality are as follows:

msiexec /j[u|m] <MSI package> /t transform.mst
msiexec /j[u|m] <MSI package> /g 1034
msiexec /j[u|m] <MSI package> /t transform.mst /g 1034

Three additional modifying switches can be used with the /j switch, which are
listed below and described in detail in a later section.

/l This switch allows for the creation of a Windows Installer log file that
displays all the actions being taken to install the product.

/q This switch sets the user interface level to use for the installation. This
switch is only valid to choose between basic and no UI. Full and
reduced UI are not available for advertise installs.

/m This switch generates an SMS status .mif file.

This option ignores properties that are passed on the command line.

Invoking Maintenance Operations
In this context, maintenance operations consist of repair, removal, or upgrading by
using a patch package. If an installation package is authored with a maintenance
mode capability, then re-running an installation of a product that is already
installed and making the appropriate choice in the maintenance type dialog can
also obtain both the repair and removal options. You also have the option to
change the installed features, which you cannot do through the use of any special
command line option.

Repairing a product
The command line for performing a repair operation on an installed product is as
follows:

msiexec /f[p|o|e|d|c|a|u|m|s|v] <MSI package | ProductCode>

As with the /i switch described in the previous section, either the package name
or the product code is specified to indicate which product the repair operation is to
be performed. As can be seen from the previous command line, ten optional modi-
fiers can be used with the /f switch. Unlike the optional modifiers for the advertise-
ment case, these modifiers are not mutually exclusive. If none of these are

862 Appendixes

4723-2 appA.f.qc 1/16/01 11:13 AM Page 862

specified, then the default used is pecms. Table A-1 provides a functional descrip-
tion of each of these modifiers.

TABLE A-1 DESCRIPTION OF THE REINSTALL OPTION CODES

Code Description

p Reinstall a file only if the file is missing.

o Reinstall a file if it is missing or if an earlier version of the file is on the
machine.

e Reinstall a file if it is missing or if a file with the same version or an earlier
version is on the machine.

d Reinstall a file if it is missing or a different version of the file is on the system.

c Reinstall a file if it is missing or if the stored checksum does not match the
calculated value. This code only works for executables and dynamic link
libraries that are compiled with the correct linker switch so that a checksum
is created. In addition, attributes column in the File table also have to be set
appropriately.

a This code forces all files to reinstall.

u This code forces all user specific registry entries to be rewritten.

m This code forces all machine specific registry entries to be rewritten.

s This code forces all shortcuts to be overwritten.

v This code re-caches the local package.

This option list has the same specifications as the REINSTALLMODE property. Be
careful when using the default options. If the original installation was done on a
per-user basis, the default options won’t write any of the per-user registry entries.

Three additional modifying switches are used with the /f switch, which are listed
below and described in detail in a later section.

/l This switch allows for the creation of a Windows Installer log file
that can display all the actions that are being taken to install the
product.

/q This switch sets the user interface level that is to be used for the
installation.

/m This switch generates an SMS status .mif file.

Appendix A: MsiExec Command Line Options 863

4723-2 appA.f.qc 1/16/01 11:13 AM Page 863

Removing a product
The command line to uninstall a product is as follows:

msiexec /x <MSI package | ProductCode>

This command line enables you to remove an installed or advertised product.
The rules for the package and product code parameters follow the same rules as for
a normal installation.

Three additional modifying switches are used with the /j switch, which are listed
below and described in detail in a later section.

/l This switch allows for the creation of a Windows Installer log file that can
display all the actions that are being taken to install the product.

/q This switch sets the user interface level that is to be used for the
installation.

/m This switch generates an SMS status .mif file.

Upgrading a product
Upgrading a product is applying a patch package or completely reinstalling over the
old version of the product. A patch package can be applied to a local installation or
to a local installation. For complete details of patching and upgrades, see Chapter
17. To apply a patch to a local installation, use the following command line:

msiexec /p <patch package>

To apply a patch package to an administrative image on a network server, use
the following command line:

msiexec /a <MSI package on network server> /p <patch package>

To upgrade a local installation of a product by using the complete reinstall
approach, use the following command line:

msiexec /fvomus <Updated MSI package>

or

msiexec /i <Updated MSI package> REINSTALL=ALL REINSTALLMODE=vomus

864 Appendixes

4723-2 appA.f.qc 1/16/01 11:13 AM Page 864

To upgrade a local installation of a product by using a partial reinstallation, use
the following command line:

msiexec /i <Updated MSI package> REINSTALL=[Feature List]
REINSTALLMODE=vomus

To use this command line, however, you need to know the names of the features
that have been changed by the update.

Using Generic Modifying Switches
For many of the command line options described in the previous section, a set of
optional switches allow you to modify the base operation of the command line
action. The following three sections describe these modifying switches in more detail.

Setting the user interface level
The Windows Installer has four user interface levels, which define what dialogs the
installation user interface displays. Not specifying the user interface level will dis-
play the full user interface, which is normal. To modify this default, use the follow-
ing switches:

/qf This switch displays the full user interface, which is the same as not using
this switch at all. Using the /qf+ switch also works but it performs in the
same manner as the /qf switch.

/qr This switch displays the reduced user interface. A reduced user interface
is where only the authored modeless dialog boxes that are part of the user
interface are displayed. Commonly, this dialog is just the progress dialog
showing the status of the installation. If an error occurs during the instal-
lation, then the error is displayed in a modal dialog box. After clicking
the OK button, the installation rollbacks the system to the state it was
before the installation started.

/qb This switch displays the basic user interface. The basic user interface only
shows those dialogs built into the Windows Installer engine. Because using
this interface level bypasses the UISequence table, no authored dialog boxes
are shown. If an error occurs during the installation, a modal error dialog
box announces the error. After you click the OK button, the installation roll-
backs the system to the state it was prior to the start of the installation.

/qb+ If the previous switch is enhanced by using a plus (+) sign, then a modal
dialog box is displayed at the end of the installation that say the installa-
tion is completed successfully. Modal error dialog boxes also display if an
error occurs, and then the final dialog display states that the installation
has failed.

Appendix A: MsiExec Command Line Options 865

4723-2 appA.f.qc 1/16/01 11:13 AM Page 865

/qb- If the /qb switch is modified with a minus sign (-), then this suppresses any
error message dialog boxes. If an error occurs, the Windows Installer auto-
matically rollbacks the system to its prior state at start of the installation.

/qn This switch provides the silent install or silent uninstall functionality
where no user interface is displayed. The /q switch can also be used to
provide the same functionality. If an error occurs during the installation,
the error is not displayed, and the Windows Installer automatically per-
forms a rollback. The only indication of the failure is the fact that no
icon is on the Start | Program menu.

/qn+ If you enhance the previous switch by using a plus (+) sign, then a
modal dialog box is displayed at the end of the installation that says
the installation is completed successfully or that the installation failed
depending on the circumstances. If an error occurs during the instal-
lation, this error is not displayed and the Windows Installer auto-
matically performs a rollback.

The user interface level switches /qn-, /qr-, /qf-, and /qb+- are not supported

and using them causes a Windows Installer command line error message

box to display.

Logging Windows Installer actions
Logging the Windows Installer permits the installation, uninstallation, product
advertisement, product repair, administrative installation, and patching actions. The
command line to perform this logging operation for an installation is as follows:

msiexec /i <MSI package | ProductCode>
/l[i|w|e|a|r|u|c|m|o|p|v|+|!|*] <path to log file>

The optional modifiers to the /l switch are not mutually exclusive and these
modifiers enable you to get the types of messages that you want. Table A-2 pro-
vides a list of these codes and their description.

TABLE A-2 DESCRIPTION OF THE LOGGING OPTION CODES

Code Description

i Log only status messages.

w Log only non-fatal warnings.

Caution

866 Appendixes

4723-2 appA.f.qc 1/16/01 11:13 AM Page 866

Code Description

e Log all error messages.

a Log the start of all actions.

r Log all action-specific records.

u Log all user requests.

c Log the initial UI parameters.

m Log any out-of-memory or fatal exit information.

o Log out-of-disk-space messages.

p Log any terminal properties.

v Provide verbose output.

+ Append the log file to an already existing log file.

! Flush line to the log.

* Log all information without using the verbose mode of output.

A common command line that logs all information is as follows:

msiexec /i <MSI package | ProductCode> /l*v <path to log file>

Generating an SMS status .mif file
To generate a SMS status .mif file, use the following command line:

msiexec /i <MSI package | ProductCode> /m <path to .mif file>

This command line option writes a number of attributes of the Windows Installer
package into the .mif file, as shown in Table A-3. For this command to work, the
file ISMIF32.DLL needs to be on the machine and in the path from which the instal-
lation is being executed. Normally you find this file in the Windows folder. The file
exports the function InstallStatusMIF, which is used to create this status file. The
Summary Information Stream in the MSI package extracts most of the information
that gets entered into this file.

Appendix A: MsiExec Command Line Options 867

4723-2 appA.f.qc 1/16/01 11:13 AM Page 867

TABLE A-3 INSTALLATION STATUS INFORMATION WRITTEN INTO AN SMS
STATUS FILE

Status Field Information Provided

Manufacturer The Author property in the Summary Information Stream fills in
this field. The Author property in turn is normally set from the
Manufacturer property that is found in the Property table of the
installation database.

Product The Revision Number property in the Summary Information Stream
fills in this field. The Revision Number property is a GUID that
identifies a particular package. This GUID is referred to as the
package code, which is unique for every package that is created.

Version The Subject property in the Summary Information Stream fills in this
field. The Subject property is normally set from the ProductName
property found in the Property table of the installation database.

Locale The Template property in the Summary Information Stream fills in
this field. The Template property provides the platform and the
language versions supported by the installation database.

Serial Number The Windows Installer does not set this field.

Installation ISMIF32.DLL to “DATETIME” sets this field.

InstallStatus The Windows Installer sets this field to either Success or Failed.

Description This field is used to display error messages. These error messages are
provided in the following order:

1. Error messages generated by the Windows Installer.

2. Resource from MSI.DLL if the installation does not begin or if a
user initiates exit.

3. System error message.

4. The Windows Installer generating a formatted message.

Setting Properties at the
Command Line
Two types of properties are found in the Property table, public properties, and pri-
vate properties. Public properties are denoted by the fact that the names of these
properties are in all uppercase letters. Public properties are named as such because

868 Appendixes

4723-2 appA.f.qc 1/16/01 11:13 AM Page 868

the user can set them at the command line. The command line for setting a public
property is as follows:

msiexec /i <MSI package | ProductCode> INSTALLLEVEL=50

Even though only public properties can be set from the command line, the name
of the public property as used does not have to be in all-uppercase. The following
command line also works:

msiexec /i <MSI package | ProductCode> installlevel=50

Setting properties from the command line is only valid if using the /i, /a, or /x
switches for initiating wither the INSTALL, or ADMIN top-level actions, or the
uninstallation of a product.

When we are talking about public properties that can be set on the command

line, we are referring to those public properties that are not restricted. A

restricted public property is one that cannot be set by the user in a managed

environment.The user has a default list of public properties that can be set in

a managed environment, and the setup developer can modify this list. See

Chapters 7 and 9 for more discussion relative to restricted public properties.

Miscellaneous Switches
Three switches fall into the miscellaneous category. These switches are not particu-
larly useful, but to be thorough, they are documented here. These switches are listed
below:

/? or /h Using either of these switches displays the copyright information
for the Windows Installer. The switch displays the error message
box that gets displayed after incorrect command line parameters
are used, such as trying to set a public property between a switch
and its parameter. This command line look like the following:
msiexec /?

/y This switch performs the same function as REGSVR32.EXE, which
is a manual registration of a self-registering module. The one dif-
ference is that using this switch does not provide any feedback as
to the success or failure of the operation. This switch is used to
add information to the registry that is not possible to place in the
registry related tables in the MSI database.

Caution

Appendix A: MsiExec Command Line Options 869

4723-2 appA.f.qc 1/16/01 11:13 AM Page 869

Use this switch if you need to order the self-registration of a num-
ber of files, and then MSIEXEC.EXE is used as a custom action
with this switch, and perform the self-registration in the order
required. An example of using this switch is shown below:
msiexec /y shapeartist.dll

/z This switch performs the same function as REGSVR32.EXE /u,
which is to manually unregister a self-registering module. The one
difference is that using this switch does not provide any feedback as
to the success or failure of the operation. Use this switch to remove
information from the registry that is not possible to identify in the
registry related tables in the MSI database. Use this switch when
you need to order the self-unregistration of a number of files, and
then MSIEXEC.EXE is used as a custom action with this switch, and
perform the self-unregistration in the order required. An example of
using this switch is shown here: msiexec /z shapeartist.dll

Windows Installer Error Codes
Refer to the list of Win32 Error Codes that you find in the Microsoft MSDN Library
for a complete list of possible error codes that can be returned by the Windows
Installer API, MSIEXEC.EXE, and INSTMSI.EXE.

870 Appendixes

4723-2 appA.f.qc 1/16/01 11:13 AM Page 870

Appendix B

Summary Information
Stream Reference

THIS APPENDIX PROVIDES FOUR tables that describe in detail the property descriptions for
each of the four types of Windows Installer files that store information in a Summary
Information Stream. These four files are listed below with their file extensions:

◆ A full installation database file with the .msi file extension

◆ A merge module database file with the .msm file extension

◆ A transform file with the .mst file extension

◆ A patch package with the .msp file extension

Microsoft is reviewing what properties of these four file types is actually
required. If authoring one of these types of files, considering that they are all
required is the safe approach.

Table B-1 provides the description for the properties used when authoring an
installation database package. This type of package is the only one of the four file
types that can actually perform an installation.

TABLE B-1 MSI DATABASE SUMMARY INFORMATION PROPERTY SET

Property Name Property Description

Codepage This property is set to the numeric value of the ANSI code page to
(PID = 1) use for any strings that are stored in the Summary Information

stream. This property identifies the code page used if displaying the
Summary Information in the property sheet in Windows Explorer.
Also, use this property to translate the strings in the Summary
Information stream into Unicode when calling the Unicode API
functions. This property needs to be set prior to setting any of the
string properties in the summary Information stream.
The value type is a 2-byte signed integer.
Note: This code page property has nothing to do with the strings in
the installation database.

Continued 871

4723-2 appB.f.qc 1/16/01 11:13 AM Page 871

TABLE B-1 MSI DATABASE SUMMARY INFORMATION PROPERTY SET (Continued)

Property Name Property Description

Title This property is a short description of the type of Windows Installer
(PID = 2) package in which this Summary Information stream resides. For

an installation database, this string is similar to “Installation
Database”. This string informs users about the purpose of the file.
The value type is a counted null terminated string. The
representation is an initial DWORD byte count, which includes the
terminating null, followed by a string that contains that many
bytes. The code page property described previously indicates the
character set to use.

Subject This property is the name of the application being installed and is
(PID = 3) normally set from the value of the ProductName property found in

the Property table.
The value type is the same as for the Title property described
previously.

Author This property is the name of the company that created the product
(PID = 4) being installed and is normally set from the value of the

Manufacturer property found in the Property table.
The value type is the same as for the Title property described
previously.

Keywords File browsers, such as Windows Explorer, use these values to
(PID = 5) perform keyword searches for a file. If you enter more than one

keyword, separate them by commas. Typically, one enters the
keywords- Installer, MSI, Database. In addition, product specific
keywords can be used here, and this location can also be used for
performing versioning on the MSI package during development.
The value type is the same as for the Title property described
previously.

Comments This property conveys the general purpose of the installer database.
(PID = 6) By convention, it is set to: “This installer database contains the

logic and data required to install <product name>.”
The value type is the same as for the Title property described
previously.

872 Appendixes

4723-2 appB.f.qc 1/16/01 11:13 AM Page 872

Property Name Property Description

Template This property specifies both the platform and the language versions
(PID = 7) supported by the installer database. The format for this is:

[platform][,platform][,...];[language id][,language id][,...].
The platform values that you use most likely are Intel and Alpha. If
a platform is not specified, then the package is considered to be
platform independent. Specifying zero for the language ID means
that the package is language neutral.
Examples of valid strings are:
Intel;1033
Alpha,Intel;1033
The value type is the same as for the Title property described
previously.

Last Saved By The Windows Installer sets this value to the name of the user that
(PID = 8) is logged on to the system during an administrative installation.

The Windows Installer never uses this property, which should
always be NULL in a database that is being shipped. You can use
this property during construction of the MSI package to keep track
of the last person to modify the database.
The value type is the same as for the Title property described
previously.

Revision Number The value of this property is the package code of the installer
(PID = 9) package. This code is a GUID.

The value type is the same as for the Title property described
previously.

Total Editing Time The Windows Installer service does not support this property, but
(PID = 10) the property is shown here because it is part of the standard set of

Summary Information stream properties.

Last Printed This value is a date and time that can be set during an
(PID = 11) administrative installation to record when the administrative image

is created. For a normal installation, this property is the same as the
Create Time/Date property defined next.
The value type is a 64-bit FILETIME structure, which the Platform SDK
documentation defines. Essentially, this structure defines the number
of 100-nanosecond intervals that have occurred since January 1, 1601.

Create Time/Date This property records the time and date when the MSI database is
(PID = 12) created.

The value type is the same as for the Last Printed property
described previously.

Continued

Appendix B: Summary Information Stream Reference 873

4723-2 appB.f.qc 1/16/01 11:13 AM Page 873

TABLE B-1 MSI DATABASE SUMMARY INFORMATION PROPERTY SET (Continued)

Property Name Property Description

Last Save Time/Date The value of this property specifies the last time the MSI database
(PID = 13) was modified (saved). This property gets updated every time the

database is changed. When the database is initially created, this value
is set to NULL to indicate that no modifications have taken place.
The value type is the same as for the Last Printed property described
previously.

Page Count The value of this property contains the minimum version of the
(PID = 14) Windows Installer that is required for running the installation

database. This value is stored as the Major Version * 100 plus
the Minor Version. For Windows Installer 1.1, this value is
1 * 100 + 10 = 110.
The value type is a 4-byte signed integer.

Word Count The value of this property is a bit field that indicates the type of
(PID = 15) source file image. This value provides information to the Windows

Installer about whether long or short file names are being used,
whether the source files are compressed or uncompressed, and
whether the source files are from the original media or from an
administrative image on a network drive. The details of creating
the values for this property are given below:
At the present time, only the first three bits of this 4-byte integer
are used.
Bit 0: If this bit is 0, then long file names are being used. If this bit
has a value of 1, then short file names are being used.
Bit 1: If this bit is 0, then the source files are uncompressed. If this
bit is equal to 1 (integer 2), then the source files are compressed.
Bit 2: If this bit is 0, then the source is the original media. If the
value of this bit is 1 (integer 4), then the source is an
administrative image created by an administrative installation.
These bits can be combined in the following manner to create the
possible values that you can use for this property.
0: This value means that the source is uncompressed and is using
long file names. The source tree for these files is defined in the
Directory table.
1: This value means that the source is uncompressed and is using
short file names. The source tree for these files is defined in the
Directory table.
2: This value means that the source files are compressed into a
cabinet using long file names and the source of this cabinet is
defined in the Media table.

874 Appendixes

4723-2 appB.f.qc 1/16/01 11:13 AM Page 874

Property Name Property Description

3: This value means that the source files are compressed into a
cabinet using short file names and the source of this cabinet is
defined in the Media table.
4: This value means that the source is an administrative image and
is using long file names. The source tree for these files is defined in
the Directory table.
5: This value means that the source is an administrative image and
is using short file names. The source tree for these files is defined
in the Directory table.
The value type is a 4-byte signed integer.

Character Count This property is not used for installation packages but only for
(PID = 16) transforms.

The value type is a 4-byte signed integer.

Thumbnail This property is not supported by the Windows Installer service, but
(PID = 17) is shown here because it is part of the standard set of Summary

Information Stream properties.

Creating Application The value of this property is the name of the application used to
(PID = 18) author the installation database.

The value type is the same as for the Title property described
previously.

Security The value of this property identifies how to open this package. If
(PID = 19) the value is 0, there is no restriction. If the value is 2, then read-

only is recommended. And if the value is 4, then read-only is
enforced. For installation packages, the property value is set to 2.
The value type is a 4-byte signed integer.

Table B-2 describes all the entries that are valid for a merge module database. A
merge module is a simplified MSI database file that is missing those tables that
allow the file to be installed on its own. Instead a merge module needs to be merged
with a standard MSI database so that its contents can be installed. A merge module
is used to deliver components to a standard installation database.

Appendix B: Summary Information Stream Reference 875

4723-2 appB.f.qc 1/16/01 11:13 AM Page 875

TABLE B-2 MERGE MODULE SUMMARY INFORMATION PROPERTY SET

Property Name Property Description

Codepage This property is set to the numeric value of the ANSI code page
(PID = 1) that is used for any strings that are stored in the Summary

Information Stream. This property identifies the code page to use
when displaying the Summary Information in the property sheet
in Windows Explorer. It is also used to translate the strings in the
Summary Information Stream into Unicode when calling the
Unicode API functions. This property is set prior to setting any of
the string properties in the Summary Information Stream.
The value type is a 2-byte signed integer.
Note: This code page property has nothing to do with any of the
localizable strings in the merge module database.

Title This property is a short description of the type of Windows Installer
(PID = 2) package in which this Summary Information Stream resides. For a

merge module database, this string is similar to a “Merge Module.”
This property informs users about the purpose of the file.
The value type is a counted null terminated string. The
representation is an initial DWORD byte count, which includes the
terminating null, followed by a string that contains that many
bytes. The character set used is as indicated by the code page
property described previously.

Subject This property is the name of the application being installed and is
(PID = 3) normally set from the value of the ProductName property found in

the Property table.
The value type is the same as for the Title property described
previously.

Author This property is the name of the company that created the product
(PID = 4) being installed and is normally set from the value of the

Manufacturer property found in the Property table.
The value type is the same as for the Title property described
previously.

876 Appendixes

4723-2 appB.f.qc 1/16/01 11:13 AM Page 876

Property Name Property Description

Keywords File browsers, such as Windows Explorer, use these values to
(PID = 5) perform keyword searches for a file. If more than one keyword is

entered, they are separated by commas. Typically one would enter
the keywords, MergeModule, MSI, Database. In addition, product
specific keywords are used here and this location can also be used
for performing versioning on the MSI package during development.
Because the end user uses these values, they are candidates for
localization when creating merge modules for other languages.
The value type is the same as for the Title property described
previously.

Comments This property conveys the general purpose of the merge module
(PID = 6) database. The property can be set to: “This merge module database

contains the logic and data required to install <component
name(s)>.” In general this comment string should be complete
enough to adequately describe the merge module and its
components.
The value type is the same as for the Title property described
previously.

Template This property specifies both the platform and the language versions
(PID = 7) supported by the merge module database. The format for this is:

[platform][,platform][,...];[language id][,language id][,...].
The platform values that you most likely use are Intel and Alpha. If
a platform is not specified, then the package is considered to be
platform independent. Any number language IDs can be specified,
but if there is more than one a multi-language merge module is
indicated. Specifying zero for the language ID means that the
package is language neutral.
Examples of valid strings are:
Intel;1033
Alpha,Intel;1033
The value type is the same as for the Title property described
previously.

Last Saved By The value type is the same as for the Title property described
(PID = 8) previously.

Continued

Appendix B: Summary Information Stream Reference 877

4723-2 appB.f.qc 1/16/01 11:13 AM Page 877

TABLE B-2 MERGE MODULE SUMMARY INFORMATION PROPERTY SET
(Continued)

Property Name Property Description

Revision Number The value of this property is the merge module ID. This code is a
(PID = 9) GUID, which needs to be used in its raw form and not in the

modified form that is used to make the primary keys in the
database unique. The raw form has the curly braces at each end
and uses dashes to separate the various fields that comprise the
GUID.
The value type is the same as for the Title property described
previously.

Total Editing Time This property is not supported by the Windows Installer service but
(PID = 10) it is being shown here because it is part of the standard set of

Summary Information Stream properties.

Last Printed This value is not used by merge modules and is set to NULL.
(PID = 11)

Create Time/Date This property records the time and date when the merge module
(PID = 12) database is created.

The value type is the same as the Last Printed property described
previously.

Last Save Time/Date The value of this property specifies the last time the MSI database
(PID = 13) was modified (saved). This property gets updated every time the

database is changed. When the database is initially created, this
value is set to NULL to indicate that no modifications have taken
place.
The value type is a 64-bit FILETIME structure, which is defined in
the Platform SDK documentation. Essentially, this structure defines
the number of 100-nanosecond intervals that have occurred since
January 1, 1601.

Page Count The value of this property contains the minimum version of the
(PID = 14) Windows Installer that is required by this merge module database.

This is stored as the Major Version * 100 plus the Minor Version. For
Windows Installer 1.1, this value is 1 * 100 + 10 = 110.
The value type is a 4-byte signed integer.

Word Count “0” Note that merge module files are always inside an embedded
(PID = 15) cabinet file regardless of the value of this property.

The value type is a 4-byte signed integer.

878 Appendixes

4723-2 appB.f.qc 1/16/01 11:13 AM Page 878

Property Name Property Description

Character Count This property, not used for merge modules, is set to NULL.
(PID = 16) The value type is a 4-byte signed integer.

Thumbnail This property is not supported by the Windows Installer service but
(PID = 17) is shown here because it is part of the standard set of Summary

Information Stream properties.

Creating Application The value of this property is the name of the application used to
(PID = 18) author the merge module database.

The value type is the same as the Title property described previously.

Security The value of this property identifies how this package is opened. If
(PID = 19) the value is 0, there is no restriction. If the value is 2, then read-

only is recommended. And if the value is 4, then read-only is
enforced. For merge module packages, the property value is set to 2.
The value type is a 4-byte signed integer.

A transform is a COM structured file that defines the difference between two
installer databases. A transform is not, however, a database in itself and as such is
not viewable using the Orca tool. Being a COM structured storage file, it does have
a Summary Information Stream. The values used for the properties of this file type
are given in Table B-3.

TABLE B-3 TRANSFORM SUMMARY INFORMATION PROPERTY SET

Property Name Property Description

Codepage This property is set to the numeric value of the ANSI code page
(PID = 1) that is used for any strings that are stored in the Summary

Information Stream. This property identifies the code page used
when displaying the Summary Information in the property sheet in
Windows Explorer. The property is also used to translate the strings
in the Summary Information Stream into Unicode after calling the
Unicode API functions. This property is set prior to setting any of
the string properties in the Summary Information Stream.
The value type is a 2-byte signed integer.
Note: This code page property has nothing to do with the strings in
the transform.

Continued

Appendix B: Summary Information Stream Reference 879

4723-2 appB.f.qc 1/16/01 11:13 AM Page 879

TABLE B-3 TRANSFORM SUMMARY INFORMATION PROPERTY SET (Continued)

Property Name Property Description

Title This property is a short description of the type of Windows Installer
(PID = 2) package in which this Summary Information Stream resides. For a

transform, this string, such as “Transform” informs users about the
purpose of the file.
The value type is a counted null terminated string. The
representation is an initial DWORD byte count, which includes the
terminating null, followed by a string that contains that many
bytes. Use the character set as indicated by the code page property
described previously.

Subject The value of this property is a short description of the purpose of
(PID = 3) the transform and this description normally contains the name of

the product.
The value type is the same as the Title property described
previously.

Author This property is the name of the company that created the product
(PID = 4) that is the focus of the transform and the value of the property is

normally set from the Manufacturer property found in the Property
table.
The value type is the same as for the Title property described
previously.

Keywords File browsers, such as Windows Explorer, use these values to
(PID = 5) perform keyword searches for a file. If more than one keyword is

entered, they are separated by commas. Typically one would enter
the keywords, Transform, MSI, Installer. In addition, product
specific keywords are used here.
Because the end user uses these values, they are candidates for
localization when creating installations for other languages.
The value type is the same as for the Title property described
previously.

Comments This property conveys the general purpose of the installer database.
(PID = 6) By convention, the property is set to: “This transform contains the

logic and data required to modify <product name>.”
The value type is the same as the Title property described
previously.

880 Appendixes

4723-2 appB.f.qc 1/16/01 11:13 AM Page 880

Property Name Property Description

Template This property specifies both the platform and the language versions
(PID = 7) of the installer database that are compatible with the transform.

This property may be left blank if there are no restrictions and only
one language can be specified. The format for this is:
[platform][,platform][,...];[language id][,language id][,...].
The platform values that you most likely use are Intel and Alpha.
If a platform is not specified, then the package is considered to be
platform independent. Specifying zero for the language ID means
that the package is language neutral.
Examples of valid strings are:
Intel;1033
Alpha,Intel;1033
The value type is the same as the Title property described
previously.

Last Saved By The value of this property specifies the platform and language of
(PID = 8) the transformed database. The syntax for this property is the same

as previously described for the Template property.
The value type is the same as the Title property described
previously.

Revision Number The value of this property is a list of values that start with the
(PID = 9) original product code and original product version. Using a

semicolon delimiter, this string is then followed by the new product
code and the new product version. The last item in the list is the
upgrade code delimited from the rests of the string with a
semicolon. No delimiter is used between product codes and
product versions. This string value looks as follows:
<original product code><original product version>;<new product
code><new product version>;<upgrade code>
Of course, the product codes and the upgrade code are GUIDs.
The value type is the same as the Title property described
previously.

Total Editing Time This property is not supported by the Windows Installer service but
(PID = 10) it is shown here because it is part of the standard set of Summary

Information Stream properties.

Last Printed This property is not used and therefore is set to NULL.6
(PID = 11)

Continued

Appendix B: Summary Information Stream Reference 881

4723-2 appB.f.qc 1/16/01 11:13 AM Page 881

TABLE B-3 TRANSFORM SUMMARY INFORMATION PROPERTY SET (Continued)

Property Name Property Description

Create Time/Date This property records the time and date when the transform is
(PID = 12) created.

The value type is the same as the Last Printed property described
previously.

Last Save Time/Date The value of this property specifies the last time the transform
(PID = 13) was modified (saved). This property gets updated every time the

database is changed. When the transform is initially created, this
value is set to NULL to indicate that no modifications have taken
place.
The value type is the same as the Last Printed property described
previously.

Page Count The value of this property contains the minimum version of the
(PID = 14) Windows Installer required for processing the transform. This

property is set to the greater of the Page Count property values
belonging to the two installer database used to create the
transform. This is stored as the Major Version * 100 plus the Minor
Version. For Windows Installer 1.1, this value is 1 * 100 + 10 = 110.
The value type is a 4-byte signed integer.

Word Count This property is not used and its value needs to be set to NULL.
(PID = 15) The value type is a 4-byte signed integer.

Character Count The value of this property specifies the validation and the error
(PID = 16) condition flags sued with this transform. The lower 2 bytes of this

value are used to specify those error conditions that are suppressed
after the transform is applied. The upper 2 bytes of this value
specify the properties that are validated to verify that the
transform can be applied to the target MSI database. The
properties that can be validated are the default language, the
product, the product version, the relationship between the product
versions, and the upgrade code. A complete description of these
error condition and property validation flags is provided in the
documentation of the MsiCreateTransformSummaryInfo Windows
Installer database function. This document is found in the MSI
Help, which is on the MsiSdk found on the CD-ROM at the back
of the book.
The value type is a 4-byte signed integer.

882 Appendixes

4723-2 appB.f.qc 1/16/01 11:13 AM Page 882

Property Name Property Description

Thumbnail This property is not supported by the Windows Installer service but
(PID = 17) it is shown here because it is part of the standard set of Summary

Information Stream properties.

Creating Application The value of this property is the name of the application used to
(PID = 18) create the transform.

The value type is the same as the Title property described
previously.

Security The value of this property identifies how this package is opened. If
(PID = 19) the value is 0, there is no restriction. If the value is 2, then read-

only is recommended. And if the value is 4, then read-only is
enforced. For transforms, the property value is set to 4.
The value type is a 4-byte signed integer.

A patch package is a COM Structured storage file but such as a transform, it does
not contain a database and therefore cannot be viewed using the Orca utility. Being
a COM structured storage file, a patch package does have a Summary Information
Stream. Table B-4 provides the description of the values for the properties that
comprise the patch package Summary Information Stream.

TABLE B-4 PATCH PACKAGE SUMMARY INFORMATION PROPERTY SET

Property Name Property Description

Codepage This property is set to the numeric value of the ANSI code page
(PID = 1) used for any strings stored in the Summary Information Stream.

This property identifies the code page used when displaying the
Summary Information in the property sheet in Windows Explorer. It
is also used to translate the strings in the Summary Information
Stream into Unicode after calling the Unicode API functions. This
property needs to be set prior to setting any of the string
properties in the Summary Information Stream.
The value type is a 2-byte signed integer.
Note: This code page property has nothing to do with any strings
that may be in the patch package.

Continued

Appendix B: Summary Information Stream Reference 883

4723-2 appB.f.qc 1/16/01 11:13 AM Page 883

TABLE B-4 PATCH PACKAGE SUMMARY INFORMATION PROPERTY SET (Continued)

Property Name Property Description

Title This property is a short description of the type of Windows Installer
(PID = 2) package where this Summary Information stream resides. For a

patch package, this string, such as “Patch” informs users about the
purpose of the file.
The value type is a counted null terminated string. The
representation is an initial DWORD byte count, which includes the
terminating null, followed by a string that contains that many
bytes. The character set used is as indicated by the code page
property described previously.

Subject The value of this property is a short description of the purpose of
(PID = 3) the patch package and this description normally contains the name

of the product.
The value type is the same as for the Title property described
previously.

Author This property is the name of the company that created the product
(PID = 4) that is the focus of the patch package, and the value of the

property is normally set from the Manufacturer property found in
the Property table.
The value type is the same as the Title property described
previously.

Keywords The value of this property is a semicolon-delimited list of the
(PID = 5) sources for the patch package.

The value type is the same as the Title property described
previously.

Comments This property conveys the general purpose of the installer database.
(PID = 6) By convention, the property is set to: “This patch package contains

the logic and data required to modify <product name>.”
The value type is the same as the Title property described
previously.

Template The value of this property is a semicolon-delimited list of product
(PID = 7) codes that can accept the patch contained in this package.

The value type is the same as the Title property described
previously.

884 Appendixes

4723-2 appB.f.qc 1/16/01 11:13 AM Page 884

Property Name Property Description

Last Saved By The value of this property is a semicolon-delimited list of product
(PID = 8) The value of this property is a semicolon-delimited list of transform

sub-storage names. The order of this list defines the order in which
these transforms are applied to the target administrative or local
installation.
The value type is the same as the Title property described above.

Revision Number The value of this property is a list of GUIDs. The first GUID in the
(PID = 9) list is the patch package code for the patch. Following this GUID is

a list of patch code GUIDs for those patches to be removed after
this patch package is applied. These GUIDs are concatenated
together without the use of any delimiter separating them.
The value type is the same as the Title property described
previously.

Total Editing Time This property is not supported by the Windows Installer service but
(PID = 10) is shown here because it is part of the standard set of Summary

Information Stream properties.

Last Printed This property is not used by patch packages and needs to be set to
(PID = 11) NULL.

Create Time/Date This property records the time and date when the patch package is
(PID = 12) created.

The value type is the same as the Last Printed property described
previously.

Last Save Time/Date The value of this property specifies the last time the patch package
(PID = 13) was modified (saved). This property gets updated every time the

patch package changes. When the patch package is initially
created, this value is set to NULL to indicate that no modifications
have taken place.
The value type is the same as the Last Printed property described
previously.

Page Count This property is not used by a patch package and needs to be set to
(PID = 14) NULL.

Continued

Appendix B: Summary Information Stream Reference 885

4723-2 appB.f.qc 1/16/01 11:13 AM Page 885

TABLE B-4 PATCH PACKAGE SUMMARY INFORMATION PROPERTY SET (Continued)

Property Name Property Description

Word Count The value of this property specifies the patch engine that was used
(PID = 15) to create the patch package. Currently, the only supported patch

engine comes from Microsoft and it is called MSPATCH. The value
used for this value is 1, which indicates that the patch package is
created using MSPATCH.
The value type is a 4-byte signed integer.

Character Count This property is not used for patch packages and needs to be set to
(PID = 16) NULL.

The value type is a 4-byte signed integer.

Thumbnail This property is not supported by the Windows Installer service but
(PID = 17) is shown here because it is part of the standard set of Summary

Information Stream properties.

Creating Application The value of this property is the name of the application used to
(PID = 18) author the patch package.

The value type is the same as the Title property described
previously.

Security The value of this property identifies how this package is opened. If
(PID = 19) the value is 0, there is no restriction. If the value is 2, then read-

only is recommended. And if the value is 4, then read-only is
enforced. For patch packages, the property value is set to 4.
The value type is a 4-byte signed integer.

886 Appendixes

4723-2 appB.f.qc 1/16/01 11:13 AM Page 886

Appendix C

InstallScript Run-Time
Architecture

IN THIS APPENDIX we discuss the mechanism that allows InstallScript to be used to
create custom actions. First we investigate what happens at build time when a cus-
tom action has been created using InstallScript. After the build-time discussion we
then look at the mechanism used to run InstallScript custom actions during an
installation. The only focus we have in this appendix is what happens when we do
have custom actions and we do not address any issues that are not related to this
subject. The two scenarios that we have to look at are an installation where there is
only one language involved and an installation that has been created where the
user is allowed to select the language of the installation.

Single Language Installations
A single language installation is where there is only one possible language that can
be used in the user interface of the installation. It does not mean that this type of
an installation cannot target operating systems of different languages or install
localized versions of a product. What we are discussing here is an installation that
can have only one possible language used in the Install wizard.

Building the MSI Package
Just creating exported functions using InstallScript does not force any special
action from ISWI when you build an MSI package. You actually need to define a
custom action as being of the InstallScript type before any different action is taken
during the building of the package. However, you do not have to insert these
InstallScript custom actions into any of the sequence tables for these special build
actions to take place. It is only necessary for these InstallScript custom actions to
be in existence.

Four tables in the MSI package are impacted by using InstallScript to implement
custom actions. These tables are the CustomAction, Binary, InstallUISequence, and
InstallExecuteSequence tables. Below we look at each of these tables as they would
appear after having created a custom action called MyCustomAction, beginning
with Table C-1.

887

4723-2 appC.f.qc 1/16/01 11:14 AM Page 887

TABLE C-1 THE CUSTOMACTION TABLE GENERATED FOR AN INSTALLSCRIPT
CUSTOM ACTION IN A SINGLE LANGUAGE INSTALLATION PACKAGE

Action Type Source Target

CleanUp 513 ISScriptBridge.DLL CleanUp

EngineStartup 577 ISScriptBridge.DLL EngineStartup

Rollback_CleanUp 1281 ISScriptBridge.DLL CleanUp

MyCustomAction 1 ISScriptBridge.DLL f0

StartUp 513 ISScriptBridge.DLL StartUp

Remarks:

◆ The CleanUp custom action is a function exported from the source DLL
and it function is to perform clean up at the end of each sequence in the
installation. What these actual clean up duties consist of is discussed in
the section on the run-time architecture. The 513 type number for this
custom action indicates that this custom action is provided by a DLL
that is stored in the Binary table and that it will execute only once per
process. This custom action is of the immediate category, which means
that it will be executed as soon as it is encountered in the sequence table
by the Windows Installer.

◆ The EngineStartup custom action is another function exported from the
ISScriptBridge.DLL dynamic-link library. The function of this custom
action is to install the engine that is used to execute the InstallScript code.
How this engine is installed is covered in the run-time architecture sec-
tion. The 577 type for this custom action indicates that it is provided by a
DLL stored in the Binary table, that it will execute only once per process,
and that the Windows Installer is to ignore any exit codes from this cus-
tom action. This custom action is of the immediate category, which means
that it will be executed as soon as it is encountered in the sequence table
by the Windows Installer.

◆ The Rollback_CleanUp custom action is implemented by the same
function exported from the ISScriptBridge.DLL dynamic-link library
as for the CleanUp custom action discussed above. The function of
this custom action is to perform all required clean up activities in
the event of the installation being prematurely terminated. The 1281
type for this custom action indicates that it is provided by a DLL
stored in the Binary table and that it will be executed in a deferred
mode and only during a rollback if one becomes necessary.

888 Appendixes

4723-2 appC.f.qc 1/16/01 11:14 AM Page 888

Since this custom action is one sub-categories of deferred custom actions
it gets written into the execution script for processing during that phase of
the installation.

◆ The MyCustomAction is the name of the custom action that has been
implemented using InstallScript. You will notice that the target for
this custom action is shown as f0. This target is one of 1001 predefined
exported function names from ISScriptBridge.DLL. How this is used is
discussed in the section on the run-time architecture. The 1 type for this
custom action defines that it is implemented in a DLL that is stored in
the Binary table. This is an immediate custom action and that will always
be executed. Through the Custom Action Wizard you have the facility to
define your InstallScript custom action to run in deferred mode and to
have the Windows Installer ignore return values. However, InstallScript
custom actions at the time of this writing can only be run synchronously
so the Wizard will not let you choose the option to run asynchronously.

◆ The final custom action that we need to discuss is the StartUp custom
action. The function of this custom action is to get everything up and
running after the InstallScript engine has been installed. As with the other
custom actions it is a function exported from the ISScriptBridge.DLL and
its type is that same as for the CleanUp custom action.

The next table that we want to look at is the Binary table. This is shown in Table
C-2 and it is provided in the form that it would appear when there has only been
the one custom action created with no other modifications made to the default pro-
ject. This means that no new dialogs have been added with the uses of any new
graphics. The complete table is being shown because it will be much different when
a multi-language installation is created and it is important to explain the reason for
the differences.

TABLE C-2 THE BASIC BINARY TABLE CREATED FOR A SINGLE LANGUAGE MSI
PACKAGE WHEN USING AN INSTALLSCRIPT CUSTOM ACTION

Name Data

_ISRES.DLL _ISRES.DLL.ibd

Binary10 Binary10.ibd

Binary11 Binary11.ibd

Binary12 Binary12.ibd

Binary13 Binary13.ibd

Continued

Appendix C: InstallScript Run-Time Architecture 889

4723-2 appC.f.qc 1/16/01 11:14 AM Page 889

TABLE C-2 THE BASIC BINARY TABLE CREATED FOR A SINGLE LANGUAGE MSI
PACKAGE WHEN USING AN INSTALLSCRIPT CUSTOM ACTION (Continued)

Name Data

Binary14 Binary14.ibd

Binary15 Binary15.ibd

Binary16 Binary16.ibd

Binary17 Binary17.ibd

Binary18 Binary18.ibd

Binary19 Binary19.ibd

Binary20 Binary20.ibd

Binary21 Binary21.ibd

Binary22 Binary22.ibd

Binary6 Binary6.ibd

Binary7 Binary7.ibd

Binary8 Binary8.ibd

Binary9 Binary9.ibd

InstallScript InstallScript.ibd

IsConfig.INI IsConfig.INI.ibd

ISRT.DLL ISRT.DLL.ibd

ISScript.Msi ISScript.Msi.ibd

ISScriptBridge.DLL ISScriptBridge.DLL.ibd

String1033.txt String1033.txt.ibd

Remarks:

◆ What is shown in the Data column is what you would see if you exported
this table using Orca. In Orca you would only see the string [Binary Data]
in this column. What is shown in the above table is the name of the file
into which the binary data has been streamed.

◆ The rows that have an entry in the Name column of the format Binaryxx,
where xx is a number, are the icons and bitmaps used in populating the
dialogs that make up the installation user interface. What we really want
to discuss here is all the other entries in this table.

890 Appendixes

4723-2 appC.f.qc 1/16/01 11:14 AM Page 890

◆ In the first row of the table is the English resource DLL for all the external
dialogs available through InstallScript.

◆ The InstallScript entry in the table is the compiled script (.inx) file that
will be read by the InstallScript engine to implement the custom actions
that have been defined.

◆ The IsConfig.ini entry in the table is a configuration file that maps an
exported function in ISScriptBridge.dll to a call to the entry point func-
tion defined in your script.

◆ The ISRT.DLL entry in the table is the implementation of the InstallScript
API function set. Most calls to one of the API functions gets sent by the
scripting engine to this DLL.

◆ The ISScript.Msi entry in the table is the MSI package that installs the
engine on the target machine if it is not already installed.

◆ The ISScriptBridge.DLL entry in the table is the custom action DLL that
implements the scripting engine initialization and clean up custom actions
as well as serves as the transfer point between the installation process and
the scripting engine process.

◆ The String1033.txt entry in the table is the English string table file that
can be accessed from within the script using the @ symbol. This file is in
Unicode.

The next table that we look at is the InstallUISequence table. We need to under-
stand the additional entries made in this table and in the InstallExecuteSequence table.
The entries in the InstallExecuteSequence table are shown in Table C-4. First we look
at the entries made in the InstallUISequence table and these are given in Table C-3.

TABLE C-3 THE DEFAULT ENTRIES MADE IN THE INSTALLUISEQUENCE TABLE FOR
AN INSTALLSCRIPT CUSTOM ACTION

Action Condition Sequence

SetupCompleteError -3

SetupInterrupted -2

SetupCompleteSuccess -1

EngineStartup Not Installed 1

StartUp 2

Continued

Appendix C: InstallScript Run-Time Architecture 891

4723-2 appC.f.qc 1/16/01 11:14 AM Page 891

TABLE C-3 THE DEFAULT ENTRIES MADE IN THE INSTALLUISEQUENCE TABLE FOR
AN INSTALLSCRIPT CUSTOM ACTION (Continued)

Action Condition Sequence

LaunchConditions 50

SetupInitialization 100

FindRelatedProducts 150

AppSearch APPS_TEST 200

CCPSearch CCP_TEST 250

RMCCPSearch Not CCP_SUCCESS And CCP_TEST 300

ValidateProductID 350

CostInitialize 400

FileCost 450

IsolateComponents 500

CostFinalize 550

MyCustomAction Not Installed 575

MigrateFeatureStates 600

InstallWelcome Not UITEST And Not Installed 650

SetupResume Not UITEST And Installed And (RESUME 700
Or Preselected)

MaintenanceWelcome Not UITEST And Installed And Not 750
RESUME And Not Preselected

SetupProgress Not UITEST 800

ExecuteAction 850

CleanUp 851

Remarks:

◆ The first line we want to look at is the one with the EngineStartup
action. This is a custom action exported by the ISScriptBridge.DLL
that installs the script engine and related files. This custom action has
a sequence number of 1 so it will be the first action taken during
the installation.

892 Appendixes

4723-2 appC.f.qc 1/16/01 11:14 AM Page 892

◆ The next line that has the StartUp action is the custom action that loads
the scripting engine and streams out the compiled script from the Binary
table. During the initialization of the scripting engine the OnBegin event
handler of the script is executed.

◆ The last line in this table is the CleanUp action. This is a custom action
that is responsible for closing the script file and shutting down the script-
ing engine. During this process the OnEnd event handler is executed.

The other sequence table that we need to look at before we go on to the discus-
sion of the run-time architecture is the InstallExecuteSequence table. The entries
made in this table are shown in Table C-4.

TABLE C-4 THE DEFAULT ENTRIES MADE IN THE INSTALLEXECUTESEQUENCE TABLE
FOR AN INSTALLSCRIPT CUSTOM ACTION

Action Condition Sequence

EngineStartup Not Installed 1

StartUp 2

LaunchConditions 50

FindRelatedProducts 100

AppSearch APPS_TEST 150

CCPSearch CCP_TEST 200

RMCCPSearch Not CCP_SUCCESS And CCP_TEST 250

ValidateProductID 300

CostInitialize 350

FileCost 400

IsolateComponents 450

CostFinalize 500

SetARP 525

SetODBCFolders 550

MigrateFeatureStates 600

InstallValidate 650

Continued

Appendix C: InstallScript Run-Time Architecture 893

4723-2 appC.f.qc 1/16/01 11:14 AM Page 893

TABLE C-4 THE DEFAULT ENTRIES MADE IN THE INSTALLEXECUTESEQUENCE TABLE
FOR AN INSTALLSCRIPT CUSTOM ACTION (Continued)

Action Condition Sequence

InstallInitialize 700

Rollback_CleanUp 701

AllocateRegistrySpace NOT Installed 750

ProcessComponents 800

UnpublishComponents 850

UnpublishFeatures 900

StopServices VersionNT 950

DeleteServices VersionNT 1000

UnregisterComPlus 1050

SelfUnregModules 1100

UnregisterTypeLibraries 1150

RemoveODBC 1200

UnregisterFonts 1250

RemoveRegistryValues 1300

UnregisterClassInfo 1350

UnregisterExtensionInfo 1400

UnregisterProgIdInfo 1450

UnregisterMIMEInfo 1500

RemoveIniValues 1550

RemoveShortcuts 1600

RemoveEnvironmentStrings 1650

RemoveDuplicateFiles 1700

RemoveFiles 1750

RemoveFolders 1800

CreateFolders 1850

MoveFiles 1900

894 Appendixes

4723-2 appC.f.qc 1/16/01 11:14 AM Page 894

Action Condition Sequence

InstallFiles 1950

DuplicateFiles 2000

PatchFiles 2050

BindImage 2100

CreateShortcuts 2150

RegisterClassInfo 2200

RegisterExtensionInfo 2250

RegisterProgIdInfo 2300

RegisterMIMEInfo 2350

WriteRegistryValues 2400

WriteIniValues 2450

WriteEnvironmentStrings 2500

RegisterFonts 2550

InstallODBC 2600

RegisterTypeLibraries 2650

RegisterComPlus 2700

InstallServices VersionNT 2750

StartServices VersionNT 2800

SelfRegModules 2850

RegisterUser 2900

RegisterProduct 2950

PublishComponents 3000

PublishFeatures 3050

PublishProduct 3100

InstallFinalize 3150

RemoveExistingProducts 3200

CleanUp 3201

Appendix C: InstallScript Run-Time Architecture 895

4723-2 appC.f.qc 1/16/01 11:14 AM Page 895

Remark:

◆ The custom actions inserted into this table are the same as described for
the InstallUISequence table.

What Happens at Run-Time for a Single Language
Installation
As has already been discussed above, at run time the ISScriptBridge.DLL host for the
script related custom actions is streamed out of the Binary table by the Windows
Installer. The Windows Installer then calls the exported EngineStartup function in
this DLL and this gets the scripting engine installed if it is not already installed. The
Windows Installer then calls the StartUp custom action and this launches the script-
ing engine, streams the compiled script and other files out of the Binary table, and
opens the compiled script. The compiled script is streamed out as InstallScript.tmp
into a folder in the TEMP directory with the name of this folder formed from the
Product GUID. At this point the scripting engine is up and running with the com-
piled script open. The OnBegin() event handler is now executed as part of the initial-
ization process. If the compiled script has not implemented any functionality for this
event handler then this becomes a no-op.

Now everything is ready to execute calls to the entry point functions that have
been defined in your script. For every entry point function defined in your script an
entry has been made in the CustomAction table. The source of the custom action is
always ISScriptBridge.DLL and the target of the custom action is f0 through fn where
n represents the last entry point function defined in your script. ISScriptBridge.DLL
has exported functions with the names f0 through f1000. When the Windows Instal-
ler calls one of these exported functions ISScriptBridge will map this exported func-
tion name to the actual name of the entry point function in your script. This mapping
is done through the file ISConfig.ini file that was streamed out into the temporary
folder under the TEMP directory. The real name of the function is then used to imple-
ment your custom action via the scripting engine.

At the end of the installation the Windows Installer calls the CleanUp custom
action. The first thing that this custom action does is execute the OnEnd() event han-
dler. Just as with the OnBegin() event handler if there is no code in your script for
this event handler then this is a no-op. After this the CleanUp custom action closes
the script, shuts down the scripting engine, and deletes all the temporary files.

Multi-Language Installations
In this section we will discuss the differences in both the build and the run-time
actions that take place when a multi-language installation is created and run. First
we want to discuss the build-time actions that are implemented to create this multi-
lingual installation package.

896 Appendixes

4723-2 appC.f.qc 1/16/01 11:14 AM Page 896

Building the MSI Package for a Multi-Lingual
Installation
When creating a multi-language installation the only table of the four we discussed
in the previous section that is changed is the Binary table. Many other tables that
are not related to custom actions are different in a multi-language MSI package.
For the sake of completeness, it is probably worthwhile to mention what is going
on here. The general approach taken when creating a multi-language installation
package is to strip out all language dependent information from all the applicable
tables. This language dependent information is used to create various language
transforms. The transforms that are actually created depend on the languages that
will be offered up to the end user for choosing the language in which the install is
to be done. The choice of language is provided by the SETUP.EXE file, which then
applies the appropriate transform once the user makes their decision on what lan-
guage to use.

As far as InstallScript custom actions go, the only table we need to look at is the
Binary table. The content of this table when creating a multi-language installation
package is shown in Table C-5.

TABLE C-5 THE BINARY TABLE GENERATED FOR AN INSTALLSCRIPT CUSTOM
ACTION IN A MULTI-LANGUAGE INSTALLATION PACKAGE

Name Data

InstallScript InstallScript.ibd

IsConfig.INI IsConfig.INI.ibd

ISRT.DLL ISRT.DLL.ibd

ISScript.Msi ISScript.Msi.ibd

ISScriptBridge.DLL ISScriptBridge.DLL.ibd

Remark:

◆ The one point to notice here is that all the language dependent files are
now missing from the Binary table. This includes all the Binaryxx files
as well as the _ISRES.DLL file and the string table file. These files are now
contained in a transform, which will be applied at run time depending on
the choice the user makes at the start of the installation.

Appendix C: InstallScript Run-Time Architecture 897

4723-2 appC.f.qc 1/16/01 11:14 AM Page 897

What Happens at Run-Time for a Multi-Language
Installation
At run time the only thing that is different than already described for the single
language installation is the fact that all language dependent table entries get added
to the database at run time via the application of a particular language specific
transform. Once the transform is applied everything proceeds as described for the
single language installation.

898 Appendixes

4723-2 appC.f.qc 1/16/01 11:14 AM Page 898

Appendix D

System Reboots
THE WINDOWS INSTALLER CAN automatically handle system reboots or it can be
controlled so that the setup developer can specify when and if a reboot should be
initiated. Inserting actions into the sequence can control reboots of the system.
These actions include certain standard actions built in to the Windows Installer ser-
vice, as well as those forced by a custom action. In all cases both standard actions
and custom actions need to have an associated condition that executes the action
only if the environment is appropriate. Setting a particular property from the com-
mand line can also be used to initiate a reboot without having to insert an action
into a sequence table. One of the most common scenarios that will cause a reboot
during an installation is the trying to copy over a file that is in use by another
process.

In the following sections we explore the different methods for initiating and
controlling system reboots through the Windows Installer, staring with how the
Windows Installer handles files that are in use when an installation is run.

Replacing Files That Are in Use
There is one particular situation where the Windows Installer will generate a reboot
of the system even if there are no special actions placed in the sequence table. This
situation occurs when an executable file being installed is found by the Windows
Installer to be in use at the time of the installation. When this happens the
Windows Installer will display the FilesInUse dialog box, which permits the end
user to shut down the processes that are holding the files that are shown as being
in use. The FilesInUse dialog is displayed when the InstallValidate action detects the
situation that the files being installed are already in use by another application.

Determining if a file is open is done during file costing. During the file costing,
if a file is detected as being opened by another process, an entry is made to an
internal table with the name of FilesInUse. This table has two columns with the first
column containing the name of the file that is open and the second column the full
path of the open file.

When the InstallValidate action executes the internal FilesInUse table is queried
for any entries. If any entries are found in this table then an entry for each unique
process that has a file open is made in the ListBox table in the MSI database. The
entries made in the ListBox table columns are shown in Table D-1.

899

4723-2 appD.f.qc 1/16/01 11:14 AM Page 899

TABLE D-1 ENTRIES IN THE LISTBOX TABLE USED IN THE FILESINUSE DIALOG

Column Value

Property FileInUseProcess

Order The order of the process as found in the internal table FilesInUse.

Value Name of the process that holds the open file that needs to be placed.

Text The caption of the main window of the process identified in the Value
column.

After the ListBox table is populated the InstallValidate action displays the
FilesInUse dialog. The FilesInUse dialog box is an authored dialog that has certain
requirements but can be modified within these requirements as seen fit by the setup
developer. The design of this dialog is covered in the next section.

The FilesInUse Dialog
This dialog needs to be authored into the MSI database and it is required that the
name for this dialog be FilesInUse. This dialog box must have a ListBox control and
this control needs to be associated with a property named FileInUseProcess. It is nor-
mal for this dialog box to have three pushbuttons with the captions of Exit, Retry,
and Ignore. These buttons are not all required and can be modified by the setup
developer; however, it is necessary to return certain values to the InstallValidate
action in order for this dialog box to function properly. Each button in this dialog is
tied to the EndDialog control event and the arguments to this control event return
these values. The FilesInUse dialog is shown in Figure D-1.

Figure D-1: The FilesInUse Dialog

900 Appendixes

4723-2 appD.f.qc 1/16/01 11:14 AM Page 900

The Retry button uses the Retry argument on the EndDialog control event. The
FilesInUse dialog is closed and control returns to the InstallValidate action. The
InstallValidate action causes all values added to the ListBox table to be cleared and
the file costing process is repeated. If there are still processes identified as holding
open a file that is to be replaced, the process just described above is started over. If
there are no more processes identified, the InstallValidate action returns success to
the Windows Installer and the installation or uninstallation process continues. The
Exit button uses the Exit argument on the EndDialog control event and the Ignore
button uses the Ignore argument on the EndDialog control event.

This dialog will not be displayed if one of the following listed conditions is true.

◆ The files in use are not executable files. In other words, if the file in use is
a text file or some other file that is not a Portable Executable (PE) file, the
FileInUse dialog will not be displayed.

◆ The Windows Installer is not actually trying to install the files that are
in use.

◆ The process that is holding the files that are in use is the process that
launched the installation.

◆ The process that is holding the files in use does not have a window that
has a window title associated with it.

In the situation where the user does not shut down all processes holding files that
are to be overwritten, a prompt to the user to perform a reboot is displayed giving
the user the opportunity to reboot immediately or to reboot later. This prompt can be
suppressed with the use of the REBOOTPROMPT property. If a reboot is determined
to be necessary by the Windows Installer when this property is set to Suppress or S,
the reboot will happen automatically without the display of a prompt.

If the user decides to not shut down the process that is holding open a file that
will be overwritten by an installation, then the Windows Installer will set a prop-
erty called ReplacedInUseFiles. This property can be used to condition custom
actions that may be needed to handle this particular type of situation.

Controlling System Reboots
In the previous section we saw that the Windows Installer will automatically
prompt the user to reboot the computer if it detects that a file in use has been over-
written by the installation. This occurs if the user chooses to ignore the FilesInUse
dialog and does not shut down the process that is holding the file that is in use.
However, we do not need to depend on the Windows Installer to identify the need
for a reboot. We have several methods that can be used to either create a reboot at
the end of an installation or to have one occur during the middle of an installation.
These are discussed in the next two sections.

Appendix D: System Reboots 901

4723-2 appD.f.qc 1/16/01 11:14 AM Page 901

Controlling the Reboot at the End of an
Installation
To control the reboot at the end of an installation we have a standard action and a
property that we can use. The standard action is called ScheduleReboot and we can
insert this action in to the sequence at any location and the Windows Installer will
reboot the system at the end of the installation. If the installation is being run in
silent mode, there will be no prompt for a reboot; otherwise, there will be a prompt
displayed. The installation will not be considered complete until the reboot has
occurred.

We also have the REBOOT property, which gives us control on whether a reboot
will happen or not. This property can have one of three values as shown in the fol-
lowing list:

◆ F for Force: When the REBOOT property has this value a reboot will occur
at the end of the installation. If the user interface sequence is run then
there will be a prompt at the end of the installation for a reboot. If it is
a silent installation then the reboot will occur automatically.

◆ S for Suppress: Using this value for the REBOOT property will suppress all
Windows Installer initiated reboots as well as any reboots caused by the
insertion of the ScheduleReboot action. It will not suppress any reboots
generated by the ForceReboot action. This action is the subject of the next
section.

◆ R for ReallySuppress: Using this value will suppress all reboots of the sys-
tem including those that are generated by the ForceReboot action.

Controlling the Reboot during an Installation
When we want to reboot during the middle of an installation the system will reboot
and then the installation will continue. It is important to realize that the Windows
Installer will pick up the installation by starting to execute the install from the
beginning. This is because the Windows Installer has no way of knowing where it
left off when it rebooted. A different user interface is displayed because the condi-
tions during this resumption of an installation are different. When a ForceReboot
action is encountered the Windows Installer will display a prompt for a reboot at
that point in the installation as long as the user interface sequence has been run. If
it is a silent installation, the reboot will happen automatically without a prompt.

With a ForceReboot action it is necessary to prevent this action from continuing
to force a reboot every time the installation is resumed after the last reboot. This
means that we have to condition this action so that it only occurs during the first
pass through the sequence table. The Windows Installer provides a public property
called AFTERREBOOT can be used to create this condition. This property is set to 1
by the Windows Installer on the resumption of an installation after a ForceReboot.

902 Appendixes

4723-2 appD.f.qc 1/16/01 11:14 AM Page 902

Since this property is not set during the first pass through the sequence table the
condition that can be used on the ForceReboot action can be as follows:

Not AFTERREBOOT

This condition will allow the ForceReboot action to execute the first time and
not during the resumed installation.

The behind-the-scenes resumption of the installation after the reboot occurs is
accomplished by the writing to the RunOnce registry key with the following com-
mand line:

msiexec /i <.msi package> AFTERREBOOT=1

The ForceReboot action must come between the InstallInitialize and the
InstallFinalize actions. Also it is highly recommended that the ForceReboot action
come after the RegisterProduct action otherwise the Windows Installer will require
the source of the installation package. In fact the ForceReboot action should be
sequenced after the following group of actions in the execute sequence.

◆ Registerproduct

◆ RegisterUser

◆ PublishProduct

◆ PublishFeatures

◆ CreateShortcuts

◆ RegisterMIMEInfo

◆ RegisterExtensionInfo

◆ RegisterClassInfo

◆ RegisterProgIdInfo

◆ ForceReboot

Appendix D: System Reboots 903

4723-2 appD.f.qc 1/16/01 11:14 AM Page 903

4723-2 appD.f.qc 1/16/01 11:14 AM Page 904

Appendix E

What’s on the CD-ROM
THE CD-ROM THAT ACCOMPANIES this book is loaded with a number of valuable
resources as listed below.

A complete electronic copy of the book is also included and permits easy text
searching.

Source Code, Projects, and Sample
Applications
Throughout the book there have been many examples used to illustrate the various
features of the Windows Installer and InstallShield for Windows Installer. Copies of
all complete examples provided in the book are available on the CD-ROM.

Programs
The following full-featured programs are included.

Microsoft’s Windows Installer SDK — Version 1.1
The SDK provides the latest information about the Windows Installer as well as
many tools that allow you to directly edit MSI packages, validate packages, etc. The
latest vesion of the Windows Installer SDK can be downloaded form the MSDN Web
site at the following URL:

http://msdn.microsoft.com/com/downloads/sdks/platform/wininst.asp

Microsoft Internet Explorer 5.5
This is the latest version of the popular Web browser from Microsoft and it plays
an important part in enabling your PC to full advantage of Windows Installer
capabilities.

905

4723-2 appE.f.qc 1/16/01 11:14 AM Page 905

InstallShield® for Windows® Installer 1.52
If you do not already own this product, you can install the version on the CD-ROM
and you will be able to do most of the examples provided in the book. You can also
install an evaluation copy of the latest version, InstallShield Professional — Windows
Installer Edition, as described in the next section. To obtain the password required to
install this version, go to http://www.installshield.com/books/iswidg/.

Evaluation Copies of the Latest
InstallShield Software Products
Using a simple registration process you are provided with a password that allows
you to install any of the following InstallShield products.

INSTALLSHIELD® PROFESSIONAL — STANDARD EDITION
The de facto industry standard development tool for creating professional Windows
installations, InstallShield Professional allows developers to create setups of any
size and complexity that can be distributed by CD, DVD, and the Internet. Used by
top software vendors targeting consumer applications worldwide, InstallShield
Professional has earned its place as the Windows developers’ choice, earning PC
Magazines’ Editors Choice and many other industry awards.

More information can be found at http://www.installshield.com/ispro/.

INSTALLSHIELD® PROFESSIONAL — WINDOWS® INSTALLER EDITION
InstallShield Professional — Windows Installer Edition is the comprehensive setup
solution for Microsoft’s Windows Installer service. The powerful features of this new
service combined with InstallShield’s innovative and time saving capabilities to
deliver the solution of choice for professional developers. Professional — Windows
Installer Edition allows you to meet installation requirements for the Windows 2000
logo and take advantage of the Windows Installer service’s TCO-reducing features.

More information can be found at http://www.installshield.com/iswi/.

INSTALLSHIELD® EXPRESS
InstallShield Express produces reliable Windows installations entirely in a visual,
point-and-click environment. InstallShield Express includes pre-built objects that
automatically handle installation of common components. InstallShield Express
provides the most built-in support of any visual installation development tool.
With its step-by-step installation checklist, InstallShield Express makes setup as
quick and easy as possible.

More information can be found at http://www.installshield.com/express/.

906 Appendixes

4723-2 appE.f.qc 1/16/01 11:14 AM Page 906

INSTALLSHIELD® ENTERPRISE — MULTI-PLATFORM EDITION 4.0
InstallShield Enterprise—Multi-Platform Edition 4.0 is the multi-platform installation
solution for large scale, distributed applications. Co-developed with IBM, Enterprise—
Multi-Platform Edition extends the universally recognized InstallShield Wizard to
multiple platforms including OS400, AIX, and OS2 in addition to the existing support
for Windows, Solaris, and four Linux distributions. Developers targeting multiple
platforms can now write a single installation that will run on multiple platforms
while ensuring a consistent, Windows-like, end-user experience every time.

More information can be found at http://www.installshield.com/iemp/.

INSTALLSHIELD® PROFESSIONAL — MULTI-PLATFORM EDITION 4.0
InstallShield Professional — Multi-Platform Edition 4.0 is the flexible, multi-plat-
form installation development solution from the leader in installation technology.
Co-developed with and used by IBM. Professional – Multi-Platform Edition extends
the de facto industry standard InstallShield Wizard to multiple platforms including
Linux, Solaris, Windows, AIX and OS/2. Developers targeting multiple platforms
can now write a single installation that will do exactly what they want it to do on
multiple platforms while ensuring a consistent, Windows-like, end-user experience
every time.

More information can be found at http://www.installshield.com/ipmp.

INSTALLSHIELD® EXPRESS — MULTI-PLATFORM EDITION 4.0
InstallShield Express — Multi-Platform Edition 4.0 is the quick and easy multi-
platform installation development solution. Co-developed with and used by IBM,
Express — Multi-Platform Edition extends the de facto industry standard Install-
Shield Wizard to multiple platforms including Linux, Solaris, Windows, AIX, and
OS/2. Developers targeting multiple platforms can now write a single installa-
tion that will run seamlessly on multiple platforms while ensuring a consistent,
Windows-like, end-user experience every time.

More information can be found at http://www.installshield.com/ixmp.

INSTALLSHIELD® TUNER
InstallShield Tuner allows systems administrators to take a Windows Installer setup
package from an ISV or internal developer and customize it before you deploy it.
You’ll create MST transform files that customize your setup during installation.
You’ll control which features, registry entries, and shortcuts install on your users’
systems. And only InstallShield Tuner offers an intuitive user interface that allows
administrators to customize ANY Windows Installer package.

More information can be found at http://www.installshield.com/ist/.

INSTALLSHIELD® DEMOSHIELD®

InstallShield DemoShield is a multimedia-authoring tool that allows software devel-
opers, marketers, trainers, consultants, and multimedia authors to quickly develop

Appendix E: What’s on the CD-ROM 907

4723-2 appE.f.qc 1/16/01 11:14 AM Page 907

demonstrations on CD-ROM or for the Web. Whether you need to create pre-sales
demos, CD Browsers, tutorials, or quick tours, DemoShield’s easy-to-use interface
makes it the ideal solution for anyone looking to create exciting, informative multi-
media presentations.

More information can be found at http://www.installshield.com/demoshield/.

INSTALLSHIELD® PACKAGEFORTHEWEB
InstallShield PackageForTheWeb provides developers with a single, easy solution for
packaging files, applications, and ActiveX controls for Internet or Intranet distribu-
tion. You can deploy your application as a self-extracting single-file .exe, localized
in 29 different languages and digitally signed with Microsoft’s Authenticode tech-
nology. PackageForTheWeb is easy for you, and more importantly, easy for your
customers.

More information can be found at http://www.installshield.com/pftw/.

908 Appendixes

4723-2 appE.f.qc 1/16/01 11:14 AM Page 908

Symbols and Numbers
#, 474, 710

#%, 712

& (ampersand)

address operator, 535, 562

bitwise AND operator, 559, 560

* (asterisk), 711

multiplication operator, 552

pointer indirection, 535, 536, 562

^ (caret symbol)

append-to-path operator, 592

bitwise XOR operator, 560

: (colon), 127, 761

$ (dollar sign), 474, 710

= (equal sign), 429, 504

assignment operator, 563

equality operator, 554, 555, 563

/ (forward slash), 552, 562

!= (inequality operator), 554, 563

&& (logical AND operator), 554, 555, 563

! (logical NOT operator), 554, 555, 562

- (minus sign), 552, 562, 563, 711

% (percent sign), 473

in environmental variables, 709

remainder operator, 552, 563

string find operator, 589

. (period), 128

structure member operator, 549, 562

| (pipe symbol), 97, 164, 182, 761

bitwise OR operator, 560, 563

+ (plus sign), 711, 724

addition operator, 552, 563

for string concatenation, 589

? (question mark), 429

_ (underscore character), 510, 532

| | (logical OR operator), 429, 554, 555, 563

[] (square brackets), 394, 473, 476–478, 562,

709, 712

*/ comment identifier, 534

/* comment identifier, 534

@ symbol, 590, 761

%TEMP% directory, 51

< (less than operator), 429, 554, 563

<= (less than or equal operator), 429, 554, 563

< > (angle brackets), 264, 333, 429, 713

<< (left shift operator), 559, 561, 563

> (greater than operator), 429, 554, 563

>= (greater than or equal operator), 429, 554,

563

-> operator, 562

>> (right shift operator), 559, 561–562, 563

\ (backslash) directory divider, 415

\\ (double backslash), 535, 590, 592

{ } (curly braces), 473

~ (bitwise NOT operator), 559, 562

A
abort statement, 574

About InstallShield command, Help menu, 220

abstraction

Hardware Abstraction Layer (HAL), 18

MicroKernel, 19

Action column

ActionText table, 795

ControlCondition table, 189

CustomAction table, 131, 386

merge module sequence table, 740

Action Parameters dialog, Custom Action

wizard, 441–446

Action Type dialog, Custom Action wizard,

437–440

ActionProperty column, Upgrade table, 821,

824–825, 826, 828

ActionProperty property, 821–823

actions. See also custom action

conditional expressions, 81, 84

Registry-related, 86–89

sequencing, 81–85, 321–323

standard, 85–89

Actions/Scripts command, Go menu, 218

Actions/Scripts view

Custom Action wizard, accessing, 436

InstallScript icon, 486

Merge Module, 735

overview, 298–299

Index

4723-2 Index.f 1/16/01 11:14 AM Page 909

ActionText table, 795

Active Directory

global catalog, 37

interoperability, 38

namespace system, 37

overview, 35–38

Public Key Infrastructure (PKI) and, 26

remote installation and, 43

replication, 38

security, 38

Security Services, 26

Unattended Setup, 27

Add Files... button, 250, 720

Add folder... button, 720

Add Installed Fonts dialog, 726

Add New Fonts dialog, 726

Add New Language... command, Tools menu,

219, 807

Add New Language wizard

launching, 235

overview of, 235

Add Package option, 847

Add to Watch command, 519, 520

Additional Options dialog, Custom Action

wizard, 446–447

AddListBoxRecord function, 675, 679

ADDLOCAL property, 450–454

Add/Remove Programs applet, 44

information exposed, 112

Windows 2000 Properties in Project view,

259

ADMIN top-level action, 52, 82, 145

AdminExecuteSequence table, 82, 94, 148

Administration/User Interface tree, dialogs in,

342–343

administrative image, patching, 845

Administrative Templates, Group Policy Editor

extension, 40

AdminNetworkLocation dialog, 350–351

AdminProperties property, 90

AdminUISequence table, 82, 196–197

AdminWelcome dialog, 342, 350

AdminWelcome dialog sequence, 350–351

AdminWelcomeDlg user-interface sequence,

197

Advanced Settings area, 705

Advanced Settings dialog, Release wizard,

292–293

Advanced Settings icons

Application Path, 715

COM Registration, 716, 749

Control NT Services, 717, 726

File Types, 716–717

Install NT Services, 717, 725

Publishing, 717, 751

Advanced System Recovery (ASR), 24

ADVERTISE top-level action, 52, 145

advertisement

assigned and published applications, 54

feature level, 53

icons, 79–80

product level, 53

self-registration of components and, 697

sequence tables, 82–83

Advertisement, feature property, 274

AdvtExecuteSequence table, 82, 83, 149

AdvtUISequence table, 82

After column, merge module sequence table,

741

AgreeToLicense property, 328

Align Bottom, Alignment and Sizing toolbar

button, 357

Align Left, Alignment and Sizing toolbar

button, 357

Align Right, Alignment and Sizing toolbar

button, 357

Align Top, Alignment and Sizing toolbar

button, 357

Alignment and Sizing toolbar icons, table of,

357–358

All Dialogs icon, 337, 363

Allow Column Selection option, 496

Allow Drag and Drop option, 496

Allow Horizontal Splitting option, 496

Allow product codes to differ check box, 854

Allow version numbers to differ check box, 854

Allow Vertical Splitting option, 496

AllowIgnoreOnPatchError field, 842

AllowProductCodeMismatches property,

834–835

910 Index

4723-2 Index.f 1/16/01 11:14 AM Page 910

AllowProductVersionMajorMismatches

property, 835

ALLUSERS public property, 345

ALTER TABLE statement, 423, 425, 426

AlwaysInstallElevated (Per-Machine) policy,

385

AlwaysInstallElevated (Per-User) policy, 385

AND logical operator, 429

ApiPatchingOptionFlags property, 835

ApiPatchingSymbolFlags property, 835–836

AppData column, PublishComponent table, 751

AppDataFolder property, 128

append-to-path operator (^), 592

AppId_ column, Class table, 133

AppId table, Class table key value for, 133

Application Components dialog, 247–249

Application Data folder, 128

Application Data Language Settings group box,

800

Application Features dialog, 246–247

Application files dialog, 251

Application Information dialog, 245

application paths, creating, 715

Application Paths icon, 283, 715

Application Paths property sheet, 283

Application Specification for Microsoft

Windows 2000, 35

Application Type property, merge module, 734

ApplicationUsers property, 328, 345

Apply a transform option, 771

AppSearch action, 306, 455

Argument column

Class table, 134

ControlEvent table, 166

Shortcut table, 137

Verb table, 142

Argument, Open verb property, 285

Arguments, shortcut property, 280

arithmetic operators, InstallScript, 552–553. See

also specific operators

ARPAUTHORIZEDCDPREFIX property, 328

ARPCOMMENTS property, 261

ARPCONTACT property, 260

ARPHELPLINK property, 260, 668

ARPHELPTELEPHONE property, 260, 668

ARPINSTALLLOCATION property, 329,

660–662

ARPNOMODIFY property, 260, 329

ARPNOREMOVE property, 260, 329

ARPNOREPAIR property, 260, 267, 269, 329,

668

ARPPRODUCTICON property, 259, 329

ARPREADME property, 261

ARPSIZE property, 329

ARPSYSTEMCOMPONENT property, 329

ARPURLINFOABOUT property, 260, 668

ARPURLUPDATEINFO property, 261, 668

array

hashing algorithms and, 548

InstallScript implementation of, 611

lists compared, 547, 601

for loop statement use, 569–570

overview of, 547–548

passing to DLL function, 613–616

size, 547–548, 558

sorting, 611–613

string pool, 791–792

of structures, 616–619

array data type, 547–548

ASCII character set, 792, 803

assigned application, 54

assigning software, 31

Associate Merge Module with Feature dialog,

Merge Module Wizard, 744

Associate Merge Module with Multiple Feature

dialog, Merge Module Wizard, 745

Asynchronous Multiprocessing (ASMP), 23

Attributes column

Class table, 134

Component table, 120, 121, 702

Control table, 164, 182

Dialog table, 160

EventMapping table, 186

Feature table, 118

File table, 124, 389

Upgrade table, 823, 824–825, 828

audit messages, 19

Author property, 70, 258

Authoring Comments property, 256–257

Auto Indentation, 493

Index 911

4723-2 Index.f 1/16/01 11:14 AM Page 911

AUTOEXEC.BAT file, 8

Autorun.inf, 293

B
Back button

Control table entry and, 164

UserRegistrationDlg, 174

Welcome Dlg, 164

backslash (\) directory divider, 415

Backup Utility, 29

BaseAction column, merge module sequence

table, 741

BaseUI.msi file, 157

Basic Information dialog, Custom Action

wizard, 436, 437

Basic UI user interface level, 83

Batch Build... command, Build menu, 216

batch file, 6

Behavior icon, 457

Best Practices command, Go menu, 217

Best Practices view, 212

Best Practices wizard

componentization rules monitored, 226

enabling, 226

overview of, 226–227

Best Practices-Destination dialog, Component

Wizard, 719

Best Practices-File dialog, Component Wizard,

720

BillBoard control, 102

Billboard, Control toolbar button, 354

BINARY keyword, 533

Binary table, 105

calling a function in a Windows Installer

dynamic link library stored in, 439, 442

columns, description of, 132

custom actions and, 387–388, 396–397

CustomAction table key value for, 131

default installation location, required entries

for, 131–132

DLL incorporation into, 680–683

DLL streaming from, 683–685

required entries for ISWI Artist, 132

BindImage action, 311

binding an image, 311

bit flags, 560

Bitmap control, 103

Bitmap, Control toolbar button, 354

bitwise AND operator (&), 559, 560

bitwise NOT operator (~), 559

bitwise operators, 559–562

bitwise OR operator (|), 560–561

bitwise XOR operator (^), 560

Blank Dialog icon, 363

Blank Merge Module Project icon, 205, 732

Blank Setup Project icon, 205

bookmarks

keyboard shortcuts for, 501

Mark All button, 502

BOOL data type

described, 536–537

prefix, 534

bootstrapping, 50

Break command, Debugger, 517

Break on Exceptions command, 518

Bring To Front, Alignment and Sizing toolbar

button, 358

broken applications, 11

Browse dialog, 101

Browse pushbutton, CustomDlg, 189

BrowseDlg, 176–186

adding to user-interface sequence, 189

Control table entries, 177–183

ControlEvent table entries, 183–185

Dialog table entries, 176–177

EventMapping table entries, 185–186

tab order, 182

BrowseProperty, 183, 185, 186

Build command, Build menu, 216

Build Label dialog, 288

Build menu commands, list of, 216–217

Build toolbar button, 221

building the MSI package, 288–294

BYREF keyword, 576, 578, 579, 594–595

bytecode format, 485

BYVAL keyword, 576, 594–595

C
CAB files. See cabinet files

Cabarc.exe utility, 63

912 Index

4723-2 Index.f 1/16/01 11:14 AM Page 912

Cabinet column, Media table, 129

cabinet files, 290

cabinet file stream, patch package, 830

Media table identification of, 81

patch package, 65

types, 63

CacelSetup dialog, 344

cache manager, 19

Call a function in a standard dynamic link

library action type, 479

calling conventions, 398–401

Cancel button

BrowseDlg, 185

ControlEvent table entry and, 166

WelcomeDlg, 160

Cancel dialog, 102

CancelDlg, 166

Caption dialog property, 364

category GUID, 68

CATest function, 651–652, 682–683

CCP_DRIVE property, 658–660, 679, 680

CCPSearch action, 307

CCPSearch table, 658

cdecl calling convention, 398, 400, 580–581

CDKeyEdit control, 173

Center Horizontal, Alignment and Sizing

toolbar button, 357

Center Vertical, Alignment and Sizing toolbar

button, 357

Certificate Services, 25–26

Certified for Windows logo, 204–205, 714

Change and Configuration Management

Active Directory and, 35–38

Add/Remove Programs applet, 44

disk quotas, 42

Domain Name Service (DNS), 42–43

Dynamic Host Configuration Protocol

(DHCP), 42–43

folder redirection, 41–42

Group Policy and, 38–40

implementation, key technologies for, 35–41

implementation, supporting technologies

for, 41–44

IntelliMirror, 30–34

overview, 29–30

Remote Installation Services (RIS), 43

Remote OS Installation, 34–35

roaming user profiles, 42

Synchronization Manager, 42

System Management Server (SMS) and,

44–45

Windows Installer Service and, 40–41

Windows Shell enhancements, 44

CHAR data type

described, 537–538

prefix, 534

CHAR keyword, 423

Character Count property, 71, 756, 757

CHARACTER keyword, 424

character set, ASCII, 803

CheckBox control, 103

CheckBox, Control toolbar button, 353

CheckBox table, 106

.chi file, 719

.chm file, 719

Class column, ProgId table, 135

Class table, 75, 76, 77, 79, 80, 87

columns, description of, 133–134

ProgId table key value for, 135

required entries for ISWI Artist, 133

CleanUp action, 651, 656, 657, 680

Clear All Breakpoint command, 518

Clear Key File button, 251

ClearCCP_DRIVE function, 674, 679, 680

client process, 379–381

client/server architecture, three-tiered, 10

Close command, Debugger, 516

Close Project command, File menu, 213

CLSID column, Class table, 133

Clustering, 27

.cnt file, 719

code page

database, 792–795

described, 790–791

setting, 792–793

system locale, 795

code page-neutral installation database,

783–784, 792–793, 795

code point, 790

Codepage property, 70, 797

Index 913

4723-2 Index.f 1/16/01 11:14 AM Page 913

colon (:), 127, 761

color, syntax, 491–492

Color Syntax Highlighting option, 496

Columns catalog, 756

COM

accessing from InstallScript, 631

extraction, 723

registry input and, 132–136

COM Class, ProgID property, 284

COM component. See also component

creating, 721

self-registration, 696–697

sharing between features, 697–698

COM registration actions, 312–313

COM+ registration actions, 313

COM Registration icon, 716, 723, 749

COM Server Executable dialog, 722

COM Server-Destination dialog, 722

COM Structured Storage, 59–60

ComboBox control, 103

ComboBox, Control toolbar button, 353

ComboBox table, 106

dynamic population during an install,

458–464

Command column, Verb table, 142

command line

compiling at, 506–508

debugger, running, 514–515

Command Sequence, Open verb property, 285

Comment, Summary Information Stream

property, 258

comments, InstallScript, 534–535

Comments property, 70, 261

component, 279, 705

feature, 275

shortcut, 282

commit custom actions, 383–384

Common Information Model (CIM) schema, 28

CommonFilesFolder path variable, 264

companion file, 92

comparison operator (<>), 333

Compile button, 503

Compile command, 216, 487

Compile Folders.ini file, 506, 509

Compile toolbar button, 221

COMPILE.EXE, 506

compiler, 503–513

command line, compiling at, 506–508

directives, 508–513

initiating a compile, 503

macros, 513

output window, 505–506

settings, 503–505

warning levels, 504

Compiler Settings... command, Build menu, 217

Compiler Settings dialog, 503–505, 506

Completing the Transform Wizard dialog ,

Transform Wizard, 764, 766, 773

compliance checking program (CCP), 307

component, 687–753

array of, creating, 750–752

cached information on, 66–67

creating with Component wizard, 228–229

defined, 54, 55

defining in Application Components panel,

247––249

deleting, 701

delivering to the application, 728–746

entry point, 55–56

files, adding, 705–707

filtering, language-based, 289

globally shared, installing, 147

GUID, 746, 751

installing shared, 746–752

isolated, 67, 748–750

keypath, 55, 699, 706

Languages property, 799–800

management, 66–67

merge modules and, 728–746

naming, 700

permanent, 69

properties, finalizing in Setup Design view,

276

properties, table of, 703–705

property page, 701, 702–705

Qualified, 750

qualified components, 68, 304

reference counting, 57, 691–692, 698–699,

746, 815

registry keys, 693

914 Index

4723-2 Index.f 1/16/01 11:14 AM Page 914

removing, 701

renaming, 701

rules for creation, 57–58

self-registration, 248–249, 696–697

side-by-side sharing, 67, 691

standard actions related to, 303–304

system, 67–68

transitive, 68–69

version compatibility, 692

Component Code property, 277, 703

Component Codes, compressed, 305

Component column

Component table, 120, 701

Extension table, 141

Component_ column

Class table, 133

FeatureComponents table, 121

File table, 124, 388

PublishComponent table, 751

Registry table, 144

RemoveFile Table, 126

Shortcut table, 137, 138

component creation

in ISWI, directly, 699–717

modifying a component, 693–694

name, default, 700

rules, consequences of breaking, 695–696

rules, list of, 692–693

self-registration of COM components,

696–697

sharing component between features,

697–698

size, 692

version, new, 694

Component Destination Folder edit field, 248

component IDs, 729

Component table, 76–77, 77, 78, 95

Class table key value for, 133

columns, description of, 120–121

columns, table of, 701–702

CreateFolder table key value for, 125

defining the product, 119–121

Extension table key value for, 141

File table key value for, 124, 388

properties for, table of, 703–705

PublishComponent table key value for, 751

Registry table key value for, 144

RemoveFile table key value for, 126

required entries for ISWI Artist, 119–120

Shortcut table key value for, 137

text strings and, 474

Component Type dialog, 721–722

Component Wizard

accessing, 718

Best Practices-Destination dialog, 719

Best Practices-Files dialog, 720

COM server components, 721–723

Component Type dialog, 721–722

Control NT Service components, 725–726

Fonts components, 726–727

global component creation, 718–721

Install NT Service components, 723–725

ODBC Resource components, 727–728

overview of, 228–230

specialized component creation, 721–728

welcome dialog, 718

Component Wizard menu option, 700

Component_Application column,

IsolatedComponent table, 748

ComponentId column

Component table, 120, 121, 702

PublishComponent table, 750

componentization rules, 212, 226

Component_Shared column, IsolatedComponent

table, 748

compressed files, 63

Condition Builder, 320

Condition column

Component table, 120, 702

ControlCondition table, 190

ControlEvent table, 166

merge module sequence table, 741

Condition property

component, 278, 704

feature, 275

Condition table, 75–76

conditional statement, actions and, 81, 84

conditions

syntax requirements, 332–333

tables with condition columns, list of, 332

Index 915

4723-2 Index.f 1/16/01 11:14 AM Page 915

CONFIG.SYS file, 8

CONSTANT symbolic constant, 531

Context column, Class table, 133

context menu, script editor, 496–497

context-sensitive help, 164, 182

Control_ column

Control table, 163

ControlCondition table, 189

ControlEvent table, 166

EventMapping table, 186

control condition, 186

control events

ControlEvent table, 165–166

messages compared, 336

subscription, 337

Control NT Services icon, 717

control objects, 19

Control table, 104–106

BrowseDlg entries, 177–183

columns, description of, 163–164

ControlCondition table key value for, 189

ControlEvent table key value for, 166

Dialog table key values for, 160

EventMapping table key value for, 186

existing dialogs, modifying values for, 187

UserExitDlg entries, 191–194

WelcomeDlg entries, 161–165

Control toolbar icons, table of, 353–356

Control_Cancel column, Dialog table, 160

ControlCondition table, 186

columns, description of, 189–190

CustomizeDlg entries, 189–190

Control_Default column, Dialog table, 160

ControlEvent table

BrowseDlg entries, 183–185

columns, description of, 166

existing dialogs, modifying values for, 188

UserExitDlg entries, 194

UserRegistrationDlg entries, 173–175

WelcomeDlg entries, 165–166

Control_First column, Dialog table, 160, 161,

177

controlling an installation, 297–334

actions, custom, 333–334

actions, standard, 301–321

conditions, 331–331

overview, 297–301

properties, 323–331

sequencing actions, 321–323

Control_Next column, Control table, 164

controls. See also specific controls

subscribing, 186

subscription to control event, 337

table of, 102–104

Convert Source Paths... command, Tools menu,

219

Convert Source Paths wizard

launching, 234

use of, 234

Copy command

Debugger, 516

Edit menu, 215

CopyBytes function, 587

copying application resources to the computer,

111, 122

file handling, 122–130

installation location, initializing default,

130–132

Core Components, 68

CostFinalize action, 94, 308, 455

Type 35 custom actions and, 474–475

costing. See file costing

CostInitialize action, 93, 147, 307, 455

placement of, 306–307

CPU

abstraction by MicroKernel, 19

process management, 22–23

Create a new project...view, 205, 243, 732

Create button, InstallShield Today view, 205

Create Patch... command, Tools menu, 219, 846

Create Shortcuts dialog, 253–254

CREATE TABLE statement, 423, 425–426

Create Time/Date property, 71, 150

Create Update.exe check box, 855

Create/Apply Transforms... command, Tools

menu, 219

CreateFolder table, 76, 77, 78

columns, description of, 125

Power Editor entries and, 286–287

required entries for ISI Artist, 125

CreateFolders action, 309

CreateObject function, 462, 631

916 Index

4723-2 Index.f 1/16/01 11:14 AM Page 916

CreateProcess function, 393

CreateProcessAsUser function, 392–393

CreateRecord method, 462

CreateShortcuts action, 309

CreateTextFile function, 666–667

Creating Application property, 72

cryptography, public-key, 25–26

curly braces ({ }), 473

custom action. See also specific actions

accessing active database, 432–434

accessing current Installer session,

430–432

action parameters, 440–446

ARPINSTALLLOCATION, setting, 660–662

categories, 382–385

creation with InstallScript, 649–686

custom table use and creation, 454–455

CustomAction wizard overview, 436–448

database tables, 385–392

debugging, 416, 481–482

example, 413–415

implementation, basic, 396–404

invocation method, 379, 409–411

nested installations, 468–472

overview, 333

privileges and, 378

processing, 404–413

property manipulation with, 450–453

for Property table, viewing, 662–669

return values, 411–412, 419–422

scheduling, 404–409

secondary installations, 468–472

sequencing, 378–379

storing, 396–397, 401–403

synchronous versus asynchronous, 378,

411–412, 446

type, 392–396, 437–440

user interface and, 455–464, 669–680

uses of, examples, 377–378

custom action categories, 382–385

commit, 383–384

deferred execution, 382–383, 409, 416

immediate execution, 382, 405, 409

install, 383

rollback, 383

system context, 384

custom action database tables, 385–392

Binary, 387–388, 396–397

CustomAction, 386–387, 402–403

Directory, 389–390, 401

Error, 391–392

File, 388–389

flow diagram of schema, 386

Property, 390–391, 402

custom action, deferred, 409–410, 432, 464–468

context information for, 416

CustomActionData property example,

464–468

described, 382–383

information available to, 465

custom action, formatted text, 473–478

formatting a text string, 473–474

setting a directory, 474–476

setting a property, 476–478

Type 35, 474–476

Type 51, 476–478

custom action implementation

copying to system, 397–398

identification via Directory table, 401

identification via Property table, 402

nested installation, 403–404

storage, 396–397

storing as strings, 402–403

custom action processing

invoking, 409–411

return value processing, 411–412

scheduling, 404–409

custom action types, 392–396

error message, 395, 478

immediate, 430

implemented as formatted text, 394–395

implemented in dynamic link library, 393,

439, 442–443, 479–481

implemented in executable file, 392–393

implemented in script, 394

launch as executable, 438, 441–442

nested installation, 395–396, 403–404, 416,

440, 445–446

custom action types

run InstallScript code, 440

run JScript code, 439, 444–445

Continued

Index 917

4723-2 Index.f 1/16/01 11:14 AM Page 917

custom action types (continued)

run VBScript code, 439, 443–444

setting a directory, 440, 445

setting a property, 440, 445

Custom Action wizard

accessing, 436, 525

Action Parameters dialog, 440–446

Action Type dialog, 437–440

Additional Options dialog, 446

Basic Information dialog, 334, 436–437

call a function in a standard dynamic link

library action type, 479

CustomActionData property example,

465–466

Display_CAD_Prop example, 468

Enum_Network_Drives example, 462–463

Function Definition dialog, 480–481

In-Sequence Scripts dialog, 456

launching, 232

Open_Web_Page example, 455–456

overview of, 232, 233

Reverse_String example, 480

ScriptTest example, 525

Set_CAD_Prop example, 466

Summary dialog, 447

Welcome dialog, 436, 437

Custom Actions icon, 436, 525

Custom Setup dialog, 293–294

Custom Setup Type dialog box, 130

custom tables, creating and using, 454–455

CustomAction table, 378

columns, description of, 131–132, 386–387

custom action storage as strings, 402–403

default installation location, required entries

for, 131–132

default location, defining, 415

required entries for ISWI Artist, 131–132

script storage, 455–457

Type attribute, 412–413

CustomActionData property, 464–466

CustomerInformation dialog, 344–345

CustomerSetup dialog, 345–346

CustomizeDlg dialog, 186–190

CustomSetup dialog, 348–349

Cut command, Edit menu, 215

D
darice.cub file, 151–152

Darwin Descriptor, 304, 752

Data column

Binary table, 132, 388

Icon table, 139

Data Definition Language (DDL), SQL, 422–427

adding a column to existing table, 426–427

ALTER TABLE statement, 423, 425, 426

column data type specification keywords,

423–424

column modifier keywords, 424

CREATE TABLE statement, 423, 425–426

DROP TABLE statement, 423

tables, creating new, 425–426

Data Manipulation Language (DML), 427–430

keywords, table of, 427–428

ORDER BY clause, 430

statements, table of, 427

valid operation types, table of, 428–429

WHERE clause, 428–430

database manipulation functions, 667–668

database-editing tool, 113. See also Orca

databases, merging, 729. See also merge

modules

.dbg file, 514

DDL. See Data Definition Language

(DDL), SQL

Debug command, 216, 517–518

Debug icon, 514

Debug toolbar button, 221

Debugger

launching, 514–515

menu commands, 516–519

script window, 519

tracing script execution, 520–521

user interface, 516–520

Variable Window, 519–520

watch window, 520

debugging

custom actions, 416, 481–482

JIT (Just-in-time), 482

_decispec(dllexport) keyword, 399–401

decorated name, 710

Default Destination Folder, 244–245

918 Index

4723-2 Index.f 1/16/01 11:14 AM Page 918

DefaultDir column, Directory table, 127–128,

390, 739–740

DefaultUIFont property, 329, 668, 794

deferred custom actions. See custom action,

deferred

#define directive, 510, 531

defining the product, 114–122

Components table entries, required, 119–121

Feature Components table, required, 121

Feature table entries, required, 116–119

Property table entries, required, 114–116

DefInprocHandler column, Class table, 134

Delete command, Edit menu, 214

DELETE FROM statement, 427, 429

Delete option, component, 701

DeleteFile function, 479

DeleteServices action, 311

demand paging, 20

demos, Help Library, 211

DemoShield Designer

overview of, 238

toolbar button, 221

DemoShield Designer... command, Tools menu,

219

deployment. See also Change and Configuration

Management

options, 31–33

Description column

ActionText table, 795

Class table, 133

Feature table, 117

ProgId table, 135, 140

Shortcut table, 137

Description property

feature, 273

ProgID, 284

shortcut, 280

design requirements, Windows Installer, 48–49

desktop

Change and Configuration Management,

29–30

IntelliMirror, 30–34

lockdown functionality, 50

Desktop Management Task Force (DMTF), 28

Destination Folder property, 263, 735

Destination property

component, 277, 703

feature, 274

DHCP. See Dynamic Host Configuration

Protocol (DHCP)

dialog boxes, 99–104. See also wizards,

overview of ISWI

adding new controls to existing, 186–190

Administration/User Interface, 342–343

AdminWelcome sequence, 350–351

Browse, 101

built-in, ISWI, 337–351

Cancel, 102

caption, 364

controls for, 102–104

creating new, 362–373

Dialog Editor overview, 351–359

Disk cost, 101

exporting, 339

FilesInUse, 99

FirstRun, 99

importing from a DLL, 338

InstallWelcome sequence, 343–347

License agreement, 102

MaintenanceWelcome sequence, 347–349

merge module, creating for, 736

modifying existing, 359–362

PatchWelcome sequence, 350

required, 100–101

selection, 102

sequence tables, placement into,

194–197

Sequence view of, 339–343

SetupResume sequence, 349–350

termination, 101

User Interface view of, 337–339

Dialog_ column

Control table, 163

ControlCondition table, 189

ControlEvent table, 166

Dialog table, 159

EventMapping table, 186

dialog, creating new, 362–373

basic design, 364–366

navigational controls, creating, 370–373

radio button functionality, constructing,

367–370

Index 919

4723-2 Index.f 1/16/01 11:14 AM Page 919

Dialog Editor, 351–359, 799

accessing, 237

alignment and sizing toolbar, 357–359

context menu, 359

controls toolbar, 352–356

Edit menu, 359

overview of, 237

Dialog Gallery, 363

Dialog table, 99–101

BrowseDlg entries, 176–177

columns, description of, 159–160

Control table key value for, 163

ControlCondition table key value for, 189

ControlEvent table key value for, 166

EventMapping table key value for, 186

UserExitDlg entries, 190

UserRegistrationDlg entries, 166–173

WelcomeDlg entries, 159–161

DialogCaption property, 329, 668

Dialogs dialog, 255

Diamond cabinet file structure, 63

Dictionary object, 636–637

directory

setting by custom action, 440, 445

setting with a formatted text string (Type 35

action), 474–476

Directory_ column

Component table, 120, 702

CreateFolder table, 125

Directory table, 127–128, 390, 739–740

Feature table, 118

Shortcut table, 137, 138

directory divider (\), 415

directory service, 35. See also Active Directory

Directory table, 77–78, 95

attributes, 96–97

columns, description of, 127–128

Component table key value for, 120, 702

CostFinalize action resolution of, 474

CreateFolder table key value for, 125

custom actions and, 389, 401

example entries, 97

Feature table key value for, 118

function, 78

launching an executable located by an entry

in, 438, 442

layout, 95–96

merge module, 737, 739–740

Power Editor entries and, 286–287

required entries for ISWI Artist, 127

re-resolution by Type 35 action, 474–475

Shortcut table key value for, 137

target and sourcepath resolution, 98

DirectoryCombo control, 103, 182, 186

DirectoryCombo, Control toolbar button, 356

DirectoryList control, 103, 183, 186

DirectoryList, Control toolbar button, 355

DirectoryListNew control event, 185

DirectoryListUp control event, 185

Directory_Parent column, Directory table,

127–128, 390, 739–740

DirProperty column, RemoveFile Table, 126

Disable Change Button property, 260

Disable Remove Button property, 260

Disable Repair Button property, 260

DISABLEADVTSHORTCUTS property, 715

disaster recovery, 29

Disaster Recovery Preparation wizard, 29

Disk cost dialog, 101

disk duplication, 24

disk quotas, 42

DiskId column, Media table, 129–130

DiskPrompt column

ImageFamilies table, 838

Media table, 129–130

DiskPrompt property, 330, 668

DiskSerial property, 668

DiskSpaceRequirements dialog, 346

dispatcher objects, 19

Display column, Feature table, 117–118

Display, feature property, 274

Display Icon property, 259

Display Name property, 714

feature, 273

Open verb, 285

shortcut, 280

Display the Setup Languages dialog checkbox,

801–802, 805, 806

Display_CAD_Prop action, 468

Display_IsBitmapDlg property, 330, 343, 668

DISTINCT keyword, 427

division operator (/), 552

920 Index

4723-2 Index.f 1/16/01 11:14 AM Page 920

DLL. See dynamic link library (DLL)

DLL Hell, 67, 688–689

DllCache directory, 67

DllRegisterServer, 248–249, 723

HKCR keys, 697

self-registration of components and, 697

DllUnregisterServer, 248, 696

DML. See Data Manipulation Language (DML)

DNS. See Domain Name Service (DNS)

DoAction control event, 411, 455, 457, 670

domain forest, 37

Domain Name Service (DNS), 37

DHCP, integration with, 42–43

remote installation and, 43

domain trees, 36

domains

global catalog, 37

trust relationships, 36–37

DontRemoveTempFolderWhenFinished property,

836

DOS, installing software in, 6

double slashes (//), 535, 590, 592

downloading, prevention of, 825–829

drag-and-drop, 500

Drive object, 639

Drives collection iterator, 641–645

Drives object, 639

DROP TABLE statement, 423

DuplicateFile table, 749

DuplicateFiles action, 309

DWORD, array of, 613–616

Dynamic File Link Settings dialog, 706–707

Dynamic Host Configuration Protocol (DHCP)

DNS, integration with, 42–43

remote installation and, 43

dynamic link, 706–707

dynamic link library (DLL)

Binary table, incorporation into, 680–683

Binary table, streaming from, 683–685

category GUID, 68

custom action and, 393, 439, 442–443,

479–481

DLL Hell, 67, 688–689

importing dialogs from, 338–339

installation location, 687–688

InstallScript functions in, 580–582

introduction of, 6

mapping, 688–689

name decoration and, 399–401

operating system handling of, 688

overview of, 687–688

redirection, 691, 748–749

reference counting, 698–699

self-registration, 248–249, 697

side-by-side sharing, 690, 691

version conflict, 688–689

Win32s, 7–8

wrapper DLL, 479

dynamic linking, introduction of, 6

E
Edit control, 103

Edit, Control toolbar button, 353

Edit menu

Debugger, 516

ISWI commands, list of, 214–216

script editor, 497–500

Edit Script command, 487

#elif directive, 511–512

ellipsis (...), 576

elseif statement, 565–566

EnableLangDlg key, 802

End User License Agreement (EULA), 255

EndDialog event, 185, 194, 464

endfor keyword, 568

endswitch statement, 567

Enforce Setup Best Practices check box, 244

entry-point function, 575

Enum_Network_Drives action, 463

environment variable, 709

path variables, 265

text string, 473

environment variable actions, 316

equals (=) sign, 429, 504, 554, 555, 563

Err object, 621–623

methods, 623

properties, 622

Err.Clear method, 623

Err.Description property, 622

Err.HelpContext property, 622

Err.HelpFile property, 622

Err.LastDllError property, 622

Index 921

4723-2 Index.f 1/16/01 11:14 AM Page 921

Err.Number property, 622

Error column, Error table, 392

Error Control dialog, 725

Error (Type 19) custom action, 448, 478, 826,

828

#error directive, 510–511

Error flag, transform, 756, 757

error message

compile-time, 510

custom actions display of, 395

Error table, 391, 795–796

ErrorDialog property, 330, 668

ERROR_FUNCTION_NOT_CALLED, 420

ERROR_INSTALL_FAILURE, 421, 436, 478

ERROR_INSTALL_SUSPEND, 421

ERROR_INSTALL_USEREXIT, 420

ERROR_NO_MORE_ITEMS, 421, 435

errors. See error message; exception handling

ERROR_SUCCESS, 420

Err.Raise method, 623

Err.Source property, 622

Escape key, 160

escape sequences, 590–591

Event column

ControlEvent table, 166

EventMapping table, 186

event handler, 582, 650–656

event mapping, 99

EventMapping table, 165

BrowseDlg entries, 185–186

columns, description of, 186

subscription of control events, 337

exception handling, 619–630

Err object, 621–623

hierarchy, 623–624

InstallScript, 625–627

modern approach, 620–621

traditional approach, 619–620

in user-defined functions, 627–630

Exchange Key Management Service, 26

executable file, custom actions implemented in,

392

ExecuteAction, 317

AdminExecuteSequence table, 196

InstallUISequence table, 196

Execution Scheduling, 526

Executive, 19–20

Exit command

Debugger, 516

File menu, 213

exit statement, 574

exit, user-initiated, 190–194

ExitDlg dialog, 195

Export Dialogs to Resource Script... option, 339

Export REG File wizard

launching, 230

overview of, 230–231

/EXPORT specification, 399, 401

EXPORTS statement, 399

exposing the product to the environment,

136

file association creation, 140–143

per-application path creation, 143–144

shortcut creation, 136–139

expressions, InstallScript. See InstallScript

expressions

extended characters, check for unsupported,

792

Extension column, Extension table, 140

Extension_ column, Verb table, 142

extension, open verb property, 285

Extension table, 74–75, 76, 77, 80, 88

columns, description of, 140–141

file association creation, 140–141

Verb table key value for, 142

EXTERNAL keyword, 533

ExternalFiles table, 842

F
failed installations, 11

Family column

ImageFamilies table, 837

UpgradedImages table, 839

FamilyFileRanges table, 842

_fastcall calling convention, 399, 400

FAT12, 9

FAT16, 9

FAT32 file system, 9

FatalErrorDlg dialog, 195

fdisk, 26

feature

choosing which to install, 58

922 Index

4723-2 Index.f 1/16/01 11:14 AM Page 922

component association, 700

defined, 54

defining in Application Features dialog,

246–247

Level attribute, 75–76

levels of, 59

merge module association, 744

name creation, 247

ordering of, 247

sharing a COM component between,

697–698

standard actions related to, 305–306

Feature_ column

Class table, 134

Extension table, 141

Feature table, 117

FeatureComponents table, 121

PublishComponent table, 751

feature level advertising, 53

feature properties, finalizing in Setup Design

view, 272–276

Feature table, 74, 78

Class table key value for, 134

columns, description of, 117–118

defining the product, 116–119

Extension table key value for, 141

PublishComponent table key value for,

751

required entries for ISWI Artist, 116–117

Shortcut table key value for, 137

FeatureComponents table, 74, 76

columns, meaning of, 121

defining the product, 121

required entries for ISWI Artist, 121

feature-level install on demand, 119

Feature_Parent column, Feature table, 117

file

adding to a component, 705–707

adding to components using Project wizard,

250–253

companion, 92

compression, 290–291

properties, setting in Project wizard,

252–253

versioning, 91–92

File Allocation Table (FAT), 9

file association, 716

creating, 140–143, 283–284

items to include in, 716

File column, File table, 123–124, 388

file costing, 93–94, 147

actions, AdminUISequence table, 197

standard actions, 302, 307–308

file handling

CreateFolder table entries, 125

Directory table entries, 126–128

File table entries, 122–124

initializing the default installation location,

130–132

Media table entries, 129–130

RemoveFile table entries, 125–126

file installation actions, 308–311

File Linking, 706–707

File Linking Property page, 706

File List property page, 705

File menu

Debugger, 516

ISWI commands, list of, 213–214

file name, decorated, 710

File object, 640

File Properties dialog, 252–253

File Protection List, 690

file searching standard actions, 302, 306–307

file system

COM Structured Storage, 59–60

drivers, 9, 19

File table, 76, 77, 92, 95

columns, meaning of, 123–124

custom actions and, 388–389

decorated names, 710

required entries for ISWI Artist, 122–123

text strings and, 474

Upgraded Images and, 837

File Types, 283–285

File Types icon, 716–717

File Versioning Rules, 91–92, 695–696

FileCost action, 93, 307

FileKey column, RemoveFile Table, 126

_FILE_macro, 513

FileName column

File table, 124, 388

RemoveFile Table, 126

Index 923

4723-2 Index.f 1/16/01 11:14 AM Page 923

filenames, 124, 292

Files are self-registering check box, 248

Files icon, 705

Files object, 640

FileSequenceStart column, ImageFamilies table,

838

FilesInUse dialog, 100

FileSize column, File table, 124, 389

FileSystemObject object, 636–640

objects, table of, 639–640

FILETIME structure, 56

FileTypeMask column, Class table, 134

filter drivers, 19

Filtering Settings dialog, Release Wizard, 736,

800

Find... command

Debugger, 516

Edit menu, 215

FindRelatedProducts action, 321, 821–823, 826

Finish pushbutton, 194

FirstRun dialog, 100

flow-of-control statements, 563

folder

creating empty, 125, 128, 286–287

location, defining, 128

redirection, 31, 41–42

Folder object, 640

Folder Redirection, Group Policy Editor

extension, 40

Folders object, 639

Font dialog, script editor, 493

font file (.fon), 253

font titles, 253

Fonts component, 726–727

for loop statement, 568–570

_ForceCodepage table, 792, 793–794, 794

ForceReboot action, 320

formatted text custom actions. See custom

action, formatted text

formatted text string, 394–395

FREE keyword, 425

Fresh Install, 818

Full UI user interface level, 83

Fully Qualified Domain Name (FQDN), 43

Function Definition dialog, 480–481

Function wizard, 498–499

G
Generate Autorun.inf check box, 293

Generate Package Definition File (PDF) check

box, 293

GetDir function, 592

GetDisk function, 593

GetDrivesAndTypes function, 676–678, 679

GetDriveTypeText function, 678–679

GetLastError function, 622

GetProcAddress function, 393, 401

GetProperties function, 663

GetPropertyTableView function, 664

GetSequence function, 651–655

Getting Results help topic, 208

Getting Started Guide link, 205

Getting Started help topic, 208

global catalog, 37

global component creation, 718–721

global variables, 89

globalization, 783

Globalization Tutorial, 211

Globally Unique Identifier (GUID)

component, 55, 58, 702, 746, 751

compressed Component Codes, 305

creating, 56

creating with GUIDGEN.EXE, 113

merge module, 65, 731

packed, 303, 746–747

UpgradeCode, 814

variants, 56

Go command, Debugger, 517, 521

Go menu commands, list of, 217–218

GoTo... command, Edit menu, 215

goto statement, 573–574

greater than (>) operator, 429, 554, 563

greater than or equal to (>=) operator, 429, 554,

563

Group Policy Editor

extensions, 40

System Policy Editor compared, 39

GroupBox control, 103

GroupBox, Control toolbar button, 354

GUID. See Globally Unique Identifier (GUID)

GUIDGEN.EXE, 113, 150

924 Index

4723-2 Index.f 1/16/01 11:14 AM Page 924

H
.h extension, 509

Hardware Abstraction Layer (HAL), 18

hashing algorithms and arrays, 548

HCentering column, Dialog table, 159

header files, 509, 512, 650

Height column

Control table, 163

Dialog table, 160

help

context-sensitive, 164, 182

ToolTip text, 164, 182

Help column, Control table, 164, 182

help, InstallShield for Windows Installer,

204–205, 207–212

demos, 211

displaying, 207

Globalization Tutorial, 211

Help Library, 207–208

Help Updates, 212

Project Wizard Tutorial, 209–210

Setup Map, 208–209

Welcome screen links to, 204–205

Windows Installer Programmer’s Reference,

212

ZAW Tutorial, 210–211

Help Library

command, Help menu, 220

InstallShield for Windows Installer, 207–208

Help menu

commands, list of, 220

Debugger, 518

Help Telephone edit field, 245

Help Updates, 212

Help View command, Help menu, 220

Help View link, 205

Help/Support command, Go menu, 217

Hierarchical Storage Management (HSM), 28

HKCR keys, per user, 697

HKEY_CLASSES_ROOT, 820

HKEY_CURRENT_USER, 708, 820

HKEY_LOCAL_MACHINE, 708, 820

HKEY_USERS, 820

HKEY_USER_SELECTABLE, 708

.hlp file, 719

_hMsiInstall global variable, 650

HOLD keyword, 425, 426

Hot Key, shortcut property, 282

hot-fix distributions (Hotfix.exe), 68, 690

Hotkey column, Shortcut table, 137

HWND data type

aliases, 535

prefix, 534

Hypertext Transfer Protocol (HTTP), 38

I
IActiveScriptParse COM interface, 28

Icon column

ProgId table, 135

Shortcut table, 138

Icon control, 103

Icon, Control toolbar button, 355

Icon Extraction, ProgID property, 284

Icon File

ProgID property, 284

shortcut property, 281

icon file extensions, 79–80

Icon Index

ProgID property, 284

shortcut property, 281

Icon table, 79–80

Class table key value for, 134

columns, description of, 139

ProgId table key value for, 135

required entries for ISWI Artist, 139

shortcut creation and, 138–139

IconIndex column

Class table, 134

ProgId table, 135

Shortcut table, 138

#if directive, 511–512

if statement, 564–566

#ifdef directive, 512–513

if-else statement, 564–566

#ifndef directive, 512–513

Ignore Best Practices violations check box, 243

Ignore custom action return code check box,

525

IgnoreChange control, 186

IgnoreMissingSrcFiles column, TargetImages

table, 841

Index 925

4723-2 Index.f 1/16/01 11:14 AM Page 925

image binding, 311

Import Address Table (IAT), 311

Import Dialog... option, 338

Import Dialogs from Resource DLL... option,

338

Import REG File wizard, overview of, 230, 231

Import Visual Basic Project... command, Tools

menu, 219

.inc extension, 238

include files, 509

#include, 487, 509

IncludeWholeFile field, 842

IncludeWholeFilesOnly property, 836

Ind User License Agreement (EULA), 344

indirection

Property table and, 476–477

qualified components, 68, 304

Type 51 custom action and, 477

indirection operator (*), 535, 536

Indirect_Properties action, 477

inequality operator (!=), 554

infrastructure management, 24–28. See also

management services, Windows 2000

initialization file actions, 316

initialization files

introduction of, 6–7

private, 7

in-script execution options, 410, 412–413

In-Sequence Scripts dialog, Custom Action

wizard, 456

Insert Action dialog box, 322–323

Insert command, 215–216, 498–500

Insert Components... command, 700, 701

Insert InstallScript Function toolbar button, 221

INSERT INTO statement, 427, 429

Insert Script Files... command, 487

Insert/Remove BreakPoint command, 519

Install Condition property, 263

install custom actions, 383

Install Level

default, 75

feature property, 274

Install NT Service component, creating,

723–725

Install NT Services icon, 717

INSTALL top-level action, 52, 82, 145

Install wizard, 99

Installable File System (IFS) Manager, 9

InstallAdminPackage action, 148

installation configuration actions, 317–318

installation database, 59, 61–63

sequence tables, 81–85

table groups, 62–63

tables, binary-centric, 105

tables, categories of, 72–73

tables, component-centric, 72–73, 76–77

tables, dialog-centric, 99–104

tables, directory-centric, 73, 77–78

tables, entry point, 73

tables, feature-centric, 72, 74–76

tables, icon-centric, 73, 79–80

tables, miscellaneous group, 73, 80–83

tables, miscellaneous UI group, 105–106

Installation Events dialog, 725

installation location. See also localization

initializing the default, 130–132

installation package creation with ISWI,

241–295

building the package, 288–295

component properties, finalizing, 276–286

feature properties, finalizing, 272–276

Power Editor use, 286–287

Project view, 256–272

Project wizard use, 242–256

Setup Design view, 272–286

validating the package, 295

installation package overview

application source files, 63

COM Structured Storage, 59–60

installation database, 61–63, 72

Summary Information Stream, 59, 60–61,

69–72

validation, 406–107

Installation User Interface tree, 339

Installation-On-Demand functionality, 53

InstallChoice property, 668

INSTALLDIR

creating a Type 35 custom action to modify,

475–476

Directory table entry, 244

property, 294, 737

Installer directory, 49

926 Index

4723-2 Index.f 1/16/01 11:14 AM Page 926

installer unit, 99

InstallExecute action, 318

InstallExecuteAgain action, 318

InstallExecuteSequence, 82, 94

ISWI Artist, entries for, 146–147

RemoveExistingProducts property, 821

InstallFiles action, 94–95, 149, 309, 749

InstallFinalize action, 86, 318, 383

InstallInitialize action, 86, 317, 383

INSTALLLEVEL property, 75–76, 89, 118, 269,

330, 668

InstallMode column, RemoveFile Table, 126

InstallODBC action, 310

InstallScript

arrays, implementation of, 611

arrays, passing to a DLL function, 613–616

arrays, sorting, 611–613

COM, accessing, 631

compiling, 503–513

conventions, scripting, 533–535

custom action creation, 649–686

data types, 529–551

debugger, 514–521

described, 485–486

Dictionary object use, 636–637

exception handling, 619–630

expressions, 552–563

FileSystemObject use, 636–640

functions, 574–582

keywords, 532–533

lists, sorting and searching, 601–611

OnBegin/OnEnd event handlers, 650–656

sample script creation, 486–490

script editor use, overview, 490–503

statements, 563–574

strings as paths, 591–594

strings as strings, 585–591

structures, array of, 616–619

testing, setting up an environment for,

523–528

variable names, 532, 533–534

Windows Installer automation interface,

accessing, 632–636

InstallScript data types, 529–551

aliases, 529–530

array, 547–548

BOOL, 536–537

case, 533–534

CHAR, 537–538

correct use, importance of, 531

INT, 538

LIST, 544–547

LONG, 538

NUMBER, 529–531, 535–536

pointer, 535–536

scripting conventions, 533–535

SHORT, 538–539

STRING, 529–530, 539–541

structure, 549–551

symbolic constants, 531

variables, 531–532

VARIANT, 529–530, 542–543

InstallScript expressions, 552–563

arithmetic operators, 552–553

bitwise operators, 559–562

logical operators, 553–557

lvalue, 552

operator precedence, 562–563

relational operators, 553–557

Resize operator, 558–559

rvalue, 552

SizeOf operator, 557–559

InstallScript Function... command, 498

InstallScript Function wizard. See Function

wizard

InstallScript functions, 574–582

built-in, 575, 585–589, 592–594

in dynamic-linked library, 580–582

event-handler, 582

passing strings to, 594–601

strings as paths, manipulating, 592–594

user-defined, 575–580

InstallScript icon, 486

InstallScript statements, 563–574

abort statement, 574

elseif statement, 565–566

endswitch statement, 567

execution order, 563

exit statement, 574

goto statement, 573–574

if statement, 564–566

Continued

Index 927

4723-2 Index.f 1/16/01 11:14 AM Page 927

InstallScript statements (continued)

if-else statement, 564–566

for loop statement, 568–570

overview, 563

repeat statement, 572–573

return statement, 574

switch statement, 566–568

while statement, 570–572

InstallServices action, 311

InstallShield for Windows Installer (ISWI),

overview of, 201–239

Add New Language wizard, 235

Best Practices view, 212

Best Practices wizard, 226–227

Build menu, 216–217

Component wizard, 228–230

Convert Source Paths wizard, 234

Custom Action wizard, 232, 233

DemoShield Designer, 238

Dialog Editor, 237

Edit menu, 214–216

Export REG File wizard, 230–231

File menu, 213–214

Go menu, 217–218

Help menu, 220

Help view, 205, 207–212

Import REG File wizard, 230

installation project workspace, 222

installing, 202–203

InstallShield Today view, 204–207

Merge Module project workspace, 223

Merge Module wizard, 231–232

Open MSI/MSM wizard, 228

Open Project wizard, 227–228

Patch wizard, 235–236

Project wizard, 224–225

project-based development tool, 202

Release wizard, 225–226

Script Editor, 237–238

Spy, 238

toolbar commands, 220–221

tools, 236–239

Tools menu, 218–219

Transform wizard, 235

user-interface, basic design of, 203–204

Validate Project wizard, 233–234

versions, 202–203

Visual Basic wizard, 232–233

Web Update tool, 238–239

wizards, 224–236

InstallShield Home Page toolbar button, 221

InstallShield IDE Reference help topic, 208

InstallShield on the Web command, Help menu,

220

InstallShield on the Web... screen, 207

InstallShield Software Corporation, 7, 207

InstallShield Today command, Go menu, 217

InstallShield Tuner, 756

InstallUISequence table, 82, 194–196

InstallValidate action, 94, 308

InstallWelcome dialog, 341, 343–344

InstallWelcome dialog sequence, 343–347

CustomerInformation, 344–345

CustomerSetup, 345–346

flow chart for, 344

InstallWelcome, 343–344

LicenseAgreement, 344

OutOfSpace, 346–347

ReadyToInstall, 346

SetupType, 345

InstMsiA. exe file, 49

InstMsiW. exe file, 49

INT data type, 534, 538

INT keyword, 424

INTEGER keyword, 424

IntegerData property, 462

IntelliMirror, 30–34

software installation and maintenance,

31–33

Systems Management Server compared, 45

user data management, 31

user settings management, 33–34

internal consistency evaluation (ICE), 107

darice.cub file, 151–152

Validate Project wizard, 233

.inx extension, 505

I/O Manager, 19

IP address leasing, 43

IPC Manager, 20

_ISCRIPT_VER macro, 513

.isd file, 338

Isdbg.exe, 514–515

928 Index

4723-2 Index.f 1/16/01 11:14 AM Page 928

.ism file extension, 205, 732

_IsMaintenance property, 328, 348

ISMsiQuery.h file, 657

IsolateComponents action, 308, 749

IsolatedComponent table, 748–749

ISProductFolder path variable, 264, 487

IsProjBlankMMTpl.ism file, 809

IsProjBlankTpl.ism file, 809

ISProjectFolder path variable, 264

IsProjTpl.ism file, 809

ISSCRIPTDEBUGPATH public variable, 515

_IsSetupTypeMin property, 328, 345

ISWI Artist sample application

Components table, 119–121

COM-related registry input for, 132–136

CreateFolder table, 125

Directory table, 126–128

exposing to the environment, 136–144

Feature table, 116–119

FeatureComponents table, 121

File table, 122–124

installation location, 130–132

installation package creation with ISWI,

241–295

Media table, 129–130

overview, 241–242

Property table, 114–116

RemoveFile table, 125–126

sample application overview, 109–111

structuring the installation, 145–151

validating installation package, 151–153

ISWI localization features, 798–809

ISWIArtistUI.msi, 113

J
Java, Network Computer (NC) architecture, 10

job object, 22

JScript

custom action and, 394, 439, 444–445

return values, custom action, 420–421

Windows Script Host (WSH), 28

Just-in-time debugging, 482

K
Kerberos authentication, 24–25

kernel mode

components, 18–21

priority levels, 23

virtual memory available, 23

Key column, Registry table, 144

key file, component, 120

Keyboard property page, script editor, 494

keyboard shortcuts

assignment, 494–495, 501

for implementing bookmarks, 501

macros, 502

keypath, 55

component, defining for, 699

setting component, 706

Keypath column, Component table, 120, 702

keys, creating, 709–711

Keyword property, 70, 830

keywords, InstallScript, 532–533

Keywords, Summary Information Stream

property, 258

L
language. See also localization

adding new, 807–809

adding support with Add New Language

wizard, 235

filtering components based on language,

289

filtering components on language

association, 799–800

filtering process, 211

installation scenarios, language-specific,

786–787

merge modules, multiple-language, 731, 797

multilingual installations, 291–292,

801–804

script, setting, 494

string tables and, 798–799

translation, 784

Windows 2000 support, 784–785, 787–791

Language column

File table, 124, 389

Upgrade table, 824–825

language groups, 788–789

language ID, 124, 797, 805, 807

Index 929

4723-2 Index.f 1/16/01 11:14 AM Page 929

Language property

component, 278, 704, 799–800

merge module, 734

Language/Tabs property page, script editor, 493

Last Printed property, 71

Last Save Time/Date property, 71

Last Saved By property, 71, 830

LAST_RESULT variable, 520, 578

LastSequence column, Media table, 95, 129–130

LaunchCondition action, 149, 319

LaunchCondition table, 384

LDAP. See Lightweight Directory Access

Protocol (LDAP)

less than (<) operator, 429, 554, 563

less than or equal to (<=) operator, 429, 554,

563

Level attribute, feature, 75–76

Level column, Feature table, 118

library, script, 505, 506

License Agreement dialog, 102, 255, 344

LicenseAgreementDlg, 166, 174, 186–190

Lightweight Directory Access Protocol (LDAP),

38

Line control, 103

Line, Control toolbar button, 354

_LINE_macro, 513

list box, dynamically populating during

installation, 670–680

LIST data type

aliases, 535

creating and destroying lists, functions for,

544–545

modifying lists, functions for, 546–547

searching and accessing lists, functions for,

545–546

ListAdd* function, 545

ListBox control, 103, 670–680

ListBox, Control toolbar button, 354

Listbox table, 106

ListCount function, 545

ListCreate function, 545

ListCurrent* function, 545

ListDelete* function, 547

ListDestroy function, 545

ListFind* function, 546

ListGetFirst* function, 546

ListGetNext* function, 546

ListGetType function, 546

ListOfPatchGUIDsToReplace property, 834

ListOfTargetProductCodes property, 834

ListReadFromFile function, 545

lists

arrays compared, 547, 601

creating and destroying, 544–545

modifying, 546–547

searching and accessing, 545–546

sorting and searching, examples of, 601–611

ListSetCurrent* function, 546

ListSetIndex function, 546

ListView control, 103

ListView, Control toolbar button, 355

ListView table, 105

ListWriteToFile function, 546

LoadLibrary function, 393, 401, 581

.LOCAL extension, 67, 749

Local Procedure Call (LPC) facility, 20

locale identifiers (LCID), 68

LOCALIZABLE keyword, 424

localization

of ActionText table, 795

code page-neutral installation database,

783–784

component language association, 799–800

defined, 783

Dialog Editor, 799

of Error table, 795–796

Globalization Tutorial help, 211

installation for a product with multiple-

language resources, 806–807

installation for a set of localized products,

806

installation for a single localized product,

804–806

ISWI features, 798–809

language, adding new, 807–809

language-specific installation scenarios,

786–787

merge modules, multiple-language, 797

MSI database localization, 792–796

multilingual installation, 801–804

string table, 798–799

strings, adding to database, 793–795

930 Index

4723-2 Index.f 1/16/01 11:14 AM Page 930

Summary Information Stream properties

and, 797

Windows 2000 language support, 784–785,

787–791

logical AND operator (&&), 554, 555, 563

logical NOT operator (!), 554, 555, 562

logical operators, 553–557. See also specific

operators

logical OR operator (||), 554, 555, 563

logical right shift, 561

Logo Program, Windows, 7

requirements, initial, 7

requirements, Windows 95, 9

LONG data type, 534, 538

LONG keyword, 424

LONGCHAR keyword, 424

LongPathFromShortPath function, 593

LongPathToQuote function, 593

LongPathToShortPath function, 593

LPSTR data type, 535

lvalue, 552

M
machine replacement, 34

macros

creating, 502–503

example, 502–503

preprocessor generated, 513

MainExe_Component, 254

maintenance process overview, 4

MaintenanceType dialog, 348

MaintenanceWelcome dialog, 341, 348

MaintenanceWelcome dialog sequence,

347–349

CustomSetup, 348–349

flow chart for, 347

MaintenanceType, 348

MaintenanceWelcome, 348

ReadyToInstall, 349

ReadyToRemove, 348

MaintenanceWelcomeDlg dialog, 196

Make Lowercase command, 497

Make Same Height, Alignment and Sizing

toolbar button, 358

Make Same Size, Alignment and Sizing toolbar

button, 358

Make Same Width, Alignment and Sizing

toolbar button, 358

Make Uppercase command, 497

Makecab.exe cabinet file creation tool, 63

management services, Windows 2000, 24–29

Advanced System Recovery (ASR), 24

Backup Utility, 29

Change and Configuration Management,

29–44

Disk Duplication, 24

Hierarchical Storage Management (HSM), 28

infrastructure management, 24–28

IntelliMirror, 30–34

Kerberos Authentication, 24–25

Microsoft Management Console (MMC), 25

Public Key Infrastructure, 25–26

Remote OS Installation, 34–35

Removable Storage Management (RSM), 29

Repair Command Console, 26

Safe Mode Boot, 26

Security Configuration Manager, 26

Security Services, 26

Server Configuration Wizard, 27

storage management, 28–29

Task Scheduler, 27

Terminal Services, 27

Unattended Setup, 27

Windows Management Instrumentation

(WMI), 28

Windows Script Host (WSH), 28

Manufacturer property, 115, 326, 668

.map extension, 514

Mark All button, 502

MaskedEdit control, 104, 173

MaskedEdit, Control toolbar button, 356

MathPlot example application, 811–812, 820,

824–829

media pools, 29

Media table, 80, 95

columns, description of, 129–130

ImageFamilies table information and,

836–838

required entries for ISWI Artist, 129

Index 931

4723-2 Index.f 1/16/01 11:14 AM Page 931

Media Type & Patch Optimization dialog, 290,

841

MediaDiskId column, ImageFamilies table,

838

MediaSrcPropName column, ImageFamilies

table, 837

memory management, Windows 2000, 23

Memory Manager, 20

merge module, 728–746

building, 733–736

cabinet file, 731

creating, 732–746

destination, controlling installation,

737–740

dialog creation, 736

format, 65

functions of, 728–729

GUID, 731, 734

importance of, 729

insertion into main installation project,

741–746

languages, multiple, 731

location, 732–733, 736

multiple language, 65

multiple-language, 797

overview, 64–65

properties, 733–735

sequence tables, 730, 740–741

structure of, 730–732

tables in, 730

transforms compared, 755–756

Merge Module Destination dialog, 737,

743–744

Merge Module Gallery dialog, Merge Module

Wizard, 742–743

Merge Module Wizard, 737, 741–745

launching, 231

menu option, 700

overview of, 231–232

Merge Module workspace, 223

Merge Modules Options dialog, 736

MergeModules folder, 736

Message column, Error table, 392

MessageBox function, 528

MicroKernel, 19

Microsoft Exchange, 26

Microsoft Management Console (MMC), 25. See

also specific snap-ins

MigrateFeatureStates action, 321, 821, 823

MIME_ column, Extension table, 141

MIME table, Extension table key value for, 141

MIME type, 717

minus (-) sign, 552, 562, 563, 711

Misc property page, script editor, 495–496

Modify method, 462

Module Dependencies property, merge module,

734

Module Exclusions property, merge module,

735

Module ID, 731, 734, 739

ModuleComponents table, 730

ModuleDependency table, 730

ModuleExclusion table, 730

ModuleIgnoreTable table, 730

ModuleSignature table, 730, 731, 734, 797

motherboard, abstraction by HAL (Hardware

Abstraction Layer), 18

mouse

drag-and-drop, 500

script editor use of, 500

split window creation, 500

MoveFiles action, 309

.msi file

application source files, 63

installation database, 59, 61–63

Summary Information Stream, 59, 61

.msi file extension, 49, 51

MSI Help Library command, Help menu, 220

MSI package, accessing, 50

MSI package creation

activities involved, overview of, 111–112

COM-related registry input, 132–136

copying application resources to the

computer, 122–136

defining the product, 114–122

exposing the product to the environment,

136–144

file handling, 122–130

installation location, initializing default,

130–132

ISWI Artist sample application, 109–111

structuring the installation, 145–151

932 Index

4723-2 Index.f 1/16/01 11:14 AM Page 932

tools needed, 113

validating the installation package, 151–153

MsiCreateTransformSummaryInfo function,

762, 777

MsiDatabaseApplyTransform function, 771,

774, 777

MsiDatabaseCommit function, 777, 778

MsiDatabaseExport function, 792

MsiDatabaseGenerateTransform function, 762,

777

MsiDatabaseImport function, 792, 793

MsiDatabaseMerge function, 64

MsiDatabaseOpenView function, 432, 434, 435,

667

MsiDb.exe utility, 158, 793

msi.dll, 66

MsiDoAction function, 382, 410–411, 436

MsiEnumComponentQualifiers function, 752

msiexec.exe, 49–51, 472

_MSIExecute mutex, 469

MsiFileToUseToCreatePatchTables property, 836

MsiFormatRecord API function, 445

MsiGetActiveDatabase function, 432, 434, 667

MsiGetLanguage function, 450, 465

MsiGetMode function, 450, 465

MsiGetProperty function, 448–449, 451, 465,

657–658

MSIHANDLE, 464

MsiInfo.exe utility, 113, 150, 791

MsiInstallProduct function, 469

MsiMerge.exe utility, 113

MSIMODIFY_INSERT_TEMPORARY constant,

433, 679

MSIMSP.EXE utility, 831

MsiPath column

TargetImages table, 840

UpgradedImages table, 839

MsiProcessMessage function, 451, 465

MsiProvideQualifiedComponent function, 752

MsiProvideQualifiedComponentEx function,

752

MsiRecordGet* function, 433

MsiRecordGetString function, 435–436, 667

MsiRecordReadStream function, 433

MsiRecordSet* function, 433

MsiRecordSetInteger, 679

MsiRecordSetStream function, 778

MsiRecordSetString function, 679, 778, 794

MsiReinstallProduct function, 820

MsiSetProperty function, 448–449, 452, 657,

658

MsiSetTargetPath API function, 475

MsiVal2.exe utility, 151–152

-F switch, 152

-I switch, 152

msival.exe, 295

MsiViewClose function, 433

MsiViewExecute function, 432, 434, 435, 667

MsiViewFetch function, 433, 434, 667

MsiViewModify function, 433, 679, 778

.msm extension, 730, 732

.msp extension, 49, 829

.mst extension, 756

MultiByteToWideChar function, 794

multicast bit, 57

multiplication operator (*), 552

mutants, 19

mutex, _MSIExecute, 469

mutexes, 19

MySetups folder, 733

N
Name column

Binary table, 132, 388

Icon table, 139

Registry table, 144

Shortcut table, 137, 138

name decoration, 399–401

Name Service Provider Interface (NSPI), 38

namespace, Active Directory, 37

nested installation custom actions

rules and regulations, 470–471

types of custom actions, 469–470

nested installations

action parameters, 445–446

custom actions and, 395–396, 403–404,

416, 440, 445–446, 469–471

NetInstall Spy, 238

Network Computer (NC) architecture, 10

Network image option, 290

Never Overwrite property, component, 279, 704

New Blank Setup Project toolbar button, 221

Index 933

4723-2 Index.f 1/16/01 11:14 AM Page 933

New Component menu option, 700

New Dialog... option, 337, 363

New Dynamic Link option, 706

New Key option, 708

New Language wizard, 807–808

New MIME Type option, 717

New Project command, File menu, 213

New Script File command, 486, 487

NewDialog control event, 166, 175, 339, 343

Newfolder button, BrowseDlg, 185

NewFolder property, 668

Next button

Control table entry and, 164

UserRegistrationDlg, 174

WelcomeDlg, 164, 166

NoOpen file type, 716–717

not equal to (< >) operator, 429

NOT NULL keyword, 424

NT Service Executable dialog, 724

NT Services, installing and controlling, 310–311

NTDLL.DLL file, 21

NTFS disk quotas, 42

NTKERNLMP.EXE file, 22

NTOSKRNL.EXE file, 19, 21–22

NULL terminator (‘0’), 591

NUMBER data type

aliases, 530

described, 529

pointer data types, 535–536

NumToStr function, 587

O
OBJECT data type, 534

OBJECT keyword, 424

Object Manager, 19

.obl extension, 505

.obs extension, 504

ODBC Resource components, 721, 727

ODBC-related actions, 310

Office Customization wizard, 756

OK button, BrowseDlg, 185

OLESelfRegister string, 720, 723

OnBegin function, 582, 650–653, 656, 685

OnEnd function, 582, 650, 653, 656, 685

Open a project... screen, 206

Open... command, Debugger, 516

Open MSI/MSM wizard

launching, 228

overview of, 228

Open Project command, File menu, 213

Open Project toolbar button, 221

Open Project wizard

launching, 227

overview of, 227–228

Open Software Foundation’s (OSF) Distributed

Computing Environment (DCE)

specification, 56

Open verb file extension properties, 285

OpenPackage method, 634

OpenProduct method, 634

OpenView method, 462

Open_Web_Page action, 456–457

operating system

models, 17

upgrades, 857

() operator, 562

operator precedence, 562–563

Options... command

Debugger, 517, 519

Tools menu, 219, 244

Options dialog, 219

OR logical operator, 429, 554, 555, 563

Orca

custom tables and, 454

overview, 113

UI preview capability, 158

ORDER BY clause, 430

Order column, TargetImages table, 840, 850

Ordering column, ControlEvent table, 166

OS/2, 21

OutOfNoRbDiskSpace property, 346, 349, 351

OutOfSpace dialog, 346–347

output window, compile, 505–506

P
Package Code, Summary Information Stream

property, 258

package validation, 106–107, 112, 151–153,

197, 295

PackageCode property, 796, 813

PackageName, 815

packed GUID, 303, 746–747

934 Index

4723-2 Index.f 1/16/01 11:14 AM Page 934

Page Count property, 71

paging, 23

ParsePath function, 593

Paste command, Edit menu, 215

patch creation property file (.pcp), 831–841

ImageFamilies table, 836–838

Properties table, 833–836

schema, 832

tables, overview of, 831, 832

TargetImages table, 839–841

UpgradedImages tables, 838–839

Patch Creation Wizard, 831, 846–856

accessing, 846

launching, 235

Newer Package panel, 850–851

overview of, 235–236

Patch Creation Settings panel, 853–855

Patch Package Identity panel, 851

Preview Packages panel, 847, 850

Previous Patches panel, 852–853

Welcome panel, 846

patch packages

administrative, 845

advantages of, 813

applying, 843–846

cabinet file stream, 830

contents of, 65

order of, 814

patch creation property file (.pcp), 831–841

Patch Creation Wizard, 846–856

steps for creating, 831

structure of, 829–830

Summary Information Stream, 829–830

transforms and, 830, 845–846

use of, 66

PATCH public property, 341

PatchFiles action, 309

PatchGUID column, Properties table, 852

PatchGUID property, 833

PatchMsiPath column, UpgradedImages table,

839

PatchOutputPath column, Properties table, 852

PatchOutputPath property, 833

PatchSourceList property, 834

PatchWelcome dialog, 341, 350

PATCHWIZ.DLL file, 811

PATH environment variable, 8, 715

Path Variable property page, 263–264

Path Variable Recommendation dialog, 251, 264

path variables, 263–266

environment variable-based, 265

predefined, 263–264

registry-based, 265–266

source paths, converting, 266

standard, 264–265

test value, setting, 266

uses of, 263

PathAdd function, 593

PathDelete function, 593

PathEdit control, 104, 177, 183

PathEdit, Control toolbar button, 356

PathFind function, 594

PathGet function, 594

PathMove function, 594

paths, strings as, 591–594

PathSet function, 594

.pcp file extension, 831

per-application path creation, 143–144, 283

period (.), 128, 549, 562

Permanent property, component, 278, 704

PIDTemplate property, 330, 668

pipe symbol (|), 97, 164, 182, 560, 563, 761

Plug and Play Manager, 20

plus (+) sign, 552, 563, 589, 711, 724

POINTER data type

aliases, 535

prefix, 534

populating a table during an install, 458–464

Portable Executable (PE) format, 80

POSIX, 21

Power Editor, 286–287, 681

Power Editor command, Tools menu, 219

Power Manager, 20

PrepareDlg dialog, 196

Preprocessor Defines field, 504–505

preprocessor directives, 508–511

#define, 510

#error, 510–511

#include, 509

#undef, 510

#warning, 511

macros, preprocessor generated, 513

Index 935

4723-2 Index.f 1/16/01 11:14 AM Page 935

PreventInstall action, 321

Previous Version icon, 847

Previous versions I listed earlier check box, 855

PRIMARY KEY clause, 425

Print command, File menu, 213

Print Preview command, File menu, 213

Print Setup... command, File menu, 213

priority level, process/thread, 23

private properties, 90

privileges

checking, 19

custom actions and, 378

elevated, 384

user impersonation, 381

process

components of, 22

job objects and, 22

memory-mapping, 23

priority, 23

process ID, 22

process management, Windows 2000, 21–23

Process Manager, 20

ProcessComponents action, 303–304

Product Code property, 262

product, defined, 54

product level advertisement, 53

Product Properties in Project view, 262–263

Product Type property, 262

Product Update URL property, 261

Product Upgrade property, 262

Product Version property, 260, 262, 734

ProductCode property, 115, 326, 330, 446, 668,

796, 800, 803, 805

changing, 815–816

upgrades and, 813–818, 821–823

ProductID property, 173, 668

ProductLanguage property, 115, 326, 450, 668,

786, 796, 803–807, 823

ProductName property, 115, 262, 326, 669, 734

ProductValidateFlags column, TargetImages

table, 841

ProductVersion property, 115, 326, 668,

813–814, 823

ProgID

creating new, 284

file type properties, 284

ProgId column

Extension table, 141

ProgId table, 134, 140

ProgId table, 79, 80, 88

columns description of, 134–136

Extension table key value for, 141

file association creation, 140

required entries for ISWI Artist, 135

ProgId_Default column, Class table, 133

ProgId_Parent column, ProgId table, 135

ProgramFiles folder as default destination, 130,

245

ProgramFilesFolder path variable, 264

ProgramsMenuFolder property, 128

ProgressBar control, 104

ProgressBar, Control toolbar button, 355

ProgressDlg dialog, 196

ProgressType1 property, 330, 669

ProgressType2 property, 331, 669

ProgressType3 property, 331, 669

ProgressTypeO property, 330

project

creating, 205

details of, 206

naming, 205, 244

opening, 206

Project command, Go menu, 217

Project Files dialog, New language Wizard, 808

Project icon, 205

Project Properties, 256–257

Project Properties icon, 798

Project view

install project workspace, 222

Merge Module workspace, 223, 733

path variables, 263–266

Product Properties, 262–263

Project Properties, 256–257

Property Manager, 266–269

String Tables, 269–272

Summary Information Stream properties,

257–259

Windows 2000 properties, 259–262

Project Wizard, 242–256

Application Components panel, 247–249

Application Features panel, 246–247

Application File panel, 251

936 Index

4723-2 Index.f 1/16/01 11:14 AM Page 936

Application Information panel, 245

Best Practices violations, 244

Create Shortcuts panel, 253–254

default destination, setting, 244–245

Dialogs panel, 255

File Properties dialog, 252–253

launching, 224, 243

License Agreement dialog, 255

naming projects, 244

overview of, 224–225

Path Variable Recommendation dialog, 250,

251

project names, 205

property entries, 244

Registry Data panel, 254–255

Setup Design panel, 250

Setup Languages panel, 246

Welcome dialog, 243

Wizard Summary dialog, 255–256

Project Wizard command, File menu, 213

Project Wizard toolbar button, 220

Project Wizard Tutorial, 210–211

project workspace

installation project, 222

Merge Module project, 223

Properties sheet, script editor, 491–496

Color/Font tab, 491–493

Keyboard tab, 494–495

Language/Tabs tab, 493–494

Misc tab, 495–496

Properties table, patch creation property file,

833–836

property

categories of, 324–326

creating your own, 327–328

default, 328–331

MSI database Summary Information Stream,

70–72

name restrictions, 90

precedence, 90, 327

private, 90, 324

public, 89, 90, 324

removing with MsiSetProperty function, 449

required, 326

restricted public, 90

run time, 323

setting by custom action, 440, 445

setting with a formatted text string (Type 51

action), 476–478

Property column

Control table, 164, 183

Property table, 391

Property Manager, 266–269

creating properties, 327–328

default properties, table of, 267–268

Property table, 75, 89, 657–669

access functions, 432

ARPINSTALLLOCATION property, setting,

660–662

CCP_Drive property, 658–660

columns, description of, 115

Control table link, 164

custom actions and, 390–391, 402, 450–453

defining the product, 114–116

indirection, 476–477

INSTALLLEVEL property, 118

MsiGetLanguage function, 450

MsiGetMode function, 450

MsiGetProperty function, 448–449,

657–658

MsiSetProperty function, 448–449, 657,

658

Project wizard entries and, 244

properties written to at run time, 668–669

required entries for ISWI Artist, 114–115

UpgradeCode property, 814

viewing, custom action for, 662–669

PSZ data type, 535

PTR resource record, 43

Public Key Infrastructure (PKI), 25–26

PublishComponent table, 717, 750–752

PublishComponents action, 304, 750, 752

published application, 54

Publisher property, 260

Publisher/Product URL property, 260

PublishFeatures action, 305

Publishing icon, 717, 751

publishing software, 31–33

PublishProduct action, 305–306

PushButton control, 104

PushButton, Control toolbar button, 353

Index 937

4723-2 Index.f 1/16/01 11:14 AM Page 937

Q
qualified components, 304

Qualifier column, PublishComponent table, 751

question mark (?), 429

QuickSort algorithm, 611–613

R
radio button functionality, constructing,

367–370

RadioButton, Control toolbar button, 354

RadioButton table, 105

RadioButtonGroup control, 104

RadioButtonGroup, Control toolbar button, 355

.rc extension, 339

Read Me property, 261

Readme command, Help menu, 220

ReadyToInstall dialog, 346, 349

ReadyToRemove dialog, 348

reboot actions, 320–321

RebootYesNo property, 331, 669

record mode, 502

Recovery wizard, 29

RedirectDLLSupport property, 749

redirection, DLL, 748–749

Redo command, Edit menu, 214

Reduced UI user interface level, 83

Reevaluate Condition property, component,

279, 704, 857

refcounting. See reference counting

reference counting, 691, 698–699

components, 57, 746, 815

shareable files, 9

string, 792

REG_BINARY, 711, 713

REG_DWORD, 711, 713

REG_EXPAND_SZ, 711–712

Regional Options applet, 788, 789–790

RegisterClassInfo action, 87, 312

RegisterExtensionInfo action, 88, 312

RegisterFonts action, 315

RegisterMIMEInfo action, 313

RegisterProduct action, 303

RegisterProgIdInfo action, 88, 313

RegisterTypeLibraries action, 89, 314

RegisterUser action, 303

registration actions

COM, 312–313, 716

COM+, 313

font, 315

self-registration of COM servers, 314

type library, 313–314

registration database, Window 3.0, 7

Registration property, 277, 331, 669, 703

Registry

columns, description of, 144

importing information, 254–255

key creation, 708, 709–711

path variables, 265–266

per-application path creation, 143–144

permanent key, 69

reference counting shareable files, 9

rollback, 52

standard actions related to, 302, 312–315

transforms, entries for, 760

upgrades and, 815–816, 820, 822

values, creating, 711–713

Registry column, Registry table, 144

Registry Data dialog, 254–255

Registry Data icon, 708, 717

Registry table, 76, 77, 87, 708–713

REG_MULTI_SZ, 711–712

REG_SZ, 711–713

REINSTALL property, 819

reinstallation, 817, 819–821

codes, 819–820

minor upgrade example, 820

ReinstallFileVersion property, 669

ReinstallMode control event, 348

REINSTALLMODE property, 92, 819

ReinstallModeText property, 331, 348, 669

ReinstallRepair property, 669

relational operators, 553–557. See also specific

operators

Release command, Go menu, 218

Release Configuration dialog, 290–291

Release Flags, 288

edit field, 736

feature property, 275

Release Label dialog, 288, 289

Release view, Merge Module, 736

Release Wizard

accessing, 288

938 Index

4723-2 Index.f 1/16/01 11:14 AM Page 938

Advanced Settings dialog, 292–293

Build Label dialog, 288

Filtering Settings dialog, 288–289, 800

launching, 225

Media Type & Patch Optimization dialog,

290

Merge Module, 736

output window information, 226

patch packages and, 841

rebuild functionality, 225–226

Release Configuration dialog, 290–291

release flags, 288

Release Label dialog, 288

release name, 288

Setup Languages dialog, 291, 801–802, 805,

806

Summary panel, 293, 294

Release Wizard command, Build menu, 216

Release Wizard toolbar button, 221

remainder operator (%), 552, 556

Remote Installation property, 274, 278, 293,

704

Remote Installation Services (RIS), 43

Remote OS installation, 34–35

Remote Procedure Call (RPC) facility, 20

Remote Storage Service, 28

removable media compliance checking program

(RMCCP), 307

Removable Storage Manager (RSM), 29

Remove column, Upgrade table, 824–825

Remove Files button, 720

Remove option, component, 701

RemoveDuplicateFiles action, 309

RemoveEnvironmentStrings action, 316

RemoveExistingProducts action, 321, 821–825

RemoveFile table

columns, description of, 126

Power Editor entries and, 286–287

required entries for ISWI Artist, 126

RemoveFiles action, 309

RemoveFolders action, 309

RemoveIniValues action, 316

RemoveODBC action, 310

RemoveRegistryValues action, 315

RemoveShortcuts action, 309

Rename option, component, 701

Repair button, enabling, 267

Repair Command Console, 26

reparse points, 28

Repeat... command, 215, 497

repeat statement, 572–573

Replace... command, Edit menu, 215

replication, Active Directory, 38

Required, feature property, 275

Reset event, 185

resiliency, Windows Installer, 53

Resize operator, 541, 547–548, 558–559, 562

resource, defined, 55

resource record, 43

resource resiliency, 767

restricted public properties, 90

RESUME property, 820

ResumeDlg dialog, 196

Return key, 160

return statement, 574

return values, custom action, 411–412, 419–422

Reverse_String action, 480

ReverseString function, 599

Revision Number property, 71, 150, 731, 829

RMCCPSearch action, 307, 658, 670

roaming environment, 31

roaming user profiles, 42

rollback custom actions, 383

rollback script, 52, 86

RollbackDisabled property, 384

Root column, Registry table, 144

ROOTDRIVE property, 738

row merge conflict, 64, 730

.rul extension, 509

Run command, Build menu, 217

Run, shortcut property, 281

Run to Cursor command, 517, 519, 521

Run toolbar button, 221

runtime resource resiliency, 53

rvalue, 552

S
safe mode boot, 26

SAFEARRAY method, 611, 616

Save Project As... command, File menu, 213

Save Project command, File menu, 213

Save Project toolbar button, 221

Index 939

4723-2 Index.f 1/16/01 11:14 AM Page 939

ScheduleReboot action, 320

scheduling custom actions, 404–409

operating systems compared, 405, 407–409

options, table of, 405–406

schema.msi, 113, 152

screen readers, 172, 175

screen review utilities, 175

script editor, 490–503

accessing, 490

color assignment, 491–492

context menu, 496–497

Edit menu, 497–500

font, 492–493

functionality, 237–238

keyboard shortcuts, assigning, 494–495,

501–502

keyboard use, 501–503

macros, 502–503

mouse use, 500

properties, 491–496

script-based custom actions, return values for,

419–422

script-driven installation, 298

scripting conventions

comments, 534–535

declaring variables, 533

variable naming, 533–534

white space, 535

scripting run-time object model, 637

scripts. See also InstallScript

compiling, 503–513

debugging, 514–521

exception handling, 619–630

libraries, 505, 506

tracing the execution, 520–521

Scripts, Group Policy Editor extension, 40

ScriptTest action, 523–526

ScrollableText control, 104

ScrollableText, Control toolbar button, 355

scrolling in script editor, 500

SCRRUN.DLL, 636

SCRSS.EXE, 21

searching

CCP_DRIVE property and, 658

lists, 545–546

standard actions for, 302, 306–307

secondary installations, 468–472. See also

nested installations

SecureCustomProperties property, 821–822,

825, 826

security

Access Control List (ACL), 38

Active Directory, 38

group policy, 39, 40

Public Key Infrastructure (PKI), 25–26

user impersonation, 381

Security Configuration Manager, 26

Security property, Summary Information

Stream, 72

Security Reference Monitor, 19

Security Services, 26

Security Settings, Group Policy Editor

extension, 40

Select Network Drive dialog box, 463

SELECT statement, 427, 429, 430

Select System Locale dialog, 789

Select Tool, Control toolbar button, 353

Selection dialog, 102

SelectionBrowse control, 189, 346

SelectionTree control, 104, 189, 345–346

SelectionTree, Control toolbar button, 355

SelfReg table, 697

self-registration

actions, 314

of COM components, 696–697

of DLLs, 697

SelfRegModules action, 314

SelfUnregModules action, 314

Send To Back, Alignment and Sizing toolbar

button, 358

Send To command, 714

Send To folder shortcuts, 714

SEQUENCE action, 318

Sequence column

File table, 95, 124, 389

merge module sequence table, 740

Verb table, 142

sequence tables, 81–85

creating the installation execute, 145–149

custom actions and, 378–379

merge modules, 730, 740–741

MsiDoAction function and, 435–436

940 Index

4723-2 Index.f 1/16/01 11:14 AM Page 940

negative sequence numbers, 195

populating the user-interface, 151, 194

repetition in, 301

scripts compared, 298

structure, 84–85

types of, 82–83

sequences

custom actions, 378–379

default, manipulating, 322

inserting actions into, 322–323

Sequences command, Go menu, 218

Sequences view

dialogs, ISWI built-in, 339–343

overview, 299–300

Server Configuration wizard, 27

server process, 379–81

Service Control Manager, 21, 724

Service Information dialog, 724

Service Load Order dialog, 724

Service Logon dialog, 725

ServiceControl table, 717, 725

ServiceInstall table, 723

SERVICES.EXE, 21

session manager, 21

Session.Language, 465

Session.Mode, 465

Session.ProcessMessage, 465

Session.Property, 465

set files/profiles, 175

Set Key File option, 251, 706

SetARPINSTALLLOCATION function,

661–662

Set_CAD_Prop action, 466

SetCCP_DRIVE function, 673–674, 679

SetDriveList function, 672–673, 679

Set_Feature_Selection, 453

Set_INSTALLDIR custom action, 475–476

SetSequence function, 650–651, 654–655

SETTARGETDIR.DLL, 130, 131

SetTargetPath event, 185, 351

Setup Author Name property, 256–257

Setup Design view, 250, 272–286

component properties, finalizing, 276–286

Component Wizard, accessing, 718

feature properties, finalizing, 272–276

Merge Module, 735, 739

Setup Design-Components command, Go menu,

218

Setup Design-Destination command, Go menu,

218

Setup Design-Features command, Go menu, 217

Setup Design-Global command, Go menu, 217

Setup Languages dialog, 246, 291, 801–802,

805, 806

Setup Languages property, 256–257, 798

Setup Map, 205, 208–209, 220

Setup Toolkit, 7

Setup Type dialog, 58, 75

Setup view, merge module, 745

SetupCompleteError dialog, 340, 342

SetupCompleteSuccess dialog, 340, 342,

359–362, 457

setup.exe, 50

SetupInitialization dialog, 340, 342

SetupInterrupted dialog, 340, 342

SetupProgress dialog, 342, 346

SetupResume dialog, 341, 349–350, 820

SetupResume dialog sequence, 349–350

SetupType dialog, 345

SetupType property, 331, 669

SetupTypeDlg dialog, 174, 175

SFP. See System File Protection (SFP)

Shared property, component, 278, 704

shared reference count, 9

SharedDLLs registry key, 698–699, 746

SHELL32.DLL, 44

ship error codes, 796

SHORT data type, 538–539

SHORT keyword, 424

Shortcut column, Shortcut table, 137, 138

Shortcut table, 76, 77, 78, 79

columns, description of, 137–138

required entries for ISWI Artist, 136–137

shortcuts

advertised, 254

creating, 714–715

creating in Project wizard, 253–254

creating Windows Installer, 136–139

guidelines for, 714–715

keyboard, assigning, 494–495, 501

placement, 714–715

Continued

Index 941

4723-2 Index.f 1/16/01 11:14 AM Page 941

shortcuts (continued)

property values, setting, 280–282

in Send To folder, 714

target, 254

SHORTFILENAMES property, 845

Show Horizontal Scrollbar option, 496

Show Left Margin option, 495

Show Line Tooltip# While Scrolling option, 496

Show Next Statement command, 518, 519

Show Vertical Scrollbar option, 496

Show Whitespace command, 497

ShowCmd column, Shortcut table, 138

side-by-side sharing, 690, 691

Silent user interface level, 83

SizeOf operator, 541, 557–559, 562

smart defaults, 224

Smooth Scrolling option, 495

SMP. See Symmetric Multiprocessing (SMP)

SMS. See System Management Server (SMS)

SMSS.EXE, 21

snap-ins, 25

software deployment

options, 31–33

rule-based, 45

software installation, 3–13

DOS, 6

end-user viewpoint of, 4

Java and Network Computer (NC)

architecture, 10

operations involved, basic, 5

problems, 11–12

setup developer’s viewpoint of, 5

system administrator’s viewpoint of, 4–5

Windows, 16-bit, 6–8

Windows, 32-bit, 8–10

Wintel model, 10–11

Software Installation, Group Policy Editor

extension, 40

SOFTWARE key, 708

Source column

CustomAction table, 131, 387

Media table, 130

Source Location property, component, 279, 705

Source Paths, converting to path variables, 266

source resiliency, 53

SourceDir property, 96

Space Across, Alignment and Sizing toolbar

button, 357

Space Down, Alignment and Sizing toolbar

button, 358

Specify Files dialog, Transform Wizard,

762–763, 771

Specify ODBC Data Sources dialog, 726

Specify ODBC Drivers dialog, 727

Specify ODBC Translators dialog, 728

Specify Output File Name dialog, Transform

Wizard, 764, 765, 772

Specify Service dialog, 725

speech access utilities, 175

SplashBitmap dialog, 343, 350

split window creation, 500

SprintBox function, 526, 528

Spy, 238

SQL. See Structured Query Language (SQL)

square brackets ([]), 394, 473, 476–478, 562,

709, 712

standard actions, 301–321

AppSearch, 306–307

BindImage, 311

categories of, 301–302

CCPSearch, 307

CostFinalize, 308

CostInitialize, 307

CreateFolders, 309

CreateShortcuts, 309

DeleteServices, 311

DuplicateFiles, 309

ExecuteAction, 317

file costing, 302, 307–308

file installation, 302, 308–311

file searching, 302, 306–307

FileCost, 307

FindRelatedProducts, 321

ForceReboot, 320

installation configuration, 302

InstallExecute, 318

InstallExecuteAgain, 318

InstallFiles, 309

InstallFinalize, 318

InstallInitialize, 317

InstallODBC, 310

InstallServices, 311

942 Index

4723-2 Index.f 1/16/01 11:14 AM Page 942

InstallValidate, 308

IsolateComponents, 308

LaunchCondition, 319

MigrateFeatureStates, 321

MoveFiles, 309

PatchFiles, 309

PreventInstall, 321

ProcessComponents, 303–304

PublishComponents, 304

PublishFeatures, 305

PublishProduct, 305–306

RegisterClassInfo, 312

RegisterExtensionInfo, 312

RegisterFonts, 315

RegisterMIMEInfo, 313

RegisterProduct, 303

RegisterProgIdInfo, 313

RegisterTypeLibraries, 314

RegisterUser, 303

registry and configuration settings, 302,

312–317

RemoveDuplicateFiles, 309

RemoveEnvironmentStrings, 316

RemoveExistingProducts, 321

RemoveFiles, 309

RemoveFolders, 309

RemoveIniValues, 316

RemoveODBC, 310

RemoveRegistryValues, 315

RemoveShortcuts, 309

RMCCPSearch, 307

ScheduleReboot, 320

SelfRegModules, 314

SelfUnregModules, 314

SEQUENCE, 318

StartServices, 311

StopServices, 311

UnpublishComponents, 304

UnpublishFeatures, 306

UnregisterClassInfo, 312

UnregisterExtensionInfo, 312

UnregisterFonts, 315

UnregisterMIMEInfo, 312

UnregisterProgIdInfo, 312

UnregisterTypeLibraries, 314

ValidateProductID, 319

Windows Installer data store, 301, 303–306

WriteEnvironmentStrings, 317

WriteIniValues, 316

WriteRegistryValues, 315

Standard Destination folders combo box, 248

Start/Run dialog, 143

StartServices action, 311

statements, InstallScript. See InstallScript

statements

static link, 706

Status Bar command, Debugger, 516

stdcall calling convention, 393, 399, 400,

580–581

Step Into command, 517, 519, 520

Step Out command, 517, 520

Step Over command, 517, 519, 520–521

Stock Keeping Unit (SKU) management, 202

Stop Build command, Build menu, 216

Stop Build toolbar button, 221

StopServices action, 311

storage management, 28–29

storages, 59–60

_Storages table, 778

StrCompare function, 585, 587

StrCompareEx function, 585–587, 601

StreamFileFromBinary function, 683–685

streams, 59–60

StrFind function, 588

StrGetTokens function, 588

STRING data type, 712–713

aliases, 530

described, 529

overview, 539–541

prefix, 534

size, specifying, 539–541

string find operator (%), 589

string ID

creating new with String Tables editor,

271–272

default, 259, 269

format, standard, 269

string pool, 791–792

string table

function of, 269

localization of an installation and, 798–799

selecting string from, 499–500

Index 943

4723-2 Index.f 1/16/01 11:14 AM Page 943

String Table entry... command, 499

String Tables editor, 269–272

StringData property, 462

StringList object, 634

strings

ANSI, storage as, 793

concatenation, 589

converting ANSI to Unicode, 793, 794

escape sequences, 591

formatted text, 394–395

InstallScript built-in functions for, 585–589,

592–594

localized, added to database, 793–795

passing to functions, 594–601

reference counting, 792

resizing variables, 558–559

selecting from string table, 499–500

sizing, 539–541

storage in string pool, 791–792

as strings, 585–591

text, formatting, 473–474

StrLength function, 587, 588

StrLengthChars function, 588

StrRemoveLastSlash function, 594

StrSub function, 588

StrToLower function, 588

StrToNum function, 588

StrToUpper function, 587, 588

structure member operator (.), 549, 562

Structured Query Language (SQL)

Data Definition Language (DDL),

422–427

Data Manipulation Language (DML),

427–430

marker use example, 433–434

structuring the installation, 112, 145–151

installation execute sequence tables,

creating, 145–149

populating user-interface sequence tables,

151

summary information, adding, 150–151

Subject property, 70, 258

subscribing controls, 186

subtraction operator (-), 552

Summary dialog

Component wizard, 720–721, 723, 726

Custom Action wizard, 447

Merge Module Wizard, 744, 745

New language Wizard, 808

Transform Wizard, 764, 766

Summary Information Stream, 59, 60

ISWI Artist, entries for, 150–151

localizing an MSI database, 797

merge module, 731, 743

patch packages, 829–830

properties, 69–72

properties in Project view, 257–259

purposes of, 61

transform file and, 756, 757–760

Word Count property, 124

Sunken property, 361

supervisor mode, 17. See also kernel mode

Support Contact property, 260

Support Phone Number property, 260

Support URL property, 260

SUPPORTDIR system variable, 680

Suppress Error Conditions dialog, Transform

Wizard, 764, 765, 772

switch statement, 566–568

symbolic constant, 531

SymbolPaths column

TargetImages table, 840

UpgradedImages table, 839

Symmetric Multiprocessing (SMP), 16–17, 23

synchronization, 41–42

Synchronization Manager (SyncMgr), 42

syntax coloring, 491–492

System close button, 160

system context custom action, 384–385

System DSN check box, 728

System File Protection (SFP), 67,

690–691

system locale, 789–790

System Management Server (SMS)

capabilities, list of, 44–45

IntelliMirror compared, 45

system policy creation, 38

System Policy Editor

Group Policy Editor compared, 39

overview, 38

system reboot actions, 320–321

system threads, 20–21

944 Index

4723-2 Index.f 1/16/01 11:14 AM Page 944

System32 folder

DLL storage, 688

System File Protection (SFP), 690

SystemFolder path variable, 264

SYSTEM.INI

introduction of, 6

in Windows 95, 8

T
Tab Index property, 360

Tabify command, 497

tables

adding column to existing,

426–427

adding record to with MsiViewModify

function, 433

creating new, 425–426

manipulating with Orca, 113

rows, modifying, 427

Tables catalog, 756

tables, installation database

Binary, 105

categories, 72–73

CheckBox, 106

Class, 75, 76, 77, 79, 80, 87

ComboBox, 106

Component, 76–77, 78

Condition, 75–76

Control, 104–106

Create Folder, 76, 77, 78

Dialog, 99–101

Directory, 77–78

Extension, 76, 77, 80, 88

Feature, 74–75, 78

FeatureComponents, 74, 76

File, 76, 77, 92

groups, 62–63

Icon, 79–80

ListBox, 106

ListView, 105

Media, 80–81

ProgId, 79, 80, 88

Property, 75, 89–90

RadioButton, 105

Registry, 76, 77, 87

Sequence, 81–85

Shortcut, 76, 77, 78, 79

TextStyle, 106

TypeLib, 75, 76, 77, 78, 89

UIText, 106

Verb, 80

Tabs, 493

Target column

CustomAction table, 131–132, 387

Shortcut table, 137, 138

TargetImages table, 840

Target, shortcut property, 281

TARGETDIR property, 96, 128

creating default value for, 130

TargetFiles_OptionalData table, 842

TargetImages table, 839, 847–850

Task Scheduler, 27

Template column, ActionText table,

795

Template property, 70, 115, 797, 829

Template Summary, Summary Information

Stream property, 258

TEMPORARY keyword, 424, 428

terminal emulation, 27

Terminal Services, 27

termination codes, 85

termination dialog boxes, 1001

Test command, Build menu, 216

Test toolbar button, 221

Test Value column, 266

Text column

Control table, 164, 165

Dialog table, 173

Text control, 104

Text, Control toolbar button, 353

Text Wheel feature, 293

TextStream object, 640

TextStyle table, 16, 106, 173, 794

thin-client technology, 27

_thiscall calling convention, 399, 400

thread

components of, 22

memory access, requesting, 23

priority, 23

system, 20–21

thread ID, 22

Thumbnail property, 72

Index 945

4723-2 Index.f 1/16/01 11:14 AM Page 945

Title column

Dialog table, 160

Feature table, 117

Title property, 70, 258

Toggle Breakpoint command, 518

Toggle Grid, Alignment and Sizing toolbar

button, 358

tokens, formatting, 473–474

token-string, 510–511

Toolbar command, Debugger, 516

Toolbar commands, ISWI, 220–221

Tools menu, ISWI, 218–219

ToolTip text, 164, 182

total cost of ownership (TCO), 10

Total Editing Time property, 71

Transform Wizard, 454

accessing, 762

Completing the Transform Wizard dialog,

764, 766, 773

launching, 235

overview of, 235, 236

Specify Files dialog, 762–763, 771

Specify Output File Name dialog, 764, 765,

772

Summary dialog, 764, 766

Suppress Error Conditions dialog, 764, 765,

772

Validation Settings dialog, 764

Welcome dialog, 762, 763, 771

transforms

applying at design time, 771

applying at run time, 767–770

caching, 767

creating using ISWI, 762–766

defined, 64

described, 755–756

editing, 776–778

embedded versus stand-alone, 760–761

embedding in an MSI package, 778–779

error flags, 756, 757

language, 65

merge module and, 65, 755–756

patch packages and, 65, 830, 845–846

registry entries for, 760–761

secure, 760–761, 767–770

structure of, 756–760

Summary Information Stream, 756,

757–760

types of, 760–761

unsecured, 760–761

uses of, 64

validation flags, 756, 758–760

viewing contents of, 774–776

TRANSFORMS property, 767, 769

TRANSFORMSATSOURCE property, 768

TRANSFORMSSECURE property, 768

_TransformView table, 774–776

Transparent property, 360–361

TrueType Collections (.ttc), 253

TrueType Fonts (.ttf), 253

trust relationship, 36–37

try...catch block, 621, 623–624

Type column

Control table, 163

CustomAction table, 131, 387

type library registration actions, 313–314

TypeLib table, 75, 76, 77, 78, 89

U
UiCreatePatchPackage function, 831, 833

UIText table, 106

unary NOT (!) operator, 512

Unattended Setup, 27

#undef directive, 510

underscore character (_), 510, 532

Undo command, Edit menu, 214

uninstall problems, 12

Uninstallation Events dialog, 726

Universally Unique Identifier (UUID),

56–57

UnpublishComponents action, 304

UnpublishFeatures action, 306

UnregisterClassInfo action, 312

UnregisterExtensionInfo action, 312

UnregisterFonts action, 315

UnregisterMIMEInfo action, 312

UnregisterProgIdInfo action, 312

UnregisterTypeLibraries action, 314

Untabify command, 497

UnUseDLL function, 581

Up button, BrowseDlg, 185

Update... command, Help menu, 220

946 Index

4723-2 Index.f 1/16/01 11:14 AM Page 946

update, small, 813, 817, 818, 843. See also

upgrades

UPDATE statement, 427, 429

UPDATE.EXE, 68

upgrade installation actions, 321

Upgrade table, 821–825

downgrade prevention and, 825–829

reference counting and, 691–692

UpgradeCode column, Upgrade table, 824–825

UpgradeCode property, 115, 331, 669, 800, 814,

821–823, 825–827

Upgraded column

TargetImages table, 840, 850

UpgradedImages table, 839

Upgraded Images, 837

UpgradedFiles_OptionalData table, 842

UpgradedFilesToIgnore table, 842

UpgradedImages table, 838–839, 850–851

upgrades, 811–857

application preparation for, 814

downgrading, preventing, 825–829

Fresh Install, 818

major, 814–816, 817–818, 821–825,

844–845

methods, summary of, 817–818

minor, 814, 817–818, 843–844

operating system, 857

patch packages, 813–814, 817–818, 829–856

reinstallation, 817, 819–821

small update, 813, 817, 818, 843

types of, 813–818

Upgrade table, 821–825

version numbers, 814

Use entire files in patch package check box, 854

Use long filenames check box, 292

Use path variable test values check box, 293

Use System Settings check box, 252

UseDLL function, 581

user data management, 31

user impersonation, 381

user interface

custom actions and, 669–680

Debugger, 516–520

dialogs, 99–104

msi file for, 112

User Interface command, Go menu, 218

user interface creation, 112, 157–198, 335–373

BrowseDlg, 176–186

design categories, 158

Dialog Editor use, 351–359

dialogs, adding new controls to existing,

186–190

dialogs, built-in, 337–351

dialogs, creating, 158–186, 362–373

dialogs, modifying existing, 359–362

for new installation, 158–190

overview, 157–158

populating sequence tables, 194–197

for user-initiated exit, 190–194

UserRegistrationDlg, 166–175

validation, 197

WelcomeDlg, 158–166

user interface custom actions, 455–464

DoAction control event use, 455–457

dynamically populating a combo box,

458–464

user interface levels, 82–83

User Interface view

Dialog Editor, access to, 799

dialogs, ISWI built-in, 337–339

Merge Module, 736

user locale, 790

user mode

components, 21

priority levels, 23

virtual memory available, 23

user preferences, locale, 784

user profiles, roaming, 42

user settings management, 33–34

user-defined functions

creating and using, 576–580

prototyping, 575–576

UserExitDlg, 190–194

Control table entries, 191–194

ControlEvent table entries, 194

Dialog table entries, 190

negative sequence numbers and, 190, 195

user-interface sequence, 196

UserRegistrationDlg, 166–175

adding to user-interface sequence, 188

ControlEvent table entries, 173–175

Continued

Index 947

4723-2 Index.f 1/16/01 11:14 AM Page 947

UserRegistrationDlg (continued)

Dialog table entries, 166–173

tab order, 172

UsersLanguage attribute, 795

V
Validate Project... command, Tools menu, 219

Validate Project wizard

launching, 233

overview of, 233–234

report generation, 233

ValidateProductID, 173, 319

validation actions, 318–320

Validation flag, transform, 756, 758–760

validation, package. See package validation

Validation Settings dialog, Transform Wizard,

764

_Validation table, 151–152

validation.log file, 152–153

Value column

Property table, 391

Registry table, 144

values, creating, 711–713

Variable command, Debugger, 516

Variable Window, Debugger, 519–520

variables

data type of, 531

declaring, 533

inspecting with Debugger, 520

InstallScript and, 531–534

naming, 532, 533–534

prefixes, InstallScript, 534

VARIANT data type

aliases, 530

described, 529

overview of, 542–543

SizeOf operator, 557–558

VBScript

for combo box dynamic population,

458–464

custom actions and, 394, 439, 443–444,

455–457

return values, custom action, 420–421

Windows Script Host (WSH), 28

VCentering column, Dialog table, 160

Verb column, Verb table, 142

Verb table, 80

columns, description of, 142

command verb, required entries for, 142

file association creation, 141–142

Version column, File table, 389

version conflicts, 11

Version property, 632

version string, 91

VersionMax column, Upgrade table, 824–825

VersionMin column, Upgrade table, 824–825,

827

Versions with these product codes check box,

855

View menu, Debugger, 516–517

virtual memory, 20, 23

Virtual Memory Manager (VMM), 23

Visual Basic wizard

launching, 232

overview of, 232–233

Visual C++ return values, 420–421

Visual Debugger, InstallShield. See Debugger

Visual Registry Editor, 708

Visual Studio, 113

VOID keyword, 533, 578

VolumeCostList control, 104, 346

VolumeCostList, Control toolbar button, 356

VolumeLabel column

ImageFamilies table, 838

Media table, 129–130

VolumeSelectCombo control, 104

VolumeSelectCombo, Control toolbar button,

356

W
Wait Type dialog, 726

#warning directive, 511

warning levels, Compiler, 504

Warnings as errors check box, 504

Watch command, Debugger, 516

Web Update tool, 238–239

Web-based Enterprise Management (WBEM)

standard, 28

Welcome dialog

Custom Action wizard, 436, 437

Merge Module Wizard, 742

Transform Wizard, 762, 763, 771

948 Index

4723-2 Index.f 1/16/01 11:14 AM Page 948

Welcome screen , ISWI, 204

WelcomeDlg, 158–166

Control table entries, 161–165

ControlEvent table entries, 165–166

Dialog table entries, 159–161

tab order, 164

user-interface sequence, 196

WHERE clause, 428–430, 462

while statement, 570–572

Width column

Control table, 163

Dialog table, 160

WIN32K.SYS file, 20

Win32s, 7–8

Window Management Instrumentation (WMI),

28

Window Manager, 20

Windows 3.0, software installation in, 6–8

Windows 95

Installable File System (IFS) Manager, 9

introduction of, 8

Logo requirements, 8

registry, 8

software installation, 8–10

Windows 95 Application Setup Guidelines for

Independent Software Vendors, 8

Windows 2000

Advanced Server, 16–17

Application Specification link, 204

Datacenter Server, 17

languages support, 784–785, 787–791

Professional, 16

Properties in Project view, 259–262

Server, 16

Windows 2000 architecture, 17–23

block diagram of, 18

kernel mode components, 18–21

memory management, 23

process management, 21–23

system components, 17–21

user-mode components, 21

Windows 2000 versions, 15–17

Advanced Server, 16–17

Datacenter Server, 17

Professional, 16

Server, 16

Windows Compatibility Survey, 7

Windows File Protection (WFP), 67

Windows Installer Programmer’s Reference, 212

Windows Installer Service, 47–107

acquisition phase, 51

actions, standard, 85–89

advertisement, 53–54

architecture, run-time, 380

automation interface, accessing, 632–636

components and, 54–58, 66–69

controls supported, 102–104

design requirements, 48–49

file costing, 93–94

file installation, 94–98

file version rules, 91–92

how it works, 49–52

installation package overview, 59–63

introduction to, 40–41

mechanism, 379–381

merge modules, 64–65

object model, 431, 633

patch packages, 65–66

properties, 89–91

resiliency, 53

rollback phase, 52

sequence tables, 81–85

transforms, 64

user impersonation, 381

user interface, 99–106

user interface levels, 82–83

versions, 49, 50

Windows Management Instrumentation, 44

Windows Me operating system

side-by-side sharing, 690, 691

System File Protection (SFP), 691

Windows NT 4.0, 15–16

Windows NT LAN Manager (NTLM) protocol, 24

Windows Script Host (WSH), 28, 458, 646

Windows Web Update, 690

WindowsFolder path variable, 264

WIN.INI

introduction of, 6

in Windows 95, 8

WINLOGON.EXE process, 21

Wintel model, 10

WiRunSQL.vbs file, 454

Index 949

4723-2 Index.f 1/16/01 11:14 AM Page 949

Wizard Summary dialog, 255–256

wizards, overview of ISWI. See also specific

wizards

Add New Language, 235

Best Practices, 226–227

Component, 228–230

Convert Source Paths, 234

Custom Action, 232

Export REG File, 230–231

Import REG File, 230

Merge Module, 231–232

Open MSI/MSM, 228

Open Project, 227–228

Patch, 235–236

Project, 224–225

Release, 225–226

Transform, 235

Validate Project, 233–234

Visual Basic, 232–233

WkDir column, Shortcut table, 138

Word Count property, 71, 124, 830

Working Directory, shortcut property, 281

WriteEnvironmentStrings action, 317

WriteIniValues action, 316

WritePropertyTableToFile function, 665–666

WriteRegistryValues action, 87, 315

WSH.exe file, 646

X
X column, Control table, 163

Y
Y column, Control table, 163

Z
.zap file, 33

ZAW applications package (.zap) file, 33

ZAW Tutorial, 210–211

Zero Administration Kit (ZAK), 11

Zero Administration Windows (ZAW) initiative,

overview, 11

950 Index

4723-2 Index.f 1/16/01 11:14 AM Page 950

